Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Fix some problems causing multi-threaded btree tests to fail. Some still remain.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 67b28147ea037a363bee73dc006b6ead9399a530
User & Date: dan 2013-10-31 16:31:45.145
Context
2013-11-01
19:54
Use the log to store the page-size, database size and user cookie value instead of writing these directly to the database header. check-in: 37983095fd user: dan tags: trunk
2013-10-31
16:31
Fix some problems causing multi-threaded btree tests to fail. Some still remain. check-in: 67b28147ea user: dan tags: trunk
2013-10-30
19:57
Btree fixes related to multiple client tests. check-in: 58f7282211 user: dan tags: trunk
Changes
Unified Diff Ignore Whitespace Patch
Changes to main.mk.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#
# Once the macros above are defined, the rest of this make script will
# build the SQLite library and testing tools.
################################################################################

# FIXME:  Required options for now.
#
OPTS += -DLSM_MUTEX_NONE
#OPTS += -DSQLITE4_DEBUG=1 -DLSM_DEBUG=1
OPTS += -DHAVE_GMTIME_R
OPTS += -DHAVE_LOCALTIME_R
OPTS += -DHAVE_MALLOC_USABLE_SIZE
OPTS += -DHAVE_USLEEP
#OPTS += -DSQLITE4_MEMDEBUG=1
#OPTS += -DSQLITE4_NO_SYNC=1 -DLSM_NO_SYNC=1
#OPTS += -DSQLITE4_OMIT_ANALYZE
#OPTS += -DSQLITE4_OMIT_AUTOMATIC_INDEX
OPTS += -DSQLITE4_OMIT_VIRTUALTABLE=1
OPTS += -DSQLITE4_OMIT_XFER_OPT
OPTS += -DSQLITE4_THREADSAFE=0

# This is how we compile
#
TCCX =  $(TCC) $(OPTS) -I. -I$(TOP)/src -I$(TOP) 
TCCX += -I$(TOP)/ext/rtree -I$(TOP)/ext/icu -I$(TOP)/ext/fts3
TCCX += -I$(TOP)/ext/async








|











|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#
# Once the macros above are defined, the rest of this make script will
# build the SQLite library and testing tools.
################################################################################

# FIXME:  Required options for now.
#
#OPTS += -DLSM_MUTEX_NONE
#OPTS += -DSQLITE4_DEBUG=1 -DLSM_DEBUG=1
OPTS += -DHAVE_GMTIME_R
OPTS += -DHAVE_LOCALTIME_R
OPTS += -DHAVE_MALLOC_USABLE_SIZE
OPTS += -DHAVE_USLEEP
#OPTS += -DSQLITE4_MEMDEBUG=1
#OPTS += -DSQLITE4_NO_SYNC=1 -DLSM_NO_SYNC=1
#OPTS += -DSQLITE4_OMIT_ANALYZE
#OPTS += -DSQLITE4_OMIT_AUTOMATIC_INDEX
OPTS += -DSQLITE4_OMIT_VIRTUALTABLE=1
OPTS += -DSQLITE4_OMIT_XFER_OPT
#OPTS += -DSQLITE4_THREADSAFE=0

# This is how we compile
#
TCCX =  $(TCC) $(OPTS) -I. -I$(TOP)/src -I$(TOP) 
TCCX += -I$(TOP)/ext/rtree -I$(TOP)/ext/icu -I$(TOP)/ext/fts3
TCCX += -I$(TOP)/ext/async

Changes to src/bt_lock.c.
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
  BtFile *pBtFile;                /* List of deferred closes */
};

/*
** Grab the global mutex that protects the linked list of BtShared
** objects.
*/
static void btLockMutexEnter(){
  /* todo... */
}

/*
** Relinquish the mutex obtained by calling btLockMutexEnter().
*/
static void btLockMutexLeave(){
  /* todo... */
}

/*
** Attempt to obtain the lock identified by the iLock and bExcl parameters.
** If successful, return SQLITE4_OK. If the lock cannot be obtained because 
** there exists some other conflicting lock, return SQLITE4_BUSY. If some 
** other error occurs, return an SQLite4 error code.
**
** Parameter iLock must be one of BT_LOCK_WRITER, WORKER or CHECKPOINTER,
** or else a value returned by the BT_LOCK_READER macro.
*/
static int btLockLockop(
  BtLock *p,                      /* BtLock handle */
  int iLock,                      /* Slot to lock */
  int eOp,                        /* One of BT_LOCK_UNLOCK, SHARED or EXCL */
  int bBlock                      /* True for a blocking lock */
){
  const u32 mask = ((u32)1 << iLock);
  int rc = SQLITE4_OK;
  BtShared *pShared = p->pShared;

  assert( iLock>=0 && iLock<(BT_LOCK_READER0 + BT_NREADER) );
  assert( (BT_LOCK_READER0+BT_NREADER)<=32 );







|
|





|
|


<
<
<
<
<
<
<
<
<
|


|
<







71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88









89
90
91
92

93
94
95
96
97
98
99
  BtFile *pBtFile;                /* List of deferred closes */
};

/*
** Grab the global mutex that protects the linked list of BtShared
** objects.
*/
static void btLockMutexEnter(sqlite4_env *pEnv){
  sqlite4_mutex_enter(sqlite4_mutex_alloc(pEnv, SQLITE4_MUTEX_STATIC_KV));
}

/*
** Relinquish the mutex obtained by calling btLockMutexEnter().
*/
static void btLockMutexLeave(sqlite4_env *pEnv){
  sqlite4_mutex_leave(sqlite4_mutex_alloc(pEnv, SQLITE4_MUTEX_STATIC_KV));
}










static int btLockLockopNonblocking(
  BtLock *p,                      /* BtLock handle */
  int iLock,                      /* Slot to lock */
  int eOp                         /* One of BT_LOCK_UNLOCK, SHARED or EXCL */

){
  const u32 mask = ((u32)1 << iLock);
  int rc = SQLITE4_OK;
  BtShared *pShared = p->pShared;

  assert( iLock>=0 && iLock<(BT_LOCK_READER0 + BT_NREADER) );
  assert( (BT_LOCK_READER0+BT_NREADER)<=32 );
175
176
177
178
179
180
181
182
183
184
185
186

























187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
            p->mSharedLock &= ~mask;
            p->mExclLock |= mask;
          }
        }
        break;
    }

    sqlite4_mutex_leave(p->pClientMutex);
  }

  return rc;
}



























/*
** Connect to the database as a read/write connection. If recovery
** is required (i.e. if this is the first connection to the db), invoke 
** the xRecover() method.
**
** Return SQLITE4_OK if successful, or an SQLite4 error code if an
** error occurs.
*/
int sqlite4BtLockConnect(BtLock *p, int (*xRecover)(BtLock*)){
  sqlite4_env *pEnv = p->pEnv;
  int rc = SQLITE4_OK;
  const char *zName;
  int nName;
  BtShared *pShared;

  zName = sqlite4BtPagerFilename((BtPager*)p, BT_PAGERFILE_DATABASE);
  nName = strlen(zName);

  btLockMutexEnter();
  for(pShared=gShared.pDatabase; pShared; pShared=pShared->pNext){
    if( pShared->nName==nName && 0==memcmp(zName, pShared->zName, nName) ){
      break;
    }
  }

  if( pShared==0 ){







|




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




















|







165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
            p->mSharedLock &= ~mask;
            p->mExclLock |= mask;
          }
        }
        break;
    }

    sqlite4_mutex_leave(pShared->pClientMutex);
  }

  return rc;
}

/*
** Attempt to obtain the lock identified by the iLock and bExcl parameters.
** If successful, return SQLITE4_OK. If the lock cannot be obtained because 
** there exists some other conflicting lock, return SQLITE4_BUSY. If some 
** other error occurs, return an SQLite4 error code.
**
** Parameter iLock must be one of BT_LOCK_WRITER, WORKER or CHECKPOINTER,
** or else a value returned by the BT_LOCK_READER macro.
*/
static int btLockLockop(
  BtLock *p,                      /* BtLock handle */
  int iLock,                      /* Slot to lock */
  int eOp,                        /* One of BT_LOCK_UNLOCK, SHARED or EXCL */
  int bBlock                      /* True for a blocking lock */
){
  int rc;
  while( 1 ){
    rc = btLockLockopNonblocking(p, iLock, eOp);
    if( rc!=SQLITE4_BUSY || bBlock==0 ) break;
    /* todo: Fix blocking locks */
    usleep(10000);
  }
  return rc;
}


/*
** Connect to the database as a read/write connection. If recovery
** is required (i.e. if this is the first connection to the db), invoke 
** the xRecover() method.
**
** Return SQLITE4_OK if successful, or an SQLite4 error code if an
** error occurs.
*/
int sqlite4BtLockConnect(BtLock *p, int (*xRecover)(BtLock*)){
  sqlite4_env *pEnv = p->pEnv;
  int rc = SQLITE4_OK;
  const char *zName;
  int nName;
  BtShared *pShared;

  zName = sqlite4BtPagerFilename((BtPager*)p, BT_PAGERFILE_DATABASE);
  nName = strlen(zName);

  btLockMutexEnter(p->pEnv);
  for(pShared=gShared.pDatabase; pShared; pShared=pShared->pNext){
    if( pShared->nName==nName && 0==memcmp(zName, pShared->zName, nName) ){
      break;
    }
  }

  if( pShared==0 ){
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
      gShared.pDatabase = pShared;
    }
  }

  if( rc==SQLITE4_OK ){
    pShared->nRef++;
  }
  btLockMutexLeave();

  /* Add this connection to the linked list at BtShared.pLock */
  if( rc==SQLITE4_OK ){
    sqlite4_mutex_enter(pShared->pClientMutex);
    p->pNext = pShared->pLock;
    pShared->pLock = p;
    sqlite4_mutex_leave(pShared->pClientMutex);







|







247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
      gShared.pDatabase = pShared;
    }
  }

  if( rc==SQLITE4_OK ){
    pShared->nRef++;
  }
  btLockMutexLeave(p->pEnv);

  /* Add this connection to the linked list at BtShared.pLock */
  if( rc==SQLITE4_OK ){
    sqlite4_mutex_enter(pShared->pClientMutex);
    p->pNext = pShared->pLock;
    pShared->pLock = p;
    sqlite4_mutex_leave(pShared->pClientMutex);
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    }
    if( rc==SQLITE4_BUSY ) rc = SQLITE4_OK;
    btLockLockop(p, BT_LOCK_DMS2_RW, BT_LOCK_UNLOCK, 0);
    btLockLockop(p, BT_LOCK_DMS2_RO, BT_LOCK_UNLOCK, 0);
    btLockLockop(p, BT_LOCK_DMS1, BT_LOCK_UNLOCK, 0);
  }

  btLockMutexEnter();
  pShared->nRef--;
  if( pShared->nRef==0 ){
    int i;
    BtShared **ppS;
    for(ppS=&gShared.pDatabase; *ppS!=pShared; ppS=&(*ppS)->pNext);
    *ppS = (*ppS)->pNext;

    sqlite4_mutex_free(pShared->pClientMutex);
    for(i=0; i<pShared->nShmChunk; i++){
      sqlite4_free(p->pEnv, pShared->apShmChunk[i]);
    }
    sqlite4_free(p->pEnv, pShared->apShmChunk);
    sqlite4_free(p->pEnv, pShared);
  }
  btLockMutexLeave();
  return rc;
}

/* 
** Obtain a READER lock. 
**
** Argument aLog points to an array of 6 frame addresses. These are the 







|














|







327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    }
    if( rc==SQLITE4_BUSY ) rc = SQLITE4_OK;
    btLockLockop(p, BT_LOCK_DMS2_RW, BT_LOCK_UNLOCK, 0);
    btLockLockop(p, BT_LOCK_DMS2_RO, BT_LOCK_UNLOCK, 0);
    btLockLockop(p, BT_LOCK_DMS1, BT_LOCK_UNLOCK, 0);
  }

  btLockMutexEnter(p->pEnv);
  pShared->nRef--;
  if( pShared->nRef==0 ){
    int i;
    BtShared **ppS;
    for(ppS=&gShared.pDatabase; *ppS!=pShared; ppS=&(*ppS)->pNext);
    *ppS = (*ppS)->pNext;

    sqlite4_mutex_free(pShared->pClientMutex);
    for(i=0; i<pShared->nShmChunk; i++){
      sqlite4_free(p->pEnv, pShared->apShmChunk[i]);
    }
    sqlite4_free(p->pEnv, pShared->apShmChunk);
    sqlite4_free(p->pEnv, pShared);
  }
  btLockMutexLeave(p->pEnv);
  return rc;
}

/* 
** Obtain a READER lock. 
**
** Argument aLog points to an array of 6 frame addresses. These are the 
Changes to src/bt_log.c.
218
219
220
221
222
223
224











225
226
227
228
229
230
231
static void btDebugTopology(char *zStr, u32 *aLog){
  fprintf(stderr, "%s: %d..%d  %d..%d  %d..%d\n", zStr,
      (int)aLog[0], (int)aLog[1], (int)aLog[2], 
      (int)aLog[3], (int)aLog[4], (int)aLog[5]
  );
  fflush(stderr);
}












static void btDebugCkptPage(u32 pgno, u8 *aData, int pgsz){
#if 0
  static nCall = 0;
  u32 aCksum[2];
  btLogChecksum(1, aData, pgsz, 0, aCksum);
  fprintf(stderr, "%d: Ckpt page %d (cksum=%08x%08x)\n", nCall++,







>
>
>
>
>
>
>
>
>
>
>







218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
static void btDebugTopology(char *zStr, u32 *aLog){
  fprintf(stderr, "%s: %d..%d  %d..%d  %d..%d\n", zStr,
      (int)aLog[0], (int)aLog[1], (int)aLog[2], 
      (int)aLog[3], (int)aLog[4], (int)aLog[5]
  );
  fflush(stderr);
}

#ifndef NDEBUG
static void btDebugCheckSnapshot(BtShmHdr *pHdr){
  u32 *aLog = pHdr->aLog;
  assert( pHdr->iNextFrame!=1 ||
      (aLog[0]==0 && aLog[1]==0 && aLog[2]==0 && aLog[3]==0)
  );
}
#else
#define btDebugCheckSnapshot(x,y)
#endif

static void btDebugCkptPage(u32 pgno, u8 *aData, int pgsz){
#if 0
  static nCall = 0;
  u32 aCksum[2];
  btLogChecksum(1, aData, pgsz, 0, aCksum);
  fprintf(stderr, "%d: Ckpt page %d (cksum=%08x%08x)\n", nCall++,
925
926
927
928
929
930
931

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

956
957
958
959
960
961
962
    rc = btLogWriteHeader(pLog, 0, &hdr);
    if( rc!=SQLITE4_OK ) return rc;

    pLog->snapshot.aFrameCksum[0] = hdr.iSalt1;
    pLog->snapshot.aFrameCksum[1] = hdr.iSalt2;
    pLog->snapshot.iNextFrame = 1;
  }


  /* Figure out the offset to write the current frame to. */
  iFrame = pLog->snapshot.iNextFrame;
  iOff = btLogFrameOffset(pLog, pgsz, iFrame);

  /* The current frame will be written to location pLog->snapshot.iNextFrame.
  ** This code determines where the following frame will be stored. There
  ** are three possibilities:
  **
  **   1) The next frame follows the current frame (this is the usual case).
  **   2) The next frame is frame 1 - the log wraps around.
  **   3) Following the current frame is a block of frames still in use.
  **      So the next frame will immediately follow this block.
  */
  iNextFrame = pLog->snapshot.iNextFrame + 1;
  if( iFrame!=1 
   && aLog[0]==0 && aLog[2]==0 
   && aLog[4]!=0 && aLog[4]>pLog->nWrapLog 
  ){
    /* Case 2) It is possible to wrap the log around */
    iNextFrame = 1;
  }else if( iNextFrame==aLog[0] ){
    /* Case 3) It is necessary to jump over some existing log. */
    iNextFrame = aLog[1]+1;

  }

  if( iNextFrame & 0x80000000 ){
    rc = SQLITE4_FULL;
  }else{

    /* Populate the frame header object. */







>















|








>







936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
    rc = btLogWriteHeader(pLog, 0, &hdr);
    if( rc!=SQLITE4_OK ) return rc;

    pLog->snapshot.aFrameCksum[0] = hdr.iSalt1;
    pLog->snapshot.aFrameCksum[1] = hdr.iSalt2;
    pLog->snapshot.iNextFrame = 1;
  }
  btDebugCheckSnapshot(&pLog->snapshot);

  /* Figure out the offset to write the current frame to. */
  iFrame = pLog->snapshot.iNextFrame;
  iOff = btLogFrameOffset(pLog, pgsz, iFrame);

  /* The current frame will be written to location pLog->snapshot.iNextFrame.
  ** This code determines where the following frame will be stored. There
  ** are three possibilities:
  **
  **   1) The next frame follows the current frame (this is the usual case).
  **   2) The next frame is frame 1 - the log wraps around.
  **   3) Following the current frame is a block of frames still in use.
  **      So the next frame will immediately follow this block.
  */
  iNextFrame = pLog->snapshot.iNextFrame + 1;
  if( iFrame!=1 && iFrame==aLog[5]+1
   && aLog[0]==0 && aLog[2]==0 
   && aLog[4]!=0 && aLog[4]>pLog->nWrapLog 
  ){
    /* Case 2) It is possible to wrap the log around */
    iNextFrame = 1;
  }else if( iNextFrame==aLog[0] ){
    /* Case 3) It is necessary to jump over some existing log. */
    iNextFrame = aLog[1]+1;
    assert( iNextFrame!=1 );
  }

  if( iNextFrame & 0x80000000 ){
    rc = SQLITE4_FULL;
  }else{

    /* Populate the frame header object. */
984
985
986
987
988
989
990



991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010

1011
1012
1013
1014
1015
1016
1017
    if( iFrame==1 ){
      pLog->snapshot.iHashSide = (pLog->snapshot.iHashSide+1) %2;
    }
    rc = btLogHashInsert(pLog, pgno, iFrame);
  }

  /* Update the private copy of the shm-header */



  if( rc==SQLITE4_OK ){
    if( btLogIsEmpty(pLog) ){
      assert( iFrame==1 );
      aLog[4] = iFrame;
    }else if( iFrame==1 ){
      assert( aLog[0]==0 && aLog[1]==0 && aLog[2]==0 && aLog[3]==0 );
      aLog[0] = aLog[4];
      aLog[1] = aLog[5];
      aLog[4] = iFrame;
    }else if( iFrame!=aLog[5]+1 ){
      assert( iFrame>aLog[5] );
      assert( aLog[2]==0 && aLog[3]==0 );
      aLog[2] = aLog[4];
      aLog[3] = aLog[5];
      aLog[4] = iFrame;
    }

    aLog[5] = iFrame;
    memcpy(pLog->snapshot.aFrameCksum, frame.aCksum, sizeof(frame.aCksum));
  }


  /* If this is a COMMIT, also update the shared shm-header. */
  if( bCommit ){
    rc = btLogUpdateSharedHdr(pLog);
  }

  return rc;







>
>
>




















>







997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
    if( iFrame==1 ){
      pLog->snapshot.iHashSide = (pLog->snapshot.iHashSide+1) %2;
    }
    rc = btLogHashInsert(pLog, pgno, iFrame);
  }

  /* Update the private copy of the shm-header */
  btDebugCheckSnapshot(&pLog->snapshot);
  BtShmHdr hdr;
  memcpy(&hdr, &pLog->snapshot, sizeof(BtShmHdr));
  if( rc==SQLITE4_OK ){
    if( btLogIsEmpty(pLog) ){
      assert( iFrame==1 );
      aLog[4] = iFrame;
    }else if( iFrame==1 ){
      assert( aLog[0]==0 && aLog[1]==0 && aLog[2]==0 && aLog[3]==0 );
      aLog[0] = aLog[4];
      aLog[1] = aLog[5];
      aLog[4] = iFrame;
    }else if( iFrame!=aLog[5]+1 ){
      assert( iFrame>aLog[5] );
      assert( aLog[2]==0 && aLog[3]==0 );
      aLog[2] = aLog[4];
      aLog[3] = aLog[5];
      aLog[4] = iFrame;
    }

    aLog[5] = iFrame;
    memcpy(pLog->snapshot.aFrameCksum, frame.aCksum, sizeof(frame.aCksum));
  }
  btDebugCheckSnapshot(&pLog->snapshot);

  /* If this is a COMMIT, also update the shared shm-header. */
  if( bCommit ){
    rc = btLogUpdateSharedHdr(pLog);
  }

  return rc;
1055
1056
1057
1058
1059
1060
1061

1062
1063
1064
1065
1066
1067
1068
  u32 iFirstRead = 0;

  while( rc==SQLITE4_NOTFOUND ){
    BtShm *pShm;

    /* Attempt to read a copy of the BtShmHdr from shared-memory. */
    rc = btLogSnapshot(pLog, &pLog->snapshot);


    /* Take a read lock on the database */
    if( rc==SQLITE4_OK ){
      BtReadSlot *aReadlock;
      pShm = btLogShm(pLog);

      aReadlock = pShm->aReadlock;







>







1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
  u32 iFirstRead = 0;

  while( rc==SQLITE4_NOTFOUND ){
    BtShm *pShm;

    /* Attempt to read a copy of the BtShmHdr from shared-memory. */
    rc = btLogSnapshot(pLog, &pLog->snapshot);
    btDebugCheckSnapshot(&pLog->snapshot);

    /* Take a read lock on the database */
    if( rc==SQLITE4_OK ){
      BtReadSlot *aReadlock;
      pShm = btLogShm(pLog);

      aReadlock = pShm->aReadlock;
1145
1146
1147
1148
1149
1150
1151

1152
1153
1154
1155
1156
1157
1158
    ** that it contains a map of all frames that are currently in use
    ** by any reader, or may be used by any future reader or recovery
    ** process.  */
    if( rc==SQLITE4_OK ){
      u32 *aLog = shmhdr.aLog;
      u32 iRecover = pShm->ckpt.iFirstRecover;
      u32 iRead = 0;


      rc = sqlite4BtLockReaderQuery(pLock, aLog, pShm->aReadlock, &iRead, 0);

      if( rc==SQLITE4_OK ){
        /* Now "trim" the snapshot so that it accesses nothing earlier than
        ** either iRecover or iRead (whichever occurs first in the log). */
        u32 iTrim = iRecover;







>







1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
    ** that it contains a map of all frames that are currently in use
    ** by any reader, or may be used by any future reader or recovery
    ** process.  */
    if( rc==SQLITE4_OK ){
      u32 *aLog = shmhdr.aLog;
      u32 iRecover = pShm->ckpt.iFirstRecover;
      u32 iRead = 0;
      btDebugCheckSnapshot(&pLog->snapshot);

      rc = sqlite4BtLockReaderQuery(pLock, aLog, pShm->aReadlock, &iRead, 0);

      if( rc==SQLITE4_OK ){
        /* Now "trim" the snapshot so that it accesses nothing earlier than
        ** either iRecover or iRead (whichever occurs first in the log). */
        u32 iTrim = iRecover;
1176
1177
1178
1179
1180
1181
1182

1183
1184
1185
1186
1187
1188
1189
          }
        }
      }

      if( rc==SQLITE4_OK ){
        memcpy(pLog->snapshot.aLog, aLog, sizeof(u32)*6);
      }

    }
  }

  return rc;
}

int sqlite4BtLogSnapshotEndWrite(BtLog *pLog){







>







1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
          }
        }
      }

      if( rc==SQLITE4_OK ){
        memcpy(pLog->snapshot.aLog, aLog, sizeof(u32)*6);
      }
      btDebugCheckSnapshot(&pLog->snapshot);
    }
  }

  return rc;
}

int sqlite4BtLogSnapshotEndWrite(BtLog *pLog){
Changes to src/mutex_unix.c.
31
32
33
34
35
36
37






























38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
*/
#if defined(SQLITE4_DEBUG) || defined(SQLITE4_HOMEGROWN_RECURSIVE_MUTEX)
# define SQLITE4_MUTEX_NREF 1
#else
# define SQLITE4_MUTEX_NREF 0
#endif































/*
** Each recursive mutex is an instance of the following structure.
*/
typedef struct sqlite4UnixMutex {
  sqlite4_mutex base;        /* Base class.  Must be first */
  pthread_mutex_t mutex;     /* Mutex controlling the lock */
#if SQLITE4_MUTEX_NREF
  int id;                    /* Mutex type */
  volatile int nRef;         /* Number of entrances */
  volatile pthread_t owner;  /* Thread that is within this mutex */
  int trace;                 /* True to trace changes */
#endif
} sqlite4UnixMutex;
#if SQLITE4_MUTEX_NREF
#define SQLITE3_MUTEX_INITIALIZER \
  { 0, PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
#else

#define SQLITE3_MUTEX_INITIALIZER { 0, PTHREAD_MUTEX_INITIALIZER }
#endif

/*
** The sqlite4_mutex_held() and sqlite4_mutex_notheld() routine are
** intended for use only inside assert() statements.  On some platforms,
** there might be race conditions that can cause these routines to
** deliver incorrect results.  In particular, if pthread_equal() is







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>














|
|

>
|







31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
*/
#if defined(SQLITE4_DEBUG) || defined(SQLITE4_HOMEGROWN_RECURSIVE_MUTEX)
# define SQLITE4_MUTEX_NREF 1
#else
# define SQLITE4_MUTEX_NREF 0
#endif

static int pthreadMutexInit(void *p);
static int pthreadMutexEnd(void *p);
static sqlite4_mutex *pthreadMutexAlloc(void *pMutexEnv, int iType);
static void pthreadMutexFree(sqlite4_mutex *pMutex);
static void pthreadMutexEnter(sqlite4_mutex *pMutex);
static int pthreadMutexTry(sqlite4_mutex *pMutex);
static void pthreadMutexLeave(sqlite4_mutex *pMutex);
#ifdef SQLITE4_DEBUG
static int pthreadMutexHeld(sqlite4_mutex *pMutex);
static int pthreadMutexNotheld(sqlite4_mutex *pMutex);
#endif

static const sqlite4_mutex_methods sMutexMethods = {
  pthreadMutexInit,
  pthreadMutexEnd,
  pthreadMutexAlloc,
  pthreadMutexFree,
  pthreadMutexEnter,
  pthreadMutexTry,
  pthreadMutexLeave,
#ifdef SQLITE4_DEBUG
  pthreadMutexHeld,
  pthreadMutexNotheld,
#else
  0,
  0,
#endif
  0
};

/*
** Each recursive mutex is an instance of the following structure.
*/
typedef struct sqlite4UnixMutex {
  sqlite4_mutex base;        /* Base class.  Must be first */
  pthread_mutex_t mutex;     /* Mutex controlling the lock */
#if SQLITE4_MUTEX_NREF
  int id;                    /* Mutex type */
  volatile int nRef;         /* Number of entrances */
  volatile pthread_t owner;  /* Thread that is within this mutex */
  int trace;                 /* True to trace changes */
#endif
} sqlite4UnixMutex;
#if SQLITE4_MUTEX_NREF
#define SQLITE4_MUTEX_INITIALIZER \
  { {&sMutexMethods}, PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
#else
#define SQLITE4_MUTEX_INITIALIZER \
  { {&sMutexMethods}, PTHREAD_MUTEX_INITIALIZER }
#endif

/*
** The sqlite4_mutex_held() and sqlite4_mutex_notheld() routine are
** intended for use only inside assert() statements.  On some platforms,
** there might be race conditions that can cause these routines to
** deliver incorrect results.  In particular, if pthread_equal() is
129
130
131
132
133
134
135





136
137
138
139
140
141
142
** returns a different mutex on every call.  But for the static 
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
static sqlite4_mutex *pthreadMutexAlloc(void *pMutexEnv, int iType){
  sqlite4_env *pEnv = (sqlite4_env*)pMutexEnv;
  sqlite4UnixMutex *p;





  switch( iType ){
    case SQLITE4_MUTEX_RECURSIVE: {
      p = sqlite4MallocZero(pEnv, sizeof(*p) );
      if( p ){
#ifdef SQLITE4_HOMEGROWN_RECURSIVE_MUTEX
        /* If recursive mutexes are not available, we will have to
        ** build our own.  See below. */







>
>
>
>
>







160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
** returns a different mutex on every call.  But for the static 
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
static sqlite4_mutex *pthreadMutexAlloc(void *pMutexEnv, int iType){
  sqlite4_env *pEnv = (sqlite4_env*)pMutexEnv;
  sqlite4UnixMutex *p;

  static sqlite4UnixMutex aStaticMutex[] = {
    SQLITE4_MUTEX_INITIALIZER
  };

  switch( iType ){
    case SQLITE4_MUTEX_RECURSIVE: {
      p = sqlite4MallocZero(pEnv, sizeof(*p) );
      if( p ){
#ifdef SQLITE4_HOMEGROWN_RECURSIVE_MUTEX
        /* If recursive mutexes are not available, we will have to
        ** build our own.  See below. */
165
166
167
168
169
170
171


172
173
174
175
176
177
178
179
        pthread_mutex_init(&p->mutex, 0);
        p->base.pMutexMethods = &pEnv->mutex;
        assert( p->base.pMutexMethods->pMutexEnv==(void*)pEnv );
      }
      break;
    }
    default: {


      p = 0;
      break;
    }
  }
  return (sqlite4_mutex*)p;
}









>
>
|







201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        pthread_mutex_init(&p->mutex, 0);
        p->base.pMutexMethods = &pEnv->mutex;
        assert( p->base.pMutexMethods->pMutexEnv==(void*)pEnv );
      }
      break;
    }
    default: {
      assert( SQLITE4_MUTEX_RECURSIVE==1 && SQLITE4_MUTEX_FAST==0 );
      assert( (iType-2)<ArraySize(aStaticMutex) );
      p = &aStaticMutex[iType-2];
      break;
    }
  }
  return (sqlite4_mutex*)p;
}


325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
  if( p->trace ){
    printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
  }
#endif
}

sqlite4_mutex_methods const *sqlite4DefaultMutex(void){
  static const sqlite4_mutex_methods sMutex = {
    pthreadMutexInit,
    pthreadMutexEnd,
    pthreadMutexAlloc,
    pthreadMutexFree,
    pthreadMutexEnter,
    pthreadMutexTry,
    pthreadMutexLeave,
#ifdef SQLITE4_DEBUG
    pthreadMutexHeld,
    pthreadMutexNotheld,
#else
    0,
    0,
#endif
    0
  };

  return &sMutex;
}

#endif /* SQLITE4_MUTEX_PTHREADS */







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|



363
364
365
366
367
368
369


















370
371
372
373
  if( p->trace ){
    printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
  }
#endif
}

sqlite4_mutex_methods const *sqlite4DefaultMutex(void){


















  return &sMutexMethods;
}

#endif /* SQLITE4_MUTEX_PTHREADS */
Changes to src/sqlite.h.in.
3479
3480
3481
3482
3483
3484
3485

3486
3487
3488
3489
3490
3491
3492
**
** The set of static mutexes may change from one SQLite release to the
** next.  Applications that override the built-in mutex logic must be
** prepared to accommodate additional static mutexes.
*/
#define SQLITE4_MUTEX_FAST             0
#define SQLITE4_MUTEX_RECURSIVE        1


/*
** CAPIREF: Retrieve the mutex for a database connection
**
** ^This interface returns a pointer the [sqlite4_mutex] object that 
** serializes access to the [database connection] given in the argument
** when the [threading mode] is Serialized.







>







3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
**
** The set of static mutexes may change from one SQLite release to the
** next.  Applications that override the built-in mutex logic must be
** prepared to accommodate additional static mutexes.
*/
#define SQLITE4_MUTEX_FAST             0
#define SQLITE4_MUTEX_RECURSIVE        1
#define SQLITE4_MUTEX_STATIC_KV        2    /* For use by KV layers*/

/*
** CAPIREF: Retrieve the mutex for a database connection
**
** ^This interface returns a pointer the [sqlite4_mutex] object that 
** serializes access to the [database connection] given in the argument
** when the [threading mode] is Serialized.