Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Add tests for range-deletes. Fix some things. Still doesn't work properly. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | range-delete |
Files: | files | file ages | folders |
SHA1: |
178f7d5eca8bfdda54037c8281e36f13 |
User & Date: | dan 2012-10-06 20:38:45.028 |
Context
2012-10-08
| ||
17:08 | Fixes for range-deletes on the in-memory tree structure. check-in: 9879e2a63d user: dan tags: range-delete | |
2012-10-06
| ||
20:38 | Add tests for range-deletes. Fix some things. Still doesn't work properly. check-in: 178f7d5eca user: dan tags: range-delete | |
2012-10-03
| ||
20:05 | Add (partially working) code for deleting keys to lsm_tree.c. Required for range-deletes. check-in: daa6942834 user: dan tags: range-delete | |
Changes
Changes to lsm-test/lsmtest.h.
︙ | ︙ | |||
42 43 44 45 46 47 48 49 50 51 52 53 54 55 | DatabaseMethods const *pMethods; /* Database methods */ const char *zLibrary; /* Library name for tdb_open() */ }; struct DatabaseMethods { int (*xClose)(TestDb *); int (*xWrite)(TestDb *, void *, int , void *, int); int (*xDelete)(TestDb *, void *, int); int (*xFetch)(TestDb *, void *, int, void **, int *); int (*xScan)(TestDb *, void *, int, void *, int, void *, int, void (*)(void *, void *, int , void *, int) ); int (*xBegin)(TestDb *, int); int (*xCommit)(TestDb *, int); int (*xRollback)(TestDb *, int); | > | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | DatabaseMethods const *pMethods; /* Database methods */ const char *zLibrary; /* Library name for tdb_open() */ }; struct DatabaseMethods { int (*xClose)(TestDb *); int (*xWrite)(TestDb *, void *, int , void *, int); int (*xDelete)(TestDb *, void *, int); int (*xDeleteRange)(TestDb *, void *, int, void *, int); int (*xFetch)(TestDb *, void *, int, void **, int *); int (*xScan)(TestDb *, void *, int, void *, int, void *, int, void (*)(void *, void *, int , void *, int) ); int (*xBegin)(TestDb *, int); int (*xCommit)(TestDb *, int); int (*xRollback)(TestDb *, int); |
︙ | ︙ | |||
119 120 121 122 123 124 125 126 127 128 129 130 131 132 | char *testMallocPrintf(const char *zFormat, ...); char *testMallocVPrintf(const char *zFormat, va_list ap); int testGlobMatch(const char *zPattern, const char *zStr); void testScanCompare(TestDb *, TestDb *, int, void *, int, void *, int, int *); void *testMalloc(int); void *testRealloc(void *, int); void testFree(void *); /* testio.c */ int testVfsConfigureDb(TestDb *pDb); /* testfunc.c */ | > | 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | char *testMallocPrintf(const char *zFormat, ...); char *testMallocVPrintf(const char *zFormat, va_list ap); int testGlobMatch(const char *zPattern, const char *zStr); void testScanCompare(TestDb *, TestDb *, int, void *, int, void *, int, int *); void *testMalloc(int); void *testMallocCopy(void *pCopy, int nByte); void *testRealloc(void *, int); void testFree(void *); /* testio.c */ int testVfsConfigureDb(TestDb *pDb); /* testfunc.c */ |
︙ | ︙ | |||
190 191 192 193 194 195 196 | void testWriteDatasource(TestDb *, Datasource *, int, int *); void testWriteDatasourceRange(TestDb *, Datasource *, int, int, int *); void testDeleteDatasource(TestDb *, Datasource *, int, int *); void testDeleteDatasourceRange(TestDb *, Datasource *, int, int, int *); /* test1.c */ | | < | | 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | void testWriteDatasource(TestDb *, Datasource *, int, int *); void testWriteDatasourceRange(TestDb *, Datasource *, int, int, int *); void testDeleteDatasource(TestDb *, Datasource *, int, int *); void testDeleteDatasourceRange(TestDb *, Datasource *, int, int, int *); /* test1.c */ void test_data_1(const char *, const char *, int *pRc); void test_data_2(const char *, const char *, int *pRc); void testDbContents(TestDb *, Datasource *, int, int, int, int, int, int *); void testCaseProgress(int, int, int, int *); int testCaseNDot(void); typedef struct CksumDb CksumDb; CksumDb *testCksumArrayNew(Datasource *, int, int, int); char *testCksumArrayGet(CksumDb *, int); |
︙ | ︙ |
Changes to lsm-test/lsmtest1.c.
1 2 3 4 5 6 | #include "lsmtest.h" #define DATA_SEQUENTIAL TEST_DATASOURCE_SEQUENCE #define DATA_RANDOM TEST_DATASOURCE_RANDOM | | | < < < < < | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | #include "lsmtest.h" #define DATA_SEQUENTIAL TEST_DATASOURCE_SEQUENCE #define DATA_RANDOM TEST_DATASOURCE_RANDOM typedef struct Datatest1 Datatest1; typedef struct Datatest2 Datatest2; /* ** An instance of the following structure contains parameters used to ** customize the test function in this file. Test procedure: ** ** 1. Create a data-source based on the "datasource definition" vars. ** ** 2. Insert nRow key value pairs into the database. ** ** 3. Delete all keys from the database. Deletes are done in the same ** order as the inserts. ** ** During steps 2 and 3 above, after each Datatest1.nVerify inserts or ** deletes, the following: ** ** a. Run Datasource.nTest key lookups and check the results are as expected. ** ** b. If Datasource.bTestScan is true, run a handful (8) of range ** queries (scanning forwards and backwards). Check that the results ** are as expected. ** ** c. Close and reopen the database. Then run (a) and (b) again. */ struct Datatest1 { /* Datasource definition */ DatasourceDefn defn; /* Test procedure parameters */ int nRow; /* Number of rows to insert then delete */ int nVerify; /* How often to verify the db contents */ int nTest; /* Number of keys to test (0==all) */ int bTestScan; /* True to do scan tests */ }; /* ** An instance of the following data structure is used to describe the ** second type of test case in this file. The chief difference between ** these tests and those described by Datatest1 is that these tests also ** experiment with range-delete operations. Tests proceed as follows: ** ** 1. Open the datasource described by Datatest2.defn. ** ** 2. Open a connection on an empty database. ** ** 3. Do this Datatest2.nIter times: ** ** a) Insert Datatest2.nWrite key-value pairs from the datasource. ** ** b) Select two pseudo-random keys and use them as the start ** and end points of a range-delete operation. ** ** c) Verify that the contents of the database are as expected (see ** below for details). ** ** d) Close and then reopen the database handle. ** ** e) Verify that the contents of the database are still as expected. ** ** The inserts and range deletes are run twice - once on the database being ** tested and once using a control system (sqlite3, kc etc. - something that ** works). In order to verify that the contents of the db being tested are ** correct, the test runs a bunch of scans and lookups on both the test and ** control databases. If the results are the same, the test passes. */ struct Datatest2 { DatasourceDefn defn; int nWrite; /* Number of writes per iteration */ int nIter; /* Total number of iterations to run */ }; /* ** Generate a unique name for the test case pTest with database system ** zSystem. */ static char *getName(const char *zSystem, Datatest1 *pTest){ char *zRet; char *zData; zData = testDatasourceName(&pTest->defn); zRet = testMallocPrintf("data.%s.%s.%d.%d", zSystem, zData, pTest->nRow, pTest->nVerify ); testFree(zData); |
︙ | ︙ | |||
211 212 213 214 215 216 217 | void *pCtx, void *pKey, int nKey, void *pVal, int nVal ){ printf("%s\n", (char *)pKey); fflush(stdout); } #endif | | | | 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | void *pCtx, void *pKey, int nKey, void *pVal, int nVal ){ printf("%s\n", (char *)pKey); fflush(stdout); } #endif static void doDataTest1( const char *zSystem, /* Database system to test */ Datatest1 *p, /* Structure containing test parameters */ int *pRc /* OUT: Error code */ ){ int i; int iDot; int rc = LSM_OK; Datasource *pData; TestDb *pDb; |
︙ | ︙ | |||
276 277 278 279 280 281 282 | testDatasourceFree(pData); tdb_close(pDb); testCaseFinish(rc); *pRc = rc; } | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 | testDatasourceFree(pData); tdb_close(pDb); testCaseFinish(rc); *pRc = rc; } void test_data_1( const char *zSystem, /* Database system name */ const char *zPattern, /* Run test cases that match this pattern */ int *pRc /* IN/OUT: Error code */ ){ Datatest1 aTest[] = { { {DATA_RANDOM, 20,25, 100,200}, 1000, 250, 1000, 1}, { {DATA_RANDOM, 8,10, 100,200}, 1000, 250, 1000, 1}, { {DATA_RANDOM, 8,10, 10,20}, 1000, 250, 1000, 1}, { {DATA_RANDOM, 8,10, 1000,2000}, 1000, 250, 1000, 1}, { {DATA_RANDOM, 8,100, 10000,20000}, 100, 25, 100, 1}, { {DATA_RANDOM, 80,100, 10,20}, 1000, 250, 1000, 1}, { {DATA_RANDOM, 5000,6000, 10,20}, 100, 25, 100, 1}, { {DATA_SEQUENTIAL, 5,10, 10,20}, 1000, 250, 1000, 1}, { {DATA_SEQUENTIAL, 5,10, 100,200}, 1000, 250, 1000, 1}, { {DATA_SEQUENTIAL, 5,10, 1000,2000}, 1000, 250, 1000, 1}, { {DATA_SEQUENTIAL, 5,100, 10000,20000}, 100, 25, 100, 1}, { {DATA_RANDOM, 10,10, 100,100}, 100000, 1000, 100, 0}, { {DATA_SEQUENTIAL, 10,10, 100,100}, 100000, 1000, 100, 0}, }; int i; for(i=0; *pRc==LSM_OK && i<ArraySize(aTest); i++){ char *zName = getName(zSystem, &aTest[i]); if( testCaseBegin(pRc, zPattern, "%s", zName) ){ doDataTest1(zSystem, &aTest[i], pRc); } testFree(zName); } } static void testCompareDb( TestDb *pControl, TestDb *pDb, int *pRc ){ testScanCompare(pControl, pDb, 0, 0, 0, 0, 0, pRc); testScanCompare(pControl, pDb, 1, 0, 0, 0, 0, pRc); } static void doDataTest2( const char *zSystem, /* Database system to test */ Datatest2 *p, /* Structure containing test parameters */ int *pRc /* OUT: Error code */ ){ TestDb *pDb; TestDb *pControl; Datasource *pData; int i; int rc; int iDot = 0; /* Start the test case, open a database and allocate the datasource. */ pDb = testOpen(zSystem, 1, &rc); pData = testDatasourceNew(&p->defn); rc = testControlDb(&pControl); if( tdb_lsm(pDb) ){ int nBuf = 32 * 1024 * 1024; lsm_config(tdb_lsm(pDb), LSM_CONFIG_WRITE_BUFFER, &nBuf); } for(i=0; rc==0 && i<p->nIter; i++){ void *pKey1; int nKey1; void *pKey2; int nKey2; testWriteDatasourceRange(pDb, pData, i*p->nWrite, p->nWrite, &rc); testWriteDatasourceRange(pControl, pData, i*p->nWrite, p->nWrite, &rc); testDatasourceEntry(pData, i+1000000, &pKey1, &nKey1, 0, 0); pKey1 = testMallocCopy(pKey1, nKey1); testDatasourceEntry(pData, i+2000000, &pKey2, &nKey2, 0, 0); testDeleteRange(pDb, pKey1, nKey1, pKey2, nKey2, &rc); testDeleteRange(pControl, pKey1, nKey1, pKey2, nKey2, &rc); testFree(pKey1); testCompareDb(pControl, pDb, &rc); #if 0 testReopen(&pDb, &rc); testCompareDb(pControl, pDb, &rc); #endif /* Update the progress dots... */ testCaseProgress(i, p->nIter, testCaseNDot(), &iDot); } testClose(&pDb); testClose(&pControl); testDatasourceFree(pData); testCaseFinish(rc); *pRc = rc; } static char *getName2(const char *zSystem, Datatest2 *pTest){ char *zRet; char *zData; zData = testDatasourceName(&pTest->defn); zRet = testMallocPrintf("data2.%s.%s.%d.%d", zSystem, zData, pTest->nWrite, pTest->nIter ); testFree(zData); return zRet; } void test_data_2( const char *zSystem, /* Database system name */ const char *zPattern, /* Run test cases that match this pattern */ int *pRc /* IN/OUT: Error code */ ){ Datatest2 aTest[] = { /* defn, nWrite, nIter */ { {DATA_RANDOM, 20,25, 100,200}, 200, 50 } }; int i; for(i=0; *pRc==LSM_OK && i<ArraySize(aTest); i++){ char *zName = getName2(zSystem, &aTest[i]); if( testCaseBegin(pRc, zPattern, "%s", zName) ){ doDataTest2(zSystem, &aTest[i], pRc); } testFree(zName); } } |
Changes to lsm-test/lsmtest_main.c.
︙ | ︙ | |||
69 70 71 72 73 74 75 | void testDelete( TestDb *pDb, /* Database handle */ void *pKey, int nKey, /* Key to query database for */ int *pRc /* IN/OUT: Error code */ ){ if( *pRc==0 ){ int rc; | | > > > > > > > > > > > > | 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | void testDelete( TestDb *pDb, /* Database handle */ void *pKey, int nKey, /* Key to query database for */ int *pRc /* IN/OUT: Error code */ ){ if( *pRc==0 ){ int rc; *pRc = rc = tdb_delete(pDb, pKey, nKey); testSetError(rc); } } void testDeleteRange( TestDb *pDb, /* Database handle */ void *pKey1, int nKey1, void *pKey2, int nKey2, int *pRc /* IN/OUT: Error code */ ){ if( *pRc==0 ){ int rc; *pRc = rc = tdb_delete_range(pDb, pKey1, nKey1, pKey2, nKey2); testSetError(rc); } } void testBegin(TestDb *pDb, int iTrans, int *pRc){ if( *pRc==0 ){ int rc; |
︙ | ︙ | |||
369 370 371 372 373 374 375 376 377 378 379 380 381 382 | ** Allocations made using testMalloc() should be freed using testFree(). */ void *testMalloc(int n){ void *pRet = malloc(n); memset(pRet, 0, n); return pRet; } void *testRealloc(void *p, int n){ return realloc(p, n); } /* ** Free an allocation made by an earlier call to testMalloc(). | > > > > > > | 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 | ** Allocations made using testMalloc() should be freed using testFree(). */ void *testMalloc(int n){ void *pRet = malloc(n); memset(pRet, 0, n); return pRet; } void *testMallocCopy(void *pCopy, int nByte){ void *pRet = testMalloc(nByte); memcpy(pRet, pCopy, nByte); return pRet; } void *testRealloc(void *p, int n){ return realloc(p, n); } /* ** Free an allocation made by an earlier call to testMalloc(). |
︙ | ︙ | |||
432 433 434 435 436 437 438 | if( nArg==1 ){ zPattern = azArg[0]; } for(j=0; tdb_system_name(j); j++){ rc = 0; | | > | 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 | if( nArg==1 ){ zPattern = azArg[0]; } for(j=0; tdb_system_name(j); j++){ rc = 0; test_data_1(tdb_system_name(j), zPattern, &rc); test_data_2(tdb_system_name(j), zPattern, &rc); test_rollback(tdb_system_name(j), zPattern, &rc); test_mc(tdb_system_name(j), zPattern, &rc); test_mt(tdb_system_name(j), zPattern, &rc); if( rc ) nFail++; } |
︙ | ︙ |
Changes to lsm-test/lsmtest_tdb.c.
︙ | ︙ | |||
177 178 179 180 181 182 183 184 185 186 187 188 189 190 | } static int test_leveldb_open(const char *zFilename, int bClear, TestDb **ppDb){ static const DatabaseMethods LeveldbMethods = { test_leveldb_close, test_leveldb_write, test_leveldb_delete, test_leveldb_fetch, test_leveldb_scan, error_transaction_function, error_transaction_function, error_transaction_function }; | > | 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | } static int test_leveldb_open(const char *zFilename, int bClear, TestDb **ppDb){ static const DatabaseMethods LeveldbMethods = { test_leveldb_close, test_leveldb_write, test_leveldb_delete, 0, test_leveldb_fetch, test_leveldb_scan, error_transaction_function, error_transaction_function, error_transaction_function }; |
︙ | ︙ | |||
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | ** (nOpenTrans-1) nested write transactions open. */ struct SqlDb { TestDb base; sqlite3 *db; sqlite3_stmt *pInsert; sqlite3_stmt *pDelete; sqlite3_stmt *pFetch; sqlite3_stmt *apScan[8]; int nOpenTrans; /* Used by sql_fetch() to allocate space for results */ int nAlloc; u8 *aAlloc; }; static int sql_close(TestDb *pTestDb){ SqlDb *pDb = (SqlDb *)pTestDb; sqlite3_finalize(pDb->pInsert); sqlite3_finalize(pDb->pDelete); sqlite3_finalize(pDb->pFetch); sqlite3_finalize(pDb->apScan[0]); sqlite3_finalize(pDb->apScan[1]); sqlite3_finalize(pDb->apScan[2]); sqlite3_finalize(pDb->apScan[3]); sqlite3_finalize(pDb->apScan[4]); sqlite3_finalize(pDb->apScan[5]); | > > | 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 | ** (nOpenTrans-1) nested write transactions open. */ struct SqlDb { TestDb base; sqlite3 *db; sqlite3_stmt *pInsert; sqlite3_stmt *pDelete; sqlite3_stmt *pDeleteRange; sqlite3_stmt *pFetch; sqlite3_stmt *apScan[8]; int nOpenTrans; /* Used by sql_fetch() to allocate space for results */ int nAlloc; u8 *aAlloc; }; static int sql_close(TestDb *pTestDb){ SqlDb *pDb = (SqlDb *)pTestDb; sqlite3_finalize(pDb->pInsert); sqlite3_finalize(pDb->pDelete); sqlite3_finalize(pDb->pDeleteRange); sqlite3_finalize(pDb->pFetch); sqlite3_finalize(pDb->apScan[0]); sqlite3_finalize(pDb->apScan[1]); sqlite3_finalize(pDb->apScan[2]); sqlite3_finalize(pDb->apScan[3]); sqlite3_finalize(pDb->apScan[4]); sqlite3_finalize(pDb->apScan[5]); |
︙ | ︙ | |||
356 357 358 359 360 361 362 363 364 365 366 367 368 369 | static int sql_delete(TestDb *pTestDb, void *pKey, int nKey){ SqlDb *pDb = (SqlDb *)pTestDb; sqlite3_bind_blob(pDb->pDelete, 1, pKey, nKey, SQLITE_STATIC); sqlite3_step(pDb->pDelete); return sqlite3_reset(pDb->pDelete); } static int sql_fetch( TestDb *pTestDb, void *pKey, int nKey, void **ppVal, int *pnVal | > > > > > > > > > > > > | 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 | static int sql_delete(TestDb *pTestDb, void *pKey, int nKey){ SqlDb *pDb = (SqlDb *)pTestDb; sqlite3_bind_blob(pDb->pDelete, 1, pKey, nKey, SQLITE_STATIC); sqlite3_step(pDb->pDelete); return sqlite3_reset(pDb->pDelete); } static int sql_delete_range( TestDb *pTestDb, void *pKey1, int nKey1, void *pKey2, int nKey2 ){ SqlDb *pDb = (SqlDb *)pTestDb; sqlite3_bind_blob(pDb->pDeleteRange, 1, pKey1, nKey1, SQLITE_STATIC); sqlite3_bind_blob(pDb->pDeleteRange, 2, pKey2, nKey2, SQLITE_STATIC); sqlite3_step(pDb->pDeleteRange); return sqlite3_reset(pDb->pDeleteRange); } static int sql_fetch( TestDb *pTestDb, void *pKey, int nKey, void **ppVal, int *pnVal |
︙ | ︙ | |||
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 | } static int sql_open(const char *zFilename, int bClear, TestDb **ppDb){ static const DatabaseMethods SqlMethods = { sql_close, sql_write, sql_delete, sql_fetch, sql_scan, sql_begin, sql_commit, sql_rollback }; const char *zCreate = "CREATE TABLE IF NOT EXISTS t1(k PRIMARY KEY, v)"; const char *zInsert = "REPLACE INTO t1 VALUES(?, ?)"; const char *zDelete = "DELETE FROM t1 WHERE k = ?"; const char *zFetch = "SELECT v FROM t1 WHERE k = ?"; const char *zScan0 = "SELECT * FROM t1 WHERE k BETWEEN ?1 AND ?2 ORDER BY k"; const char *zScan1 = "SELECT * FROM t1 WHERE k <= ?2 ORDER BY k"; const char *zScan2 = "SELECT * FROM t1 WHERE k >= ?1 ORDER BY k"; const char *zScan3 = "SELECT * FROM t1 ORDER BY k"; | > > | 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | } static int sql_open(const char *zFilename, int bClear, TestDb **ppDb){ static const DatabaseMethods SqlMethods = { sql_close, sql_write, sql_delete, sql_delete_range, sql_fetch, sql_scan, sql_begin, sql_commit, sql_rollback }; const char *zCreate = "CREATE TABLE IF NOT EXISTS t1(k PRIMARY KEY, v)"; const char *zInsert = "REPLACE INTO t1 VALUES(?, ?)"; const char *zDelete = "DELETE FROM t1 WHERE k = ?"; const char *zRange = "DELETE FROM t1 WHERE k>? AND k<?"; const char *zFetch = "SELECT v FROM t1 WHERE k = ?"; const char *zScan0 = "SELECT * FROM t1 WHERE k BETWEEN ?1 AND ?2 ORDER BY k"; const char *zScan1 = "SELECT * FROM t1 WHERE k <= ?2 ORDER BY k"; const char *zScan2 = "SELECT * FROM t1 WHERE k >= ?1 ORDER BY k"; const char *zScan3 = "SELECT * FROM t1 ORDER BY k"; |
︙ | ︙ | |||
546 547 548 549 550 551 552 553 554 555 556 557 558 559 | memset(pDb, 0, sizeof(SqlDb)); pDb->base.pMethods = &SqlMethods; if( 0!=(rc = sqlite3_open(zFilename, &pDb->db)) || 0!=(rc = sqlite3_exec(pDb->db, zCreate, 0, 0, 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zInsert, -1, &pDb->pInsert, 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zDelete, -1, &pDb->pDelete, 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zFetch, -1, &pDb->pFetch, 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan0, -1, &pDb->apScan[0], 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan1, -1, &pDb->apScan[1], 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan2, -1, &pDb->apScan[2], 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan3, -1, &pDb->apScan[3], 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan4, -1, &pDb->apScan[4], 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan5, -1, &pDb->apScan[5], 0)) | > | 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 | memset(pDb, 0, sizeof(SqlDb)); pDb->base.pMethods = &SqlMethods; if( 0!=(rc = sqlite3_open(zFilename, &pDb->db)) || 0!=(rc = sqlite3_exec(pDb->db, zCreate, 0, 0, 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zInsert, -1, &pDb->pInsert, 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zDelete, -1, &pDb->pDelete, 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zRange, -1, &pDb->pDeleteRange, 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zFetch, -1, &pDb->pFetch, 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan0, -1, &pDb->apScan[0], 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan1, -1, &pDb->apScan[1], 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan2, -1, &pDb->apScan[2], 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan3, -1, &pDb->apScan[3], 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan4, -1, &pDb->apScan[4], 0)) || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan5, -1, &pDb->apScan[5], 0)) |
︙ | ︙ | |||
644 645 646 647 648 649 650 651 652 653 654 655 656 657 | int tdb_write(TestDb *pDb, void *pKey, int nKey, void *pVal, int nVal){ return pDb->pMethods->xWrite(pDb, pKey, nKey, pVal, nVal); } int tdb_delete(TestDb *pDb, void *pKey, int nKey){ return pDb->pMethods->xDelete(pDb, pKey, nKey); } int tdb_fetch(TestDb *pDb, void *pKey, int nKey, void **ppVal, int *pnVal){ return pDb->pMethods->xFetch(pDb, pKey, nKey, ppVal, pnVal); } int tdb_scan( TestDb *pDb, /* Database handle */ | > > > > > > | 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 | int tdb_write(TestDb *pDb, void *pKey, int nKey, void *pVal, int nVal){ return pDb->pMethods->xWrite(pDb, pKey, nKey, pVal, nVal); } int tdb_delete(TestDb *pDb, void *pKey, int nKey){ return pDb->pMethods->xDelete(pDb, pKey, nKey); } int tdb_delete_range( TestDb *pDb, void *pKey1, int nKey1, void *pKey2, int nKey2 ){ return pDb->pMethods->xDeleteRange(pDb, pKey1, nKey1, pKey2, nKey2); } int tdb_fetch(TestDb *pDb, void *pKey, int nKey, void **ppVal, int *pnVal){ return pDb->pMethods->xFetch(pDb, pKey, nKey, ppVal, pnVal); } int tdb_scan( TestDb *pDb, /* Database handle */ |
︙ | ︙ |
Changes to lsm-test/lsmtest_tdb.h.
︙ | ︙ | |||
46 47 48 49 50 51 52 53 54 55 56 57 58 59 | int tdb_write(TestDb *pDb, void *pKey, int nKey, void *pVal, int nVal); /* ** Delete a key from the database. */ int tdb_delete(TestDb *pDb, void *pKey, int nKey); /* ** Query the database for key (pKey/nKey). If no entry is found, set *ppVal ** to 0 and *pnVal to -1 before returning. Otherwise, set *ppVal and *pnVal ** to a pointer to and size of the value associated with (pKey/nKey). */ int tdb_fetch(TestDb *pDb, void *pKey, int nKey, void **ppVal, int *pnVal); | > > > > > | 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | int tdb_write(TestDb *pDb, void *pKey, int nKey, void *pVal, int nVal); /* ** Delete a key from the database. */ int tdb_delete(TestDb *pDb, void *pKey, int nKey); /* ** Delete a range of keys from the database. */ int tdb_delete_range(TestDb *, void *pKey1, int nKey1, void *pKey2, int nKey2); /* ** Query the database for key (pKey/nKey). If no entry is found, set *ppVal ** to 0 and *pnVal to -1 before returning. Otherwise, set *ppVal and *pnVal ** to a pointer to and size of the value associated with (pKey/nKey). */ int tdb_fetch(TestDb *pDb, void *pKey, int nKey, void **ppVal, int *pnVal); |
︙ | ︙ |
Changes to lsm-test/lsmtest_tdb3.c.
︙ | ︙ | |||
450 451 452 453 454 455 456 457 458 459 460 461 462 463 | return lsm_write(pDb->db, pKey, nKey, pVal, nVal); } static int test_lsm_delete(TestDb *pTestDb, void *pKey, int nKey){ LsmDb *pDb = (LsmDb *)pTestDb; return lsm_delete(pDb->db, pKey, nKey); } static int test_lsm_fetch( TestDb *pTestDb, void *pKey, int nKey, void **ppVal, int *pnVal | > > > > > > > > > | 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 | return lsm_write(pDb->db, pKey, nKey, pVal, nVal); } static int test_lsm_delete(TestDb *pTestDb, void *pKey, int nKey){ LsmDb *pDb = (LsmDb *)pTestDb; return lsm_delete(pDb->db, pKey, nKey); } static int test_lsm_delete_range( TestDb *pTestDb, void *pKey1, int nKey1, void *pKey2, int nKey2 ){ LsmDb *pDb = (LsmDb *)pTestDb; return lsm_delete_range(pDb->db, pKey1, nKey1, pKey2, nKey2); } static int test_lsm_fetch( TestDb *pTestDb, void *pKey, int nKey, void **ppVal, int *pnVal |
︙ | ︙ | |||
726 727 728 729 730 731 732 733 734 735 736 737 738 739 | int bClear, TestDb **ppDb ){ static const DatabaseMethods LsmMethods = { test_lsm_close, test_lsm_write, test_lsm_delete, test_lsm_fetch, test_lsm_scan, test_lsm_begin, test_lsm_commit, test_lsm_rollback }; | > | 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 | int bClear, TestDb **ppDb ){ static const DatabaseMethods LsmMethods = { test_lsm_close, test_lsm_write, test_lsm_delete, test_lsm_delete_range, test_lsm_fetch, test_lsm_scan, test_lsm_begin, test_lsm_commit, test_lsm_rollback }; |
︙ | ︙ |
Changes to src/lsm_main.c.
︙ | ︙ | |||
475 476 477 478 479 480 481 | break; } va_end(ap); return rc; } | < < < | | > > | > > > > > > | > > > > > > > > > > > > > | | > > > > > > > > > > > > > > > | 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 | break; } va_end(ap); return rc; } static int doWriteOp( lsm_db *pDb, int bDeleteRange, const void *pKey, int nKey, /* Key to write or delete */ const void *pVal, int nVal /* Value to write. Or nVal==-1 for a delete */ ){ int rc = LSM_OK; /* Return code */ int bCommit = 0; /* True to commit before returning */ if( pDb->nTransOpen==0 ){ bCommit = 1; rc = lsm_begin(pDb, 1); } if( rc==LSM_OK ){ if( bDeleteRange==0 ){ rc = lsmLogWrite(pDb, (void *)pKey, nKey, (void *)pVal, nVal); }else{ /* TODO */ } } lsmSortedSaveTreeCursors(pDb); if( rc==LSM_OK ){ int pgsz = lsmFsPageSize(pDb->pFS); int nQuant = LSM_AUTOWORK_QUANT * pgsz; int nBefore; int nAfter; int nDiff; if( nQuant>pDb->nTreeLimit ){ nQuant = pDb->nTreeLimit; } nBefore = lsmTreeSize(pDb); if( bDeleteRange ){ rc = lsmTreeDelete(pDb, (void *)pKey, nKey, (void *)pVal, nVal); }else{ rc = lsmTreeInsert(pDb, (void *)pKey, nKey, (void *)pVal, nVal); } nAfter = lsmTreeSize(pDb); nDiff = (nAfter/nQuant) - (nBefore/nQuant); if( rc==LSM_OK && pDb->bAutowork && nDiff!=0 ){ rc = lsmSortedAutoWork(pDb, nDiff * LSM_AUTOWORK_QUANT); } } /* If a transaction was opened at the start of this function, commit it. ** Or, if an error has occurred, roll it back. */ if( bCommit ){ if( rc==LSM_OK ){ rc = lsm_commit(pDb, 0); }else{ lsm_rollback(pDb, 0); } } return rc; } /* ** Write a new value into the database. */ int lsm_write( lsm_db *db, /* Database connection */ const void *pKey, int nKey, /* Key to write or delete */ const void *pVal, int nVal /* Value to write. Or nVal==-1 for a delete */ ){ return doWriteOp(db, 0, pKey, nKey, pVal, nVal); } /* ** Delete a value from the database. */ int lsm_delete(lsm_db *db, const void *pKey, int nKey){ return doWriteOp(db, 0, pKey, nKey, 0, -1); } /* ** Delete a range of database keys. */ int lsm_delete_range( lsm_db *db, /* Database handle */ const void *pKey1, int nKey1, /* Lower bound of range to delete */ const void *pKey2, int nKey2 /* Upper bound of range to delete */ ){ int rc = LSM_OK; if( db->xCmp((void *)pKey1, nKey1, (void *)pKey2, nKey2)<0 ){ rc = doWriteOp(db, 1, pKey1, nKey1, pKey2, nKey2); } return rc; } /* ** Open a new cursor handle. ** ** If there are currently no other open cursor handles, and no open write ** transaction, open a read transaction here. |
︙ | ︙ |
Changes to src/lsm_tree.c.
︙ | ︙ | |||
315 316 317 318 319 320 321 322 323 324 325 326 327 328 | return (ShmChunk *)treeShmptr(pDb, iChunk*LSM_SHM_CHUNK_SIZE, &rcdummy); } static ShmChunk * treeShmChunkRc(lsm_db *pDb, int iChunk, int *pRc){ return (ShmChunk *)treeShmptr(pDb, iChunk*LSM_SHM_CHUNK_SIZE, pRc); } /* Values for the third argument to treeShmkey(). */ #define TK_LOADKEY 1 #define TK_LOADVAL 2 static TreeKey *treeShmkey( lsm_db *pDb, /* Database handle */ u32 iPtr, /* Shmptr to TreeKey struct */ | > > > > > > > > > > > > > > > > > > | 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | return (ShmChunk *)treeShmptr(pDb, iChunk*LSM_SHM_CHUNK_SIZE, &rcdummy); } static ShmChunk * treeShmChunkRc(lsm_db *pDb, int iChunk, int *pRc){ return (ShmChunk *)treeShmptr(pDb, iChunk*LSM_SHM_CHUNK_SIZE, pRc); } #ifndef NDEBUG static void assertIsWorkingChild( lsm_db *db, TreeNode *pNode, TreeNode *pParent, int iCell ){ TreeNode *p; int rc = LSM_OK; u32 iPtr = getChildPtr(pParent, WORKING_VERSION, iCell); p = treeShmptr(db, iPtr, &rc); assert( p==pNode || rc!=LSM_OK ); } #else # define assertIsWorkingChild(w,x,y,z) #endif /* Values for the third argument to treeShmkey(). */ #define TK_LOADKEY 1 #define TK_LOADVAL 2 static TreeKey *treeShmkey( lsm_db *pDb, /* Database handle */ u32 iPtr, /* Shmptr to TreeKey struct */ |
︙ | ︙ | |||
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 | if( rc==LSM_OK ){ rc = treeRepairList(db); } memcpy(&db->treehdr, &hdr, sizeof(TreeHeader)); return rc; } /* ** Insert a new entry into the in-memory tree. ** ** If the value of the 5th parameter, nVal, is negative, then a delete-marker ** is inserted into the tree. In this case the value pointer, pVal, must be ** NULL. | > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 | if( rc==LSM_OK ){ rc = treeRepairList(db); } memcpy(&db->treehdr, &hdr, sizeof(TreeHeader)); return rc; } static void treeOverwriteKey(lsm_db *db, TreeCursor *pCsr, u32 iKey, int *pRc){ if( *pRc==LSM_OK ){ TreeRoot *p = &db->treehdr.root; TreeNode *pNew; u32 iNew; TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode]; int iCell = pCsr->aiCell[pCsr->iNode]; /* Create a copy of this node */ if( (pCsr->iNode>0 && pCsr->iNode==(p->nHeight-1)) ){ pNew = copyTreeLeaf(db, (TreeLeaf *)pNode, &iNew, pRc); }else{ pNew = copyTreeNode(db, pNode, &iNew, pRc); } if( pNew ){ /* Modify the value in the new version */ pNew->aiKeyPtr[iCell] = iKey; /* Change the pointer in the parent (if any) to point at the new ** TreeNode */ pCsr->iNode--; treeUpdatePtr(db, pCsr, iNew); } } } /* ** Insert a new entry into the in-memory tree. ** ** If the value of the 5th parameter, nVal, is negative, then a delete-marker ** is inserted into the tree. In this case the value pointer, pVal, must be ** NULL. |
︙ | ︙ | |||
1327 1328 1329 1330 1331 1332 1333 | /* Seek to the leaf (or internal node) that the new key belongs on */ treeCursorInit(pDb, 0, &csr); lsmTreeCursorSeek(&csr, pKey, nKey, &res); if( res==0 ){ /* The search found a match within the tree. */ | < < < < < < < < < < < < < < < < < < < | < | 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 | /* Seek to the leaf (or internal node) that the new key belongs on */ treeCursorInit(pDb, 0, &csr); lsmTreeCursorSeek(&csr, pKey, nKey, &res); if( res==0 ){ /* The search found a match within the tree. */ treeOverwriteKey(pDb, &csr, iTreeKey, &rc); }else{ /* The cursor now points to the leaf node into which the new entry should ** be inserted. There may or may not be a free slot within the leaf for ** the new key-value pair. ** ** iSlot is set to the index of the key within pLeaf that the new key ** should be inserted to the left of (or to a value 1 greater than the |
︙ | ︙ | |||
1376 1377 1378 1379 1380 1381 1382 | dump_tree_contents(pDb, "after"); #endif assert_tree_looks_ok(rc, pTree); return rc; } static int treeDeleteEntry(lsm_db *db, TreeCursor *pCsr, u32 iNewptr){ | | | | 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 | dump_tree_contents(pDb, "after"); #endif assert_tree_looks_ok(rc, pTree); return rc; } static int treeDeleteEntry(lsm_db *db, TreeCursor *pCsr, u32 iNewptr){ TreeRoot *p = &db->treehdr.root; TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode]; int iSlot = pCsr->aiCell[pCsr->iNode]; int bLeaf; int rc = LSM_OK; assert( pNode->aiKeyPtr[1] ); assert( pNode->aiKeyPtr[iSlot] ); assert( iSlot==0 || iSlot==1 || iSlot==2 ); assert( (pCsr->iNode==(db->treehdr.root.nHeight-1))==(iNewptr==0) ); bLeaf = (pCsr->iNode==(p->nHeight-1) && p->nHeight>1); if( pNode->aiKeyPtr[0] || pNode->aiKeyPtr[2] ){ /* There are currently at least 2 keys on this leaf. So just create ** a new copy of the leaf with one of the keys removed. If the leaf ** happens to be the root node of the tree, allocate an entire |
︙ | ︙ | |||
1412 1413 1414 1415 1416 1417 1418 | for(i=0; i<4; i++){ if( i==iSlot ){ i++; if( bLeaf==0 ) pNew->aiChildPtr[iOut] = iNewptr; if( i<3 ) pNew->aiKeyPtr[iOut] = pNode->aiKeyPtr[i]; iOut++; }else{ | > | > > | | < | > | | > | | | | | | | | | | | | | | | | | | | > | | | | | 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 | for(i=0; i<4; i++){ if( i==iSlot ){ i++; if( bLeaf==0 ) pNew->aiChildPtr[iOut] = iNewptr; if( i<3 ) pNew->aiKeyPtr[iOut] = pNode->aiKeyPtr[i]; iOut++; }else{ if( bLeaf && i<3 && pNode->aiKeyPtr[i] ){ pNew->aiKeyPtr[iOut++] = pNode->aiKeyPtr[i]; } if( bLeaf==0 && getChildPtr(pNode, WORKING_VERSION, i) ){ pNew->aiChildPtr[iOut] = getChildPtr(pNode, WORKING_VERSION, i); if( i<3 ) pNew->aiKeyPtr[iOut++] = pNode->aiKeyPtr[i]; } } } assert( iOut<=4 ); assert( bLeaf || pNew->aiChildPtr[0]==0 ); pCsr->iNode--; rc = treeUpdatePtr(db, pCsr, iNew); } }else if( pCsr->iNode==0 ){ /* Removing the only key in the root node. iNewptr is the new root. */ assert( iSlot==1 ); db->treehdr.root.iRoot = iNewptr; db->treehdr.root.nHeight--; }else{ /* There is only one key on this node and the node is not the root ** node. Find a peer for this node. Then redistribute the contents of ** the peer and the parent cell between the parent and either one or ** two new nodes. */ TreeNode *pParent; /* Parent tree node */ int iPSlot; u32 iPeer; /* Pointer to peer leaf node */ int iDir; TreeNode *pPeer; /* The peer leaf node */ TreeNode *pNew1; u32 iNew1; /* First new leaf node */ assert( iSlot==1 ); pParent = pCsr->apTreeNode[pCsr->iNode-1]; iPSlot = pCsr->aiCell[pCsr->iNode-1]; if( iPSlot>0 && getChildPtr(pParent, WORKING_VERSION, iPSlot-1) ){ iDir = -1; }else{ iDir = +1; } iPeer = getChildPtr(pParent, WORKING_VERSION, iPSlot+iDir); pPeer = (TreeNode *)treeShmptr(db, iPeer, &rc); assertIsWorkingChild(db, pNode, pParent, iPSlot); /* Allocate the first new leaf node. This is always required. */ if( bLeaf ){ pNew1 = (TreeNode *)newTreeLeaf(db, &iNew1, &rc); }else{ pNew1 = (TreeNode *)newTreeNode(db, &iNew1, &rc); } if( pPeer->aiKeyPtr[0] && pPeer->aiKeyPtr[2] ){ /* Peer node is completely full. This means that two new leaf nodes ** and a new parent node are required. */ TreeNode *pNew2; u32 iNew2; /* Second new leaf node */ TreeNode *pNewP; u32 iNewP; /* New parent node */ if( bLeaf ){ pNew2 = (TreeNode *)newTreeLeaf(db, &iNew2, &rc); }else{ pNew2 = (TreeNode *)newTreeNode(db, &iNew2, &rc); } pNewP = copyTreeNode(db, pParent, &iNewP, &rc); if( iDir==-1 ){ pNew1->aiKeyPtr[1] = pPeer->aiKeyPtr[0]; if( bLeaf==0 ){ pNew1->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 0); pNew1->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 1); } pNewP->aiChildPtr[iPSlot-1] = iNew1; pNewP->aiKeyPtr[iPSlot-1] = pPeer->aiKeyPtr[1]; pNewP->aiChildPtr[iPSlot] = iNew2; pNew2->aiKeyPtr[0] = pPeer->aiKeyPtr[2]; pNew2->aiKeyPtr[1] = pParent->aiKeyPtr[iPSlot-1]; if( bLeaf==0 ){ pNew2->aiChildPtr[0] = getChildPtr(pPeer, WORKING_VERSION, 2); pNew2->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 3); pNew2->aiChildPtr[2] = iNewptr; } }else{ pNew1->aiKeyPtr[1] = pParent->aiKeyPtr[iPSlot]; if( bLeaf==0 ){ pNew1->aiChildPtr[1] = iNewptr; pNew1->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 0); } pNewP->aiChildPtr[iPSlot] = iNew1; pNewP->aiKeyPtr[iPSlot] = pPeer->aiKeyPtr[0]; pNewP->aiChildPtr[iPSlot+1] = iNew2; pNew2->aiKeyPtr[0] = pPeer->aiKeyPtr[1]; pNew2->aiKeyPtr[1] = pPeer->aiKeyPtr[2]; if( bLeaf==0 ){ pNew2->aiChildPtr[0] = getChildPtr(pPeer, WORKING_VERSION, 1); pNew2->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 2); pNew2->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 3); } } assert( pCsr->iNode>=1 ); pCsr->iNode -= 2; if( rc==LSM_OK ){ assert( pNew1->aiKeyPtr[1] && pNew2->aiKeyPtr[1] ); rc = treeUpdatePtr(db, pCsr, iNewP); } }else{ int iKOut = 0; int iPOut = 0; int i; pCsr->iNode--; if( iDir==1 ){ pNew1->aiKeyPtr[iKOut++] = pParent->aiKeyPtr[iPSlot]; if( bLeaf==0 ) pNew1->aiChildPtr[iPOut++] = iNewptr; } for(i=0; i<3; i++){ if( pPeer->aiKeyPtr[i] ){ pNew1->aiKeyPtr[iKOut++] = pPeer->aiKeyPtr[i]; } } if( bLeaf==0 ){ for(i=0; i<4; i++){ if( getChildPtr(pPeer, WORKING_VERSION, i) ){ pNew1->aiChildPtr[iPOut++] = getChildPtr(pPeer, WORKING_VERSION, i); } } } if( iDir==-1 ){ iPSlot--; pNew1->aiKeyPtr[iKOut++] = pParent->aiKeyPtr[iPSlot]; if( bLeaf==0 ) pNew1->aiChildPtr[iPOut++] = iNewptr; |
︙ | ︙ | |||
1577 1578 1579 1580 1581 1582 1583 1584 | ** (pKey2/nKey2) is already START_END, insert a START_END key. */ int lsmTreeDelete( lsm_db *db, void *pKey1, int nKey1, /* Start of range */ void *pKey2, int nKey2 /* End of range */ ){ int bDone = 0; | > | > | > | > > > > > > > > | | > | | > > > > > > > > > > > | > > > > > > > > > > > > > > | > > > | 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 | ** (pKey2/nKey2) is already START_END, insert a START_END key. */ int lsmTreeDelete( lsm_db *db, void *pKey1, int nKey1, /* Start of range */ void *pKey2, int nKey2 /* End of range */ ){ int rc = LSM_OK; int bDone = 0; TreeRoot *p = &db->treehdr.root; TreeBlob blob = {0, 0}; /* The range must be sensible - that (key1 < key2). */ assert( db->xCmp(pKey1, nKey1, pKey2, nKey2)<0 ); /* Step 1. This loop runs until the tree contains no keys within the ** range being deleted. Or until an error occurs. */ while( bDone==0 && rc==LSM_OK ){ int res; TreeCursor csr; /* Cursor to seek to first key in range */ void *pDel; int nDel; /* Key to (possibly) delete this iteration */ /* Seek the cursor to the first entry in the tree greater than pKey1. */ treeCursorInit(db, 0, &csr); lsmTreeCursorSeek(&csr, pKey1, nKey1, &res); if( res<=0 && lsmTreeCursorValid(&csr) ) lsmTreeCursorNext(&csr); /* If there is no such entry, or if it is greater than pKey2, then the ** tree now contains no keys in the range being deleted. In this case ** break out of the loop. */ bDone = 1; if( lsmTreeCursorValid(&csr) ){ lsmTreeCursorKey(&csr, &pDel, &nDel); if( db->xCmp(pDel, nDel, pKey2, nKey2)<0 ) bDone = 0; } if( bDone==0 ){ #if 0 dump_tree_contents(db, "BEFORE"); fprintf(stderr, "DELETE %s\n", (char *)pDel); static nCall = 0; nCall ++; fprintf(stderr, "%d\n", nCall); #endif if( csr.iNode==(p->nHeight-1) ){ /* The element to delete already lies on a leaf node */ rc = treeDeleteEntry(db, &csr, 0); }else{ /* 1. Overwrite the current key with a copy of the next key in the ** tree (key N). ** ** 2. Seek to key N (cursor will stop at the internal node copy of ** N). Move to the next key (original copy of N). Delete ** this entry. */ u32 iKey; TreeKey *pKey; int iNode = csr.iNode; lsmTreeCursorNext(&csr); assert( csr.iNode==(p->nHeight-1) ); iKey = csr.apTreeNode[csr.iNode]->aiKeyPtr[csr.aiCell[csr.iNode]]; lsmTreeCursorPrev(&csr); treeOverwriteKey(db, &csr, iKey, &rc); pKey = treeShmkey(db, iKey, TK_LOADKEY, &blob, &rc); if( pKey ){ rc = lsmTreeCursorSeek(&csr, TK_KEY(pKey), pKey->nKey, &res); } if( rc==LSM_OK ){ assert( res==0 && csr.iNode==iNode ); rc = lsmTreeCursorNext(&csr); if( rc==LSM_OK ){ #if 0 dump_tree_contents(db, "DURING"); #endif rc = treeDeleteEntry(db, &csr, 0); } } } #if 0 dump_tree_contents(db, "AFTER"); #endif } /* Clean up any memory allocated by the cursor. */ tblobFree(db, &csr.blob); } tblobFree(db, &blob); return rc; } /* ** Return, in bytes, the amount of memory currently used by the tree ** structure. */ int lsmTreeSize(lsm_db *pDb){ |
︙ | ︙ | |||
1830 1831 1832 1833 1834 1835 1836 | if( iCell<3 && pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[iCell] ) break; } } #ifndef NDEBUG if( pCsr->iNode>=0 ){ TreeKey *pK2 = csrGetKey(pCsr, &pCsr->blob, &rc); | | | 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 | if( iCell<3 && pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[iCell] ) break; } } #ifndef NDEBUG if( pCsr->iNode>=0 ){ TreeKey *pK2 = csrGetKey(pCsr, &pCsr->blob, &rc); assert( rc || pDb->xCmp(TK_KEY(pK2),pK2->nKey,TK_KEY(pK1),pK1->nKey)>=0 ); } tblobFree(pDb, &key1); #endif return rc; } |
︙ | ︙ |