Index: Makefile.msc ================================================================== --- Makefile.msc +++ Makefile.msc @@ -2240,10 +2240,13 @@ rbu.exe: $(TOP)\ext\rbu\rbu.c $(TOP)\ext\rbu\sqlite3rbu.c $(SQLITE3C) $(SQLITE3H) $(LTLINK) $(NO_WARN) -DSQLITE_ENABLE_RBU \ $(TOP)\ext\rbu\rbu.c $(SQLITE3C) /link $(LDFLAGS) $(LTLINKOPTS) +LSMDIR=$(TOP)\ext\lsm1 +!INCLUDE $(LSMDIR)\Makefile.msc + moreclean: clean del /Q $(SQLITE3C) $(SQLITE3H) 2>NUL # <> clean: ADDED ext/lsm1/Makefile Index: ext/lsm1/Makefile ================================================================== --- /dev/null +++ ext/lsm1/Makefile @@ -0,0 +1,56 @@ +# +# This Makefile is designed for use with main.mk in the root directory of +# this project. After including main.mk, the users makefile should contain: +# +# LSMDIR=$(TOP)/ext/lsm1/ +# include $(LSMDIR)/Makefile +# +# The most useful targets are [lsmtest] and [lsm.so]. +# + +LSMOBJ = \ + lsm_ckpt.o \ + lsm_file.o \ + lsm_log.o \ + lsm_main.o \ + lsm_mem.o \ + lsm_mutex.o \ + lsm_shared.o \ + lsm_sorted.o \ + lsm_str.o \ + lsm_tree.o \ + lsm_unix.o \ + lsm_win32.o \ + lsm_varint.o \ + lsm_vtab.o + +LSMHDR = \ + $(LSMDIR)/lsm.h \ + $(LSMDIR)/lsmInt.h + +LSMTESTSRC = $(LSMDIR)/lsm-test/lsmtest1.c $(LSMDIR)/lsm-test/lsmtest2.c \ + $(LSMDIR)/lsm-test/lsmtest3.c $(LSMDIR)/lsm-test/lsmtest4.c \ + $(LSMDIR)/lsm-test/lsmtest5.c $(LSMDIR)/lsm-test/lsmtest6.c \ + $(LSMDIR)/lsm-test/lsmtest7.c $(LSMDIR)/lsm-test/lsmtest8.c \ + $(LSMDIR)/lsm-test/lsmtest9.c \ + $(LSMDIR)/lsm-test/lsmtest_datasource.c \ + $(LSMDIR)/lsm-test/lsmtest_func.c $(LSMDIR)/lsm-test/lsmtest_io.c \ + $(LSMDIR)/lsm-test/lsmtest_main.c $(LSMDIR)/lsm-test/lsmtest_mem.c \ + $(LSMDIR)/lsm-test/lsmtest_tdb.c $(LSMDIR)/lsm-test/lsmtest_tdb3.c \ + $(LSMDIR)/lsm-test/lsmtest_util.c $(LSMDIR)/lsm-test/lsmtest_win32.c + + +# all: lsm.so + +LSMOPTS = -DLSM_MUTEX_PTHREADS=1 -I$(LSMDIR) + +lsm.so: $(LSMOBJ) + $(TCCX) -shared -o lsm.so $(LSMOBJ) + +%.o: $(LSMDIR)/%.c $(LSMHDR) sqlite3.h + $(TCCX) $(LSMOPTS) -c $< + +lsmtest$(EXE): $(LSMOBJ) $(LSMTESTSRC) $(LSMTESTHDR) sqlite3.o + # $(TCPPX) -c $(TOP)/lsm-test/lsmtest_tdb2.cc + $(TCCX) $(LSMOPTS) $(LSMTESTSRC) $(LSMOBJ) sqlite3.o -o lsmtest$(EXE) $(THREADLIB) + ADDED ext/lsm1/Makefile.msc Index: ext/lsm1/Makefile.msc ================================================================== --- /dev/null +++ ext/lsm1/Makefile.msc @@ -0,0 +1,92 @@ +# +# This Makefile is designed for use with main.mk in the root directory of +# this project. After including main.mk, the users makefile should contain: +# +# LSMDIR=$(TOP)\ext\lsm1\ +# include $(LSMDIR)\Makefile.msc +# +# The most useful targets are [lsmtest.exe] and [lsm.dll]. +# + +LSMOBJ = \ + lsm_ckpt.lo \ + lsm_file.lo \ + lsm_log.lo \ + lsm_main.lo \ + lsm_mem.lo \ + lsm_mutex.lo \ + lsm_shared.lo \ + lsm_sorted.lo \ + lsm_str.lo \ + lsm_tree.lo \ + lsm_unix.lo \ + lsm_win32.lo \ + lsm_varint.lo \ + lsm_vtab.lo + +LSMHDR = \ + $(LSMDIR)\lsm.h \ + $(LSMDIR)\lsmInt.h + +LSMTESTSRC = $(LSMDIR)\lsm-test\lsmtest1.c $(LSMDIR)\lsm-test\lsmtest2.c \ + $(LSMDIR)\lsm-test\lsmtest3.c $(LSMDIR)\lsm-test\lsmtest4.c \ + $(LSMDIR)\lsm-test\lsmtest5.c $(LSMDIR)\lsm-test\lsmtest6.c \ + $(LSMDIR)\lsm-test\lsmtest7.c $(LSMDIR)\lsm-test\lsmtest8.c \ + $(LSMDIR)\lsm-test\lsmtest9.c \ + $(LSMDIR)\lsm-test\lsmtest_datasource.c \ + $(LSMDIR)\lsm-test\lsmtest_func.c $(LSMDIR)\lsm-test\lsmtest_io.c \ + $(LSMDIR)\lsm-test\lsmtest_main.c $(LSMDIR)\lsm-test\lsmtest_mem.c \ + $(LSMDIR)\lsm-test\lsmtest_tdb.c $(LSMDIR)\lsm-test\lsmtest_tdb3.c \ + $(LSMDIR)\lsm-test\lsmtest_util.c $(LSMDIR)\lsm-test\lsmtest_win32.c + +# all: lsm.dll + +LSMOPTS = -DLSM_MUTEX_WIN32=1 -I$(LSMDIR) + +lsm_ckpt.lo: $(LSMDIR)\lsm_ckpt.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_ckpt.c + +lsm_file.lo: $(LSMDIR)\lsm_file.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_file.c + +lsm_log.lo: $(LSMDIR)\lsm_log.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_log.c + +lsm_main.lo: $(LSMDIR)\lsm_main.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_main.c + +lsm_mem.lo: $(LSMDIR)\lsm_mem.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_mem.c + +lsm_mutex.lo: $(LSMDIR)\lsm_mutex.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_mutex.c + +lsm_shared.lo: $(LSMDIR)\lsm_shared.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_shared.c + +lsm_sorted.lo: $(LSMDIR)\lsm_sorted.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_sorted.c + +lsm_str.lo: $(LSMDIR)\lsm_str.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_str.c + +lsm_tree.lo: $(LSMDIR)\lsm_tree.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_tree.c + +lsm_unix.lo: $(LSMDIR)\lsm_unix.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_unix.c + +lsm_win32.lo: $(LSMDIR)\lsm_win32.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_win32.c + +lsm_varint.lo: $(LSMDIR)\lsm_varint.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_varint.c + +lsm_vtab.lo: $(LSMDIR)\lsm_vtab.c $(LSMHDR) $(SQLITE3H) + $(LTCOMPILE) $(LSMOPTS) -c $(LSMDIR)\lsm_vtab.c + +lsm.dll: $(LSMOBJ) + $(LD) $(LDFLAGS) $(LTLINKOPTS) $(LTLIBPATHS) /DLL /OUT:$@ $(LSMOBJ) + +lsmtest.exe: $(LSMOBJ) $(LSMTESTSRC) $(LSMTESTHDR) $(LIBOBJS1) + $(LTLINK) $(LSMOPTS) $(LSMTESTSRC) /link $(LSMOBJ) $(LIBOBJS1) ADDED ext/lsm1/lsm-test/README Index: ext/lsm1/lsm-test/README ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/README @@ -0,0 +1,40 @@ + + +Organization of test case files: + + lsmtest1.c: Data tests. Tests that perform many inserts and deletes on a + database file, then verify that the contents of the database can + be queried. + + lsmtest2.c: Crash tests. Tests that attempt to verify that the database + recovers correctly following an application or system crash. + + lsmtest3.c: Rollback tests. Tests that focus on the explicit rollback of + transactions and sub-transactions. + + lsmtest4.c: Multi-client tests. + + lsmtest5.c: Multi-client tests with a different thread for each client. + + lsmtest6.c: OOM injection tests. + + lsmtest7.c: API tests. + + lsmtest8.c: Writer crash tests. Tests in this file attempt to verify that + the system recovers and other clients proceed unaffected if + a process fails in the middle of a write transaction. + + The difference from lsmtest2.c is that this file tests + live-recovery (recovery from a failure that occurs while other + clients are still running) whereas lsmtest2.c tests recovery + from a system or power failure. + + lsmtest9.c: More data tests. These focus on testing that calling + lsm_work(nMerge=1) to compact the database does not corrupt it. + In other words, that databases containing block-redirects + can be read and written. + + + + + ADDED ext/lsm1/lsm-test/lsmtest.h Index: ext/lsm1/lsm-test/lsmtest.h ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest.h @@ -0,0 +1,282 @@ + +#ifndef __WRAPPER_INT_H_ +#define __WRAPPER_INT_H_ + +#include "lsmtest_tdb.h" +#include "sqlite3.h" +#include "lsm.h" + +#include +#include +#include +#include + +#ifdef __cplusplus +extern "C" { +#endif + +#ifdef _WIN32 +# include "windows.h" +# define gettimeofday win32GetTimeOfDay +# define F_OK (0) +# define sleep(sec) Sleep(1000 * (sec)) +# define usleep(usec) Sleep((usec) / 1000) +# ifdef _MSC_VER +# include +# define snprintf _snprintf +# define fsync(fd) FlushFileBuffers((HANDLE)_get_osfhandle((fd))) +# define fdatasync(fd) FlushFileBuffers((HANDLE)_get_osfhandle((fd))) +# define __va_copy(dst,src) ((dst) = (src)) +# define ftruncate(fd,sz) (_chsize_s((fd), (sz))==0) +# else +# error Unsupported C compiler for Windows. +# endif +int win32GetTimeOfDay(struct timeval *, void *); +#endif + +#ifndef _LSM_INT_H +typedef unsigned int u32; +typedef unsigned char u8; +typedef long long int i64; +typedef unsigned long long int u64; +#endif + + +#define ArraySize(x) ((int)(sizeof(x) / sizeof((x)[0]))) + +#define MIN(x,y) ((x)<(y) ? (x) : (y)) +#define MAX(x,y) ((x)>(y) ? (x) : (y)) + +#define unused_parameter(x) (void)(x) + +#define TESTDB_DEFAULT_PAGE_SIZE 4096 +#define TESTDB_DEFAULT_CACHE_SIZE 2048 + +/* +** Ideally, these should be in wrapper.c. But they are here instead so that +** they can be used by the C++ database wrappers in wrapper2.cc. +*/ +typedef struct DatabaseMethods DatabaseMethods; +struct TestDb { + DatabaseMethods const *pMethods; /* Database methods */ + const char *zLibrary; /* Library name for tdb_open() */ +}; +struct DatabaseMethods { + int (*xClose)(TestDb *); + int (*xWrite)(TestDb *, void *, int , void *, int); + int (*xDelete)(TestDb *, void *, int); + int (*xDeleteRange)(TestDb *, void *, int, void *, int); + int (*xFetch)(TestDb *, void *, int, void **, int *); + int (*xScan)(TestDb *, void *, int, void *, int, void *, int, + void (*)(void *, void *, int , void *, int) + ); + int (*xBegin)(TestDb *, int); + int (*xCommit)(TestDb *, int); + int (*xRollback)(TestDb *, int); +}; + +/* +** Functions in wrapper2.cc (a C++ source file). wrapper2.cc contains the +** wrapper for Kyoto Cabinet. Kyoto cabinet has a C API, but +** the primary interface is the C++ API. +*/ +int test_kc_open(const char*, const char *zFilename, int bClear, TestDb **ppDb); +int test_kc_close(TestDb *); +int test_kc_write(TestDb *, void *, int , void *, int); +int test_kc_delete(TestDb *, void *, int); +int test_kc_delete_range(TestDb *, void *, int, void *, int); +int test_kc_fetch(TestDb *, void *, int, void **, int *); +int test_kc_scan(TestDb *, void *, int, void *, int, void *, int, + void (*)(void *, void *, int , void *, int) +); + +int test_mdb_open(const char*, const char *zFile, int bClear, TestDb **ppDb); +int test_mdb_close(TestDb *); +int test_mdb_write(TestDb *, void *, int , void *, int); +int test_mdb_delete(TestDb *, void *, int); +int test_mdb_fetch(TestDb *, void *, int, void **, int *); +int test_mdb_scan(TestDb *, void *, int, void *, int, void *, int, + void (*)(void *, void *, int , void *, int) +); + +/* +** Functions in wrapper3.c. This file contains the tdb wrapper for lsm. +** The wrapper for lsm is a bit more involved than the others, as it +** includes code for a couple of different lsm configurations, and for +** various types of fault injection and robustness testing. +*/ +int test_lsm_open(const char*, const char *zFile, int bClear, TestDb **ppDb); +int test_lsm_lomem_open(const char*, const char*, int bClear, TestDb **ppDb); +int test_lsm_zip_open(const char*, const char*, int bClear, TestDb **ppDb); +int test_lsm_small_open(const char*, const char*, int bClear, TestDb **ppDb); +int test_lsm_mt2(const char*, const char *zFile, int bClear, TestDb **ppDb); +int test_lsm_mt3(const char*, const char *zFile, int bClear, TestDb **ppDb); + +int tdb_lsm_configure(lsm_db *, const char *); + +/* Functions in lsmtest_tdb4.c */ +int test_bt_open(const char*, const char *zFile, int bClear, TestDb **ppDb); +int test_fbt_open(const char*, const char *zFile, int bClear, TestDb **ppDb); +int test_fbts_open(const char*, const char *zFile, int bClear, TestDb **ppDb); + + +/* Functions in testutil.c. */ +int testPrngInit(void); +u32 testPrngValue(u32 iVal); +void testPrngArray(u32 iVal, u32 *aOut, int nOut); +void testPrngString(u32 iVal, char *aOut, int nOut); + +void testErrorInit(int argc, char **); +void testPrintError(const char *zFormat, ...); +void testPrintUsage(const char *zArgs); +void testPrintFUsage(const char *zFormat, ...); +void testTimeInit(void); +int testTimeGet(void); + +/* Functions in testmem.c. */ +void testMallocInstall(lsm_env *pEnv); +void testMallocUninstall(lsm_env *pEnv); +void testMallocCheck(lsm_env *pEnv, int *, int *, FILE *); +void testMallocOom(lsm_env *pEnv, int, int, void(*)(void*), void *); +void testMallocOomEnable(lsm_env *pEnv, int); + +/* lsmtest.c */ +TestDb *testOpen(const char *zSystem, int, int *pRc); +void testReopen(TestDb **ppDb, int *pRc); +void testClose(TestDb **ppDb); + +void testFetch(TestDb *, void *, int, void *, int, int *); +void testWrite(TestDb *, void *, int, void *, int, int *); +void testDelete(TestDb *, void *, int, int *); +void testDeleteRange(TestDb *, void *, int, void *, int, int *); +void testWriteStr(TestDb *, const char *, const char *zVal, int *pRc); +void testFetchStr(TestDb *, const char *, const char *, int *pRc); + +void testBegin(TestDb *pDb, int iTrans, int *pRc); +void testCommit(TestDb *pDb, int iTrans, int *pRc); + +void test_failed(void); + +char *testMallocPrintf(const char *zFormat, ...); +char *testMallocVPrintf(const char *zFormat, va_list ap); +int testGlobMatch(const char *zPattern, const char *zStr); + +void testScanCompare(TestDb *, TestDb *, int, void *, int, void *, int, int *); +void testFetchCompare(TestDb *, TestDb *, void *, int, int *); + +void *testMalloc(int); +void *testMallocCopy(void *pCopy, int nByte); +void *testRealloc(void *, int); +void testFree(void *); + +/* lsmtest_bt.c */ +int do_bt(int nArg, char **azArg); + +/* testio.c */ +int testVfsConfigureDb(TestDb *pDb); + +/* testfunc.c */ +int do_show(int nArg, char **azArg); +int do_work(int nArg, char **azArg); + +/* testio.c */ +int do_io(int nArg, char **azArg); + +/* lsmtest2.c */ +void do_crash_test(const char *zPattern, int *pRc); +int do_rollback_test(int nArg, char **azArg); + +/* test3.c */ +void test_rollback(const char *zSystem, const char *zPattern, int *pRc); + +/* test4.c */ +void test_mc(const char *zSystem, const char *zPattern, int *pRc); + +/* test5.c */ +void test_mt(const char *zSystem, const char *zPattern, int *pRc); + +/* lsmtest6.c */ +void test_oom(const char *zPattern, int *pRc); +void testDeleteLsmdb(const char *zFile); + +void testSaveDb(const char *zFile, const char *zAuxExt); +void testRestoreDb(const char *zFile, const char *zAuxExt); +void testCopyLsmdb(const char *zFrom, const char *zTo); + +/* lsmtest7.c */ +void test_api(const char *zPattern, int *pRc); + +/* lsmtest8.c */ +void do_writer_crash_test(const char *zPattern, int *pRc); + +/************************************************************************* +** Interface to functionality in test_datasource.c. +*/ +typedef struct Datasource Datasource; +typedef struct DatasourceDefn DatasourceDefn; + +struct DatasourceDefn { + int eType; /* A TEST_DATASOURCE_* value */ + int nMinKey; /* Minimum key size */ + int nMaxKey; /* Maximum key size */ + int nMinVal; /* Minimum value size */ + int nMaxVal; /* Maximum value size */ +}; + +#define TEST_DATASOURCE_RANDOM 1 +#define TEST_DATASOURCE_SEQUENCE 2 + +char *testDatasourceName(const DatasourceDefn *); +Datasource *testDatasourceNew(const DatasourceDefn *); +void testDatasourceFree(Datasource *); +void testDatasourceEntry(Datasource *, int, void **, int *, void **, int *); +/* End of test_datasource.c interface. +*************************************************************************/ + +void testWriteDatasource(TestDb *, Datasource *, int, int *); +void testWriteDatasourceRange(TestDb *, Datasource *, int, int, int *); +void testDeleteDatasource(TestDb *, Datasource *, int, int *); +void testDeleteDatasourceRange(TestDb *, Datasource *, int, int, int *); + + +/* test1.c */ +void test_data_1(const char *, const char *, int *pRc); +void test_data_2(const char *, const char *, int *pRc); +void test_data_3(const char *, const char *, int *pRc); +void testDbContents(TestDb *, Datasource *, int, int, int, int, int, int *); +void testCaseProgress(int, int, int, int *); +int testCaseNDot(void); + +void testCompareDb(Datasource *, int, int, TestDb *, TestDb *, int *); +int testControlDb(TestDb **ppDb); + +typedef struct CksumDb CksumDb; +CksumDb *testCksumArrayNew(Datasource *, int, int, int); +char *testCksumArrayGet(CksumDb *, int); +void testCksumArrayFree(CksumDb *); +void testCaseStart(int *pRc, char *zFmt, ...); +void testCaseFinish(int rc); +void testCaseSkip(void); +int testCaseBegin(int *, const char *, const char *, ...); + +#define TEST_CKSUM_BYTES 29 +int testCksumDatabase(TestDb *pDb, char *zOut); +int testCountDatabase(TestDb *pDb); +void testCompareInt(int, int, int *); +void testCompareStr(const char *z1, const char *z2, int *pRc); + +/* lsmtest9.c */ +void test_data_4(const char *, const char *, int *pRc); + + +/* +** Similar to the Tcl_GetIndexFromObjStruct() Tcl library function. +*/ +#define testArgSelect(w,x,y,z) testArgSelectX(w,x,sizeof(w[0]),y,z) +int testArgSelectX(void *, const char *, int, const char *, int *); + +#ifdef __cplusplus +} /* End of the 'extern "C"' block */ +#endif + +#endif ADDED ext/lsm1/lsm-test/lsmtest1.c Index: ext/lsm1/lsm-test/lsmtest1.c ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest1.c @@ -0,0 +1,621 @@ + +#include "lsmtest.h" + +#define DATA_SEQUENTIAL TEST_DATASOURCE_SEQUENCE +#define DATA_RANDOM TEST_DATASOURCE_RANDOM + +typedef struct Datatest1 Datatest1; +typedef struct Datatest2 Datatest2; + +/* +** An instance of the following structure contains parameters used to +** customize the test function in this file. Test procedure: +** +** 1. Create a data-source based on the "datasource definition" vars. +** +** 2. Insert nRow key value pairs into the database. +** +** 3. Delete all keys from the database. Deletes are done in the same +** order as the inserts. +** +** During steps 2 and 3 above, after each Datatest1.nVerify inserts or +** deletes, the following: +** +** a. Run Datasource.nTest key lookups and check the results are as expected. +** +** b. If Datasource.bTestScan is true, run a handful (8) of range +** queries (scanning forwards and backwards). Check that the results +** are as expected. +** +** c. Close and reopen the database. Then run (a) and (b) again. +*/ +struct Datatest1 { + /* Datasource definition */ + DatasourceDefn defn; + + /* Test procedure parameters */ + int nRow; /* Number of rows to insert then delete */ + int nVerify; /* How often to verify the db contents */ + int nTest; /* Number of keys to test (0==all) */ + int bTestScan; /* True to do scan tests */ +}; + +/* +** An instance of the following data structure is used to describe the +** second type of test case in this file. The chief difference between +** these tests and those described by Datatest1 is that these tests also +** experiment with range-delete operations. Tests proceed as follows: +** +** 1. Open the datasource described by Datatest2.defn. +** +** 2. Open a connection on an empty database. +** +** 3. Do this Datatest2.nIter times: +** +** a) Insert Datatest2.nWrite key-value pairs from the datasource. +** +** b) Select two pseudo-random keys and use them as the start +** and end points of a range-delete operation. +** +** c) Verify that the contents of the database are as expected (see +** below for details). +** +** d) Close and then reopen the database handle. +** +** e) Verify that the contents of the database are still as expected. +** +** The inserts and range deletes are run twice - once on the database being +** tested and once using a control system (sqlite3, kc etc. - something that +** works). In order to verify that the contents of the db being tested are +** correct, the test runs a bunch of scans and lookups on both the test and +** control databases. If the results are the same, the test passes. +*/ +struct Datatest2 { + DatasourceDefn defn; + int nRange; + int nWrite; /* Number of writes per iteration */ + int nIter; /* Total number of iterations to run */ +}; + +/* +** Generate a unique name for the test case pTest with database system +** zSystem. +*/ +static char *getName(const char *zSystem, Datatest1 *pTest){ + char *zRet; + char *zData; + zData = testDatasourceName(&pTest->defn); + zRet = testMallocPrintf("data.%s.%s.%d.%d", + zSystem, zData, pTest->nRow, pTest->nVerify + ); + testFree(zData); + return zRet; +} + +int testControlDb(TestDb **ppDb){ +#ifdef HAVE_KYOTOCABINET + return tdb_open("kyotocabinet", "tmp.db", 1, ppDb); +#else + return tdb_open("sqlite3", ":memory:", 1, ppDb); +#endif +} + +void testDatasourceFetch( + TestDb *pDb, /* Database handle */ + Datasource *pData, + int iKey, + int *pRc /* IN/OUT: Error code */ +){ + void *pKey; int nKey; /* Database key to query for */ + void *pVal; int nVal; /* Expected result of query */ + + testDatasourceEntry(pData, iKey, &pKey, &nKey, &pVal, &nVal); + testFetch(pDb, pKey, nKey, pVal, nVal, pRc); +} + +/* +** This function is called to test that the contents of database pDb +** are as expected. In this case, expected is defined as containing +** key-value pairs iFirst through iLast, inclusive, from data source +** pData. In other words, a loop like the following could be used to +** construct a database with identical contents from scratch. +** +** for(i=iFirst; i<=iLast; i++){ +** testDatasourceEntry(pData, i, &pKey, &nKey, &pVal, &nVal); +** // insert (pKey, nKey) -> (pVal, nVal) into database +** } +** +** The key domain consists of keys 0 to (nRow-1), inclusive, from +** data source pData. For both scan and lookup tests, keys are selected +** pseudo-randomly from within this set. +** +** This function runs nLookupTest lookup tests and nScanTest scan tests. +** +** A lookup test consists of selecting a key from the domain and querying +** pDb for it. The test fails if the presence of the key and, if present, +** the associated value do not match the expectations defined above. +** +** A scan test involves selecting a key from the domain and running +** the following queries: +** +** 1. Scan all keys equal to or greater than the key, in ascending order. +** 2. Scan all keys equal to or smaller than the key, in descending order. +** +** Additionally, if nLookupTest is greater than zero, the following are +** run once: +** +** 1. Scan all keys in the db, in ascending order. +** 2. Scan all keys in the db, in descending order. +** +** As you would assume, the test fails if the returned values do not match +** expectations. +*/ +void testDbContents( + TestDb *pDb, /* Database handle being tested */ + Datasource *pData, /* pDb contains data from here */ + int nRow, /* Size of key domain */ + int iFirst, /* Index of first key from pData in pDb */ + int iLast, /* Index of last key from pData in pDb */ + int nLookupTest, /* Number of lookup tests to run */ + int nScanTest, /* Number of scan tests to run */ + int *pRc /* IN/OUT: Error code */ +){ + int j; + int rc = *pRc; + + if( rc==0 && nScanTest ){ + TestDb *pDb2 = 0; + + /* Open a control db (i.e. one that we assume works) */ + rc = testControlDb(&pDb2); + + for(j=iFirst; rc==0 && j<=iLast; j++){ + void *pKey; int nKey; /* Database key to insert */ + void *pVal; int nVal; /* Database value to insert */ + testDatasourceEntry(pData, j, &pKey, &nKey, &pVal, &nVal); + rc = tdb_write(pDb2, pKey, nKey, pVal, nVal); + } + + if( rc==0 ){ + int iKey1; + int iKey2; + void *pKey1; int nKey1; /* Start key */ + void *pKey2; int nKey2; /* Final key */ + + iKey1 = testPrngValue((iFirst<<8) + (iLast<<16)) % nRow; + iKey2 = testPrngValue((iLast<<8) + (iFirst<<16)) % nRow; + testDatasourceEntry(pData, iKey1, &pKey2, &nKey1, 0, 0); + pKey1 = testMalloc(nKey1+1); + memcpy(pKey1, pKey2, nKey1+1); + testDatasourceEntry(pData, iKey2, &pKey2, &nKey2, 0, 0); + + testScanCompare(pDb2, pDb, 0, 0, 0, 0, 0, &rc); + testScanCompare(pDb2, pDb, 0, 0, 0, pKey2, nKey2, &rc); + testScanCompare(pDb2, pDb, 0, pKey1, nKey1, 0, 0, &rc); + testScanCompare(pDb2, pDb, 0, pKey1, nKey1, pKey2, nKey2, &rc); + testScanCompare(pDb2, pDb, 1, 0, 0, 0, 0, &rc); + testScanCompare(pDb2, pDb, 1, 0, 0, pKey2, nKey2, &rc); + testScanCompare(pDb2, pDb, 1, pKey1, nKey1, 0, 0, &rc); + testScanCompare(pDb2, pDb, 1, pKey1, nKey1, pKey2, nKey2, &rc); + testFree(pKey1); + } + tdb_close(pDb2); + } + + /* Test some lookups. */ + for(j=0; rc==0 && j=nRow ){ + iKey = j; + }else{ + iKey = testPrngValue(j + (iFirst<<8) + (iLast<<16)) % nRow; + } + + testDatasourceEntry(pData, iKey, &pKey, &nKey, &pVal, &nVal); + if( iFirst>iKey || iKey>iLast ){ + pVal = 0; + nVal = -1; + } + + testFetch(pDb, pKey, nKey, pVal, nVal, &rc); + } + + *pRc = rc; +} + +/* +** This function should be called during long running test cases to output +** the progress dots (...) to stdout. +*/ +void testCaseProgress(int i, int n, int nDot, int *piDot){ + int iDot = *piDot; + while( iDot < ( ((nDot*2+1) * i) / (n*2) ) ){ + printf("."); + fflush(stdout); + iDot++; + } + *piDot = iDot; +} + +int testCaseNDot(void){ return 20; } + +#if 0 +static void printScanCb( + void *pCtx, void *pKey, int nKey, void *pVal, int nVal +){ + printf("%s\n", (char *)pKey); + fflush(stdout); +} +#endif + +static void doDataTest1( + const char *zSystem, /* Database system to test */ + Datatest1 *p, /* Structure containing test parameters */ + int *pRc /* OUT: Error code */ +){ + int i; + int iDot; + int rc = LSM_OK; + Datasource *pData; + TestDb *pDb; + + /* Start the test case, open a database and allocate the datasource. */ + pDb = testOpen(zSystem, 1, &rc); + pData = testDatasourceNew(&p->defn); + + i = 0; + iDot = 0; + while( rc==LSM_OK && inRow ){ + + /* Insert some data */ + testWriteDatasourceRange(pDb, pData, i, p->nVerify, &rc); + i += p->nVerify; + + /* Check that the db content is correct. */ + testDbContents(pDb, pData, p->nRow, 0, i-1, p->nTest, p->bTestScan, &rc); + + /* Close and reopen the database. */ + testReopen(&pDb, &rc); + + /* Check that the db content is still correct. */ + testDbContents(pDb, pData, p->nRow, 0, i-1, p->nTest, p->bTestScan, &rc); + + /* Update the progress dots... */ + testCaseProgress(i, p->nRow, testCaseNDot()/2, &iDot); + } + + i = 0; + iDot = 0; + while( rc==LSM_OK && inRow ){ + + /* Delete some entries */ + testDeleteDatasourceRange(pDb, pData, i, p->nVerify, &rc); + i += p->nVerify; + + /* Check that the db content is correct. */ + testDbContents(pDb, pData, p->nRow, i, p->nRow-1,p->nTest,p->bTestScan,&rc); + + /* Close and reopen the database. */ + testReopen(&pDb, &rc); + + /* Check that the db content is still correct. */ + testDbContents(pDb, pData, p->nRow, i, p->nRow-1,p->nTest,p->bTestScan,&rc); + + /* Update the progress dots... */ + testCaseProgress(i, p->nRow, testCaseNDot()/2, &iDot); + } + + /* Free the datasource, close the database and finish the test case. */ + testDatasourceFree(pData); + tdb_close(pDb); + testCaseFinish(rc); + *pRc = rc; +} + + +void test_data_1( + const char *zSystem, /* Database system name */ + const char *zPattern, /* Run test cases that match this pattern */ + int *pRc /* IN/OUT: Error code */ +){ + Datatest1 aTest[] = { + { {DATA_RANDOM, 500,600, 1000,2000}, 1000, 100, 10, 0}, + { {DATA_RANDOM, 20,25, 100,200}, 1000, 250, 1000, 1}, + { {DATA_RANDOM, 8,10, 100,200}, 1000, 250, 1000, 1}, + { {DATA_RANDOM, 8,10, 10,20}, 1000, 250, 1000, 1}, + { {DATA_RANDOM, 8,10, 1000,2000}, 1000, 250, 1000, 1}, + { {DATA_RANDOM, 8,100, 10000,20000}, 100, 25, 100, 1}, + { {DATA_RANDOM, 80,100, 10,20}, 1000, 250, 1000, 1}, + { {DATA_RANDOM, 5000,6000, 10,20}, 100, 25, 100, 1}, + { {DATA_SEQUENTIAL, 5,10, 10,20}, 1000, 250, 1000, 1}, + { {DATA_SEQUENTIAL, 5,10, 100,200}, 1000, 250, 1000, 1}, + { {DATA_SEQUENTIAL, 5,10, 1000,2000}, 1000, 250, 1000, 1}, + { {DATA_SEQUENTIAL, 5,100, 10000,20000}, 100, 25, 100, 1}, + { {DATA_RANDOM, 10,10, 100,100}, 100000, 1000, 100, 0}, + { {DATA_SEQUENTIAL, 10,10, 100,100}, 100000, 1000, 100, 0}, + }; + + int i; + + for(i=0; *pRc==LSM_OK && idefn); + rc = testControlDb(&pControl); + + if( tdb_lsm(pDb) ){ + int nBuf = 32 * 1024 * 1024; + lsm_config(tdb_lsm(pDb), LSM_CONFIG_AUTOFLUSH, &nBuf); + } + + for(i=0; rc==0 && inIter; i++){ + void *pKey1; int nKey1; + void *pKey2; int nKey2; + int ii; + int nRange = MIN(p->nIter*p->nWrite, p->nRange); + + for(ii=0; rc==0 && iinWrite; ii++){ + int iKey = (i*p->nWrite + ii) % p->nRange; + testWriteDatasource(pControl, pData, iKey, &rc); + testWriteDatasource(pDb, pData, iKey, &rc); + } + + testDatasourceEntry(pData, i+1000000, &pKey1, &nKey1, 0, 0); + pKey1 = testMallocCopy(pKey1, nKey1); + testDatasourceEntry(pData, i+2000000, &pKey2, &nKey2, 0, 0); + + testDeleteRange(pDb, pKey1, nKey1, pKey2, nKey2, &rc); + testDeleteRange(pControl, pKey1, nKey1, pKey2, nKey2, &rc); + testFree(pKey1); + + testCompareDb(pData, nRange, i, pControl, pDb, &rc); + testReopen(&pDb, &rc); + testCompareDb(pData, nRange, i, pControl, pDb, &rc); + + /* Update the progress dots... */ + testCaseProgress(i, p->nIter, testCaseNDot(), &iDot); + } + + testClose(&pDb); + testClose(&pControl); + testDatasourceFree(pData); + testCaseFinish(rc); + *pRc = rc; +} + +static char *getName2(const char *zSystem, Datatest2 *pTest){ + char *zRet; + char *zData; + zData = testDatasourceName(&pTest->defn); + zRet = testMallocPrintf("data2.%s.%s.%d.%d.%d", + zSystem, zData, pTest->nRange, pTest->nWrite, pTest->nIter + ); + testFree(zData); + return zRet; +} + +void test_data_2( + const char *zSystem, /* Database system name */ + const char *zPattern, /* Run test cases that match this pattern */ + int *pRc /* IN/OUT: Error code */ +){ + Datatest2 aTest[] = { + /* defn, nRange, nWrite, nIter */ + { {DATA_RANDOM, 20,25, 100,200}, 10000, 10, 50 }, + { {DATA_RANDOM, 20,25, 100,200}, 10000, 200, 50 }, + { {DATA_RANDOM, 20,25, 100,200}, 100, 10, 1000 }, + { {DATA_RANDOM, 20,25, 100,200}, 100, 200, 50 }, + }; + + int i; + + for(i=0; *pRc==LSM_OK && i> 24) & 0xFF; + aBuf[1] = (iVal >> 16) & 0xFF; + aBuf[2] = (iVal >> 8) & 0xFF; + aBuf[3] = (iVal >> 0) & 0xFF; +} + +void dt3PutKey(u8 *aBuf, int iKey){ + assert( iKey<100000 && iKey>=0 ); + sprintf((char *)aBuf, "%.5d", iKey); +} + +static void doDataTest3( + const char *zSystem, /* Database system to test */ + Datatest3 *p, /* Structure containing test parameters */ + int *pRc /* OUT: Error code */ +){ + int iDot = 0; + int rc = *pRc; + TestDb *pDb; + u8 *abPresent; /* Array of boolean */ + char *aVal; /* Buffer to hold values */ + int i; + u32 iSeq = 10; /* prng counter */ + + abPresent = (u8 *)testMalloc(p->nRange+1); + aVal = (char *)testMalloc(p->nValMax+1); + pDb = testOpen(zSystem, 1, &rc); + + for(i=0; inIter && rc==0; i++){ + int ii; + + testCaseProgress(i, p->nIter, testCaseNDot(), &iDot); + + /* Perform nWrite inserts */ + for(ii=0; iinWrite; ii++){ + u8 aKey[6]; + u32 iKey; + int nVal; + + iKey = (testPrngValue(iSeq++) % p->nRange) + 1; + nVal = (testPrngValue(iSeq++) % (p->nValMax - p->nValMin)) + p->nValMin; + testPrngString(testPrngValue(iSeq++), aVal, nVal); + dt3PutKey(aKey, iKey); + + testWrite(pDb, aKey, sizeof(aKey)-1, aVal, nVal, &rc); + abPresent[iKey] = 1; + } + + /* Perform nDelete deletes */ + for(ii=0; iinDelete; ii++){ + u8 aKey1[6]; + u8 aKey2[6]; + u32 iKey; + + iKey = (testPrngValue(iSeq++) % p->nRange) + 1; + dt3PutKey(aKey1, iKey-1); + dt3PutKey(aKey2, iKey+1); + + testDeleteRange(pDb, aKey1, sizeof(aKey1)-1, aKey2, sizeof(aKey2)-1, &rc); + abPresent[iKey] = 0; + } + + testReopen(&pDb, &rc); + + for(ii=1; rc==0 && ii<=p->nRange; ii++){ + int nDbVal; + void *pDbVal; + u8 aKey[6]; + int dbrc; + + dt3PutKey(aKey, ii); + dbrc = tdb_fetch(pDb, aKey, sizeof(aKey)-1, &pDbVal, &nDbVal); + testCompareInt(0, dbrc, &rc); + + if( abPresent[ii] ){ + testCompareInt(1, (nDbVal>0), &rc); + }else{ + testCompareInt(1, (nDbVal<0), &rc); + } + } + } + + testClose(&pDb); + testCaseFinish(rc); + *pRc = rc; +} + +static char *getName3(const char *zSystem, Datatest3 *p){ + return testMallocPrintf("data3.%s.%d.%d.%d.%d.(%d..%d)", + zSystem, p->nRange, p->nIter, p->nWrite, p->nDelete, + p->nValMin, p->nValMax + ); +} + +void test_data_3( + const char *zSystem, /* Database system name */ + const char *zPattern, /* Run test cases that match this pattern */ + int *pRc /* IN/OUT: Error code */ +){ + Datatest3 aTest[] = { + /* nRange, nIter, nWrite, nDelete, nValMin, nValMax */ + { 100, 1000, 5, 5, 50, 100 }, + { 100, 1000, 2, 2, 5, 10 }, + }; + + int i; + + for(i=0; *pRc==LSM_OK && inRow++; + for(i=0; icksum1 += ((u8 *)pKey)[i]; + p->cksum2 += p->cksum1; + } + for(i=0; icksum1 += ((u8 *)pVal)[i]; + p->cksum2 += p->cksum1; + } +} + +/* +** tdb_scan() callback used by testCountDatabase() +*/ +static void scanCountDb( + void *pCtx, + void *pKey, int nKey, + void *pVal, int nVal +){ + Cksum *p = (Cksum *)pCtx; + p->nRow++; + + unused_parameter(pKey); + unused_parameter(nKey); + unused_parameter(pVal); + unused_parameter(nVal); +} + + +/* +** Iterate through the entire contents of database pDb. Write a checksum +** string based on the db contents into buffer zOut before returning. A +** checksum string is at most 29 (TEST_CKSUM_BYTES) bytes in size: +** +** * 32-bit integer (10 bytes) +** * 1 space (1 byte) +** * 32-bit hex (8 bytes) +** * 1 space (1 byte) +** * 32-bit hex (8 bytes) +** * nul-terminator (1 byte) +** +** The number of entries in the database is returned. +*/ +int testCksumDatabase( + TestDb *pDb, /* Database handle */ + char *zOut /* Buffer to write checksum to */ +){ + Cksum cksum; + memset(&cksum, 0, sizeof(Cksum)); + tdb_scan(pDb, (void *)&cksum, 0, 0, 0, 0, 0, scanCksumDb); + sprintf(zOut, "%d %x %x", + cksum.nRow, (u32)cksum.cksum1, (u32)cksum.cksum2 + ); + assert( strlen(zOut)0 ); */ + if( testrc==0 ) testrc = lsm_checkpoint(db, 0); + } + tdb_close(pDb); + + /* Check that the database content is still correct */ + testCompareCksumLsmdb(DBNAME, + bCompress, testCksumArrayGet(pCksumDb, nRow), 0, pRc); + } + + testCksumArrayFree(pCksumDb); + testDatasourceFree(pData); +} + +/* +** This test verifies that if a system crash occurs while committing a +** transaction to the log file, no earlier transactions are lost or damaged. +*/ +static void crash_test2(int bCompress, int *pRc){ + const char *DBNAME = "testdb.lsm"; + const DatasourceDefn defn = {TEST_DATASOURCE_RANDOM, 12, 16, 1000, 1000}; + + const int nIter = 200; + const int nInsert = 20; + + int i; + int iDot = 0; + Datasource *pData; + CksumDb *pCksumDb; + TestDb *pDb; + + /* Allocate datasource. And calculate the expected checksums. */ + pData = testDatasourceNew(&defn); + pCksumDb = testCksumArrayNew(pData, 100, 100+nInsert, 1); + + /* Setup and save the initial database. */ + testSetupSavedLsmdb("", DBNAME, pData, 100, pRc); + + for(i=0; izTest) ){ + p->x(p->bCompress, pRc); + testCaseFinish(*pRc); + } + } +} + ADDED ext/lsm1/lsm-test/lsmtest3.c Index: ext/lsm1/lsm-test/lsmtest3.c ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest3.c @@ -0,0 +1,238 @@ + + +/* +** This file contains tests related to the explicit rollback of database +** transactions and sub-transactions. +*/ + + +/* +** Repeat 2000 times (until the db contains 100,000 entries): +** +** 1. Open a transaction and insert 500 rows, opening a nested +** sub-transaction each 100 rows. +** +** 2. Roll back to each sub-transaction savepoint. Check the database +** checksum looks Ok. +** +** 3. Every second iteration, roll back the main transaction. Check the +** db checksum is correct. Every other iteration, commit the main +** transaction (increasing the size of the db by 100 rows). +*/ + + +#include "lsmtest.h" + +struct CksumDb { + int nFirst; + int nLast; + int nStep; + char **azCksum; +}; + +CksumDb *testCksumArrayNew( + Datasource *pData, + int nFirst, + int nLast, + int nStep +){ + TestDb *pDb; + CksumDb *pRet; + int i; + int nEntry; + int rc = 0; + + assert( nLast>=nFirst && ((nLast-nFirst)%nStep)==0 ); + + pRet = malloc(sizeof(CksumDb)); + memset(pRet, 0, sizeof(CksumDb)); + pRet->nFirst = nFirst; + pRet->nLast = nLast; + pRet->nStep = nStep; + nEntry = 1 + ((nLast - nFirst) / nStep); + + /* Allocate space so that azCksum is an array of nEntry pointers to + ** buffers each TEST_CKSUM_BYTES in size. */ + pRet->azCksum = (char **)malloc(nEntry * (sizeof(char *) + TEST_CKSUM_BYTES)); + for(i=0; iazCksum[nEntry]); + pRet->azCksum[i] = &pStart[i * TEST_CKSUM_BYTES]; + } + + tdb_open("lsm", "tempdb.lsm", 1, &pDb); + testWriteDatasourceRange(pDb, pData, 0, nFirst, &rc); + for(i=0; iazCksum[i]); + if( i==nEntry ) break; + testWriteDatasourceRange(pDb, pData, nFirst+i*nStep, nStep, &rc); + } + + tdb_close(pDb); + + return pRet; +} + +char *testCksumArrayGet(CksumDb *p, int nRow){ + int i; + assert( nRow>=p->nFirst ); + assert( nRow<=p->nLast ); + assert( ((nRow-p->nFirst) % p->nStep)==0 ); + + i = (nRow - p->nFirst) / p->nStep; + return p->azCksum[i]; +} + +void testCksumArrayFree(CksumDb *p){ + free(p->azCksum); + memset(p, 0x55, sizeof(*p)); + free(p); +} + +/* End of CksumDb code. +**************************************************************************/ + +/* +** Test utility function. Write key-value pair $i from datasource pData +** into database pDb. +*/ +void testWriteDatasource(TestDb *pDb, Datasource *pData, int i, int *pRc){ + void *pKey; int nKey; + void *pVal; int nVal; + testDatasourceEntry(pData, i, &pKey, &nKey, &pVal, &nVal); + testWrite(pDb, pKey, nKey, pVal, nVal, pRc); +} + +/* +** Test utility function. Delete datasource pData key $i from database pDb. +*/ +void testDeleteDatasource(TestDb *pDb, Datasource *pData, int i, int *pRc){ + void *pKey; int nKey; + testDatasourceEntry(pData, i, &pKey, &nKey, 0, 0); + testDelete(pDb, pKey, nKey, pRc); +} + +/* +** This function inserts nWrite key/value pairs into database pDb - the +** nWrite key value pairs starting at iFirst from data source pData. +*/ +void testWriteDatasourceRange( + TestDb *pDb, /* Database to write to */ + Datasource *pData, /* Data source to read values from */ + int iFirst, /* Index of first key/value pair */ + int nWrite, /* Number of key/value pairs to write */ + int *pRc /* IN/OUT: Error code */ +){ + int i; + for(i=0; i2 && rc==0; iTrans--){ + tdb_rollback(pDb, iTrans); + nCurrent -= 100; + testCksumDatabase(pDb, zCksum); + testCompareStr(zCksum, testCksumArrayGet(pCksum, nCurrent), &rc); + } + + if( i%2 ){ + tdb_rollback(pDb, 0); + nCurrent -= 100; + testCksumDatabase(pDb, zCksum); + testCompareStr(zCksum, testCksumArrayGet(pCksum, nCurrent), &rc); + }else{ + tdb_commit(pDb, 0); + } + } + testCaseFinish(rc); + + skip_rollback_test: + tdb_close(pDb); + testCksumArrayFree(pCksum); + return rc; +} + +void test_rollback( + const char *zSystem, + const char *zPattern, + int *pRc +){ + if( *pRc==0 ){ + int bRun = 1; + + if( zPattern ){ + char *zName = getName(zSystem); + bRun = testGlobMatch(zPattern, zName); + testFree(zName); + } + + if( bRun ){ + DatasourceDefn defn = { TEST_DATASOURCE_RANDOM, 10, 15, 50, 100 }; + Datasource *pData = testDatasourceNew(&defn); + *pRc = rollback_test_1(zSystem, pData); + testDatasourceFree(pData); + } + } +} ADDED ext/lsm1/lsm-test/lsmtest4.c Index: ext/lsm1/lsm-test/lsmtest4.c ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest4.c @@ -0,0 +1,127 @@ + +/* +** This file contains test cases involving multiple database clients. +*/ + +#include "lsmtest.h" + +/* +** The following code implements test cases "mc1.*". +** +** This test case uses one writer and $nReader readers. All connections +** are driven by a single thread. All connections are opened at the start +** of the test and remain open until the test is finished. +** +** The test consists of $nStep steps. Each step the following is performed: +** +** 1. The writer inserts $nWriteStep records into the db. +** +** 2. The writer checks that the contents of the db are as expected. +** +** 3. Each reader that currently has an open read transaction also checks +** that the contents of the db are as expected (according to the snapshot +** the read transaction is reading - see below). +** +** After step 1, reader 1 opens a read transaction. After step 2, reader +** 2 opens a read transaction, and so on. At step ($nReader+1), reader 1 +** closes the current read transaction and opens a new one. And so on. +** The result is that at step N (for N > $nReader), there exists a reader +** with an open read transaction reading the snapshot committed following +** steps (N-$nReader-1) to N. +*/ +typedef struct Mctest Mctest; +struct Mctest { + DatasourceDefn defn; /* Datasource to use */ + int nStep; /* Total number of steps in test */ + int nWriteStep; /* Number of rows to insert each step */ + int nReader; /* Number of read connections */ +}; +static void do_mc_test( + const char *zSystem, /* Database system to test */ + Mctest *pTest, + int *pRc /* IN/OUT: return code */ +){ + const int nDomain = pTest->nStep * pTest->nWriteStep; + Datasource *pData; /* Source of data */ + TestDb *pDb; /* First database connection (writer) */ + int iReader; /* Used to iterate through aReader */ + int iStep; /* Current step in test */ + int iDot = 0; /* Current step in test */ + + /* Array of reader connections */ + struct Reader { + TestDb *pDb; /* Connection handle */ + int iLast; /* Current snapshot contains keys 0..iLast */ + } *aReader; + + /* Create a data source */ + pData = testDatasourceNew(&pTest->defn); + + /* Open the writer connection */ + pDb = testOpen(zSystem, 1, pRc); + + /* Allocate aReader */ + aReader = (struct Reader *)testMalloc(sizeof(aReader[0]) * pTest->nReader); + for(iReader=0; iReadernReader; iReader++){ + aReader[iReader].pDb = testOpen(zSystem, 0, pRc); + } + + for(iStep=0; iStepnStep; iStep++){ + int iLast; + int iBegin; /* Start read trans using aReader[iBegin] */ + + /* Insert nWriteStep more records into the database */ + int iFirst = iStep*pTest->nWriteStep; + testWriteDatasourceRange(pDb, pData, iFirst, pTest->nWriteStep, pRc); + + /* Check that the db is Ok according to the writer */ + iLast = (iStep+1) * pTest->nWriteStep - 1; + testDbContents(pDb, pData, nDomain, 0, iLast, iLast, 1, pRc); + + /* Have reader (iStep % nReader) open a read transaction here. */ + iBegin = (iStep % pTest->nReader); + if( iBeginnReader && aReader[iReader].iLast; iReader++){ + iLast = aReader[iReader].iLast; + testDbContents( + aReader[iReader].pDb, pData, nDomain, 0, iLast, iLast, 1, pRc + ); + } + + /* Report progress */ + testCaseProgress(iStep, pTest->nStep, testCaseNDot(), &iDot); + } + + /* Close all readers */ + for(iReader=0; iReadernReader; iReader++){ + testClose(&aReader[iReader].pDb); + } + testFree(aReader); + + /* Close the writer-connection and free the datasource */ + testClose(&pDb); + testDatasourceFree(pData); +} + + +void test_mc( + const char *zSystem, /* Database system name */ + const char *zPattern, /* Run test cases that match this pattern */ + int *pRc /* IN/OUT: Error code */ +){ + int i; + Mctest aTest[] = { + { { TEST_DATASOURCE_RANDOM, 10,10, 100,100 }, 100, 10, 5 }, + }; + + for(i=0; i "k.0000000045". +** +** As well as the key/value pairs, the database also contains checksum +** entries. The checksums form a hierarchy - for every F key/value +** entries there is one level 1 checksum. And for each F level 1 checksums +** there is one level 2 checksum. And so on. +** +** Checksum keys are encoded as the two byte "c." followed by the +** checksum level, followed by a 10 digit decimal number containing +** the value of the first key that contributes to the checksum value. +** For example, assuming F==10, the level 1 checksum that spans keys +** 10 to 19 is "c.1.0000000010". +** +** Clients may perform one of two operations on the database: a read +** or a write. +** +** READ OPERATIONS: +** +** A read operation scans a range of F key/value pairs. It computes +** the expected checksum and then compares the computed value to the +** actual value stored in the level 1 checksum entry. It then scans +** the group of F level 1 checksums, and compares the computed checksum +** to the associated level 2 checksum value, and so on until the +** highest level checksum value has been verified. +** +** If a checksum ever fails to match the expected value, the test +** has failed. +** +** WRITE OPERATIONS: +** +** A write operation involves writing (possibly clobbering) a single +** key/value pair. The associated level 1 checksum is then recalculated +** updated. Then the level 2 checksum, and so on until the highest +** level checksum has been modified. +** +** All updates occur inside a single transaction. +** +** INTERFACE: +** +** The interface used by test cases to read and write the db consists +** of type DbParameters and the following functions: +** +** dbReadOperation() +** dbWriteOperation() +*/ + +#include "lsmtest.h" + +typedef struct DbParameters DbParameters; +struct DbParameters { + int nFanout; /* Checksum fanout (F) */ + int nKey; /* Size of key space (N) */ +}; + +#define DB_KEY_BYTES (2+5+10+1) + +/* +** Argument aBuf[] must point to a buffer at least DB_KEY_BYTES in size. +** This function populates the buffer with a nul-terminated key string +** corresponding to key iKey. +*/ +static void dbFormatKey( + DbParameters *pParam, + int iLevel, + int iKey, /* Key value */ + char *aBuf /* Write key string here */ +){ + if( iLevel==0 ){ + snprintf(aBuf, DB_KEY_BYTES, "k.%.10d", iKey); + }else{ + int f = 1; + int i; + for(i=0; inFanout; + snprintf(aBuf, DB_KEY_BYTES, "c.%d.%.10d", iLevel, f*(iKey/f)); + } +} + +/* +** Argument aBuf[] must point to a buffer at least DB_KEY_BYTES in size. +** This function populates the buffer with the string representation of +** checksum value iVal. +*/ +static void dbFormatCksumValue(u32 iVal, char *aBuf){ + snprintf(aBuf, DB_KEY_BYTES, "%.10u", iVal); +} + +/* +** Return the highest level of checksum in the database described +** by *pParam. +*/ +static int dbMaxLevel(DbParameters *pParam){ + int iMax; + int n = 1; + for(iMax=0; nnKey; iMax++){ + n = n * pParam->nFanout; + } + return iMax; +} + +static void dbCksum( + void *pCtx, /* IN/OUT: Pointer to u32 containing cksum */ + void *pKey, int nKey, /* Database key. Unused. */ + void *pVal, int nVal /* Database value. Checksum this. */ +){ + u8 *aVal = (u8 *)pVal; + u32 *pCksum = (u32 *)pCtx; + u32 cksum = *pCksum; + int i; + + unused_parameter(pKey); + unused_parameter(nKey); + + for(i=0; inFanout entries at level +** iLevel-1. +*/ +static u32 dbComputeCksum( + DbParameters *pParam, /* Database parameters */ + TestDb *pDb, /* Database connection handle */ + int iLevel, /* Level of checksum to compute */ + int iKey, /* Compute checksum for this key */ + int *pRc /* IN/OUT: Error code */ +){ + u32 cksum = 0; + if( *pRc==0 ){ + int nFirst; + int nLast; + int iFirst = 0; + int iLast = 0; + int i; + int f = 1; + char zFirst[DB_KEY_BYTES]; + char zLast[DB_KEY_BYTES]; + + assert( iLevel>=1 ); + for(i=0; inFanout; + + iFirst = f*(iKey/f); + iLast = iFirst + f - 1; + dbFormatKey(pParam, iLevel-1, iFirst, zFirst); + dbFormatKey(pParam, iLevel-1, iLast, zLast); + nFirst = strlen(zFirst); + nLast = strlen(zLast); + + *pRc = tdb_scan(pDb, (u32*)&cksum, 0, zFirst, nFirst, zLast, nLast,dbCksum); + } + + return cksum; +} + +static void dbReadOperation( + DbParameters *pParam, /* Database parameters */ + TestDb *pDb, /* Database connection handle */ + void (*xDelay)(void *), + void *pDelayCtx, + int iKey, /* Key to read */ + int *pRc /* IN/OUT: Error code */ +){ + const int iMax = dbMaxLevel(pParam); + int i; + + if( tdb_transaction_support(pDb) ) testBegin(pDb, 1, pRc); + for(i=1; *pRc==0 && i<=iMax; i++){ + char zCksum[DB_KEY_BYTES]; + char zKey[DB_KEY_BYTES]; + u32 iCksum = 0; + + iCksum = dbComputeCksum(pParam, pDb, i, iKey, pRc); + if( iCksum ){ + if( xDelay && i==1 ) xDelay(pDelayCtx); + dbFormatCksumValue(iCksum, zCksum); + dbFormatKey(pParam, i, iKey, zKey); + testFetchStr(pDb, zKey, zCksum, pRc); + } + } + if( tdb_transaction_support(pDb) ) testCommit(pDb, 0, pRc); +} + +static int dbWriteOperation( + DbParameters *pParam, /* Database parameters */ + TestDb *pDb, /* Database connection handle */ + int iKey, /* Key to write to */ + const char *zValue, /* Nul-terminated value to write */ + int *pRc /* IN/OUT: Error code */ +){ + const int iMax = dbMaxLevel(pParam); + char zKey[DB_KEY_BYTES]; + int i; + int rc; + + assert( iKey>=0 && iKeynKey ); + dbFormatKey(pParam, 0, iKey, zKey); + + /* Open a write transaction. This may fail - SQLITE4_BUSY */ + if( *pRc==0 && tdb_transaction_support(pDb) ){ + rc = tdb_begin(pDb, 2); + if( rc==5 ) return 0; + *pRc = rc; + } + + testWriteStr(pDb, zKey, zValue, pRc); + for(i=1; i<=iMax; i++){ + char zCksum[DB_KEY_BYTES]; + u32 iCksum = 0; + + iCksum = dbComputeCksum(pParam, pDb, i, iKey, pRc); + dbFormatCksumValue(iCksum, zCksum); + dbFormatKey(pParam, i, iKey, zKey); + testWriteStr(pDb, zKey, zCksum, pRc); + } + if( tdb_transaction_support(pDb) ) testCommit(pDb, 0, pRc); + return 1; +} + +/************************************************************************* +** The following block contains testXXX() functions that implement a +** wrapper around the systems native multi-thread support. There are no +** synchronization primitives - just functions to launch and join +** threads. Wrapper functions are: +** +** testThreadSupport() +** +** testThreadInit() +** testThreadShutdown() +** testThreadLaunch() +** testThreadWait() +** +** testThreadSetHalt() +** testThreadGetHalt() +** testThreadSetResult() +** testThreadGetResult() +** +** testThreadEnterMutex() +** testThreadLeaveMutex() +*/ +typedef struct ThreadSet ThreadSet; +#ifdef LSM_MUTEX_PTHREADS + +#include +#include + +typedef struct Thread Thread; +struct Thread { + int rc; + char *zMsg; + pthread_t id; + void (*xMain)(ThreadSet *, int, void *); + void *pCtx; + ThreadSet *pThreadSet; +}; + +struct ThreadSet { + int bHalt; /* Halt flag */ + int nThread; /* Number of threads */ + Thread *aThread; /* Array of Thread structures */ + pthread_mutex_t mutex; /* Mutex used for cheating */ +}; + +/* +** Return true if this build supports threads, or false otherwise. If +** this function returns false, no other testThreadXXX() functions should +** be called. +*/ +static int testThreadSupport(){ return 1; } + +/* +** Allocate and return a thread-set handle with enough space allocated +** to handle up to nMax threads. Each call to this function should be +** matched by a call to testThreadShutdown() to delete the object. +*/ +static ThreadSet *testThreadInit(int nMax){ + int nByte; /* Total space to allocate */ + ThreadSet *p; /* Return value */ + + nByte = sizeof(ThreadSet) + sizeof(struct Thread) * nMax; + p = (ThreadSet *)testMalloc(nByte); + p->nThread = nMax; + p->aThread = (Thread *)&p[1]; + pthread_mutex_init(&p->mutex, 0); + + return p; +} + +/* +** Delete a thread-set object and release all resources held by it. +*/ +static void testThreadShutdown(ThreadSet *p){ + int i; + for(i=0; inThread; i++){ + testFree(p->aThread[i].zMsg); + } + pthread_mutex_destroy(&p->mutex); + testFree(p); +} + +static void *ttMain(void *pArg){ + Thread *pThread = (Thread *)pArg; + int iThread; + iThread = (pThread - pThread->pThreadSet->aThread); + pThread->xMain(pThread->pThreadSet, iThread, pThread->pCtx); + return 0; +} + +/* +** Launch a new thread. +*/ +static int testThreadLaunch( + ThreadSet *p, + int iThread, + void (*xMain)(ThreadSet *, int, void *), + void *pCtx +){ + int rc; + Thread *pThread; + + assert( iThread>=0 && iThreadnThread ); + + pThread = &p->aThread[iThread]; + assert( pThread->pThreadSet==0 ); + pThread->xMain = xMain; + pThread->pCtx = pCtx; + pThread->pThreadSet = p; + rc = pthread_create(&pThread->id, 0, ttMain, (void *)pThread); + + return rc; +} + +/* +** Set the thread-set "halt" flag. +*/ +static void testThreadSetHalt(ThreadSet *pThreadSet){ + pThreadSet->bHalt = 1; +} + +/* +** Return the current value of the thread-set "halt" flag. +*/ +static int testThreadGetHalt(ThreadSet *pThreadSet){ + return pThreadSet->bHalt; +} + +static void testThreadSleep(ThreadSet *pThreadSet, int nMs){ + int nRem = nMs; + while( nRem>0 && testThreadGetHalt(pThreadSet)==0 ){ + usleep(50000); + nRem -= 50; + } +} + +/* +** Wait for all threads launched to finish before returning. If nMs +** is greater than zero, set the "halt" flag to tell all threads +** to halt after waiting nMs milliseconds. +*/ +static void testThreadWait(ThreadSet *pThreadSet, int nMs){ + int i; + + testThreadSleep(pThreadSet, nMs); + testThreadSetHalt(pThreadSet); + for(i=0; inThread; i++){ + Thread *pThread = &pThreadSet->aThread[i]; + if( pThread->xMain ){ + pthread_join(pThread->id, 0); + } + } +} + +/* +** Set the result for thread iThread. +*/ +static void testThreadSetResult( + ThreadSet *pThreadSet, /* Thread-set handle */ + int iThread, /* Set result for this thread */ + int rc, /* Result error code */ + char *zFmt, /* Result string format */ + ... /* Result string formatting args... */ +){ + va_list ap; + + testFree(pThreadSet->aThread[iThread].zMsg); + pThreadSet->aThread[iThread].rc = rc; + pThreadSet->aThread[iThread].zMsg = 0; + if( zFmt ){ + va_start(ap, zFmt); + pThreadSet->aThread[iThread].zMsg = testMallocVPrintf(zFmt, ap); + va_end(ap); + } +} + +/* +** Retrieve the result for thread iThread. +*/ +static int testThreadGetResult( + ThreadSet *pThreadSet, /* Thread-set handle */ + int iThread, /* Get result for this thread */ + const char **pzRes /* OUT: Pointer to result string */ +){ + if( pzRes ) *pzRes = pThreadSet->aThread[iThread].zMsg; + return pThreadSet->aThread[iThread].rc; +} + +/* +** Enter and leave the test case mutex. +*/ +#if 0 +static void testThreadEnterMutex(ThreadSet *p){ + pthread_mutex_lock(&p->mutex); +} +static void testThreadLeaveMutex(ThreadSet *p){ + pthread_mutex_unlock(&p->mutex); +} +#endif +#endif + +#if !defined(LSM_MUTEX_PTHREADS) +static int testThreadSupport(){ return 0; } + +#define testThreadInit(a) 0 +#define testThreadShutdown(a) +#define testThreadLaunch(a,b,c,d) 0 +#define testThreadWait(a,b) +#define testThreadSetHalt(a) +#define testThreadGetHalt(a) 0 +#define testThreadGetResult(a,b,c) 0 +#define testThreadSleep(a,b) 0 + +static void testThreadSetResult(ThreadSet *a, int b, int c, char *d, ...){ + unused_parameter(a); + unused_parameter(b); + unused_parameter(c); + unused_parameter(d); +} +#endif +/* End of threads wrapper. +*************************************************************************/ + +/************************************************************************* +** Below this point is the third part of this file - the implementation +** of the mt1.* tests. +*/ +typedef struct Mt1Test Mt1Test; +struct Mt1Test { + DbParameters param; /* Description of database to read/write */ + int nReadwrite; /* Number of read/write threads */ + int nFastReader; /* Number of fast reader threads */ + int nSlowReader; /* Number of slow reader threads */ + int nMs; /* How long to run for */ + const char *zSystem; /* Database system to test */ +}; + +typedef struct Mt1DelayCtx Mt1DelayCtx; +struct Mt1DelayCtx { + ThreadSet *pSet; /* Threadset to sleep within */ + int nMs; /* Sleep in ms */ +}; + +static void xMt1Delay(void *pCtx){ + Mt1DelayCtx *p = (Mt1DelayCtx *)pCtx; + testThreadSleep(p->pSet, p->nMs); +} + +#define MT1_THREAD_RDWR 0 +#define MT1_THREAD_SLOW 1 +#define MT1_THREAD_FAST 2 + +static void xMt1Work(lsm_db *pDb, void *pCtx){ +#if 0 + char *z = 0; + lsm_info(pDb, LSM_INFO_DB_STRUCTURE, &z); + printf("%s\n", z); + fflush(stdout); +#endif +} + +/* +** This is the main() proc for all threads in test case "mt1". +*/ +static void mt1Main(ThreadSet *pThreadSet, int iThread, void *pCtx){ + Mt1Test *p = (Mt1Test *)pCtx; /* Test parameters */ + Mt1DelayCtx delay; + int nRead = 0; /* Number of calls to dbReadOperation() */ + int nWrite = 0; /* Number of completed database writes */ + int rc = 0; /* Error code */ + int iPrng; /* Prng argument variable */ + TestDb *pDb; /* Database handle */ + int eType; + + delay.pSet = pThreadSet; + delay.nMs = 0; + if( iThreadnReadwrite ){ + eType = MT1_THREAD_RDWR; + }else if( iThread<(p->nReadwrite+p->nFastReader) ){ + eType = MT1_THREAD_FAST; + }else{ + eType = MT1_THREAD_SLOW; + delay.nMs = (p->nMs / 20); + } + + /* Open a new database connection. Initialize the pseudo-random number + ** argument based on the thread number. */ + iPrng = testPrngValue(iThread); + pDb = testOpen(p->zSystem, 0, &rc); + + if( rc==0 ){ + tdb_lsm_config_work_hook(pDb, xMt1Work, 0); + } + + /* Loop until either an error occurs or some other thread sets the + ** halt flag. */ + while( rc==0 && testThreadGetHalt(pThreadSet)==0 ){ + int iKey; + + /* Perform a read operation on an arbitrarily selected key. */ + iKey = (testPrngValue(iPrng++) % p->param.nKey); + dbReadOperation(&p->param, pDb, xMt1Delay, (void *)&delay, iKey, &rc); + if( rc ) continue; + nRead++; + + /* Attempt to write an arbitrary key value pair (and update the associated + ** checksum entries). dbWriteOperation() returns 1 if the write is + ** successful, or 0 if it failed with an LSM_BUSY error. */ + if( eType==MT1_THREAD_RDWR ){ + char aValue[50]; + char aRnd[25]; + + iKey = (testPrngValue(iPrng++) % p->param.nKey); + testPrngString(iPrng, aRnd, sizeof(aRnd)); + iPrng += sizeof(aRnd); + snprintf(aValue, sizeof(aValue), "%d.%s", iThread, aRnd); + nWrite += dbWriteOperation(&p->param, pDb, iKey, aValue, &rc); + } + } + testClose(&pDb); + + /* If an error has occured, set the thread error code and the threadset + ** halt flag to tell the other test threads to halt. Otherwise, set the + ** thread error code to 0 and post a message with the number of read + ** and write operations completed. */ + if( rc ){ + testThreadSetResult(pThreadSet, iThread, rc, 0); + testThreadSetHalt(pThreadSet); + }else{ + testThreadSetResult(pThreadSet, iThread, 0, "r/w: %d/%d", nRead, nWrite); + } +} + +static void do_test_mt1( + const char *zSystem, /* Database system name */ + const char *zPattern, /* Run test cases that match this pattern */ + int *pRc /* IN/OUT: Error code */ +){ + Mt1Test aTest[] = { + /* param, nReadwrite, nFastReader, nSlowReader, nMs, zSystem */ + { {10, 1000}, 4, 0, 0, 10000, 0 }, + { {10, 1000}, 4, 4, 2, 100000, 0 }, + { {10, 100000}, 4, 0, 0, 10000, 0 }, + { {10, 100000}, 4, 4, 2, 100000, 0 }, + }; + int i; + + for(i=0; *pRc==0 && iparam.nFanout, p->param.nKey, + p->nMs, p->nReadwrite, p->nFastReader, p->nSlowReader + ); + if( bRun ){ + TestDb *pDb; + ThreadSet *pSet; + int iThread; + int nThread; + + p->zSystem = zSystem; + pDb = testOpen(zSystem, 1, pRc); + + nThread = p->nReadwrite + p->nFastReader + p->nSlowReader; + pSet = testThreadInit(nThread); + for(iThread=0; *pRc==0 && iThreadnMs); + for(iThread=0; *pRc==0 && iThreadiNext = 1; + p->bEnable = 1; + p->nFail = 1; + p->pEnv = tdb_lsm_env(); +} + +static void xOomHook(OomTest *p){ + p->nFail++; +} + +static int testOomContinue(OomTest *p){ + if( p->rc!=0 || (p->iNext>1 && p->nFail==0) ){ + return 0; + } + p->nFail = 0; + testMallocOom(p->pEnv, p->iNext, 0, (void (*)(void*))xOomHook, (void *)p); + return 1; +} + +static void testOomEnable(OomTest *p, int bEnable){ + p->bEnable = bEnable; + testMallocOomEnable(p->pEnv, bEnable); +} + +static void testOomNext(OomTest *p){ + p->iNext++; +} + +static int testOomHit(OomTest *p){ + return (p->nFail>0); +} + +static int testOomFinish(OomTest *p){ + return p->rc; +} + +static void testOomAssert(OomTest *p, int bVal){ + if( bVal==0 ){ + test_failed(); + p->rc = 1; + } +} + +/* +** Test that the error code matches the state of the OomTest object passed +** as the first argument. Specifically, check that rc is LSM_NOMEM if an +** OOM error has already been injected, or LSM_OK if not. +*/ +static void testOomAssertRc(OomTest *p, int rc){ + testOomAssert(p, rc==LSM_OK || rc==LSM_NOMEM); + testOomAssert(p, testOomHit(p)==(rc==LSM_NOMEM) || p->bEnable==0 ); +} + +static void testOomOpen( + OomTest *pOom, + const char *zName, + lsm_db **ppDb, + int *pRc +){ + if( *pRc==LSM_OK ){ + int rc; + rc = lsm_new(tdb_lsm_env(), ppDb); + if( rc==LSM_OK ) rc = lsm_open(*ppDb, zName); + testOomAssertRc(pOom, rc); + *pRc = rc; + } +} + +static void testOomFetch( + OomTest *pOom, + lsm_db *pDb, + void *pKey, int nKey, + void *pVal, int nVal, + int *pRc +){ + testOomAssertRc(pOom, *pRc); + if( *pRc==LSM_OK ){ + lsm_cursor *pCsr; + int rc; + + rc = lsm_csr_open(pDb, &pCsr); + if( rc==LSM_OK ) rc = lsm_csr_seek(pCsr, pKey, nKey, 0); + testOomAssertRc(pOom, rc); + + if( rc==LSM_OK ){ + const void *p; int n; + testOomAssert(pOom, lsm_csr_valid(pCsr)); + + rc = lsm_csr_key(pCsr, &p, &n); + testOomAssertRc(pOom, rc); + testOomAssert(pOom, rc!=LSM_OK || (n==nKey && memcmp(pKey, p, nKey)==0) ); + } + + if( rc==LSM_OK ){ + const void *p; int n; + testOomAssert(pOom, lsm_csr_valid(pCsr)); + + rc = lsm_csr_value(pCsr, &p, &n); + testOomAssertRc(pOom, rc); + testOomAssert(pOom, rc!=LSM_OK || (n==nVal && memcmp(pVal, p, nVal)==0) ); + } + + lsm_csr_close(pCsr); + *pRc = rc; + } +} + +static void testOomWrite( + OomTest *pOom, + lsm_db *pDb, + void *pKey, int nKey, + void *pVal, int nVal, + int *pRc +){ + testOomAssertRc(pOom, *pRc); + if( *pRc==LSM_OK ){ + int rc; + + rc = lsm_insert(pDb, pKey, nKey, pVal, nVal); + testOomAssertRc(pOom, rc); + + *pRc = rc; + } +} + + +static void testOomFetchStr( + OomTest *pOom, + lsm_db *pDb, + const char *zKey, + const char *zVal, + int *pRc +){ + int nKey = strlen(zKey); + int nVal = strlen(zVal); + testOomFetch(pOom, pDb, (void *)zKey, nKey, (void *)zVal, nVal, pRc); +} + +static void testOomFetchData( + OomTest *pOom, + lsm_db *pDb, + Datasource *pData, + int iKey, + int *pRc +){ + void *pKey; int nKey; + void *pVal; int nVal; + testDatasourceEntry(pData, iKey, &pKey, &nKey, &pVal, &nVal); + testOomFetch(pOom, pDb, pKey, nKey, pVal, nVal, pRc); +} + +static void testOomWriteStr( + OomTest *pOom, + lsm_db *pDb, + const char *zKey, + const char *zVal, + int *pRc +){ + int nKey = strlen(zKey); + int nVal = strlen(zVal); + testOomWrite(pOom, pDb, (void *)zKey, nKey, (void *)zVal, nVal, pRc); +} + +static void testOomWriteData( + OomTest *pOom, + lsm_db *pDb, + Datasource *pData, + int iKey, + int *pRc +){ + void *pKey; int nKey; + void *pVal; int nVal; + testDatasourceEntry(pData, iKey, &pKey, &nKey, &pVal, &nVal); + testOomWrite(pOom, pDb, pKey, nKey, pVal, nVal, pRc); +} + +static void testOomScan( + OomTest *pOom, + lsm_db *pDb, + int bReverse, + const void *pKey, int nKey, + int nScan, + int *pRc +){ + if( *pRc==0 ){ + int rc; + int iScan = 0; + lsm_cursor *pCsr; + int (*xAdvance)(lsm_cursor *); + + + rc = lsm_csr_open(pDb, &pCsr); + testOomAssertRc(pOom, rc); + + if( rc==LSM_OK ){ + if( bReverse ){ + rc = lsm_csr_seek(pCsr, pKey, nKey, LSM_SEEK_LE); + xAdvance = lsm_csr_prev; + }else{ + rc = lsm_csr_seek(pCsr, pKey, nKey, LSM_SEEK_GE); + xAdvance = lsm_csr_next; + } + } + testOomAssertRc(pOom, rc); + + while( rc==LSM_OK && lsm_csr_valid(pCsr) && iScan +#endif +#include +#include +#include + +void testDeleteLsmdb(const char *zFile){ + char *zLog = testMallocPrintf("%s-log", zFile); + char *zShm = testMallocPrintf("%s-shm", zFile); + unlink(zFile); + unlink(zLog); + unlink(zShm); + testFree(zLog); + testFree(zShm); +} + +static void copy_file(const char *zFrom, const char *zTo){ + + if( access(zFrom, F_OK) ){ + unlink(zTo); + }else{ + int fd1; + int fd2; + off_t sz; + off_t i; + struct stat buf; + u8 *aBuf; + + fd1 = open(zFrom, O_RDONLY, 0644); + fd2 = open(zTo, O_RDWR | O_CREAT, 0644); + + fstat(fd1, &buf); + sz = buf.st_size; + ftruncate(fd2, sz); + + aBuf = testMalloc(4096); + for(i=0; i "one" +** "two" -> "four" +** "three" -> "nine" +** "four" -> "sixteen" +** "five" -> "twentyfive" +** "six" -> "thirtysix" +** "seven" -> "fourtynine" +** "eight" -> "sixtyfour" +*/ +static void setup_populate_db(){ + const char *azStr[] = { + "one", "one", + "two", "four", + "three", "nine", + "four", "sixteen", + "five", "twentyfive", + "six", "thirtysix", + "seven", "fourtynine", + "eight", "sixtyfour", + }; + int rc; + int ii; + lsm_db *pDb; + + testDeleteLsmdb(LSMTEST6_TESTDB); + + rc = lsm_new(tdb_lsm_env(), &pDb); + if( rc==LSM_OK ) rc = lsm_open(pDb, LSMTEST6_TESTDB); + + for(ii=0; rc==LSM_OK && iiiInsStart, pStep->nIns, pRc); + testDeleteDatasourceRange(pDb, pData, pStep->iDelStart, pStep->nDel, pRc); + if( *pRc==0 ){ + int nSave = -1; + int nBuf = 64; + lsm_db *db = tdb_lsm(pDb); + + lsm_config(db, LSM_CONFIG_AUTOFLUSH, &nSave); + lsm_config(db, LSM_CONFIG_AUTOFLUSH, &nBuf); + lsm_begin(db, 1); + lsm_commit(db, 0); + lsm_config(db, LSM_CONFIG_AUTOFLUSH, &nSave); + + *pRc = lsm_work(db, 0, 0, 0); + if( *pRc==0 ){ + *pRc = lsm_checkpoint(db, 0); + } + } +} + +static void doSetupStepArray( + TestDb *pDb, + Datasource *pData, + const SetupStep *aStep, + int nStep +){ + int i; + for(i=0; i +void testReadFile(const char *zFile, int iOff, void *pOut, int nByte, int *pRc){ + if( *pRc==0 ){ + FILE *fd; + fd = fopen(zFile, "r"); + if( fd==0 ){ + *pRc = 1; + }else{ + if( 0!=fseek(fd, iOff, SEEK_SET) ){ + *pRc = 1; + }else{ + if( nByte!=fread(pOut, 1, nByte, fd) ){ + *pRc = 1; + } + } + fclose(fd); + } + } +} + +void testWriteFile( + const char *zFile, + int iOff, + void *pOut, + int nByte, + int *pRc +){ + if( *pRc==0 ){ + FILE *fd; + fd = fopen(zFile, "r+"); + if( fd==0 ){ + *pRc = 1; + }else{ + if( 0!=fseek(fd, iOff, SEEK_SET) ){ + *pRc = 1; + }else{ + if( nByte!=fwrite(pOut, 1, nByte, fd) ){ + *pRc = 1; + } + } + fclose(fd); + } + } +} + +static ShmHeader *getShmHeader(const char *zDb){ + int rc = 0; + char *zShm = testMallocPrintf("%s-shm", zDb); + ShmHeader *pHdr; + + pHdr = testMalloc(sizeof(ShmHeader)); + testReadFile(zShm, 0, (void *)pHdr, sizeof(ShmHeader), &rc); + assert( rc==0 ); + + return pHdr; +} + +/* +** This function makes a copy of the three files associated with LSM +** database zDb (i.e. if zDb is "test.db", it makes copies of "test.db", +** "test.db-log" and "test.db-shm"). +** +** It then opens a new database connection to the copy with the xLock() call +** instrumented so that it appears that some other process already connected +** to the db (holding a shared lock on DMS2). This prevents recovery from +** running. Then: +** +** 1) Check that the checksum of the database is zCksum. +** 2) Write a few keys to the database. Then delete the same keys. +** 3) Check that the checksum is zCksum. +** 4) Flush the db to disk and run a checkpoint. +** 5) Check once more that the checksum is still zCksum. +*/ +static void doLiveRecovery(const char *zDb, const char *zCksum, int *pRc){ + const DatasourceDefn defn = {TEST_DATASOURCE_RANDOM, 20, 25, 100, 500}; + Datasource *pData; + const char *zCopy = "testcopy.lsm"; + char zCksum2[TEST_CKSUM_BYTES]; + TestDb *pDb = 0; + int rc; + + pData = testDatasourceNew(&defn); + + testCopyLsmdb(zDb, zCopy); + rc = tdb_lsm_open("test_no_recovery=1", zCopy, 0, &pDb); + if( rc==0 ){ + ShmHeader *pHdr; + lsm_db *db; + testCksumDatabase(pDb, zCksum2); + testCompareStr(zCksum, zCksum2, &rc); + + testWriteDatasourceRange(pDb, pData, 1, 10, &rc); + testDeleteDatasourceRange(pDb, pData, 1, 10, &rc); + + /* Test that the two tree-headers are now consistent. */ + pHdr = getShmHeader(zCopy); + if( rc==0 && memcmp(&pHdr->hdr1, &pHdr->hdr2, sizeof(pHdr->hdr1)) ){ + rc = 1; + } + testFree(pHdr); + + if( rc==0 ){ + int nBuf = 64; + db = tdb_lsm(pDb); + lsm_config(db, LSM_CONFIG_AUTOFLUSH, &nBuf); + lsm_begin(db, 1); + lsm_commit(db, 0); + rc = lsm_work(db, 0, 0, 0); + } + + testCksumDatabase(pDb, zCksum2); + testCompareStr(zCksum, zCksum2, &rc); + } + + testDatasourceFree(pData); + testClose(&pDb); + testDeleteLsmdb(zCopy); + *pRc = rc; +} + +static void doWriterCrash1(int *pRc){ + const int nWrite = 2000; + const int nStep = 10; + const int iWriteStart = 20000; + int rc = 0; + TestDb *pDb = 0; + Datasource *pData = 0; + + rc = tdb_lsm_open("autowork=0", "testdb.lsm", 1, &pDb); + if( rc==0 ){ + int iDot = 0; + char zCksum[TEST_CKSUM_BYTES]; + int i; + setupDatabase1(pDb, &pData); + testCksumDatabase(pDb, zCksum); + testBegin(pDb, 2, &rc); + for(i=0; rc==0 && ihdr1, &pHdr1->hdr1, sizeof(pHdr1->hdr1)); + pHdr2->bWriter = 1; + testWriteFile("testdb.lsm-shm", 0, (void *)pHdr2, sizeof(ShmHeader), &rc); + doLiveRecovery("testdb.lsm", zCksum1, &rc); + + /* If both tree-headers are valid, tree-header-1 is used. */ + memcpy(&pHdr2->hdr1, &pHdr2->hdr2, sizeof(pHdr1->hdr1)); + memcpy(&pHdr2->hdr2, &pHdr1->hdr1, sizeof(pHdr1->hdr1)); + pHdr2->bWriter = 1; + testWriteFile("testdb.lsm-shm", 0, (void *)pHdr2, sizeof(ShmHeader), &rc); + doLiveRecovery("testdb.lsm", zCksum2, &rc); + + /* If tree-header 1 is invalid, tree-header-2 is used */ + memcpy(&pHdr2->hdr2, &pHdr2->hdr1, sizeof(pHdr1->hdr1)); + pHdr2->hdr1.aCksum[0] = 5; + pHdr2->hdr1.aCksum[0] = 6; + pHdr2->bWriter = 1; + testWriteFile("testdb.lsm-shm", 0, (void *)pHdr2, sizeof(ShmHeader), &rc); + doLiveRecovery("testdb.lsm", zCksum2, &rc); + + /* If tree-header 2 is invalid, tree-header-1 is used */ + memcpy(&pHdr2->hdr1, &pHdr2->hdr2, sizeof(pHdr1->hdr1)); + pHdr2->hdr2.aCksum[0] = 5; + pHdr2->hdr2.aCksum[0] = 6; + pHdr2->bWriter = 1; + testWriteFile("testdb.lsm-shm", 0, (void *)pHdr2, sizeof(ShmHeader), &rc); + doLiveRecovery("testdb.lsm", zCksum2, &rc); + + testFree(pHdr1); + testFree(pHdr2); + testClose(&pDb); + } + + *pRc = rc; +} + +void do_writer_crash_test(const char *zPattern, int *pRc){ + struct Test { + const char *zName; + void (*xFunc)(int *); + } aTest[] = { + { "writercrash1.lsm", doWriterCrash1 }, + { "writercrash2.lsm", doWriterCrash2 }, + }; + int i; + for(i=0; izName) ){ + p->xFunc(pRc); + testCaseFinish(*pRc); + } + } + +} + + ADDED ext/lsm1/lsm-test/lsmtest9.c Index: ext/lsm1/lsm-test/lsmtest9.c ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest9.c @@ -0,0 +1,138 @@ + +#include "lsmtest.h" + +#define DATA_SEQUENTIAL TEST_DATASOURCE_SEQUENCE +#define DATA_RANDOM TEST_DATASOURCE_RANDOM + +typedef struct Datatest4 Datatest4; + +/* +** Test overview: +** +** 1. Insert (Datatest4.nRec) records into a database. +** +** 2. Repeat (Datatest4.nRepeat) times: +** +** 2a. Delete 2/3 of the records in the database. +** +** 2b. Run lsm_work(nMerge=1). +** +** 2c. Insert as many records as were deleted in 2a. +** +** 2d. Check database content is as expected. +** +** 2e. If (Datatest4.bReopen) is true, close and reopen the database. +*/ +struct Datatest4 { + /* Datasource definition */ + DatasourceDefn defn; + + int nRec; + int nRepeat; + int bReopen; +}; + +static void doDataTest4( + const char *zSystem, /* Database system to test */ + Datatest4 *p, /* Structure containing test parameters */ + int *pRc /* OUT: Error code */ +){ + lsm_db *db = 0; + TestDb *pDb; + TestDb *pControl; + Datasource *pData; + int i; + int rc = 0; + int iDot = 0; + + int nRecOn3 = (p->nRec / 3); + int iData = 0; + + /* Start the test case, open a database and allocate the datasource. */ + rc = testControlDb(&pControl); + pDb = testOpen(zSystem, 1, &rc); + pData = testDatasourceNew(&p->defn); + if( rc==0 ) db = tdb_lsm(pDb); + + testWriteDatasourceRange(pControl, pData, iData, nRecOn3*3, &rc); + testWriteDatasourceRange(pDb, pData, iData, nRecOn3*3, &rc); + + for(i=0; rc==0 && inRepeat; i++){ + + testDeleteDatasourceRange(pControl, pData, iData, nRecOn3*2, &rc); + testDeleteDatasourceRange(pDb, pData, iData, nRecOn3*2, &rc); + + if( db ){ + int nDone; +#if 0 + fprintf(stderr, "lsm_work() start...\n"); fflush(stderr); +#endif + do { + nDone = 0; + rc = lsm_work(db, 1, (1<<30), &nDone); + }while( rc==0 && nDone>0 ); +#if 0 + fprintf(stderr, "lsm_work() done...\n"); fflush(stderr); +#endif + } + +if( i+1nRepeat ){ + iData += (nRecOn3*2); + testWriteDatasourceRange(pControl, pData, iData+nRecOn3, nRecOn3*2, &rc); + testWriteDatasourceRange(pDb, pData, iData+nRecOn3, nRecOn3*2, &rc); + + testCompareDb(pData, nRecOn3*3, iData, pControl, pDb, &rc); + + /* If Datatest4.bReopen is true, close and reopen the database */ + if( p->bReopen ){ + testReopen(&pDb, &rc); + if( rc==0 ) db = tdb_lsm(pDb); + } +} + + /* Update the progress dots... */ + testCaseProgress(i, p->nRepeat, testCaseNDot(), &iDot); + } + + testClose(&pDb); + testClose(&pControl); + testDatasourceFree(pData); + testCaseFinish(rc); + *pRc = rc; +} + +static char *getName4(const char *zSystem, Datatest4 *pTest){ + char *zRet; + char *zData; + zData = testDatasourceName(&pTest->defn); + zRet = testMallocPrintf("data4.%s.%s.%d.%d.%d", + zSystem, zData, pTest->nRec, pTest->nRepeat, pTest->bReopen + ); + testFree(zData); + return zRet; +} + +void test_data_4( + const char *zSystem, /* Database system name */ + const char *zPattern, /* Run test cases that match this pattern */ + int *pRc /* IN/OUT: Error code */ +){ + Datatest4 aTest[] = { + /* defn, nRec, nRepeat, bReopen */ + { {DATA_RANDOM, 20,25, 500,600}, 10000, 10, 0 }, + { {DATA_RANDOM, 20,25, 500,600}, 10000, 10, 1 }, + }; + + int i; + + for(i=0; *pRc==LSM_OK && ieType ){ + case TEST_DATASOURCE_RANDOM: { + int nRange = (1 + p->nMaxKey - p->nMinKey); + nKey = (int)( testPrngValue((u32)iData) % nRange ) + p->nMinKey; + testPrngString((u32)iData, p->aKey, nKey); + break; + } + case TEST_DATASOURCE_SEQUENCE: + nKey = sprintf(p->aKey, "%012d", iData); + break; + } + *ppKey = p->aKey; + *pnKey = nKey; + } + if( ppVal ){ + u32 nVal = testPrngValue((u32)iData)%(1+p->nMaxVal-p->nMinVal)+p->nMinVal; + testPrngString((u32)~iData, p->aVal, (int)nVal); + *ppVal = p->aVal; + *pnVal = (int)nVal; + } +} + +void testDatasourceFree(Datasource *p){ + testFree(p); +} + +/* +** Return a pointer to a nul-terminated string that corresponds to the +** contents of the datasource-definition passed as the first argument. +** The caller should eventually free the returned pointer using testFree(). +*/ +char *testDatasourceName(const DatasourceDefn *p){ + char *zRet; + zRet = testMallocPrintf("%s.(%d-%d).(%d-%d)", + (p->eType==TEST_DATASOURCE_SEQUENCE ? "seq" : "rnd"), + p->nMinKey, p->nMaxKey, + p->nMinVal, p->nMaxVal + ); + return zRet; +} + +Datasource *testDatasourceNew(const DatasourceDefn *pDefn){ + Datasource *p; + int nMinKey; + int nMaxKey; + int nMinVal; + int nMaxVal; + + if( pDefn->eType==TEST_DATASOURCE_SEQUENCE ){ + nMinKey = 128; + nMaxKey = 128; + }else{ + nMinKey = MAX(0, pDefn->nMinKey); + nMaxKey = MAX(nMinKey, pDefn->nMaxKey); + } + nMinVal = MAX(0, pDefn->nMinVal); + nMaxVal = MAX(nMinVal, pDefn->nMaxVal); + + p = (Datasource *)testMalloc(sizeof(Datasource) + nMaxKey + nMaxVal + 1); + p->eType = pDefn->eType; + p->nMinKey = nMinKey; + p->nMinVal = nMinVal; + p->nMaxKey = nMaxKey; + p->nMaxVal = nMaxVal; + + p->aKey = (char *)&p[1]; + p->aVal = &p->aKey[nMaxKey]; + return p; +}; ADDED ext/lsm1/lsm-test/lsmtest_func.c Index: ext/lsm1/lsm-test/lsmtest_func.c ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest_func.c @@ -0,0 +1,177 @@ + +#include "lsmtest.h" + + +int do_work(int nArg, char **azArg){ + struct Option { + const char *zName; + } aOpt [] = { + { "-nmerge" }, + { "-nkb" }, + { 0 } + }; + + lsm_db *pDb; + int rc; + int i; + const char *zDb; + int nMerge = 1; + int nKB = (1<<30); + + if( nArg==0 ) goto usage; + zDb = azArg[nArg-1]; + for(i=0; i<(nArg-1); i++){ + int iSel; + rc = testArgSelect(aOpt, "option", azArg[i], &iSel); + if( rc ) return rc; + switch( iSel ){ + case 0: + i++; + if( i==(nArg-1) ) goto usage; + nMerge = atoi(azArg[i]); + break; + case 1: + i++; + if( i==(nArg-1) ) goto usage; + nKB = atoi(azArg[i]); + break; + } + } + + rc = lsm_new(0, &pDb); + if( rc!=LSM_OK ){ + testPrintError("lsm_open(): rc=%d\n", rc); + }else{ + rc = lsm_open(pDb, zDb); + if( rc!=LSM_OK ){ + testPrintError("lsm_open(): rc=%d\n", rc); + }else{ + int n = -1; + lsm_config(pDb, LSM_CONFIG_BLOCK_SIZE, &n); + n = n*2; + lsm_config(pDb, LSM_CONFIG_AUTOCHECKPOINT, &n); + + rc = lsm_work(pDb, nMerge, nKB, 0); + if( rc!=LSM_OK ){ + testPrintError("lsm_work(): rc=%d\n", rc); + } + } + } + if( rc==LSM_OK ){ + rc = lsm_checkpoint(pDb, 0); + } + + lsm_close(pDb); + return rc; + + usage: + testPrintUsage("?-optimize? ?-n N? DATABASE"); + return -1; +} + + +/* +** lsmtest show ?-config LSM-CONFIG? DATABASE ?COMMAND ?PGNO?? +*/ +int do_show(int nArg, char **azArg){ + lsm_db *pDb; + int rc; + const char *zDb; + + int eOpt = LSM_INFO_DB_STRUCTURE; + unsigned int iPg = 0; + int bConfig = 0; + const char *zConfig = ""; + + struct Option { + const char *zName; + int bConfig; + int eOpt; + } aOpt [] = { + { "array", 0, LSM_INFO_ARRAY_STRUCTURE }, + { "array-pages", 0, LSM_INFO_ARRAY_PAGES }, + { "blocksize", 1, LSM_CONFIG_BLOCK_SIZE }, + { "pagesize", 1, LSM_CONFIG_PAGE_SIZE }, + { "freelist", 0, LSM_INFO_FREELIST }, + { "page-ascii", 0, LSM_INFO_PAGE_ASCII_DUMP }, + { "page-hex", 0, LSM_INFO_PAGE_HEX_DUMP }, + { 0, 0 } + }; + + char *z = 0; + int iDb = 0; /* Index of DATABASE in azArg[] */ + + /* Check if there is a "-config" option: */ + if( nArg>2 && strlen(azArg[0])>1 + && memcmp(azArg[0], "-config", strlen(azArg[0]))==0 + ){ + zConfig = azArg[1]; + iDb = 2; + } + if( nArg<(iDb+1) ) goto usage; + + if( nArg>(iDb+1) ){ + rc = testArgSelect(aOpt, "option", azArg[iDb+1], &eOpt); + if( rc!=0 ) return rc; + bConfig = aOpt[eOpt].bConfig; + eOpt = aOpt[eOpt].eOpt; + if( (bConfig==0 && eOpt==LSM_INFO_FREELIST) + || (bConfig==1 && eOpt==LSM_CONFIG_BLOCK_SIZE) + || (bConfig==1 && eOpt==LSM_CONFIG_PAGE_SIZE) + ){ + if( nArg!=(iDb+2) ) goto usage; + }else{ + if( nArg!=(iDb+3) ) goto usage; + iPg = atoi(azArg[iDb+2]); + } + } + zDb = azArg[iDb]; + + rc = lsm_new(0, &pDb); + tdb_lsm_configure(pDb, zConfig); + if( rc!=LSM_OK ){ + testPrintError("lsm_new(): rc=%d\n", rc); + }else{ + rc = lsm_open(pDb, zDb); + if( rc!=LSM_OK ){ + testPrintError("lsm_open(): rc=%d\n", rc); + } + } + + if( rc==LSM_OK ){ + if( bConfig==0 ){ + switch( eOpt ){ + case LSM_INFO_DB_STRUCTURE: + case LSM_INFO_FREELIST: + rc = lsm_info(pDb, eOpt, &z); + break; + case LSM_INFO_ARRAY_STRUCTURE: + case LSM_INFO_ARRAY_PAGES: + case LSM_INFO_PAGE_ASCII_DUMP: + case LSM_INFO_PAGE_HEX_DUMP: + rc = lsm_info(pDb, eOpt, iPg, &z); + break; + default: + assert( !"no chance" ); + } + + if( rc==LSM_OK ){ + printf("%s\n", z ? z : ""); + fflush(stdout); + } + lsm_free(lsm_get_env(pDb), z); + }else{ + int iRes = -1; + lsm_config(pDb, eOpt, &iRes); + printf("%d\n", iRes); + fflush(stdout); + } + } + + lsm_close(pDb); + return rc; + + usage: + testPrintUsage("DATABASE ?array|page-ascii|page-hex PGNO?"); + return -1; +} ADDED ext/lsm1/lsm-test/lsmtest_io.c Index: ext/lsm1/lsm-test/lsmtest_io.c ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest_io.c @@ -0,0 +1,256 @@ + +/* +** SUMMARY +** +** This file implements the 'io' subcommand of the test program. It is used +** for testing the performance of various combinations of write() and fsync() +** system calls. All operations occur on a single file, which may or may not +** exist when a test is started. +** +** A test consists of a series of commands. Each command is either a write +** or an fsync. A write is specified as "@", where +** is the amount of data written, and is the offset of the file +** to write to. An or an is specified as an integer number +** of bytes. Or, if postfixed with a "K", "M" or "G", an integer number of +** KB, MB or GB, respectively. An fsync is simply "S". All commands are +** case-insensitive. +** +** Example test program: +** +** 2M@6M 1492K@4M S 4096@4K S +** +** This program writes 2 MB of data starting at the offset 6MB offset of +** the file, followed by 1492 KB of data written at the 4MB offset of the +** file, followed by a call to fsync(), a write of 4KB of data at byte +** offset 4096, and finally another call to fsync(). +** +** Commands may either be specified on the command line (one command per +** command line argument) or read from stdin. Commands read from stdin +** must be separated by white-space. +** +** COMMAND LINE INVOCATION +** +** The sub-command implemented in this file must be invoked with at least +** two arguments - the path to the file to write to and the page-size to +** use for writing. If there are more than two arguments, then each +** subsequent argument is assumed to be a test command. If there are exactly +** two arguments, the test commands are read from stdin. +** +** A write command does not result in a single call to system call write(). +** Instead, the specified region is written sequentially using one or +** more calls to write(), each of which writes not more than one page of +** data. For example, if the page-size is 4KB, the command "2M@6M" results +** in 512 calls to write(), each of which writes 4KB of data. +** +** EXAMPLES +** +** Two equivalent examples: +** +** $ lsmtest io testfile.db 4KB 2M@6M 1492K@4M S 4096@4K S +** 3544K written in 129 ms +** $ echo "2M@6M 1492K@4M S 4096@4K S" | lsmtest io testfile.db 4096 +** 3544K written in 127 ms +** +*/ + +#include "lsmtest.h" + +#include +#include +#include +#ifndef _WIN32 +# include +#endif +#include + +typedef struct IoContext IoContext; + +struct IoContext { + int fd; + int nWrite; +}; + +/* +** As isspace(3) +*/ +static int safe_isspace(char c){ + if( c&0x80) return 0; + return isspace(c); +} + +/* +** As isdigit(3) +*/ +static int safe_isdigit(char c){ + if( c&0x80) return 0; + return isdigit(c); +} + +static i64 getNextSize(char *zIn, char **pzOut, int *pRc){ + i64 iRet = 0; + if( *pRc==0 ){ + char *z = zIn; + + if( !safe_isdigit(*z) ){ + *pRc = 1; + return 0; + } + + /* Process digits */ + while( safe_isdigit(*z) ){ + iRet = iRet*10 + (*z - '0'); + z++; + } + + /* Process suffix */ + switch( *z ){ + case 'k': case 'K': + iRet = iRet * 1024; + z++; + break; + + case 'm': case 'M': + iRet = iRet * 1024 * 1024; + z++; + break; + + case 'g': case 'G': + iRet = iRet * 1024 * 1024 * 1024; + z++; + break; + } + + if( pzOut ) *pzOut = z; + } + return iRet; +} + +static int doOneCmd( + IoContext *pCtx, + u8 *aData, + int pgsz, + char *zCmd, + char **pzOut +){ + char c; + char *z = zCmd; + + while( safe_isspace(*z) ) z++; + c = *z; + + if( c==0 ){ + if( pzOut ) *pzOut = z; + return 0; + } + + if( c=='s' || c=='S' ){ + if( pzOut ) *pzOut = &z[1]; + return fdatasync(pCtx->fd); + } + + if( safe_isdigit(c) ){ + i64 iOff = 0; + int nByte = 0; + int rc = 0; + int nPg; + int iPg; + + nByte = getNextSize(z, &z, &rc); + if( rc || *z!='@' ) goto bad_command; + z++; + iOff = getNextSize(z, &z, &rc); + if( rc || (safe_isspace(*z)==0 && *z!='\0') ) goto bad_command; + if( pzOut ) *pzOut = z; + + nPg = (nByte+pgsz-1) / pgsz; + lseek(pCtx->fd, iOff, SEEK_SET); + for(iPg=0; iPgfd, aData, pgsz); + } + pCtx->nWrite += nByte/1024; + + return 0; + } + + bad_command: + testPrintError("unrecognized command: %s", zCmd); + return 1; +} + +static int readStdin(char **pzOut){ + int nAlloc = 128; + char *zOut = 0; + int nOut = 0; + + while( !feof(stdin) ){ + int nRead; + + nAlloc = nAlloc*2; + zOut = realloc(zOut, nAlloc); + nRead = fread(&zOut[nOut], 1, nAlloc-nOut-1, stdin); + + if( nRead==0 ) break; + nOut += nRead; + zOut[nOut] = '\0'; + } + + *pzOut = zOut; + return 0; +} + +int do_io(int nArg, char **azArg){ + IoContext ctx; + int pgsz; + char *zFile; + char *zPgsz; + int i; + int rc = 0; + + char *zStdin = 0; + char *z; + + u8 *aData; + + memset(&ctx, 0, sizeof(IoContext)); + if( nArg<2 ){ + testPrintUsage("FILE PGSZ ?CMD-1 ...?"); + return -1; + } + zFile = azArg[0]; + zPgsz = azArg[1]; + + pgsz = getNextSize(zPgsz, 0, &rc); + if( pgsz<=0 ){ + testPrintError("Ridiculous page size: %d", pgsz); + return -1; + } + aData = malloc(pgsz); + memset(aData, 0x77, pgsz); + + ctx.fd = open(zFile, O_RDWR|O_CREAT, 0644); + if( ctx.fd<0 ){ + perror("open: "); + return -1; + } + + if( nArg==2 ){ + readStdin(&zStdin); + testTimeInit(); + z = zStdin; + while( *z && rc==0 ){ + rc = doOneCmd(&ctx, aData, pgsz, z, &z); + } + }else{ + testTimeInit(); + for(i=2; i + +#ifndef _WIN32 +# include +#endif +#include +#include +#include +#include + + +void test_failed(){ + assert( 0 ); + return; +} + +#define testSetError(rc) testSetErrorFunc(rc, pRc, __FILE__, __LINE__) +static void testSetErrorFunc(int rc, int *pRc, const char *zFile, int iLine){ + if( rc ){ + *pRc = rc; + printf("FAILED (%s:%d) rc=%d ", zFile, iLine, rc); + test_failed(); + } +} + +static int lsm_memcmp(u8 *a, u8 *b, int c){ + int i; + for(i=0; i0 && lsm_memcmp(pVal, pDbVal, nVal))) ){ + testSetError(1); + } + } +} + +void testWrite( + TestDb *pDb, /* Database handle */ + void *pKey, int nKey, /* Key to query database for */ + void *pVal, int nVal, /* Value to write */ + int *pRc /* IN/OUT: Error code */ +){ + if( *pRc==0 ){ + int rc; +static int nCall = 0; +nCall++; + rc = tdb_write(pDb, pKey, nKey, pVal, nVal); + testSetError(rc); + } +} +void testDelete( + TestDb *pDb, /* Database handle */ + void *pKey, int nKey, /* Key to query database for */ + int *pRc /* IN/OUT: Error code */ +){ + if( *pRc==0 ){ + int rc; + *pRc = rc = tdb_delete(pDb, pKey, nKey); + testSetError(rc); + } +} +void testDeleteRange( + TestDb *pDb, /* Database handle */ + void *pKey1, int nKey1, + void *pKey2, int nKey2, + int *pRc /* IN/OUT: Error code */ +){ + if( *pRc==0 ){ + int rc; + *pRc = rc = tdb_delete_range(pDb, pKey1, nKey1, pKey2, nKey2); + testSetError(rc); + } +} + +void testBegin(TestDb *pDb, int iTrans, int *pRc){ + if( *pRc==0 ){ + int rc; + rc = tdb_begin(pDb, iTrans); + testSetError(rc); + } +} +void testCommit(TestDb *pDb, int iTrans, int *pRc){ + if( *pRc==0 ){ + int rc; + rc = tdb_commit(pDb, iTrans); + testSetError(rc); + } +} +static void testRollback(TestDb *pDb, int iTrans, int *pRc){ + if( *pRc==0 ){ + int rc; + rc = tdb_rollback(pDb, iTrans); + testSetError(rc); + } +} + +void testWriteStr( + TestDb *pDb, /* Database handle */ + const char *zKey, /* Key to query database for */ + const char *zVal, /* Value to write */ + int *pRc /* IN/OUT: Error code */ +){ + int nVal = (zVal ? strlen(zVal) : 0); + testWrite(pDb, (void *)zKey, strlen(zKey), (void *)zVal, nVal, pRc); +} + +static void testDeleteStr(TestDb *pDb, const char *zKey, int *pRc){ + testDelete(pDb, (void *)zKey, strlen(zKey), pRc); +} + +void testFetchStr( + TestDb *pDb, /* Database handle */ + const char *zKey, /* Key to query database for */ + const char *zVal, /* Value to write */ + int *pRc /* IN/OUT: Error code */ +){ + int nVal = (zVal ? strlen(zVal) : 0); + testFetch(pDb, (void *)zKey, strlen(zKey), (void *)zVal, nVal, pRc); +} + +void testFetchCompare( + TestDb *pControl, + TestDb *pDb, + void *pKey, int nKey, + int *pRc +){ + int rc; + void *pDbVal1; + void *pDbVal2; + int nDbVal1; + int nDbVal2; + + static int nCall = 0; + nCall++; + + rc = tdb_fetch(pControl, pKey, nKey, &pDbVal1, &nDbVal1); + testSetError(rc); + + rc = tdb_fetch(pDb, pKey, nKey, &pDbVal2, &nDbVal2); + testSetError(rc); + + if( *pRc==0 + && (nDbVal1!=nDbVal2 || (nDbVal1>0 && memcmp(pDbVal1, pDbVal2, nDbVal1))) + ){ + testSetError(1); + } +} + +typedef struct ScanResult ScanResult; +struct ScanResult { + TestDb *pDb; + + int nRow; + u32 cksum1; + u32 cksum2; + void *pKey1; int nKey1; + void *pKey2; int nKey2; + + int bReverse; + int nPrevKey; + u8 aPrevKey[256]; +}; + +static int keyCompare(void *pKey1, int nKey1, void *pKey2, int nKey2){ + int res; + res = memcmp(pKey1, pKey2, MIN(nKey1, nKey2)); + if( res==0 ){ + res = nKey1 - nKey2; + } + return res; +} + +int test_scan_debug = 0; + +static void scanCompareCb( + void *pCtx, + void *pKey, int nKey, + void *pVal, int nVal +){ + ScanResult *p = (ScanResult *)pCtx; + u8 *aKey = (u8 *)pKey; + u8 *aVal = (u8 *)pVal; + int i; + + if( test_scan_debug ){ + printf("%d: %.*s\n", p->nRow, nKey, (char *)pKey); + fflush(stdout); + } +#if 0 + if( test_scan_debug ) printf("%.20s\n", (char *)pVal); +#endif + +#if 0 + /* Check tdb_fetch() matches */ + int rc = 0; + testFetch(p->pDb, pKey, nKey, pVal, nVal, &rc); + assert( rc==0 ); +#endif + + /* Update the checksum data */ + p->nRow++; + for(i=0; icksum1 += ((int)aKey[i] << (i&0x0F)); + p->cksum2 += p->cksum1; + } + for(i=0; icksum1 += ((int)aVal[i] << (i&0x0F)); + p->cksum2 += p->cksum1; + } + + /* Check that the delivered row is not out of order. */ + if( nKey<(int)sizeof(p->aPrevKey) ){ + if( p->nPrevKey ){ + int res = keyCompare(p->aPrevKey, p->nPrevKey, pKey, nKey); + if( (res<0 && p->bReverse) || (res>0 && p->bReverse==0) ){ + testPrintError("Returned key out of order at %s:%d\n", + __FILE__, __LINE__ + ); + } + } + + p->nPrevKey = nKey; + memcpy(p->aPrevKey, pKey, MIN(p->nPrevKey, nKey)); + } + + /* Check that the delivered row is within range. */ + if( p->pKey1 && ( + (memcmp(p->pKey1, pKey, MIN(p->nKey1, nKey))>0) + || (memcmp(p->pKey1, pKey, MIN(p->nKey1, nKey))==0 && p->nKey1>nKey) + )){ + testPrintError("Returned key too small at %s:%d\n", __FILE__, __LINE__); + } + if( p->pKey2 && ( + (memcmp(p->pKey2, pKey, MIN(p->nKey2, nKey))<0) + || (memcmp(p->pKey2, pKey, MIN(p->nKey2, nKey))==0 && p->nKey2=0 ); + zRet = (char *)testMalloc(nByte+1); + vsnprintf(zRet, nByte+1, zFormat, ap); + return zRet; +} + +char *testMallocPrintf(const char *zFormat, ...){ + va_list ap; + char *zRet; + + va_start(ap, zFormat); + zRet = testMallocVPrintf(zFormat, ap); + va_end(ap); + + return zRet; +} + + +/* +** A wrapper around malloc(3). +** +** This function should be used for all allocations made by test procedures. +** It has the following properties: +** +** * Test code may assume that allocations may not fail. +** * Returned memory is always zeroed. +** +** Allocations made using testMalloc() should be freed using testFree(). +*/ +void *testMalloc(int n){ + u8 *p = (u8*)malloc(n + 8); + memset(p, 0, n+8); + *(int*)p = n; + return (void*)&p[8]; +} + +void *testMallocCopy(void *pCopy, int nByte){ + void *pRet = testMalloc(nByte); + memcpy(pRet, pCopy, nByte); + return pRet; +} + +void *testRealloc(void *ptr, int n){ + if( ptr ){ + u8 *p = (u8*)ptr - 8; + int nOrig = *(int*)p; + p = (u8*)realloc(p, n+8); + if( nOrig1 ){ + testPrintError("Usage: test ?PATTERN?\n"); + return 1; + } + if( nArg==1 ){ + zPattern = azArg[0]; + } + + for(j=0; tdb_system_name(j); j++){ + rc = 0; + + test_data_1(tdb_system_name(j), zPattern, &rc); + test_data_2(tdb_system_name(j), zPattern, &rc); + test_data_3(tdb_system_name(j), zPattern, &rc); + test_data_4(tdb_system_name(j), zPattern, &rc); + test_rollback(tdb_system_name(j), zPattern, &rc); + test_mc(tdb_system_name(j), zPattern, &rc); + test_mt(tdb_system_name(j), zPattern, &rc); + + if( rc ) nFail++; + } + + rc = 0; + test_oom(zPattern, &rc); + if( rc ) nFail++; + + rc = 0; + test_api(zPattern, &rc); + if( rc ) nFail++; + + rc = 0; + do_crash_test(zPattern, &rc); + if( rc ) nFail++; + + rc = 0; + do_writer_crash_test(zPattern, &rc); + if( rc ) nFail++; + + return (nFail!=0); +} + +static lsm_db *configure_lsm_db(TestDb *pDb){ + lsm_db *pLsm; + pLsm = tdb_lsm(pDb); + if( pLsm ){ + tdb_lsm_config_str(pDb, "mmap=1 autowork=1 automerge=4 worker_automerge=4"); + } + return pLsm; +} + +typedef struct WriteHookEvent WriteHookEvent; +struct WriteHookEvent { + i64 iOff; + int nData; + int nUs; +}; +WriteHookEvent prev = {0, 0, 0}; + +static void flushPrev(FILE *pOut){ + if( prev.nData ){ + fprintf(pOut, "w %s %lld %d %d\n", "d", prev.iOff, prev.nData, prev.nUs); + prev.nData = 0; + } +} + +static void do_speed_write_hook2( + void *pCtx, + int bLog, + i64 iOff, + int nData, + int nUs +){ + FILE *pOut = (FILE *)pCtx; + if( bLog ) return; + + if( prev.nData && nData && iOff==prev.iOff+prev.nData ){ + prev.nData += nData; + prev.nUs += nUs; + }else{ + flushPrev(pOut); + if( nData==0 ){ + fprintf(pOut, "s %s 0 0 %d\n", (bLog ? "l" : "d"), nUs); + }else{ + prev.iOff = iOff; + prev.nData = nData; + prev.nUs = nUs; + } + } +} + +#define ST_REPEAT 0 +#define ST_WRITE 1 +#define ST_PAUSE 2 +#define ST_FETCH 3 +#define ST_SCAN 4 +#define ST_NSCAN 5 +#define ST_KEYSIZE 6 +#define ST_VALSIZE 7 +#define ST_TRANS 8 + + +static void print_speed_test_help(){ + printf( +"\n" +"Repeat the following $repeat times:\n" +" 1. Insert $write key-value pairs. One transaction for each write op.\n" +" 2. Pause for $pause ms.\n" +" 3. Perform $fetch queries on the database.\n" +"\n" +" Keys are $keysize bytes in size. Values are $valsize bytes in size\n" +" Both keys and values are pseudo-randomly generated\n" +"\n" +"Options are:\n" +" -repeat $repeat (default value 10)\n" +" -write $write (default value 10000)\n" +" -pause $pause (default value 0)\n" +" -fetch $fetch (default value 0)\n" +" -keysize $keysize (default value 12)\n" +" -valsize $valsize (default value 100)\n" +" -system $system (default value \"lsm\")\n" +" -trans $trans (default value 0)\n" +"\n" +); +} + +int do_speed_test2(int nArg, char **azArg){ + struct Option { + const char *zOpt; + int eVal; + int iDefault; + } aOpt[] = { + { "-repeat", ST_REPEAT, 10}, + { "-write", ST_WRITE, 10000}, + { "-pause", ST_PAUSE, 0}, + { "-fetch", ST_FETCH, 0}, + { "-scan", ST_SCAN, 0}, + { "-nscan", ST_NSCAN, 0}, + { "-keysize", ST_KEYSIZE, 12}, + { "-valsize", ST_VALSIZE, 100}, + { "-trans", ST_TRANS, 0}, + { "-system", -1, 0}, + { "help", -2, 0}, + {0, 0, 0} + }; + int i; + int aParam[9]; + int rc = 0; + int bReadonly = 0; + int nContent = 0; + + TestDb *pDb; + Datasource *pData; + DatasourceDefn defn = { TEST_DATASOURCE_RANDOM, 0, 0, 0, 0 }; + char *zSystem = ""; + int bLsm = 1; + FILE *pLog = 0; + +#ifdef NDEBUG + /* If NDEBUG is defined, disable the dynamic memory related checks in + ** lsmtest_mem.c. They slow things down. */ + testMallocUninstall(tdb_lsm_env()); +#endif + + /* Initialize aParam[] with default values. */ + for(i=0; i=0 ){ + aParam[aOpt[iSel].eVal] = atoi(azArg[i+1]); + }else{ + int j; + zSystem = azArg[i+1]; + bLsm = 0; +#if 0 + for(j=0; zSystem[j]; j++){ + if( zSystem[j]=='=' ) bLsm = 1; + } +#endif + } + } + + printf("#"); + for(i=0; i=0 ){ + printf(" %s=%d", &aOpt[i].zOpt[1], aParam[aOpt[i].eVal]); + }else if( aOpt[i].eVal==-1 ){ + printf(" %s=\"%s\"", &aOpt[i].zOpt[1], zSystem); + } + } + } + printf("\n"); + + defn.nMinKey = defn.nMaxKey = aParam[ST_KEYSIZE]; + defn.nMinVal = defn.nMaxVal = aParam[ST_VALSIZE]; + pData = testDatasourceNew(&defn); + + if( aParam[ST_WRITE]==0 ){ + bReadonly = 1; + } + + if( bLsm ){ + rc = tdb_lsm_open(zSystem, "testdb.lsm", !bReadonly, &pDb); + }else{ + pDb = testOpen(zSystem, !bReadonly, &rc); + } + if( rc!=0 ) return rc; + if( bReadonly ){ + nContent = testCountDatabase(pDb); + } + +#if 0 + pLog = fopen("/tmp/speed.log", "w"); + tdb_lsm_write_hook(pDb, do_speed_write_hook2, (void *)pLog); +#endif + + for(i=0; i=nArg ){ + testPrintError("option %s requires an argument\n", aOpt[iSel].zOpt); + return 1; + } + if( aOpt[iSel].isSwitch==1 ){ + nRow = atoi(azArg[i]); + } + if( aOpt[iSel].isSwitch==2 ){ + nSleep = atoi(azArg[i]); + } + if( aOpt[iSel].isSwitch==3 ){ + struct Mode { + const char *zMode; + int doReadTest; + int doWriteTest; + } aMode[] = {{"ro", 1, 0} , {"rw", 1, 1}, {"wo", 0, 1}, {0, 0, 0}}; + int iMode; + rc = testArgSelect(aMode, "option", azArg[i], &iMode); + if( rc ) return rc; + doReadTest = aMode[iMode].doReadTest; + doWriteTest = aMode[iMode].doWriteTest; + } + if( aOpt[iSel].isSwitch==4 ){ + /* The "-out FILE" switch. This option is used to specify a file to + ** write the gnuplot script to. */ + zOut = azArg[i]; + } + }else{ + /* A db name */ + rc = testArgSelect(aOpt, "system", azArg[i], &iSel); + if( rc ) return rc; + sys_mask |= (1< 100000) ? 100000 : nSelStep; + + aTime = malloc(sizeof(int) * ArraySize(aSys) * nRow/nStep); + aWrite = malloc(sizeof(int) * nRow/nStep); + aSelTime = malloc(sizeof(int) * ArraySize(aSys) * nRow/nSelStep); + + /* This loop collects the INSERT speed data. */ + if( doWriteTest ){ + printf("Writing output to file \"%s\".\n", zOut); + + for(j=0; aSys[j].zLibrary; j++){ + FILE *pLog = 0; + TestDb *pDb; /* Database being tested */ + lsm_db *pLsm; + int iDot = 0; + + if( ((1<nData ){ + fprintf(pHook->pOut, "write %s %d %d\n", + (pHook->bLog ? "log" : "db"), (int)pHook->iOff, pHook->nData + ); + pHook->nData = 0; + fflush(pHook->pOut); + } +} + +static void do_insert_write_hook( + void *pCtx, + int bLog, + i64 iOff, + int nData, + int nUs +){ + InsertWriteHook *pHook = (InsertWriteHook *)pCtx; + if( bLog ) return; + + if( nData==0 ){ + flushHook(pHook); + fprintf(pHook->pOut, "sync %s\n", (bLog ? "log" : "db")); + }else if( pHook->nData + && bLog==pHook->bLog + && iOff==(pHook->iOff+pHook->nData) + ){ + pHook->nData += nData; + }else{ + flushHook(pHook); + pHook->bLog = bLog; + pHook->iOff = iOff; + pHook->nData = nData; + } +} + +static int do_replay(int nArg, char **azArg){ + char aBuf[4096]; + FILE *pInput; + FILE *pClose = 0; + const char *zDb; + + lsm_env *pEnv; + lsm_file *pOut; + int rc; + + if( nArg!=2 ){ + testPrintError("Usage: replay WRITELOG FILE\n"); + return 1; + } + + if( strcmp(azArg[0], "-")==0 ){ + pInput = stdin; + }else{ + pClose = pInput = fopen(azArg[0], "r"); + } + zDb = azArg[1]; + pEnv = tdb_lsm_env(); + rc = pEnv->xOpen(pEnv, zDb, 0, &pOut); + if( rc!=LSM_OK ) return rc; + + while( feof(pInput)==0 ){ + char zLine[80]; + fgets(zLine, sizeof(zLine)-1, pInput); + zLine[sizeof(zLine)-1] = '\0'; + + if( 0==memcmp("sync db", zLine, 7) ){ + rc = pEnv->xSync(pOut); + if( rc!=0 ) break; + }else{ + int iOff; + int nData; + int nMatch; + nMatch = sscanf(zLine, "write db %d %d", &iOff, &nData); + if( nMatch==2 ){ + int i; + for(i=0; ixWrite(pOut, iOff+i, aBuf, sizeof(aBuf)); + if( rc!=0 ) break; + } + } + } + } + if( pClose ) fclose(pClose); + pEnv->xClose(pOut); + + return rc; +} + +static int do_insert(int nArg, char **azArg){ + const char *zDb = "lsm"; + TestDb *pDb = 0; + int i; + int rc; + const int nRow = 1 * 1000 * 1000; + + DatasourceDefn defn = { TEST_DATASOURCE_RANDOM, 8, 15, 80, 150 }; + Datasource *pData = 0; + + if( nArg>1 ){ + testPrintError("Usage: insert ?DATABASE?\n"); + return 1; + } + if( nArg==1 ){ zDb = azArg[0]; } + + testMallocUninstall(tdb_lsm_env()); + for(i=0; zDb[i] && zDb[i]!='='; i++); + if( zDb[i] ){ + rc = tdb_lsm_open(zDb, "testdb.lsm", 1, &pDb); + }else{ + rc = tdb_open(zDb, 0, 1, &pDb); + } + + if( rc!=0 ){ + testPrintError("Error opening db \"%s\": %d\n", zDb, rc); + }else{ + InsertWriteHook hook; + memset(&hook, 0, sizeof(hook)); + hook.pOut = fopen("writelog.txt", "w"); + + pData = testDatasourceNew(&defn); + tdb_lsm_config_work_hook(pDb, do_insert_work_hook, 0); + tdb_lsm_write_hook(pDb, do_insert_write_hook, (void *)&hook); + + if( rc==0 ){ + for(i=0; i +#include + +static void lsmtest_rusage_report(void){ + struct rusage r; + memset(&r, 0, sizeof(r)); + + getrusage(RUSAGE_SELF, &r); + printf("# getrusage: { ru_maxrss %d ru_oublock %d ru_inblock %d }\n", + (int)r.ru_maxrss, (int)r.ru_oublock, (int)r.ru_inblock + ); +} +#else +static void lsmtest_rusage_report(void){ + /* no-op */ +} +#endif + +int main(int argc, char **argv){ + struct TestFunc { + const char *zName; + int bRusageReport; + int (*xFunc)(int, char **); + } aTest[] = { + {"random", 1, do_random_tests}, + {"writespeed", 1, do_writer_test}, + {"io", 1, st_do_io}, + + {"insert", 1, do_insert}, + {"replay", 1, do_replay}, + + {"speed", 1, do_speed_tests}, + {"speed2", 1, do_speed_test2}, + {"show", 0, st_do_show}, + {"work", 1, st_do_work}, + {"test", 1, do_test}, + + {0, 0} + }; + int rc; /* Return Code */ + int iFunc; /* Index into aTest[] */ + + int nLeakAlloc = 0; /* Allocations leaked by lsm */ + int nLeakByte = 0; /* Bytes leaked by lsm */ + +#ifdef LSM_DEBUG_MEM + FILE *pReport = 0; /* lsm malloc() report file */ + const char *zReport = "malloc.txt generated"; +#else + const char *zReport = "malloc.txt NOT generated"; +#endif + + testMallocInstall(tdb_lsm_env()); + + if( argc<2 ){ + testPrintError("Usage: %s sub-command ?args...?\n", argv[0]); + return -1; + } + + /* Initialize error reporting */ + testErrorInit(argc, argv); + + /* Initialize PRNG system */ + testPrngInit(); + + rc = testArgSelect(aTest, "sub-command", argv[1], &iFunc); + if( rc==0 ){ + rc = aTest[iFunc].xFunc(argc-2, &argv[2]); + } + +#ifdef LSM_DEBUG_MEM + pReport = fopen("malloc.txt", "w"); + testMallocCheck(tdb_lsm_env(), &nLeakAlloc, &nLeakByte, pReport); + fclose(pReport); +#else + testMallocCheck(tdb_lsm_env(), &nLeakAlloc, &nLeakByte, 0); +#endif + + if( nLeakAlloc ){ + testPrintError("Leaked %d bytes in %d allocations (%s)\n", + nLeakByte, nLeakAlloc, zReport + ); + if( rc==0 ) rc = -1; + } + testMallocUninstall(tdb_lsm_env()); + + if( aTest[iFunc].bRusageReport ){ + lsmtest_rusage_report(); + } + return rc; +} ADDED ext/lsm1/lsm-test/lsmtest_mem.c Index: ext/lsm1/lsm-test/lsmtest_mem.c ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest_mem.c @@ -0,0 +1,409 @@ + +#include +#include +#include + +#define ArraySize(x) ((int)(sizeof(x) / sizeof((x)[0]))) + +#define MIN(x,y) ((x)<(y) ? (x) : (y)) + +typedef unsigned int u32; +typedef unsigned char u8; +typedef long long int i64; +typedef unsigned long long int u64; + +#if defined(__GLIBC__) && defined(LSM_DEBUG_MEM) + extern int backtrace(void**,int); + extern void backtrace_symbols_fd(void*const*,int,int); +# define TM_BACKTRACE 12 +#else +# define backtrace(A,B) 1 +# define backtrace_symbols_fd(A,B,C) +#endif + + +typedef struct TmBlockHdr TmBlockHdr; +typedef struct TmAgg TmAgg; +typedef struct TmGlobal TmGlobal; + +struct TmGlobal { + /* Linked list of all currently outstanding allocations. And a table of + ** all allocations, past and present, indexed by backtrace() info. */ + TmBlockHdr *pFirst; +#ifdef TM_BACKTRACE + TmAgg *aHash[10000]; +#endif + + /* Underlying malloc/realloc/free functions */ + void *(*xMalloc)(int); /* underlying malloc(3) function */ + void *(*xRealloc)(void *, int); /* underlying realloc(3) function */ + void (*xFree)(void *); /* underlying free(3) function */ + + /* Mutex to protect pFirst and aHash */ + void (*xEnterMutex)(TmGlobal*); /* Call this to enter the mutex */ + void (*xLeaveMutex)(TmGlobal*); /* Call this to leave mutex */ + void (*xDelMutex)(TmGlobal*); /* Call this to delete mutex */ + void *pMutex; /* Mutex handle */ + + void *xSaveMalloc; + void *xSaveRealloc; + void *xSaveFree; + + /* OOM injection scheduling. If nCountdown is greater than zero when a + ** malloc attempt is made, it is decremented. If this means nCountdown + ** transitions from 1 to 0, then the allocation fails. If bPersist is true + ** when this happens, nCountdown is then incremented back to 1 (so that the + ** next attempt fails too). + */ + int nCountdown; + int bPersist; + int bEnable; + void (*xHook)(void *); + void *pHookCtx; +}; + +struct TmBlockHdr { + TmBlockHdr *pNext; + TmBlockHdr *pPrev; + int nByte; +#ifdef TM_BACKTRACE + TmAgg *pAgg; +#endif + u32 iForeGuard; +}; + +#ifdef TM_BACKTRACE +struct TmAgg { + int nAlloc; /* Number of allocations at this path */ + int nByte; /* Total number of bytes allocated */ + int nOutAlloc; /* Number of outstanding allocations */ + int nOutByte; /* Number of outstanding bytes */ + void *aFrame[TM_BACKTRACE]; /* backtrace() output */ + TmAgg *pNext; /* Next object in hash-table collision */ +}; +#endif + +#define FOREGUARD 0x80F5E153 +#define REARGUARD 0xE4676B53 +static const u32 rearguard = REARGUARD; + +#define ROUND8(x) (((x)+7)&~7) + +#define BLOCK_HDR_SIZE (ROUND8( sizeof(TmBlockHdr) )) + +static void lsmtest_oom_error(void){ + static int nErr = 0; + nErr++; +} + +static void tmEnterMutex(TmGlobal *pTm){ + pTm->xEnterMutex(pTm); +} +static void tmLeaveMutex(TmGlobal *pTm){ + pTm->xLeaveMutex(pTm); +} + +static void *tmMalloc(TmGlobal *pTm, int nByte){ + TmBlockHdr *pNew; /* New allocation header block */ + u8 *pUser; /* Return value */ + int nReq; /* Total number of bytes requested */ + + assert( sizeof(rearguard)==4 ); + nReq = BLOCK_HDR_SIZE + nByte + 4; + pNew = (TmBlockHdr *)pTm->xMalloc(nReq); + memset(pNew, 0, sizeof(TmBlockHdr)); + + tmEnterMutex(pTm); + assert( pTm->nCountdown>=0 ); + assert( pTm->bPersist==0 || pTm->bPersist==1 ); + + if( pTm->bEnable && pTm->nCountdown==1 ){ + /* Simulate an OOM error. */ + lsmtest_oom_error(); + pTm->xFree(pNew); + pTm->nCountdown = pTm->bPersist; + if( pTm->xHook ) pTm->xHook(pTm->pHookCtx); + pUser = 0; + }else{ + if( pTm->bEnable && pTm->nCountdown ) pTm->nCountdown--; + + pNew->iForeGuard = FOREGUARD; + pNew->nByte = nByte; + pNew->pNext = pTm->pFirst; + + if( pTm->pFirst ){ + pTm->pFirst->pPrev = pNew; + } + pTm->pFirst = pNew; + + pUser = &((u8 *)pNew)[BLOCK_HDR_SIZE]; + memset(pUser, 0x56, nByte); + memcpy(&pUser[nByte], &rearguard, 4); + +#ifdef TM_BACKTRACE + { + TmAgg *pAgg; + int i; + u32 iHash = 0; + void *aFrame[TM_BACKTRACE]; + memset(aFrame, 0, sizeof(aFrame)); + backtrace(aFrame, TM_BACKTRACE); + + for(i=0; iaHash); + + for(pAgg=pTm->aHash[iHash]; pAgg; pAgg=pAgg->pNext){ + if( memcmp(pAgg->aFrame, aFrame, sizeof(aFrame))==0 ) break; + } + if( !pAgg ){ + pAgg = (TmAgg *)pTm->xMalloc(sizeof(TmAgg)); + memset(pAgg, 0, sizeof(TmAgg)); + memcpy(pAgg->aFrame, aFrame, sizeof(aFrame)); + pAgg->pNext = pTm->aHash[iHash]; + pTm->aHash[iHash] = pAgg; + } + pAgg->nAlloc++; + pAgg->nByte += nByte; + pAgg->nOutAlloc++; + pAgg->nOutByte += nByte; + pNew->pAgg = pAgg; + } +#endif + } + + tmLeaveMutex(pTm); + return pUser; +} + +static void tmFree(TmGlobal *pTm, void *p){ + if( p ){ + TmBlockHdr *pHdr; + u8 *pUser = (u8 *)p; + + tmEnterMutex(pTm); + pHdr = (TmBlockHdr *)&pUser[BLOCK_HDR_SIZE * -1]; + assert( pHdr->iForeGuard==FOREGUARD ); + assert( 0==memcmp(&pUser[pHdr->nByte], &rearguard, 4) ); + + if( pHdr->pPrev ){ + assert( pHdr->pPrev->pNext==pHdr ); + pHdr->pPrev->pNext = pHdr->pNext; + }else{ + assert( pHdr==pTm->pFirst ); + pTm->pFirst = pHdr->pNext; + } + if( pHdr->pNext ){ + assert( pHdr->pNext->pPrev==pHdr ); + pHdr->pNext->pPrev = pHdr->pPrev; + } + +#ifdef TM_BACKTRACE + pHdr->pAgg->nOutAlloc--; + pHdr->pAgg->nOutByte -= pHdr->nByte; +#endif + + tmLeaveMutex(pTm); + memset(pUser, 0x58, pHdr->nByte); + memset(pHdr, 0x57, sizeof(TmBlockHdr)); + pTm->xFree(pHdr); + } +} + +static void *tmRealloc(TmGlobal *pTm, void *p, int nByte){ + void *pNew; + + pNew = tmMalloc(pTm, nByte); + if( pNew && p ){ + TmBlockHdr *pHdr; + u8 *pUser = (u8 *)p; + pHdr = (TmBlockHdr *)&pUser[BLOCK_HDR_SIZE * -1]; + memcpy(pNew, p, MIN(nByte, pHdr->nByte)); + tmFree(pTm, p); + } + return pNew; +} + +static void tmMallocOom( + TmGlobal *pTm, + int nCountdown, + int bPersist, + void (*xHook)(void *), + void *pHookCtx +){ + assert( nCountdown>=0 ); + assert( bPersist==0 || bPersist==1 ); + pTm->nCountdown = nCountdown; + pTm->bPersist = bPersist; + pTm->xHook = xHook; + pTm->pHookCtx = pHookCtx; + pTm->bEnable = 1; +} + +static void tmMallocOomEnable( + TmGlobal *pTm, + int bEnable +){ + pTm->bEnable = bEnable; +} + +static void tmMallocCheck( + TmGlobal *pTm, + int *pnLeakAlloc, + int *pnLeakByte, + FILE *pFile +){ + TmBlockHdr *pHdr; + int nLeak = 0; + int nByte = 0; + + if( pTm==0 ) return; + + for(pHdr=pTm->pFirst; pHdr; pHdr=pHdr->pNext){ + nLeak++; + nByte += pHdr->nByte; + } + if( pnLeakAlloc ) *pnLeakAlloc = nLeak; + if( pnLeakByte ) *pnLeakByte = nByte; + +#ifdef TM_BACKTRACE + if( pFile ){ + int i; + fprintf(pFile, "LEAKS\n"); + for(i=0; iaHash); i++){ + TmAgg *pAgg; + for(pAgg=pTm->aHash[i]; pAgg; pAgg=pAgg->pNext){ + if( pAgg->nOutAlloc ){ + int j; + fprintf(pFile, "%d %d ", pAgg->nOutByte, pAgg->nOutAlloc); + for(j=0; jaFrame[j]); + } + fprintf(pFile, "\n"); + } + } + } + fprintf(pFile, "\nALLOCATIONS\n"); + for(i=0; iaHash); i++){ + TmAgg *pAgg; + for(pAgg=pTm->aHash[i]; pAgg; pAgg=pAgg->pNext){ + int j; + fprintf(pFile, "%d %d ", pAgg->nByte, pAgg->nAlloc); + for(j=0; jaFrame[j]); + fprintf(pFile, "\n"); + } + } + } +#else + (void)pFile; +#endif +} + + +#include "lsm.h" +#include "stdlib.h" + +typedef struct LsmMutex LsmMutex; +struct LsmMutex { + lsm_env *pEnv; + lsm_mutex *pMutex; +}; + +static void tmLsmMutexEnter(TmGlobal *pTm){ + LsmMutex *p = (LsmMutex *)pTm->pMutex; + p->pEnv->xMutexEnter(p->pMutex); +} +static void tmLsmMutexLeave(TmGlobal *pTm){ + LsmMutex *p = (LsmMutex *)(pTm->pMutex); + p->pEnv->xMutexLeave(p->pMutex); +} +static void tmLsmMutexDel(TmGlobal *pTm){ + LsmMutex *p = (LsmMutex *)pTm->pMutex; + pTm->xFree(p); +} +static void *tmLsmMalloc(int n){ return malloc(n); } +static void tmLsmFree(void *ptr){ free(ptr); } +static void *tmLsmRealloc(void *ptr, int n){ return realloc(ptr, n); } + +static void *tmLsmEnvMalloc(lsm_env *p, int n){ + return tmMalloc((TmGlobal *)(p->pMemCtx), n); +} +static void tmLsmEnvFree(lsm_env *p, void *ptr){ + tmFree((TmGlobal *)(p->pMemCtx), ptr); +} +static void *tmLsmEnvRealloc(lsm_env *p, void *ptr, int n){ + return tmRealloc((TmGlobal *)(p->pMemCtx), ptr, n); +} + +void testMallocInstall(lsm_env *pEnv){ + TmGlobal *pGlobal; + LsmMutex *pMutex; + assert( pEnv->pMemCtx==0 ); + + /* Allocate and populate a TmGlobal structure. */ + pGlobal = (TmGlobal *)tmLsmMalloc(sizeof(TmGlobal)); + memset(pGlobal, 0, sizeof(TmGlobal)); + pGlobal->xMalloc = tmLsmMalloc; + pGlobal->xRealloc = tmLsmRealloc; + pGlobal->xFree = tmLsmFree; + pMutex = (LsmMutex *)pGlobal->xMalloc(sizeof(LsmMutex)); + pMutex->pEnv = pEnv; + pEnv->xMutexStatic(pEnv, LSM_MUTEX_HEAP, &pMutex->pMutex); + pGlobal->xEnterMutex = tmLsmMutexEnter; + pGlobal->xLeaveMutex = tmLsmMutexLeave; + pGlobal->xDelMutex = tmLsmMutexDel; + pGlobal->pMutex = (void *)pMutex; + + pGlobal->xSaveMalloc = (void *)pEnv->xMalloc; + pGlobal->xSaveRealloc = (void *)pEnv->xRealloc; + pGlobal->xSaveFree = (void *)pEnv->xFree; + + /* Set up pEnv to the use the new TmGlobal */ + pEnv->pMemCtx = (void *)pGlobal; + pEnv->xMalloc = tmLsmEnvMalloc; + pEnv->xRealloc = tmLsmEnvRealloc; + pEnv->xFree = tmLsmEnvFree; +} + +void testMallocUninstall(lsm_env *pEnv){ + TmGlobal *p = (TmGlobal *)pEnv->pMemCtx; + pEnv->pMemCtx = 0; + if( p ){ + pEnv->xMalloc = (void *(*)(lsm_env*, int))(p->xSaveMalloc); + pEnv->xRealloc = (void *(*)(lsm_env*, void*, int))(p->xSaveRealloc); + pEnv->xFree = (void (*)(lsm_env*, void*))(p->xSaveFree); + p->xDelMutex(p); + tmLsmFree(p); + } +} + +void testMallocCheck( + lsm_env *pEnv, + int *pnLeakAlloc, + int *pnLeakByte, + FILE *pFile +){ + if( pEnv->pMemCtx==0 ){ + *pnLeakAlloc = 0; + *pnLeakByte = 0; + }else{ + tmMallocCheck((TmGlobal *)(pEnv->pMemCtx), pnLeakAlloc, pnLeakByte, pFile); + } +} + +void testMallocOom( + lsm_env *pEnv, + int nCountdown, + int bPersist, + void (*xHook)(void *), + void *pHookCtx +){ + TmGlobal *pTm = (TmGlobal *)(pEnv->pMemCtx); + tmMallocOom(pTm, nCountdown, bPersist, xHook, pHookCtx); +} + +void testMallocOomEnable(lsm_env *pEnv, int bEnable){ + TmGlobal *pTm = (TmGlobal *)(pEnv->pMemCtx); + tmMallocOomEnable(pTm, bEnable); +} ADDED ext/lsm1/lsm-test/lsmtest_tdb.c Index: ext/lsm1/lsm-test/lsmtest_tdb.c ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest_tdb.c @@ -0,0 +1,836 @@ + +/* +** This program attempts to test the correctness of some facets of the +** LSM database library. Specifically, that the contents of the database +** are maintained correctly during a series of inserts and deletes. +*/ + + +#include "lsmtest_tdb.h" +#include "lsm.h" + +#include "lsmtest.h" + +#include +#include +#include +#ifndef _WIN32 +# include +#endif +#include + + +typedef struct SqlDb SqlDb; + +static int error_transaction_function(TestDb *p, int iLevel){ + unused_parameter(p); + unused_parameter(iLevel); + return -1; +} + + +/************************************************************************* +** Begin wrapper for LevelDB. +*/ +#ifdef HAVE_LEVELDB + +#include + +typedef struct LevelDb LevelDb; +struct LevelDb { + TestDb base; + leveldb_t *db; + leveldb_options_t *pOpt; + leveldb_writeoptions_t *pWriteOpt; + leveldb_readoptions_t *pReadOpt; + + char *pVal; +}; + +static int test_leveldb_close(TestDb *pTestDb){ + LevelDb *pDb = (LevelDb *)pTestDb; + + leveldb_close(pDb->db); + leveldb_writeoptions_destroy(pDb->pWriteOpt); + leveldb_readoptions_destroy(pDb->pReadOpt); + leveldb_options_destroy(pDb->pOpt); + free(pDb->pVal); + free(pDb); + + return 0; +} + +static int test_leveldb_write( + TestDb *pTestDb, + void *pKey, + int nKey, + void *pVal, + int nVal +){ + LevelDb *pDb = (LevelDb *)pTestDb; + char *zErr = 0; + leveldb_put(pDb->db, pDb->pWriteOpt, pKey, nKey, pVal, nVal, &zErr); + return (zErr!=0); +} + +static int test_leveldb_delete(TestDb *pTestDb, void *pKey, int nKey){ + LevelDb *pDb = (LevelDb *)pTestDb; + char *zErr = 0; + leveldb_delete(pDb->db, pDb->pWriteOpt, pKey, nKey, &zErr); + return (zErr!=0); +} + +static int test_leveldb_fetch( + TestDb *pTestDb, + void *pKey, + int nKey, + void **ppVal, + int *pnVal +){ + LevelDb *pDb = (LevelDb *)pTestDb; + char *zErr = 0; + size_t nVal = 0; + + if( pKey==0 ) return 0; + free(pDb->pVal); + pDb->pVal = leveldb_get(pDb->db, pDb->pReadOpt, pKey, nKey, &nVal, &zErr); + *ppVal = (void *)(pDb->pVal); + if( pDb->pVal==0 ){ + *pnVal = -1; + }else{ + *pnVal = (int)nVal; + } + + return (zErr!=0); +} + +static int test_leveldb_scan( + TestDb *pTestDb, + void *pCtx, + int bReverse, + void *pKey1, int nKey1, /* Start of search */ + void *pKey2, int nKey2, /* End of search */ + void (*xCallback)(void *, void *, int , void *, int) +){ + LevelDb *pDb = (LevelDb *)pTestDb; + leveldb_iterator_t *iter; + + iter = leveldb_create_iterator(pDb->db, pDb->pReadOpt); + + if( bReverse==0 ){ + if( pKey1 ){ + leveldb_iter_seek(iter, pKey1, nKey1); + }else{ + leveldb_iter_seek_to_first(iter); + } + }else{ + if( pKey2 ){ + leveldb_iter_seek(iter, pKey2, nKey2); + + if( leveldb_iter_valid(iter)==0 ){ + leveldb_iter_seek_to_last(iter); + }else{ + const char *k; size_t n; + int res; + k = leveldb_iter_key(iter, &n); + res = memcmp(k, pKey2, MIN(n, nKey2)); + if( res==0 ) res = n - nKey2; + assert( res>=0 ); + if( res>0 ){ + leveldb_iter_prev(iter); + } + } + }else{ + leveldb_iter_seek_to_last(iter); + } + } + + + while( leveldb_iter_valid(iter) ){ + const char *k; size_t n; + const char *v; size_t n2; + int res; + + k = leveldb_iter_key(iter, &n); + if( bReverse==0 && pKey2 ){ + res = memcmp(k, pKey2, MIN(n, nKey2)); + if( res==0 ) res = n - nKey2; + if( res>0 ) break; + } + if( bReverse!=0 && pKey1 ){ + res = memcmp(k, pKey1, MIN(n, nKey1)); + if( res==0 ) res = n - nKey1; + if( res<0 ) break; + } + + v = leveldb_iter_value(iter, &n2); + + xCallback(pCtx, (void *)k, n, (void *)v, n2); + + if( bReverse==0 ){ + leveldb_iter_next(iter); + }else{ + leveldb_iter_prev(iter); + } + } + + leveldb_iter_destroy(iter); + return 0; +} + +static int test_leveldb_open( + const char *zSpec, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + static const DatabaseMethods LeveldbMethods = { + test_leveldb_close, + test_leveldb_write, + test_leveldb_delete, + 0, + test_leveldb_fetch, + test_leveldb_scan, + error_transaction_function, + error_transaction_function, + error_transaction_function + }; + + LevelDb *pLevelDb; + char *zErr = 0; + + if( bClear ){ + char *zCmd = sqlite3_mprintf("rm -rf %s\n", zFilename); + system(zCmd); + sqlite3_free(zCmd); + } + + pLevelDb = (LevelDb *)malloc(sizeof(LevelDb)); + memset(pLevelDb, 0, sizeof(LevelDb)); + + pLevelDb->pOpt = leveldb_options_create(); + leveldb_options_set_create_if_missing(pLevelDb->pOpt, 1); + pLevelDb->pWriteOpt = leveldb_writeoptions_create(); + pLevelDb->pReadOpt = leveldb_readoptions_create(); + + pLevelDb->db = leveldb_open(pLevelDb->pOpt, zFilename, &zErr); + + if( zErr ){ + test_leveldb_close((TestDb *)pLevelDb); + *ppDb = 0; + return 1; + } + + *ppDb = (TestDb *)pLevelDb; + pLevelDb->base.pMethods = &LeveldbMethods; + return 0; +} +#endif /* HAVE_LEVELDB */ +/* +** End wrapper for LevelDB. +*************************************************************************/ + +#ifdef HAVE_KYOTOCABINET +static int kc_close(TestDb *pTestDb){ + return test_kc_close(pTestDb); +} + +static int kc_write( + TestDb *pTestDb, + void *pKey, + int nKey, + void *pVal, + int nVal +){ + return test_kc_write(pTestDb, pKey, nKey, pVal, nVal); +} + +static int kc_delete(TestDb *pTestDb, void *pKey, int nKey){ + return test_kc_delete(pTestDb, pKey, nKey); +} + +static int kc_delete_range( + TestDb *pTestDb, + void *pKey1, int nKey1, + void *pKey2, int nKey2 +){ + return test_kc_delete_range(pTestDb, pKey1, nKey1, pKey2, nKey2); +} + +static int kc_fetch( + TestDb *pTestDb, + void *pKey, + int nKey, + void **ppVal, + int *pnVal +){ + if( pKey==0 ) return LSM_OK; + return test_kc_fetch(pTestDb, pKey, nKey, ppVal, pnVal); +} + +static int kc_scan( + TestDb *pTestDb, + void *pCtx, + int bReverse, + void *pFirst, int nFirst, + void *pLast, int nLast, + void (*xCallback)(void *, void *, int , void *, int) +){ + return test_kc_scan( + pTestDb, pCtx, bReverse, pFirst, nFirst, pLast, nLast, xCallback + ); +} + +static int kc_open( + const char *zSpec, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + static const DatabaseMethods KcdbMethods = { + kc_close, + kc_write, + kc_delete, + kc_delete_range, + kc_fetch, + kc_scan, + error_transaction_function, + error_transaction_function, + error_transaction_function + }; + + int rc; + TestDb *pTestDb = 0; + + rc = test_kc_open(zFilename, bClear, &pTestDb); + if( rc!=0 ){ + *ppDb = 0; + return rc; + } + pTestDb->pMethods = &KcdbMethods; + *ppDb = pTestDb; + return 0; +} +#endif /* HAVE_KYOTOCABINET */ +/* +** End wrapper for Kyoto cabinet. +*************************************************************************/ + +#ifdef HAVE_MDB +static int mdb_close(TestDb *pTestDb){ + return test_mdb_close(pTestDb); +} + +static int mdb_write( + TestDb *pTestDb, + void *pKey, + int nKey, + void *pVal, + int nVal +){ + return test_mdb_write(pTestDb, pKey, nKey, pVal, nVal); +} + +static int mdb_delete(TestDb *pTestDb, void *pKey, int nKey){ + return test_mdb_delete(pTestDb, pKey, nKey); +} + +static int mdb_fetch( + TestDb *pTestDb, + void *pKey, + int nKey, + void **ppVal, + int *pnVal +){ + if( pKey==0 ) return LSM_OK; + return test_mdb_fetch(pTestDb, pKey, nKey, ppVal, pnVal); +} + +static int mdb_scan( + TestDb *pTestDb, + void *pCtx, + int bReverse, + void *pFirst, int nFirst, + void *pLast, int nLast, + void (*xCallback)(void *, void *, int , void *, int) +){ + return test_mdb_scan( + pTestDb, pCtx, bReverse, pFirst, nFirst, pLast, nLast, xCallback + ); +} + +static int mdb_open( + const char *zSpec, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + static const DatabaseMethods KcdbMethods = { + mdb_close, + mdb_write, + mdb_delete, + 0, + mdb_fetch, + mdb_scan, + error_transaction_function, + error_transaction_function, + error_transaction_function + }; + + int rc; + TestDb *pTestDb = 0; + + rc = test_mdb_open(zSpec, zFilename, bClear, &pTestDb); + if( rc!=0 ){ + *ppDb = 0; + return rc; + } + pTestDb->pMethods = &KcdbMethods; + *ppDb = pTestDb; + return 0; +} +#endif /* HAVE_MDB */ + +/************************************************************************* +** Begin wrapper for SQLite. +*/ + +/* +** nOpenTrans: +** The number of open nested transactions, in the same sense as used +** by the tdb_begin/commit/rollback and SQLite 4 KV interfaces. If this +** value is 0, there are no transactions open at all. If it is 1, then +** there is a read transaction. If it is 2 or greater, then there are +** (nOpenTrans-1) nested write transactions open. +*/ +struct SqlDb { + TestDb base; + sqlite3 *db; + sqlite3_stmt *pInsert; + sqlite3_stmt *pDelete; + sqlite3_stmt *pDeleteRange; + sqlite3_stmt *pFetch; + sqlite3_stmt *apScan[8]; + + int nOpenTrans; + + /* Used by sql_fetch() to allocate space for results */ + int nAlloc; + u8 *aAlloc; +}; + +static int sql_close(TestDb *pTestDb){ + SqlDb *pDb = (SqlDb *)pTestDb; + sqlite3_finalize(pDb->pInsert); + sqlite3_finalize(pDb->pDelete); + sqlite3_finalize(pDb->pDeleteRange); + sqlite3_finalize(pDb->pFetch); + sqlite3_finalize(pDb->apScan[0]); + sqlite3_finalize(pDb->apScan[1]); + sqlite3_finalize(pDb->apScan[2]); + sqlite3_finalize(pDb->apScan[3]); + sqlite3_finalize(pDb->apScan[4]); + sqlite3_finalize(pDb->apScan[5]); + sqlite3_finalize(pDb->apScan[6]); + sqlite3_finalize(pDb->apScan[7]); + sqlite3_close(pDb->db); + free((char *)pDb->aAlloc); + free((char *)pDb); + return SQLITE_OK; +} + +static int sql_write( + TestDb *pTestDb, + void *pKey, + int nKey, + void *pVal, + int nVal +){ + SqlDb *pDb = (SqlDb *)pTestDb; + sqlite3_bind_blob(pDb->pInsert, 1, pKey, nKey, SQLITE_STATIC); + sqlite3_bind_blob(pDb->pInsert, 2, pVal, nVal, SQLITE_STATIC); + sqlite3_step(pDb->pInsert); + return sqlite3_reset(pDb->pInsert); +} + +static int sql_delete(TestDb *pTestDb, void *pKey, int nKey){ + SqlDb *pDb = (SqlDb *)pTestDb; + sqlite3_bind_blob(pDb->pDelete, 1, pKey, nKey, SQLITE_STATIC); + sqlite3_step(pDb->pDelete); + return sqlite3_reset(pDb->pDelete); +} + +static int sql_delete_range( + TestDb *pTestDb, + void *pKey1, int nKey1, + void *pKey2, int nKey2 +){ + SqlDb *pDb = (SqlDb *)pTestDb; + sqlite3_bind_blob(pDb->pDeleteRange, 1, pKey1, nKey1, SQLITE_STATIC); + sqlite3_bind_blob(pDb->pDeleteRange, 2, pKey2, nKey2, SQLITE_STATIC); + sqlite3_step(pDb->pDeleteRange); + return sqlite3_reset(pDb->pDeleteRange); +} + +static int sql_fetch( + TestDb *pTestDb, + void *pKey, + int nKey, + void **ppVal, + int *pnVal +){ + SqlDb *pDb = (SqlDb *)pTestDb; + int rc; + + sqlite3_reset(pDb->pFetch); + if( pKey==0 ){ + assert( ppVal==0 ); + assert( pnVal==0 ); + return LSM_OK; + } + + sqlite3_bind_blob(pDb->pFetch, 1, pKey, nKey, SQLITE_STATIC); + rc = sqlite3_step(pDb->pFetch); + if( rc==SQLITE_ROW ){ + int nVal = sqlite3_column_bytes(pDb->pFetch, 0); + u8 *aVal = (void *)sqlite3_column_blob(pDb->pFetch, 0); + + if( nVal>pDb->nAlloc ){ + free(pDb->aAlloc); + pDb->aAlloc = (u8 *)malloc(nVal*2); + pDb->nAlloc = nVal*2; + } + memcpy(pDb->aAlloc, aVal, nVal); + *pnVal = nVal; + *ppVal = (void *)pDb->aAlloc; + }else{ + *pnVal = -1; + *ppVal = 0; + } + + rc = sqlite3_reset(pDb->pFetch); + return rc; +} + +static int sql_scan( + TestDb *pTestDb, + void *pCtx, + int bReverse, + void *pFirst, int nFirst, + void *pLast, int nLast, + void (*xCallback)(void *, void *, int , void *, int) +){ + SqlDb *pDb = (SqlDb *)pTestDb; + sqlite3_stmt *pScan; + + assert( bReverse==1 || bReverse==0 ); + pScan = pDb->apScan[(pFirst==0) + (pLast==0)*2 + bReverse*4]; + + if( pFirst ) sqlite3_bind_blob(pScan, 1, pFirst, nFirst, SQLITE_STATIC); + if( pLast ) sqlite3_bind_blob(pScan, 2, pLast, nLast, SQLITE_STATIC); + + while( SQLITE_ROW==sqlite3_step(pScan) ){ + void *pKey; int nKey; + void *pVal; int nVal; + + nKey = sqlite3_column_bytes(pScan, 0); + pKey = (void *)sqlite3_column_blob(pScan, 0); + nVal = sqlite3_column_bytes(pScan, 1); + pVal = (void *)sqlite3_column_blob(pScan, 1); + + xCallback(pCtx, pKey, nKey, pVal, nVal); + } + return sqlite3_reset(pScan); +} + +static int sql_begin(TestDb *pTestDb, int iLevel){ + int i; + SqlDb *pDb = (SqlDb *)pTestDb; + + /* iLevel==0 is a no-op */ + if( iLevel==0 ) return 0; + + /* If there are no transactions at all open, open a read transaction. */ + if( pDb->nOpenTrans==0 ){ + int rc = sqlite3_exec(pDb->db, + "BEGIN; SELECT * FROM sqlite_master LIMIT 1;" , 0, 0, 0 + ); + if( rc!=0 ) return rc; + pDb->nOpenTrans = 1; + } + + /* Open any required write transactions */ + for(i=pDb->nOpenTrans; idb, zSql, 0, 0, 0); + sqlite3_free(zSql); + if( rc!=SQLITE_OK ) return rc; + } + + pDb->nOpenTrans = iLevel; + return 0; +} + +static int sql_commit(TestDb *pTestDb, int iLevel){ + SqlDb *pDb = (SqlDb *)pTestDb; + assert( iLevel>=0 ); + + /* Close the read transaction if requested. */ + if( pDb->nOpenTrans>=1 && iLevel==0 ){ + int rc = sqlite3_exec(pDb->db, "COMMIT", 0, 0, 0); + if( rc!=0 ) return rc; + pDb->nOpenTrans = 0; + } + + /* Close write transactions as required */ + if( pDb->nOpenTrans>iLevel ){ + char *zSql = sqlite3_mprintf("RELEASE x%d", iLevel); + int rc = sqlite3_exec(pDb->db, zSql, 0, 0, 0); + sqlite3_free(zSql); + if( rc!=0 ) return rc; + } + + pDb->nOpenTrans = iLevel; + return 0; +} + +static int sql_rollback(TestDb *pTestDb, int iLevel){ + SqlDb *pDb = (SqlDb *)pTestDb; + assert( iLevel>=0 ); + + if( pDb->nOpenTrans>=1 && iLevel==0 ){ + /* Close the read transaction if requested. */ + int rc = sqlite3_exec(pDb->db, "ROLLBACK", 0, 0, 0); + if( rc!=0 ) return rc; + }else if( pDb->nOpenTrans>1 && iLevel==1 ){ + /* Or, rollback and close the top-level write transaction */ + int rc = sqlite3_exec(pDb->db, "ROLLBACK TO x1; RELEASE x1;", 0, 0, 0); + if( rc!=0 ) return rc; + }else{ + /* Or, just roll back some nested transactions */ + char *zSql = sqlite3_mprintf("ROLLBACK TO x%d", iLevel-1); + int rc = sqlite3_exec(pDb->db, zSql, 0, 0, 0); + sqlite3_free(zSql); + if( rc!=0 ) return rc; + } + + pDb->nOpenTrans = iLevel; + return 0; +} + +static int sql_open( + const char *zSpec, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + static const DatabaseMethods SqlMethods = { + sql_close, + sql_write, + sql_delete, + sql_delete_range, + sql_fetch, + sql_scan, + sql_begin, + sql_commit, + sql_rollback + }; + const char *zCreate = "CREATE TABLE IF NOT EXISTS t1(k PRIMARY KEY, v)"; + const char *zInsert = "REPLACE INTO t1 VALUES(?, ?)"; + const char *zDelete = "DELETE FROM t1 WHERE k = ?"; + const char *zRange = "DELETE FROM t1 WHERE k>? AND k= ?1 ORDER BY k"; + const char *zScan3 = "SELECT * FROM t1 ORDER BY k"; + + const char *zScan4 = + "SELECT * FROM t1 WHERE k BETWEEN ?1 AND ?2 ORDER BY k DESC"; + const char *zScan5 = "SELECT * FROM t1 WHERE k <= ?2 ORDER BY k DESC"; + const char *zScan6 = "SELECT * FROM t1 WHERE k >= ?1 ORDER BY k DESC"; + const char *zScan7 = "SELECT * FROM t1 ORDER BY k DESC"; + + int rc; + SqlDb *pDb; + char *zPragma; + + if( bClear && zFilename && zFilename[0] ){ + unlink(zFilename); + } + + pDb = (SqlDb *)malloc(sizeof(SqlDb)); + memset(pDb, 0, sizeof(SqlDb)); + pDb->base.pMethods = &SqlMethods; + + if( 0!=(rc = sqlite3_open(zFilename, &pDb->db)) + || 0!=(rc = sqlite3_exec(pDb->db, zCreate, 0, 0, 0)) + || 0!=(rc = sqlite3_prepare_v2(pDb->db, zInsert, -1, &pDb->pInsert, 0)) + || 0!=(rc = sqlite3_prepare_v2(pDb->db, zDelete, -1, &pDb->pDelete, 0)) + || 0!=(rc = sqlite3_prepare_v2(pDb->db, zRange, -1, &pDb->pDeleteRange, 0)) + || 0!=(rc = sqlite3_prepare_v2(pDb->db, zFetch, -1, &pDb->pFetch, 0)) + || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan0, -1, &pDb->apScan[0], 0)) + || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan1, -1, &pDb->apScan[1], 0)) + || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan2, -1, &pDb->apScan[2], 0)) + || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan3, -1, &pDb->apScan[3], 0)) + || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan4, -1, &pDb->apScan[4], 0)) + || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan5, -1, &pDb->apScan[5], 0)) + || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan6, -1, &pDb->apScan[6], 0)) + || 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan7, -1, &pDb->apScan[7], 0)) + ){ + *ppDb = 0; + sql_close((TestDb *)pDb); + return rc; + } + + zPragma = sqlite3_mprintf("PRAGMA page_size=%d", TESTDB_DEFAULT_PAGE_SIZE); + sqlite3_exec(pDb->db, zPragma, 0, 0, 0); + sqlite3_free(zPragma); + zPragma = sqlite3_mprintf("PRAGMA cache_size=%d", TESTDB_DEFAULT_CACHE_SIZE); + sqlite3_exec(pDb->db, zPragma, 0, 0, 0); + sqlite3_free(zPragma); + + /* sqlite3_exec(pDb->db, "PRAGMA locking_mode=EXCLUSIVE", 0, 0, 0); */ + sqlite3_exec(pDb->db, "PRAGMA synchronous=OFF", 0, 0, 0); + sqlite3_exec(pDb->db, "PRAGMA journal_mode=WAL", 0, 0, 0); + sqlite3_exec(pDb->db, "PRAGMA wal_autocheckpoint=4096", 0, 0, 0); + if( zSpec ){ + rc = sqlite3_exec(pDb->db, zSpec, 0, 0, 0); + if( rc!=SQLITE_OK ){ + sql_close((TestDb *)pDb); + return rc; + } + } + + *ppDb = (TestDb *)pDb; + return 0; +} +/* +** End wrapper for SQLite. +*************************************************************************/ + +/************************************************************************* +** Begin exported functions. +*/ +static struct Lib { + const char *zName; + const char *zDefaultDb; + int (*xOpen)(const char *, const char *zFilename, int bClear, TestDb **ppDb); +} aLib[] = { + { "sqlite3", "testdb.sqlite", sql_open }, + { "lsm_small", "testdb.lsm_small", test_lsm_small_open }, + { "lsm_lomem", "testdb.lsm_lomem", test_lsm_lomem_open }, +#ifdef HAVE_ZLIB + { "lsm_zip", "testdb.lsm_zip", test_lsm_zip_open }, +#endif + { "lsm", "testdb.lsm", test_lsm_open }, +#ifdef LSM_MUTEX_PTHREADS + { "lsm_mt2", "testdb.lsm_mt2", test_lsm_mt2 }, + { "lsm_mt3", "testdb.lsm_mt3", test_lsm_mt3 }, +#endif +#ifdef HAVE_LEVELDB + { "leveldb", "testdb.leveldb", test_leveldb_open }, +#endif +#ifdef HAVE_KYOTOCABINET + { "kyotocabinet", "testdb.kc", kc_open }, +#endif +#ifdef HAVE_MDB + { "mdb", "./testdb.mdb", mdb_open } +#endif +}; + +const char *tdb_system_name(int i){ + if( i<0 || i>=ArraySize(aLib) ) return 0; + return aLib[i].zName; +} + +int tdb_open(const char *zLib, const char *zDb, int bClear, TestDb **ppDb){ + int i; + int rc = 1; + const char *zSpec = 0; + + int nLib = 0; + while( zLib[nLib] && zLib[nLib]!=' ' ){ + nLib++; + } + zSpec = &zLib[nLib]; + while( *zSpec==' ' ) zSpec++; + if( *zSpec=='\0' ) zSpec = 0; + + for(i=0; izLibrary = aLib[i].zName; + } + break; + } + } + + if( rc ){ + /* Failed to find the requested database library. Return an error. */ + *ppDb = 0; + } + return rc; +} + +int tdb_close(TestDb *pDb){ + if( pDb ){ + return pDb->pMethods->xClose(pDb); + } + return 0; +} + +int tdb_write(TestDb *pDb, void *pKey, int nKey, void *pVal, int nVal){ + return pDb->pMethods->xWrite(pDb, pKey, nKey, pVal, nVal); +} + +int tdb_delete(TestDb *pDb, void *pKey, int nKey){ + return pDb->pMethods->xDelete(pDb, pKey, nKey); +} + +int tdb_delete_range( + TestDb *pDb, void *pKey1, int nKey1, void *pKey2, int nKey2 +){ + return pDb->pMethods->xDeleteRange(pDb, pKey1, nKey1, pKey2, nKey2); +} + +int tdb_fetch(TestDb *pDb, void *pKey, int nKey, void **ppVal, int *pnVal){ + return pDb->pMethods->xFetch(pDb, pKey, nKey, ppVal, pnVal); +} + +int tdb_scan( + TestDb *pDb, /* Database handle */ + void *pCtx, /* Context pointer to pass to xCallback */ + int bReverse, /* True to scan in reverse order */ + void *pKey1, int nKey1, /* Start of search */ + void *pKey2, int nKey2, /* End of search */ + void (*xCallback)(void *pCtx, void *pKey, int nKey, void *pVal, int nVal) +){ + return pDb->pMethods->xScan( + pDb, pCtx, bReverse, pKey1, nKey1, pKey2, nKey2, xCallback + ); +} + +int tdb_begin(TestDb *pDb, int iLevel){ + return pDb->pMethods->xBegin(pDb, iLevel); +} +int tdb_commit(TestDb *pDb, int iLevel){ + return pDb->pMethods->xCommit(pDb, iLevel); +} +int tdb_rollback(TestDb *pDb, int iLevel){ + return pDb->pMethods->xRollback(pDb, iLevel); +} + +int tdb_transaction_support(TestDb *pDb){ + return (pDb->pMethods->xBegin != error_transaction_function); +} + +const char *tdb_library_name(TestDb *pDb){ + return pDb->zLibrary; +} + +/* +** End exported functions. +*************************************************************************/ ADDED ext/lsm1/lsm-test/lsmtest_tdb.h Index: ext/lsm1/lsm-test/lsmtest_tdb.h ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest_tdb.h @@ -0,0 +1,167 @@ + +/* +** This file is the interface to a very simple database library used for +** testing. The interface is similar to that of the LSM. The main virtue +** of this library is that the same API may be used to access a key-value +** store implemented by LSM, SQLite or another database system. Which +** makes it easy to use for correctness and performance tests. +*/ + +#ifndef __WRAPPER_H_ +#define __WRAPPER_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "lsm.h" + +typedef struct TestDb TestDb; + +/* +** Open a new database connection. The first argument is the name of the +** database library to use. e.g. something like: +** +** "sqlite3" +** "lsm" +** +** See function tdb_system_name() for a list of available database systems. +** +** The second argument is the name of the database to open (e.g. a filename). +** +** If the third parameter is non-zero, then any existing database by the +** name of zDb is removed before opening a new one. If it is zero, then an +** existing database may be opened. +*/ +int tdb_open(const char *zLibrary, const char *zDb, int bClear, TestDb **ppDb); + +/* +** Close a database handle. +*/ +int tdb_close(TestDb *pDb); + +/* +** Write a new key/value into the database. +*/ +int tdb_write(TestDb *pDb, void *pKey, int nKey, void *pVal, int nVal); + +/* +** Delete a key from the database. +*/ +int tdb_delete(TestDb *pDb, void *pKey, int nKey); + +/* +** Delete a range of keys from the database. +*/ +int tdb_delete_range(TestDb *, void *pKey1, int nKey1, void *pKey2, int nKey2); + +/* +** Query the database for key (pKey/nKey). If no entry is found, set *ppVal +** to 0 and *pnVal to -1 before returning. Otherwise, set *ppVal and *pnVal +** to a pointer to and size of the value associated with (pKey/nKey). +*/ +int tdb_fetch(TestDb *pDb, void *pKey, int nKey, void **ppVal, int *pnVal); + +/* +** Open and close nested transactions. Currently, these functions only +** work for SQLite3 and LSM systems. Use the tdb_transaction_support() +** function to determine if a given TestDb handle supports these methods. +** +** These functions and the iLevel parameter follow the same conventions as +** the SQLite 4 transaction interface. Note that this is slightly different +** from the way LSM does things. As follows: +** +** tdb_begin(): +** A successful call to tdb_begin() with (iLevel>1) guarantees that +** there are at least (iLevel-1) write transactions open. If iLevel==1, +** then it guarantees that at least a read-transaction is open. Calling +** tdb_begin() with iLevel==0 is a no-op. +** +** tdb_commit(): +** A successful call to tdb_commit() with (iLevel>1) guarantees that +** there are at most (iLevel-1) write transactions open. If iLevel==1, +** then it guarantees that there are no write transactions open (although +** a read-transaction may remain open). Calling tdb_commit() with +** iLevel==0 ensures that all transactions, read or write, have been +** closed and committed. +** +** tdb_rollback(): +** This call is similar to tdb_commit(), except that instead of committing +** transactions, it reverts them. For example, calling tdb_rollback() with +** iLevel==2 ensures that there is at most one write transaction open, and +** restores the database to the state that it was in when that transaction +** was opened. +** +** In other words, tdb_commit() just closes transactions - tdb_rollback() +** closes transactions and then restores the database to the state it +** was in before those transactions were even opened. +*/ +int tdb_begin(TestDb *pDb, int iLevel); +int tdb_commit(TestDb *pDb, int iLevel); +int tdb_rollback(TestDb *pDb, int iLevel); + +/* +** Return true if transactions are supported, or false otherwise. +*/ +int tdb_transaction_support(TestDb *pDb); + +/* +** Return the name of the database library (as passed to tdb_open()) used +** by the handled passed as the first argument. +*/ +const char *tdb_library_name(TestDb *pDb); + +/* +** Scan a range of database keys. Invoke the callback function for each +** key visited. +*/ +int tdb_scan( + TestDb *pDb, /* Database handle */ + void *pCtx, /* Context pointer to pass to xCallback */ + int bReverse, /* True to scan in reverse order */ + void *pKey1, int nKey1, /* Start of search */ + void *pKey2, int nKey2, /* End of search */ + void (*xCallback)(void *pCtx, void *pKey, int nKey, void *pVal, int nVal) +); + +const char *tdb_system_name(int i); + +int tdb_lsm_open(const char *zCfg, const char *zDb, int bClear, TestDb **ppDb); + +/* +** If the TestDb handle passed as an argument is a wrapper around an LSM +** database, return the LSM handle. Otherwise, if the argument is some other +** database system, return NULL. +*/ +lsm_db *tdb_lsm(TestDb *pDb); + +/* +** Return a pointer to the lsm_env object used by all lsm database +** connections initialized as a copy of the object returned by +** lsm_default_env(). It may be modified (e.g. to override functions) +** if the caller can guarantee that it is not already in use. +*/ +lsm_env *tdb_lsm_env(void); + +/* +** The following functions only work with LSM database handles. It is +** illegal to call them with any other type of database handle specified +** as an argument. +*/ +void tdb_lsm_enable_log(TestDb *pDb, int bEnable); +void tdb_lsm_application_crash(TestDb *pDb); +void tdb_lsm_prepare_system_crash(TestDb *pDb); +void tdb_lsm_system_crash(TestDb *pDb); +void tdb_lsm_prepare_sync_crash(TestDb *pDb, int iSync); + + +void tdb_lsm_safety(TestDb *pDb, int eMode); +void tdb_lsm_config_work_hook(TestDb *pDb, void (*)(lsm_db *, void *), void *); +void tdb_lsm_write_hook(TestDb *, void(*)(void*,int,lsm_i64,int,int), void*); +int tdb_lsm_config_str(TestDb *pDb, const char *zStr); + +#ifdef __cplusplus +} /* End of the 'extern "C"' block */ +#endif + +#endif ADDED ext/lsm1/lsm-test/lsmtest_tdb2.cc Index: ext/lsm1/lsm-test/lsmtest_tdb2.cc ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest_tdb2.cc @@ -0,0 +1,370 @@ + + +#include "lsmtest.h" +#include + +#ifdef HAVE_KYOTOCABINET +#include "kcpolydb.h" +extern "C" { + struct KcDb { + TestDb base; + kyotocabinet::TreeDB* db; + char *pVal; + }; +} + +int test_kc_open(const char *zFilename, int bClear, TestDb **ppDb){ + KcDb *pKcDb; + int ok; + int rc = 0; + + if( bClear ){ + char *zCmd = sqlite3_mprintf("rm -rf %s\n", zFilename); + system(zCmd); + sqlite3_free(zCmd); + } + + pKcDb = (KcDb *)malloc(sizeof(KcDb)); + memset(pKcDb, 0, sizeof(KcDb)); + + + pKcDb->db = new kyotocabinet::TreeDB(); + pKcDb->db->tune_page(TESTDB_DEFAULT_PAGE_SIZE); + pKcDb->db->tune_page_cache( + TESTDB_DEFAULT_PAGE_SIZE * TESTDB_DEFAULT_CACHE_SIZE + ); + ok = pKcDb->db->open(zFilename, + kyotocabinet::PolyDB::OWRITER | kyotocabinet::PolyDB::OCREATE + ); + if( ok==0 ){ + free(pKcDb); + pKcDb = 0; + rc = 1; + } + + *ppDb = (TestDb *)pKcDb; + return rc; +} + +int test_kc_close(TestDb *pDb){ + KcDb *pKcDb = (KcDb *)pDb; + if( pKcDb->pVal ){ + delete [] pKcDb->pVal; + } + pKcDb->db->close(); + delete pKcDb->db; + free(pKcDb); + return 0; +} + +int test_kc_write(TestDb *pDb, void *pKey, int nKey, void *pVal, int nVal){ + KcDb *pKcDb = (KcDb *)pDb; + int ok; + + ok = pKcDb->db->set((const char *)pKey, nKey, (const char *)pVal, nVal); + return (ok ? 0 : 1); +} + +int test_kc_delete(TestDb *pDb, void *pKey, int nKey){ + KcDb *pKcDb = (KcDb *)pDb; + int ok; + + ok = pKcDb->db->remove((const char *)pKey, nKey); + return (ok ? 0 : 1); +} + +int test_kc_delete_range( + TestDb *pDb, + void *pKey1, int nKey1, + void *pKey2, int nKey2 +){ + int res; + KcDb *pKcDb = (KcDb *)pDb; + kyotocabinet::DB::Cursor* pCur = pKcDb->db->cursor(); + + if( pKey1 ){ + res = pCur->jump((const char *)pKey1, nKey1); + }else{ + res = pCur->jump(); + } + + while( 1 ){ + const char *pKey; size_t nKey; + const char *pVal; size_t nVal; + + pKey = pCur->get(&nKey, &pVal, &nVal); + if( pKey==0 ) break; + +#ifndef NDEBUG + if( pKey1 ){ + res = memcmp(pKey, pKey1, MIN((size_t)nKey1, nKey)); + assert( res>0 || (res==0 && nKey>nKey1) ); + } +#endif + + if( pKey2 ){ + res = memcmp(pKey, pKey2, MIN((size_t)nKey2, nKey)); + if( res>0 || (res==0 && (size_t)nKey2remove(); + delete [] pKey; + } + + delete pCur; + return 0; +} + +int test_kc_fetch( + TestDb *pDb, + void *pKey, + int nKey, + void **ppVal, + int *pnVal +){ + KcDb *pKcDb = (KcDb *)pDb; + size_t nVal; + + if( pKcDb->pVal ){ + delete [] pKcDb->pVal; + pKcDb->pVal = 0; + } + + pKcDb->pVal = pKcDb->db->get((const char *)pKey, nKey, &nVal); + if( pKcDb->pVal ){ + *ppVal = pKcDb->pVal; + *pnVal = nVal; + }else{ + *ppVal = 0; + *pnVal = -1; + } + + return 0; +} + +int test_kc_scan( + TestDb *pDb, /* Database handle */ + void *pCtx, /* Context pointer to pass to xCallback */ + int bReverse, /* True for a reverse order scan */ + void *pKey1, int nKey1, /* Start of search */ + void *pKey2, int nKey2, /* End of search */ + void (*xCallback)(void *pCtx, void *pKey, int nKey, void *pVal, int nVal) +){ + KcDb *pKcDb = (KcDb *)pDb; + kyotocabinet::DB::Cursor* pCur = pKcDb->db->cursor(); + int res; + + if( bReverse==0 ){ + if( pKey1 ){ + res = pCur->jump((const char *)pKey1, nKey1); + }else{ + res = pCur->jump(); + } + }else{ + if( pKey2 ){ + res = pCur->jump_back((const char *)pKey2, nKey2); + }else{ + res = pCur->jump_back(); + } + } + + while( res ){ + const char *pKey; size_t nKey; + const char *pVal; size_t nVal; + pKey = pCur->get(&nKey, &pVal, &nVal); + + if( bReverse==0 && pKey2 ){ + res = memcmp(pKey, pKey2, MIN((size_t)nKey2, nKey)); + if( res>0 || (res==0 && (size_t)nKey2nKey) ){ + delete [] pKey; + break; + } + } + + xCallback(pCtx, (void *)pKey, (int)nKey, (void *)pVal, (int)nVal); + delete [] pKey; + + if( bReverse ){ + res = pCur->step_back(); + }else{ + res = pCur->step(); + } + } + + delete pCur; + return 0; +} +#endif /* HAVE_KYOTOCABINET */ + +#ifdef HAVE_MDB +#include "lmdb.h" + +extern "C" { + struct MdbDb { + TestDb base; + MDB_env *env; + MDB_dbi dbi; + }; +} + +int test_mdb_open( + const char *zSpec, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + MDB_txn *txn; + MdbDb *pMdb; + int rc; + + if( bClear ){ + char *zCmd = sqlite3_mprintf("rm -rf %s\n", zFilename); + system(zCmd); + sqlite3_free(zCmd); + } + + pMdb = (MdbDb *)malloc(sizeof(MdbDb)); + memset(pMdb, 0, sizeof(MdbDb)); + + rc = mdb_env_create(&pMdb->env); + if( rc==0 ) rc = mdb_env_set_mapsize(pMdb->env, 1*1024*1024*1024); + if( rc==0 ) rc = mdb_env_open(pMdb->env, zFilename, MDB_NOSYNC|MDB_NOSUBDIR, 0600); + if( rc==0 ) rc = mdb_txn_begin(pMdb->env, NULL, 0, &txn); + if( rc==0 ){ + rc = mdb_open(txn, NULL, 0, &pMdb->dbi); + mdb_txn_commit(txn); + } + + *ppDb = (TestDb *)pMdb; + return rc; +} + +int test_mdb_close(TestDb *pDb){ + MdbDb *pMdb = (MdbDb *)pDb; + + mdb_close(pMdb->env, pMdb->dbi); + mdb_env_close(pMdb->env); + free(pMdb); + return 0; +} + +int test_mdb_write(TestDb *pDb, void *pKey, int nKey, void *pVal, int nVal){ + int rc; + MdbDb *pMdb = (MdbDb *)pDb; + MDB_val val; + MDB_val key; + MDB_txn *txn; + + val.mv_size = nVal; + val.mv_data = pVal; + key.mv_size = nKey; + key.mv_data = pKey; + + rc = mdb_txn_begin(pMdb->env, NULL, 0, &txn); + if( rc==0 ){ + rc = mdb_put(txn, pMdb->dbi, &key, &val, 0); + if( rc==0 ){ + rc = mdb_txn_commit(txn); + }else{ + mdb_txn_abort(txn); + } + } + + return rc; +} + +int test_mdb_delete(TestDb *pDb, void *pKey, int nKey){ + int rc; + MdbDb *pMdb = (MdbDb *)pDb; + MDB_val key; + MDB_txn *txn; + + key.mv_size = nKey; + key.mv_data = pKey; + rc = mdb_txn_begin(pMdb->env, NULL, 0, &txn); + if( rc==0 ){ + rc = mdb_del(txn, pMdb->dbi, &key, 0); + if( rc==0 ){ + rc = mdb_txn_commit(txn); + }else{ + mdb_txn_abort(txn); + } + } + + return rc; +} + +int test_mdb_fetch( + TestDb *pDb, + void *pKey, + int nKey, + void **ppVal, + int *pnVal +){ + int rc; + MdbDb *pMdb = (MdbDb *)pDb; + MDB_val key; + MDB_txn *txn; + + key.mv_size = nKey; + key.mv_data = pKey; + + rc = mdb_txn_begin(pMdb->env, NULL, MDB_RDONLY, &txn); + if( rc==0 ){ + MDB_val val = {0, 0}; + rc = mdb_get(txn, pMdb->dbi, &key, &val); + if( rc==MDB_NOTFOUND ){ + rc = 0; + *ppVal = 0; + *pnVal = -1; + }else{ + *ppVal = val.mv_data; + *pnVal = val.mv_size; + } + mdb_txn_commit(txn); + } + + return rc; +} + +int test_mdb_scan( + TestDb *pDb, /* Database handle */ + void *pCtx, /* Context pointer to pass to xCallback */ + int bReverse, /* True for a reverse order scan */ + void *pKey1, int nKey1, /* Start of search */ + void *pKey2, int nKey2, /* End of search */ + void (*xCallback)(void *pCtx, void *pKey, int nKey, void *pVal, int nVal) +){ + MdbDb *pMdb = (MdbDb *)pDb; + int rc; + MDB_cursor_op op = bReverse ? MDB_PREV : MDB_NEXT; + MDB_txn *txn; + + rc = mdb_txn_begin(pMdb->env, NULL, MDB_RDONLY, &txn); + if( rc==0 ){ + MDB_cursor *csr; + MDB_val key = {0, 0}; + MDB_val val = {0, 0}; + + rc = mdb_cursor_open(txn, pMdb->dbi, &csr); + if( rc==0 ){ + while( mdb_cursor_get(csr, &key, &val, op)==0 ){ + xCallback(pCtx, key.mv_data, key.mv_size, val.mv_data, val.mv_size); + } + mdb_cursor_close(csr); + } + } + + return rc; +} + +#endif /* HAVE_MDB */ + ADDED ext/lsm1/lsm-test/lsmtest_tdb3.c Index: ext/lsm1/lsm-test/lsmtest_tdb3.c ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest_tdb3.c @@ -0,0 +1,1379 @@ + +#include "lsmtest_tdb.h" +#include "lsm.h" +#include "lsmtest.h" + +#include +#include +#include +#ifndef _WIN32 +# include +#endif +#include + +#ifndef _WIN32 +# include +#endif + +typedef struct LsmDb LsmDb; +typedef struct LsmWorker LsmWorker; +typedef struct LsmFile LsmFile; + +#define LSMTEST_DFLT_MT_MAX_CKPT (8*1024) +#define LSMTEST_DFLT_MT_MIN_CKPT (2*1024) + +#ifdef LSM_MUTEX_PTHREADS +#include + +#define LSMTEST_THREAD_CKPT 1 +#define LSMTEST_THREAD_WORKER 2 +#define LSMTEST_THREAD_WORKER_AC 3 + +/* +** There are several different types of worker threads that run in different +** test configurations, depending on the value of LsmWorker.eType. +** +** 1. Checkpointer. +** 2. Worker with auto-checkpoint. +** 3. Worker without auto-checkpoint. +*/ +struct LsmWorker { + LsmDb *pDb; /* Main database structure */ + lsm_db *pWorker; /* Worker database handle */ + pthread_t worker_thread; /* Worker thread */ + pthread_cond_t worker_cond; /* Condition var the worker waits on */ + pthread_mutex_t worker_mutex; /* Mutex used with worker_cond */ + int bDoWork; /* Set to true by client when there is work */ + int worker_rc; /* Store error code here */ + int eType; /* LSMTEST_THREAD_XXX constant */ + int bBlock; +}; +#else +struct LsmWorker { int worker_rc; int bBlock; }; +#endif + +static void mt_shutdown(LsmDb *); + +lsm_env *tdb_lsm_env(void){ + static int bInit = 0; + static lsm_env env; + if( bInit==0 ){ + memcpy(&env, lsm_default_env(), sizeof(env)); + bInit = 1; + } + return &env; +} + +typedef struct FileSector FileSector; +typedef struct FileData FileData; + +struct FileSector { + u8 *aOld; /* Old data for this sector */ +}; + +struct FileData { + int nSector; /* Allocated size of apSector[] array */ + FileSector *aSector; /* Array of file sectors */ +}; + +/* +** bPrepareCrash: +** If non-zero, the file wrappers maintain enough in-memory data to +** simulate the effect of a power-failure on the file-system (i.e. that +** unsynced sectors may be written, not written, or overwritten with +** arbitrary data when the crash occurs). +** +** bCrashed: +** Set to true after a crash is simulated. Once this variable is true, all +** VFS methods other than xClose() return LSM_IOERR as soon as they are +** called (without affecting the contents of the file-system). +** +** env: +** The environment object used by all lsm_db* handles opened by this +** object (i.e. LsmDb.db plus any worker connections). Variable env.pVfsCtx +** always points to the containing LsmDb structure. +*/ +struct LsmDb { + TestDb base; /* Base class - methods table */ + lsm_env env; /* Environment used by connection db */ + char *zName; /* Database file name */ + lsm_db *db; /* LSM database handle */ + + lsm_cursor *pCsr; /* Cursor held open during read transaction */ + void *pBuf; /* Buffer for tdb_fetch() output */ + int nBuf; /* Allocated (not used) size of pBuf */ + + /* Crash testing related state */ + int bCrashed; /* True once a crash has occurred */ + int nAutoCrash; /* Number of syncs until a crash */ + int bPrepareCrash; /* True to store writes in memory */ + + /* Unsynced data (while crash testing) */ + int szSector; /* Assumed size of disk sectors (512B) */ + FileData aFile[2]; /* Database and log file data */ + + /* Other test instrumentation */ + int bNoRecovery; /* If true, assume DMS2 is locked */ + + /* Work hook redirection */ + void (*xWork)(lsm_db *, void *); + void *pWorkCtx; + + /* IO logging hook */ + void (*xWriteHook)(void *, int, lsm_i64, int, int); + void *pWriteCtx; + + /* Worker threads (for lsm_mt) */ + int nMtMinCkpt; + int nMtMaxCkpt; + int eMode; + int nWorker; + LsmWorker *aWorker; +}; + +#define LSMTEST_MODE_SINGLETHREAD 1 +#define LSMTEST_MODE_BACKGROUND_CKPT 2 +#define LSMTEST_MODE_BACKGROUND_WORK 3 +#define LSMTEST_MODE_BACKGROUND_BOTH 4 + +/************************************************************************* +************************************************************************** +** Begin test VFS code. +*/ + +struct LsmFile { + lsm_file *pReal; /* Real underlying file */ + int bLog; /* True for log file. False for db file */ + LsmDb *pDb; /* Database handle that uses this file */ +}; + +static int testEnvFullpath( + lsm_env *pEnv, /* Environment for current LsmDb */ + const char *zFile, /* Relative path name */ + char *zOut, /* Output buffer */ + int *pnOut /* IN/OUT: Size of output buffer */ +){ + lsm_env *pRealEnv = tdb_lsm_env(); + return pRealEnv->xFullpath(pRealEnv, zFile, zOut, pnOut); +} + +static int testEnvOpen( + lsm_env *pEnv, /* Environment for current LsmDb */ + const char *zFile, /* Name of file to open */ + int flags, + lsm_file **ppFile /* OUT: New file handle object */ +){ + lsm_env *pRealEnv = tdb_lsm_env(); + LsmDb *pDb = (LsmDb *)pEnv->pVfsCtx; + int rc; /* Return Code */ + LsmFile *pRet; /* The new file handle */ + int nFile; /* Length of string zFile in bytes */ + + nFile = strlen(zFile); + pRet = (LsmFile *)testMalloc(sizeof(LsmFile)); + pRet->pDb = pDb; + pRet->bLog = (nFile > 4 && 0==memcmp("-log", &zFile[nFile-4], 4)); + + rc = pRealEnv->xOpen(pRealEnv, zFile, flags, &pRet->pReal); + if( rc!=LSM_OK ){ + testFree(pRet); + pRet = 0; + } + + *ppFile = (lsm_file *)pRet; + return rc; +} + +static int testEnvRead(lsm_file *pFile, lsm_i64 iOff, void *pData, int nData){ + lsm_env *pRealEnv = tdb_lsm_env(); + LsmFile *p = (LsmFile *)pFile; + if( p->pDb->bCrashed ) return LSM_IOERR; + return pRealEnv->xRead(p->pReal, iOff, pData, nData); +} + +static int testEnvWrite(lsm_file *pFile, lsm_i64 iOff, void *pData, int nData){ + lsm_env *pRealEnv = tdb_lsm_env(); + LsmFile *p = (LsmFile *)pFile; + LsmDb *pDb = p->pDb; + + if( pDb->bCrashed ) return LSM_IOERR; + + if( pDb->bPrepareCrash ){ + FileData *pData = &pDb->aFile[p->bLog]; + int iFirst; + int iLast; + int iSector; + + iFirst = (iOff / pDb->szSector); + iLast = ((iOff + nData - 1) / pDb->szSector); + + if( pData->nSector<(iLast+1) ){ + int nNew = ( ((iLast + 1) + 63) / 64 ) * 64; + assert( nNew>iLast ); + pData->aSector = (FileSector *)testRealloc( + pData->aSector, nNew*sizeof(FileSector) + ); + memset(&pData->aSector[pData->nSector], + 0, (nNew - pData->nSector) * sizeof(FileSector) + ); + pData->nSector = nNew; + } + + for(iSector=iFirst; iSector<=iLast; iSector++){ + if( pData->aSector[iSector].aOld==0 ){ + u8 *aOld = (u8 *)testMalloc(pDb->szSector); + pRealEnv->xRead( + p->pReal, (lsm_i64)iSector*pDb->szSector, aOld, pDb->szSector + ); + pData->aSector[iSector].aOld = aOld; + } + } + } + + if( pDb->xWriteHook ){ + int rc; + int nUs; + struct timeval t1; + struct timeval t2; + + gettimeofday(&t1, 0); + assert( nData>0 ); + rc = pRealEnv->xWrite(p->pReal, iOff, pData, nData); + gettimeofday(&t2, 0); + + nUs = (t2.tv_sec - t1.tv_sec) * 1000000 + (t2.tv_usec - t1.tv_usec); + pDb->xWriteHook(pDb->pWriteCtx, p->bLog, iOff, nData, nUs); + return rc; + } + + return pRealEnv->xWrite(p->pReal, iOff, pData, nData); +} + +static void doSystemCrash(LsmDb *pDb); + +static int testEnvSync(lsm_file *pFile){ + lsm_env *pRealEnv = tdb_lsm_env(); + LsmFile *p = (LsmFile *)pFile; + LsmDb *pDb = p->pDb; + FileData *pData = &pDb->aFile[p->bLog]; + int i; + + if( pDb->bCrashed ) return LSM_IOERR; + + if( pDb->nAutoCrash ){ + pDb->nAutoCrash--; + if( pDb->nAutoCrash==0 ){ + doSystemCrash(pDb); + pDb->bCrashed = 1; + return LSM_IOERR; + } + } + + if( pDb->bPrepareCrash ){ + for(i=0; inSector; i++){ + testFree(pData->aSector[i].aOld); + pData->aSector[i].aOld = 0; + } + } + + if( pDb->xWriteHook ){ + int rc; + int nUs; + struct timeval t1; + struct timeval t2; + + gettimeofday(&t1, 0); + rc = pRealEnv->xSync(p->pReal); + gettimeofday(&t2, 0); + + nUs = (t2.tv_sec - t1.tv_sec) * 1000000 + (t2.tv_usec - t1.tv_usec); + pDb->xWriteHook(pDb->pWriteCtx, p->bLog, 0, 0, nUs); + return rc; + } + + return pRealEnv->xSync(p->pReal); +} + +static int testEnvTruncate(lsm_file *pFile, lsm_i64 iOff){ + lsm_env *pRealEnv = tdb_lsm_env(); + LsmFile *p = (LsmFile *)pFile; + if( p->pDb->bCrashed ) return LSM_IOERR; + return pRealEnv->xTruncate(p->pReal, iOff); +} + +static int testEnvSectorSize(lsm_file *pFile){ + lsm_env *pRealEnv = tdb_lsm_env(); + LsmFile *p = (LsmFile *)pFile; + return pRealEnv->xSectorSize(p->pReal); +} + +static int testEnvRemap( + lsm_file *pFile, + lsm_i64 iMin, + void **ppOut, + lsm_i64 *pnOut +){ + lsm_env *pRealEnv = tdb_lsm_env(); + LsmFile *p = (LsmFile *)pFile; + return pRealEnv->xRemap(p->pReal, iMin, ppOut, pnOut); +} + +static int testEnvFileid( + lsm_file *pFile, + void *ppOut, + int *pnOut +){ + lsm_env *pRealEnv = tdb_lsm_env(); + LsmFile *p = (LsmFile *)pFile; + return pRealEnv->xFileid(p->pReal, ppOut, pnOut); +} + +static int testEnvClose(lsm_file *pFile){ + lsm_env *pRealEnv = tdb_lsm_env(); + LsmFile *p = (LsmFile *)pFile; + + pRealEnv->xClose(p->pReal); + testFree(p); + return LSM_OK; +} + +static int testEnvUnlink(lsm_env *pEnv, const char *zFile){ + lsm_env *pRealEnv = tdb_lsm_env(); + unused_parameter(pEnv); + return pRealEnv->xUnlink(pRealEnv, zFile); +} + +static int testEnvLock(lsm_file *pFile, int iLock, int eType){ + LsmFile *p = (LsmFile *)pFile; + lsm_env *pRealEnv = tdb_lsm_env(); + + if( iLock==2 && eType==LSM_LOCK_EXCL && p->pDb->bNoRecovery ){ + return LSM_BUSY; + } + return pRealEnv->xLock(p->pReal, iLock, eType); +} + +static int testEnvTestLock(lsm_file *pFile, int iLock, int nLock, int eType){ + LsmFile *p = (LsmFile *)pFile; + lsm_env *pRealEnv = tdb_lsm_env(); + + if( iLock==2 && eType==LSM_LOCK_EXCL && p->pDb->bNoRecovery ){ + return LSM_BUSY; + } + return pRealEnv->xTestLock(p->pReal, iLock, nLock, eType); +} + +static int testEnvShmMap(lsm_file *pFile, int iRegion, int sz, void **pp){ + LsmFile *p = (LsmFile *)pFile; + lsm_env *pRealEnv = tdb_lsm_env(); + return pRealEnv->xShmMap(p->pReal, iRegion, sz, pp); +} + +static void testEnvShmBarrier(void){ +} + +static int testEnvShmUnmap(lsm_file *pFile, int bDel){ + LsmFile *p = (LsmFile *)pFile; + lsm_env *pRealEnv = tdb_lsm_env(); + return pRealEnv->xShmUnmap(p->pReal, bDel); +} + +static int testEnvSleep(lsm_env *pEnv, int us){ + lsm_env *pRealEnv = tdb_lsm_env(); + return pRealEnv->xSleep(pRealEnv, us); +} + +static void doSystemCrash(LsmDb *pDb){ + lsm_env *pEnv = tdb_lsm_env(); + int iFile; + int iSeed = pDb->aFile[0].nSector + pDb->aFile[1].nSector; + + char *zFile = pDb->zName; + char *zFree = 0; + + for(iFile=0; iFile<2; iFile++){ + lsm_file *pFile = 0; + int i; + + pEnv->xOpen(pEnv, zFile, 0, &pFile); + for(i=0; iaFile[iFile].nSector; i++){ + u8 *aOld = pDb->aFile[iFile].aSector[i].aOld; + if( aOld ){ + int iOpt = testPrngValue(iSeed++) % 3; + switch( iOpt ){ + case 0: + break; + + case 1: + testPrngArray(iSeed++, (u32 *)aOld, pDb->szSector/4); + /* Fall-through */ + + case 2: + pEnv->xWrite( + pFile, (lsm_i64)i * pDb->szSector, aOld, pDb->szSector + ); + break; + } + testFree(aOld); + pDb->aFile[iFile].aSector[i].aOld = 0; + } + } + pEnv->xClose(pFile); + zFree = zFile = sqlite3_mprintf("%s-log", pDb->zName); + } + + sqlite3_free(zFree); +} +/* +** End test VFS code. +************************************************************************** +*************************************************************************/ + +/************************************************************************* +************************************************************************** +** Begin test compression hooks. +*/ + +#ifdef HAVE_ZLIB +#include + +static int testZipBound(void *pCtx, int nSrc){ + return compressBound(nSrc); +} + +static int testZipCompress( + void *pCtx, /* Context pointer */ + char *aOut, int *pnOut, /* OUT: Buffer containing compressed data */ + const char *aIn, int nIn /* Buffer containing input data */ +){ + uLongf n = *pnOut; /* In/out buffer size for compress() */ + int rc; /* compress() return code */ + + rc = compress((Bytef*)aOut, &n, (Bytef*)aIn, nIn); + *pnOut = n; + return (rc==Z_OK ? 0 : LSM_ERROR); +} + +static int testZipUncompress( + void *pCtx, /* Context pointer */ + char *aOut, int *pnOut, /* OUT: Buffer containing uncompressed data */ + const char *aIn, int nIn /* Buffer containing input data */ +){ + uLongf n = *pnOut; /* In/out buffer size for uncompress() */ + int rc; /* uncompress() return code */ + + rc = uncompress((Bytef*)aOut, &n, (Bytef*)aIn, nIn); + *pnOut = n; + return (rc==Z_OK ? 0 : LSM_ERROR); +} + +static int testConfigureCompression(lsm_db *pDb){ + static lsm_compress zip = { + 0, /* Context pointer (unused) */ + 1, /* Id value */ + testZipBound, /* xBound method */ + testZipCompress, /* xCompress method */ + testZipUncompress /* xUncompress method */ + }; + return lsm_config(pDb, LSM_CONFIG_SET_COMPRESSION, &zip); +} +#endif /* ifdef HAVE_ZLIB */ + +/* +** End test compression hooks. +************************************************************************** +*************************************************************************/ + +static int test_lsm_close(TestDb *pTestDb){ + int i; + int rc = LSM_OK; + LsmDb *pDb = (LsmDb *)pTestDb; + + lsm_csr_close(pDb->pCsr); + lsm_close(pDb->db); + + /* If this is a multi-threaded database, wait on the worker threads. */ + mt_shutdown(pDb); + for(i=0; inWorker && rc==LSM_OK; i++){ + rc = pDb->aWorker[i].worker_rc; + } + + for(i=0; iaFile[0].nSector; i++){ + testFree(pDb->aFile[0].aSector[i].aOld); + } + testFree(pDb->aFile[0].aSector); + for(i=0; iaFile[1].nSector; i++){ + testFree(pDb->aFile[1].aSector[i].aOld); + } + testFree(pDb->aFile[1].aSector); + + memset(pDb, sizeof(LsmDb), 0x11); + testFree((char *)pDb->pBuf); + testFree((char *)pDb); + return rc; +} + +static void mt_signal_worker(LsmDb*, int); + +static int waitOnCheckpointer(LsmDb *pDb, lsm_db *db){ + int nSleep = 0; + int nKB; + int rc; + + do { + nKB = 0; + rc = lsm_info(db, LSM_INFO_CHECKPOINT_SIZE, &nKB); + if( rc!=LSM_OK || nKBnMtMaxCkpt ) break; +#ifdef LSM_MUTEX_PTHREADS + mt_signal_worker(pDb, + (pDb->eMode==LSMTEST_MODE_BACKGROUND_CKPT ? 0 : 1) + ); +#endif + usleep(5000); + nSleep += 5; + }while( 1 ); + +#if 0 + if( nSleep ) printf("# waitOnCheckpointer(): nSleep=%d\n", nSleep); +#endif + + return rc; +} + +static int waitOnWorker(LsmDb *pDb){ + int rc; + int nLimit = -1; + int nSleep = 0; + + rc = lsm_config(pDb->db, LSM_CONFIG_AUTOFLUSH, &nLimit); + do { + int nOld, nNew, rc; + rc = lsm_info(pDb->db, LSM_INFO_TREE_SIZE, &nOld, &nNew); + if( rc!=LSM_OK ) return rc; + if( nOld==0 || nNew<(nLimit/2) ) break; +#ifdef LSM_MUTEX_PTHREADS + mt_signal_worker(pDb, 0); +#endif + usleep(5000); + nSleep += 5; + }while( 1 ); + +#if 0 + if( nSleep ) printf("# waitOnWorker(): nSleep=%d\n", nSleep); +#endif + + return rc; +} + +static int test_lsm_write( + TestDb *pTestDb, + void *pKey, + int nKey, + void *pVal, + int nVal +){ + LsmDb *pDb = (LsmDb *)pTestDb; + int rc = LSM_OK; + + if( pDb->eMode==LSMTEST_MODE_BACKGROUND_CKPT ){ + rc = waitOnCheckpointer(pDb, pDb->db); + }else if( + pDb->eMode==LSMTEST_MODE_BACKGROUND_WORK + || pDb->eMode==LSMTEST_MODE_BACKGROUND_BOTH + ){ + rc = waitOnWorker(pDb); + } + + if( rc==LSM_OK ){ + rc = lsm_insert(pDb->db, pKey, nKey, pVal, nVal); + } + return rc; +} + +static int test_lsm_delete(TestDb *pTestDb, void *pKey, int nKey){ + LsmDb *pDb = (LsmDb *)pTestDb; + return lsm_delete(pDb->db, pKey, nKey); +} + +static int test_lsm_delete_range( + TestDb *pTestDb, + void *pKey1, int nKey1, + void *pKey2, int nKey2 +){ + LsmDb *pDb = (LsmDb *)pTestDb; + return lsm_delete_range(pDb->db, pKey1, nKey1, pKey2, nKey2); +} + +static int test_lsm_fetch( + TestDb *pTestDb, + void *pKey, + int nKey, + void **ppVal, + int *pnVal +){ + int rc; + LsmDb *pDb = (LsmDb *)pTestDb; + lsm_cursor *csr; + + if( pKey==0 ) return LSM_OK; + + rc = lsm_csr_open(pDb->db, &csr); + if( rc!=LSM_OK ) return rc; + + rc = lsm_csr_seek(csr, pKey, nKey, LSM_SEEK_EQ); + if( rc==LSM_OK ){ + if( lsm_csr_valid(csr) ){ + const void *pVal; int nVal; + rc = lsm_csr_value(csr, &pVal, &nVal); + if( nVal>pDb->nBuf ){ + testFree(pDb->pBuf); + pDb->pBuf = testMalloc(nVal*2); + pDb->nBuf = nVal*2; + } + memcpy(pDb->pBuf, pVal, nVal); + *ppVal = pDb->pBuf; + *pnVal = nVal; + }else{ + *ppVal = 0; + *pnVal = -1; + } + } + lsm_csr_close(csr); + return rc; +} + +static int test_lsm_scan( + TestDb *pTestDb, + void *pCtx, + int bReverse, + void *pFirst, int nFirst, + void *pLast, int nLast, + void (*xCallback)(void *, void *, int , void *, int) +){ + LsmDb *pDb = (LsmDb *)pTestDb; + lsm_cursor *csr; + int rc; + + rc = lsm_csr_open(pDb->db, &csr); + if( rc!=LSM_OK ) return rc; + + if( bReverse ){ + if( pLast ){ + rc = lsm_csr_seek(csr, pLast, nLast, LSM_SEEK_LE); + }else{ + rc = lsm_csr_last(csr); + } + }else{ + if( pFirst ){ + rc = lsm_csr_seek(csr, pFirst, nFirst, LSM_SEEK_GE); + }else{ + rc = lsm_csr_first(csr); + } + } + + while( rc==LSM_OK && lsm_csr_valid(csr) ){ + const void *pKey; int nKey; + const void *pVal; int nVal; + int cmp; + + lsm_csr_key(csr, &pKey, &nKey); + lsm_csr_value(csr, &pVal, &nVal); + + if( bReverse && pFirst ){ + cmp = memcmp(pFirst, pKey, MIN(nKey, nFirst)); + if( cmp>0 || (cmp==0 && nFirst>nKey) ) break; + }else if( bReverse==0 && pLast ){ + cmp = memcmp(pLast, pKey, MIN(nKey, nLast)); + if( cmp<0 || (cmp==0 && nLastpCsr==0 ) rc = lsm_csr_open(pDb->db, &pDb->pCsr); + if( rc==LSM_OK && iLevel>1 ){ + rc = lsm_begin(pDb->db, iLevel-1); + } + + return rc; +} +static int test_lsm_commit(TestDb *pTestDb, int iLevel){ + LsmDb *pDb = (LsmDb *)pTestDb; + + /* If iLevel==0, close any open read transaction */ + if( iLevel==0 && pDb->pCsr ){ + lsm_csr_close(pDb->pCsr); + pDb->pCsr = 0; + } + + /* If iLevel==0, close any open read transaction */ + return lsm_commit(pDb->db, MAX(0, iLevel-1)); +} +static int test_lsm_rollback(TestDb *pTestDb, int iLevel){ + LsmDb *pDb = (LsmDb *)pTestDb; + + /* If iLevel==0, close any open read transaction */ + if( iLevel==0 && pDb->pCsr ){ + lsm_csr_close(pDb->pCsr); + pDb->pCsr = 0; + } + + return lsm_rollback(pDb->db, MAX(0, iLevel-1)); +} + +/* +** A log message callback registered with lsm connections. Prints all +** messages to stderr. +*/ +static void xLog(void *pCtx, int rc, const char *z){ + unused_parameter(rc); + /* fprintf(stderr, "lsm: rc=%d \"%s\"\n", rc, z); */ + if( pCtx ) fprintf(stderr, "%s: ", (char *)pCtx); + fprintf(stderr, "%s\n", z); + fflush(stderr); +} + +static void xWorkHook(lsm_db *db, void *pArg){ + LsmDb *p = (LsmDb *)pArg; + if( p->xWork ) p->xWork(db, p->pWorkCtx); +} + +#define TEST_NO_RECOVERY -1 +#define TEST_COMPRESSION -3 + +#define TEST_MT_MODE -2 +#define TEST_MT_MIN_CKPT -4 +#define TEST_MT_MAX_CKPT -5 + +int test_lsm_config_str( + LsmDb *pLsm, + lsm_db *db, + int bWorker, + const char *zStr, + int *pnThread +){ + struct CfgParam { + const char *zParam; + int bWorker; + int eParam; + } aParam[] = { + { "autoflush", 0, LSM_CONFIG_AUTOFLUSH }, + { "page_size", 0, LSM_CONFIG_PAGE_SIZE }, + { "block_size", 0, LSM_CONFIG_BLOCK_SIZE }, + { "safety", 0, LSM_CONFIG_SAFETY }, + { "autowork", 0, LSM_CONFIG_AUTOWORK }, + { "autocheckpoint", 0, LSM_CONFIG_AUTOCHECKPOINT }, + { "mmap", 0, LSM_CONFIG_MMAP }, + { "use_log", 0, LSM_CONFIG_USE_LOG }, + { "automerge", 0, LSM_CONFIG_AUTOMERGE }, + { "max_freelist", 0, LSM_CONFIG_MAX_FREELIST }, + { "multi_proc", 0, LSM_CONFIG_MULTIPLE_PROCESSES }, + { "worker_automerge", 1, LSM_CONFIG_AUTOMERGE }, + { "test_no_recovery", 0, TEST_NO_RECOVERY }, + { "bg_min_ckpt", 0, TEST_NO_RECOVERY }, + + { "mt_mode", 0, TEST_MT_MODE }, + { "mt_min_ckpt", 0, TEST_MT_MIN_CKPT }, + { "mt_max_ckpt", 0, TEST_MT_MAX_CKPT }, + +#ifdef HAVE_ZLIB + { "compression", 0, TEST_COMPRESSION }, +#endif + { 0, 0 } + }; + const char *z = zStr; + int nThread = 1; + + if( zStr==0 ) return 0; + + assert( db ); + while( z[0] ){ + const char *zStart; + + /* Skip whitespace */ + while( *z==' ' ) z++; + zStart = z; + + while( *z && *z!='=' ) z++; + if( *z ){ + int eParam; + int i; + int iVal; + int iMul = 1; + int rc; + char zParam[32]; + int nParam = z-zStart; + if( nParam==0 || nParam>sizeof(zParam)-1 ) goto syntax_error; + + memcpy(zParam, zStart, nParam); + zParam[nParam] = '\0'; + rc = testArgSelect(aParam, "param", zParam, &i); + if( rc!=0 ) return rc; + eParam = aParam[i].eParam; + + z++; + zStart = z; + while( *z>='0' && *z<='9' ) z++; + if( *z=='k' || *z=='K' ){ + iMul = 1; + z++; + }else if( *z=='M' || *z=='M' ){ + iMul = 1024; + z++; + } + nParam = z-zStart; + if( nParam==0 || nParam>sizeof(zParam)-1 ) goto syntax_error; + memcpy(zParam, zStart, nParam); + zParam[nParam] = '\0'; + iVal = atoi(zParam) * iMul; + + if( eParam>0 ){ + if( bWorker || aParam[i].bWorker==0 ){ + lsm_config(db, eParam, &iVal); + } + }else{ + switch( eParam ){ + case TEST_NO_RECOVERY: + if( pLsm ) pLsm->bNoRecovery = iVal; + break; + case TEST_MT_MODE: + if( pLsm ) nThread = iVal; + break; + case TEST_MT_MIN_CKPT: + if( pLsm && iVal>0 ) pLsm->nMtMinCkpt = iVal*1024; + break; + case TEST_MT_MAX_CKPT: + if( pLsm && iVal>0 ) pLsm->nMtMaxCkpt = iVal*1024; + break; +#ifdef HAVE_ZLIB + case TEST_COMPRESSION: + testConfigureCompression(db); + break; +#endif + } + } + }else if( z!=zStart ){ + goto syntax_error; + } + } + + if( pnThread ) *pnThread = nThread; + if( pLsm && pLsm->nMtMaxCkpt < pLsm->nMtMinCkpt ){ + pLsm->nMtMinCkpt = pLsm->nMtMaxCkpt; + } + + return 0; + syntax_error: + testPrintError("syntax error at: \"%s\"\n", z); + return 1; +} + +int tdb_lsm_config_str(TestDb *pDb, const char *zStr){ + int rc = 0; + if( tdb_lsm(pDb) ){ + int i; + LsmDb *pLsm = (LsmDb *)pDb; + + rc = test_lsm_config_str(pLsm, pLsm->db, 0, zStr, 0); +#ifdef LSM_MUTEX_PTHREADS + for(i=0; rc==0 && inWorker; i++){ + rc = test_lsm_config_str(0, pLsm->aWorker[i].pWorker, 1, zStr, 0); + } +#endif + } + return rc; +} + +int tdb_lsm_configure(lsm_db *db, const char *zConfig){ + return test_lsm_config_str(0, db, 0, zConfig, 0); +} + +static int testLsmStartWorkers(LsmDb *, int, const char *, const char *); + +static int testLsmOpen( + const char *zCfg, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + static const DatabaseMethods LsmMethods = { + test_lsm_close, + test_lsm_write, + test_lsm_delete, + test_lsm_delete_range, + test_lsm_fetch, + test_lsm_scan, + test_lsm_begin, + test_lsm_commit, + test_lsm_rollback + }; + + int rc; + int nFilename; + LsmDb *pDb; + + /* If the bClear flag is set, delete any existing database. */ + assert( zFilename); + if( bClear ) testDeleteLsmdb(zFilename); + nFilename = strlen(zFilename); + + pDb = (LsmDb *)testMalloc(sizeof(LsmDb) + nFilename + 1); + memset(pDb, 0, sizeof(LsmDb)); + pDb->base.pMethods = &LsmMethods; + pDb->zName = (char *)&pDb[1]; + memcpy(pDb->zName, zFilename, nFilename + 1); + + /* Default the sector size used for crash simulation to 512 bytes. + ** Todo: There should be an OS method to obtain this value - just as + ** there is in SQLite. For now, LSM assumes that it is smaller than + ** the page size (default 4KB). + */ + pDb->szSector = 256; + + /* Default values for the mt_min_ckpt and mt_max_ckpt parameters. */ + pDb->nMtMinCkpt = LSMTEST_DFLT_MT_MIN_CKPT; + pDb->nMtMaxCkpt = LSMTEST_DFLT_MT_MAX_CKPT; + + memcpy(&pDb->env, tdb_lsm_env(), sizeof(lsm_env)); + pDb->env.pVfsCtx = (void *)pDb; + pDb->env.xFullpath = testEnvFullpath; + pDb->env.xOpen = testEnvOpen; + pDb->env.xRead = testEnvRead; + pDb->env.xWrite = testEnvWrite; + pDb->env.xTruncate = testEnvTruncate; + pDb->env.xSync = testEnvSync; + pDb->env.xSectorSize = testEnvSectorSize; + pDb->env.xRemap = testEnvRemap; + pDb->env.xFileid = testEnvFileid; + pDb->env.xClose = testEnvClose; + pDb->env.xUnlink = testEnvUnlink; + pDb->env.xLock = testEnvLock; + pDb->env.xTestLock = testEnvTestLock; + pDb->env.xShmBarrier = testEnvShmBarrier; + pDb->env.xShmMap = testEnvShmMap; + pDb->env.xShmUnmap = testEnvShmUnmap; + pDb->env.xSleep = testEnvSleep; + + rc = lsm_new(&pDb->env, &pDb->db); + if( rc==LSM_OK ){ + int nThread = 1; + lsm_config_log(pDb->db, xLog, 0); + lsm_config_work_hook(pDb->db, xWorkHook, (void *)pDb); + + rc = test_lsm_config_str(pDb, pDb->db, 0, zCfg, &nThread); + if( rc==LSM_OK ) rc = lsm_open(pDb->db, zFilename); + + pDb->eMode = nThread; +#ifdef LSM_MUTEX_PTHREADS + if( rc==LSM_OK && nThread>1 ){ + testLsmStartWorkers(pDb, nThread, zFilename, zCfg); + } +#endif + + if( rc!=LSM_OK ){ + test_lsm_close((TestDb *)pDb); + pDb = 0; + } + } + + *ppDb = (TestDb *)pDb; + return rc; +} + +int test_lsm_open( + const char *zSpec, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + return testLsmOpen(zSpec, zFilename, bClear, ppDb); +} + +int test_lsm_small_open( + const char *zSpec, + const char *zFile, + int bClear, + TestDb **ppDb +){ + const char *zCfg = "page_size=256 block_size=64 mmap=1024"; + return testLsmOpen(zCfg, zFile, bClear, ppDb); +} + +int test_lsm_lomem_open( + const char *zSpec, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + /* "max_freelist=4 autocheckpoint=32" */ + const char *zCfg = + "page_size=256 block_size=64 autoflush=16 " + "autocheckpoint=32" + "mmap=0 " + ; + return testLsmOpen(zCfg, zFilename, bClear, ppDb); +} + +int test_lsm_zip_open( + const char *zSpec, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + const char *zCfg = + "page_size=256 block_size=64 autoflush=16 " + "autocheckpoint=32 compression=1 mmap=0 " + ; + return testLsmOpen(zCfg, zFilename, bClear, ppDb); +} + +lsm_db *tdb_lsm(TestDb *pDb){ + if( pDb->pMethods->xClose==test_lsm_close ){ + return ((LsmDb *)pDb)->db; + } + return 0; +} + +void tdb_lsm_enable_log(TestDb *pDb, int bEnable){ + lsm_db *db = tdb_lsm(pDb); + if( db ){ + lsm_config_log(db, (bEnable ? xLog : 0), (void *)"client"); + } +} + +void tdb_lsm_application_crash(TestDb *pDb){ + if( tdb_lsm(pDb) ){ + LsmDb *p = (LsmDb *)pDb; + p->bCrashed = 1; + } +} + +void tdb_lsm_prepare_system_crash(TestDb *pDb){ + if( tdb_lsm(pDb) ){ + LsmDb *p = (LsmDb *)pDb; + p->bPrepareCrash = 1; + } +} + +void tdb_lsm_system_crash(TestDb *pDb){ + if( tdb_lsm(pDb) ){ + LsmDb *p = (LsmDb *)pDb; + p->bCrashed = 1; + doSystemCrash(p); + } +} + +void tdb_lsm_safety(TestDb *pDb, int eMode){ + assert( eMode==LSM_SAFETY_OFF + || eMode==LSM_SAFETY_NORMAL + || eMode==LSM_SAFETY_FULL + ); + if( tdb_lsm(pDb) ){ + int iParam = eMode; + LsmDb *p = (LsmDb *)pDb; + lsm_config(p->db, LSM_CONFIG_SAFETY, &iParam); + } +} + +void tdb_lsm_prepare_sync_crash(TestDb *pDb, int iSync){ + assert( iSync>0 ); + if( tdb_lsm(pDb) ){ + LsmDb *p = (LsmDb *)pDb; + p->nAutoCrash = iSync; + p->bPrepareCrash = 1; + } +} + +void tdb_lsm_config_work_hook( + TestDb *pDb, + void (*xWork)(lsm_db *, void *), + void *pWorkCtx +){ + if( tdb_lsm(pDb) ){ + LsmDb *p = (LsmDb *)pDb; + p->xWork = xWork; + p->pWorkCtx = pWorkCtx; + } +} + +void tdb_lsm_write_hook( + TestDb *pDb, + void (*xWrite)(void *, int, lsm_i64, int, int), + void *pWriteCtx +){ + if( tdb_lsm(pDb) ){ + LsmDb *p = (LsmDb *)pDb; + p->xWriteHook = xWrite; + p->pWriteCtx = pWriteCtx; + } +} + +int tdb_lsm_open(const char *zCfg, const char *zDb, int bClear, TestDb **ppDb){ + return testLsmOpen(zCfg, zDb, bClear, ppDb); +} + +#ifdef LSM_MUTEX_PTHREADS + +/* +** Signal worker thread iWorker that there may be work to do. +*/ +static void mt_signal_worker(LsmDb *pDb, int iWorker){ + LsmWorker *p = &pDb->aWorker[iWorker]; + pthread_mutex_lock(&p->worker_mutex); + p->bDoWork = 1; + pthread_cond_signal(&p->worker_cond); + pthread_mutex_unlock(&p->worker_mutex); +} + +/* +** This routine is used as the main() for all worker threads. +*/ +static void *worker_main(void *pArg){ + LsmWorker *p = (LsmWorker *)pArg; + lsm_db *pWorker; /* Connection to access db through */ + + pthread_mutex_lock(&p->worker_mutex); + while( (pWorker = p->pWorker) ){ + int rc = LSM_OK; + + /* Do some work. If an error occurs, exit. */ + + pthread_mutex_unlock(&p->worker_mutex); + if( p->eType==LSMTEST_THREAD_CKPT ){ + int nKB = 0; + rc = lsm_info(pWorker, LSM_INFO_CHECKPOINT_SIZE, &nKB); + if( rc==LSM_OK && nKB>=p->pDb->nMtMinCkpt ){ + rc = lsm_checkpoint(pWorker, 0); + } + }else{ + int nWrite; + do { + + if( p->eType==LSMTEST_THREAD_WORKER ){ + waitOnCheckpointer(p->pDb, pWorker); + } + + nWrite = 0; + rc = lsm_work(pWorker, 0, 256, &nWrite); + + if( p->eType==LSMTEST_THREAD_WORKER && nWrite ){ + mt_signal_worker(p->pDb, 1); + } + }while( nWrite && p->pWorker ); + } + pthread_mutex_lock(&p->worker_mutex); + + if( rc!=LSM_OK && rc!=LSM_BUSY ){ + p->worker_rc = rc; + break; + } + + /* The thread will wake up when it is signaled either because another + ** thread has created some work for this one or because the connection + ** is being closed. */ + if( p->pWorker && p->bDoWork==0 ){ + pthread_cond_wait(&p->worker_cond, &p->worker_mutex); + } + p->bDoWork = 0; + } + pthread_mutex_unlock(&p->worker_mutex); + + return 0; +} + + +static void mt_stop_worker(LsmDb *pDb, int iWorker){ + LsmWorker *p = &pDb->aWorker[iWorker]; + if( p->pWorker ){ + void *pDummy; + lsm_db *pWorker; + + /* Signal the worker to stop */ + pthread_mutex_lock(&p->worker_mutex); + pWorker = p->pWorker; + p->pWorker = 0; + pthread_cond_signal(&p->worker_cond); + pthread_mutex_unlock(&p->worker_mutex); + + /* Join the worker thread. */ + pthread_join(p->worker_thread, &pDummy); + + /* Free resources allocated in mt_start_worker() */ + pthread_cond_destroy(&p->worker_cond); + pthread_mutex_destroy(&p->worker_mutex); + lsm_close(pWorker); + } +} + +static void mt_shutdown(LsmDb *pDb){ + int i; + for(i=0; inWorker; i++){ + mt_stop_worker(pDb, i); + } +} + +/* +** This callback is invoked by LSM when the client database writes to +** the database file (i.e. to flush the contents of the in-memory tree). +** This implies there may be work to do on the database, so signal +** the worker threads. +*/ +static void mt_client_work_hook(lsm_db *db, void *pArg){ + LsmDb *pDb = (LsmDb *)pArg; /* LsmDb database handle */ + + /* Invoke the user level work-hook, if any. */ + if( pDb->xWork ) pDb->xWork(db, pDb->pWorkCtx); + + /* Wake up worker thread 0. */ + mt_signal_worker(pDb, 0); +} + +static void mt_worker_work_hook(lsm_db *db, void *pArg){ + LsmDb *pDb = (LsmDb *)pArg; /* LsmDb database handle */ + + /* Invoke the user level work-hook, if any. */ + if( pDb->xWork ) pDb->xWork(db, pDb->pWorkCtx); +} + +/* +** Launch worker thread iWorker for database connection pDb. +*/ +static int mt_start_worker( + LsmDb *pDb, /* Main database structure */ + int iWorker, /* Worker number to start */ + const char *zFilename, /* File name of database to open */ + const char *zCfg, /* Connection configuration string */ + int eType /* Type of worker thread */ +){ + int rc = 0; /* Return code */ + LsmWorker *p; /* Object to initialize */ + + assert( iWorkernWorker ); + assert( eType==LSMTEST_THREAD_CKPT + || eType==LSMTEST_THREAD_WORKER + || eType==LSMTEST_THREAD_WORKER_AC + ); + + p = &pDb->aWorker[iWorker]; + p->eType = eType; + p->pDb = pDb; + + /* Open the worker connection */ + if( rc==0 ) rc = lsm_new(&pDb->env, &p->pWorker); + if( zCfg ){ + test_lsm_config_str(pDb, p->pWorker, 1, zCfg, 0); + } + if( rc==0 ) rc = lsm_open(p->pWorker, zFilename); + lsm_config_log(p->pWorker, xLog, (void *)"worker"); + + /* Configure the work-hook */ + if( rc==0 ){ + lsm_config_work_hook(p->pWorker, mt_worker_work_hook, (void *)pDb); + } + + if( eType==LSMTEST_THREAD_WORKER ){ + test_lsm_config_str(0, p->pWorker, 1, "autocheckpoint=0", 0); + } + + /* Kick off the worker thread. */ + if( rc==0 ) rc = pthread_cond_init(&p->worker_cond, 0); + if( rc==0 ) rc = pthread_mutex_init(&p->worker_mutex, 0); + if( rc==0 ) rc = pthread_create(&p->worker_thread, 0, worker_main, (void *)p); + + return rc; +} + + +static int testLsmStartWorkers( + LsmDb *pDb, int eModel, const char *zFilename, const char *zCfg +){ + int rc; + + if( eModel<1 || eModel>4 ) return 1; + if( eModel==1 ) return 0; + + /* Configure a work-hook for the client connection. Worker 0 is signalled + ** every time the users connection writes to the database. */ + lsm_config_work_hook(pDb->db, mt_client_work_hook, (void *)pDb); + + /* Allocate space for two worker connections. They may not both be + ** used, but both are allocated. */ + pDb->aWorker = (LsmWorker *)testMalloc(sizeof(LsmWorker) * 2); + memset(pDb->aWorker, 0, sizeof(LsmWorker) * 2); + + switch( eModel ){ + case LSMTEST_MODE_BACKGROUND_CKPT: + pDb->nWorker = 1; + test_lsm_config_str(0, pDb->db, 0, "autocheckpoint=0", 0); + rc = mt_start_worker(pDb, 0, zFilename, zCfg, LSMTEST_THREAD_CKPT); + break; + + case LSMTEST_MODE_BACKGROUND_WORK: + pDb->nWorker = 1; + test_lsm_config_str(0, pDb->db, 0, "autowork=0", 0); + rc = mt_start_worker(pDb, 0, zFilename, zCfg, LSMTEST_THREAD_WORKER_AC); + break; + + case LSMTEST_MODE_BACKGROUND_BOTH: + pDb->nWorker = 2; + test_lsm_config_str(0, pDb->db, 0, "autowork=0", 0); + rc = mt_start_worker(pDb, 0, zFilename, zCfg, LSMTEST_THREAD_WORKER); + if( rc==0 ){ + rc = mt_start_worker(pDb, 1, zFilename, zCfg, LSMTEST_THREAD_CKPT); + } + break; + } + + return rc; +} + + +int test_lsm_mt2( + const char *zSpec, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + const char *zCfg = "mt_mode=2"; + return testLsmOpen(zCfg, zFilename, bClear, ppDb); +} + +int test_lsm_mt3( + const char *zSpec, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + const char *zCfg = "mt_mode=4"; + return testLsmOpen(zCfg, zFilename, bClear, ppDb); +} + +#else +static void mt_shutdown(LsmDb *pDb) { + unused_parameter(pDb); +} +int test_lsm_mt(const char *zFilename, int bClear, TestDb **ppDb){ + unused_parameter(zFilename); + unused_parameter(bClear); + unused_parameter(ppDb); + testPrintError("threads unavailable - recompile with LSM_MUTEX_PTHREADS\n"); + return 1; +} +#endif ADDED ext/lsm1/lsm-test/lsmtest_tdb4.c Index: ext/lsm1/lsm-test/lsmtest_tdb4.c ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest_tdb4.c @@ -0,0 +1,982 @@ + +/* +** This file contains the TestDb bt wrapper. +*/ + +#include "lsmtest_tdb.h" +#include "lsmtest.h" +#include +#include "bt.h" + +#include + +typedef struct BtDb BtDb; +typedef struct BtFile BtFile; + +/* Background checkpointer interface (see implementations below). */ +typedef struct bt_ckpter bt_ckpter; +static int bgc_attach(BtDb *pDb, const char*); +static int bgc_detach(BtDb *pDb); + +/* +** Each database or log file opened by a database handle is wrapped by +** an object of the following type. +*/ +struct BtFile { + BtDb *pBt; /* Database handle that opened this file */ + bt_env *pVfs; /* Underlying VFS */ + bt_file *pFile; /* File handle belonging to underlying VFS */ + int nSectorSize; /* Size of sectors in bytes */ + int nSector; /* Allocated size of nSector array */ + u8 **apSector; /* Original sector data */ +}; + +/* +** nCrashSync: +** If this value is non-zero, then a "crash-test" is running. If +** nCrashSync==1, then the crash is simulated during the very next +** call to the xSync() VFS method (on either the db or log file). +** If nCrashSync==2, the following call to xSync(), and so on. +** +** bCrash: +** After a crash is simulated, this variable is set. Any subsequent +** attempts to write to a file or modify the file system in any way +** fail once this is set. All the caller can do is close the connection. +** +** bFastInsert: +** If this variable is set to true, then a BT_CONTROL_FAST_INSERT_OP +** control is issued before each callto BtReplace() or BtCsrOpen(). +*/ +struct BtDb { + TestDb base; /* Base class */ + bt_db *pBt; /* bt database handle */ + sqlite4_env *pEnv; /* SQLite environment (for malloc/free) */ + bt_env *pVfs; /* Underlying VFS */ + int bFastInsert; /* True to use fast-insert */ + + /* Space for bt_fetch() results */ + u8 *aBuffer; /* Space to store results */ + int nBuffer; /* Allocated size of aBuffer[] in bytes */ + int nRef; + + /* Background checkpointer used by mt connections */ + bt_ckpter *pCkpter; + + /* Stuff used for crash test simulation */ + BtFile *apFile[2]; /* Database and log files used by pBt */ + bt_env env; /* Private VFS for this object */ + int nCrashSync; /* Number of syncs until crash (see above) */ + int bCrash; /* True once a crash has been simulated */ +}; + +static int btVfsFullpath( + sqlite4_env *pEnv, + bt_env *pVfs, + const char *z, + char **pzOut +){ + BtDb *pBt = (BtDb*)pVfs->pVfsCtx; + if( pBt->bCrash ) return SQLITE4_IOERR; + return pBt->pVfs->xFullpath(pEnv, pBt->pVfs, z, pzOut); +} + +static int btVfsOpen( + sqlite4_env *pEnv, + bt_env *pVfs, + const char *zFile, + int flags, bt_file **ppFile +){ + BtFile *p; + BtDb *pBt = (BtDb*)pVfs->pVfsCtx; + int rc; + + if( pBt->bCrash ) return SQLITE4_IOERR; + + p = (BtFile*)testMalloc(sizeof(BtFile)); + if( !p ) return SQLITE4_NOMEM; + if( flags & BT_OPEN_DATABASE ){ + pBt->apFile[0] = p; + }else if( flags & BT_OPEN_LOG ){ + pBt->apFile[1] = p; + } + if( (flags & BT_OPEN_SHARED)==0 ){ + p->pBt = pBt; + } + p->pVfs = pBt->pVfs; + + rc = pBt->pVfs->xOpen(pEnv, pVfs, zFile, flags, &p->pFile); + if( rc!=SQLITE4_OK ){ + testFree(p); + p = 0; + }else{ + pBt->nRef++; + } + + *ppFile = (bt_file*)p; + return rc; +} + +static int btVfsSize(bt_file *pFile, sqlite4_int64 *piRes){ + BtFile *p = (BtFile*)pFile; + if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR; + return p->pVfs->xSize(p->pFile, piRes); +} + +static int btVfsRead(bt_file *pFile, sqlite4_int64 iOff, void *pBuf, int nBuf){ + BtFile *p = (BtFile*)pFile; + if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR; + return p->pVfs->xRead(p->pFile, iOff, pBuf, nBuf); +} + +static int btFlushSectors(BtFile *p, int iFile){ + sqlite4_int64 iSz; + int rc; + int i; + u8 *aTmp = 0; + + rc = p->pBt->pVfs->xSize(p->pFile, &iSz); + for(i=0; rc==SQLITE4_OK && inSector; i++){ + if( p->pBt->bCrash && p->apSector[i] ){ + + /* The system is simulating a crash. There are three choices for + ** this sector: + ** + ** 1) Leave it as it is (simulating a successful write), + ** 2) Restore the original data (simulating a lost write), + ** 3) Populate the disk sector with garbage data. + */ + sqlite4_int64 iSOff = p->nSectorSize*i; + int nWrite = MIN(p->nSectorSize, iSz - iSOff); + + if( nWrite ){ + u8 *aWrite = 0; + int iOpt = (testPrngValue(i) % 3) + 1; + if( iOpt==1 ){ + aWrite = p->apSector[i]; + }else if( iOpt==3 ){ + if( aTmp==0 ) aTmp = testMalloc(p->nSectorSize); + aWrite = aTmp; + testPrngArray(i*13, (u32*)aWrite, nWrite/sizeof(u32)); + } + +#if 0 +fprintf(stderr, "handle sector %d of %s with %s\n", i, + iFile==0 ? "db" : "log", + iOpt==1 ? "rollback" : iOpt==2 ? "write" : "omit" +); +fflush(stderr); +#endif + + if( aWrite ){ + rc = p->pBt->pVfs->xWrite(p->pFile, iSOff, aWrite, nWrite); + } + } + } + testFree(p->apSector[i]); + p->apSector[i] = 0; + } + + testFree(aTmp); + return rc; +} + +static int btSaveSectors(BtFile *p, sqlite4_int64 iOff, int nBuf){ + int rc; + sqlite4_int64 iSz; /* Size of file on disk */ + int iFirst; /* First sector affected */ + int iSector; /* Current sector */ + int iLast; /* Last sector affected */ + + if( p->nSectorSize==0 ){ + p->nSectorSize = p->pBt->pVfs->xSectorSize(p->pFile); + if( p->nSectorSize<512 ) p->nSectorSize = 512; + } + iLast = (iOff+nBuf-1) / p->nSectorSize; + iFirst = iOff / p->nSectorSize; + + rc = p->pBt->pVfs->xSize(p->pFile, &iSz); + for(iSector=iFirst; rc==SQLITE4_OK && iSector<=iLast; iSector++){ + int nRead; + sqlite4_int64 iSOff = iSector * p->nSectorSize; + u8 *aBuf = testMalloc(p->nSectorSize); + nRead = MIN(p->nSectorSize, (iSz - iSOff)); + if( nRead>0 ){ + rc = p->pBt->pVfs->xRead(p->pFile, iSOff, aBuf, nRead); + } + + while( rc==SQLITE4_OK && iSector>=p->nSector ){ + int nNew = p->nSector + 32; + u8 **apNew = (u8**)testMalloc(nNew * sizeof(u8*)); + memcpy(apNew, p->apSector, p->nSector*sizeof(u8*)); + testFree(p->apSector); + p->apSector = apNew; + p->nSector = nNew; + } + + p->apSector[iSector] = aBuf; + } + + return rc; +} + +static int btVfsWrite(bt_file *pFile, sqlite4_int64 iOff, void *pBuf, int nBuf){ + BtFile *p = (BtFile*)pFile; + if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR; + if( p->pBt && p->pBt->nCrashSync ){ + btSaveSectors(p, iOff, nBuf); + } + return p->pVfs->xWrite(p->pFile, iOff, pBuf, nBuf); +} + +static int btVfsTruncate(bt_file *pFile, sqlite4_int64 iOff){ + BtFile *p = (BtFile*)pFile; + if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR; + return p->pVfs->xTruncate(p->pFile, iOff); +} + +static int btVfsSync(bt_file *pFile){ + int rc = SQLITE4_OK; + BtFile *p = (BtFile*)pFile; + BtDb *pBt = p->pBt; + + if( pBt ){ + if( pBt->bCrash ) return SQLITE4_IOERR; + if( pBt->nCrashSync ){ + pBt->nCrashSync--; + pBt->bCrash = (pBt->nCrashSync==0); + if( pBt->bCrash ){ + btFlushSectors(pBt->apFile[0], 0); + btFlushSectors(pBt->apFile[1], 1); + rc = SQLITE4_IOERR; + }else{ + btFlushSectors(p, 0); + } + } + } + + if( rc==SQLITE4_OK ){ + rc = p->pVfs->xSync(p->pFile); + } + return rc; +} + +static int btVfsSectorSize(bt_file *pFile){ + BtFile *p = (BtFile*)pFile; + return p->pVfs->xSectorSize(p->pFile); +} + +static void btDeref(BtDb *p){ + p->nRef--; + assert( p->nRef>=0 ); + if( p->nRef<=0 ) testFree(p); +} + +static int btVfsClose(bt_file *pFile){ + BtFile *p = (BtFile*)pFile; + BtDb *pBt = p->pBt; + int rc; + if( pBt ){ + btFlushSectors(p, 0); + if( p==pBt->apFile[0] ) pBt->apFile[0] = 0; + if( p==pBt->apFile[1] ) pBt->apFile[1] = 0; + } + testFree(p->apSector); + rc = p->pVfs->xClose(p->pFile); +#if 0 + btDeref(p->pBt); +#endif + testFree(p); + return rc; +} + +static int btVfsUnlink(sqlite4_env *pEnv, bt_env *pVfs, const char *zFile){ + BtDb *pBt = (BtDb*)pVfs->pVfsCtx; + if( pBt->bCrash ) return SQLITE4_IOERR; + return pBt->pVfs->xUnlink(pEnv, pBt->pVfs, zFile); +} + +static int btVfsLock(bt_file *pFile, int iLock, int eType){ + BtFile *p = (BtFile*)pFile; + if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR; + return p->pVfs->xLock(p->pFile, iLock, eType); +} + +static int btVfsTestLock(bt_file *pFile, int iLock, int nLock, int eType){ + BtFile *p = (BtFile*)pFile; + if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR; + return p->pVfs->xTestLock(p->pFile, iLock, nLock, eType); +} + +static int btVfsShmMap(bt_file *pFile, int iChunk, int sz, void **ppOut){ + BtFile *p = (BtFile*)pFile; + if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR; + return p->pVfs->xShmMap(p->pFile, iChunk, sz, ppOut); +} + +static void btVfsShmBarrier(bt_file *pFile){ + BtFile *p = (BtFile*)pFile; + return p->pVfs->xShmBarrier(p->pFile); +} + +static int btVfsShmUnmap(bt_file *pFile, int bDelete){ + BtFile *p = (BtFile*)pFile; + if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR; + return p->pVfs->xShmUnmap(p->pFile, bDelete); +} + +static int bt_close(TestDb *pTestDb){ + BtDb *p = (BtDb*)pTestDb; + int rc = sqlite4BtClose(p->pBt); + free(p->aBuffer); + if( p->apFile[0] ) p->apFile[0]->pBt = 0; + if( p->apFile[1] ) p->apFile[1]->pBt = 0; + bgc_detach(p); + testFree(p); + return rc; +} + +static int btMinTransaction(BtDb *p, int iMin, int *piLevel){ + int iLevel; + int rc = SQLITE4_OK; + + iLevel = sqlite4BtTransactionLevel(p->pBt); + if( iLevelpBt, iMin); + *piLevel = iLevel; + }else{ + *piLevel = -1; + } + + return rc; +} +static int btRestoreTransaction(BtDb *p, int iLevel, int rcin){ + int rc = rcin; + if( iLevel>=0 ){ + if( rc==SQLITE4_OK ){ + rc = sqlite4BtCommit(p->pBt, iLevel); + }else{ + sqlite4BtRollback(p->pBt, iLevel); + } + assert( iLevel==sqlite4BtTransactionLevel(p->pBt) ); + } + return rc; +} + +static int bt_write(TestDb *pTestDb, void *pK, int nK, void *pV, int nV){ + BtDb *p = (BtDb*)pTestDb; + int iLevel; + int rc; + + rc = btMinTransaction(p, 2, &iLevel); + if( rc==SQLITE4_OK ){ + if( p->bFastInsert ) sqlite4BtControl(p->pBt, BT_CONTROL_FAST_INSERT_OP, 0); + rc = sqlite4BtReplace(p->pBt, pK, nK, pV, nV); + rc = btRestoreTransaction(p, iLevel, rc); + } + return rc; +} + +static int bt_delete(TestDb *pTestDb, void *pK, int nK){ + return bt_write(pTestDb, pK, nK, 0, -1); +} + +static int bt_delete_range( + TestDb *pTestDb, + void *pKey1, int nKey1, + void *pKey2, int nKey2 +){ + BtDb *p = (BtDb*)pTestDb; + bt_cursor *pCsr = 0; + int rc = SQLITE4_OK; + int iLevel; + + rc = btMinTransaction(p, 2, &iLevel); + if( rc==SQLITE4_OK ){ + if( p->bFastInsert ) sqlite4BtControl(p->pBt, BT_CONTROL_FAST_INSERT_OP, 0); + rc = sqlite4BtCsrOpen(p->pBt, 0, &pCsr); + } + while( rc==SQLITE4_OK ){ + const void *pK; + int n; + int nCmp; + int res; + + rc = sqlite4BtCsrSeek(pCsr, pKey1, nKey1, BT_SEEK_GE); + if( rc==SQLITE4_INEXACT ) rc = SQLITE4_OK; + if( rc!=SQLITE4_OK ) break; + + rc = sqlite4BtCsrKey(pCsr, &pK, &n); + if( rc!=SQLITE4_OK ) break; + + nCmp = MIN(n, nKey1); + res = memcmp(pKey1, pK, nCmp); + assert( res<0 || (res==0 && nKey1<=n) ); + if( res==0 && nKey1==n ){ + rc = sqlite4BtCsrNext(pCsr); + if( rc!=SQLITE4_OK ) break; + rc = sqlite4BtCsrKey(pCsr, &pK, &n); + if( rc!=SQLITE4_OK ) break; + } + + nCmp = MIN(n, nKey2); + res = memcmp(pKey2, pK, nCmp); + if( res<0 || (res==0 && nKey2<=n) ) break; + + rc = sqlite4BtDelete(pCsr); + } + if( rc==SQLITE4_NOTFOUND ) rc = SQLITE4_OK; + + sqlite4BtCsrClose(pCsr); + + rc = btRestoreTransaction(p, iLevel, rc); + return rc; +} + +static int bt_fetch( + TestDb *pTestDb, + void *pK, int nK, + void **ppVal, int *pnVal +){ + BtDb *p = (BtDb*)pTestDb; + bt_cursor *pCsr = 0; + int iLevel; + int rc = SQLITE4_OK; + + iLevel = sqlite4BtTransactionLevel(p->pBt); + if( iLevel==0 ){ + rc = sqlite4BtBegin(p->pBt, 1); + if( rc!=SQLITE4_OK ) return rc; + } + + if( p->bFastInsert ) sqlite4BtControl(p->pBt, BT_CONTROL_FAST_INSERT_OP, 0); + rc = sqlite4BtCsrOpen(p->pBt, 0, &pCsr); + if( rc==SQLITE4_OK ){ + rc = sqlite4BtCsrSeek(pCsr, pK, nK, BT_SEEK_EQ); + if( rc==SQLITE4_OK ){ + const void *pV = 0; + int nV = 0; + rc = sqlite4BtCsrData(pCsr, 0, -1, &pV, &nV); + if( rc==SQLITE4_OK ){ + if( nV>p->nBuffer ){ + free(p->aBuffer); + p->aBuffer = (u8*)malloc(nV*2); + p->nBuffer = nV*2; + } + memcpy(p->aBuffer, pV, nV); + *pnVal = nV; + *ppVal = (void*)(p->aBuffer); + } + + }else if( rc==SQLITE4_INEXACT || rc==SQLITE4_NOTFOUND ){ + *ppVal = 0; + *pnVal = -1; + rc = SQLITE4_OK; + } + sqlite4BtCsrClose(pCsr); + } + + if( iLevel==0 ) sqlite4BtCommit(p->pBt, 0); + return rc; +} + +static int bt_scan( + TestDb *pTestDb, + void *pCtx, + int bReverse, + void *pFirst, int nFirst, + void *pLast, int nLast, + void (*xCallback)(void *, void *, int , void *, int) +){ + BtDb *p = (BtDb*)pTestDb; + bt_cursor *pCsr = 0; + int rc; + int iLevel; + + rc = btMinTransaction(p, 1, &iLevel); + + if( rc==SQLITE4_OK ){ + if( p->bFastInsert ) sqlite4BtControl(p->pBt, BT_CONTROL_FAST_INSERT_OP, 0); + rc = sqlite4BtCsrOpen(p->pBt, 0, &pCsr); + } + if( rc==SQLITE4_OK ){ + if( bReverse ){ + if( pLast ){ + rc = sqlite4BtCsrSeek(pCsr, pLast, nLast, BT_SEEK_LE); + }else{ + rc = sqlite4BtCsrLast(pCsr); + } + }else{ + rc = sqlite4BtCsrSeek(pCsr, pFirst, nFirst, BT_SEEK_GE); + } + if( rc==SQLITE4_INEXACT ) rc = SQLITE4_OK; + + while( rc==SQLITE4_OK ){ + const void *pK = 0; int nK = 0; + const void *pV = 0; int nV = 0; + + rc = sqlite4BtCsrKey(pCsr, &pK, &nK); + if( rc==SQLITE4_OK ){ + rc = sqlite4BtCsrData(pCsr, 0, -1, &pV, &nV); + } + + if( rc!=SQLITE4_OK ) break; + if( bReverse ){ + if( pFirst ){ + int res; + int nCmp = MIN(nK, nFirst); + res = memcmp(pFirst, pK, nCmp); + if( res>0 || (res==0 && nKnLast) ) break; + } + } + + xCallback(pCtx, (void*)pK, nK, (void*)pV, nV); + if( bReverse ){ + rc = sqlite4BtCsrPrev(pCsr); + }else{ + rc = sqlite4BtCsrNext(pCsr); + } + } + if( rc==SQLITE4_NOTFOUND ) rc = SQLITE4_OK; + + sqlite4BtCsrClose(pCsr); + } + + rc = btRestoreTransaction(p, iLevel, rc); + return rc; +} + +static int bt_begin(TestDb *pTestDb, int iLvl){ + BtDb *p = (BtDb*)pTestDb; + int rc = sqlite4BtBegin(p->pBt, iLvl); + return rc; +} + +static int bt_commit(TestDb *pTestDb, int iLvl){ + BtDb *p = (BtDb*)pTestDb; + int rc = sqlite4BtCommit(p->pBt, iLvl); + return rc; +} + +static int bt_rollback(TestDb *pTestDb, int iLvl){ + BtDb *p = (BtDb*)pTestDb; + int rc = sqlite4BtRollback(p->pBt, iLvl); + return rc; +} + +static int testParseOption( + const char **pzIn, /* IN/OUT: pointer to next option */ + const char **pzOpt, /* OUT: nul-terminated option name */ + const char **pzArg, /* OUT: nul-terminated option argument */ + char *pSpace /* Temporary space for output params */ +){ + const char *p = *pzIn; + const char *pStart; + int n; + + char *pOut = pSpace; + + while( *p==' ' ) p++; + pStart = p; + while( *p && *p!='=' ) p++; + if( *p==0 ) return 1; + + n = (p - pStart); + memcpy(pOut, pStart, n); + *pzOpt = pOut; + pOut += n; + *pOut++ = '\0'; + + p++; + pStart = p; + while( *p && *p!=' ' ) p++; + n = (p - pStart); + + memcpy(pOut, pStart, n); + *pzArg = pOut; + pOut += n; + *pOut++ = '\0'; + + *pzIn = p; + return 0; +} + +static int testParseInt(const char *z, int *piVal){ + int i = 0; + const char *p = z; + + while( *p>='0' && *p<='9' ){ + i = i*10 + (*p - '0'); + p++; + } + if( *p=='K' || *p=='k' ){ + i = i * 1024; + p++; + }else if( *p=='M' || *p=='m' ){ + i = i * 1024 * 1024; + p++; + } + + if( *p ) return SQLITE4_ERROR; + *piVal = i; + return SQLITE4_OK; +} + +static int testBtConfigure(BtDb *pDb, const char *zCfg, int *pbMt){ + int rc = SQLITE4_OK; + + if( zCfg ){ + struct CfgParam { + const char *zParam; + int eParam; + } aParam[] = { + { "safety", BT_CONTROL_SAFETY }, + { "autockpt", BT_CONTROL_AUTOCKPT }, + { "multiproc", BT_CONTROL_MULTIPROC }, + { "blksz", BT_CONTROL_BLKSZ }, + { "pagesz", BT_CONTROL_PAGESZ }, + { "mt", -1 }, + { "fastinsert", -2 }, + { 0, 0 } + }; + const char *z = zCfg; + int n = strlen(z); + char *aSpace; + const char *zOpt; + const char *zArg; + + aSpace = (char*)testMalloc(n+2); + while( rc==SQLITE4_OK && 0==testParseOption(&z, &zOpt, &zArg, aSpace) ){ + int i; + int iVal; + rc = testArgSelect(aParam, "param", zOpt, &i); + if( rc!=SQLITE4_OK ) break; + + rc = testParseInt(zArg, &iVal); + if( rc!=SQLITE4_OK ) break; + + switch( aParam[i].eParam ){ + case -1: + *pbMt = iVal; + break; + case -2: + pDb->bFastInsert = 1; + break; + default: + rc = sqlite4BtControl(pDb->pBt, aParam[i].eParam, (void*)&iVal); + break; + } + } + testFree(aSpace); + } + + return rc; +} + + +int test_bt_open( + const char *zSpec, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + + static const DatabaseMethods SqlMethods = { + bt_close, + bt_write, + bt_delete, + bt_delete_range, + bt_fetch, + bt_scan, + bt_begin, + bt_commit, + bt_rollback + }; + BtDb *p = 0; + bt_db *pBt = 0; + int rc; + sqlite4_env *pEnv = sqlite4_env_default(); + + if( bClear && zFilename && zFilename[0] ){ + char *zLog = sqlite3_mprintf("%s-wal", zFilename); + unlink(zFilename); + unlink(zLog); + sqlite3_free(zLog); + } + + rc = sqlite4BtNew(pEnv, 0, &pBt); + if( rc==SQLITE4_OK ){ + int mt = 0; /* True for multi-threaded connection */ + + p = (BtDb*)testMalloc(sizeof(BtDb)); + p->base.pMethods = &SqlMethods; + p->pBt = pBt; + p->pEnv = pEnv; + p->nRef = 1; + + p->env.pVfsCtx = (void*)p; + p->env.xFullpath = btVfsFullpath; + p->env.xOpen = btVfsOpen; + p->env.xSize = btVfsSize; + p->env.xRead = btVfsRead; + p->env.xWrite = btVfsWrite; + p->env.xTruncate = btVfsTruncate; + p->env.xSync = btVfsSync; + p->env.xSectorSize = btVfsSectorSize; + p->env.xClose = btVfsClose; + p->env.xUnlink = btVfsUnlink; + p->env.xLock = btVfsLock; + p->env.xTestLock = btVfsTestLock; + p->env.xShmMap = btVfsShmMap; + p->env.xShmBarrier = btVfsShmBarrier; + p->env.xShmUnmap = btVfsShmUnmap; + + sqlite4BtControl(pBt, BT_CONTROL_GETVFS, (void*)&p->pVfs); + sqlite4BtControl(pBt, BT_CONTROL_SETVFS, (void*)&p->env); + + rc = testBtConfigure(p, zSpec, &mt); + if( rc==SQLITE4_OK ){ + rc = sqlite4BtOpen(pBt, zFilename); + } + + if( rc==SQLITE4_OK && mt ){ + int nAuto = 0; + rc = bgc_attach(p, zSpec); + sqlite4BtControl(pBt, BT_CONTROL_AUTOCKPT, (void*)&nAuto); + } + } + + if( rc!=SQLITE4_OK && p ){ + bt_close(&p->base); + } + + *ppDb = &p->base; + return rc; +} + +int test_fbt_open( + const char *zSpec, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + return test_bt_open("fast=1", zFilename, bClear, ppDb); +} + +int test_fbts_open( + const char *zSpec, + const char *zFilename, + int bClear, + TestDb **ppDb +){ + return test_bt_open("fast=1 blksz=32K pagesz=512", zFilename, bClear, ppDb); +} + + +void tdb_bt_prepare_sync_crash(TestDb *pTestDb, int iSync){ + BtDb *p = (BtDb*)pTestDb; + assert( pTestDb->pMethods->xClose==bt_close ); + assert( p->bCrash==0 ); + p->nCrashSync = iSync; +} + +bt_db *tdb_bt(TestDb *pDb){ + if( pDb->pMethods->xClose==bt_close ){ + return ((BtDb *)pDb)->pBt; + } + return 0; +} + +/************************************************************************* +** Beginning of code for background checkpointer. +*/ + +struct bt_ckpter { + sqlite4_buffer file; /* File name */ + sqlite4_buffer spec; /* Options */ + int nLogsize; /* Minimum log size to checkpoint */ + int nRef; /* Number of clients */ + + int bDoWork; /* Set by client threads */ + pthread_t ckpter_thread; /* Checkpointer thread */ + pthread_cond_t ckpter_cond; /* Condition var the ckpter waits on */ + pthread_mutex_t ckpter_mutex; /* Mutex used with ckpter_cond */ + + bt_ckpter *pNext; /* Next object in list at gBgc.pCkpter */ +}; + +static struct GlobalBackgroundCheckpointer { + bt_ckpter *pCkpter; /* Linked list of checkpointers */ +} gBgc; + +static void *bgc_main(void *pArg){ + BtDb *pDb = 0; + int rc; + int mt; + bt_ckpter *pCkpter = (bt_ckpter*)pArg; + + rc = test_bt_open("", (char*)pCkpter->file.p, 0, (TestDb**)&pDb); + assert( rc==SQLITE4_OK ); + rc = testBtConfigure(pDb, (char*)pCkpter->spec.p, &mt); + + while( pCkpter->nRef>0 ){ + bt_db *db = pDb->pBt; + int nLog = 0; + + sqlite4BtBegin(db, 1); + sqlite4BtCommit(db, 0); + sqlite4BtControl(db, BT_CONTROL_LOGSIZE, (void*)&nLog); + + if( nLog>=pCkpter->nLogsize ){ + int rc; + bt_checkpoint ckpt; + memset(&ckpt, 0, sizeof(bt_checkpoint)); + ckpt.nFrameBuffer = nLog/2; + rc = sqlite4BtControl(db, BT_CONTROL_CHECKPOINT, (void*)&ckpt); + assert( rc==SQLITE4_OK ); + sqlite4BtControl(db, BT_CONTROL_LOGSIZE, (void*)&nLog); + } + + /* The thread will wake up when it is signaled either because another + ** thread has created some work for this one or because the connection + ** is being closed. */ + pthread_mutex_lock(&pCkpter->ckpter_mutex); + if( pCkpter->bDoWork==0 ){ + pthread_cond_wait(&pCkpter->ckpter_cond, &pCkpter->ckpter_mutex); + } + pCkpter->bDoWork = 0; + pthread_mutex_unlock(&pCkpter->ckpter_mutex); + } + + if( pDb ) bt_close((TestDb*)pDb); + return 0; +} + +static void bgc_logsize_cb(void *pCtx, int nLogsize){ + bt_ckpter *p = (bt_ckpter*)pCtx; + if( nLogsize>=p->nLogsize ){ + pthread_mutex_lock(&p->ckpter_mutex); + p->bDoWork = 1; + pthread_cond_signal(&p->ckpter_cond); + pthread_mutex_unlock(&p->ckpter_mutex); + } +} + +static int bgc_attach(BtDb *pDb, const char *zSpec){ + int rc; + int n; + bt_info info; + bt_ckpter *pCkpter; + + /* Figure out the full path to the database opened by handle pDb. */ + info.eType = BT_INFO_FILENAME; + info.pgno = 0; + sqlite4_buffer_init(&info.output, 0); + rc = sqlite4BtControl(pDb->pBt, BT_CONTROL_INFO, (void*)&info); + if( rc!=SQLITE4_OK ) return rc; + + sqlite4_mutex_enter(sqlite4_mutex_alloc(pDb->pEnv, SQLITE4_MUTEX_STATIC_KV)); + + /* Search for an existing bt_ckpter object. */ + n = info.output.n; + for(pCkpter=gBgc.pCkpter; pCkpter; pCkpter=pCkpter->pNext){ + if( n==pCkpter->file.n && 0==memcmp(info.output.p, pCkpter->file.p, n) ){ + break; + } + } + + /* Failed to find a suitable checkpointer. Create a new one. */ + if( pCkpter==0 ){ + bt_logsizecb cb; + + pCkpter = testMalloc(sizeof(bt_ckpter)); + memcpy(&pCkpter->file, &info.output, sizeof(sqlite4_buffer)); + info.output.p = 0; + pCkpter->pNext = gBgc.pCkpter; + pCkpter->nLogsize = 1000; + gBgc.pCkpter = pCkpter; + pCkpter->nRef = 1; + + sqlite4_buffer_init(&pCkpter->spec, 0); + rc = sqlite4_buffer_set(&pCkpter->spec, zSpec, strlen(zSpec)+1); + assert( rc==SQLITE4_OK ); + + /* Kick off the checkpointer thread. */ + if( rc==0 ) rc = pthread_cond_init(&pCkpter->ckpter_cond, 0); + if( rc==0 ) rc = pthread_mutex_init(&pCkpter->ckpter_mutex, 0); + if( rc==0 ){ + rc = pthread_create(&pCkpter->ckpter_thread, 0, bgc_main, (void*)pCkpter); + } + assert( rc==0 ); /* todo: Fix this */ + + /* Set up the logsize callback for the client thread */ + cb.pCtx = (void*)pCkpter; + cb.xLogsize = bgc_logsize_cb; + sqlite4BtControl(pDb->pBt, BT_CONTROL_LOGSIZECB, (void*)&cb); + }else{ + pCkpter->nRef++; + } + + /* Assuming a checkpointer was encountered or effected, attach the + ** connection to it. */ + if( pCkpter ){ + pDb->pCkpter = pCkpter; + } + + sqlite4_mutex_leave(sqlite4_mutex_alloc(pDb->pEnv, SQLITE4_MUTEX_STATIC_KV)); + sqlite4_buffer_clear(&info.output); + return rc; +} + +static int bgc_detach(BtDb *pDb){ + int rc = SQLITE4_OK; + bt_ckpter *pCkpter = pDb->pCkpter; + if( pCkpter ){ + int bShutdown = 0; /* True if this is the last reference */ + + sqlite4_mutex_enter(sqlite4_mutex_alloc(pDb->pEnv,SQLITE4_MUTEX_STATIC_KV)); + pCkpter->nRef--; + if( pCkpter->nRef==0 ){ + bt_ckpter **pp; + + *pp = pCkpter->pNext; + for(pp=&gBgc.pCkpter; *pp!=pCkpter; pp=&((*pp)->pNext)); + bShutdown = 1; + } + sqlite4_mutex_leave(sqlite4_mutex_alloc(pDb->pEnv,SQLITE4_MUTEX_STATIC_KV)); + + if( bShutdown ){ + void *pDummy; + + /* Signal the checkpointer thread. */ + pthread_mutex_lock(&pCkpter->ckpter_mutex); + pCkpter->bDoWork = 1; + pthread_cond_signal(&pCkpter->ckpter_cond); + pthread_mutex_unlock(&pCkpter->ckpter_mutex); + + /* Join the checkpointer thread. */ + pthread_join(pCkpter->ckpter_thread, &pDummy); + pthread_cond_destroy(&pCkpter->ckpter_cond); + pthread_mutex_destroy(&pCkpter->ckpter_mutex); + + sqlite4_buffer_clear(&pCkpter->file); + sqlite4_buffer_clear(&pCkpter->spec); + testFree(pCkpter); + } + + pDb->pCkpter = 0; + } + return rc; +} + +/* +** End of background checkpointer. +*************************************************************************/ + + ADDED ext/lsm1/lsm-test/lsmtest_util.c Index: ext/lsm1/lsm-test/lsmtest_util.c ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest_util.c @@ -0,0 +1,223 @@ + +#include "lsmtest.h" +#include +#include +#include +#ifndef _WIN32 +# include +#endif + +/* +** Global variables used within this module. +*/ +static struct TestutilGlobal { + char **argv; + int argc; +} g = {0, 0}; + +static struct TestutilRnd { + unsigned int aRand1[2048]; /* Bits 0..10 */ + unsigned int aRand2[2048]; /* Bits 11..21 */ + unsigned int aRand3[1024]; /* Bits 22..31 */ +} r; + +/************************************************************************* +** The following block is a copy of the implementation of SQLite function +** sqlite3_randomness. This version has two important differences: +** +** 1. It always uses the same seed. So the sequence of random data output +** is the same for every run of the program. +** +** 2. It is not threadsafe. +*/ +static struct sqlite3PrngType { + unsigned char i, j; /* State variables */ + unsigned char s[256]; /* State variables */ +} sqlite3Prng = { + 0xAF, 0x28, + { + 0x71, 0xF5, 0xB4, 0x6E, 0x80, 0xAB, 0x1D, 0xB8, + 0xFB, 0xB7, 0x49, 0xBF, 0xFF, 0x72, 0x2D, 0x14, + 0x79, 0x09, 0xE3, 0x78, 0x76, 0xB0, 0x2C, 0x0A, + 0x8E, 0x23, 0xEE, 0xDF, 0xE0, 0x9A, 0x2F, 0x67, + 0xE1, 0xBE, 0x0E, 0xA7, 0x08, 0x97, 0xEB, 0x77, + 0x78, 0xBA, 0x9D, 0xCA, 0x49, 0x4C, 0x60, 0x9A, + 0xF6, 0xBD, 0xDA, 0x7F, 0xBC, 0x48, 0x58, 0x52, + 0xE5, 0xCD, 0x83, 0x72, 0x23, 0x52, 0xFF, 0x6D, + 0xEF, 0x0F, 0x82, 0x29, 0xA0, 0x83, 0x3F, 0x7D, + 0xA4, 0x88, 0x31, 0xE7, 0x88, 0x92, 0x3B, 0x9B, + 0x3B, 0x2C, 0xC2, 0x4C, 0x71, 0xA2, 0xB0, 0xEA, + 0x36, 0xD0, 0x00, 0xF1, 0xD3, 0x39, 0x17, 0x5D, + 0x2A, 0x7A, 0xE4, 0xAD, 0xE1, 0x64, 0xCE, 0x0F, + 0x9C, 0xD9, 0xF5, 0xED, 0xB0, 0x22, 0x5E, 0x62, + 0x97, 0x02, 0xA3, 0x8C, 0x67, 0x80, 0xFC, 0x88, + 0x14, 0x0B, 0x15, 0x10, 0x0F, 0xC7, 0x40, 0xD4, + 0xF1, 0xF9, 0x0E, 0x1A, 0xCE, 0xB9, 0x1E, 0xA1, + 0x72, 0x8E, 0xD7, 0x78, 0x39, 0xCD, 0xF4, 0x5D, + 0x2A, 0x59, 0x26, 0x34, 0xF2, 0x73, 0x0B, 0xA0, + 0x02, 0x51, 0x2C, 0x03, 0xA3, 0xA7, 0x43, 0x13, + 0xE8, 0x98, 0x2B, 0xD2, 0x53, 0xF8, 0xEE, 0x91, + 0x7D, 0xE7, 0xE3, 0xDA, 0xD5, 0xBB, 0xC0, 0x92, + 0x9D, 0x98, 0x01, 0x2C, 0xF9, 0xB9, 0xA0, 0xEB, + 0xCF, 0x32, 0xFA, 0x01, 0x49, 0xA5, 0x1D, 0x9A, + 0x76, 0x86, 0x3F, 0x40, 0xD4, 0x89, 0x8F, 0x9C, + 0xE2, 0xE3, 0x11, 0x31, 0x37, 0xB2, 0x49, 0x28, + 0x35, 0xC0, 0x99, 0xB6, 0xD0, 0xBC, 0x66, 0x35, + 0xF7, 0x83, 0x5B, 0xD7, 0x37, 0x1A, 0x2B, 0x18, + 0xA6, 0xFF, 0x8D, 0x7C, 0x81, 0xA8, 0xFC, 0x9E, + 0xC4, 0xEC, 0x80, 0xD0, 0x98, 0xA7, 0x76, 0xCC, + 0x9C, 0x2F, 0x7B, 0xFF, 0x8E, 0x0E, 0xBB, 0x90, + 0xAE, 0x13, 0x06, 0xF5, 0x1C, 0x4E, 0x52, 0xF7 + } +}; + +/* Generate and return single random byte */ +static unsigned char randomByte(void){ + unsigned char t; + sqlite3Prng.i++; + t = sqlite3Prng.s[sqlite3Prng.i]; + sqlite3Prng.j += t; + sqlite3Prng.s[sqlite3Prng.i] = sqlite3Prng.s[sqlite3Prng.j]; + sqlite3Prng.s[sqlite3Prng.j] = t; + t += sqlite3Prng.s[sqlite3Prng.i]; + return sqlite3Prng.s[t]; +} + +/* +** Return N random bytes. +*/ +static void randomBlob(int nBuf, unsigned char *zBuf){ + int i; + for(i=0; i>11) & 0x000007FF] ^ + r.aRand3[(iVal>>22) & 0x000003FF] + ; +} + +void testPrngArray(unsigned int iVal, unsigned int *aOut, int nOut){ + int i; + for(i=0; izName; + pEntry=(struct Entry *)&((unsigned char *)pEntry)[sz] + ){ + if( zPrev ){ testPrintError("%s, ", zPrev); } + zPrev = pEntry->zName; + } + testPrintError("or %s\n", zPrev); +} + +int testArgSelectX( + void *aData, + const char *zType, + int sz, + const char *zArg, + int *piOut +){ + struct Entry { const char *zName; }; + struct Entry *pEntry; + int nArg = strlen(zArg); + + int i = 0; + int iOut = -1; + int nOut = 0; + + for(pEntry=(struct Entry *)aData; + pEntry->zName; + pEntry=(struct Entry *)&((unsigned char *)pEntry)[sz] + ){ + int nName = strlen(pEntry->zName); + if( nArg<=nName && memcmp(pEntry->zName, zArg, nArg)==0 ){ + iOut = i; + if( nName==nArg ){ + nOut = 1; + break; + } + nOut++; + } + i++; + } + + if( nOut!=1 ){ + argError(aData, zType, sz, zArg); + }else{ + *piOut = iOut; + } + return (nOut!=1); +} + +struct timeval zero_time; + +void testTimeInit(void){ + gettimeofday(&zero_time, 0); +} + +int testTimeGet(void){ + struct timeval now; + gettimeofday(&now, 0); + return + (((int)now.tv_sec - (int)zero_time.tv_sec)*1000) + + (((int)now.tv_usec - (int)zero_time.tv_usec)/1000); +} ADDED ext/lsm1/lsm-test/lsmtest_win32.c Index: ext/lsm1/lsm-test/lsmtest_win32.c ================================================================== --- /dev/null +++ ext/lsm1/lsm-test/lsmtest_win32.c @@ -0,0 +1,30 @@ + +#include "lsmtest.h" + +#ifdef _WIN32 + +#define TICKS_PER_SECOND (10000000) +#define TICKS_PER_MICROSECOND (10) +#define TICKS_UNIX_EPOCH (116444736000000000LL) + +int win32GetTimeOfDay( + struct timeval *tp, + void *tzp +){ + FILETIME fileTime; + ULARGE_INTEGER largeInteger; + ULONGLONG ticks; + + unused_parameter(tzp); + memset(&fileTime, 0, sizeof(FILETIME)); + GetSystemTimeAsFileTime(&fileTime); + memset(&largeInteger, 0, sizeof(ULARGE_INTEGER)); + largeInteger.LowPart = fileTime.dwLowDateTime; + largeInteger.HighPart = fileTime.dwHighDateTime; + ticks = largeInteger.QuadPart - TICKS_UNIX_EPOCH; + tp->tv_sec = (long)(ticks / TICKS_PER_SECOND); + ticks -= ((ULONGLONG)tp->tv_sec * TICKS_PER_SECOND); + tp->tv_usec = (long)(ticks / TICKS_PER_MICROSECOND); + return 0; +} +#endif ADDED ext/lsm1/lsm.h Index: ext/lsm1/lsm.h ================================================================== --- /dev/null +++ ext/lsm1/lsm.h @@ -0,0 +1,684 @@ +/* +** 2011-08-10 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file defines the LSM API. +*/ +#ifndef _LSM_H +#define _LSM_H +#include +#ifdef __cplusplus +extern "C" { +#endif + +/* +** Opaque handle types. +*/ +typedef struct lsm_compress lsm_compress; /* Compression library functions */ +typedef struct lsm_compress_factory lsm_compress_factory; +typedef struct lsm_cursor lsm_cursor; /* Database cursor handle */ +typedef struct lsm_db lsm_db; /* Database connection handle */ +typedef struct lsm_env lsm_env; /* Runtime environment */ +typedef struct lsm_file lsm_file; /* OS file handle */ +typedef struct lsm_mutex lsm_mutex; /* Mutex handle */ + +/* 64-bit integer type used for file offsets. */ +typedef long long int lsm_i64; /* 64-bit signed integer type */ + +/* Candidate values for the 3rd argument to lsm_env.xLock() */ +#define LSM_LOCK_UNLOCK 0 +#define LSM_LOCK_SHARED 1 +#define LSM_LOCK_EXCL 2 + +/* Flags for lsm_env.xOpen() */ +#define LSM_OPEN_READONLY 0x0001 + +/* +** CAPI: Database Runtime Environment +** +** Run-time environment used by LSM +*/ +struct lsm_env { + int nByte; /* Size of this structure in bytes */ + int iVersion; /* Version number of this structure (1) */ + /****** file i/o ***********************************************/ + void *pVfsCtx; + int (*xFullpath)(lsm_env*, const char *, char *, int *); + int (*xOpen)(lsm_env*, const char *, int flags, lsm_file **); + int (*xRead)(lsm_file *, lsm_i64, void *, int); + int (*xWrite)(lsm_file *, lsm_i64, void *, int); + int (*xTruncate)(lsm_file *, lsm_i64); + int (*xSync)(lsm_file *); + int (*xSectorSize)(lsm_file *); + int (*xRemap)(lsm_file *, lsm_i64, void **, lsm_i64*); + int (*xFileid)(lsm_file *, void *pBuf, int *pnBuf); + int (*xClose)(lsm_file *); + int (*xUnlink)(lsm_env*, const char *); + int (*xLock)(lsm_file*, int, int); + int (*xTestLock)(lsm_file*, int, int, int); + int (*xShmMap)(lsm_file*, int, int, void **); + void (*xShmBarrier)(void); + int (*xShmUnmap)(lsm_file*, int); + /****** memory allocation ****************************************/ + void *pMemCtx; + void *(*xMalloc)(lsm_env*, size_t); /* malloc(3) function */ + void *(*xRealloc)(lsm_env*, void *, size_t); /* realloc(3) function */ + void (*xFree)(lsm_env*, void *); /* free(3) function */ + size_t (*xSize)(lsm_env*, void *); /* xSize function */ + /****** mutexes ****************************************************/ + void *pMutexCtx; + int (*xMutexStatic)(lsm_env*,int,lsm_mutex**); /* Obtain a static mutex */ + int (*xMutexNew)(lsm_env*, lsm_mutex**); /* Get a new dynamic mutex */ + void (*xMutexDel)(lsm_mutex *); /* Delete an allocated mutex */ + void (*xMutexEnter)(lsm_mutex *); /* Grab a mutex */ + int (*xMutexTry)(lsm_mutex *); /* Attempt to obtain a mutex */ + void (*xMutexLeave)(lsm_mutex *); /* Leave a mutex */ + int (*xMutexHeld)(lsm_mutex *); /* Return true if mutex is held */ + int (*xMutexNotHeld)(lsm_mutex *); /* Return true if mutex not held */ + /****** other ****************************************************/ + int (*xSleep)(lsm_env*, int microseconds); + + /* New fields may be added in future releases, in which case the + ** iVersion value will increase. */ +}; + +/* +** Values that may be passed as the second argument to xMutexStatic. +*/ +#define LSM_MUTEX_GLOBAL 1 +#define LSM_MUTEX_HEAP 2 + +/* +** CAPI: LSM Error Codes +*/ +#define LSM_OK 0 +#define LSM_ERROR 1 +#define LSM_BUSY 5 +#define LSM_NOMEM 7 +#define LSM_READONLY 8 +#define LSM_IOERR 10 +#define LSM_CORRUPT 11 +#define LSM_FULL 13 +#define LSM_CANTOPEN 14 +#define LSM_PROTOCOL 15 +#define LSM_MISUSE 21 + +#define LSM_MISMATCH 50 + + +#define LSM_IOERR_NOENT (LSM_IOERR | (1<<8)) + +/* +** CAPI: Creating and Destroying Database Connection Handles +** +** Open and close a database connection handle. +*/ +int lsm_new(lsm_env*, lsm_db **ppDb); +int lsm_close(lsm_db *pDb); + +/* +** CAPI: Connecting to a Database +*/ +int lsm_open(lsm_db *pDb, const char *zFilename); + +/* +** CAPI: Obtaining pointers to database environments +** +** Return a pointer to the environment used by the database connection +** passed as the first argument. Assuming the argument is valid, this +** function always returns a valid environment pointer - it cannot fail. +*/ +lsm_env *lsm_get_env(lsm_db *pDb); + +/* +** The lsm_default_env() function returns a pointer to the default LSM +** environment for the current platform. +*/ +lsm_env *lsm_default_env(void); + + +/* +** CAPI: Configuring a database connection. +** +** The lsm_config() function is used to configure a database connection. +*/ +int lsm_config(lsm_db *, int, ...); + +/* +** The following values may be passed as the second argument to lsm_config(). +** +** LSM_CONFIG_AUTOFLUSH: +** A read/write integer parameter. +** +** This value determines the amount of data allowed to accumulate in a +** live in-memory tree before it is marked as old. After committing a +** transaction, a connection checks if the size of the live in-memory tree, +** including data structure overhead, is greater than the value of this +** option in KB. If it is, and there is not already an old in-memory tree, +** the live in-memory tree is marked as old. +** +** The maximum allowable value is 1048576 (1GB). There is no minimum +** value. If this parameter is set to zero, then an attempt is made to +** mark the live in-memory tree as old after each transaction is committed. +** +** The default value is 1024 (1MB). +** +** LSM_CONFIG_PAGE_SIZE: +** A read/write integer parameter. This parameter may only be set before +** lsm_open() has been called. +** +** LSM_CONFIG_BLOCK_SIZE: +** A read/write integer parameter. +** +** This parameter may only be set before lsm_open() has been called. It +** must be set to a power of two between 64 and 65536, inclusive (block +** sizes between 64KB and 64MB). +** +** If the connection creates a new database, the block size of the new +** database is set to the value of this option in KB. After lsm_open() +** has been called, querying this parameter returns the actual block +** size of the opened database. +** +** The default value is 1024 (1MB blocks). +** +** LSM_CONFIG_SAFETY: +** A read/write integer parameter. Valid values are 0, 1 (the default) +** and 2. This parameter determines how robust the database is in the +** face of a system crash (e.g. a power failure or operating system +** crash). As follows: +** +** 0 (off): No robustness. A system crash may corrupt the database. +** +** 1 (normal): Some robustness. A system crash may not corrupt the +** database file, but recently committed transactions may +** be lost following recovery. +** +** 2 (full): Full robustness. A system crash may not corrupt the +** database file. Following recovery the database file +** contains all successfully committed transactions. +** +** LSM_CONFIG_AUTOWORK: +** A read/write integer parameter. +** +** LSM_CONFIG_AUTOCHECKPOINT: +** A read/write integer parameter. +** +** If this option is set to non-zero value N, then a checkpoint is +** automatically attempted after each N KB of data have been written to +** the database file. +** +** The amount of uncheckpointed data already written to the database file +** is a global parameter. After performing database work (writing to the +** database file), the process checks if the total amount of uncheckpointed +** data exceeds the value of this paramter. If so, a checkpoint is performed. +** This means that this option may cause the connection to perform a +** checkpoint even if the current connection has itself written very little +** data into the database file. +** +** The default value is 2048 (checkpoint every 2MB). +** +** LSM_CONFIG_MMAP: +** A read/write integer parameter. If this value is set to 0, then the +** database file is accessed using ordinary read/write IO functions. Or, +** if it is set to 1, then the database file is memory mapped and accessed +** that way. If this parameter is set to any value N greater than 1, then +** up to the first N KB of the file are memory mapped, and any remainder +** accessed using read/write IO. +** +** The default value is 1 on 64-bit platforms and 32768 on 32-bit platforms. +** +** +** LSM_CONFIG_USE_LOG: +** A read/write boolean parameter. True (the default) to use the log +** file normally. False otherwise. +** +** LSM_CONFIG_AUTOMERGE: +** A read/write integer parameter. The minimum number of segments to +** merge together at a time. Default value 4. +** +** LSM_CONFIG_MAX_FREELIST: +** A read/write integer parameter. The maximum number of free-list +** entries that are stored in a database checkpoint (the others are +** stored elsewhere in the database). +** +** There is no reason for an application to configure or query this +** parameter. It is only present because configuring a small value +** makes certain parts of the lsm code easier to test. +** +** LSM_CONFIG_MULTIPLE_PROCESSES: +** A read/write boolean parameter. This parameter may only be set before +** lsm_open() has been called. If true, the library uses shared-memory +** and posix advisory locks to co-ordinate access by clients from within +** multiple processes. Otherwise, if false, all database clients must be +** located in the same process. The default value is true. +** +** LSM_CONFIG_SET_COMPRESSION: +** Set the compression methods used to compress and decompress database +** content. The argument to this option should be a pointer to a structure +** of type lsm_compress. The lsm_config() method takes a copy of the +** structures contents. +** +** This option may only be used before lsm_open() is called. Invoking it +** after lsm_open() has been called results in an LSM_MISUSE error. +** +** LSM_CONFIG_GET_COMPRESSION: +** Query the compression methods used to compress and decompress database +** content. +** +** LSM_CONFIG_SET_COMPRESSION_FACTORY: +** Configure a factory method to be invoked in case of an LSM_MISMATCH +** error. +** +** LSM_CONFIG_READONLY: +** A read/write boolean parameter. This parameter may only be set before +** lsm_open() is called. +*/ +#define LSM_CONFIG_AUTOFLUSH 1 +#define LSM_CONFIG_PAGE_SIZE 2 +#define LSM_CONFIG_SAFETY 3 +#define LSM_CONFIG_BLOCK_SIZE 4 +#define LSM_CONFIG_AUTOWORK 5 +#define LSM_CONFIG_MMAP 7 +#define LSM_CONFIG_USE_LOG 8 +#define LSM_CONFIG_AUTOMERGE 9 +#define LSM_CONFIG_MAX_FREELIST 10 +#define LSM_CONFIG_MULTIPLE_PROCESSES 11 +#define LSM_CONFIG_AUTOCHECKPOINT 12 +#define LSM_CONFIG_SET_COMPRESSION 13 +#define LSM_CONFIG_GET_COMPRESSION 14 +#define LSM_CONFIG_SET_COMPRESSION_FACTORY 15 +#define LSM_CONFIG_READONLY 16 + +#define LSM_SAFETY_OFF 0 +#define LSM_SAFETY_NORMAL 1 +#define LSM_SAFETY_FULL 2 + +/* +** CAPI: Compression and/or Encryption Hooks +*/ +struct lsm_compress { + void *pCtx; + unsigned int iId; + int (*xBound)(void *, int nSrc); + int (*xCompress)(void *, char *, int *, const char *, int); + int (*xUncompress)(void *, char *, int *, const char *, int); + void (*xFree)(void *pCtx); +}; + +struct lsm_compress_factory { + void *pCtx; + int (*xFactory)(void *, lsm_db *, unsigned int); + void (*xFree)(void *pCtx); +}; + +#define LSM_COMPRESSION_EMPTY 0 +#define LSM_COMPRESSION_NONE 1 + +/* +** CAPI: Allocating and Freeing Memory +** +** Invoke the memory allocation functions that belong to environment +** pEnv. Or the system defaults if no memory allocation functions have +** been registered. +*/ +void *lsm_malloc(lsm_env*, size_t); +void *lsm_realloc(lsm_env*, void *, size_t); +void lsm_free(lsm_env*, void *); + +/* +** CAPI: Querying a Connection For Operational Data +** +** Query a database connection for operational statistics or data. +*/ +int lsm_info(lsm_db *, int, ...); + +int lsm_get_user_version(lsm_db *, unsigned int *); +int lsm_set_user_version(lsm_db *, unsigned int); + +/* +** The following values may be passed as the second argument to lsm_info(). +** +** LSM_INFO_NWRITE: +** The third parameter should be of type (int *). The location pointed +** to by the third parameter is set to the number of 4KB pages written to +** the database file during the lifetime of this connection. +** +** LSM_INFO_NREAD: +** The third parameter should be of type (int *). The location pointed +** to by the third parameter is set to the number of 4KB pages read from +** the database file during the lifetime of this connection. +** +** LSM_INFO_DB_STRUCTURE: +** The third argument should be of type (char **). The location pointed +** to is populated with a pointer to a nul-terminated string containing +** the string representation of a Tcl data-structure reflecting the +** current structure of the database file. Specifically, the current state +** of the worker snapshot. The returned string should be eventually freed +** by the caller using lsm_free(). +** +** The returned list contains one element for each level in the database, +** in order from most to least recent. Each element contains a +** single element for each segment comprising the corresponding level, +** starting with the lhs segment, then each of the rhs segments (if any) +** in order from most to least recent. +** +** Each segment element is itself a list of 4 integer values, as follows: +** +**
  1. First page of segment +**
  2. Last page of segment +**
  3. Root page of segment (if applicable) +**
  4. Total number of pages in segment +**
+** +** LSM_INFO_ARRAY_STRUCTURE: +** There should be two arguments passed following this option (i.e. a +** total of four arguments passed to lsm_info()). The first argument +** should be the page number of the first page in a database array +** (perhaps obtained from an earlier INFO_DB_STRUCTURE call). The second +** trailing argument should be of type (char **). The location pointed +** to is populated with a pointer to a nul-terminated string that must +** be eventually freed using lsm_free() by the caller. +** +** The output string contains the text representation of a Tcl list of +** integers. Each pair of integers represent a range of pages used by +** the identified array. For example, if the array occupies database +** pages 993 to 1024, then pages 2048 to 2777, then the returned string +** will be "993 1024 2048 2777". +** +** If the specified integer argument does not correspond to the first +** page of any database array, LSM_ERROR is returned and the output +** pointer is set to a NULL value. +** +** LSM_INFO_LOG_STRUCTURE: +** The third argument should be of type (char **). The location pointed +** to is populated with a pointer to a nul-terminated string containing +** the string representation of a Tcl data-structure. The returned +** string should be eventually freed by the caller using lsm_free(). +** +** The Tcl structure returned is a list of six integers that describe +** the current structure of the log file. +** +** LSM_INFO_ARRAY_PAGES: +** +** LSM_INFO_PAGE_ASCII_DUMP: +** As with LSM_INFO_ARRAY_STRUCTURE, there should be two arguments passed +** with calls that specify this option - an integer page number and a +** (char **) used to return a nul-terminated string that must be later +** freed using lsm_free(). In this case the output string is populated +** with a human-readable description of the page content. +** +** If the page cannot be decoded, it is not an error. In this case the +** human-readable output message will report the systems failure to +** interpret the page data. +** +** LSM_INFO_PAGE_HEX_DUMP: +** This argument is similar to PAGE_ASCII_DUMP, except that keys and +** values are represented using hexadecimal notation instead of ascii. +** +** LSM_INFO_FREELIST: +** The third argument should be of type (char **). The location pointed +** to is populated with a pointer to a nul-terminated string containing +** the string representation of a Tcl data-structure. The returned +** string should be eventually freed by the caller using lsm_free(). +** +** The Tcl structure returned is a list containing one element for each +** free block in the database. The element itself consists of two +** integers - the block number and the id of the snapshot that freed it. +** +** LSM_INFO_CHECKPOINT_SIZE: +** The third argument should be of type (int *). The location pointed to +** by this argument is populated with the number of KB written to the +** database file since the most recent checkpoint. +** +** LSM_INFO_TREE_SIZE: +** If this value is passed as the second argument to an lsm_info() call, it +** should be followed by two arguments of type (int *) (for a total of four +** arguments). +** +** At any time, there are either one or two tree structures held in shared +** memory that new database clients will access (there may also be additional +** tree structures being used by older clients - this API does not provide +** information on them). One tree structure - the current tree - is used to +** accumulate new data written to the database. The other tree structure - +** the old tree - is a read-only tree holding older data and may be flushed +** to disk at any time. +** +** Assuming no error occurs, the location pointed to by the first of the two +** (int *) arguments is set to the size of the old in-memory tree in KB. +** The second is set to the size of the current, or live in-memory tree. +** +** LSM_INFO_COMPRESSION_ID: +** This value should be followed by a single argument of type +** (unsigned int *). If successful, the location pointed to is populated +** with the database compression id before returning. +*/ +#define LSM_INFO_NWRITE 1 +#define LSM_INFO_NREAD 2 +#define LSM_INFO_DB_STRUCTURE 3 +#define LSM_INFO_LOG_STRUCTURE 4 +#define LSM_INFO_ARRAY_STRUCTURE 5 +#define LSM_INFO_PAGE_ASCII_DUMP 6 +#define LSM_INFO_PAGE_HEX_DUMP 7 +#define LSM_INFO_FREELIST 8 +#define LSM_INFO_ARRAY_PAGES 9 +#define LSM_INFO_CHECKPOINT_SIZE 10 +#define LSM_INFO_TREE_SIZE 11 +#define LSM_INFO_FREELIST_SIZE 12 +#define LSM_INFO_COMPRESSION_ID 13 + + +/* +** CAPI: Opening and Closing Write Transactions +** +** These functions are used to open and close transactions and nested +** sub-transactions. +** +** The lsm_begin() function is used to open transactions and sub-transactions. +** A successful call to lsm_begin() ensures that there are at least iLevel +** nested transactions open. To open a top-level transaction, pass iLevel=1. +** To open a sub-transaction within the top-level transaction, iLevel=2. +** Passing iLevel=0 is a no-op. +** +** lsm_commit() is used to commit transactions and sub-transactions. A +** successful call to lsm_commit() ensures that there are at most iLevel +** nested transactions open. To commit a top-level transaction, pass iLevel=0. +** To commit all sub-transactions inside the main transaction, pass iLevel=1. +** +** Function lsm_rollback() is used to roll back transactions and +** sub-transactions. A successful call to lsm_rollback() restores the database +** to the state it was in when the iLevel'th nested sub-transaction (if any) +** was first opened. And then closes transactions to ensure that there are +** at most iLevel nested transactions open. Passing iLevel=0 rolls back and +** closes the top-level transaction. iLevel=1 also rolls back the top-level +** transaction, but leaves it open. iLevel=2 rolls back the sub-transaction +** nested directly inside the top-level transaction (and leaves it open). +*/ +int lsm_begin(lsm_db *pDb, int iLevel); +int lsm_commit(lsm_db *pDb, int iLevel); +int lsm_rollback(lsm_db *pDb, int iLevel); + +/* +** CAPI: Writing to a Database +** +** Write a new value into the database. If a value with a duplicate key +** already exists it is replaced. +*/ +int lsm_insert(lsm_db*, const void *pKey, int nKey, const void *pVal, int nVal); + +/* +** Delete a value from the database. No error is returned if the specified +** key value does not exist in the database. +*/ +int lsm_delete(lsm_db *, const void *pKey, int nKey); + +/* +** Delete all database entries with keys that are greater than (pKey1/nKey1) +** and smaller than (pKey2/nKey2). Note that keys (pKey1/nKey1) and +** (pKey2/nKey2) themselves, if they exist in the database, are not deleted. +** +** Return LSM_OK if successful, or an LSM error code otherwise. +*/ +int lsm_delete_range(lsm_db *, + const void *pKey1, int nKey1, const void *pKey2, int nKey2 +); + +/* +** CAPI: Explicit Database Work and Checkpointing +** +** This function is called by a thread to work on the database structure. +*/ +int lsm_work(lsm_db *pDb, int nMerge, int nKB, int *pnWrite); + +int lsm_flush(lsm_db *pDb); + +/* +** Attempt to checkpoint the current database snapshot. Return an LSM +** error code if an error occurs or LSM_OK otherwise. +** +** If the current snapshot has already been checkpointed, calling this +** function is a no-op. In this case if pnKB is not NULL, *pnKB is +** set to 0. Or, if the current snapshot is successfully checkpointed +** by this function and pbKB is not NULL, *pnKB is set to the number +** of bytes written to the database file since the previous checkpoint +** (the same measure as returned by the LSM_INFO_CHECKPOINT_SIZE query). +*/ +int lsm_checkpoint(lsm_db *pDb, int *pnKB); + +/* +** CAPI: Opening and Closing Database Cursors +** +** Open and close a database cursor. +*/ +int lsm_csr_open(lsm_db *pDb, lsm_cursor **ppCsr); +int lsm_csr_close(lsm_cursor *pCsr); + +/* +** CAPI: Positioning Database Cursors +** +** If the fourth parameter is LSM_SEEK_EQ, LSM_SEEK_GE or LSM_SEEK_LE, +** this function searches the database for an entry with key (pKey/nKey). +** If an error occurs, an LSM error code is returned. Otherwise, LSM_OK. +** +** If no error occurs and the requested key is present in the database, the +** cursor is left pointing to the entry with the specified key. Or, if the +** specified key is not present in the database the state of the cursor +** depends on the value passed as the final parameter, as follows: +** +** LSM_SEEK_EQ: +** The cursor is left at EOF (invalidated). A call to lsm_csr_valid() +** returns non-zero. +** +** LSM_SEEK_LE: +** The cursor is left pointing to the largest key in the database that +** is smaller than (pKey/nKey). If the database contains no keys smaller +** than (pKey/nKey), the cursor is left at EOF. +** +** LSM_SEEK_GE: +** The cursor is left pointing to the smallest key in the database that +** is larger than (pKey/nKey). If the database contains no keys larger +** than (pKey/nKey), the cursor is left at EOF. +** +** If the fourth parameter is LSM_SEEK_LEFAST, this function searches the +** database in a similar manner to LSM_SEEK_LE, with two differences: +** +**
  1. Even if a key can be found (the cursor is not left at EOF), the +** lsm_csr_value() function may not be used (attempts to do so return +** LSM_MISUSE). +** +**
  2. The key that the cursor is left pointing to may be one that has +** been recently deleted from the database. In this case it is +** guaranteed that the returned key is larger than any key currently +** in the database that is less than or equal to (pKey/nKey). +**
+** +** LSM_SEEK_LEFAST requests are intended to be used to allocate database +** keys. +*/ +int lsm_csr_seek(lsm_cursor *pCsr, const void *pKey, int nKey, int eSeek); + +int lsm_csr_first(lsm_cursor *pCsr); +int lsm_csr_last(lsm_cursor *pCsr); + +/* +** Advance the specified cursor to the next or previous key in the database. +** Return LSM_OK if successful, or an LSM error code otherwise. +** +** Functions lsm_csr_seek(), lsm_csr_first() and lsm_csr_last() are "seek" +** functions. Whether or not lsm_csr_next and lsm_csr_prev may be called +** successfully also depends on the most recent seek function called on +** the cursor. Specifically: +** +**
    +**
  • At least one seek function must have been called on the cursor. +**
  • To call lsm_csr_next(), the most recent call to a seek function must +** have been either lsm_csr_first() or a call to lsm_csr_seek() specifying +** LSM_SEEK_GE. +**
  • To call lsm_csr_prev(), the most recent call to a seek function must +** have been either lsm_csr_last() or a call to lsm_csr_seek() specifying +** LSM_SEEK_LE. +**
+** +** Otherwise, if the above conditions are not met when lsm_csr_next or +** lsm_csr_prev is called, LSM_MISUSE is returned and the cursor position +** remains unchanged. +*/ +int lsm_csr_next(lsm_cursor *pCsr); +int lsm_csr_prev(lsm_cursor *pCsr); + +/* +** Values that may be passed as the fourth argument to lsm_csr_seek(). +*/ +#define LSM_SEEK_LEFAST -2 +#define LSM_SEEK_LE -1 +#define LSM_SEEK_EQ 0 +#define LSM_SEEK_GE 1 + +/* +** CAPI: Extracting Data From Database Cursors +** +** Retrieve data from a database cursor. +*/ +int lsm_csr_valid(lsm_cursor *pCsr); +int lsm_csr_key(lsm_cursor *pCsr, const void **ppKey, int *pnKey); +int lsm_csr_value(lsm_cursor *pCsr, const void **ppVal, int *pnVal); + +/* +** If no error occurs, this function compares the database key passed via +** the pKey/nKey arguments with the key that the cursor passed as the first +** argument currently points to. If the cursors key is less than, equal to +** or greater than pKey/nKey, *piRes is set to less than, equal to or greater +** than zero before returning. LSM_OK is returned in this case. +** +** Or, if an error occurs, an LSM error code is returned and the final +** value of *piRes is undefined. If the cursor does not point to a valid +** key when this function is called, LSM_MISUSE is returned. +*/ +int lsm_csr_cmp(lsm_cursor *pCsr, const void *pKey, int nKey, int *piRes); + +/* +** CAPI: Change these!! +** +** Configure a callback to which debugging and other messages should +** be directed. Only useful for debugging lsm. +*/ +void lsm_config_log(lsm_db *, void (*)(void *, int, const char *), void *); + +/* +** Configure a callback that is invoked if the database connection ever +** writes to the database file. +*/ +void lsm_config_work_hook(lsm_db *, void (*)(lsm_db *, void *), void *); + +/* ENDOFAPI */ +#ifdef __cplusplus +} /* End of the 'extern "C"' block */ +#endif +#endif /* ifndef _LSM_H */ ADDED ext/lsm1/lsmInt.h Index: ext/lsm1/lsmInt.h ================================================================== --- /dev/null +++ ext/lsm1/lsmInt.h @@ -0,0 +1,980 @@ +/* +** 2011-08-18 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Internal structure definitions for the LSM module. +*/ +#ifndef _LSM_INT_H +#define _LSM_INT_H + +#include "lsm.h" +#include +#include + +#include +#include +#include +#include + +#ifdef _WIN32 +# ifdef _MSC_VER +# define snprintf _snprintf +# endif +#else +# include +#endif + +#ifdef NDEBUG +# ifdef LSM_DEBUG_EXPENSIVE +# undef LSM_DEBUG_EXPENSIVE +# endif +# ifdef LSM_DEBUG +# undef LSM_DEBUG +# endif +#else +# ifndef LSM_DEBUG +# define LSM_DEBUG +# endif +#endif + +/* +** Default values for various data structure parameters. These may be +** overridden by calls to lsm_config(). +*/ +#define LSM_DFLT_PAGE_SIZE (4 * 1024) +#define LSM_DFLT_BLOCK_SIZE (1 * 1024 * 1024) +#define LSM_DFLT_AUTOFLUSH (1 * 1024 * 1024) +#define LSM_DFLT_AUTOCHECKPOINT (i64)(2 * 1024 * 1024) +#define LSM_DFLT_AUTOWORK 1 +#define LSM_DFLT_LOG_SIZE (128*1024) +#define LSM_DFLT_AUTOMERGE 4 +#define LSM_DFLT_SAFETY LSM_SAFETY_NORMAL +#define LSM_DFLT_MMAP (LSM_IS_64_BIT ? 1 : 32768) +#define LSM_DFLT_MULTIPLE_PROCESSES 1 +#define LSM_DFLT_USE_LOG 1 + +/* Initial values for log file checksums. These are only used if the +** database file does not contain a valid checkpoint. */ +#define LSM_CKSUM0_INIT 42 +#define LSM_CKSUM1_INIT 42 + +#define LSM_META_PAGE_SIZE 4096 + +/* "mmap" mode is currently only used in environments with 64-bit address +** spaces. The following macro is used to test for this. */ +#define LSM_IS_64_BIT (sizeof(void*)==8) + +#define LSM_AUTOWORK_QUANT 32 + +typedef struct Database Database; +typedef struct DbLog DbLog; +typedef struct FileSystem FileSystem; +typedef struct Freelist Freelist; +typedef struct FreelistEntry FreelistEntry; +typedef struct Level Level; +typedef struct LogMark LogMark; +typedef struct LogRegion LogRegion; +typedef struct LogWriter LogWriter; +typedef struct LsmString LsmString; +typedef struct Mempool Mempool; +typedef struct Merge Merge; +typedef struct MergeInput MergeInput; +typedef struct MetaPage MetaPage; +typedef struct MultiCursor MultiCursor; +typedef struct Page Page; +typedef struct Redirect Redirect; +typedef struct Segment Segment; +typedef struct SegmentMerger SegmentMerger; +typedef struct ShmChunk ShmChunk; +typedef struct ShmHeader ShmHeader; +typedef struct ShmReader ShmReader; +typedef struct Snapshot Snapshot; +typedef struct TransMark TransMark; +typedef struct Tree Tree; +typedef struct TreeCursor TreeCursor; +typedef struct TreeHeader TreeHeader; +typedef struct TreeMark TreeMark; +typedef struct TreeRoot TreeRoot; + +#ifndef _SQLITEINT_H_ +typedef unsigned char u8; +typedef unsigned short int u16; +typedef unsigned int u32; +typedef lsm_i64 i64; +typedef unsigned long long int u64; +#endif + +/* A page number is a 64-bit integer. */ +typedef i64 Pgno; + +#ifdef LSM_DEBUG +int lsmErrorBkpt(int); +#else +# define lsmErrorBkpt(x) (x) +#endif + +#define LSM_PROTOCOL_BKPT lsmErrorBkpt(LSM_PROTOCOL) +#define LSM_IOERR_BKPT lsmErrorBkpt(LSM_IOERR) +#define LSM_NOMEM_BKPT lsmErrorBkpt(LSM_NOMEM) +#define LSM_CORRUPT_BKPT lsmErrorBkpt(LSM_CORRUPT) +#define LSM_MISUSE_BKPT lsmErrorBkpt(LSM_MISUSE) + +#define unused_parameter(x) (void)(x) +#define array_size(x) (sizeof(x)/sizeof(x[0])) + + +/* The size of each shared-memory chunk */ +#define LSM_SHM_CHUNK_SIZE (32*1024) + +/* The number of bytes reserved at the start of each shm chunk for MM. */ +#define LSM_SHM_CHUNK_HDR (sizeof(ShmChunk)) + +/* The number of available read locks. */ +#define LSM_LOCK_NREADER 6 + +/* The number of available read-write client locks. */ +#define LSM_LOCK_NRWCLIENT 16 + +/* Lock definitions. +*/ +#define LSM_LOCK_DMS1 1 /* Serialize connect/disconnect ops */ +#define LSM_LOCK_DMS2 2 /* Read-write connections */ +#define LSM_LOCK_DMS3 3 /* Read-only connections */ +#define LSM_LOCK_WRITER 4 +#define LSM_LOCK_WORKER 5 +#define LSM_LOCK_CHECKPOINTER 6 +#define LSM_LOCK_ROTRANS 7 +#define LSM_LOCK_READER(i) ((i) + LSM_LOCK_ROTRANS + 1) +#define LSM_LOCK_RWCLIENT(i) ((i) + LSM_LOCK_READER(LSM_LOCK_NREADER)) + +/* +** Hard limit on the number of free-list entries that may be stored in +** a checkpoint (the remainder are stored as a system record in the LSM). +** See also LSM_CONFIG_MAX_FREELIST. +*/ +#define LSM_MAX_FREELIST_ENTRIES 24 + +#define LSM_MAX_BLOCK_REDIRECTS 16 + +#define LSM_ATTEMPTS_BEFORE_PROTOCOL 10000 + + +/* +** Each entry stored in the LSM (or in-memory tree structure) has an +** associated mask of the following flags. +*/ +#define LSM_START_DELETE 0x01 /* Start of open-ended delete range */ +#define LSM_END_DELETE 0x02 /* End of open-ended delete range */ +#define LSM_POINT_DELETE 0x04 /* Delete this key */ +#define LSM_INSERT 0x08 /* Insert this key and value */ +#define LSM_SEPARATOR 0x10 /* True if entry is separator key only */ +#define LSM_SYSTEMKEY 0x20 /* True if entry is a system key (FREELIST) */ + +#define LSM_CONTIGUOUS 0x40 /* Used in lsm_tree.c */ + +/* +** A string that can grow by appending. +*/ +struct LsmString { + lsm_env *pEnv; /* Run-time environment */ + int n; /* Size of string. -1 indicates error */ + int nAlloc; /* Space allocated for z[] */ + char *z; /* The string content */ +}; + +typedef struct LsmFile LsmFile; +struct LsmFile { + lsm_file *pFile; + LsmFile *pNext; +}; + +/* +** An instance of the following type is used to store an ordered list of +** u32 values. +** +** Note: This is a place-holder implementation. It should be replaced by +** a version that avoids making a single large allocation when the array +** contains a large number of values. For this reason, the internals of +** this object should only manipulated by the intArrayXXX() functions in +** lsm_tree.c. +*/ +typedef struct IntArray IntArray; +struct IntArray { + int nAlloc; + int nArray; + u32 *aArray; +}; + +struct Redirect { + int n; /* Number of redirects */ + struct RedirectEntry { + int iFrom; + int iTo; + } *a; +}; + +/* +** An instance of this structure represents a point in the history of the +** tree structure to roll back to. Refer to comments in lsm_tree.c for +** details. +*/ +struct TreeMark { + u32 iRoot; /* Offset of root node in shm file */ + u32 nHeight; /* Current height of tree structure */ + u32 iWrite; /* Write offset in shm file */ + u32 nChunk; /* Number of chunks in shared-memory file */ + u32 iFirst; /* First chunk in linked list */ + u32 iNextShmid; /* Next id to allocate */ + int iRollback; /* Index in lsm->rollback to revert to */ +}; + +/* +** An instance of this structure represents a point in the database log. +*/ +struct LogMark { + i64 iOff; /* Offset into log (see lsm_log.c) */ + int nBuf; /* Size of in-memory buffer here */ + u8 aBuf[8]; /* Bytes of content in aBuf[] */ + u32 cksum0; /* Checksum 0 at offset (iOff-nBuf) */ + u32 cksum1; /* Checksum 1 at offset (iOff-nBuf) */ +}; + +struct TransMark { + TreeMark tree; + LogMark log; +}; + +/* +** A structure that defines the start and end offsets of a region in the +** log file. The size of the region in bytes is (iEnd - iStart), so if +** iEnd==iStart the region is zero bytes in size. +*/ +struct LogRegion { + i64 iStart; /* Start of region in log file */ + i64 iEnd; /* End of region in log file */ +}; + +struct DbLog { + u32 cksum0; /* Checksum 0 at offset iOff */ + u32 cksum1; /* Checksum 1 at offset iOff */ + i64 iSnapshotId; /* Log space has been reclaimed to this ss */ + LogRegion aRegion[3]; /* Log file regions (see docs in lsm_log.c) */ +}; + +struct TreeRoot { + u32 iRoot; + u32 nHeight; + u32 nByte; /* Total size of this tree in bytes */ + u32 iTransId; +}; + +/* +** Tree header structure. +*/ +struct TreeHeader { + u32 iUsedShmid; /* Id of first shm chunk used by this tree */ + u32 iNextShmid; /* Shm-id of next chunk allocated */ + u32 iFirst; /* Chunk number of smallest shm-id */ + u32 nChunk; /* Number of chunks in shared-memory file */ + TreeRoot root; /* Root and height of current tree */ + u32 iWrite; /* Write offset in shm file */ + TreeRoot oldroot; /* Root and height of the previous tree */ + u32 iOldShmid; /* Last shm-id used by previous tree */ + u32 iUsrVersion; /* get/set_user_version() value */ + i64 iOldLog; /* Log offset associated with old tree */ + u32 oldcksum0; + u32 oldcksum1; + DbLog log; /* Current layout of log file */ + u32 aCksum[2]; /* Checksums 1 and 2. */ +}; + +/* +** Database handle structure. +** +** mLock: +** A bitmask representing the locks currently held by the connection. +** An LSM database supports N distinct locks, where N is some number less +** than or equal to 32. Locks are numbered starting from 1 (see the +** definitions for LSM_LOCK_WRITER and co.). +** +** The least significant 32-bits in mLock represent EXCLUSIVE locks. The +** most significant are SHARED locks. So, if a connection holds a SHARED +** lock on lock region iLock, then the following is true: +** +** (mLock & ((iLock+32-1) << 1)) +** +** Or for an EXCLUSIVE lock: +** +** (mLock & ((iLock-1) << 1)) +** +** pCsr: +** Points to the head of a linked list that contains all currently open +** cursors. Once this list becomes empty, the user has no outstanding +** cursors and the database handle can be successfully closed. +** +** pCsrCache: +** This list contains cursor objects that have been closed using +** lsm_csr_close(). Each time a cursor is closed, it is shifted from +** the pCsr list to this list. When a new cursor is opened, this list +** is inspected to see if there exists a cursor object that can be +** reused. This is an optimization only. +*/ +struct lsm_db { + + /* Database handle configuration */ + lsm_env *pEnv; /* runtime environment */ + int (*xCmp)(void *, int, void *, int); /* Compare function */ + + /* Values configured by calls to lsm_config */ + int eSafety; /* LSM_SAFETY_OFF, NORMAL or FULL */ + int bAutowork; /* Configured by LSM_CONFIG_AUTOWORK */ + int nTreeLimit; /* Configured by LSM_CONFIG_AUTOFLUSH */ + int nMerge; /* Configured by LSM_CONFIG_AUTOMERGE */ + int bUseLog; /* Configured by LSM_CONFIG_USE_LOG */ + int nDfltPgsz; /* Configured by LSM_CONFIG_PAGE_SIZE */ + int nDfltBlksz; /* Configured by LSM_CONFIG_BLOCK_SIZE */ + int nMaxFreelist; /* Configured by LSM_CONFIG_MAX_FREELIST */ + int iMmap; /* Configured by LSM_CONFIG_MMAP */ + i64 nAutockpt; /* Configured by LSM_CONFIG_AUTOCHECKPOINT */ + int bMultiProc; /* Configured by L_C_MULTIPLE_PROCESSES */ + int bReadonly; /* Configured by LSM_CONFIG_READONLY */ + lsm_compress compress; /* Compression callbacks */ + lsm_compress_factory factory; /* Compression callback factory */ + + /* Sub-system handles */ + FileSystem *pFS; /* On-disk portion of database */ + Database *pDatabase; /* Database shared data */ + + int iRwclient; /* Read-write client lock held (-1 == none) */ + + /* Client transaction context */ + Snapshot *pClient; /* Client snapshot */ + int iReader; /* Read lock held (-1 == unlocked) */ + int bRoTrans; /* True if a read-only db trans is open */ + MultiCursor *pCsr; /* List of all open cursors */ + LogWriter *pLogWriter; /* Context for writing to the log file */ + int nTransOpen; /* Number of opened write transactions */ + int nTransAlloc; /* Allocated size of aTrans[] array */ + TransMark *aTrans; /* Array of marks for transaction rollback */ + IntArray rollback; /* List of tree-nodes to roll back */ + int bDiscardOld; /* True if lsmTreeDiscardOld() was called */ + + MultiCursor *pCsrCache; /* List of all closed cursors */ + + /* Worker context */ + Snapshot *pWorker; /* Worker snapshot (or NULL) */ + Freelist *pFreelist; /* See sortedNewToplevel() */ + int bUseFreelist; /* True to use pFreelist */ + int bIncrMerge; /* True if currently doing a merge */ + + int bInFactory; /* True if within factory.xFactory() */ + + /* Debugging message callback */ + void (*xLog)(void *, int, const char *); + void *pLogCtx; + + /* Work done notification callback */ + void (*xWork)(lsm_db *, void *); + void *pWorkCtx; + + u64 mLock; /* Mask of current locks. See lsmShmLock(). */ + lsm_db *pNext; /* Next connection to same database */ + + int nShm; /* Size of apShm[] array */ + void **apShm; /* Shared memory chunks */ + ShmHeader *pShmhdr; /* Live shared-memory header */ + TreeHeader treehdr; /* Local copy of tree-header */ + u32 aSnapshot[LSM_META_PAGE_SIZE / sizeof(u32)]; +}; + +struct Segment { + Pgno iFirst; /* First page of this run */ + Pgno iLastPg; /* Last page of this run */ + Pgno iRoot; /* Root page number (if any) */ + int nSize; /* Size of this run in pages */ + + Redirect *pRedirect; /* Block redirects (or NULL) */ +}; + +/* +** iSplitTopic/pSplitKey/nSplitKey: +** If nRight>0, this buffer contains a copy of the largest key that has +** already been written to the left-hand-side of the level. +*/ +struct Level { + Segment lhs; /* Left-hand (main) segment */ + int nRight; /* Size of apRight[] array */ + Segment *aRhs; /* Old segments being merged into this */ + int iSplitTopic; /* Split key topic (if nRight>0) */ + void *pSplitKey; /* Pointer to split-key (if nRight>0) */ + int nSplitKey; /* Number of bytes in split-key */ + + u16 iAge; /* Number of times data has been written */ + u16 flags; /* Mask of LEVEL_XXX bits */ + Merge *pMerge; /* Merge operation currently underway */ + Level *pNext; /* Next level in tree */ +}; + +/* +** The Level.flags field is set to a combination of the following bits. +** +** LEVEL_FREELIST_ONLY: +** Set if the level consists entirely of free-list entries. +** +** LEVEL_INCOMPLETE: +** This is set while a new toplevel level is being constructed. It is +** never set for any level other than a new toplevel. +*/ +#define LEVEL_FREELIST_ONLY 0x0001 +#define LEVEL_INCOMPLETE 0x0002 + + +/* +** A structure describing an ongoing merge. There is an instance of this +** structure for every Level currently undergoing a merge in the worker +** snapshot. +** +** It is assumed that code that uses an instance of this structure has +** access to the associated Level struct. +** +** iOutputOff: +** The byte offset to write to next within the last page of the +** output segment. +*/ +struct MergeInput { + Pgno iPg; /* Page on which next input is stored */ + int iCell; /* Cell containing next input to merge */ +}; +struct Merge { + int nInput; /* Number of input runs being merged */ + MergeInput *aInput; /* Array nInput entries in size */ + MergeInput splitkey; /* Location in file of current splitkey */ + int nSkip; /* Number of separators entries to skip */ + int iOutputOff; /* Write offset on output page */ + Pgno iCurrentPtr; /* Current pointer value */ +}; + +/* +** The first argument to this macro is a pointer to a Segment structure. +** Returns true if the structure instance indicates that the separators +** array is valid. +*/ +#define segmentHasSeparators(pSegment) ((pSegment)->sep.iFirst>0) + +/* +** The values that accompany the lock held by a database reader. +*/ +struct ShmReader { + u32 iTreeId; + i64 iLsmId; +}; + +/* +** An instance of this structure is stored in the first shared-memory +** page. The shared-memory header. +** +** bWriter: +** Immediately after opening a write transaction taking the WRITER lock, +** each writer client sets this flag. It is cleared right before the +** WRITER lock is relinquished. If a subsequent writer finds that this +** flag is already set when a write transaction is opened, this indicates +** that a previous writer failed mid-transaction. +** +** iMetaPage: +** If the database file does not contain a valid, synced, checkpoint, this +** value is set to 0. Otherwise, it is set to the meta-page number that +** contains the most recently written checkpoint (either 1 or 2). +** +** hdr1, hdr2: +** The two copies of the in-memory tree header. Two copies are required +** in case a writer fails while updating one of them. +*/ +struct ShmHeader { + u32 aSnap1[LSM_META_PAGE_SIZE / 4]; + u32 aSnap2[LSM_META_PAGE_SIZE / 4]; + u32 bWriter; + u32 iMetaPage; + TreeHeader hdr1; + TreeHeader hdr2; + ShmReader aReader[LSM_LOCK_NREADER]; +}; + +/* +** An instance of this structure is stored at the start of each shared-memory +** chunk except the first (which is the header chunk - see above). +*/ +struct ShmChunk { + u32 iShmid; + u32 iNext; +}; + +/* +** Maximum number of shared-memory chunks allowed in the *-shm file. Since +** each shared-memory chunk is 32KB in size, this is a theoretical limit only. +*/ +#define LSM_MAX_SHMCHUNKS (1<<30) + +/* Return true if shm-sequence "a" is larger than or equal to "b" */ +#define shm_sequence_ge(a, b) (((u32)a-(u32)b) < LSM_MAX_SHMCHUNKS) + +#define LSM_APPLIST_SZ 4 + +/* +** An instance of the following structure stores the in-memory part of +** the current free block list. This structure is to the free block list +** as the in-memory tree is to the users database content. The contents +** of the free block list is found by merging the in-memory components +** with those stored in the LSM, just as the contents of the database is +** found by merging the in-memory tree with the user data entries in the +** LSM. +** +** Each FreelistEntry structure in the array represents either an insert +** or delete operation on the free-list. For deletes, the FreelistEntry.iId +** field is set to -1. For inserts, it is set to zero or greater. +** +** The array of FreelistEntry structures is always sorted in order of +** block number (ascending). +** +** When the in-memory free block list is written into the LSM, each insert +** operation is written separately. The entry key is the bitwise inverse +** of the block number as a 32-bit big-endian integer. This is done so that +** the entries in the LSM are sorted in descending order of block id. +** The associated value is the snapshot id, formated as a varint. +*/ +struct Freelist { + FreelistEntry *aEntry; /* Free list entries */ + int nEntry; /* Number of valid slots in aEntry[] */ + int nAlloc; /* Allocated size of aEntry[] */ +}; +struct FreelistEntry { + u32 iBlk; /* Block number */ + i64 iId; /* Largest snapshot id to use this block */ +}; + +/* +** A snapshot of a database. A snapshot contains all the information required +** to read or write a database file on disk. See the description of struct +** Database below for futher details. +*/ +struct Snapshot { + Database *pDatabase; /* Database this snapshot belongs to */ + u32 iCmpId; /* Id of compression scheme */ + Level *pLevel; /* Pointer to level 0 of snapshot (or NULL) */ + i64 iId; /* Snapshot id */ + i64 iLogOff; /* Log file offset */ + Redirect redirect; /* Block redirection array */ + + /* Used by worker snapshots only */ + int nBlock; /* Number of blocks in database file */ + Pgno aiAppend[LSM_APPLIST_SZ]; /* Append point list */ + Freelist freelist; /* Free block list */ + u32 nWrite; /* Total number of pages written to disk */ +}; +#define LSM_INITIAL_SNAPSHOT_ID 11 + +/* +** Functions from file "lsm_ckpt.c". +*/ +int lsmCheckpointWrite(lsm_db *, int, u32 *); +int lsmCheckpointLevels(lsm_db *, int, void **, int *); +int lsmCheckpointLoadLevels(lsm_db *pDb, void *pVal, int nVal); + +int lsmCheckpointRecover(lsm_db *); +int lsmCheckpointDeserialize(lsm_db *, int, u32 *, Snapshot **); + +int lsmCheckpointLoadWorker(lsm_db *pDb); +int lsmCheckpointStore(lsm_db *pDb, int); + +int lsmCheckpointLoad(lsm_db *pDb, int *); +int lsmCheckpointLoadOk(lsm_db *pDb, int); +int lsmCheckpointClientCacheOk(lsm_db *); + +u32 lsmCheckpointNBlock(u32 *); +i64 lsmCheckpointId(u32 *, int); +u32 lsmCheckpointNWrite(u32 *, int); +i64 lsmCheckpointLogOffset(u32 *); +int lsmCheckpointPgsz(u32 *); +int lsmCheckpointBlksz(u32 *); +void lsmCheckpointLogoffset(u32 *aCkpt, DbLog *pLog); +void lsmCheckpointZeroLogoffset(lsm_db *); + +int lsmCheckpointSaveWorker(lsm_db *pDb, int); +int lsmDatabaseFull(lsm_db *pDb); +int lsmCheckpointSynced(lsm_db *pDb, i64 *piId, i64 *piLog, u32 *pnWrite); + +int lsmCheckpointSize(lsm_db *db, int *pnByte); + +int lsmInfoCompressionId(lsm_db *db, u32 *piCmpId); + +/* +** Functions from file "lsm_tree.c". +*/ +int lsmTreeNew(lsm_env *, int (*)(void *, int, void *, int), Tree **ppTree); +void lsmTreeRelease(lsm_env *, Tree *); +int lsmTreeInit(lsm_db *); +int lsmTreeRepair(lsm_db *); + +void lsmTreeMakeOld(lsm_db *pDb); +void lsmTreeDiscardOld(lsm_db *pDb); +int lsmTreeHasOld(lsm_db *pDb); + +int lsmTreeSize(lsm_db *); +int lsmTreeEndTransaction(lsm_db *pDb, int bCommit); +int lsmTreeLoadHeader(lsm_db *pDb, int *); +int lsmTreeLoadHeaderOk(lsm_db *, int); + +int lsmTreeInsert(lsm_db *pDb, void *pKey, int nKey, void *pVal, int nVal); +int lsmTreeDelete(lsm_db *db, void *pKey1, int nKey1, void *pKey2, int nKey2); +void lsmTreeRollback(lsm_db *pDb, TreeMark *pMark); +void lsmTreeMark(lsm_db *pDb, TreeMark *pMark); + +int lsmTreeCursorNew(lsm_db *pDb, int, TreeCursor **); +void lsmTreeCursorDestroy(TreeCursor *); + +int lsmTreeCursorSeek(TreeCursor *pCsr, void *pKey, int nKey, int *pRes); +int lsmTreeCursorNext(TreeCursor *pCsr); +int lsmTreeCursorPrev(TreeCursor *pCsr); +int lsmTreeCursorEnd(TreeCursor *pCsr, int bLast); +void lsmTreeCursorReset(TreeCursor *pCsr); +int lsmTreeCursorKey(TreeCursor *pCsr, int *pFlags, void **ppKey, int *pnKey); +int lsmTreeCursorFlags(TreeCursor *pCsr); +int lsmTreeCursorValue(TreeCursor *pCsr, void **ppVal, int *pnVal); +int lsmTreeCursorValid(TreeCursor *pCsr); +int lsmTreeCursorSave(TreeCursor *pCsr); + +void lsmFlagsToString(int flags, char *zFlags); + +/* +** Functions from file "mem.c". +*/ +void *lsmMalloc(lsm_env*, size_t); +void lsmFree(lsm_env*, void *); +void *lsmRealloc(lsm_env*, void *, size_t); +void *lsmReallocOrFree(lsm_env*, void *, size_t); +void *lsmReallocOrFreeRc(lsm_env *, void *, size_t, int *); + +void *lsmMallocZeroRc(lsm_env*, size_t, int *); +void *lsmMallocRc(lsm_env*, size_t, int *); + +void *lsmMallocZero(lsm_env *pEnv, size_t); +char *lsmMallocStrdup(lsm_env *pEnv, const char *); + +/* +** Functions from file "lsm_mutex.c". +*/ +int lsmMutexStatic(lsm_env*, int, lsm_mutex **); +int lsmMutexNew(lsm_env*, lsm_mutex **); +void lsmMutexDel(lsm_env*, lsm_mutex *); +void lsmMutexEnter(lsm_env*, lsm_mutex *); +int lsmMutexTry(lsm_env*, lsm_mutex *); +void lsmMutexLeave(lsm_env*, lsm_mutex *); + +#ifndef NDEBUG +int lsmMutexHeld(lsm_env *, lsm_mutex *); +int lsmMutexNotHeld(lsm_env *, lsm_mutex *); +#endif + +/************************************************************************** +** Start of functions from "lsm_file.c". +*/ +int lsmFsOpen(lsm_db *, const char *, int); +int lsmFsOpenLog(lsm_db *, int *); +void lsmFsCloseLog(lsm_db *); +void lsmFsClose(FileSystem *); + +int lsmFsConfigure(lsm_db *db); + +int lsmFsBlockSize(FileSystem *); +void lsmFsSetBlockSize(FileSystem *, int); +int lsmFsMoveBlock(FileSystem *pFS, Segment *pSeg, int iTo, int iFrom); + +int lsmFsPageSize(FileSystem *); +void lsmFsSetPageSize(FileSystem *, int); + +int lsmFsFileid(lsm_db *pDb, void **ppId, int *pnId); + +/* Creating, populating, gobbling and deleting sorted runs. */ +void lsmFsGobble(lsm_db *, Segment *, Pgno *, int); +int lsmFsSortedDelete(FileSystem *, Snapshot *, int, Segment *); +int lsmFsSortedFinish(FileSystem *, Segment *); +int lsmFsSortedAppend(FileSystem *, Snapshot *, Level *, int, Page **); +int lsmFsSortedPadding(FileSystem *, Snapshot *, Segment *); + +/* Functions to retrieve the lsm_env pointer from a FileSystem or Page object */ +lsm_env *lsmFsEnv(FileSystem *); +lsm_env *lsmPageEnv(Page *); +FileSystem *lsmPageFS(Page *); + +int lsmFsSectorSize(FileSystem *); + +void lsmSortedSplitkey(lsm_db *, Level *, int *); + +/* Reading sorted run content. */ +int lsmFsDbPageLast(FileSystem *pFS, Segment *pSeg, Page **ppPg); +int lsmFsDbPageGet(FileSystem *, Segment *, Pgno, Page **); +int lsmFsDbPageNext(Segment *, Page *, int eDir, Page **); + +u8 *lsmFsPageData(Page *, int *); +int lsmFsPageRelease(Page *); +int lsmFsPagePersist(Page *); +void lsmFsPageRef(Page *); +Pgno lsmFsPageNumber(Page *); + +int lsmFsNRead(FileSystem *); +int lsmFsNWrite(FileSystem *); + +int lsmFsMetaPageGet(FileSystem *, int, int, MetaPage **); +int lsmFsMetaPageRelease(MetaPage *); +u8 *lsmFsMetaPageData(MetaPage *, int *); + +#ifdef LSM_DEBUG +int lsmFsDbPageIsLast(Segment *pSeg, Page *pPg); +int lsmFsIntegrityCheck(lsm_db *); +#endif + +Pgno lsmFsRedirectPage(FileSystem *, Redirect *, Pgno); + +int lsmFsPageWritable(Page *); + +/* Functions to read, write and sync the log file. */ +int lsmFsWriteLog(FileSystem *pFS, i64 iOff, LsmString *pStr); +int lsmFsSyncLog(FileSystem *pFS); +int lsmFsReadLog(FileSystem *pFS, i64 iOff, int nRead, LsmString *pStr); +int lsmFsTruncateLog(FileSystem *pFS, i64 nByte); +int lsmFsTruncateDb(FileSystem *pFS, i64 nByte); +int lsmFsCloseAndDeleteLog(FileSystem *pFS); + +LsmFile *lsmFsDeferClose(FileSystem *pFS); + +/* And to sync the db file */ +int lsmFsSyncDb(FileSystem *, int); + +void lsmFsFlushWaiting(FileSystem *, int *); + +/* Used by lsm_info(ARRAY_STRUCTURE) and lsm_config(MMAP) */ +int lsmInfoArrayStructure(lsm_db *pDb, int bBlock, Pgno iFirst, char **pzOut); +int lsmInfoArrayPages(lsm_db *pDb, Pgno iFirst, char **pzOut); +int lsmConfigMmap(lsm_db *pDb, int *piParam); + +int lsmEnvOpen(lsm_env *, const char *, int, lsm_file **); +int lsmEnvClose(lsm_env *pEnv, lsm_file *pFile); +int lsmEnvLock(lsm_env *pEnv, lsm_file *pFile, int iLock, int eLock); +int lsmEnvTestLock(lsm_env *pEnv, lsm_file *pFile, int iLock, int nLock, int); + +int lsmEnvShmMap(lsm_env *, lsm_file *, int, int, void **); +void lsmEnvShmBarrier(lsm_env *); +void lsmEnvShmUnmap(lsm_env *, lsm_file *, int); + +void lsmEnvSleep(lsm_env *, int); + +int lsmFsReadSyncedId(lsm_db *db, int, i64 *piVal); + +int lsmFsSegmentContainsPg(FileSystem *pFS, Segment *, Pgno, int *); + +void lsmFsPurgeCache(FileSystem *); + +/* +** End of functions from "lsm_file.c". +**************************************************************************/ + +/* +** Functions from file "lsm_sorted.c". +*/ +int lsmInfoPageDump(lsm_db *, Pgno, int, char **); +void lsmSortedCleanup(lsm_db *); +int lsmSortedAutoWork(lsm_db *, int nUnit); + +int lsmSortedWalkFreelist(lsm_db *, int, int (*)(void *, int, i64), void *); + +int lsmSaveWorker(lsm_db *, int); + +int lsmFlushTreeToDisk(lsm_db *pDb); + +void lsmSortedRemap(lsm_db *pDb); + +void lsmSortedFreeLevel(lsm_env *pEnv, Level *); + +int lsmSortedAdvanceAll(lsm_db *pDb); + +int lsmSortedLoadMerge(lsm_db *, Level *, u32 *, int *); +int lsmSortedLoadFreelist(lsm_db *pDb, void **, int *); + +void *lsmSortedSplitKey(Level *pLevel, int *pnByte); + +void lsmSortedSaveTreeCursors(lsm_db *); + +int lsmMCursorNew(lsm_db *, MultiCursor **); +void lsmMCursorClose(MultiCursor *, int); +int lsmMCursorSeek(MultiCursor *, int, void *, int , int); +int lsmMCursorFirst(MultiCursor *); +int lsmMCursorPrev(MultiCursor *); +int lsmMCursorLast(MultiCursor *); +int lsmMCursorValid(MultiCursor *); +int lsmMCursorNext(MultiCursor *); +int lsmMCursorKey(MultiCursor *, void **, int *); +int lsmMCursorValue(MultiCursor *, void **, int *); +int lsmMCursorType(MultiCursor *, int *); +lsm_db *lsmMCursorDb(MultiCursor *); +void lsmMCursorFreeCache(lsm_db *); + +int lsmSaveCursors(lsm_db *pDb); +int lsmRestoreCursors(lsm_db *pDb); + +void lsmSortedDumpStructure(lsm_db *pDb, Snapshot *, int, int, const char *); +void lsmFsDumpBlocklists(lsm_db *); + +void lsmSortedExpandBtreePage(Page *pPg, int nOrig); + +void lsmPutU32(u8 *, u32); +u32 lsmGetU32(u8 *); +u64 lsmGetU64(u8 *); + +/* +** Functions from "lsm_varint.c". +*/ +int lsmVarintPut32(u8 *, int); +int lsmVarintGet32(u8 *, int *); +int lsmVarintPut64(u8 *aData, i64 iVal); +int lsmVarintGet64(const u8 *aData, i64 *piVal); + +int lsmVarintLen32(int); +int lsmVarintSize(u8 c); + +/* +** Functions from file "main.c". +*/ +void lsmLogMessage(lsm_db *, int, const char *, ...); +int lsmInfoFreelist(lsm_db *pDb, char **pzOut); + +/* +** Functions from file "lsm_log.c". +*/ +int lsmLogBegin(lsm_db *pDb); +int lsmLogWrite(lsm_db *, void *, int, void *, int); +int lsmLogCommit(lsm_db *); +void lsmLogEnd(lsm_db *pDb, int bCommit); +void lsmLogTell(lsm_db *, LogMark *); +void lsmLogSeek(lsm_db *, LogMark *); +void lsmLogClose(lsm_db *); + +int lsmLogRecover(lsm_db *); +int lsmInfoLogStructure(lsm_db *pDb, char **pzVal); + + +/************************************************************************** +** Functions from file "lsm_shared.c". +*/ + +int lsmDbDatabaseConnect(lsm_db*, const char *); +void lsmDbDatabaseRelease(lsm_db *); + +int lsmBeginReadTrans(lsm_db *); +int lsmBeginWriteTrans(lsm_db *); +int lsmBeginFlush(lsm_db *); + +int lsmDetectRoTrans(lsm_db *db, int *); +int lsmBeginRoTrans(lsm_db *db); + +int lsmBeginWork(lsm_db *); +void lsmFinishWork(lsm_db *, int, int *); + +int lsmFinishRecovery(lsm_db *); +void lsmFinishReadTrans(lsm_db *); +int lsmFinishWriteTrans(lsm_db *, int); +int lsmFinishFlush(lsm_db *, int); + +int lsmSnapshotSetFreelist(lsm_db *, int *, int); + +Snapshot *lsmDbSnapshotClient(lsm_db *); +Snapshot *lsmDbSnapshotWorker(lsm_db *); + +void lsmSnapshotSetCkptid(Snapshot *, i64); + +Level *lsmDbSnapshotLevel(Snapshot *); +void lsmDbSnapshotSetLevel(Snapshot *, Level *); + +void lsmDbRecoveryComplete(lsm_db *, int); + +int lsmBlockAllocate(lsm_db *, int, int *); +int lsmBlockFree(lsm_db *, int); +int lsmBlockRefree(lsm_db *, int); + +void lsmFreelistDeltaBegin(lsm_db *); +void lsmFreelistDeltaEnd(lsm_db *); +int lsmFreelistDelta(lsm_db *pDb); + +DbLog *lsmDatabaseLog(lsm_db *pDb); + +#ifdef LSM_DEBUG + int lsmHoldingClientMutex(lsm_db *pDb); + int lsmShmAssertLock(lsm_db *db, int iLock, int eOp); + int lsmShmAssertWorker(lsm_db *db); +#endif + +void lsmFreeSnapshot(lsm_env *, Snapshot *); + + +/* Candidate values for the 3rd argument to lsmShmLock() */ +#define LSM_LOCK_UNLOCK 0 +#define LSM_LOCK_SHARED 1 +#define LSM_LOCK_EXCL 2 + +int lsmShmCacheChunks(lsm_db *db, int nChunk); +int lsmShmLock(lsm_db *db, int iLock, int eOp, int bBlock); +int lsmShmTestLock(lsm_db *db, int iLock, int nLock, int eOp); +void lsmShmBarrier(lsm_db *db); + +#ifdef LSM_DEBUG +void lsmShmHasLock(lsm_db *db, int iLock, int eOp); +#else +# define lsmShmHasLock(x,y,z) +#endif + +int lsmReadlock(lsm_db *, i64 iLsm, u32 iShmMin, u32 iShmMax); + +int lsmLsmInUse(lsm_db *db, i64 iLsmId, int *pbInUse); +int lsmTreeInUse(lsm_db *db, u32 iLsmId, int *pbInUse); +int lsmFreelistAppend(lsm_env *pEnv, Freelist *p, int iBlk, i64 iId); + +int lsmDbMultiProc(lsm_db *); +void lsmDbDeferredClose(lsm_db *, lsm_file *, LsmFile *); +LsmFile *lsmDbRecycleFd(lsm_db *); + +int lsmWalkFreelist(lsm_db *, int, int (*)(void *, int, i64), void *); + +int lsmCheckCompressionId(lsm_db *, u32); + + +/************************************************************************** +** functions in lsm_str.c +*/ +void lsmStringInit(LsmString*, lsm_env *pEnv); +int lsmStringExtend(LsmString*, int); +int lsmStringAppend(LsmString*, const char *, int); +void lsmStringVAppendf(LsmString*, const char *zFormat, va_list, va_list); +void lsmStringAppendf(LsmString*, const char *zFormat, ...); +void lsmStringClear(LsmString*); +char *lsmMallocPrintf(lsm_env*, const char*, ...); +int lsmStringBinAppend(LsmString *pStr, const u8 *a, int n); + +int lsmStrlen(const char *zName); + + + +/* +** Round up a number to the next larger multiple of 8. This is used +** to force 8-byte alignment on 64-bit architectures. +*/ +#define ROUND8(x) (((x)+7)&~7) + +#define LSM_MIN(x,y) ((x)>(y) ? (y) : (x)) +#define LSM_MAX(x,y) ((x)>(y) ? (x) : (y)) + +#endif ADDED ext/lsm1/lsm_ckpt.c Index: ext/lsm1/lsm_ckpt.c ================================================================== --- /dev/null +++ ext/lsm1/lsm_ckpt.c @@ -0,0 +1,1237 @@ +/* +** 2011-09-11 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains code to read and write checkpoints. +** +** A checkpoint represents the database layout at a single point in time. +** It includes a log offset. When an existing database is opened, the +** current state is determined by reading the newest checkpoint and updating +** it with all committed transactions from the log that follow the specified +** offset. +*/ +#include "lsmInt.h" + +/* +** CHECKPOINT BLOB FORMAT: +** +** A checkpoint blob is a series of unsigned 32-bit integers stored in +** big-endian byte order. As follows: +** +** Checkpoint header (see the CKPT_HDR_XXX #defines): +** +** 1. The checkpoint id MSW. +** 2. The checkpoint id LSW. +** 3. The number of integer values in the entire checkpoint, including +** the two checksum values. +** 4. The compression scheme id. +** 5. The total number of blocks in the database. +** 6. The block size. +** 7. The number of levels. +** 8. The nominal database page size. +** 9. The number of pages (in total) written to the database file. +** +** Log pointer: +** +** 1. The log offset MSW. +** 2. The log offset LSW. +** 3. Log checksum 0. +** 4. Log checksum 1. +** +** Note that the "log offset" is not the literal byte offset. Instead, +** it is the byte offset multiplied by 2, with least significant bit +** toggled each time the log pointer value is changed. This is to make +** sure that this field changes each time the log pointer is updated, +** even if the log file itself is disabled. See lsmTreeMakeOld(). +** +** See ckptExportLog() and ckptImportLog(). +** +** Append points: +** +** 8 integers (4 * 64-bit page numbers). See ckptExportAppendlist(). +** +** For each level in the database, a level record. Formatted as follows: +** +** 0. Age of the level (least significant 16-bits). And flags mask (most +** significant 16-bits). +** 1. The number of right-hand segments (nRight, possibly 0), +** 2. Segment record for left-hand segment (8 integers defined below), +** 3. Segment record for each right-hand segment (8 integers defined below), +** 4. If nRight>0, The number of segments involved in the merge +** 5. if nRight>0, Current nSkip value (see Merge structure defn.), +** 6. For each segment in the merge: +** 5a. Page number of next cell to read during merge (this field +** is 64-bits - 2 integers) +** 5b. Cell number of next cell to read during merge +** 7. Page containing current split-key (64-bits - 2 integers). +** 8. Cell within page containing current split-key. +** 9. Current pointer value (64-bits - 2 integers). +** +** The block redirect array: +** +** 1. Number of redirections (maximum LSM_MAX_BLOCK_REDIRECTS). +** 2. For each redirection: +** a. "from" block number +** b. "to" block number +** +** The in-memory freelist entries. Each entry is either an insert or a +** delete. The in-memory freelist is to the free-block-list as the +** in-memory tree is to the users database content. +** +** 1. Number of free-list entries stored in checkpoint header. +** 2. Number of free blocks (in total). +** 3. Total number of blocks freed during database lifetime. +** 4. For each entry: +** 2a. Block number of free block. +** 2b. A 64-bit integer (MSW followed by LSW). -1 for a delete entry, +** or the associated checkpoint id for an insert. +** +** The checksum: +** +** 1. Checksum value 1. +** 2. Checksum value 2. +** +** In the above, a segment record consists of the following four 64-bit +** fields (converted to 2 * u32 by storing the MSW followed by LSW): +** +** 1. First page of array, +** 2. Last page of array, +** 3. Root page of array (or 0), +** 4. Size of array in pages. +*/ + +/* +** LARGE NUMBERS OF LEVEL RECORDS: +** +** A limit on the number of rhs segments that may be present in the database +** file. Defining this limit ensures that all level records fit within +** the 4096 byte limit for checkpoint blobs. +** +** The number of right-hand-side segments in a database is counted as +** follows: +** +** * For each level in the database not undergoing a merge, add 1. +** +** * For each level in the database that is undergoing a merge, add +** the number of segments on the rhs of the level. +** +** A level record not undergoing a merge is 10 integers. A level record +** with nRhs rhs segments and (nRhs+1) input segments (i.e. including the +** separators from the next level) is (11*nRhs+20) integers. The maximum +** per right-hand-side level is therefore 21 integers. So the maximum +** size of all level records in a checkpoint is 21*40=820 integers. +** +** TODO: Before pointer values were changed from 32 to 64 bits, the above +** used to come to 420 bytes - leaving significant space for a free-list +** prefix. No more. To fix this, reduce the size of the level records in +** a db snapshot, and improve management of the free-list tail in +** lsm_sorted.c. +*/ +#define LSM_MAX_RHS_SEGMENTS 40 + +/* +** LARGE NUMBERS OF FREELIST ENTRIES: +** +** There is also a limit (LSM_MAX_FREELIST_ENTRIES - defined in lsmInt.h) +** on the number of free-list entries stored in a checkpoint. Since each +** free-list entry consists of 3 integers, the maximum free-list size is +** 3*100=300 integers. Combined with the limit on rhs segments defined +** above, this ensures that a checkpoint always fits within a 4096 byte +** meta page. +** +** If the database contains more than 100 free blocks, the "overflow" flag +** in the checkpoint header is set and the remainder are stored in the +** system FREELIST entry in the LSM (along with user data). The value +** accompanying the FREELIST key in the LSM is, like a checkpoint, an array +** of 32-bit big-endian integers. As follows: +** +** For each entry: +** a. Block number of free block. +** b. MSW of associated checkpoint id. +** c. LSW of associated checkpoint id. +** +** The number of entries is not required - it is implied by the size of the +** value blob containing the integer array. +** +** Note that the limit defined by LSM_MAX_FREELIST_ENTRIES is a hard limit. +** The actual value used may be configured using LSM_CONFIG_MAX_FREELIST. +*/ + +/* +** The argument to this macro must be of type u32. On a little-endian +** architecture, it returns the u32 value that results from interpreting +** the 4 bytes as a big-endian value. On a big-endian architecture, it +** returns the value that would be produced by intepreting the 4 bytes +** of the input value as a little-endian integer. +*/ +#define BYTESWAP32(x) ( \ + (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ + + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ +) + +static const int one = 1; +#define LSM_LITTLE_ENDIAN (*(u8 *)(&one)) + +/* Sizes, in integers, of various parts of the checkpoint. */ +#define CKPT_HDR_SIZE 9 +#define CKPT_LOGPTR_SIZE 4 +#define CKPT_APPENDLIST_SIZE (LSM_APPLIST_SZ * 2) + +/* A #define to describe each integer in the checkpoint header. */ +#define CKPT_HDR_ID_MSW 0 +#define CKPT_HDR_ID_LSW 1 +#define CKPT_HDR_NCKPT 2 +#define CKPT_HDR_CMPID 3 +#define CKPT_HDR_NBLOCK 4 +#define CKPT_HDR_BLKSZ 5 +#define CKPT_HDR_NLEVEL 6 +#define CKPT_HDR_PGSZ 7 +#define CKPT_HDR_NWRITE 8 + +#define CKPT_HDR_LO_MSW 9 +#define CKPT_HDR_LO_LSW 10 +#define CKPT_HDR_LO_CKSUM1 11 +#define CKPT_HDR_LO_CKSUM2 12 + +typedef struct CkptBuffer CkptBuffer; + +/* +** Dynamic buffer used to accumulate data for a checkpoint. +*/ +struct CkptBuffer { + lsm_env *pEnv; + int nAlloc; + u32 *aCkpt; +}; + +/* +** Calculate the checksum of the checkpoint specified by arguments aCkpt and +** nCkpt. Store the checksum in *piCksum1 and *piCksum2 before returning. +** +** The value of the nCkpt parameter includes the two checksum values at +** the end of the checkpoint. They are not used as inputs to the checksum +** calculation. The checksum is based on the array of (nCkpt-2) integers +** at aCkpt[]. +*/ +static void ckptChecksum(u32 *aCkpt, u32 nCkpt, u32 *piCksum1, u32 *piCksum2){ + int i; + u32 cksum1 = 1; + u32 cksum2 = 2; + + if( nCkpt % 2 ){ + cksum1 += aCkpt[nCkpt-3] & 0x0000FFFF; + cksum2 += aCkpt[nCkpt-3] & 0xFFFF0000; + } + + for(i=0; (i+3)=p->nAlloc ){ + int nNew = LSM_MAX(8, iIdx*2); + p->aCkpt = (u32 *)lsmReallocOrFree(p->pEnv, p->aCkpt, nNew*sizeof(u32)); + if( !p->aCkpt ){ + *pRc = LSM_NOMEM_BKPT; + return; + } + p->nAlloc = nNew; + } + p->aCkpt[iIdx] = iVal; +} + +/* +** Argument aInt points to an array nInt elements in size. Switch the +** endian-ness of each element of the array. +*/ +static void ckptChangeEndianness(u32 *aInt, int nInt){ + if( LSM_LITTLE_ENDIAN ){ + int i; + for(i=0; iaCkpt, nCkpt+2, &aCksum[0], &aCksum[1]); + ckptSetValue(p, nCkpt, aCksum[0], pRc); + ckptSetValue(p, nCkpt+1, aCksum[1], pRc); + } +} + +static void ckptAppend64(CkptBuffer *p, int *piOut, i64 iVal, int *pRc){ + int iOut = *piOut; + ckptSetValue(p, iOut++, (iVal >> 32) & 0xFFFFFFFF, pRc); + ckptSetValue(p, iOut++, (iVal & 0xFFFFFFFF), pRc); + *piOut = iOut; +} + +static i64 ckptRead64(u32 *a){ + return (((i64)a[0]) << 32) + (i64)a[1]; +} + +static i64 ckptGobble64(u32 *a, int *piIn){ + int iIn = *piIn; + *piIn += 2; + return ckptRead64(&a[iIn]); +} + + +/* +** Append a 6-value segment record corresponding to pSeg to the checkpoint +** buffer passed as the third argument. +*/ +static void ckptExportSegment( + Segment *pSeg, + CkptBuffer *p, + int *piOut, + int *pRc +){ + ckptAppend64(p, piOut, pSeg->iFirst, pRc); + ckptAppend64(p, piOut, pSeg->iLastPg, pRc); + ckptAppend64(p, piOut, pSeg->iRoot, pRc); + ckptAppend64(p, piOut, pSeg->nSize, pRc); +} + +static void ckptExportLevel( + Level *pLevel, /* Level object to serialize */ + CkptBuffer *p, /* Append new level record to this ckpt */ + int *piOut, /* IN/OUT: Size of checkpoint so far */ + int *pRc /* IN/OUT: Error code */ +){ + int iOut = *piOut; + Merge *pMerge; + + pMerge = pLevel->pMerge; + ckptSetValue(p, iOut++, (u32)pLevel->iAge + (u32)(pLevel->flags<<16), pRc); + ckptSetValue(p, iOut++, pLevel->nRight, pRc); + ckptExportSegment(&pLevel->lhs, p, &iOut, pRc); + + assert( (pLevel->nRight>0)==(pMerge!=0) ); + if( pMerge ){ + int i; + for(i=0; inRight; i++){ + ckptExportSegment(&pLevel->aRhs[i], p, &iOut, pRc); + } + assert( pMerge->nInput==pLevel->nRight + || pMerge->nInput==pLevel->nRight+1 + ); + ckptSetValue(p, iOut++, pMerge->nInput, pRc); + ckptSetValue(p, iOut++, pMerge->nSkip, pRc); + for(i=0; inInput; i++){ + ckptAppend64(p, &iOut, pMerge->aInput[i].iPg, pRc); + ckptSetValue(p, iOut++, pMerge->aInput[i].iCell, pRc); + } + ckptAppend64(p, &iOut, pMerge->splitkey.iPg, pRc); + ckptSetValue(p, iOut++, pMerge->splitkey.iCell, pRc); + ckptAppend64(p, &iOut, pMerge->iCurrentPtr, pRc); + } + + *piOut = iOut; +} + +/* +** Populate the log offset fields of the checkpoint buffer. 4 values. +*/ +static void ckptExportLog( + lsm_db *pDb, + int bFlush, + CkptBuffer *p, + int *piOut, + int *pRc +){ + int iOut = *piOut; + + assert( iOut==CKPT_HDR_LO_MSW ); + + if( bFlush ){ + i64 iOff = pDb->treehdr.iOldLog; + ckptAppend64(p, &iOut, iOff, pRc); + ckptSetValue(p, iOut++, pDb->treehdr.oldcksum0, pRc); + ckptSetValue(p, iOut++, pDb->treehdr.oldcksum1, pRc); + }else{ + for(; iOut<=CKPT_HDR_LO_CKSUM2; iOut++){ + ckptSetValue(p, iOut, pDb->pShmhdr->aSnap2[iOut], pRc); + } + } + + assert( *pRc || iOut==CKPT_HDR_LO_CKSUM2+1 ); + *piOut = iOut; +} + +static void ckptExportAppendlist( + lsm_db *db, /* Database connection */ + CkptBuffer *p, /* Checkpoint buffer to write to */ + int *piOut, /* IN/OUT: Offset within checkpoint buffer */ + int *pRc /* IN/OUT: Error code */ +){ + int i; + Pgno *aiAppend = db->pWorker->aiAppend; + + for(i=0; ipFS; /* File system object */ + Snapshot *pSnap = pDb->pWorker; /* Worker snapshot */ + int nLevel = 0; /* Number of levels in checkpoint */ + int iLevel; /* Used to count out nLevel levels */ + int iOut = 0; /* Current offset in aCkpt[] */ + Level *pLevel; /* Level iterator */ + int i; /* Iterator used while serializing freelist */ + CkptBuffer ckpt; + + /* Initialize the output buffer */ + memset(&ckpt, 0, sizeof(CkptBuffer)); + ckpt.pEnv = pDb->pEnv; + iOut = CKPT_HDR_SIZE; + + /* Write the log offset into the checkpoint. */ + ckptExportLog(pDb, bLog, &ckpt, &iOut, &rc); + + /* Write the append-point list */ + ckptExportAppendlist(pDb, &ckpt, &iOut, &rc); + + /* Figure out how many levels will be written to the checkpoint. */ + for(pLevel=lsmDbSnapshotLevel(pSnap); pLevel; pLevel=pLevel->pNext) nLevel++; + + /* Serialize nLevel levels. */ + iLevel = 0; + for(pLevel=lsmDbSnapshotLevel(pSnap); iLevelpNext){ + ckptExportLevel(pLevel, &ckpt, &iOut, &rc); + iLevel++; + } + + /* Write the block-redirect list */ + ckptSetValue(&ckpt, iOut++, pSnap->redirect.n, &rc); + for(i=0; iredirect.n; i++){ + ckptSetValue(&ckpt, iOut++, pSnap->redirect.a[i].iFrom, &rc); + ckptSetValue(&ckpt, iOut++, pSnap->redirect.a[i].iTo, &rc); + } + + /* Write the freelist */ + assert( pSnap->freelist.nEntry<=pDb->nMaxFreelist ); + if( rc==LSM_OK ){ + int nFree = pSnap->freelist.nEntry; + ckptSetValue(&ckpt, iOut++, nFree, &rc); + for(i=0; ifreelist.aEntry[i]; + ckptSetValue(&ckpt, iOut++, p->iBlk, &rc); + ckptSetValue(&ckpt, iOut++, (p->iId >> 32) & 0xFFFFFFFF, &rc); + ckptSetValue(&ckpt, iOut++, p->iId & 0xFFFFFFFF, &rc); + } + } + + /* Write the checkpoint header */ + assert( iId>=0 ); + assert( pSnap->iCmpId==pDb->compress.iId + || pSnap->iCmpId==LSM_COMPRESSION_EMPTY + ); + ckptSetValue(&ckpt, CKPT_HDR_ID_MSW, (u32)(iId>>32), &rc); + ckptSetValue(&ckpt, CKPT_HDR_ID_LSW, (u32)(iId&0xFFFFFFFF), &rc); + ckptSetValue(&ckpt, CKPT_HDR_NCKPT, iOut+2, &rc); + ckptSetValue(&ckpt, CKPT_HDR_CMPID, pDb->compress.iId, &rc); + ckptSetValue(&ckpt, CKPT_HDR_NBLOCK, pSnap->nBlock, &rc); + ckptSetValue(&ckpt, CKPT_HDR_BLKSZ, lsmFsBlockSize(pFS), &rc); + ckptSetValue(&ckpt, CKPT_HDR_NLEVEL, nLevel, &rc); + ckptSetValue(&ckpt, CKPT_HDR_PGSZ, lsmFsPageSize(pFS), &rc); + ckptSetValue(&ckpt, CKPT_HDR_NWRITE, pSnap->nWrite, &rc); + + if( bCksum ){ + ckptAddChecksum(&ckpt, iOut, &rc); + }else{ + ckptSetValue(&ckpt, iOut, 0, &rc); + ckptSetValue(&ckpt, iOut+1, 0, &rc); + } + iOut += 2; + assert( iOut<=1024 ); + +#ifdef LSM_LOG_FREELIST + lsmLogMessage(pDb, rc, + "ckptExportSnapshot(): id=%lld freelist: %d", iId, pSnap->freelist.nEntry + ); + for(i=0; ifreelist.nEntry; i++){ + lsmLogMessage(pDb, rc, + "ckptExportSnapshot(): iBlk=%d id=%lld", + pSnap->freelist.aEntry[i].iBlk, + pSnap->freelist.aEntry[i].iId + ); + } +#endif + + *ppCkpt = (void *)ckpt.aCkpt; + if( pnCkpt ) *pnCkpt = sizeof(u32)*iOut; + return rc; +} + + +/* +** Helper function for ckptImport(). +*/ +static void ckptNewSegment( + u32 *aIn, + int *piIn, + Segment *pSegment /* Populate this structure */ +){ + assert( pSegment->iFirst==0 && pSegment->iLastPg==0 ); + assert( pSegment->nSize==0 && pSegment->iRoot==0 ); + pSegment->iFirst = ckptGobble64(aIn, piIn); + pSegment->iLastPg = ckptGobble64(aIn, piIn); + pSegment->iRoot = ckptGobble64(aIn, piIn); + pSegment->nSize = ckptGobble64(aIn, piIn); + assert( pSegment->iFirst ); +} + +static int ckptSetupMerge(lsm_db *pDb, u32 *aInt, int *piIn, Level *pLevel){ + Merge *pMerge; /* Allocated Merge object */ + int nInput; /* Number of input segments in merge */ + int iIn = *piIn; /* Next value to read from aInt[] */ + int i; /* Iterator variable */ + int nByte; /* Number of bytes to allocate */ + + /* Allocate the Merge object. If malloc() fails, return LSM_NOMEM. */ + nInput = (int)aInt[iIn++]; + nByte = sizeof(Merge) + sizeof(MergeInput) * nInput; + pMerge = (Merge *)lsmMallocZero(pDb->pEnv, nByte); + if( !pMerge ) return LSM_NOMEM_BKPT; + pLevel->pMerge = pMerge; + + /* Populate the Merge object. */ + pMerge->aInput = (MergeInput *)&pMerge[1]; + pMerge->nInput = nInput; + pMerge->iOutputOff = -1; + pMerge->nSkip = (int)aInt[iIn++]; + for(i=0; iaInput[i].iPg = ckptGobble64(aInt, &iIn); + pMerge->aInput[i].iCell = (int)aInt[iIn++]; + } + pMerge->splitkey.iPg = ckptGobble64(aInt, &iIn); + pMerge->splitkey.iCell = (int)aInt[iIn++]; + pMerge->iCurrentPtr = ckptGobble64(aInt, &iIn); + + /* Set *piIn and return LSM_OK. */ + *piIn = iIn; + return LSM_OK; +} + + +static int ckptLoadLevels( + lsm_db *pDb, + u32 *aIn, + int *piIn, + int nLevel, + Level **ppLevel +){ + int i; + int rc = LSM_OK; + Level *pRet = 0; + Level **ppNext; + int iIn = *piIn; + + ppNext = &pRet; + for(i=0; rc==LSM_OK && ipEnv, sizeof(Level), &rc); + if( rc==LSM_OK ){ + pLevel->iAge = (u16)(aIn[iIn] & 0x0000FFFF); + pLevel->flags = (u16)((aIn[iIn]>>16) & 0x0000FFFF); + iIn++; + pLevel->nRight = aIn[iIn++]; + if( pLevel->nRight ){ + int nByte = sizeof(Segment) * pLevel->nRight; + pLevel->aRhs = (Segment *)lsmMallocZeroRc(pDb->pEnv, nByte, &rc); + } + if( rc==LSM_OK ){ + *ppNext = pLevel; + ppNext = &pLevel->pNext; + + /* Allocate the main segment */ + ckptNewSegment(aIn, &iIn, &pLevel->lhs); + + /* Allocate each of the right-hand segments, if any */ + for(iRight=0; iRightnRight; iRight++){ + ckptNewSegment(aIn, &iIn, &pLevel->aRhs[iRight]); + } + + /* Set up the Merge object, if required */ + if( pLevel->nRight>0 ){ + rc = ckptSetupMerge(pDb, aIn, &iIn, pLevel); + } + } + } + } + + if( rc!=LSM_OK ){ + /* An OOM must have occurred. Free any level structures allocated and + ** return the error to the caller. */ + lsmSortedFreeLevel(pDb->pEnv, pRet); + pRet = 0; + } + + *ppLevel = pRet; + *piIn = iIn; + return rc; +} + + +int lsmCheckpointLoadLevels(lsm_db *pDb, void *pVal, int nVal){ + int rc = LSM_OK; + if( nVal>0 ){ + u32 *aIn; + + aIn = lsmMallocRc(pDb->pEnv, nVal, &rc); + if( aIn ){ + Level *pLevel = 0; + Level *pParent; + + int nIn; + int nLevel; + int iIn = 1; + memcpy(aIn, pVal, nVal); + nIn = nVal / sizeof(u32); + + ckptChangeEndianness(aIn, nIn); + nLevel = aIn[0]; + rc = ckptLoadLevels(pDb, aIn, &iIn, nLevel, &pLevel); + lsmFree(pDb->pEnv, aIn); + assert( rc==LSM_OK || pLevel==0 ); + if( rc==LSM_OK ){ + pParent = lsmDbSnapshotLevel(pDb->pWorker); + assert( pParent ); + while( pParent->pNext ) pParent = pParent->pNext; + pParent->pNext = pLevel; + } + } + } + + return rc; +} + +/* +** Return the data for the LEVELS record. +** +** The size of the checkpoint that can be stored in the database header +** must not exceed 1024 32-bit integers. Normally, it does not. However, +** if it does, part of the checkpoint must be stored in the LSM. This +** routine returns that part. +*/ +int lsmCheckpointLevels( + lsm_db *pDb, /* Database handle */ + int nLevel, /* Number of levels to write to blob */ + void **paVal, /* OUT: Pointer to LEVELS blob */ + int *pnVal /* OUT: Size of LEVELS blob in bytes */ +){ + Level *p; /* Used to iterate through levels */ + int nAll= 0; + int rc; + int i; + int iOut; + CkptBuffer ckpt; + assert( nLevel>0 ); + + for(p=lsmDbSnapshotLevel(pDb->pWorker); p; p=p->pNext) nAll++; + + assert( nAll>nLevel ); + nAll -= nLevel; + for(p=lsmDbSnapshotLevel(pDb->pWorker); p && nAll>0; p=p->pNext) nAll--; + + memset(&ckpt, 0, sizeof(CkptBuffer)); + ckpt.pEnv = pDb->pEnv; + + ckptSetValue(&ckpt, 0, nLevel, &rc); + iOut = 1; + for(i=0; rc==LSM_OK && ipNext; + } + assert( rc!=LSM_OK || p==0 ); + + if( rc==LSM_OK ){ + ckptChangeEndianness(ckpt.aCkpt, iOut); + *paVal = (void *)ckpt.aCkpt; + *pnVal = iOut * sizeof(u32); + }else{ + *pnVal = 0; + *paVal = 0; + } + + return rc; +} + +/* +** Read the checkpoint id from meta-page pPg. +*/ +static i64 ckptLoadId(MetaPage *pPg){ + i64 ret = 0; + if( pPg ){ + int nData; + u8 *aData = lsmFsMetaPageData(pPg, &nData); + ret = (((i64)lsmGetU32(&aData[CKPT_HDR_ID_MSW*4])) << 32) + + ((i64)lsmGetU32(&aData[CKPT_HDR_ID_LSW*4])); + } + return ret; +} + +/* +** Return true if the buffer passed as an argument contains a valid +** checkpoint. +*/ +static int ckptChecksumOk(u32 *aCkpt){ + u32 nCkpt = aCkpt[CKPT_HDR_NCKPT]; + u32 cksum1; + u32 cksum2; + + if( nCkpt(LSM_META_PAGE_SIZE)/sizeof(u32) ) return 0; + ckptChecksum(aCkpt, nCkpt, &cksum1, &cksum2); + return (cksum1==aCkpt[nCkpt-2] && cksum2==aCkpt[nCkpt-1]); +} + +/* +** Attempt to load a checkpoint from meta page iMeta. +** +** This function is a no-op if *pRc is set to any value other than LSM_OK +** when it is called. If an error occurs, *pRc is set to an LSM error code +** before returning. +** +** If no error occurs and the checkpoint is successfully loaded, copy it to +** ShmHeader.aSnap1[] and ShmHeader.aSnap2[], and set ShmHeader.iMetaPage +** to indicate its origin. In this case return 1. Or, if the checkpoint +** cannot be loaded (because the checksum does not compute), return 0. +*/ +static int ckptTryLoad(lsm_db *pDb, MetaPage *pPg, u32 iMeta, int *pRc){ + int bLoaded = 0; /* Return value */ + if( *pRc==LSM_OK ){ + int rc = LSM_OK; /* Error code */ + u32 *aCkpt = 0; /* Pointer to buffer containing checkpoint */ + u32 nCkpt; /* Number of elements in aCkpt[] */ + int nData; /* Bytes of data in aData[] */ + u8 *aData; /* Meta page data */ + + aData = lsmFsMetaPageData(pPg, &nData); + nCkpt = (u32)lsmGetU32(&aData[CKPT_HDR_NCKPT*sizeof(u32)]); + if( nCkpt<=nData/sizeof(u32) && nCkpt>CKPT_HDR_NCKPT ){ + aCkpt = (u32 *)lsmMallocRc(pDb->pEnv, nCkpt*sizeof(u32), &rc); + } + if( aCkpt ){ + memcpy(aCkpt, aData, nCkpt*sizeof(u32)); + ckptChangeEndianness(aCkpt, nCkpt); + if( ckptChecksumOk(aCkpt) ){ + ShmHeader *pShm = pDb->pShmhdr; + memcpy(pShm->aSnap1, aCkpt, nCkpt*sizeof(u32)); + memcpy(pShm->aSnap2, aCkpt, nCkpt*sizeof(u32)); + memcpy(pDb->aSnapshot, aCkpt, nCkpt*sizeof(u32)); + pShm->iMetaPage = iMeta; + bLoaded = 1; + } + } + + lsmFree(pDb->pEnv, aCkpt); + *pRc = rc; + } + return bLoaded; +} + +/* +** Initialize the shared-memory header with an empty snapshot. This function +** is called when no valid snapshot can be found in the database header. +*/ +static void ckptLoadEmpty(lsm_db *pDb){ + u32 aCkpt[] = { + 0, /* CKPT_HDR_ID_MSW */ + 10, /* CKPT_HDR_ID_LSW */ + 0, /* CKPT_HDR_NCKPT */ + LSM_COMPRESSION_EMPTY, /* CKPT_HDR_CMPID */ + 0, /* CKPT_HDR_NBLOCK */ + 0, /* CKPT_HDR_BLKSZ */ + 0, /* CKPT_HDR_NLEVEL */ + 0, /* CKPT_HDR_PGSZ */ + 0, /* CKPT_HDR_NWRITE */ + 0, 0, 1234, 5678, /* The log pointer and initial checksum */ + 0,0,0,0, 0,0,0,0, /* The append list */ + 0, /* The redirected block list */ + 0, /* The free block list */ + 0, 0 /* Space for checksum values */ + }; + u32 nCkpt = array_size(aCkpt); + ShmHeader *pShm = pDb->pShmhdr; + + aCkpt[CKPT_HDR_NCKPT] = nCkpt; + aCkpt[CKPT_HDR_BLKSZ] = pDb->nDfltBlksz; + aCkpt[CKPT_HDR_PGSZ] = pDb->nDfltPgsz; + ckptChecksum(aCkpt, array_size(aCkpt), &aCkpt[nCkpt-2], &aCkpt[nCkpt-1]); + + memcpy(pShm->aSnap1, aCkpt, nCkpt*sizeof(u32)); + memcpy(pShm->aSnap2, aCkpt, nCkpt*sizeof(u32)); + memcpy(pDb->aSnapshot, aCkpt, nCkpt*sizeof(u32)); +} + +/* +** This function is called as part of database recovery to initialize the +** ShmHeader.aSnap1[] and ShmHeader.aSnap2[] snapshots. +*/ +int lsmCheckpointRecover(lsm_db *pDb){ + int rc = LSM_OK; /* Return Code */ + i64 iId1; /* Id of checkpoint on meta-page 1 */ + i64 iId2; /* Id of checkpoint on meta-page 2 */ + int bLoaded = 0; /* True once checkpoint has been loaded */ + int cmp; /* True if (iId2>iId1) */ + MetaPage *apPg[2] = {0, 0}; /* Meta-pages 1 and 2 */ + + rc = lsmFsMetaPageGet(pDb->pFS, 0, 1, &apPg[0]); + if( rc==LSM_OK ) rc = lsmFsMetaPageGet(pDb->pFS, 0, 2, &apPg[1]); + + iId1 = ckptLoadId(apPg[0]); + iId2 = ckptLoadId(apPg[1]); + cmp = (iId2 > iId1); + bLoaded = ckptTryLoad(pDb, apPg[cmp?1:0], (cmp?2:1), &rc); + if( bLoaded==0 ){ + bLoaded = ckptTryLoad(pDb, apPg[cmp?0:1], (cmp?1:2), &rc); + } + + /* The database does not contain a valid checkpoint. Initialize the shared + ** memory header with an empty checkpoint. */ + if( bLoaded==0 ){ + ckptLoadEmpty(pDb); + } + + lsmFsMetaPageRelease(apPg[0]); + lsmFsMetaPageRelease(apPg[1]); + + return rc; +} + +/* +** Store the snapshot in pDb->aSnapshot[] in meta-page iMeta. +*/ +int lsmCheckpointStore(lsm_db *pDb, int iMeta){ + MetaPage *pPg = 0; + int rc; + + assert( iMeta==1 || iMeta==2 ); + rc = lsmFsMetaPageGet(pDb->pFS, 1, iMeta, &pPg); + if( rc==LSM_OK ){ + u8 *aData; + int nData; + int nCkpt; + + nCkpt = (int)pDb->aSnapshot[CKPT_HDR_NCKPT]; + aData = lsmFsMetaPageData(pPg, &nData); + memcpy(aData, pDb->aSnapshot, nCkpt*sizeof(u32)); + ckptChangeEndianness((u32 *)aData, nCkpt); + rc = lsmFsMetaPageRelease(pPg); + } + + return rc; +} + +/* +** Copy the current client snapshot from shared-memory to pDb->aSnapshot[]. +*/ +int lsmCheckpointLoad(lsm_db *pDb, int *piRead){ + int nRem = LSM_ATTEMPTS_BEFORE_PROTOCOL; + ShmHeader *pShm = pDb->pShmhdr; + while( (nRem--)>0 ){ + int nInt; + + nInt = pShm->aSnap1[CKPT_HDR_NCKPT]; + if( nInt<=(LSM_META_PAGE_SIZE / sizeof(u32)) ){ + memcpy(pDb->aSnapshot, pShm->aSnap1, nInt*sizeof(u32)); + if( ckptChecksumOk(pDb->aSnapshot) ){ + if( piRead ) *piRead = 1; + return LSM_OK; + } + } + + nInt = pShm->aSnap2[CKPT_HDR_NCKPT]; + if( nInt<=(LSM_META_PAGE_SIZE / sizeof(u32)) ){ + memcpy(pDb->aSnapshot, pShm->aSnap2, nInt*sizeof(u32)); + if( ckptChecksumOk(pDb->aSnapshot) ){ + if( piRead ) *piRead = 2; + return LSM_OK; + } + } + + lsmShmBarrier(pDb); + } + return LSM_PROTOCOL_BKPT; +} + +int lsmInfoCompressionId(lsm_db *db, u32 *piCmpId){ + int rc; + + assert( db->pClient==0 && db->pWorker==0 ); + rc = lsmCheckpointLoad(db, 0); + if( rc==LSM_OK ){ + *piCmpId = db->aSnapshot[CKPT_HDR_CMPID]; + } + + return rc; +} + +int lsmCheckpointLoadOk(lsm_db *pDb, int iSnap){ + u32 *aShm; + assert( iSnap==1 || iSnap==2 ); + aShm = (iSnap==1) ? pDb->pShmhdr->aSnap1 : pDb->pShmhdr->aSnap2; + return (lsmCheckpointId(pDb->aSnapshot, 0)==lsmCheckpointId(aShm, 0) ); +} + +int lsmCheckpointClientCacheOk(lsm_db *pDb){ + return ( pDb->pClient + && pDb->pClient->iId==lsmCheckpointId(pDb->aSnapshot, 0) + && pDb->pClient->iId==lsmCheckpointId(pDb->pShmhdr->aSnap1, 0) + && pDb->pClient->iId==lsmCheckpointId(pDb->pShmhdr->aSnap2, 0) + ); +} + +int lsmCheckpointLoadWorker(lsm_db *pDb){ + int rc; + ShmHeader *pShm = pDb->pShmhdr; + int nInt1; + int nInt2; + + /* Must be holding the WORKER lock to do this. Or DMS2. */ + assert( + lsmShmAssertLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_EXCL) + || lsmShmAssertLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL) + ); + + /* Check that the two snapshots match. If not, repair them. */ + nInt1 = pShm->aSnap1[CKPT_HDR_NCKPT]; + nInt2 = pShm->aSnap2[CKPT_HDR_NCKPT]; + if( nInt1!=nInt2 || memcmp(pShm->aSnap1, pShm->aSnap2, nInt2*sizeof(u32)) ){ + if( ckptChecksumOk(pShm->aSnap1) ){ + memcpy(pShm->aSnap2, pShm->aSnap1, sizeof(u32)*nInt1); + }else if( ckptChecksumOk(pShm->aSnap2) ){ + memcpy(pShm->aSnap1, pShm->aSnap2, sizeof(u32)*nInt2); + }else{ + return LSM_PROTOCOL_BKPT; + } + } + + rc = lsmCheckpointDeserialize(pDb, 1, pShm->aSnap1, &pDb->pWorker); + if( pDb->pWorker ) pDb->pWorker->pDatabase = pDb->pDatabase; + + if( rc==LSM_OK ){ + rc = lsmCheckCompressionId(pDb, pDb->pWorker->iCmpId); + } + +#if 0 + assert( rc!=LSM_OK || lsmFsIntegrityCheck(pDb) ); +#endif + return rc; +} + +int lsmCheckpointDeserialize( + lsm_db *pDb, + int bInclFreelist, /* If true, deserialize free-list */ + u32 *aCkpt, + Snapshot **ppSnap +){ + int rc = LSM_OK; + Snapshot *pNew; + + pNew = (Snapshot *)lsmMallocZeroRc(pDb->pEnv, sizeof(Snapshot), &rc); + if( rc==LSM_OK ){ + Level *pLvl; + int nFree; + int i; + int nLevel = (int)aCkpt[CKPT_HDR_NLEVEL]; + int iIn = CKPT_HDR_SIZE + CKPT_APPENDLIST_SIZE + CKPT_LOGPTR_SIZE; + + pNew->iId = lsmCheckpointId(aCkpt, 0); + pNew->nBlock = aCkpt[CKPT_HDR_NBLOCK]; + pNew->nWrite = aCkpt[CKPT_HDR_NWRITE]; + rc = ckptLoadLevels(pDb, aCkpt, &iIn, nLevel, &pNew->pLevel); + pNew->iLogOff = lsmCheckpointLogOffset(aCkpt); + pNew->iCmpId = aCkpt[CKPT_HDR_CMPID]; + + /* Make a copy of the append-list */ + for(i=0; iaiAppend[i] = ckptRead64(a); + } + + /* Read the block-redirect list */ + pNew->redirect.n = aCkpt[iIn++]; + if( pNew->redirect.n ){ + pNew->redirect.a = lsmMallocZeroRc(pDb->pEnv, + (sizeof(struct RedirectEntry) * LSM_MAX_BLOCK_REDIRECTS), &rc + ); + if( rc==LSM_OK ){ + for(i=0; iredirect.n; i++){ + pNew->redirect.a[i].iFrom = aCkpt[iIn++]; + pNew->redirect.a[i].iTo = aCkpt[iIn++]; + } + } + for(pLvl=pNew->pLevel; pLvl->pNext; pLvl=pLvl->pNext); + if( pLvl->nRight ){ + pLvl->aRhs[pLvl->nRight-1].pRedirect = &pNew->redirect; + }else{ + pLvl->lhs.pRedirect = &pNew->redirect; + } + } + + /* Copy the free-list */ + if( rc==LSM_OK && bInclFreelist ){ + nFree = aCkpt[iIn++]; + if( nFree ){ + pNew->freelist.aEntry = (FreelistEntry *)lsmMallocZeroRc( + pDb->pEnv, sizeof(FreelistEntry)*nFree, &rc + ); + if( rc==LSM_OK ){ + int i; + for(i=0; ifreelist.aEntry[i]; + p->iBlk = aCkpt[iIn++]; + p->iId = ((i64)(aCkpt[iIn])<<32) + aCkpt[iIn+1]; + iIn += 2; + } + pNew->freelist.nEntry = pNew->freelist.nAlloc = nFree; + } + } + } + } + + if( rc!=LSM_OK ){ + lsmFreeSnapshot(pDb->pEnv, pNew); + pNew = 0; + } + + *ppSnap = pNew; + return rc; +} + +/* +** Connection pDb must be the worker connection in order to call this +** function. It returns true if the database already contains the maximum +** number of levels or false otherwise. +** +** This is used when flushing the in-memory tree to disk. If the database +** is already full, then the caller should invoke lsm_work() or similar +** until it is not full before creating a new level by flushing the in-memory +** tree to disk. Limiting the number of levels in the database ensures that +** the records describing them always fit within the checkpoint blob. +*/ +int lsmDatabaseFull(lsm_db *pDb){ + Level *p; + int nRhs = 0; + + assert( lsmShmAssertLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_EXCL) ); + assert( pDb->pWorker ); + + for(p=pDb->pWorker->pLevel; p; p=p->pNext){ + nRhs += (p->nRight ? p->nRight : 1); + } + + return (nRhs >= LSM_MAX_RHS_SEGMENTS); +} + +/* +** The connection passed as the only argument is currently the worker +** connection. Some work has been performed on the database by the connection, +** but no new snapshot has been written into shared memory. +** +** This function updates the shared-memory worker and client snapshots with +** the new snapshot produced by the work performed by pDb. +** +** If successful, LSM_OK is returned. Otherwise, if an error occurs, an LSM +** error code is returned. +*/ +int lsmCheckpointSaveWorker(lsm_db *pDb, int bFlush){ + Snapshot *pSnap = pDb->pWorker; + ShmHeader *pShm = pDb->pShmhdr; + void *p = 0; + int n = 0; + int rc; + + pSnap->iId++; + rc = ckptExportSnapshot(pDb, bFlush, pSnap->iId, 1, &p, &n); + if( rc!=LSM_OK ) return rc; + assert( ckptChecksumOk((u32 *)p) ); + + assert( n<=LSM_META_PAGE_SIZE ); + memcpy(pShm->aSnap2, p, n); + lsmShmBarrier(pDb); + memcpy(pShm->aSnap1, p, n); + lsmFree(pDb->pEnv, p); + + assert( lsmFsIntegrityCheck(pDb) ); + return LSM_OK; +} + +/* +** This function is used to determine the snapshot-id of the most recently +** checkpointed snapshot. Variable ShmHeader.iMetaPage indicates which of +** the two meta-pages said snapshot resides on (if any). +** +** If successful, this function loads the snapshot from the meta-page, +** verifies its checksum and sets *piId to the snapshot-id before returning +** LSM_OK. Or, if the checksum attempt fails, *piId is set to zero and +** LSM_OK returned. If an error occurs, an LSM error code is returned and +** the final value of *piId is undefined. +*/ +int lsmCheckpointSynced(lsm_db *pDb, i64 *piId, i64 *piLog, u32 *pnWrite){ + int rc = LSM_OK; + MetaPage *pPg; + u32 iMeta; + + iMeta = pDb->pShmhdr->iMetaPage; + if( iMeta==1 || iMeta==2 ){ + rc = lsmFsMetaPageGet(pDb->pFS, 0, iMeta, &pPg); + if( rc==LSM_OK ){ + int nCkpt; + int nData; + u8 *aData; + + aData = lsmFsMetaPageData(pPg, &nData); + assert( nData==LSM_META_PAGE_SIZE ); + nCkpt = lsmGetU32(&aData[CKPT_HDR_NCKPT*sizeof(u32)]); + if( nCkpt<(LSM_META_PAGE_SIZE/sizeof(u32)) ){ + u32 *aCopy = lsmMallocRc(pDb->pEnv, sizeof(u32) * nCkpt, &rc); + if( aCopy ){ + memcpy(aCopy, aData, nCkpt*sizeof(u32)); + ckptChangeEndianness(aCopy, nCkpt); + if( ckptChecksumOk(aCopy) ){ + if( piId ) *piId = lsmCheckpointId(aCopy, 0); + if( piLog ) *piLog = (lsmCheckpointLogOffset(aCopy) >> 1); + if( pnWrite ) *pnWrite = aCopy[CKPT_HDR_NWRITE]; + } + lsmFree(pDb->pEnv, aCopy); + } + } + lsmFsMetaPageRelease(pPg); + } + } + + if( (iMeta!=1 && iMeta!=2) || rc!=LSM_OK || pDb->pShmhdr->iMetaPage!=iMeta ){ + if( piId ) *piId = 0; + if( piLog ) *piLog = 0; + if( pnWrite ) *pnWrite = 0; + } + return rc; +} + +/* +** Return the checkpoint-id of the checkpoint array passed as the first +** argument to this function. If the second argument is true, then assume +** that the checkpoint is made up of 32-bit big-endian integers. If it +** is false, assume that the integers are in machine byte order. +*/ +i64 lsmCheckpointId(u32 *aCkpt, int bDisk){ + i64 iId; + if( bDisk ){ + u8 *aData = (u8 *)aCkpt; + iId = (((i64)lsmGetU32(&aData[CKPT_HDR_ID_MSW*4])) << 32); + iId += ((i64)lsmGetU32(&aData[CKPT_HDR_ID_LSW*4])); + }else{ + iId = ((i64)aCkpt[CKPT_HDR_ID_MSW] << 32) + (i64)aCkpt[CKPT_HDR_ID_LSW]; + } + return iId; +} + +u32 lsmCheckpointNBlock(u32 *aCkpt){ + return aCkpt[CKPT_HDR_NBLOCK]; +} + +u32 lsmCheckpointNWrite(u32 *aCkpt, int bDisk){ + if( bDisk ){ + return lsmGetU32((u8 *)&aCkpt[CKPT_HDR_NWRITE]); + }else{ + return aCkpt[CKPT_HDR_NWRITE]; + } +} + +i64 lsmCheckpointLogOffset(u32 *aCkpt){ + return ((i64)aCkpt[CKPT_HDR_LO_MSW] << 32) + (i64)aCkpt[CKPT_HDR_LO_LSW]; +} + +int lsmCheckpointPgsz(u32 *aCkpt){ return (int)aCkpt[CKPT_HDR_PGSZ]; } + +int lsmCheckpointBlksz(u32 *aCkpt){ return (int)aCkpt[CKPT_HDR_BLKSZ]; } + +void lsmCheckpointLogoffset( + u32 *aCkpt, + DbLog *pLog +){ + pLog->aRegion[2].iStart = (lsmCheckpointLogOffset(aCkpt) >> 1); + + pLog->cksum0 = aCkpt[CKPT_HDR_LO_CKSUM1]; + pLog->cksum1 = aCkpt[CKPT_HDR_LO_CKSUM2]; + pLog->iSnapshotId = lsmCheckpointId(aCkpt, 0); +} + +void lsmCheckpointZeroLogoffset(lsm_db *pDb){ + u32 nCkpt; + + nCkpt = pDb->aSnapshot[CKPT_HDR_NCKPT]; + assert( nCkpt>CKPT_HDR_NCKPT ); + assert( nCkpt==pDb->pShmhdr->aSnap1[CKPT_HDR_NCKPT] ); + assert( 0==memcmp(pDb->aSnapshot, pDb->pShmhdr->aSnap1, nCkpt*sizeof(u32)) ); + assert( 0==memcmp(pDb->aSnapshot, pDb->pShmhdr->aSnap2, nCkpt*sizeof(u32)) ); + + pDb->aSnapshot[CKPT_HDR_LO_MSW] = 0; + pDb->aSnapshot[CKPT_HDR_LO_LSW] = 0; + ckptChecksum(pDb->aSnapshot, nCkpt, + &pDb->aSnapshot[nCkpt-2], &pDb->aSnapshot[nCkpt-1] + ); + + memcpy(pDb->pShmhdr->aSnap1, pDb->aSnapshot, nCkpt*sizeof(u32)); + memcpy(pDb->pShmhdr->aSnap2, pDb->aSnapshot, nCkpt*sizeof(u32)); +} + +/* +** Set the output variable to the number of KB of data written into the +** database file since the most recent checkpoint. +*/ +int lsmCheckpointSize(lsm_db *db, int *pnKB){ + int rc = LSM_OK; + u32 nSynced; + + /* Set nSynced to the number of pages that had been written when the + ** database was last checkpointed. */ + rc = lsmCheckpointSynced(db, 0, 0, &nSynced); + + if( rc==LSM_OK ){ + u32 nPgsz = db->pShmhdr->aSnap1[CKPT_HDR_PGSZ]; + u32 nWrite = db->pShmhdr->aSnap1[CKPT_HDR_NWRITE]; + *pnKB = (int)(( ((i64)(nWrite - nSynced) * nPgsz) + 1023) / 1024); + } + + return rc; +} ADDED ext/lsm1/lsm_file.c Index: ext/lsm1/lsm_file.c ================================================================== --- /dev/null +++ ext/lsm1/lsm_file.c @@ -0,0 +1,3292 @@ +/* +** 2011-08-26 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** NORMAL DATABASE FILE FORMAT +** +** The following database file format concepts are used by the code in +** this file to read and write the database file. +** +** Pages: +** +** A database file is divided into pages. The first 8KB of the file consists +** of two 4KB meta-pages. The meta-page size is not configurable. The +** remainder of the file is made up of database pages. The default database +** page size is 4KB. Database pages are aligned to page-size boundaries, +** so if the database page size is larger than 8KB there is a gap between +** the end of the meta pages and the start of the database pages. +** +** Database pages are numbered based on their position in the file. Page N +** begins at byte offset ((N-1)*pgsz). This means that page 1 does not +** exist - since it would always overlap with the meta pages. If the +** page-size is (say) 512 bytes, then the first usable page in the database +** is page 33. +** +** It is assumed that the first two meta pages and the data that follows +** them are located on different disk sectors. So that if a power failure +** while writing to a meta page there is no risk of damage to the other +** meta page or any other part of the database file. TODO: This may need +** to be revisited. +** +** Blocks: +** +** The database file is also divided into blocks. The default block size is +** 1MB. When writing to the database file, an attempt is made to write data +** in contiguous block-sized chunks. +** +** The first and last page on each block are special in that they are 4 +** bytes smaller than all other pages. This is because the last four bytes +** of space on the first and last pages of each block are reserved for +** pointers to other blocks (i.e. a 32-bit block number). +** +** Runs: +** +** A run is a sequence of pages that the upper layer uses to store a +** sorted array of database keys (and accompanying data - values, FC +** pointers and so on). Given a page within a run, it is possible to +** navigate to the next page in the run as follows: +** +** a) if the current page is not the last in a block, the next page +** in the run is located immediately after the current page, OR +** +** b) if the current page is the last page in a block, the next page +** in the run is the first page on the block identified by the +** block pointer stored in the last 4 bytes of the current block. +** +** It is possible to navigate to the previous page in a similar fashion, +** using the block pointer embedded in the last 4 bytes of the first page +** of each block as required. +** +** The upper layer is responsible for identifying by page number the +** first and last page of any run that it needs to navigate - there are +** no "end-of-run" markers stored or identified by this layer. This is +** necessary as clients reading different database snapshots may access +** different subsets of a run. +** +** THE LOG FILE +** +** This file opens and closes the log file. But it does not contain any +** logic related to the log file format. Instead, it exports the following +** functions that are used by the code in lsm_log.c to read and write the +** log file: +** +** lsmFsOpenLog +** lsmFsWriteLog +** lsmFsSyncLog +** lsmFsReadLog +** lsmFsTruncateLog +** lsmFsCloseAndDeleteLog +** +** COMPRESSED DATABASE FILE FORMAT +** +** The compressed database file format is very similar to the normal format. +** The file still begins with two 4KB meta-pages (which are never compressed). +** It is still divided into blocks. +** +** The first and last four bytes of each block are reserved for 32-bit +** pointer values. Similar to the way four bytes are carved from the end of +** the first and last page of each block in uncompressed databases. From +** the point of view of the upper layer, all pages are the same size - this +** is different from the uncompressed format where the first and last pages +** on each block are 4 bytes smaller than the others. +** +** Pages are stored in variable length compressed form, as follows: +** +** * 3-byte size field containing the size of the compressed page image +** in bytes. The most significant bit of each byte of the size field +** is always set. The remaining 7 bits are used to store a 21-bit +** integer value (in big-endian order - the first byte in the field +** contains the most significant 7 bits). Since the maximum allowed +** size of a compressed page image is (2^17 - 1) bytes, there are +** actually 4 unused bits in the size field. +** +** In other words, if the size of the compressed page image is nSz, +** the header can be serialized as follows: +** +** u8 aHdr[3] +** aHdr[0] = 0x80 | (u8)(nSz >> 14); +** aHdr[1] = 0x80 | (u8)(nSz >> 7); +** aHdr[2] = 0x80 | (u8)(nSz >> 0); +** +** * Compressed page image. +** +** * A second copy of the 3-byte record header. +** +** A page number is a byte offset into the database file. So the smallest +** possible page number is 8192 (immediately after the two meta-pages). +** The first and root page of a segment are identified by a page number +** corresponding to the byte offset of the first byte in the corresponding +** page record. The last page of a segment is identified by the byte offset +** of the last byte in its record. +** +** Unlike uncompressed pages, compressed page records may span blocks. +** +** Sometimes, in order to avoid touching sectors that contain synced data +** when writing, it is necessary to insert unused space between compressed +** page records. This can be done as follows: +** +** * For less than 6 bytes of empty space, the first and last byte +** of the free space contain the total number of free bytes. For +** example: +** +** Block of 4 free bytes: 0x04 0x?? 0x?? 0x04 +** Block of 2 free bytes: 0x02 0x02 +** A single free byte: 0x01 +** +** * For 6 or more bytes of empty space, a record similar to a +** compressed page record is added to the segment. A padding record +** is distinguished from a compressed page record by the most +** significant bit of the second byte of the size field, which is +** cleared instead of set. +*/ +#include "lsmInt.h" + +#include +#include +#include + +/* +** File-system object. Each database connection allocates a single instance +** of the following structure. It is used for all access to the database and +** log files. +** +** The database file may be accessed via two methods - using mmap() or using +** read() and write() calls. In the general case both methods are used - a +** prefix of the file is mapped into memory and the remainder accessed using +** read() and write(). This is helpful when accessing very large files (or +** files that may grow very large during the lifetime of a database +** connection) on systems with 32-bit address spaces. However, it also requires +** that this object manage two distinct types of Page objects simultaneously - +** those that carry pointers to the mapped file and those that carry arrays +** populated by read() calls. +** +** pFree: +** The head of a singly-linked list that containing currently unused Page +** structures suitable for use as mmap-page handles. Connected by the +** Page.pFreeNext pointers. +** +** pMapped: +** The head of a singly-linked list that contains all pages that currently +** carry pointers to the mapped region. This is used if the region is +** every remapped - the pointers carried by existing pages can be adjusted +** to account for the remapping. Connected by the Page.pMappedNext pointers. +** +** pWaiting: +** When the upper layer wishes to append a new b-tree page to a segment, +** it allocates a Page object that carries a malloc'd block of memory - +** regardless of the mmap-related configuration. The page is not assigned +** a page number at first. When the upper layer has finished constructing +** the page contents, it calls lsmFsPagePersist() to assign a page number +** to it. At this point it is likely that N pages have been written to the +** segment, the (N+1)th page is still outstanding and the b-tree page is +** assigned page number (N+2). To avoid writing page (N+2) before page +** (N+1), the recently completed b-tree page is held in the singly linked +** list headed by pWaiting until page (N+1) has been written. +** +** Function lsmFsFlushWaiting() is responsible for eventually writing +** waiting pages to disk. +** +** apHash/nHash: +** Hash table used to store all Page objects that carry malloc'd arrays, +** except those b-tree pages that have not yet been assigned page numbers. +** Once they have been assigned page numbers - they are added to this +** hash table. +** +** Hash table overflow chains are connected using the Page.pHashNext +** pointers. +** +** pLruFirst, pLruLast: +** The first and last entries in a doubly-linked list of pages. This +** list contains all pages with malloc'd data that are present in the +** hash table and have a ref-count of zero. +*/ +struct FileSystem { + lsm_db *pDb; /* Database handle that owns this object */ + lsm_env *pEnv; /* Environment pointer */ + char *zDb; /* Database file name */ + char *zLog; /* Database file name */ + int nMetasize; /* Size of meta pages in bytes */ + int nPagesize; /* Database page-size in bytes */ + int nBlocksize; /* Database block-size in bytes */ + + /* r/w file descriptors for both files. */ + LsmFile *pLsmFile; /* Used after lsm_close() to link into list */ + lsm_file *fdDb; /* Database file */ + lsm_file *fdLog; /* Log file */ + int szSector; /* Database file sector size */ + + /* If this is a compressed database, a pointer to the compression methods. + ** For an uncompressed database, a NULL pointer. */ + lsm_compress *pCompress; + u8 *aIBuffer; /* Buffer to compress to */ + u8 *aOBuffer; /* Buffer to uncompress from */ + int nBuffer; /* Allocated size of above buffers in bytes */ + + /* mmap() page related things */ + i64 nMapLimit; /* Maximum bytes of file to map */ + void *pMap; /* Current mapping of database file */ + i64 nMap; /* Bytes mapped at pMap */ + Page *pFree; /* Unused Page structures */ + Page *pMapped; /* List of Page structs that point to pMap */ + + /* Page cache parameters for non-mmap() pages */ + int nCacheMax; /* Configured cache size (in pages) */ + int nCacheAlloc; /* Current cache size (in pages) */ + Page *pLruFirst; /* Head of the LRU list */ + Page *pLruLast; /* Tail of the LRU list */ + int nHash; /* Number of hash slots in hash table */ + Page **apHash; /* nHash Hash slots */ + Page *pWaiting; /* b-tree pages waiting to be written */ + + /* Statistics */ + int nOut; /* Number of outstanding pages */ + int nWrite; /* Total number of pages written */ + int nRead; /* Total number of pages read */ +}; + +/* +** Database page handle. +** +** pSeg: +** When lsmFsSortedAppend() is called on a compressed database, the new +** page is not assigned a page number or location in the database file +** immediately. Instead, these are assigned by the lsmFsPagePersist() call +** right before it writes the compressed page image to disk. +** +** The lsmFsSortedAppend() function sets the pSeg pointer to point to the +** segment that the new page will be a part of. It is unset by +** lsmFsPagePersist() after the page is written to disk. +*/ +struct Page { + u8 *aData; /* Buffer containing page data */ + int nData; /* Bytes of usable data at aData[] */ + Pgno iPg; /* Page number */ + int nRef; /* Number of outstanding references */ + int flags; /* Combination of PAGE_XXX flags */ + Page *pHashNext; /* Next page in hash table slot */ + Page *pLruNext; /* Next page in LRU list */ + Page *pLruPrev; /* Previous page in LRU list */ + FileSystem *pFS; /* File system that owns this page */ + + /* Only used in compressed database mode: */ + int nCompress; /* Compressed size (or 0 for uncomp. db) */ + int nCompressPrev; /* Compressed size of prev page */ + Segment *pSeg; /* Segment this page will be written to */ + + /* Pointers for singly linked lists */ + Page *pWaitingNext; /* Next page in FileSystem.pWaiting list */ + Page *pFreeNext; /* Next page in FileSystem.pFree list */ + Page *pMappedNext; /* Next page in FileSystem.pMapped list */ +}; + +/* +** Meta-data page handle. There are two meta-data pages at the start of +** the database file, each FileSystem.nMetasize bytes in size. +*/ +struct MetaPage { + int iPg; /* Either 1 or 2 */ + int bWrite; /* Write back to db file on release */ + u8 *aData; /* Pointer to buffer */ + FileSystem *pFS; /* FileSystem that owns this page */ +}; + +/* +** Values for LsmPage.flags +*/ +#define PAGE_DIRTY 0x00000001 /* Set if page is dirty */ +#define PAGE_FREE 0x00000002 /* Set if Page.aData requires lsmFree() */ +#define PAGE_HASPREV 0x00000004 /* Set if page is first on uncomp. block */ + +/* +** Number of pgsz byte pages omitted from the start of block 1. The start +** of block 1 contains two 4096 byte meta pages (8192 bytes in total). +*/ +#define BLOCK1_HDR_SIZE(pgsz) LSM_MAX(1, 8192/(pgsz)) + +/* +** If NDEBUG is not defined, set a breakpoint in function lsmIoerrBkpt() +** to catch IO errors (any error returned by a VFS method). +*/ +#ifndef NDEBUG +static void lsmIoerrBkpt(void){ + static int nErr = 0; + nErr++; +} +static int IOERR_WRAPPER(int rc){ + if( rc!=LSM_OK ) lsmIoerrBkpt(); + return rc; +} +#else +# define IOERR_WRAPPER(rc) (rc) +#endif + +#ifdef NDEBUG +# define assert_lists_are_ok(x) +#else +static Page *fsPageFindInHash(FileSystem *pFS, Pgno iPg, int *piHash); + +static void assert_lists_are_ok(FileSystem *pFS){ +#if 0 + Page *p; + + assert( pFS->nMapLimit>=0 ); + + /* Check that all pages in the LRU list have nRef==0, pointers to buffers + ** in heap memory, and corresponding entries in the hash table. */ + for(p=pFS->pLruFirst; p; p=p->pLruNext){ + assert( p==pFS->pLruFirst || p->pLruPrev!=0 ); + assert( p==pFS->pLruLast || p->pLruNext!=0 ); + assert( p->pLruPrev==0 || p->pLruPrev->pLruNext==p ); + assert( p->pLruNext==0 || p->pLruNext->pLruPrev==p ); + assert( p->nRef==0 ); + assert( p->flags & PAGE_FREE ); + assert( p==fsPageFindInHash(pFS, p->iPg, 0) ); + } +#endif +} +#endif + +/* +** Wrappers around the VFS methods of the lsm_env object: +** +** lsmEnvOpen() +** lsmEnvRead() +** lsmEnvWrite() +** lsmEnvSync() +** lsmEnvSectorSize() +** lsmEnvClose() +** lsmEnvTruncate() +** lsmEnvUnlink() +** lsmEnvRemap() +*/ +int lsmEnvOpen(lsm_env *pEnv, const char *zFile, int flags, lsm_file **ppNew){ + return pEnv->xOpen(pEnv, zFile, flags, ppNew); +} + +static int lsmEnvRead( + lsm_env *pEnv, + lsm_file *pFile, + lsm_i64 iOff, + void *pRead, + int nRead +){ + return IOERR_WRAPPER( pEnv->xRead(pFile, iOff, pRead, nRead) ); +} + +static int lsmEnvWrite( + lsm_env *pEnv, + lsm_file *pFile, + lsm_i64 iOff, + const void *pWrite, + int nWrite +){ + return IOERR_WRAPPER( pEnv->xWrite(pFile, iOff, (void *)pWrite, nWrite) ); +} + +static int lsmEnvSync(lsm_env *pEnv, lsm_file *pFile){ + return IOERR_WRAPPER( pEnv->xSync(pFile) ); +} + +static int lsmEnvSectorSize(lsm_env *pEnv, lsm_file *pFile){ + return pEnv->xSectorSize(pFile); +} + +int lsmEnvClose(lsm_env *pEnv, lsm_file *pFile){ + return IOERR_WRAPPER( pEnv->xClose(pFile) ); +} + +static int lsmEnvTruncate(lsm_env *pEnv, lsm_file *pFile, lsm_i64 nByte){ + return IOERR_WRAPPER( pEnv->xTruncate(pFile, nByte) ); +} + +static int lsmEnvUnlink(lsm_env *pEnv, const char *zDel){ + return IOERR_WRAPPER( pEnv->xUnlink(pEnv, zDel) ); +} + +static int lsmEnvRemap( + lsm_env *pEnv, + lsm_file *pFile, + i64 szMin, + void **ppMap, + i64 *pszMap +){ + return pEnv->xRemap(pFile, szMin, ppMap, pszMap); +} + +int lsmEnvLock(lsm_env *pEnv, lsm_file *pFile, int iLock, int eLock){ + if( pFile==0 ) return LSM_OK; + return pEnv->xLock(pFile, iLock, eLock); +} + +int lsmEnvTestLock( + lsm_env *pEnv, + lsm_file *pFile, + int iLock, + int nLock, + int eLock +){ + return pEnv->xTestLock(pFile, iLock, nLock, eLock); +} + +int lsmEnvShmMap( + lsm_env *pEnv, + lsm_file *pFile, + int iChunk, + int sz, + void **ppOut +){ + return pEnv->xShmMap(pFile, iChunk, sz, ppOut); +} + +void lsmEnvShmBarrier(lsm_env *pEnv){ + pEnv->xShmBarrier(); +} + +void lsmEnvShmUnmap(lsm_env *pEnv, lsm_file *pFile, int bDel){ + pEnv->xShmUnmap(pFile, bDel); +} + +void lsmEnvSleep(lsm_env *pEnv, int nUs){ + pEnv->xSleep(pEnv, nUs); +} + + +/* +** Write the contents of string buffer pStr into the log file, starting at +** offset iOff. +*/ +int lsmFsWriteLog(FileSystem *pFS, i64 iOff, LsmString *pStr){ + assert( pFS->fdLog ); + return lsmEnvWrite(pFS->pEnv, pFS->fdLog, iOff, pStr->z, pStr->n); +} + +/* +** fsync() the log file. +*/ +int lsmFsSyncLog(FileSystem *pFS){ + assert( pFS->fdLog ); + return lsmEnvSync(pFS->pEnv, pFS->fdLog); +} + +/* +** Read nRead bytes of data starting at offset iOff of the log file. Append +** the results to string buffer pStr. +*/ +int lsmFsReadLog(FileSystem *pFS, i64 iOff, int nRead, LsmString *pStr){ + int rc; /* Return code */ + assert( pFS->fdLog ); + rc = lsmStringExtend(pStr, nRead); + if( rc==LSM_OK ){ + rc = lsmEnvRead(pFS->pEnv, pFS->fdLog, iOff, &pStr->z[pStr->n], nRead); + pStr->n += nRead; + } + return rc; +} + +/* +** Truncate the log file to nByte bytes in size. +*/ +int lsmFsTruncateLog(FileSystem *pFS, i64 nByte){ + if( pFS->fdLog==0 ) return LSM_OK; + return lsmEnvTruncate(pFS->pEnv, pFS->fdLog, nByte); +} + +/* +** Truncate the db file to nByte bytes in size. +*/ +int lsmFsTruncateDb(FileSystem *pFS, i64 nByte){ + if( pFS->fdDb==0 ) return LSM_OK; + return lsmEnvTruncate(pFS->pEnv, pFS->fdDb, nByte); +} + +/* +** Close the log file. Then delete it from the file-system. This function +** is called during database shutdown only. +*/ +int lsmFsCloseAndDeleteLog(FileSystem *pFS){ + char *zDel; + + if( pFS->fdLog ){ + lsmEnvClose(pFS->pEnv, pFS->fdLog ); + pFS->fdLog = 0; + } + + zDel = lsmMallocPrintf(pFS->pEnv, "%s-log", pFS->zDb); + if( zDel ){ + lsmEnvUnlink(pFS->pEnv, zDel); + lsmFree(pFS->pEnv, zDel); + } + return LSM_OK; +} + +/* +** Return true if page iReal of the database should be accessed using mmap. +** False otherwise. +*/ +static int fsMmapPage(FileSystem *pFS, Pgno iReal){ + return ((i64)iReal*pFS->nPagesize <= pFS->nMapLimit); +} + +/* +** Given that there are currently nHash slots in the hash table, return +** the hash key for file iFile, page iPg. +*/ +static int fsHashKey(int nHash, int iPg){ + return (iPg % nHash); +} + +/* +** This is a helper function for lsmFsOpen(). It opens a single file on +** disk (either the database or log file). +*/ +static lsm_file *fsOpenFile( + FileSystem *pFS, /* File system object */ + int bReadonly, /* True to open this file read-only */ + int bLog, /* True for log, false for db */ + int *pRc /* IN/OUT: Error code */ +){ + lsm_file *pFile = 0; + if( *pRc==LSM_OK ){ + int flags = (bReadonly ? LSM_OPEN_READONLY : 0); + const char *zPath = (bLog ? pFS->zLog : pFS->zDb); + + *pRc = lsmEnvOpen(pFS->pEnv, zPath, flags, &pFile); + } + return pFile; +} + +/* +** If it is not already open, this function opens the log file. It returns +** LSM_OK if successful (or if the log file was already open) or an LSM +** error code otherwise. +** +** The log file must be opened before any of the following may be called: +** +** lsmFsWriteLog +** lsmFsSyncLog +** lsmFsReadLog +*/ +int lsmFsOpenLog(lsm_db *db, int *pbOpen){ + int rc = LSM_OK; + FileSystem *pFS = db->pFS; + + if( 0==pFS->fdLog ){ + pFS->fdLog = fsOpenFile(pFS, db->bReadonly, 1, &rc); + + if( rc==LSM_IOERR_NOENT && db->bReadonly ){ + rc = LSM_OK; + } + } + + if( pbOpen ) *pbOpen = (pFS->fdLog!=0); + return rc; +} + +/* +** Close the log file, if it is open. +*/ +void lsmFsCloseLog(lsm_db *db){ + FileSystem *pFS = db->pFS; + if( pFS->fdLog ){ + lsmEnvClose(pFS->pEnv, pFS->fdLog); + pFS->fdLog = 0; + } +} + +/* +** Open a connection to a database stored within the file-system. +** +** If parameter bReadonly is true, then open a read-only file-descriptor +** on the database file. It is possible that bReadonly will be false even +** if the user requested that pDb be opened read-only. This is because the +** file-descriptor may later on be recycled by a read-write connection. +** If the db file can be opened for read-write access, it always is. Parameter +** bReadonly is only ever true if it has already been determined that the +** db can only be opened for read-only access. +** +** Return LSM_OK if successful or an lsm error code otherwise. +*/ +int lsmFsOpen( + lsm_db *pDb, /* Database connection to open fd for */ + const char *zDb, /* Full path to database file */ + int bReadonly /* True to open db file read-only */ +){ + FileSystem *pFS; + int rc = LSM_OK; + int nDb = strlen(zDb); + int nByte; + + assert( pDb->pFS==0 ); + assert( pDb->pWorker==0 && pDb->pClient==0 ); + + nByte = sizeof(FileSystem) + nDb+1 + nDb+4+1; + pFS = (FileSystem *)lsmMallocZeroRc(pDb->pEnv, nByte, &rc); + if( pFS ){ + LsmFile *pLsmFile; + pFS->zDb = (char *)&pFS[1]; + pFS->zLog = &pFS->zDb[nDb+1]; + pFS->nPagesize = LSM_DFLT_PAGE_SIZE; + pFS->nBlocksize = LSM_DFLT_BLOCK_SIZE; + pFS->nMetasize = 4 * 1024; + pFS->pDb = pDb; + pFS->pEnv = pDb->pEnv; + + /* Make a copy of the database and log file names. */ + memcpy(pFS->zDb, zDb, nDb+1); + memcpy(pFS->zLog, zDb, nDb); + memcpy(&pFS->zLog[nDb], "-log", 5); + + /* Allocate the hash-table here. At some point, it should be changed + ** so that it can grow dynamicly. */ + pFS->nCacheMax = 2048*1024 / pFS->nPagesize; + pFS->nHash = 4096; + pFS->apHash = lsmMallocZeroRc(pDb->pEnv, sizeof(Page *) * pFS->nHash, &rc); + + /* Open the database file */ + pLsmFile = lsmDbRecycleFd(pDb); + if( pLsmFile ){ + pFS->pLsmFile = pLsmFile; + pFS->fdDb = pLsmFile->pFile; + memset(pLsmFile, 0, sizeof(LsmFile)); + }else{ + pFS->pLsmFile = lsmMallocZeroRc(pDb->pEnv, sizeof(LsmFile), &rc); + if( rc==LSM_OK ){ + pFS->fdDb = fsOpenFile(pFS, bReadonly, 0, &rc); + } + } + + if( rc!=LSM_OK ){ + lsmFsClose(pFS); + pFS = 0; + }else{ + pFS->szSector = lsmEnvSectorSize(pFS->pEnv, pFS->fdDb); + } + } + + pDb->pFS = pFS; + return rc; +} + +/* +** Configure the file-system object according to the current values of +** the LSM_CONFIG_MMAP and LSM_CONFIG_SET_COMPRESSION options. +*/ +int lsmFsConfigure(lsm_db *db){ + FileSystem *pFS = db->pFS; + if( pFS ){ + lsm_env *pEnv = pFS->pEnv; + Page *pPg; + + assert( pFS->nOut==0 ); + assert( pFS->pWaiting==0 ); + assert( pFS->pMapped==0 ); + + /* Reset any compression/decompression buffers already allocated */ + lsmFree(pEnv, pFS->aIBuffer); + lsmFree(pEnv, pFS->aOBuffer); + pFS->nBuffer = 0; + + /* Unmap the file, if it is currently mapped */ + if( pFS->pMap ){ + lsmEnvRemap(pEnv, pFS->fdDb, -1, &pFS->pMap, &pFS->nMap); + pFS->nMapLimit = 0; + } + + /* Free all allocated page structures */ + pPg = pFS->pLruFirst; + while( pPg ){ + Page *pNext = pPg->pLruNext; + assert( pPg->flags & PAGE_FREE ); + lsmFree(pEnv, pPg->aData); + lsmFree(pEnv, pPg); + pPg = pNext; + } + + pPg = pFS->pFree; + while( pPg ){ + Page *pNext = pPg->pFreeNext; + lsmFree(pEnv, pPg); + pPg = pNext; + } + + /* Zero pointers that point to deleted page objects */ + pFS->nCacheAlloc = 0; + pFS->pLruFirst = 0; + pFS->pLruLast = 0; + pFS->pFree = 0; + if( pFS->apHash ){ + memset(pFS->apHash, 0, pFS->nHash*sizeof(pFS->apHash[0])); + } + + /* Configure the FileSystem object */ + if( db->compress.xCompress ){ + pFS->pCompress = &db->compress; + pFS->nMapLimit = 0; + }else{ + pFS->pCompress = 0; + if( db->iMmap==1 ){ + /* Unlimited */ + pFS->nMapLimit = (i64)1 << 60; + }else{ + /* iMmap is a limit in KB. Set nMapLimit to the same value in bytes. */ + pFS->nMapLimit = (i64)db->iMmap * 1024; + } + } + } + + return LSM_OK; +} + +/* +** Close and destroy a FileSystem object. +*/ +void lsmFsClose(FileSystem *pFS){ + if( pFS ){ + Page *pPg; + lsm_env *pEnv = pFS->pEnv; + + assert( pFS->nOut==0 ); + pPg = pFS->pLruFirst; + while( pPg ){ + Page *pNext = pPg->pLruNext; + if( pPg->flags & PAGE_FREE ) lsmFree(pEnv, pPg->aData); + lsmFree(pEnv, pPg); + pPg = pNext; + } + + pPg = pFS->pFree; + while( pPg ){ + Page *pNext = pPg->pFreeNext; + if( pPg->flags & PAGE_FREE ) lsmFree(pEnv, pPg->aData); + lsmFree(pEnv, pPg); + pPg = pNext; + } + + if( pFS->fdDb ) lsmEnvClose(pFS->pEnv, pFS->fdDb ); + if( pFS->fdLog ) lsmEnvClose(pFS->pEnv, pFS->fdLog ); + lsmFree(pEnv, pFS->pLsmFile); + lsmFree(pEnv, pFS->apHash); + lsmFree(pEnv, pFS->aIBuffer); + lsmFree(pEnv, pFS->aOBuffer); + lsmFree(pEnv, pFS); + } +} + +/* +** This function is called when closing a database handle (i.e. lsm_close()) +** if there exist other connections to the same database within this process. +** In that case the file-descriptor open on the database file is not closed +** when the FileSystem object is destroyed, as this would cause any POSIX +** locks held by the other connections to be silently dropped (see "man close" +** for details). Instead, the file-descriptor is stored in a list by the +** lsm_shared.c module until it is either closed or reused. +** +** This function returns a pointer to an object that can be linked into +** the list described above. The returned object now 'owns' the database +** file descriptr, so that when the FileSystem object is destroyed, it +** will not be closed. +** +** This function may be called at most once in the life-time of a +** FileSystem object. The results of any operations involving the database +** file descriptor are undefined once this function has been called. +** +** None of this is necessary on non-POSIX systems. But we do it anyway in +** the name of using as similar code as possible on all platforms. +*/ +LsmFile *lsmFsDeferClose(FileSystem *pFS){ + LsmFile *p = pFS->pLsmFile; + assert( p->pNext==0 ); + p->pFile = pFS->fdDb; + pFS->fdDb = 0; + pFS->pLsmFile = 0; + return p; +} + +/* +** Allocate a buffer and populate it with the output of the xFileid() +** method of the database file handle. If successful, set *ppId to point +** to the buffer and *pnId to the number of bytes in the buffer and return +** LSM_OK. Otherwise, set *ppId and *pnId to zero and return an LSM +** error code. +*/ +int lsmFsFileid(lsm_db *pDb, void **ppId, int *pnId){ + lsm_env *pEnv = pDb->pEnv; + FileSystem *pFS = pDb->pFS; + int rc; + int nId = 0; + void *pId; + + rc = pEnv->xFileid(pFS->fdDb, 0, &nId); + pId = lsmMallocZeroRc(pEnv, nId, &rc); + if( rc==LSM_OK ) rc = pEnv->xFileid(pFS->fdDb, pId, &nId); + + if( rc!=LSM_OK ){ + lsmFree(pEnv, pId); + pId = 0; + nId = 0; + } + + *ppId = pId; + *pnId = nId; + return rc; +} + +/* +** Return the nominal page-size used by this file-system. Actual pages +** may be smaller or larger than this value. +*/ +int lsmFsPageSize(FileSystem *pFS){ + return pFS->nPagesize; +} + +/* +** Return the block-size used by this file-system. +*/ +int lsmFsBlockSize(FileSystem *pFS){ + return pFS->nBlocksize; +} + +/* +** Configure the nominal page-size used by this file-system. Actual +** pages may be smaller or larger than this value. +*/ +void lsmFsSetPageSize(FileSystem *pFS, int nPgsz){ + pFS->nPagesize = nPgsz; + pFS->nCacheMax = 2048*1024 / pFS->nPagesize; +} + +/* +** Configure the block-size used by this file-system. +*/ +void lsmFsSetBlockSize(FileSystem *pFS, int nBlocksize){ + pFS->nBlocksize = nBlocksize; +} + +/* +** Return the page number of the first page on block iBlock. Blocks are +** numbered starting from 1. +** +** For a compressed database, page numbers are byte offsets. The first +** page on each block is the byte offset immediately following the 4-byte +** "previous block" pointer at the start of each block. +*/ +static Pgno fsFirstPageOnBlock(FileSystem *pFS, int iBlock){ + Pgno iPg; + if( pFS->pCompress ){ + if( iBlock==1 ){ + iPg = pFS->nMetasize * 2 + 4; + }else{ + iPg = pFS->nBlocksize * (Pgno)(iBlock-1) + 4; + } + }else{ + const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize); + if( iBlock==1 ){ + iPg = 1 + ((pFS->nMetasize*2 + pFS->nPagesize - 1) / pFS->nPagesize); + }else{ + iPg = 1 + (iBlock-1) * nPagePerBlock; + } + } + return iPg; +} + +/* +** Return the page number of the last page on block iBlock. Blocks are +** numbered starting from 1. +** +** For a compressed database, page numbers are byte offsets. The first +** page on each block is the byte offset of the byte immediately before +** the 4-byte "next block" pointer at the end of each block. +*/ +static Pgno fsLastPageOnBlock(FileSystem *pFS, int iBlock){ + if( pFS->pCompress ){ + return pFS->nBlocksize * (Pgno)iBlock - 1 - 4; + }else{ + const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize); + return iBlock * nPagePerBlock; + } +} + +/* +** Return the block number of the block that page iPg is located on. +** Blocks are numbered starting from 1. +*/ +static int fsPageToBlock(FileSystem *pFS, Pgno iPg){ + if( pFS->pCompress ){ + return (iPg / pFS->nBlocksize) + 1; + }else{ + return 1 + ((iPg-1) / (pFS->nBlocksize / pFS->nPagesize)); + } +} + +/* +** Return true if page iPg is the last page on its block. +** +** This function is only called in non-compressed database mode. +*/ +static int fsIsLast(FileSystem *pFS, Pgno iPg){ + const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize); + assert( !pFS->pCompress ); + return ( iPg && (iPg % nPagePerBlock)==0 ); +} + +/* +** Return true if page iPg is the first page on its block. +** +** This function is only called in non-compressed database mode. +*/ +static int fsIsFirst(FileSystem *pFS, Pgno iPg){ + const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize); + assert( !pFS->pCompress ); + return ( (iPg % nPagePerBlock)==1 + || (iPgnData; + } + return pPage->aData; +} + +/* +** Return the page number of a page. +*/ +Pgno lsmFsPageNumber(Page *pPage){ + /* assert( (pPage->flags & PAGE_DIRTY)==0 ); */ + return pPage ? pPage->iPg : 0; +} + +/* +** Page pPg is currently part of the LRU list belonging to pFS. Remove +** it from the list. pPg->pLruNext and pPg->pLruPrev are cleared by this +** operation. +*/ +static void fsPageRemoveFromLru(FileSystem *pFS, Page *pPg){ + assert( pPg->pLruNext || pPg==pFS->pLruLast ); + assert( pPg->pLruPrev || pPg==pFS->pLruFirst ); + if( pPg->pLruNext ){ + pPg->pLruNext->pLruPrev = pPg->pLruPrev; + }else{ + pFS->pLruLast = pPg->pLruPrev; + } + if( pPg->pLruPrev ){ + pPg->pLruPrev->pLruNext = pPg->pLruNext; + }else{ + pFS->pLruFirst = pPg->pLruNext; + } + pPg->pLruPrev = 0; + pPg->pLruNext = 0; +} + +/* +** Page pPg is not currently part of the LRU list belonging to pFS. Add it. +*/ +static void fsPageAddToLru(FileSystem *pFS, Page *pPg){ + assert( pPg->pLruNext==0 && pPg->pLruPrev==0 ); + pPg->pLruPrev = pFS->pLruLast; + if( pPg->pLruPrev ){ + pPg->pLruPrev->pLruNext = pPg; + }else{ + pFS->pLruFirst = pPg; + } + pFS->pLruLast = pPg; +} + +/* +** Page pPg is currently stored in the apHash/nHash hash table. Remove it. +*/ +static void fsPageRemoveFromHash(FileSystem *pFS, Page *pPg){ + int iHash; + Page **pp; + + iHash = fsHashKey(pFS->nHash, pPg->iPg); + for(pp=&pFS->apHash[iHash]; *pp!=pPg; pp=&(*pp)->pHashNext); + *pp = pPg->pHashNext; + pPg->pHashNext = 0; +} + +/* +** Free a Page object allocated by fsPageBuffer(). +*/ +static void fsPageBufferFree(Page *pPg){ + pPg->pFS->nCacheAlloc--; + lsmFree(pPg->pFS->pEnv, pPg->aData); + lsmFree(pPg->pFS->pEnv, pPg); +} + + +/* +** Purge the cache of all non-mmap pages with nRef==0. +*/ +void lsmFsPurgeCache(FileSystem *pFS){ + Page *pPg; + + pPg = pFS->pLruFirst; + while( pPg ){ + Page *pNext = pPg->pLruNext; + assert( pPg->flags & PAGE_FREE ); + fsPageRemoveFromHash(pFS, pPg); + fsPageBufferFree(pPg); + pPg = pNext; + } + pFS->pLruFirst = 0; + pFS->pLruLast = 0; + + assert( pFS->nCacheAlloc<=pFS->nOut && pFS->nCacheAlloc>=0 ); +} + +/* +** Search the hash-table for page iPg. If an entry is round, return a pointer +** to it. Otherwise, return NULL. +** +** Either way, if argument piHash is not NULL set *piHash to the hash slot +** number that page iPg would be stored in before returning. +*/ +static Page *fsPageFindInHash(FileSystem *pFS, Pgno iPg, int *piHash){ + Page *p; /* Return value */ + int iHash = fsHashKey(pFS->nHash, iPg); + + if( piHash ) *piHash = iHash; + for(p=pFS->apHash[iHash]; p; p=p->pHashNext){ + if( p->iPg==iPg) break; + } + return p; +} + +/* +** Allocate and return a non-mmap Page object. If there are already +** nCacheMax such Page objects outstanding, try to recycle an existing +** Page instead. +*/ +static int fsPageBuffer( + FileSystem *pFS, + Page **ppOut +){ + int rc = LSM_OK; + Page *pPage = 0; + if( pFS->pLruFirst==0 || pFS->nCacheAllocnCacheMax ){ + /* Allocate a new Page object */ + pPage = lsmMallocZero(pFS->pEnv, sizeof(Page)); + if( !pPage ){ + rc = LSM_NOMEM_BKPT; + }else{ + pPage->aData = (u8 *)lsmMalloc(pFS->pEnv, pFS->nPagesize); + if( !pPage->aData ){ + lsmFree(pFS->pEnv, pPage); + rc = LSM_NOMEM_BKPT; + pPage = 0; + }else{ + pFS->nCacheAlloc++; + } + } + }else{ + /* Reuse an existing Page object */ + u8 *aData; + pPage = pFS->pLruFirst; + aData = pPage->aData; + fsPageRemoveFromLru(pFS, pPage); + fsPageRemoveFromHash(pFS, pPage); + + memset(pPage, 0, sizeof(Page)); + pPage->aData = aData; + } + + if( pPage ){ + pPage->flags = PAGE_FREE; + } + *ppOut = pPage; + return rc; +} + +/* +** Assuming *pRc is initially LSM_OK, attempt to ensure that the +** memory-mapped region is at least iSz bytes in size. If it is not already, +** iSz bytes in size, extend it and update the pointers associated with any +** outstanding Page objects. +** +** If *pRc is not LSM_OK when this function is called, it is a no-op. +** Otherwise, *pRc is set to an lsm error code if an error occurs, or +** left unmodified otherwise. +** +** This function is never called in compressed database mode. +*/ +static void fsGrowMapping( + FileSystem *pFS, /* File system object */ + i64 iSz, /* Minimum size to extend mapping to */ + int *pRc /* IN/OUT: Error code */ +){ + assert( pFS->pCompress==0 ); + assert( PAGE_HASPREV==4 ); + + if( *pRc==LSM_OK && iSz>pFS->nMap ){ + int rc; + u8 *aOld = pFS->pMap; + rc = lsmEnvRemap(pFS->pEnv, pFS->fdDb, iSz, &pFS->pMap, &pFS->nMap); + if( rc==LSM_OK && pFS->pMap!=aOld ){ + Page *pFix; + i64 iOff = (u8 *)pFS->pMap - aOld; + for(pFix=pFS->pMapped; pFix; pFix=pFix->pMappedNext){ + pFix->aData += iOff; + } + lsmSortedRemap(pFS->pDb); + } + *pRc = rc; + } +} + +/* +** fsync() the database file. +*/ +int lsmFsSyncDb(FileSystem *pFS, int nBlock){ + return lsmEnvSync(pFS->pEnv, pFS->fdDb); +} + +/* +** If block iBlk has been redirected according to the redirections in the +** object passed as the first argument, return the destination block to +** which it is redirected. Otherwise, return a copy of iBlk. +*/ +static int fsRedirectBlock(Redirect *p, int iBlk){ + if( p ){ + int i; + for(i=0; in; i++){ + if( iBlk==p->a[i].iFrom ) return p->a[i].iTo; + } + } + assert( iBlk!=0 ); + return iBlk; +} + +/* +** If page iPg has been redirected according to the redirections in the +** object passed as the second argument, return the destination page to +** which it is redirected. Otherwise, return a copy of iPg. +*/ +Pgno lsmFsRedirectPage(FileSystem *pFS, Redirect *pRedir, Pgno iPg){ + Pgno iReal = iPg; + + if( pRedir ){ + const int nPagePerBlock = ( + pFS->pCompress ? pFS->nBlocksize : (pFS->nBlocksize / pFS->nPagesize) + ); + int iBlk = fsPageToBlock(pFS, iPg); + int i; + for(i=0; in; i++){ + int iFrom = pRedir->a[i].iFrom; + if( iFrom>iBlk ) break; + if( iFrom==iBlk ){ + int iTo = pRedir->a[i].iTo; + iReal = iPg - (Pgno)(iFrom - iTo) * nPagePerBlock; + if( iTo==1 ){ + iReal += (fsFirstPageOnBlock(pFS, 1)-1); + } + break; + } + } + } + + assert( iReal!=0 ); + return iReal; +} + +/* Required by the circular fsBlockNext<->fsPageGet dependency. */ +static int fsPageGet(FileSystem *, Segment *, Pgno, int, Page **, int *); + +/* +** Parameter iBlock is a database file block. This function reads the value +** stored in the blocks "next block" pointer and stores it in *piNext. +** LSM_OK is returned if everything is successful, or an LSM error code +** otherwise. +*/ +static int fsBlockNext( + FileSystem *pFS, /* File-system object handle */ + Segment *pSeg, /* Use this segment for block redirects */ + int iBlock, /* Read field from this block */ + int *piNext /* OUT: Next block in linked list */ +){ + int rc; + int iRead; /* Read block from here */ + + if( pSeg ){ + iRead = fsRedirectBlock(pSeg->pRedirect, iBlock); + }else{ + iRead = iBlock; + } + + assert( pFS->nMapLimit==0 || pFS->pCompress==0 ); + if( pFS->pCompress ){ + i64 iOff; /* File offset to read data from */ + u8 aNext[4]; /* 4-byte pointer read from db file */ + + iOff = (i64)iRead * pFS->nBlocksize - sizeof(aNext); + rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aNext, sizeof(aNext)); + if( rc==LSM_OK ){ + *piNext = (int)lsmGetU32(aNext); + } + }else{ + const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize); + Page *pLast; + rc = fsPageGet(pFS, 0, iRead*nPagePerBlock, 0, &pLast, 0); + if( rc==LSM_OK ){ + *piNext = lsmGetU32(&pLast->aData[pFS->nPagesize-4]); + lsmFsPageRelease(pLast); + } + } + + if( pSeg ){ + *piNext = fsRedirectBlock(pSeg->pRedirect, *piNext); + } + return rc; +} + +/* +** Return the page number of the last page on the same block as page iPg. +*/ +Pgno fsLastPageOnPagesBlock(FileSystem *pFS, Pgno iPg){ + return fsLastPageOnBlock(pFS, fsPageToBlock(pFS, iPg)); +} + +/* +** Read nData bytes of data from offset iOff of the database file into +** buffer aData. If this means reading past the end of a block, follow +** the block pointer to the next block and continue reading. +** +** Offset iOff is an absolute offset - not subject to any block redirection. +** However any block pointer followed is. Use pSeg->pRedirect in this case. +** +** This function is only called in compressed database mode. +*/ +static int fsReadData( + FileSystem *pFS, /* File-system handle */ + Segment *pSeg, /* Block redirection */ + i64 iOff, /* Read data from this offset */ + u8 *aData, /* Buffer to read data into */ + int nData /* Number of bytes to read */ +){ + i64 iEob; /* End of block */ + int nRead; + int rc; + + assert( pFS->pCompress ); + + iEob = fsLastPageOnPagesBlock(pFS, iOff) + 1; + nRead = LSM_MIN(iEob - iOff, nData); + + rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aData, nRead); + if( rc==LSM_OK && nRead!=nData ){ + int iBlk; + + rc = fsBlockNext(pFS, pSeg, fsPageToBlock(pFS, iOff), &iBlk); + if( rc==LSM_OK ){ + i64 iOff2 = fsFirstPageOnBlock(pFS, iBlk); + rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff2, &aData[nRead], nData-nRead); + } + } + + return rc; +} + +/* +** Parameter iBlock is a database file block. This function reads the value +** stored in the blocks "previous block" pointer and stores it in *piPrev. +** LSM_OK is returned if everything is successful, or an LSM error code +** otherwise. +*/ +static int fsBlockPrev( + FileSystem *pFS, /* File-system object handle */ + Segment *pSeg, /* Use this segment for block redirects */ + int iBlock, /* Read field from this block */ + int *piPrev /* OUT: Previous block in linked list */ +){ + int rc = LSM_OK; /* Return code */ + + assert( pFS->nMapLimit==0 || pFS->pCompress==0 ); + assert( iBlock>0 ); + + if( pFS->pCompress ){ + i64 iOff = fsFirstPageOnBlock(pFS, iBlock) - 4; + u8 aPrev[4]; /* 4-byte pointer read from db file */ + rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aPrev, sizeof(aPrev)); + if( rc==LSM_OK ){ + Redirect *pRedir = (pSeg ? pSeg->pRedirect : 0); + *piPrev = fsRedirectBlock(pRedir, (int)lsmGetU32(aPrev)); + } + }else{ + assert( 0 ); + } + return rc; +} + +/* +** Encode and decode routines for record size fields. +*/ +static void putRecordSize(u8 *aBuf, int nByte, int bFree){ + aBuf[0] = (u8)(nByte >> 14) | 0x80; + aBuf[1] = ((u8)(nByte >> 7) & 0x7F) | (bFree ? 0x00 : 0x80); + aBuf[2] = (u8)nByte | 0x80; +} +static int getRecordSize(u8 *aBuf, int *pbFree){ + int nByte; + nByte = (aBuf[0] & 0x7F) << 14; + nByte += (aBuf[1] & 0x7F) << 7; + nByte += (aBuf[2] & 0x7F); + *pbFree = !(aBuf[1] & 0x80); + return nByte; +} + +/* +** Subtract iSub from database file offset iOff and set *piRes to the +** result. If doing so means passing the start of a block, follow the +** block pointer stored in the first 4 bytes of the block. +** +** Offset iOff is an absolute offset - not subject to any block redirection. +** However any block pointer followed is. Use pSeg->pRedirect in this case. +** +** Return LSM_OK if successful or an lsm error code if an error occurs. +*/ +static int fsSubtractOffset( + FileSystem *pFS, + Segment *pSeg, + i64 iOff, + int iSub, + i64 *piRes +){ + i64 iStart; + int iBlk = 0; + int rc; + + assert( pFS->pCompress ); + + iStart = fsFirstPageOnBlock(pFS, fsPageToBlock(pFS, iOff)); + if( (iOff-iSub)>=iStart ){ + *piRes = (iOff-iSub); + return LSM_OK; + } + + rc = fsBlockPrev(pFS, pSeg, fsPageToBlock(pFS, iOff), &iBlk); + *piRes = fsLastPageOnBlock(pFS, iBlk) - iSub + (iOff - iStart + 1); + return rc; +} + +/* +** Add iAdd to database file offset iOff and set *piRes to the +** result. If doing so means passing the end of a block, follow the +** block pointer stored in the last 4 bytes of the block. +** +** Offset iOff is an absolute offset - not subject to any block redirection. +** However any block pointer followed is. Use pSeg->pRedirect in this case. +** +** Return LSM_OK if successful or an lsm error code if an error occurs. +*/ +static int fsAddOffset( + FileSystem *pFS, + Segment *pSeg, + i64 iOff, + int iAdd, + i64 *piRes +){ + i64 iEob; + int iBlk; + int rc; + + assert( pFS->pCompress ); + + iEob = fsLastPageOnPagesBlock(pFS, iOff); + if( (iOff+iAdd)<=iEob ){ + *piRes = (iOff+iAdd); + return LSM_OK; + } + + rc = fsBlockNext(pFS, pSeg, fsPageToBlock(pFS, iOff), &iBlk); + *piRes = fsFirstPageOnBlock(pFS, iBlk) + iAdd - (iEob - iOff + 1); + return rc; +} + +/* +** If it is not already allocated, allocate either the FileSystem.aOBuffer (if +** bWrite is true) or the FileSystem.aIBuffer (if bWrite is false). Return +** LSM_OK if successful if the attempt to allocate memory fails. +*/ +static int fsAllocateBuffer(FileSystem *pFS, int bWrite){ + u8 **pp; /* Pointer to either aIBuffer or aOBuffer */ + + assert( pFS->pCompress ); + + /* If neither buffer has been allocated, figure out how large they + ** should be. Store this value in FileSystem.nBuffer. */ + if( pFS->nBuffer==0 ){ + assert( pFS->aIBuffer==0 && pFS->aOBuffer==0 ); + pFS->nBuffer = pFS->pCompress->xBound(pFS->pCompress->pCtx, pFS->nPagesize); + if( pFS->nBuffer<(pFS->szSector+6) ){ + pFS->nBuffer = pFS->szSector+6; + } + } + + pp = (bWrite ? &pFS->aOBuffer : &pFS->aIBuffer); + if( *pp==0 ){ + *pp = lsmMalloc(pFS->pEnv, LSM_MAX(pFS->nBuffer, pFS->nPagesize)); + if( *pp==0 ) return LSM_NOMEM_BKPT; + } + + return LSM_OK; +} + +/* +** This function is only called in compressed database mode. It reads and +** uncompresses the compressed data for page pPg from the database and +** populates the pPg->aData[] buffer and pPg->nCompress field. +** +** It is possible that instead of a page record, there is free space +** at offset pPg->iPgno. In this case no data is read from the file, but +** output variable *pnSpace is set to the total number of free bytes. +** +** LSM_OK is returned if successful, or an LSM error code otherwise. +*/ +static int fsReadPagedata( + FileSystem *pFS, /* File-system handle */ + Segment *pSeg, /* pPg is part of this segment */ + Page *pPg, /* Page to read and uncompress data for */ + int *pnSpace /* OUT: Total bytes of free space */ +){ + lsm_compress *p = pFS->pCompress; + i64 iOff = pPg->iPg; + u8 aSz[3]; + int rc; + + assert( p && pPg->nCompress==0 ); + + if( fsAllocateBuffer(pFS, 0) ) return LSM_NOMEM; + + rc = fsReadData(pFS, pSeg, iOff, aSz, sizeof(aSz)); + + if( rc==LSM_OK ){ + int bFree; + if( aSz[0] & 0x80 ){ + pPg->nCompress = (int)getRecordSize(aSz, &bFree); + }else{ + pPg->nCompress = (int)aSz[0] - sizeof(aSz)*2; + bFree = 1; + } + if( bFree ){ + if( pnSpace ){ + *pnSpace = pPg->nCompress + sizeof(aSz)*2; + }else{ + rc = LSM_CORRUPT_BKPT; + } + }else{ + rc = fsAddOffset(pFS, pSeg, iOff, 3, &iOff); + if( rc==LSM_OK ){ + if( pPg->nCompress>pFS->nBuffer ){ + rc = LSM_CORRUPT_BKPT; + }else{ + rc = fsReadData(pFS, pSeg, iOff, pFS->aIBuffer, pPg->nCompress); + } + if( rc==LSM_OK ){ + int n = pFS->nPagesize; + rc = p->xUncompress(p->pCtx, + (char *)pPg->aData, &n, + (const char *)pFS->aIBuffer, pPg->nCompress + ); + if( rc==LSM_OK && n!=pPg->pFS->nPagesize ){ + rc = LSM_CORRUPT_BKPT; + } + } + } + } + } + return rc; +} + +/* +** Return a handle for a database page. +** +** If this file-system object is accessing a compressed database it may be +** that there is no page record at database file offset iPg. Instead, there +** may be a free space record. In this case, set *ppPg to NULL and *pnSpace +** to the total number of free bytes before returning. +** +** If no error occurs, LSM_OK is returned. Otherwise, an lsm error code. +*/ +static int fsPageGet( + FileSystem *pFS, /* File-system handle */ + Segment *pSeg, /* Block redirection to use (or NULL) */ + Pgno iPg, /* Page id */ + int noContent, /* True to not load content from disk */ + Page **ppPg, /* OUT: New page handle */ + int *pnSpace /* OUT: Bytes of free space */ +){ + Page *p; + int iHash; + int rc = LSM_OK; + + /* In most cases iReal is the same as iPg. Except, if pSeg->pRedirect is + ** not NULL, and the block containing iPg has been redirected, then iReal + ** is the page number after redirection. */ + Pgno iReal = lsmFsRedirectPage(pFS, (pSeg ? pSeg->pRedirect : 0), iPg); + + assert_lists_are_ok(pFS); + assert( iPg>=fsFirstPageOnBlock(pFS, 1) ); + assert( iReal>=fsFirstPageOnBlock(pFS, 1) ); + *ppPg = 0; + + /* Search the hash-table for the page */ + p = fsPageFindInHash(pFS, iReal, &iHash); + + if( p ){ + assert( p->flags & PAGE_FREE ); + if( p->nRef==0 ) fsPageRemoveFromLru(pFS, p); + }else{ + + if( fsMmapPage(pFS, iReal) ){ + i64 iEnd = (i64)iReal * pFS->nPagesize; + fsGrowMapping(pFS, iEnd, &rc); + if( rc!=LSM_OK ) return rc; + + if( pFS->pFree ){ + p = pFS->pFree; + pFS->pFree = p->pFreeNext; + assert( p->nRef==0 ); + }else{ + p = lsmMallocZeroRc(pFS->pEnv, sizeof(Page), &rc); + if( rc ) return rc; + p->pFS = pFS; + } + p->aData = &((u8 *)pFS->pMap)[pFS->nPagesize * (iReal-1)]; + p->iPg = iReal; + + /* This page now carries a pointer to the mapping. Link it in to + ** the FileSystem.pMapped list. */ + assert( p->pMappedNext==0 ); + p->pMappedNext = pFS->pMapped; + pFS->pMapped = p; + + assert( pFS->pCompress==0 ); + assert( (p->flags & PAGE_FREE)==0 ); + }else{ + rc = fsPageBuffer(pFS, &p); + if( rc==LSM_OK ){ + int nSpace = 0; + p->iPg = iReal; + p->nRef = 0; + p->pFS = pFS; + assert( p->flags==0 || p->flags==PAGE_FREE ); + +#ifdef LSM_DEBUG + memset(p->aData, 0x56, pFS->nPagesize); +#endif + assert( p->pLruNext==0 && p->pLruPrev==0 ); + if( noContent==0 ){ + if( pFS->pCompress ){ + rc = fsReadPagedata(pFS, pSeg, p, &nSpace); + }else{ + int nByte = pFS->nPagesize; + i64 iOff = (i64)(iReal-1) * pFS->nPagesize; + rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, p->aData, nByte); + } + pFS->nRead++; + } + + /* If the xRead() call was successful (or not attempted), link the + ** page into the page-cache hash-table. Otherwise, if it failed, + ** free the buffer. */ + if( rc==LSM_OK && nSpace==0 ){ + p->pHashNext = pFS->apHash[iHash]; + pFS->apHash[iHash] = p; + }else{ + fsPageBufferFree(p); + p = 0; + if( pnSpace ) *pnSpace = nSpace; + } + } + } + + assert( (rc==LSM_OK && (p || (pnSpace && *pnSpace))) + || (rc!=LSM_OK && p==0) + ); + } + + if( rc==LSM_OK && p ){ + if( pFS->pCompress==0 && (fsIsLast(pFS, iReal) || fsIsFirst(pFS, iReal)) ){ + p->nData = pFS->nPagesize - 4; + if( fsIsFirst(pFS, iReal) && p->nRef==0 ){ + p->aData += 4; + p->flags |= PAGE_HASPREV; + } + }else{ + p->nData = pFS->nPagesize; + } + pFS->nOut += (p->nRef==0); + p->nRef++; + } + *ppPg = p; + return rc; +} + +/* +** Read the 64-bit checkpoint id of the checkpoint currently stored on meta +** page iMeta of the database file. If no error occurs, store the id value +** in *piVal and return LSM_OK. Otherwise, return an LSM error code and leave +** *piVal unmodified. +** +** If a checkpointer connection is currently updating meta-page iMeta, or an +** earlier checkpointer crashed while doing so, the value read into *piVal +** may be garbage. It is the callers responsibility to deal with this. +*/ +int lsmFsReadSyncedId(lsm_db *db, int iMeta, i64 *piVal){ + FileSystem *pFS = db->pFS; + int rc = LSM_OK; + + assert( iMeta==1 || iMeta==2 ); + if( pFS->nMapLimit>0 ){ + fsGrowMapping(pFS, iMeta*LSM_META_PAGE_SIZE, &rc); + if( rc==LSM_OK ){ + *piVal = (i64)lsmGetU64(&((u8 *)pFS->pMap)[(iMeta-1)*LSM_META_PAGE_SIZE]); + } + }else{ + MetaPage *pMeta = 0; + rc = lsmFsMetaPageGet(pFS, 0, iMeta, &pMeta); + if( rc==LSM_OK ){ + *piVal = (i64)lsmGetU64(pMeta->aData); + lsmFsMetaPageRelease(pMeta); + } + } + + return rc; +} + + +/* +** Return true if the first or last page of segment pRun falls between iFirst +** and iLast, inclusive, and pRun is not equal to pIgnore. +*/ +static int fsRunEndsBetween( + Segment *pRun, + Segment *pIgnore, + Pgno iFirst, + Pgno iLast +){ + return (pRun!=pIgnore && ( + (pRun->iFirst>=iFirst && pRun->iFirst<=iLast) + || (pRun->iLastPg>=iFirst && pRun->iLastPg<=iLast) + )); +} + +/* +** Return true if level pLevel contains a segment other than pIgnore for +** which the first or last page is between iFirst and iLast, inclusive. +*/ +static int fsLevelEndsBetween( + Level *pLevel, + Segment *pIgnore, + Pgno iFirst, + Pgno iLast +){ + int i; + + if( fsRunEndsBetween(&pLevel->lhs, pIgnore, iFirst, iLast) ){ + return 1; + } + for(i=0; inRight; i++){ + if( fsRunEndsBetween(&pLevel->aRhs[i], pIgnore, iFirst, iLast) ){ + return 1; + } + } + + return 0; +} + +/* +** Block iBlk is no longer in use by segment pIgnore. If it is not in use +** by any other segment, move it to the free block list. +*/ +static int fsFreeBlock( + FileSystem *pFS, /* File system object */ + Snapshot *pSnapshot, /* Worker snapshot */ + Segment *pIgnore, /* Ignore this run when searching */ + int iBlk /* Block number of block to free */ +){ + int rc = LSM_OK; /* Return code */ + int iFirst; /* First page on block iBlk */ + int iLast; /* Last page on block iBlk */ + Level *pLevel; /* Used to iterate through levels */ + + int iIn; /* Used to iterate through append points */ + int iOut = 0; /* Used to output append points */ + Pgno *aApp = pSnapshot->aiAppend; + + iFirst = fsFirstPageOnBlock(pFS, iBlk); + iLast = fsLastPageOnBlock(pFS, iBlk); + + /* Check if any other run in the snapshot has a start or end page + ** within this block. If there is such a run, return early. */ + for(pLevel=lsmDbSnapshotLevel(pSnapshot); pLevel; pLevel=pLevel->pNext){ + if( fsLevelEndsBetween(pLevel, pIgnore, iFirst, iLast) ){ + return LSM_OK; + } + } + + /* Remove any entries that lie on this block from the append-list. */ + for(iIn=0; iIniLast ){ + aApp[iOut++] = aApp[iIn]; + } + } + while( iOutpDb, iBlk); + } + return rc; +} + +/* +** Delete or otherwise recycle the blocks currently occupied by run pDel. +*/ +int lsmFsSortedDelete( + FileSystem *pFS, + Snapshot *pSnapshot, + int bZero, /* True to zero the Segment structure */ + Segment *pDel +){ + if( pDel->iFirst ){ + int rc = LSM_OK; + + int iBlk; + int iLastBlk; + + iBlk = fsPageToBlock(pFS, pDel->iFirst); + iLastBlk = fsPageToBlock(pFS, pDel->iLastPg); + + /* Mark all blocks currently used by this sorted run as free */ + while( iBlk && rc==LSM_OK ){ + int iNext = 0; + if( iBlk!=iLastBlk ){ + rc = fsBlockNext(pFS, pDel, iBlk, &iNext); + }else if( bZero==0 && pDel->iLastPg!=fsLastPageOnBlock(pFS, iLastBlk) ){ + break; + } + rc = fsFreeBlock(pFS, pSnapshot, pDel, iBlk); + iBlk = iNext; + } + + if( pDel->pRedirect ){ + assert( pDel->pRedirect==&pSnapshot->redirect ); + pSnapshot->redirect.n = 0; + } + + if( bZero ) memset(pDel, 0, sizeof(Segment)); + } + return LSM_OK; +} + +/* +** aPgno is an array containing nPgno page numbers. Return the smallest page +** number from the array that falls on block iBlk. Or, if none of the pages +** in aPgno[] fall on block iBlk, return 0. +*/ +static Pgno firstOnBlock(FileSystem *pFS, int iBlk, Pgno *aPgno, int nPgno){ + Pgno iRet = 0; + int i; + for(i=0; ipRedirect, iPg)); +} + +/* +** Return true if the second argument is not NULL and any of the first +** last or root pages lie on a redirected block. +*/ +static int fsSegmentRedirects(FileSystem *pFS, Segment *p){ + return (p && ( + fsPageRedirects(pFS, p, p->iFirst) + || fsPageRedirects(pFS, p, p->iRoot) + || fsPageRedirects(pFS, p, p->iLastPg) + )); +} +#endif + +/* +** Argument aPgno is an array of nPgno page numbers. All pages belong to +** the segment pRun. This function gobbles from the start of the run to the +** first page that appears in aPgno[] (i.e. so that the aPgno[] entry is +** the new first page of the run). +*/ +void lsmFsGobble( + lsm_db *pDb, + Segment *pRun, + Pgno *aPgno, + int nPgno +){ + int rc = LSM_OK; + FileSystem *pFS = pDb->pFS; + Snapshot *pSnapshot = pDb->pWorker; + int iBlk; + + assert( pRun->nSize>0 ); + assert( 0==fsSegmentRedirects(pFS, pRun) ); + assert( nPgno>0 && 0==fsPageRedirects(pFS, pRun, aPgno[0]) ); + + iBlk = fsPageToBlock(pFS, pRun->iFirst); + pRun->nSize += (pRun->iFirst - fsFirstPageOnBlock(pFS, iBlk)); + + while( rc==LSM_OK ){ + int iNext = 0; + Pgno iFirst = firstOnBlock(pFS, iBlk, aPgno, nPgno); + if( iFirst ){ + pRun->iFirst = iFirst; + break; + } + rc = fsBlockNext(pFS, pRun, iBlk, &iNext); + if( rc==LSM_OK ) rc = fsFreeBlock(pFS, pSnapshot, pRun, iBlk); + pRun->nSize -= ( + 1 + fsLastPageOnBlock(pFS, iBlk) - fsFirstPageOnBlock(pFS, iBlk) + ); + iBlk = iNext; + } + + pRun->nSize -= (pRun->iFirst - fsFirstPageOnBlock(pFS, iBlk)); + assert( pRun->nSize>0 ); +} + +/* +** This function is only used in compressed database mode. +** +** Argument iPg is the page number (byte offset) of a page within segment +** pSeg. The page record, including all headers, is nByte bytes in size. +** Before returning, set *piNext to the page number of the next page in +** the segment, or to zero if iPg is the last. +** +** In other words, do: +** +** *piNext = iPg + nByte; +** +** But take block overflow and redirection into account. +*/ +static int fsNextPageOffset( + FileSystem *pFS, /* File system object */ + Segment *pSeg, /* Segment to move within */ + Pgno iPg, /* Offset of current page */ + int nByte, /* Size of current page including headers */ + Pgno *piNext /* OUT: Offset of next page. Or zero (EOF) */ +){ + Pgno iNext; + int rc; + + assert( pFS->pCompress ); + + rc = fsAddOffset(pFS, pSeg, iPg, nByte-1, &iNext); + if( pSeg && iNext==pSeg->iLastPg ){ + iNext = 0; + }else if( rc==LSM_OK ){ + rc = fsAddOffset(pFS, pSeg, iNext, 1, &iNext); + } + + *piNext = iNext; + return rc; +} + +/* +** This function is only used in compressed database mode. +** +** Argument iPg is the page number of a pagethat appears in segment pSeg. +** This function determines the page number of the previous page in the +** same run. *piPrev is set to the previous page number before returning. +** +** LSM_OK is returned if no error occurs. Otherwise, an lsm error code. +** If any value other than LSM_OK is returned, then the final value of +** *piPrev is undefined. +*/ +static int fsGetPageBefore( + FileSystem *pFS, + Segment *pSeg, + Pgno iPg, + Pgno *piPrev +){ + u8 aSz[3]; + int rc; + i64 iRead; + + assert( pFS->pCompress ); + + rc = fsSubtractOffset(pFS, pSeg, iPg, sizeof(aSz), &iRead); + if( rc==LSM_OK ) rc = fsReadData(pFS, pSeg, iRead, aSz, sizeof(aSz)); + + if( rc==LSM_OK ){ + int bFree; + int nSz; + if( aSz[2] & 0x80 ){ + nSz = getRecordSize(aSz, &bFree) + sizeof(aSz)*2; + }else{ + nSz = (int)(aSz[2] & 0x7F); + bFree = 1; + } + rc = fsSubtractOffset(pFS, pSeg, iPg, nSz, piPrev); + } + + return rc; +} + +/* +** The first argument to this function is a valid reference to a database +** file page that is part of a sorted run. If parameter eDir is -1, this +** function attempts to locate and load the previous page in the same run. +** Or, if eDir is +1, it attempts to find the next page in the same run. +** The results of passing an eDir value other than positive or negative one +** are undefined. +** +** If parameter pRun is not NULL then it must point to the run that page +** pPg belongs to. In this case, if pPg is the first or last page of the +** run, and the request is for the previous or next page, respectively, +** *ppNext is set to NULL before returning LSM_OK. If pRun is NULL, then it +** is assumed that the next or previous page, as requested, exists. +** +** If the previous/next page does exist and is successfully loaded, *ppNext +** is set to point to it and LSM_OK is returned. Otherwise, if an error +** occurs, *ppNext is set to NULL and and lsm error code returned. +** +** Page references returned by this function should be released by the +** caller using lsmFsPageRelease(). +*/ +int lsmFsDbPageNext(Segment *pRun, Page *pPg, int eDir, Page **ppNext){ + int rc = LSM_OK; + FileSystem *pFS = pPg->pFS; + Pgno iPg = pPg->iPg; + + assert( 0==fsSegmentRedirects(pFS, pRun) ); + if( pFS->pCompress ){ + int nSpace = pPg->nCompress + 2*3; + + do { + if( eDir>0 ){ + rc = fsNextPageOffset(pFS, pRun, iPg, nSpace, &iPg); + }else{ + if( iPg==pRun->iFirst ){ + iPg = 0; + }else{ + rc = fsGetPageBefore(pFS, pRun, iPg, &iPg); + } + } + + nSpace = 0; + if( iPg!=0 ){ + rc = fsPageGet(pFS, pRun, iPg, 0, ppNext, &nSpace); + assert( (*ppNext==0)==(rc!=LSM_OK || nSpace>0) ); + }else{ + *ppNext = 0; + } + }while( nSpace>0 && rc==LSM_OK ); + + }else{ + Redirect *pRedir = pRun ? pRun->pRedirect : 0; + assert( eDir==1 || eDir==-1 ); + if( eDir<0 ){ + if( pRun && iPg==pRun->iFirst ){ + *ppNext = 0; + return LSM_OK; + }else if( fsIsFirst(pFS, iPg) ){ + assert( pPg->flags & PAGE_HASPREV ); + iPg = fsLastPageOnBlock(pFS, lsmGetU32(&pPg->aData[-4])); + }else{ + iPg--; + } + }else{ + if( pRun ){ + if( iPg==pRun->iLastPg ){ + *ppNext = 0; + return LSM_OK; + } + } + + if( fsIsLast(pFS, iPg) ){ + int iBlk = fsRedirectBlock( + pRedir, lsmGetU32(&pPg->aData[pFS->nPagesize-4]) + ); + iPg = fsFirstPageOnBlock(pFS, iBlk); + }else{ + iPg++; + } + } + rc = fsPageGet(pFS, pRun, iPg, 0, ppNext, 0); + } + + return rc; +} + +/* +** This function is called when creating a new segment to determine if the +** first part of it can be written following an existing segment on an +** already allocated block. If it is possible, the page number of the first +** page to use for the new segment is returned. Otherwise zero. +** +** If argument pLvl is not NULL, then this function will not attempt to +** start the new segment immediately following any segment that is part +** of the right-hand-side of pLvl. +*/ +static Pgno findAppendPoint(FileSystem *pFS, Level *pLvl){ + int i; + Pgno *aiAppend = pFS->pDb->pWorker->aiAppend; + Pgno iRet = 0; + + for(i=LSM_APPLIST_SZ-1; iRet==0 && i>=0; i--){ + if( (iRet = aiAppend[i]) ){ + if( pLvl ){ + int iBlk = fsPageToBlock(pFS, iRet); + int j; + for(j=0; iRet && jnRight; j++){ + if( fsPageToBlock(pFS, pLvl->aRhs[j].iLastPg)==iBlk ){ + iRet = 0; + } + } + } + if( iRet ) aiAppend[i] = 0; + } + } + return iRet; +} + +/* +** Append a page to the left-hand-side of pLvl. Set the ref-count to 1 and +** return a pointer to it. The page is writable until either +** lsmFsPagePersist() is called on it or the ref-count drops to zero. +*/ +int lsmFsSortedAppend( + FileSystem *pFS, + Snapshot *pSnapshot, + Level *pLvl, + int bDefer, + Page **ppOut +){ + int rc = LSM_OK; + Page *pPg = 0; + int iApp = 0; + int iNext = 0; + Segment *p = &pLvl->lhs; + int iPrev = p->iLastPg; + + *ppOut = 0; + assert( p->pRedirect==0 ); + + if( pFS->pCompress || bDefer ){ + /* In compressed database mode the page is not assigned a page number + ** or location in the database file at this point. This will be done + ** by the lsmFsPagePersist() call. */ + rc = fsPageBuffer(pFS, &pPg); + if( rc==LSM_OK ){ + pPg->pFS = pFS; + pPg->pSeg = p; + pPg->iPg = 0; + pPg->flags |= PAGE_DIRTY; + pPg->nData = pFS->nPagesize; + assert( pPg->aData ); + if( pFS->pCompress==0 ) pPg->nData -= 4; + + pPg->nRef = 1; + pFS->nOut++; + } + }else{ + if( iPrev==0 ){ + iApp = findAppendPoint(pFS, pLvl); + }else if( fsIsLast(pFS, iPrev) ){ + int iNext; + rc = fsBlockNext(pFS, 0, fsPageToBlock(pFS, iPrev), &iNext); + if( rc!=LSM_OK ) return rc; + iApp = fsFirstPageOnBlock(pFS, iNext); + }else{ + iApp = iPrev + 1; + } + + /* If this is the first page allocated, or if the page allocated is the + ** last in the block, also allocate the next block here. */ + if( iApp==0 || fsIsLast(pFS, iApp) ){ + int iNew; /* New block number */ + + rc = lsmBlockAllocate(pFS->pDb, 0, &iNew); + if( rc!=LSM_OK ) return rc; + if( iApp==0 ){ + iApp = fsFirstPageOnBlock(pFS, iNew); + }else{ + iNext = fsFirstPageOnBlock(pFS, iNew); + } + } + + /* Grab the new page. */ + pPg = 0; + rc = fsPageGet(pFS, 0, iApp, 1, &pPg, 0); + assert( rc==LSM_OK || pPg==0 ); + + /* If this is the first or last page of a block, fill in the pointer + ** value at the end of the new page. */ + if( rc==LSM_OK ){ + p->nSize++; + p->iLastPg = iApp; + if( p->iFirst==0 ) p->iFirst = iApp; + pPg->flags |= PAGE_DIRTY; + + if( fsIsLast(pFS, iApp) ){ + lsmPutU32(&pPg->aData[pFS->nPagesize-4], fsPageToBlock(pFS, iNext)); + }else if( fsIsFirst(pFS, iApp) ){ + lsmPutU32(&pPg->aData[-4], fsPageToBlock(pFS, iPrev)); + } + } + } + + *ppOut = pPg; + return rc; +} + +/* +** Mark the segment passed as the second argument as finished. Once a segment +** is marked as finished it is not possible to append any further pages to +** it. +** +** Return LSM_OK if successful or an lsm error code if an error occurs. +*/ +int lsmFsSortedFinish(FileSystem *pFS, Segment *p){ + int rc = LSM_OK; + if( p && p->iLastPg ){ + assert( p->pRedirect==0 ); + + /* Check if the last page of this run happens to be the last of a block. + ** If it is, then an extra block has already been allocated for this run. + ** Shift this extra block back to the free-block list. + ** + ** Otherwise, add the first free page in the last block used by the run + ** to the lAppend list. + */ + if( fsLastPageOnPagesBlock(pFS, p->iLastPg)!=p->iLastPg ){ + int i; + Pgno *aiAppend = pFS->pDb->pWorker->aiAppend; + for(i=0; iiLastPg+1; + break; + } + } + }else if( pFS->pCompress==0 ){ + Page *pLast; + rc = fsPageGet(pFS, 0, p->iLastPg, 0, &pLast, 0); + if( rc==LSM_OK ){ + int iBlk = (int)lsmGetU32(&pLast->aData[pFS->nPagesize-4]); + lsmBlockRefree(pFS->pDb, iBlk); + lsmFsPageRelease(pLast); + } + }else{ + int iBlk = 0; + rc = fsBlockNext(pFS, p, fsPageToBlock(pFS, p->iLastPg), &iBlk); + if( rc==LSM_OK ){ + lsmBlockRefree(pFS->pDb, iBlk); + } + } + } + return rc; +} + +/* +** Obtain a reference to page number iPg. +** +** Return LSM_OK if successful, or an lsm error code if an error occurs. +*/ +int lsmFsDbPageGet(FileSystem *pFS, Segment *pSeg, Pgno iPg, Page **ppPg){ + return fsPageGet(pFS, pSeg, iPg, 0, ppPg, 0); +} + +/* +** Obtain a reference to the last page in the segment passed as the +** second argument. +** +** Return LSM_OK if successful, or an lsm error code if an error occurs. +*/ +int lsmFsDbPageLast(FileSystem *pFS, Segment *pSeg, Page **ppPg){ + int rc; + Pgno iPg = pSeg->iLastPg; + if( pFS->pCompress ){ + int nSpace; + iPg++; + do { + nSpace = 0; + rc = fsGetPageBefore(pFS, pSeg, iPg, &iPg); + if( rc==LSM_OK ){ + rc = fsPageGet(pFS, pSeg, iPg, 0, ppPg, &nSpace); + } + }while( rc==LSM_OK && nSpace>0 ); + + }else{ + rc = fsPageGet(pFS, pSeg, iPg, 0, ppPg, 0); + } + return rc; +} + +/* +** Return a reference to meta-page iPg. If successful, LSM_OK is returned +** and *ppPg populated with the new page reference. The reference should +** be released by the caller using lsmFsPageRelease(). +** +** Otherwise, if an error occurs, *ppPg is set to NULL and an LSM error +** code is returned. +*/ +int lsmFsMetaPageGet( + FileSystem *pFS, /* File-system connection */ + int bWrite, /* True for write access, false for read */ + int iPg, /* Either 1 or 2 */ + MetaPage **ppPg /* OUT: Pointer to MetaPage object */ +){ + int rc = LSM_OK; + MetaPage *pPg; + assert( iPg==1 || iPg==2 ); + + pPg = lsmMallocZeroRc(pFS->pEnv, sizeof(Page), &rc); + + if( pPg ){ + i64 iOff = (iPg-1) * pFS->nMetasize; + if( pFS->nMapLimit>0 ){ + fsGrowMapping(pFS, 2*pFS->nMetasize, &rc); + pPg->aData = (u8 *)(pFS->pMap) + iOff; + }else{ + pPg->aData = lsmMallocRc(pFS->pEnv, pFS->nMetasize, &rc); + if( rc==LSM_OK && bWrite==0 ){ + rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, pPg->aData, pFS->nMetasize); + } +#ifndef NDEBUG + /* pPg->aData causes an uninitialized access via a downstreadm write(). + After discussion on this list, this memory should not, for performance + reasons, be memset. However, tracking down "real" misuse is more + difficult with this "false" positive, so it is set when NDEBUG. + */ + else if( rc==LSM_OK ){ + memset( pPg->aData, 0x77, pFS->nMetasize ); + } +#endif + } + + if( rc!=LSM_OK ){ + if( pFS->nMapLimit==0 ) lsmFree(pFS->pEnv, pPg->aData); + lsmFree(pFS->pEnv, pPg); + pPg = 0; + }else{ + pPg->iPg = iPg; + pPg->bWrite = bWrite; + pPg->pFS = pFS; + } + } + + *ppPg = pPg; + return rc; +} + +/* +** Release a meta-page reference obtained via a call to lsmFsMetaPageGet(). +*/ +int lsmFsMetaPageRelease(MetaPage *pPg){ + int rc = LSM_OK; + if( pPg ){ + FileSystem *pFS = pPg->pFS; + + if( pFS->nMapLimit==0 ){ + if( pPg->bWrite ){ + i64 iOff = (pPg->iPg==2 ? pFS->nMetasize : 0); + int nWrite = pFS->nMetasize; + rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, pPg->aData, nWrite); + } + lsmFree(pFS->pEnv, pPg->aData); + } + + lsmFree(pFS->pEnv, pPg); + } + return rc; +} + +/* +** Return a pointer to a buffer containing the data associated with the +** meta-page passed as the first argument. If parameter pnData is not NULL, +** set *pnData to the size of the meta-page in bytes before returning. +*/ +u8 *lsmFsMetaPageData(MetaPage *pPg, int *pnData){ + if( pnData ) *pnData = pPg->pFS->nMetasize; + return pPg->aData; +} + +/* +** Return true if page is currently writable. This is used in assert() +** statements only. +*/ +#ifndef NDEBUG +int lsmFsPageWritable(Page *pPg){ + return (pPg->flags & PAGE_DIRTY) ? 1 : 0; +} +#endif + +/* +** This is called when block iFrom is being redirected to iTo. If page +** number (*piPg) lies on block iFrom, then calculate the equivalent +** page on block iTo and set *piPg to this value before returning. +*/ +static void fsMovePage( + FileSystem *pFS, /* File system object */ + int iTo, /* Destination block */ + int iFrom, /* Source block */ + Pgno *piPg /* IN/OUT: Page number */ +){ + Pgno iPg = *piPg; + if( iFrom==fsPageToBlock(pFS, iPg) ){ + const int nPagePerBlock = ( + pFS->pCompress ? pFS ->nBlocksize : (pFS->nBlocksize / pFS->nPagesize) + ); + *piPg = iPg - (Pgno)(iFrom - iTo) * nPagePerBlock; + } +} + +/* +** Copy the contents of block iFrom to block iTo. +** +** It is safe to assume that there are no outstanding references to pages +** on block iTo. And that block iFrom is not currently being written. In +** other words, the data can be read and written directly. +*/ +int lsmFsMoveBlock(FileSystem *pFS, Segment *pSeg, int iTo, int iFrom){ + Snapshot *p = pFS->pDb->pWorker; + int rc = LSM_OK; + int i; + i64 nMap; + + i64 iFromOff = (i64)(iFrom-1) * pFS->nBlocksize; + i64 iToOff = (i64)(iTo-1) * pFS->nBlocksize; + + assert( iTo!=1 ); + assert( iFrom>iTo ); + + /* Grow the mapping as required. */ + nMap = LSM_MIN(pFS->nMapLimit, (i64)iFrom * pFS->nBlocksize); + fsGrowMapping(pFS, nMap, &rc); + + if( rc==LSM_OK ){ + const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize); + int nSz = pFS->nPagesize; + u8 *aBuf = 0; + u8 *aData = 0; + + for(i=0; rc==LSM_OK && inMapLimit ){ + u8 *aMap = (u8 *)(pFS->pMap); + aData = &aMap[iOff]; + }else{ + if( aBuf==0 ){ + aBuf = (u8 *)lsmMallocRc(pFS->pEnv, nSz, &rc); + if( aBuf==0 ) break; + } + aData = aBuf; + rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aData, nSz); + } + + /* Copy aData to the to page */ + if( rc==LSM_OK ){ + iOff = iToOff + i*nSz; + if( (iOff+nSz)<=pFS->nMapLimit ){ + u8 *aMap = (u8 *)(pFS->pMap); + memcpy(&aMap[iOff], aData, nSz); + }else{ + rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, aData, nSz); + } + } + } + lsmFree(pFS->pEnv, aBuf); + lsmFsPurgeCache(pFS); + } + + /* Update append-point list if necessary */ + for(i=0; iaiAppend[i]); + } + + /* Update the Segment structure itself */ + fsMovePage(pFS, iTo, iFrom, &pSeg->iFirst); + fsMovePage(pFS, iTo, iFrom, &pSeg->iLastPg); + fsMovePage(pFS, iTo, iFrom, &pSeg->iRoot); + + return rc; +} + +/* +** Append raw data to a segment. Return the database file offset that the +** data is written to (this may be used as the page number if the data +** being appended is a new page record). +** +** This function is only used in compressed database mode. +*/ +static Pgno fsAppendData( + FileSystem *pFS, /* File-system handle */ + Segment *pSeg, /* Segment to append to */ + const u8 *aData, /* Buffer containing data to write */ + int nData, /* Size of buffer aData[] in bytes */ + int *pRc /* IN/OUT: Error code */ +){ + Pgno iRet = 0; + int rc = *pRc; + assert( pFS->pCompress ); + if( rc==LSM_OK ){ + int nRem; + int nWrite; + Pgno iLastOnBlock; + Pgno iApp = pSeg->iLastPg+1; + + /* If this is the first data written into the segment, find an append-point + ** or allocate a new block. */ + if( iApp==1 ){ + pSeg->iFirst = iApp = findAppendPoint(pFS, 0); + if( iApp==0 ){ + int iBlk; + rc = lsmBlockAllocate(pFS->pDb, 0, &iBlk); + pSeg->iFirst = iApp = fsFirstPageOnBlock(pFS, iBlk); + } + } + iRet = iApp; + + /* Write as much data as is possible at iApp (usually all of it). */ + iLastOnBlock = fsLastPageOnPagesBlock(pFS, iApp); + if( rc==LSM_OK ){ + int nSpace = iLastOnBlock - iApp + 1; + nWrite = LSM_MIN(nData, nSpace); + nRem = nData - nWrite; + assert( nWrite>=0 ); + if( nWrite!=0 ){ + rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, aData, nWrite); + } + iApp += nWrite; + } + + /* If required, allocate a new block and write the rest of the data + ** into it. Set the next and previous block pointers to link the new + ** block to the old. */ + assert( nRem<=0 || (iApp-1)==iLastOnBlock ); + if( rc==LSM_OK && (iApp-1)==iLastOnBlock ){ + u8 aPtr[4]; /* Space to serialize a u32 */ + int iBlk; /* New block number */ + + if( nWrite>0 ){ + /* Allocate a new block. */ + rc = lsmBlockAllocate(pFS->pDb, 0, &iBlk); + + /* Set the "next" pointer on the old block */ + if( rc==LSM_OK ){ + assert( iApp==(fsPageToBlock(pFS, iApp)*pFS->nBlocksize)-4 ); + lsmPutU32(aPtr, iBlk); + rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, aPtr, sizeof(aPtr)); + } + + /* Set the "prev" pointer on the new block */ + if( rc==LSM_OK ){ + Pgno iWrite; + lsmPutU32(aPtr, fsPageToBlock(pFS, iApp)); + iWrite = fsFirstPageOnBlock(pFS, iBlk); + rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iWrite-4, aPtr, sizeof(aPtr)); + if( nRem>0 ) iApp = iWrite; + } + }else{ + /* The next block is already allocated. */ + assert( nRem>0 ); + assert( pSeg->pRedirect==0 ); + rc = fsBlockNext(pFS, 0, fsPageToBlock(pFS, iApp), &iBlk); + iRet = iApp = fsFirstPageOnBlock(pFS, iBlk); + } + + /* Write the remaining data into the new block */ + if( rc==LSM_OK && nRem>0 ){ + rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, &aData[nWrite], nRem); + iApp += nRem; + } + } + + pSeg->iLastPg = iApp-1; + *pRc = rc; + } + + return iRet; +} + +/* +** This function is only called in compressed database mode. It +** compresses the contents of page pPg and writes the result to the +** buffer at pFS->aOBuffer. The size of the compressed data is stored in +** pPg->nCompress. +** +** If buffer pFS->aOBuffer[] has not been allocated then this function +** allocates it. If this fails, LSM_NOMEM is returned. Otherwise, LSM_OK. +*/ +static int fsCompressIntoBuffer(FileSystem *pFS, Page *pPg){ + lsm_compress *p = pFS->pCompress; + + if( fsAllocateBuffer(pFS, 1) ) return LSM_NOMEM; + assert( pPg->nData==pFS->nPagesize ); + + pPg->nCompress = pFS->nBuffer; + return p->xCompress(p->pCtx, + (char *)pFS->aOBuffer, &pPg->nCompress, + (const char *)pPg->aData, pPg->nData + ); +} + +/* +** Append a new page to segment pSeg. Set output variable *piNew to the +** page number of the new page before returning. +** +** If the new page is the last on its block, then the 'next' block that +** will be used by the segment is allocated here too. In this case output +** variable *piNext is set to the block number of the next block. +** +** If the new page is the first on its block but not the first in the +** entire segment, set output variable *piPrev to the block number of +** the previous block in the segment. +** +** LSM_OK is returned if successful, or an lsm error code otherwise. If +** any value other than LSM_OK is returned, then the final value of all +** output variables is undefined. +*/ +static int fsAppendPage( + FileSystem *pFS, + Segment *pSeg, + Pgno *piNew, + int *piPrev, + int *piNext +){ + Pgno iPrev = pSeg->iLastPg; + int rc; + assert( iPrev!=0 ); + + *piPrev = 0; + *piNext = 0; + + if( fsIsLast(pFS, iPrev) ){ + /* Grab the first page on the next block (which has already be + ** allocated). In this case set *piPrev to tell the caller to set + ** the "previous block" pointer in the first 4 bytes of the page. + */ + int iNext; + int iBlk = fsPageToBlock(pFS, iPrev); + assert( pSeg->pRedirect==0 ); + rc = fsBlockNext(pFS, 0, iBlk, &iNext); + if( rc!=LSM_OK ) return rc; + *piNew = fsFirstPageOnBlock(pFS, iNext); + *piPrev = iBlk; + }else{ + *piNew = iPrev+1; + if( fsIsLast(pFS, *piNew) ){ + /* Allocate the next block here. */ + int iBlk; + rc = lsmBlockAllocate(pFS->pDb, 0, &iBlk); + if( rc!=LSM_OK ) return rc; + *piNext = iBlk; + } + } + + pSeg->nSize++; + pSeg->iLastPg = *piNew; + return LSM_OK; +} + +/* +** Flush all pages in the FileSystem.pWaiting list to disk. +*/ +void lsmFsFlushWaiting(FileSystem *pFS, int *pRc){ + int rc = *pRc; + Page *pPg; + + pPg = pFS->pWaiting; + pFS->pWaiting = 0; + + while( pPg ){ + Page *pNext = pPg->pWaitingNext; + if( rc==LSM_OK ) rc = lsmFsPagePersist(pPg); + assert( pPg->nRef==1 ); + lsmFsPageRelease(pPg); + pPg = pNext; + } + *pRc = rc; +} + +/* +** If there exists a hash-table entry associated with page iPg, remove it. +*/ +static void fsRemoveHashEntry(FileSystem *pFS, Pgno iPg){ + Page *p; + int iHash = fsHashKey(pFS->nHash, iPg); + + for(p=pFS->apHash[iHash]; p && p->iPg!=iPg; p=p->pHashNext); + + if( p ){ + assert( p->nRef==0 || (p->flags & PAGE_FREE)==0 ); + fsPageRemoveFromHash(pFS, p); + p->iPg = 0; + iHash = fsHashKey(pFS->nHash, 0); + p->pHashNext = pFS->apHash[iHash]; + pFS->apHash[iHash] = p; + } +} + +/* +** If the page passed as an argument is dirty, update the database file +** (or mapping of the database file) with its current contents and mark +** the page as clean. +** +** Return LSM_OK if the operation is a success, or an LSM error code +** otherwise. +*/ +int lsmFsPagePersist(Page *pPg){ + int rc = LSM_OK; + if( pPg && (pPg->flags & PAGE_DIRTY) ){ + FileSystem *pFS = pPg->pFS; + + if( pFS->pCompress ){ + int iHash; /* Hash key of assigned page number */ + u8 aSz[3]; /* pPg->nCompress as a 24-bit big-endian */ + assert( pPg->pSeg && pPg->iPg==0 && pPg->nCompress==0 ); + + /* Compress the page image. */ + rc = fsCompressIntoBuffer(pFS, pPg); + + /* Serialize the compressed size into buffer aSz[] */ + putRecordSize(aSz, pPg->nCompress, 0); + + /* Write the serialized page record into the database file. */ + pPg->iPg = fsAppendData(pFS, pPg->pSeg, aSz, sizeof(aSz), &rc); + fsAppendData(pFS, pPg->pSeg, pFS->aOBuffer, pPg->nCompress, &rc); + fsAppendData(pFS, pPg->pSeg, aSz, sizeof(aSz), &rc); + + /* Now that it has a page number, insert the page into the hash table */ + iHash = fsHashKey(pFS->nHash, pPg->iPg); + pPg->pHashNext = pFS->apHash[iHash]; + pFS->apHash[iHash] = pPg; + + pPg->pSeg->nSize += (sizeof(aSz) * 2) + pPg->nCompress; + + pPg->flags &= ~PAGE_DIRTY; + pFS->nWrite++; + }else{ + + if( pPg->iPg==0 ){ + /* No page number has been assigned yet. This occurs with pages used + ** in the b-tree hierarchy. They were not assigned page numbers when + ** they were created as doing so would cause this call to + ** lsmFsPagePersist() to write an out-of-order page. Instead a page + ** number is assigned here so that the page data will be appended + ** to the current segment. + */ + Page **pp; + int iPrev = 0; + int iNext = 0; + int iHash; + + assert( pPg->pSeg->iFirst ); + assert( pPg->flags & PAGE_FREE ); + assert( (pPg->flags & PAGE_HASPREV)==0 ); + assert( pPg->nData==pFS->nPagesize-4 ); + + rc = fsAppendPage(pFS, pPg->pSeg, &pPg->iPg, &iPrev, &iNext); + if( rc!=LSM_OK ) return rc; + + assert( pPg->flags & PAGE_FREE ); + iHash = fsHashKey(pFS->nHash, pPg->iPg); + fsRemoveHashEntry(pFS, pPg->iPg); + pPg->pHashNext = pFS->apHash[iHash]; + pFS->apHash[iHash] = pPg; + assert( pPg->pHashNext==0 || pPg->pHashNext->iPg!=pPg->iPg ); + + if( iPrev ){ + assert( iNext==0 ); + memmove(&pPg->aData[4], pPg->aData, pPg->nData); + lsmPutU32(pPg->aData, iPrev); + pPg->flags |= PAGE_HASPREV; + pPg->aData += 4; + }else if( iNext ){ + assert( iPrev==0 ); + lsmPutU32(&pPg->aData[pPg->nData], iNext); + }else{ + int nData = pPg->nData; + pPg->nData += 4; + lsmSortedExpandBtreePage(pPg, nData); + } + + pPg->nRef++; + for(pp=&pFS->pWaiting; *pp; pp=&(*pp)->pWaitingNext); + *pp = pPg; + assert( pPg->pWaitingNext==0 ); + + }else{ + i64 iOff; /* Offset to write within database file */ + + iOff = (i64)pFS->nPagesize * (i64)(pPg->iPg-1); + if( fsMmapPage(pFS, pPg->iPg)==0 ){ + u8 *aData = pPg->aData - (pPg->flags & PAGE_HASPREV); + rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, aData, pFS->nPagesize); + }else if( pPg->flags & PAGE_FREE ){ + fsGrowMapping(pFS, iOff + pFS->nPagesize, &rc); + if( rc==LSM_OK ){ + u8 *aTo = &((u8 *)(pFS->pMap))[iOff]; + u8 *aFrom = pPg->aData - (pPg->flags & PAGE_HASPREV); + memcpy(aTo, aFrom, pFS->nPagesize); + lsmFree(pFS->pEnv, aFrom); + pFS->nCacheAlloc--; + pPg->aData = aTo + (pPg->flags & PAGE_HASPREV); + pPg->flags &= ~PAGE_FREE; + fsPageRemoveFromHash(pFS, pPg); + pPg->pMappedNext = pFS->pMapped; + pFS->pMapped = pPg; + } + } + + lsmFsFlushWaiting(pFS, &rc); + pPg->flags &= ~PAGE_DIRTY; + pFS->nWrite++; + } + } + } + + return rc; +} + +/* +** For non-compressed databases, this function is a no-op. For compressed +** databases, it adds a padding record to the segment passed as the third +** argument. +** +** The size of the padding records is selected so that the last byte +** written is the last byte of a disk sector. This means that if a +** snapshot is taken and checkpointed, subsequent worker processes will +** not write to any sector that contains checkpointed data. +*/ +int lsmFsSortedPadding( + FileSystem *pFS, + Snapshot *pSnapshot, + Segment *pSeg +){ + int rc = LSM_OK; + if( pFS->pCompress ){ + Pgno iLast2; + Pgno iLast = pSeg->iLastPg; /* Current last page of segment */ + int nPad; /* Bytes of padding required */ + u8 aSz[3]; + + iLast2 = (1 + iLast/pFS->szSector) * pFS->szSector - 1; + assert( fsPageToBlock(pFS, iLast)==fsPageToBlock(pFS, iLast2) ); + nPad = iLast2 - iLast; + + if( iLast2>fsLastPageOnPagesBlock(pFS, iLast) ){ + nPad -= 4; + } + assert( nPad>=0 ); + + if( nPad>=6 ){ + pSeg->nSize += nPad; + nPad -= 6; + putRecordSize(aSz, nPad, 1); + fsAppendData(pFS, pSeg, aSz, sizeof(aSz), &rc); + memset(pFS->aOBuffer, 0, nPad); + fsAppendData(pFS, pSeg, pFS->aOBuffer, nPad, &rc); + fsAppendData(pFS, pSeg, aSz, sizeof(aSz), &rc); + }else if( nPad>0 ){ + u8 aBuf[5] = {0,0,0,0,0}; + aBuf[0] = (u8)nPad; + aBuf[nPad-1] = (u8)nPad; + fsAppendData(pFS, pSeg, aBuf, nPad, &rc); + } + + assert( rc!=LSM_OK + || pSeg->iLastPg==fsLastPageOnPagesBlock(pFS, pSeg->iLastPg) + || ((pSeg->iLastPg + 1) % pFS->szSector)==0 + ); + } + + return rc; +} + + +/* +** Increment the reference count on the page object passed as the first +** argument. +*/ +void lsmFsPageRef(Page *pPg){ + if( pPg ){ + pPg->nRef++; + } +} + +/* +** Release a page-reference obtained using fsPageGet(). +*/ +int lsmFsPageRelease(Page *pPg){ + int rc = LSM_OK; + if( pPg ){ + assert( pPg->nRef>0 ); + pPg->nRef--; + if( pPg->nRef==0 ){ + FileSystem *pFS = pPg->pFS; + rc = lsmFsPagePersist(pPg); + pFS->nOut--; + + assert( pPg->pFS->pCompress + || fsIsFirst(pPg->pFS, pPg->iPg)==0 + || (pPg->flags & PAGE_HASPREV) + ); + pPg->aData -= (pPg->flags & PAGE_HASPREV); + pPg->flags &= ~PAGE_HASPREV; + + if( (pPg->flags & PAGE_FREE)==0 ){ + /* Removed from mapped list */ + Page **pp; + for(pp=&pFS->pMapped; (*pp)!=pPg; pp=&(*pp)->pMappedNext); + *pp = pPg->pMappedNext; + pPg->pMappedNext = 0; + + /* Add to free list */ + pPg->pFreeNext = pFS->pFree; + pFS->pFree = pPg; + }else{ + fsPageAddToLru(pFS, pPg); + } + } + } + + return rc; +} + +/* +** Return the total number of pages read from the database file. +*/ +int lsmFsNRead(FileSystem *pFS){ return pFS->nRead; } + +/* +** Return the total number of pages written to the database file. +*/ +int lsmFsNWrite(FileSystem *pFS){ return pFS->nWrite; } + +/* +** Return a copy of the environment pointer used by the file-system object. +*/ +lsm_env *lsmFsEnv(FileSystem *pFS){ + return pFS->pEnv; +} + +/* +** Return a copy of the environment pointer used by the file-system object +** to which this page belongs. +*/ +lsm_env *lsmPageEnv(Page *pPg) { + return pPg->pFS->pEnv; +} + +/* +** Return a pointer to the file-system object associated with the Page +** passed as the only argument. +*/ +FileSystem *lsmPageFS(Page *pPg){ + return pPg->pFS; +} + +/* +** Return the sector-size as reported by the log file handle. +*/ +int lsmFsSectorSize(FileSystem *pFS){ + return pFS->szSector; +} + +/* +** Helper function for lsmInfoArrayStructure(). +*/ +static Segment *startsWith(Segment *pRun, Pgno iFirst){ + return (iFirst==pRun->iFirst) ? pRun : 0; +} + +/* +** Return the segment that starts with page iFirst, if any. If no such segment +** can be found, return NULL. +*/ +static Segment *findSegment(Snapshot *pWorker, Pgno iFirst){ + Level *pLvl; /* Used to iterate through db levels */ + Segment *pSeg = 0; /* Pointer to segment to return */ + + for(pLvl=lsmDbSnapshotLevel(pWorker); pLvl && pSeg==0; pLvl=pLvl->pNext){ + if( 0==(pSeg = startsWith(&pLvl->lhs, iFirst)) ){ + int i; + for(i=0; inRight; i++){ + if( (pSeg = startsWith(&pLvl->aRhs[i], iFirst)) ) break; + } + } + } + + return pSeg; +} + +/* +** This function implements the lsm_info(LSM_INFO_ARRAY_STRUCTURE) request. +** If successful, *pzOut is set to point to a nul-terminated string +** containing the array structure and LSM_OK is returned. The caller should +** eventually free the string using lsmFree(). +** +** If an error occurs, *pzOut is set to NULL and an LSM error code returned. +*/ +int lsmInfoArrayStructure( + lsm_db *pDb, + int bBlock, /* True for block numbers only */ + Pgno iFirst, + char **pzOut +){ + int rc = LSM_OK; + Snapshot *pWorker; /* Worker snapshot */ + Segment *pArray = 0; /* Array to report on */ + int bUnlock = 0; + + *pzOut = 0; + if( iFirst==0 ) return LSM_ERROR; + + /* Obtain the worker snapshot */ + pWorker = pDb->pWorker; + if( !pWorker ){ + rc = lsmBeginWork(pDb); + if( rc!=LSM_OK ) return rc; + pWorker = pDb->pWorker; + bUnlock = 1; + } + + /* Search for the array that starts on page iFirst */ + pArray = findSegment(pWorker, iFirst); + + if( pArray==0 ){ + /* Could not find the requested array. This is an error. */ + rc = LSM_ERROR; + }else{ + FileSystem *pFS = pDb->pFS; + LsmString str; + int iBlk; + int iLastBlk; + + iBlk = fsPageToBlock(pFS, pArray->iFirst); + iLastBlk = fsPageToBlock(pFS, pArray->iLastPg); + + lsmStringInit(&str, pDb->pEnv); + if( bBlock ){ + lsmStringAppendf(&str, "%d", iBlk); + while( iBlk!=iLastBlk ){ + fsBlockNext(pFS, pArray, iBlk, &iBlk); + lsmStringAppendf(&str, " %d", iBlk); + } + }else{ + lsmStringAppendf(&str, "%d", pArray->iFirst); + while( iBlk!=iLastBlk ){ + lsmStringAppendf(&str, " %d", fsLastPageOnBlock(pFS, iBlk)); + fsBlockNext(pFS, pArray, iBlk, &iBlk); + lsmStringAppendf(&str, " %d", fsFirstPageOnBlock(pFS, iBlk)); + } + lsmStringAppendf(&str, " %d", pArray->iLastPg); + } + + *pzOut = str.z; + } + + if( bUnlock ){ + int rcwork = LSM_BUSY; + lsmFinishWork(pDb, 0, &rcwork); + } + return rc; +} + +int lsmFsSegmentContainsPg( + FileSystem *pFS, + Segment *pSeg, + Pgno iPg, + int *pbRes +){ + Redirect *pRedir = pSeg->pRedirect; + int rc = LSM_OK; + int iBlk; + int iLastBlk; + int iPgBlock; /* Block containing page iPg */ + + iPgBlock = fsPageToBlock(pFS, pSeg->iFirst); + iBlk = fsRedirectBlock(pRedir, fsPageToBlock(pFS, pSeg->iFirst)); + iLastBlk = fsRedirectBlock(pRedir, fsPageToBlock(pFS, pSeg->iLastPg)); + + while( iBlk!=iLastBlk && iBlk!=iPgBlock && rc==LSM_OK ){ + rc = fsBlockNext(pFS, pSeg, iBlk, &iBlk); + } + + *pbRes = (iBlk==iPgBlock); + return rc; +} + +/* +** This function implements the lsm_info(LSM_INFO_ARRAY_PAGES) request. +** If successful, *pzOut is set to point to a nul-terminated string +** containing the array structure and LSM_OK is returned. The caller should +** eventually free the string using lsmFree(). +** +** If an error occurs, *pzOut is set to NULL and an LSM error code returned. +*/ +int lsmInfoArrayPages(lsm_db *pDb, Pgno iFirst, char **pzOut){ + int rc = LSM_OK; + Snapshot *pWorker; /* Worker snapshot */ + Segment *pSeg = 0; /* Array to report on */ + int bUnlock = 0; + + *pzOut = 0; + if( iFirst==0 ) return LSM_ERROR; + + /* Obtain the worker snapshot */ + pWorker = pDb->pWorker; + if( !pWorker ){ + rc = lsmBeginWork(pDb); + if( rc!=LSM_OK ) return rc; + pWorker = pDb->pWorker; + bUnlock = 1; + } + + /* Search for the array that starts on page iFirst */ + pSeg = findSegment(pWorker, iFirst); + + if( pSeg==0 ){ + /* Could not find the requested array. This is an error. */ + rc = LSM_ERROR; + }else{ + Page *pPg = 0; + FileSystem *pFS = pDb->pFS; + LsmString str; + + lsmStringInit(&str, pDb->pEnv); + rc = lsmFsDbPageGet(pFS, pSeg, iFirst, &pPg); + while( rc==LSM_OK && pPg ){ + Page *pNext = 0; + lsmStringAppendf(&str, " %lld", lsmFsPageNumber(pPg)); + rc = lsmFsDbPageNext(pSeg, pPg, 1, &pNext); + lsmFsPageRelease(pPg); + pPg = pNext; + } + + if( rc!=LSM_OK ){ + lsmFree(pDb->pEnv, str.z); + }else{ + *pzOut = str.z; + } + } + + if( bUnlock ){ + int rcwork = LSM_BUSY; + lsmFinishWork(pDb, 0, &rcwork); + } + return rc; +} + +/* +** The following macros are used by the integrity-check code. Associated with +** each block in the database is an 8-bit bit mask (the entry in the aUsed[] +** array). As the integrity-check meanders through the database, it sets the +** following bits to indicate how each block is used. +** +** INTEGRITY_CHECK_FIRST_PG: +** First page of block is in use by sorted run. +** +** INTEGRITY_CHECK_LAST_PG: +** Last page of block is in use by sorted run. +** +** INTEGRITY_CHECK_USED: +** At least one page of the block is in use by a sorted run. +** +** INTEGRITY_CHECK_FREE: +** The free block list contains an entry corresponding to this block. +*/ +#define INTEGRITY_CHECK_FIRST_PG 0x01 +#define INTEGRITY_CHECK_LAST_PG 0x02 +#define INTEGRITY_CHECK_USED 0x04 +#define INTEGRITY_CHECK_FREE 0x08 + +/* +** Helper function for lsmFsIntegrityCheck() +*/ +static void checkBlocks( + FileSystem *pFS, + Segment *pSeg, + int bExtra, /* If true, count the "next" block if any */ + int nUsed, + u8 *aUsed +){ + if( pSeg ){ + if( pSeg && pSeg->nSize>0 ){ + int rc; + int iBlk; /* Current block (during iteration) */ + int iLastBlk; /* Last block of segment */ + int iFirstBlk; /* First block of segment */ + int bLastIsLastOnBlock; /* True iLast is the last on its block */ + + assert( 0==fsSegmentRedirects(pFS, pSeg) ); + iBlk = iFirstBlk = fsPageToBlock(pFS, pSeg->iFirst); + iLastBlk = fsPageToBlock(pFS, pSeg->iLastPg); + + bLastIsLastOnBlock = (fsLastPageOnBlock(pFS, iLastBlk)==pSeg->iLastPg); + assert( iBlk>0 ); + + do { + /* iBlk is a part of this sorted run. */ + aUsed[iBlk-1] |= INTEGRITY_CHECK_USED; + + /* If the first page of this block is also part of the segment, + ** set the flag to indicate that the first page of iBlk is in use. + */ + if( fsFirstPageOnBlock(pFS, iBlk)==pSeg->iFirst || iBlk!=iFirstBlk ){ + assert( (aUsed[iBlk-1] & INTEGRITY_CHECK_FIRST_PG)==0 ); + aUsed[iBlk-1] |= INTEGRITY_CHECK_FIRST_PG; + } + + /* Unless the sorted run finishes before the last page on this block, + ** the last page of this block is also in use. */ + if( iBlk!=iLastBlk || bLastIsLastOnBlock ){ + assert( (aUsed[iBlk-1] & INTEGRITY_CHECK_LAST_PG)==0 ); + aUsed[iBlk-1] |= INTEGRITY_CHECK_LAST_PG; + } + + /* Special case. The sorted run being scanned is the output run of + ** a level currently undergoing an incremental merge. The sorted + ** run ends on the last page of iBlk, but the next block has already + ** been allocated. So mark it as in use as well. */ + if( iBlk==iLastBlk && bLastIsLastOnBlock && bExtra ){ + int iExtra = 0; + rc = fsBlockNext(pFS, pSeg, iBlk, &iExtra); + assert( rc==LSM_OK ); + + assert( aUsed[iExtra-1]==0 ); + aUsed[iExtra-1] |= INTEGRITY_CHECK_USED; + aUsed[iExtra-1] |= INTEGRITY_CHECK_FIRST_PG; + aUsed[iExtra-1] |= INTEGRITY_CHECK_LAST_PG; + } + + /* Move on to the next block in the sorted run. Or set iBlk to zero + ** in order to break out of the loop if this was the last block in + ** the run. */ + if( iBlk==iLastBlk ){ + iBlk = 0; + }else{ + rc = fsBlockNext(pFS, pSeg, iBlk, &iBlk); + assert( rc==LSM_OK ); + } + }while( iBlk ); + } + } +} + +typedef struct CheckFreelistCtx CheckFreelistCtx; +struct CheckFreelistCtx { + u8 *aUsed; + int nBlock; +}; +static int checkFreelistCb(void *pCtx, int iBlk, i64 iSnapshot){ + CheckFreelistCtx *p = (CheckFreelistCtx *)pCtx; + + assert( iBlk>=1 ); + assert( iBlk<=p->nBlock ); + assert( p->aUsed[iBlk-1]==0 ); + p->aUsed[iBlk-1] = INTEGRITY_CHECK_FREE; + return 0; +} + +/* +** This function checks that all blocks in the database file are accounted +** for. For each block, exactly one of the following must be true: +** +** + the block is part of a sorted run, or +** + the block is on the free-block list +** +** This function also checks that there are no references to blocks with +** out-of-range block numbers. +** +** If no errors are found, non-zero is returned. If an error is found, an +** assert() fails. +*/ +int lsmFsIntegrityCheck(lsm_db *pDb){ + CheckFreelistCtx ctx; + FileSystem *pFS = pDb->pFS; + int i; + int rc; + Freelist freelist = {0, 0, 0}; + u8 *aUsed; + Level *pLevel; + Snapshot *pWorker = pDb->pWorker; + int nBlock = pWorker->nBlock; + +#if 0 + static int nCall = 0; + nCall++; + printf("%d calls\n", nCall); +#endif + + aUsed = lsmMallocZero(pDb->pEnv, nBlock); + if( aUsed==0 ){ + /* Malloc has failed. Since this function is only called within debug + ** builds, this probably means the user is running an OOM injection test. + ** Regardless, it will not be possible to run the integrity-check at this + ** time, so assume the database is Ok and return non-zero. */ + return 1; + } + + for(pLevel=pWorker->pLevel; pLevel; pLevel=pLevel->pNext){ + int i; + checkBlocks(pFS, &pLevel->lhs, (pLevel->nRight!=0), nBlock, aUsed); + for(i=0; inRight; i++){ + checkBlocks(pFS, &pLevel->aRhs[i], 0, nBlock, aUsed); + } + } + + /* Mark all blocks in the free-list as used */ + ctx.aUsed = aUsed; + ctx.nBlock = nBlock; + rc = lsmWalkFreelist(pDb, 0, checkFreelistCb, (void *)&ctx); + + if( rc==LSM_OK ){ + for(i=0; ipEnv, aUsed); + lsmFree(pDb->pEnv, freelist.aEntry); + + return 1; +} + +#ifndef NDEBUG +/* +** Return true if pPg happens to be the last page in segment pSeg. Or false +** otherwise. This function is only invoked as part of assert() conditions. +*/ +int lsmFsDbPageIsLast(Segment *pSeg, Page *pPg){ + if( pPg->pFS->pCompress ){ + Pgno iNext = 0; + int rc; + rc = fsNextPageOffset(pPg->pFS, pSeg, pPg->iPg, pPg->nCompress+6, &iNext); + return (rc!=LSM_OK || iNext==0); + } + return (pPg->iPg==pSeg->iLastPg); +} +#endif ADDED ext/lsm1/lsm_log.c Index: ext/lsm1/lsm_log.c ================================================================== --- /dev/null +++ ext/lsm1/lsm_log.c @@ -0,0 +1,1134 @@ +/* +** 2011-08-13 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains the implementation of LSM database logging. Logging +** has one purpose in LSM - to make transactions durable. +** +** When data is written to an LSM database, it is initially stored in an +** in-memory tree structure. Since this structure is in volatile memory, +** if a power failure or application crash occurs it may be lost. To +** prevent loss of data in this case, each time a record is written to the +** in-memory tree an equivalent record is appended to the log on disk. +** If a power failure or application crash does occur, data can be recovered +** by reading the log. +** +** A log file consists of the following types of records representing data +** written into the database: +** +** LOG_WRITE: A key-value pair written to the database. +** LOG_DELETE: A delete key issued to the database. +** LOG_COMMIT: A transaction commit. +** +** And the following types of records for ancillary purposes.. +** +** LOG_EOF: A record indicating the end of a log file. +** LOG_PAD1: A single byte padding record. +** LOG_PAD2: An N byte padding record (N>1). +** LOG_JUMP: A pointer to another offset within the log file. +** +** Each transaction written to the log contains one or more LOG_WRITE and/or +** LOG_DELETE records, followed by a LOG_COMMIT record. The LOG_COMMIT record +** contains an 8-byte checksum based on all previous data written to the +** log file. +** +** LOG CHECKSUMS & RECOVERY +** +** Checksums are found in two types of log records: LOG_COMMIT and +** LOG_CKSUM records. In order to recover content from a log, a client +** reads each record from the start of the log, calculating a checksum as +** it does. Each time a LOG_COMMIT or LOG_CKSUM is encountered, the +** recovery process verifies that the checksum stored in the log +** matches the calculated checksum. If it does not, the recovery process +** can stop reading the log. +** +** If a recovery process reads records (other than COMMIT or CKSUM) +** consisting of at least LSM_CKSUM_MAXDATA bytes, then the next record in +** the log must be either a LOG_CKSUM or LOG_COMMIT record. If it is +** not, the recovery process also stops reading the log. +** +** To recover the log file, it must be read twice. The first time to +** determine the location of the last valid commit record. And the second +** time to load data into the in-memory tree. +** +** Todo: Surely there is a better way... +** +** LOG WRAPPING +** +** If the log file were never deleted or wrapped, it would be possible to +** read it from start to end each time is required recovery (i.e each time +** the number of database clients changes from 0 to 1). Effectively reading +** the entire history of the database each time. This would quickly become +** inefficient. Additionally, since the log file would grow without bound, +** it wastes storage space. +** +** Instead, part of each checkpoint written into the database file contains +** a log offset (and other information required to read the log starting at +** at this offset) at which to begin recovery. Offset $O. +** +** Once a checkpoint has been written and synced into the database file, it +** is guaranteed that no recovery process will need to read any data before +** offset $O of the log file. It is therefore safe to begin overwriting +** any data that occurs before offset $O. +** +** This implementation separates the log into three regions mapped into +** the log file - regions 0, 1 and 2. During recovery, regions are read +** in ascending order (i.e. 0, then 1, then 2). Each region is zero or +** more bytes in size. +** +** |---1---|..|--0--|.|--2--|.... +** +** New records are always appended to the end of region 2. +** +** Initially (when it is empty), all three regions are zero bytes in size. +** Each of them are located at the beginning of the file. As records are +** added to the log, region 2 grows, so that the log consists of a zero +** byte region 1, followed by a zero byte region 0, followed by an N byte +** region 2. After one or more checkpoints have been written to disk, +** the start point of region 2 is moved to $O. For example: +** +** A) ||.........|--2--|.... +** +** (both regions 0 and 1 are 0 bytes in size at offset 0). +** +** Eventually, the log wraps around to write new records into the start. +** At this point, region 2 is renamed to region 0. Region 0 is renamed +** to region 2. After appending a few records to the new region 2, the +** log file looks like this: +** +** B) ||--2--|...|--0--|.... +** +** (region 1 is still 0 bytes in size, located at offset 0). +** +** Any checkpoints made at this point may reduce the size of region 0. +** However, if they do not, and region 2 expands so that it is about to +** overwrite the start of region 0, then region 2 is renamed to region 1, +** and a new region 2 created at the end of the file following the existing +** region 0. +** +** C) |---1---|..|--0--|.|-2-| +** +** In this state records are appended to region 2 until checkpoints have +** contracted regions 0 AND 1 UNTil they are both zero bytes in size. They +** are then shifted to the start of the log file, leaving the system in +** the equivalent of state A above. +** +** Alternatively, state B may transition directly to state A if the size +** of region 0 is reduced to zero bytes before region 2 threatens to +** encroach upon it. +** +** LOG_PAD1 & LOG_PAD2 RECORDS +** +** PAD1 and PAD2 records may appear in a log file at any point. They allow +** a process writing the log file align the beginning of transactions with +** the beginning of disk sectors, which increases robustness. +** +** RECORD FORMATS: +** +** LOG_EOF: * A single 0x00 byte. +** +** LOG_PAD1: * A single 0x01 byte. +** +** LOG_PAD2: * A single 0x02 byte, followed by +** * The number of unused bytes (N) as a varint, +** * An N byte block of unused space. +** +** LOG_COMMIT: * A single 0x03 byte. +** * An 8-byte checksum. +** +** LOG_JUMP: * A single 0x04 byte. +** * Absolute file offset to jump to, encoded as a varint. +** +** LOG_WRITE: * A single 0x06 or 0x07 byte, +** * The number of bytes in the key, encoded as a varint, +** * The number of bytes in the value, encoded as a varint, +** * If the first byte was 0x07, an 8 byte checksum. +** * The key data, +** * The value data. +** +** LOG_DELETE: * A single 0x08 or 0x09 byte, +** * The number of bytes in the key, encoded as a varint, +** * If the first byte was 0x09, an 8 byte checksum. +** * The key data. +** +** Varints are as described in lsm_varint.c (SQLite 4 format). +** +** CHECKSUMS: +** +** The checksum is calculated using two 32-bit unsigned integers, s0 and +** s1. The initial value for both is 42. It is updated each time a record +** is written into the log file by treating the encoded (binary) record as +** an array of 32-bit little-endian integers. Then, if x[] is the integer +** array, updating the checksum accumulators as follows: +** +** for i from 0 to n-1 step 2: +** s0 += x[i] + s1; +** s1 += x[i+1] + s0; +** endfor +** +** If the record is not an even multiple of 8-bytes in size it is padded +** with zeroes to make it so before the checksum is updated. +** +** The checksum stored in a COMMIT, WRITE or DELETE is based on all bytes +** up to the start of the 8-byte checksum itself, including the COMMIT, +** WRITE or DELETE fields that appear before the checksum in the record. +** +** VARINT FORMAT +** +** See lsm_varint.c. +*/ + +#ifndef _LSM_INT_H +# include "lsmInt.h" +#endif + +/* Log record types */ +#define LSM_LOG_EOF 0x00 +#define LSM_LOG_PAD1 0x01 +#define LSM_LOG_PAD2 0x02 +#define LSM_LOG_COMMIT 0x03 +#define LSM_LOG_JUMP 0x04 + +#define LSM_LOG_WRITE 0x06 +#define LSM_LOG_WRITE_CKSUM 0x07 +#define LSM_LOG_DELETE 0x08 +#define LSM_LOG_DELETE_CKSUM 0x09 + +/* Require a checksum every 32KB. */ +#define LSM_CKSUM_MAXDATA (32*1024) + +/* Do not wrap a log file smaller than this in bytes. */ +#define LSM_MIN_LOGWRAP (128*1024) + +/* +** szSector: +** Commit records must be aligned to end on szSector boundaries. If +** the safety-mode is set to NORMAL or OFF, this value is 1. Otherwise, +** if the safety-mode is set to FULL, it is the size of the file-system +** sectors as reported by lsmFsSectorSize(). +*/ +struct LogWriter { + u32 cksum0; /* Checksum 0 at offset iOff */ + u32 cksum1; /* Checksum 1 at offset iOff */ + int iCksumBuf; /* Bytes of buf that have been checksummed */ + i64 iOff; /* Offset at start of buffer buf */ + int szSector; /* Sector size for this transaction */ + LogRegion jump; /* Avoid writing to this region */ + i64 iRegion1End; /* End of first region written by trans */ + i64 iRegion2Start; /* Start of second regions written by trans */ + LsmString buf; /* Buffer containing data not yet written */ +}; + +/* +** Return the result of interpreting the first 4 bytes in buffer aIn as +** a 32-bit unsigned little-endian integer. +*/ +static u32 getU32le(u8 *aIn){ + return ((u32)aIn[3] << 24) + + ((u32)aIn[2] << 16) + + ((u32)aIn[1] << 8) + + ((u32)aIn[0]); +} + + +/* +** This function is the same as logCksum(), except that pointer "a" need +** not be aligned to an 8-byte boundary or padded with zero bytes. This +** version is slower, but sometimes more convenient to use. +*/ +static void logCksumUnaligned( + char *z, /* Input buffer */ + int n, /* Size of input buffer in bytes */ + u32 *pCksum0, /* IN/OUT: Checksum value 1 */ + u32 *pCksum1 /* IN/OUT: Checksum value 2 */ +){ + u8 *a = (u8 *)z; + u32 cksum0 = *pCksum0; + u32 cksum1 = *pCksum1; + int nIn = (n/8) * 8; + int i; + + assert( n>0 ); + for(i=0; inIn ); + memcpy(aBuf, &a[nIn], n-nIn); + cksum0 += getU32le(aBuf) + cksum1; + cksum1 += getU32le(&aBuf[4]) + cksum0; + } + + *pCksum0 = cksum0; + *pCksum1 = cksum1; +} + +/* +** Update pLog->cksum0 and pLog->cksum1 so that the first nBuf bytes in the +** write buffer (pLog->buf) are included in the checksum. +*/ +static void logUpdateCksum(LogWriter *pLog, int nBuf){ + assert( (pLog->iCksumBuf % 8)==0 ); + assert( pLog->iCksumBuf<=nBuf ); + assert( (nBuf % 8)==0 || nBuf==pLog->buf.n ); + if( nBuf>pLog->iCksumBuf ){ + logCksumUnaligned( + &pLog->buf.z[pLog->iCksumBuf], nBuf-pLog->iCksumBuf, + &pLog->cksum0, &pLog->cksum1 + ); + } + pLog->iCksumBuf = nBuf; +} + +static i64 firstByteOnSector(LogWriter *pLog, i64 iOff){ + return (iOff / pLog->szSector) * pLog->szSector; +} +static i64 lastByteOnSector(LogWriter *pLog, i64 iOff){ + return firstByteOnSector(pLog, iOff) + pLog->szSector - 1; +} + +/* +** If possible, reclaim log file space. Log file space is reclaimed after +** a snapshot that points to the same data in the database file is synced +** into the db header. +*/ +static int logReclaimSpace(lsm_db *pDb){ + int rc; + int iMeta; + int bRotrans; /* True if there exists some ro-trans */ + + /* Test if there exists some other connection with a read-only transaction + ** open. If there does, then log file space may not be reclaimed. */ + rc = lsmDetectRoTrans(pDb, &bRotrans); + if( rc!=LSM_OK || bRotrans ) return rc; + + iMeta = (int)pDb->pShmhdr->iMetaPage; + if( iMeta==1 || iMeta==2 ){ + DbLog *pLog = &pDb->treehdr.log; + i64 iSyncedId; + + /* Read the snapshot-id of the snapshot stored on meta-page iMeta. Note + ** that in theory, the value read is untrustworthy (due to a race + ** condition - see comments above lsmFsReadSyncedId()). So it is only + ** ever used to conclude that no log space can be reclaimed. If it seems + ** to indicate that it may be possible to reclaim log space, a + ** second call to lsmCheckpointSynced() (which does return trustworthy + ** values) is made below to confirm. */ + rc = lsmFsReadSyncedId(pDb, iMeta, &iSyncedId); + + if( rc==LSM_OK && pLog->iSnapshotId!=iSyncedId ){ + i64 iSnapshotId = 0; + i64 iOff = 0; + rc = lsmCheckpointSynced(pDb, &iSnapshotId, &iOff, 0); + if( rc==LSM_OK && pLog->iSnapshotIdaRegion[iRegion]; + if( iOff>=p->iStart && iOff<=p->iEnd ) break; + p->iStart = 0; + p->iEnd = 0; + } + assert( iRegion<3 ); + pLog->aRegion[iRegion].iStart = iOff; + pLog->iSnapshotId = iSnapshotId; + } + } + } + return rc; +} + +/* +** This function is called when a write-transaction is first opened. It +** is assumed that the caller is holding the client-mutex when it is +** called. +** +** Before returning, this function allocates the LogWriter object that +** will be used to write to the log file during the write transaction. +** LSM_OK is returned if no error occurs, otherwise an LSM error code. +*/ +int lsmLogBegin(lsm_db *pDb){ + int rc = LSM_OK; + LogWriter *pNew; + LogRegion *aReg; + + if( pDb->bUseLog==0 ) return LSM_OK; + + /* If the log file has not yet been opened, open it now. Also allocate + ** the LogWriter structure, if it has not already been allocated. */ + rc = lsmFsOpenLog(pDb, 0); + if( pDb->pLogWriter==0 ){ + pNew = lsmMallocZeroRc(pDb->pEnv, sizeof(LogWriter), &rc); + if( pNew ){ + lsmStringInit(&pNew->buf, pDb->pEnv); + rc = lsmStringExtend(&pNew->buf, 2); + } + }else{ + pNew = pDb->pLogWriter; + assert( (u8 *)(&pNew[1])==(u8 *)(&((&pNew->buf)[1])) ); + memset(pNew, 0, ((u8 *)&pNew->buf) - (u8 *)pNew); + pNew->buf.n = 0; + } + + if( rc==LSM_OK ){ + /* The following call detects whether or not a new snapshot has been + ** synced into the database file. If so, it updates the contents of + ** the pDb->treehdr.log structure to reclaim any space in the log + ** file that is no longer required. + ** + ** TODO: Calling this every transaction is overkill. And since the + ** call has to read and checksum a snapshot from the database file, + ** it is expensive. It would be better to figure out a way so that + ** this is only called occasionally - say for every 32KB written to + ** the log file. + */ + rc = logReclaimSpace(pDb); + } + if( rc!=LSM_OK ){ + lsmLogClose(pDb); + return rc; + } + + /* Set the effective sector-size for this transaction. Sectors are assumed + ** to be one byte in size if the safety-mode is OFF or NORMAL, or as + ** reported by lsmFsSectorSize if it is FULL. */ + if( pDb->eSafety==LSM_SAFETY_FULL ){ + pNew->szSector = lsmFsSectorSize(pDb->pFS); + assert( pNew->szSector>0 ); + }else{ + pNew->szSector = 1; + } + + /* There are now three scenarios: + ** + ** 1) Regions 0 and 1 are both zero bytes in size and region 2 begins + ** at a file offset greater than LSM_MIN_LOGWRAP. In this case, wrap + ** around to the start and write data into the start of the log file. + ** + ** 2) Region 1 is zero bytes in size and region 2 occurs earlier in the + ** file than region 0. In this case, append data to region 2, but + ** remember to jump over region 1 if required. + ** + ** 3) Region 2 is the last in the file. Append to it. + */ + aReg = &pDb->treehdr.log.aRegion[0]; + + assert( aReg[0].iEnd==0 || aReg[0].iEnd>aReg[0].iStart ); + assert( aReg[1].iEnd==0 || aReg[1].iEnd>aReg[1].iStart ); + + pNew->cksum0 = pDb->treehdr.log.cksum0; + pNew->cksum1 = pDb->treehdr.log.cksum1; + + if( aReg[0].iEnd==0 && aReg[1].iEnd==0 && aReg[2].iStart>=LSM_MIN_LOGWRAP ){ + /* Case 1. Wrap around to the start of the file. Write an LSM_LOG_JUMP + ** into the log file in this case. Pad it out to 8 bytes using a PAD2 + ** record so that the checksums can be updated immediately. */ + u8 aJump[] = { + LSM_LOG_PAD2, 0x04, 0x00, 0x00, 0x00, 0x00, LSM_LOG_JUMP, 0x00 + }; + + lsmStringBinAppend(&pNew->buf, aJump, sizeof(aJump)); + logUpdateCksum(pNew, pNew->buf.n); + rc = lsmFsWriteLog(pDb->pFS, aReg[2].iEnd, &pNew->buf); + pNew->iCksumBuf = pNew->buf.n = 0; + + aReg[2].iEnd += 8; + pNew->jump = aReg[0] = aReg[2]; + aReg[2].iStart = aReg[2].iEnd = 0; + }else if( aReg[1].iEnd==0 && aReg[2].iEndiOff = aReg[2].iEnd; + pNew->jump = aReg[0]; + }else{ + /* Case 3. */ + assert( aReg[2].iStart>=aReg[0].iEnd && aReg[2].iStart>=aReg[1].iEnd ); + pNew->iOff = aReg[2].iEnd; + } + + if( pNew->jump.iStart ){ + i64 iRound; + assert( pNew->jump.iStart>pNew->iOff ); + + iRound = firstByteOnSector(pNew, pNew->jump.iStart); + if( iRound>pNew->iOff ) pNew->jump.iStart = iRound; + pNew->jump.iEnd = lastByteOnSector(pNew, pNew->jump.iEnd); + } + + pDb->pLogWriter = pNew; + return rc; +} + +/* +** This function is called when a write-transaction is being closed. +** Parameter bCommit is true if the transaction is being committed, +** or false otherwise. The caller must hold the client-mutex to call +** this function. +** +** A call to this function deletes the LogWriter object allocated by +** lsmLogBegin(). If the transaction is being committed, the shared state +** in *pLog is updated before returning. +*/ +void lsmLogEnd(lsm_db *pDb, int bCommit){ + DbLog *pLog; + LogWriter *p; + p = pDb->pLogWriter; + + if( p==0 ) return; + pLog = &pDb->treehdr.log; + + if( bCommit ){ + pLog->aRegion[2].iEnd = p->iOff; + pLog->cksum0 = p->cksum0; + pLog->cksum1 = p->cksum1; + if( p->iRegion1End ){ + /* This happens when the transaction had to jump over some other + ** part of the log. */ + assert( pLog->aRegion[1].iEnd==0 ); + assert( pLog->aRegion[2].iStartiRegion1End ); + pLog->aRegion[1].iStart = pLog->aRegion[2].iStart; + pLog->aRegion[1].iEnd = p->iRegion1End; + pLog->aRegion[2].iStart = p->iRegion2Start; + } + } +} + +static int jumpIfRequired( + lsm_db *pDb, + LogWriter *pLog, + int nReq, + int *pbJump +){ + /* Determine if it is necessary to add an LSM_LOG_JUMP to jump over the + ** jump region before writing the LSM_LOG_WRITE or DELETE record. This + ** is necessary if there is insufficient room between the current offset + ** and the jump region to fit the new WRITE/DELETE record and the largest + ** possible JUMP record with up to 7 bytes of padding (a total of 17 + ** bytes). */ + if( (pLog->jump.iStart > (pLog->iOff + pLog->buf.n)) + && (pLog->jump.iStart < (pLog->iOff + pLog->buf.n + (nReq + 17))) + ){ + int rc; /* Return code */ + i64 iJump; /* Offset to jump to */ + u8 aJump[10]; /* Encoded jump record */ + int nJump; /* Valid bytes in aJump[] */ + int nPad; /* Bytes of padding required */ + + /* Serialize the JUMP record */ + iJump = pLog->jump.iEnd+1; + aJump[0] = LSM_LOG_JUMP; + nJump = 1 + lsmVarintPut64(&aJump[1], iJump); + + /* Adding padding to the contents of the buffer so that it will be a + ** multiple of 8 bytes in size after the JUMP record is appended. This + ** is not strictly required, it just makes the keeping the running + ** checksum up to date in this file a little simpler. */ + nPad = (pLog->buf.n + nJump) % 8; + if( nPad ){ + u8 aPad[7] = {0,0,0,0,0,0,0}; + nPad = 8-nPad; + if( nPad==1 ){ + aPad[0] = LSM_LOG_PAD1; + }else{ + aPad[0] = LSM_LOG_PAD2; + aPad[1] = (nPad-2); + } + rc = lsmStringBinAppend(&pLog->buf, aPad, nPad); + if( rc!=LSM_OK ) return rc; + } + + /* Append the JUMP record to the buffer. Then flush the buffer to disk + ** and update the checksums. The next write to the log file (assuming + ** there is no transaction rollback) will be to offset iJump (just past + ** the jump region). */ + rc = lsmStringBinAppend(&pLog->buf, aJump, nJump); + if( rc!=LSM_OK ) return rc; + assert( (pLog->buf.n % 8)==0 ); + rc = lsmFsWriteLog(pDb->pFS, pLog->iOff, &pLog->buf); + if( rc!=LSM_OK ) return rc; + logUpdateCksum(pLog, pLog->buf.n); + pLog->iRegion1End = (pLog->iOff + pLog->buf.n); + pLog->iRegion2Start = iJump; + pLog->iOff = iJump; + pLog->iCksumBuf = pLog->buf.n = 0; + if( pbJump ) *pbJump = 1; + } + + return LSM_OK; +} + +static int logCksumAndFlush(lsm_db *pDb){ + int rc; /* Return code */ + LogWriter *pLog = pDb->pLogWriter; + + /* Calculate the checksum value. Append it to the buffer. */ + logUpdateCksum(pLog, pLog->buf.n); + lsmPutU32((u8 *)&pLog->buf.z[pLog->buf.n], pLog->cksum0); + pLog->buf.n += 4; + lsmPutU32((u8 *)&pLog->buf.z[pLog->buf.n], pLog->cksum1); + pLog->buf.n += 4; + + /* Write the contents of the buffer to disk. */ + rc = lsmFsWriteLog(pDb->pFS, pLog->iOff, &pLog->buf); + pLog->iOff += pLog->buf.n; + pLog->iCksumBuf = pLog->buf.n = 0; + + return rc; +} + +/* +** Write the contents of the log-buffer to disk. Then write either a CKSUM +** or COMMIT record, depending on the value of parameter eType. +*/ +static int logFlush(lsm_db *pDb, int eType){ + int rc; + int nReq; + LogWriter *pLog = pDb->pLogWriter; + + assert( eType==LSM_LOG_COMMIT ); + assert( pLog ); + + /* Commit record is always 9 bytes in size. */ + nReq = 9; + if( eType==LSM_LOG_COMMIT && pLog->szSector>1 ) nReq += pLog->szSector + 17; + rc = jumpIfRequired(pDb, pLog, nReq, 0); + + /* If this is a COMMIT, add padding to the log so that the COMMIT record + ** is aligned against the end of a disk sector. In other words, add padding + ** so that the first byte following the COMMIT record lies on a different + ** sector. */ + if( eType==LSM_LOG_COMMIT && pLog->szSector>1 ){ + int nPad; /* Bytes of padding to add */ + + /* Determine the value of nPad. */ + nPad = ((pLog->iOff + pLog->buf.n + 9) % pLog->szSector); + if( nPad ) nPad = pLog->szSector - nPad; + rc = lsmStringExtend(&pLog->buf, nPad); + if( rc!=LSM_OK ) return rc; + + while( nPad ){ + if( nPad==1 ){ + pLog->buf.z[pLog->buf.n++] = LSM_LOG_PAD1; + nPad = 0; + }else{ + int n = LSM_MIN(200, nPad-2); + pLog->buf.z[pLog->buf.n++] = LSM_LOG_PAD2; + pLog->buf.z[pLog->buf.n++] = n; + nPad -= 2; + memset(&pLog->buf.z[pLog->buf.n], 0x2B, n); + pLog->buf.n += n; + nPad -= n; + } + } + } + + /* Make sure there is room in the log-buffer to add the CKSUM or COMMIT + ** record. Then add the first byte of it. */ + rc = lsmStringExtend(&pLog->buf, 9); + if( rc!=LSM_OK ) return rc; + pLog->buf.z[pLog->buf.n++] = eType; + memset(&pLog->buf.z[pLog->buf.n], 0, 8); + + rc = logCksumAndFlush(pDb); + + /* If this is a commit and synchronous=full, sync the log to disk. */ + if( rc==LSM_OK && eType==LSM_LOG_COMMIT && pDb->eSafety==LSM_SAFETY_FULL ){ + rc = lsmFsSyncLog(pDb->pFS); + } + return rc; +} + +/* +** Append an LSM_LOG_WRITE (if nVal>=0) or LSM_LOG_DELETE (if nVal<0) +** record to the database log. +*/ +int lsmLogWrite( + lsm_db *pDb, /* Database handle */ + void *pKey, int nKey, /* Database key to write to log */ + void *pVal, int nVal /* Database value (or nVal<0) to write */ +){ + int rc = LSM_OK; + LogWriter *pLog; /* Log object to write to */ + int nReq; /* Bytes of space required in log */ + int bCksum = 0; /* True to embed a checksum in this record */ + + if( pDb->bUseLog==0 ) return LSM_OK; + pLog = pDb->pLogWriter; + + /* Determine how many bytes of space are required, assuming that a checksum + ** will be embedded in this record (even though it may not be). */ + nReq = 1 + lsmVarintLen32(nKey) + 8 + nKey; + if( nVal>=0 ) nReq += lsmVarintLen32(nVal) + nVal; + + /* Jump over the jump region if required. Set bCksum to true to tell the + ** code below to include a checksum in the record if either (a) writing + ** this record would mean that more than LSM_CKSUM_MAXDATA bytes of data + ** have been written to the log since the last checksum, or (b) the jump + ** is taken. */ + rc = jumpIfRequired(pDb, pLog, nReq, &bCksum); + if( (pLog->buf.n+nReq) > LSM_CKSUM_MAXDATA ) bCksum = 1; + + if( rc==LSM_OK ){ + rc = lsmStringExtend(&pLog->buf, nReq); + } + if( rc==LSM_OK ){ + u8 *a = (u8 *)&pLog->buf.z[pLog->buf.n]; + + /* Write the record header - the type byte followed by either 1 (for + ** DELETE) or 2 (for WRITE) varints. */ + assert( LSM_LOG_WRITE_CKSUM == (LSM_LOG_WRITE | 0x0001) ); + assert( LSM_LOG_DELETE_CKSUM == (LSM_LOG_DELETE | 0x0001) ); + *(a++) = (nVal>=0 ? LSM_LOG_WRITE : LSM_LOG_DELETE) | (u8)bCksum; + a += lsmVarintPut32(a, nKey); + if( nVal>=0 ) a += lsmVarintPut32(a, nVal); + + if( bCksum ){ + pLog->buf.n = (a - (u8 *)pLog->buf.z); + rc = logCksumAndFlush(pDb); + a = (u8 *)&pLog->buf.z[pLog->buf.n]; + } + + memcpy(a, pKey, nKey); + a += nKey; + if( nVal>=0 ){ + memcpy(a, pVal, nVal); + a += nVal; + } + pLog->buf.n = a - (u8 *)pLog->buf.z; + assert( pLog->buf.n<=pLog->buf.nAlloc ); + } + + return rc; +} + +/* +** Append an LSM_LOG_COMMIT record to the database log. +*/ +int lsmLogCommit(lsm_db *pDb){ + if( pDb->bUseLog==0 ) return LSM_OK; + return logFlush(pDb, LSM_LOG_COMMIT); +} + +/* +** Store the current offset and other checksum related information in the +** structure *pMark. Later, *pMark can be passed to lsmLogSeek() to "rewind" +** the LogWriter object to the current log file offset. This is used when +** rolling back savepoint transactions. +*/ +void lsmLogTell( + lsm_db *pDb, /* Database handle */ + LogMark *pMark /* Populate this object with current offset */ +){ + LogWriter *pLog; + int nCksum; + + if( pDb->bUseLog==0 ) return; + pLog = pDb->pLogWriter; + nCksum = pLog->buf.n & 0xFFFFFFF8; + logUpdateCksum(pLog, nCksum); + assert( pLog->iCksumBuf==nCksum ); + pMark->nBuf = pLog->buf.n - nCksum; + memcpy(pMark->aBuf, &pLog->buf.z[nCksum], pMark->nBuf); + + pMark->iOff = pLog->iOff + pLog->buf.n; + pMark->cksum0 = pLog->cksum0; + pMark->cksum1 = pLog->cksum1; +} + +/* +** Seek (rewind) back to the log file offset stored by an ealier call to +** lsmLogTell() in *pMark. +*/ +void lsmLogSeek( + lsm_db *pDb, /* Database handle */ + LogMark *pMark /* Object containing log offset to seek to */ +){ + LogWriter *pLog; + + if( pDb->bUseLog==0 ) return; + pLog = pDb->pLogWriter; + + assert( pMark->iOff<=pLog->iOff+pLog->buf.n ); + if( (pMark->iOff & 0xFFFFFFF8)>=pLog->iOff ){ + pLog->buf.n = pMark->iOff - pLog->iOff; + pLog->iCksumBuf = (pLog->buf.n & 0xFFFFFFF8); + }else{ + pLog->buf.n = pMark->nBuf; + memcpy(pLog->buf.z, pMark->aBuf, pMark->nBuf); + pLog->iCksumBuf = 0; + pLog->iOff = pMark->iOff - pMark->nBuf; + } + pLog->cksum0 = pMark->cksum0; + pLog->cksum1 = pMark->cksum1; + + if( pMark->iOff > pLog->iRegion1End ) pLog->iRegion1End = 0; + if( pMark->iOff > pLog->iRegion2Start ) pLog->iRegion2Start = 0; +} + +/* +** This function does the work for an lsm_info(LOG_STRUCTURE) request. +*/ +int lsmInfoLogStructure(lsm_db *pDb, char **pzVal){ + int rc = LSM_OK; + char *zVal = 0; + + /* If there is no read or write transaction open, read the latest + ** tree-header from shared-memory to report on. If necessary, update + ** it based on the contents of the database header. + ** + ** No locks are taken here - these are passive read operations only. + */ + if( pDb->pCsr==0 && pDb->nTransOpen==0 ){ + rc = lsmTreeLoadHeader(pDb, 0); + if( rc==LSM_OK ) rc = logReclaimSpace(pDb); + } + + if( rc==LSM_OK ){ + DbLog *pLog = &pDb->treehdr.log; + zVal = lsmMallocPrintf(pDb->pEnv, + "%d %d %d %d %d %d", + (int)pLog->aRegion[0].iStart, (int)pLog->aRegion[0].iEnd, + (int)pLog->aRegion[1].iStart, (int)pLog->aRegion[1].iEnd, + (int)pLog->aRegion[2].iStart, (int)pLog->aRegion[2].iEnd + ); + if( !zVal ) rc = LSM_NOMEM_BKPT; + } + + *pzVal = zVal; + return rc; +} + +/************************************************************************* +** Begin code for log recovery. +*/ + +typedef struct LogReader LogReader; +struct LogReader { + FileSystem *pFS; /* File system to read from */ + i64 iOff; /* File offset at end of buf content */ + int iBuf; /* Current read offset in buf */ + LsmString buf; /* Buffer containing file content */ + + int iCksumBuf; /* Offset in buf corresponding to cksum[01] */ + u32 cksum0; /* Checksum 0 at offset iCksumBuf */ + u32 cksum1; /* Checksum 1 at offset iCksumBuf */ +}; + +static void logReaderBlob( + LogReader *p, /* Log reader object */ + LsmString *pBuf, /* Dynamic storage, if required */ + int nBlob, /* Number of bytes to read */ + u8 **ppBlob, /* OUT: Pointer to blob read */ + int *pRc /* IN/OUT: Error code */ +){ + static const int LOG_READ_SIZE = 512; + int rc = *pRc; /* Return code */ + int nReq = nBlob; /* Bytes required */ + + while( rc==LSM_OK && nReq>0 ){ + int nAvail; /* Bytes of data available in p->buf */ + if( p->buf.n==p->iBuf ){ + int nCksum; /* Total bytes requiring checksum */ + int nCarry = 0; /* Total bytes requiring checksum */ + + nCksum = p->iBuf - p->iCksumBuf; + if( nCksum>0 ){ + nCarry = nCksum % 8; + nCksum = ((nCksum / 8) * 8); + if( nCksum>0 ){ + logCksumUnaligned( + &p->buf.z[p->iCksumBuf], nCksum, &p->cksum0, &p->cksum1 + ); + } + } + if( nCarry>0 ) memcpy(p->buf.z, &p->buf.z[p->iBuf-nCarry], nCarry); + p->buf.n = nCarry; + p->iBuf = nCarry; + + rc = lsmFsReadLog(p->pFS, p->iOff, LOG_READ_SIZE, &p->buf); + if( rc!=LSM_OK ) break; + p->iCksumBuf = 0; + p->iOff += LOG_READ_SIZE; + } + + nAvail = p->buf.n - p->iBuf; + if( ppBlob && nReq==nBlob && nBlob<=nAvail ){ + *ppBlob = (u8 *)&p->buf.z[p->iBuf]; + p->iBuf += nBlob; + nReq = 0; + }else{ + int nCopy = LSM_MIN(nAvail, nReq); + if( nBlob==nReq ){ + if( ppBlob ) *ppBlob = (u8 *)pBuf->z; + pBuf->n = 0; + } + rc = lsmStringBinAppend(pBuf, (u8 *)&p->buf.z[p->iBuf], nCopy); + nReq -= nCopy; + p->iBuf += nCopy; + } + } + + *pRc = rc; +} + +static void logReaderVarint( + LogReader *p, + LsmString *pBuf, + int *piVal, /* OUT: Value read from log */ + int *pRc /* IN/OUT: Error code */ +){ + if( *pRc==LSM_OK ){ + u8 *aVarint; + if( p->buf.n==p->iBuf ){ + logReaderBlob(p, 0, 10, &aVarint, pRc); + if( LSM_OK==*pRc ) p->iBuf -= (10 - lsmVarintGet32(aVarint, piVal)); + }else{ + logReaderBlob(p, pBuf, lsmVarintSize(p->buf.z[p->iBuf]), &aVarint, pRc); + if( LSM_OK==*pRc ) lsmVarintGet32(aVarint, piVal); + } + } +} + +static void logReaderByte(LogReader *p, u8 *pByte, int *pRc){ + u8 *pPtr = 0; + logReaderBlob(p, 0, 1, &pPtr, pRc); + if( pPtr ) *pByte = *pPtr; +} + +static void logReaderCksum(LogReader *p, LsmString *pBuf, int *pbEof, int *pRc){ + if( *pRc==LSM_OK ){ + u8 *pPtr = 0; + u32 cksum0, cksum1; + int nCksum = p->iBuf - p->iCksumBuf; + + /* Update in-memory (expected) checksums */ + assert( nCksum>=0 ); + logCksumUnaligned(&p->buf.z[p->iCksumBuf], nCksum, &p->cksum0, &p->cksum1); + p->iCksumBuf = p->iBuf + 8; + logReaderBlob(p, pBuf, 8, &pPtr, pRc); + + /* Read the checksums from the log file. Set *pbEof if they do not match. */ + if( pPtr ){ + cksum0 = lsmGetU32(pPtr); + cksum1 = lsmGetU32(&pPtr[4]); + *pbEof = (cksum0!=p->cksum0 || cksum1!=p->cksum1); + p->iCksumBuf = p->iBuf; + } + } +} + +static void logReaderInit( + lsm_db *pDb, /* Database handle */ + DbLog *pLog, /* Log object associated with pDb */ + int bInitBuf, /* True if p->buf is uninitialized */ + LogReader *p /* Initialize this LogReader object */ +){ + p->pFS = pDb->pFS; + p->iOff = pLog->aRegion[2].iStart; + p->cksum0 = pLog->cksum0; + p->cksum1 = pLog->cksum1; + if( bInitBuf ){ lsmStringInit(&p->buf, pDb->pEnv); } + p->buf.n = 0; + p->iCksumBuf = 0; + p->iBuf = 0; +} + +/* +** This function is called after reading the header of a LOG_DELETE or +** LOG_WRITE record. Parameter nByte is the total size of the key and +** value that follow the header just read. Return true if the size and +** position of the record indicate that it should contain a checksum. +*/ +static int logRequireCksum(LogReader *p, int nByte){ + return ((p->iBuf + nByte - p->iCksumBuf) > LSM_CKSUM_MAXDATA); +} + +/* +** Recover the contents of the log file. +*/ +int lsmLogRecover(lsm_db *pDb){ + LsmString buf1; /* Key buffer */ + LsmString buf2; /* Value buffer */ + LogReader reader; /* Log reader object */ + int rc = LSM_OK; /* Return code */ + int nCommit = 0; /* Number of transactions to recover */ + int iPass; + int nJump = 0; /* Number of LSM_LOG_JUMP records in pass 0 */ + DbLog *pLog; + int bOpen; + + rc = lsmFsOpenLog(pDb, &bOpen); + if( rc!=LSM_OK ) return rc; + + rc = lsmTreeInit(pDb); + if( rc!=LSM_OK ) return rc; + + pLog = &pDb->treehdr.log; + lsmCheckpointLogoffset(pDb->pShmhdr->aSnap2, pLog); + + logReaderInit(pDb, pLog, 1, &reader); + lsmStringInit(&buf1, pDb->pEnv); + lsmStringInit(&buf2, pDb->pEnv); + + /* The outer for() loop runs at most twice. The first iteration is to + ** count the number of committed transactions in the log. The second + ** iterates through those transactions and updates the in-memory tree + ** structure with their contents. */ + if( bOpen ){ + for(iPass=0; iPass<2 && rc==LSM_OK; iPass++){ + int bEof = 0; + + while( rc==LSM_OK && !bEof ){ + u8 eType = 0; + logReaderByte(&reader, &eType, &rc); + + switch( eType ){ + case LSM_LOG_PAD1: + break; + + case LSM_LOG_PAD2: { + int nPad; + logReaderVarint(&reader, &buf1, &nPad, &rc); + logReaderBlob(&reader, &buf1, nPad, 0, &rc); + break; + } + + case LSM_LOG_WRITE: + case LSM_LOG_WRITE_CKSUM: { + int nKey; + int nVal; + u8 *aVal; + logReaderVarint(&reader, &buf1, &nKey, &rc); + logReaderVarint(&reader, &buf2, &nVal, &rc); + + if( eType==LSM_LOG_WRITE_CKSUM ){ + logReaderCksum(&reader, &buf1, &bEof, &rc); + }else{ + bEof = logRequireCksum(&reader, nKey+nVal); + } + if( bEof ) break; + + logReaderBlob(&reader, &buf1, nKey, 0, &rc); + logReaderBlob(&reader, &buf2, nVal, &aVal, &rc); + if( iPass==1 && rc==LSM_OK ){ + rc = lsmTreeInsert(pDb, (u8 *)buf1.z, nKey, aVal, nVal); + } + break; + } + + case LSM_LOG_DELETE: + case LSM_LOG_DELETE_CKSUM: { + int nKey; u8 *aKey; + logReaderVarint(&reader, &buf1, &nKey, &rc); + + if( eType==LSM_LOG_DELETE_CKSUM ){ + logReaderCksum(&reader, &buf1, &bEof, &rc); + }else{ + bEof = logRequireCksum(&reader, nKey); + } + if( bEof ) break; + + logReaderBlob(&reader, &buf1, nKey, &aKey, &rc); + if( iPass==1 && rc==LSM_OK ){ + rc = lsmTreeInsert(pDb, aKey, nKey, NULL, -1); + } + break; + } + + case LSM_LOG_COMMIT: + logReaderCksum(&reader, &buf1, &bEof, &rc); + if( bEof==0 ){ + nCommit++; + assert( nCommit>0 || iPass==1 ); + if( nCommit==0 ) bEof = 1; + } + break; + + case LSM_LOG_JUMP: { + int iOff = 0; + logReaderVarint(&reader, &buf1, &iOff, &rc); + if( rc==LSM_OK ){ + if( iPass==1 ){ + if( pLog->aRegion[2].iStart==0 ){ + assert( pLog->aRegion[1].iStart==0 ); + pLog->aRegion[1].iEnd = reader.iOff; + }else{ + assert( pLog->aRegion[0].iStart==0 ); + pLog->aRegion[0].iStart = pLog->aRegion[2].iStart; + pLog->aRegion[0].iEnd = reader.iOff-reader.buf.n+reader.iBuf; + } + pLog->aRegion[2].iStart = iOff; + }else{ + if( (nJump++)==2 ){ + bEof = 1; + } + } + + reader.iOff = iOff; + reader.buf.n = reader.iBuf; + } + break; + } + + default: + /* Including LSM_LOG_EOF */ + bEof = 1; + break; + } + } + + if( rc==LSM_OK && iPass==0 ){ + if( nCommit==0 ){ + if( pLog->aRegion[2].iStart==0 ){ + iPass = 1; + }else{ + pLog->aRegion[2].iStart = 0; + iPass = -1; + lsmCheckpointZeroLogoffset(pDb); + } + } + logReaderInit(pDb, pLog, 0, &reader); + nCommit = nCommit * -1; + } + } + } + + /* Initialize DbLog object */ + if( rc==LSM_OK ){ + pLog->aRegion[2].iEnd = reader.iOff - reader.buf.n + reader.iBuf; + pLog->cksum0 = reader.cksum0; + pLog->cksum1 = reader.cksum1; + } + + if( rc==LSM_OK ){ + rc = lsmFinishRecovery(pDb); + }else{ + lsmFinishRecovery(pDb); + } + + if( pDb->bRoTrans ){ + lsmFsCloseLog(pDb); + } + + lsmStringClear(&buf1); + lsmStringClear(&buf2); + lsmStringClear(&reader.buf); + return rc; +} + +void lsmLogClose(lsm_db *db){ + if( db->pLogWriter ){ + lsmFree(db->pEnv, db->pLogWriter->buf.z); + lsmFree(db->pEnv, db->pLogWriter); + db->pLogWriter = 0; + } +} ADDED ext/lsm1/lsm_main.c Index: ext/lsm1/lsm_main.c ================================================================== --- /dev/null +++ ext/lsm1/lsm_main.c @@ -0,0 +1,1009 @@ +/* +** 2011-08-18 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** The main interface to the LSM module. +*/ +#include "lsmInt.h" + + +#ifdef LSM_DEBUG +/* +** This function returns a copy of its only argument. +** +** When the library is built with LSM_DEBUG defined, this function is called +** whenever an error code is generated (not propagated - generated). So +** if the library is mysteriously returning (say) LSM_IOERR, a breakpoint +** may be set in this function to determine why. +*/ +int lsmErrorBkpt(int rc){ + /* Set breakpoint here! */ + return rc; +} + +/* +** This function contains various assert() statements that test that the +** lsm_db structure passed as an argument is internally consistent. +*/ +static void assert_db_state(lsm_db *pDb){ + + /* If there is at least one cursor or a write transaction open, the database + ** handle must be holding a pointer to a client snapshot. And the reverse + ** - if there are no open cursors and no write transactions then there must + ** not be a client snapshot. */ + + assert( (pDb->pCsr!=0||pDb->nTransOpen>0)==(pDb->iReader>=0||pDb->bRoTrans) ); + + assert( (pDb->iReader<0 && pDb->bRoTrans==0) || pDb->pClient!=0 ); + + assert( pDb->nTransOpen>=0 ); +} +#else +# define assert_db_state(x) +#endif + +/* +** The default key-compare function. +*/ +static int xCmp(void *p1, int n1, void *p2, int n2){ + int res; + res = memcmp(p1, p2, LSM_MIN(n1, n2)); + if( res==0 ) res = (n1-n2); + return res; +} + +static void xLog(void *pCtx, int rc, const char *z){ + (void)(rc); + (void)(pCtx); + fprintf(stderr, "%s\n", z); + fflush(stderr); +} + +/* +** Allocate a new db handle. +*/ +int lsm_new(lsm_env *pEnv, lsm_db **ppDb){ + lsm_db *pDb; + + /* If the user did not provide an environment, use the default. */ + if( pEnv==0 ) pEnv = lsm_default_env(); + assert( pEnv ); + + /* Allocate the new database handle */ + *ppDb = pDb = (lsm_db *)lsmMallocZero(pEnv, sizeof(lsm_db)); + if( pDb==0 ) return LSM_NOMEM_BKPT; + + /* Initialize the new object */ + pDb->pEnv = pEnv; + pDb->nTreeLimit = LSM_DFLT_AUTOFLUSH; + pDb->nAutockpt = LSM_DFLT_AUTOCHECKPOINT; + pDb->bAutowork = LSM_DFLT_AUTOWORK; + pDb->eSafety = LSM_DFLT_SAFETY; + pDb->xCmp = xCmp; + pDb->nDfltPgsz = LSM_DFLT_PAGE_SIZE; + pDb->nDfltBlksz = LSM_DFLT_BLOCK_SIZE; + pDb->nMerge = LSM_DFLT_AUTOMERGE; + pDb->nMaxFreelist = LSM_MAX_FREELIST_ENTRIES; + pDb->bUseLog = LSM_DFLT_USE_LOG; + pDb->iReader = -1; + pDb->iRwclient = -1; + pDb->bMultiProc = LSM_DFLT_MULTIPLE_PROCESSES; + pDb->iMmap = LSM_DFLT_MMAP; + pDb->xLog = xLog; + pDb->compress.iId = LSM_COMPRESSION_NONE; + return LSM_OK; +} + +lsm_env *lsm_get_env(lsm_db *pDb){ + assert( pDb->pEnv ); + return pDb->pEnv; +} + +/* +** If database handle pDb is currently holding a client snapshot, but does +** not have any open cursors or write transactions, release it. +*/ +static void dbReleaseClientSnapshot(lsm_db *pDb){ + if( pDb->nTransOpen==0 && pDb->pCsr==0 ){ + lsmFinishReadTrans(pDb); + } +} + +static int getFullpathname( + lsm_env *pEnv, + const char *zRel, + char **pzAbs +){ + int nAlloc = 0; + char *zAlloc = 0; + int nReq = 0; + int rc; + + do{ + nAlloc = nReq; + rc = pEnv->xFullpath(pEnv, zRel, zAlloc, &nReq); + if( nReq>nAlloc ){ + zAlloc = lsmReallocOrFreeRc(pEnv, zAlloc, nReq, &rc); + } + }while( nReq>nAlloc && rc==LSM_OK ); + + if( rc!=LSM_OK ){ + lsmFree(pEnv, zAlloc); + zAlloc = 0; + } + *pzAbs = zAlloc; + return rc; +} + +/* +** Check that the bits in the db->mLock mask are consistent with the +** value stored in db->iRwclient. An assert shall fail otherwise. +*/ +static void assertRwclientLockValue(lsm_db *db){ +#ifndef NDEBUG + u64 msk; /* Mask of mLock bits for RWCLIENT locks */ + u64 rwclient = 0; /* Bit corresponding to db->iRwclient */ + + if( db->iRwclient>=0 ){ + rwclient = ((u64)1 << (LSM_LOCK_RWCLIENT(db->iRwclient)-1)); + } + msk = ((u64)1 << (LSM_LOCK_RWCLIENT(LSM_LOCK_NRWCLIENT)-1)) - 1; + msk -= (((u64)1 << (LSM_LOCK_RWCLIENT(0)-1)) - 1); + + assert( (db->mLock & msk)==rwclient ); +#endif +} + +/* +** Open a new connection to database zFilename. +*/ +int lsm_open(lsm_db *pDb, const char *zFilename){ + int rc; + + if( pDb->pDatabase ){ + rc = LSM_MISUSE; + }else{ + char *zFull; + + /* Translate the possibly relative pathname supplied by the user into + ** an absolute pathname. This is required because the supplied path + ** is used (either directly or with "-log" appended to it) for more + ** than one purpose - to open both the database and log files, and + ** perhaps to unlink the log file during disconnection. An absolute + ** path is required to ensure that the correct files are operated + ** on even if the application changes the cwd. */ + rc = getFullpathname(pDb->pEnv, zFilename, &zFull); + assert( rc==LSM_OK || zFull==0 ); + + /* Connect to the database. */ + if( rc==LSM_OK ){ + rc = lsmDbDatabaseConnect(pDb, zFull); + } + + if( pDb->bReadonly==0 ){ + /* Configure the file-system connection with the page-size and block-size + ** of this database. Even if the database file is zero bytes in size + ** on disk, these values have been set in shared-memory by now, and so + ** are guaranteed not to change during the lifetime of this connection. + */ + if( rc==LSM_OK && LSM_OK==(rc = lsmCheckpointLoad(pDb, 0)) ){ + lsmFsSetPageSize(pDb->pFS, lsmCheckpointPgsz(pDb->aSnapshot)); + lsmFsSetBlockSize(pDb->pFS, lsmCheckpointBlksz(pDb->aSnapshot)); + } + } + + lsmFree(pDb->pEnv, zFull); + assertRwclientLockValue(pDb); + } + + assert( pDb->bReadonly==0 || pDb->bReadonly==1 ); + assert( rc!=LSM_OK || (pDb->pShmhdr==0)==(pDb->bReadonly==1) ); + + return rc; +} + +int lsm_close(lsm_db *pDb){ + int rc = LSM_OK; + if( pDb ){ + assert_db_state(pDb); + if( pDb->pCsr || pDb->nTransOpen ){ + rc = LSM_MISUSE_BKPT; + }else{ + lsmMCursorFreeCache(pDb); + lsmFreeSnapshot(pDb->pEnv, pDb->pClient); + pDb->pClient = 0; + + assertRwclientLockValue(pDb); + + lsmDbDatabaseRelease(pDb); + lsmLogClose(pDb); + lsmFsClose(pDb->pFS); + assert( pDb->mLock==0 ); + + /* Invoke any destructors registered for the compression or + ** compression factory callbacks. */ + if( pDb->factory.xFree ) pDb->factory.xFree(pDb->factory.pCtx); + if( pDb->compress.xFree ) pDb->compress.xFree(pDb->compress.pCtx); + + lsmFree(pDb->pEnv, pDb->rollback.aArray); + lsmFree(pDb->pEnv, pDb->aTrans); + lsmFree(pDb->pEnv, pDb->apShm); + lsmFree(pDb->pEnv, pDb); + } + } + return rc; +} + +int lsm_config(lsm_db *pDb, int eParam, ...){ + int rc = LSM_OK; + va_list ap; + va_start(ap, eParam); + + switch( eParam ){ + case LSM_CONFIG_AUTOFLUSH: { + /* This parameter is read and written in KB. But all internal + ** processing is done in bytes. */ + int *piVal = va_arg(ap, int *); + int iVal = *piVal; + if( iVal>=0 && iVal<=(1024*1024) ){ + pDb->nTreeLimit = iVal*1024; + } + *piVal = (pDb->nTreeLimit / 1024); + break; + } + + case LSM_CONFIG_AUTOWORK: { + int *piVal = va_arg(ap, int *); + if( *piVal>=0 ){ + pDb->bAutowork = *piVal; + } + *piVal = pDb->bAutowork; + break; + } + + case LSM_CONFIG_AUTOCHECKPOINT: { + /* This parameter is read and written in KB. But all internal processing + ** (including the lsm_db.nAutockpt variable) is done in bytes. */ + int *piVal = va_arg(ap, int *); + if( *piVal>=0 ){ + int iVal = *piVal; + pDb->nAutockpt = (i64)iVal * 1024; + } + *piVal = (int)(pDb->nAutockpt / 1024); + break; + } + + case LSM_CONFIG_PAGE_SIZE: { + int *piVal = va_arg(ap, int *); + if( pDb->pDatabase ){ + /* If lsm_open() has been called, this is a read-only parameter. + ** Set the output variable to the page-size according to the + ** FileSystem object. */ + *piVal = lsmFsPageSize(pDb->pFS); + }else{ + if( *piVal>=256 && *piVal<=65536 && ((*piVal-1) & *piVal)==0 ){ + pDb->nDfltPgsz = *piVal; + }else{ + *piVal = pDb->nDfltPgsz; + } + } + break; + } + + case LSM_CONFIG_BLOCK_SIZE: { + /* This parameter is read and written in KB. But all internal + ** processing is done in bytes. */ + int *piVal = va_arg(ap, int *); + if( pDb->pDatabase ){ + /* If lsm_open() has been called, this is a read-only parameter. + ** Set the output variable to the block-size in KB according to the + ** FileSystem object. */ + *piVal = lsmFsBlockSize(pDb->pFS) / 1024; + }else{ + int iVal = *piVal; + if( iVal>=64 && iVal<=65536 && ((iVal-1) & iVal)==0 ){ + pDb->nDfltBlksz = iVal * 1024; + }else{ + *piVal = pDb->nDfltBlksz / 1024; + } + } + break; + } + + case LSM_CONFIG_SAFETY: { + int *piVal = va_arg(ap, int *); + if( *piVal>=0 && *piVal<=2 ){ + pDb->eSafety = *piVal; + } + *piVal = pDb->eSafety; + break; + } + + case LSM_CONFIG_MMAP: { + int *piVal = va_arg(ap, int *); + if( pDb->iReader<0 && *piVal>=0 ){ + pDb->iMmap = *piVal; + rc = lsmFsConfigure(pDb); + } + *piVal = pDb->iMmap; + break; + } + + case LSM_CONFIG_USE_LOG: { + int *piVal = va_arg(ap, int *); + if( pDb->nTransOpen==0 && (*piVal==0 || *piVal==1) ){ + pDb->bUseLog = *piVal; + } + *piVal = pDb->bUseLog; + break; + } + + case LSM_CONFIG_AUTOMERGE: { + int *piVal = va_arg(ap, int *); + if( *piVal>1 ) pDb->nMerge = *piVal; + *piVal = pDb->nMerge; + break; + } + + case LSM_CONFIG_MAX_FREELIST: { + int *piVal = va_arg(ap, int *); + if( *piVal>=2 && *piVal<=LSM_MAX_FREELIST_ENTRIES ){ + pDb->nMaxFreelist = *piVal; + } + *piVal = pDb->nMaxFreelist; + break; + } + + case LSM_CONFIG_MULTIPLE_PROCESSES: { + int *piVal = va_arg(ap, int *); + if( pDb->pDatabase ){ + /* If lsm_open() has been called, this is a read-only parameter. + ** Set the output variable to true if this connection is currently + ** in multi-process mode. */ + *piVal = lsmDbMultiProc(pDb); + }else{ + pDb->bMultiProc = *piVal = (*piVal!=0); + } + break; + } + + case LSM_CONFIG_READONLY: { + int *piVal = va_arg(ap, int *); + /* If lsm_open() has been called, this is a read-only parameter. */ + if( pDb->pDatabase==0 && *piVal>=0 ){ + pDb->bReadonly = *piVal = (*piVal!=0); + } + *piVal = pDb->bReadonly; + break; + } + + case LSM_CONFIG_SET_COMPRESSION: { + lsm_compress *p = va_arg(ap, lsm_compress *); + if( pDb->iReader>=0 && pDb->bInFactory==0 ){ + /* May not change compression schemes with an open transaction */ + rc = LSM_MISUSE_BKPT; + }else{ + if( pDb->compress.xFree ){ + /* Invoke any destructor belonging to the current compression. */ + pDb->compress.xFree(pDb->compress.pCtx); + } + if( p->xBound==0 ){ + memset(&pDb->compress, 0, sizeof(lsm_compress)); + pDb->compress.iId = LSM_COMPRESSION_NONE; + }else{ + memcpy(&pDb->compress, p, sizeof(lsm_compress)); + } + rc = lsmFsConfigure(pDb); + } + break; + } + + case LSM_CONFIG_SET_COMPRESSION_FACTORY: { + lsm_compress_factory *p = va_arg(ap, lsm_compress_factory *); + if( pDb->factory.xFree ){ + /* Invoke any destructor belonging to the current factory. */ + pDb->factory.xFree(pDb->factory.pCtx); + } + memcpy(&pDb->factory, p, sizeof(lsm_compress_factory)); + break; + } + + case LSM_CONFIG_GET_COMPRESSION: { + lsm_compress *p = va_arg(ap, lsm_compress *); + memcpy(p, &pDb->compress, sizeof(lsm_compress)); + break; + } + + default: + rc = LSM_MISUSE; + break; + } + + va_end(ap); + return rc; +} + +void lsmAppendSegmentList(LsmString *pStr, char *zPre, Segment *pSeg){ + lsmStringAppendf(pStr, "%s{%d %d %d %d}", zPre, + pSeg->iFirst, pSeg->iLastPg, pSeg->iRoot, pSeg->nSize + ); +} + +static int infoGetWorker(lsm_db *pDb, Snapshot **pp, int *pbUnlock){ + int rc = LSM_OK; + + assert( *pbUnlock==0 ); + if( !pDb->pWorker ){ + rc = lsmBeginWork(pDb); + if( rc!=LSM_OK ) return rc; + *pbUnlock = 1; + } + if( pp ) *pp = pDb->pWorker; + return rc; +} + +static void infoFreeWorker(lsm_db *pDb, int bUnlock){ + if( bUnlock ){ + int rcdummy = LSM_BUSY; + lsmFinishWork(pDb, 0, &rcdummy); + } +} + +int lsmStructList( + lsm_db *pDb, /* Database handle */ + char **pzOut /* OUT: Nul-terminated string (tcl list) */ +){ + Level *pTopLevel = 0; /* Top level of snapshot to report on */ + int rc = LSM_OK; + Level *p; + LsmString s; + Snapshot *pWorker; /* Worker snapshot */ + int bUnlock = 0; + + /* Obtain the worker snapshot */ + rc = infoGetWorker(pDb, &pWorker, &bUnlock); + if( rc!=LSM_OK ) return rc; + + /* Format the contents of the snapshot as text */ + pTopLevel = lsmDbSnapshotLevel(pWorker); + lsmStringInit(&s, pDb->pEnv); + for(p=pTopLevel; rc==LSM_OK && p; p=p->pNext){ + int i; + lsmStringAppendf(&s, "%s{%d", (s.n ? " " : ""), (int)p->iAge); + lsmAppendSegmentList(&s, " ", &p->lhs); + for(i=0; rc==LSM_OK && inRight; i++){ + lsmAppendSegmentList(&s, " ", &p->aRhs[i]); + } + lsmStringAppend(&s, "}", 1); + } + rc = s.n>=0 ? LSM_OK : LSM_NOMEM; + + /* Release the snapshot and return */ + infoFreeWorker(pDb, bUnlock); + *pzOut = s.z; + return rc; +} + +static int infoFreelistCb(void *pCtx, int iBlk, i64 iSnapshot){ + LsmString *pStr = (LsmString *)pCtx; + lsmStringAppendf(pStr, "%s{%d %lld}", (pStr->n?" ":""), iBlk, iSnapshot); + return 0; +} + +int lsmInfoFreelist(lsm_db *pDb, char **pzOut){ + Snapshot *pWorker; /* Worker snapshot */ + int bUnlock = 0; + LsmString s; + int rc; + + /* Obtain the worker snapshot */ + rc = infoGetWorker(pDb, &pWorker, &bUnlock); + if( rc!=LSM_OK ) return rc; + + lsmStringInit(&s, pDb->pEnv); + rc = lsmWalkFreelist(pDb, 0, infoFreelistCb, &s); + if( rc!=LSM_OK ){ + lsmFree(pDb->pEnv, s.z); + }else{ + *pzOut = s.z; + } + + /* Release the snapshot and return */ + infoFreeWorker(pDb, bUnlock); + return rc; +} + +static int infoTreeSize(lsm_db *db, int *pnOldKB, int *pnNewKB){ + ShmHeader *pShm = db->pShmhdr; + TreeHeader *p = &pShm->hdr1; + + /* The following code suffers from two race conditions, as it accesses and + ** trusts the contents of shared memory without verifying checksums: + ** + ** * The two values read - TreeHeader.root.nByte and oldroot.nByte - are + ** 32-bit fields. It is assumed that reading from one of these + ** is atomic - that it is not possible to read a partially written + ** garbage value. However the two values may be mutually inconsistent. + ** + ** * TreeHeader.iLogOff is a 64-bit value. And lsmCheckpointLogOffset() + ** reads a 64-bit value from a snapshot stored in shared memory. It + ** is assumed that in each case it is possible to read a partially + ** written garbage value. If this occurs, then the value returned + ** for the size of the "old" tree may reflect the size of an "old" + ** tree that was recently flushed to disk. + ** + ** Given the context in which this function is called (as a result of an + ** lsm_info(LSM_INFO_TREE_SIZE) request), neither of these are considered to + ** be problems. + */ + *pnNewKB = ((int)p->root.nByte + 1023) / 1024; + if( p->iOldShmid ){ + if( p->iOldLog==lsmCheckpointLogOffset(pShm->aSnap1) ){ + *pnOldKB = 0; + }else{ + *pnOldKB = ((int)p->oldroot.nByte + 1023) / 1024; + } + }else{ + *pnOldKB = 0; + } + + return LSM_OK; +} + +int lsm_info(lsm_db *pDb, int eParam, ...){ + int rc = LSM_OK; + va_list ap; + va_start(ap, eParam); + + switch( eParam ){ + case LSM_INFO_NWRITE: { + int *piVal = va_arg(ap, int *); + *piVal = lsmFsNWrite(pDb->pFS); + break; + } + + case LSM_INFO_NREAD: { + int *piVal = va_arg(ap, int *); + *piVal = lsmFsNRead(pDb->pFS); + break; + } + + case LSM_INFO_DB_STRUCTURE: { + char **pzVal = va_arg(ap, char **); + rc = lsmStructList(pDb, pzVal); + break; + } + + case LSM_INFO_ARRAY_STRUCTURE: { + Pgno pgno = va_arg(ap, Pgno); + char **pzVal = va_arg(ap, char **); + rc = lsmInfoArrayStructure(pDb, 0, pgno, pzVal); + break; + } + + case LSM_INFO_ARRAY_PAGES: { + Pgno pgno = va_arg(ap, Pgno); + char **pzVal = va_arg(ap, char **); + rc = lsmInfoArrayPages(pDb, pgno, pzVal); + break; + } + + case LSM_INFO_PAGE_HEX_DUMP: + case LSM_INFO_PAGE_ASCII_DUMP: { + Pgno pgno = va_arg(ap, Pgno); + char **pzVal = va_arg(ap, char **); + int bUnlock = 0; + rc = infoGetWorker(pDb, 0, &bUnlock); + if( rc==LSM_OK ){ + int bHex = (eParam==LSM_INFO_PAGE_HEX_DUMP); + rc = lsmInfoPageDump(pDb, pgno, bHex, pzVal); + } + infoFreeWorker(pDb, bUnlock); + break; + } + + case LSM_INFO_LOG_STRUCTURE: { + char **pzVal = va_arg(ap, char **); + rc = lsmInfoLogStructure(pDb, pzVal); + break; + } + + case LSM_INFO_FREELIST: { + char **pzVal = va_arg(ap, char **); + rc = lsmInfoFreelist(pDb, pzVal); + break; + } + + case LSM_INFO_CHECKPOINT_SIZE: { + int *pnKB = va_arg(ap, int *); + rc = lsmCheckpointSize(pDb, pnKB); + break; + } + + case LSM_INFO_TREE_SIZE: { + int *pnOld = va_arg(ap, int *); + int *pnNew = va_arg(ap, int *); + rc = infoTreeSize(pDb, pnOld, pnNew); + break; + } + + case LSM_INFO_COMPRESSION_ID: { + unsigned int *piOut = va_arg(ap, unsigned int *); + if( pDb->pClient ){ + *piOut = pDb->pClient->iCmpId; + }else{ + rc = lsmInfoCompressionId(pDb, piOut); + } + break; + } + + default: + rc = LSM_MISUSE; + break; + } + + va_end(ap); + return rc; +} + +static int doWriteOp( + lsm_db *pDb, + int bDeleteRange, + const void *pKey, int nKey, /* Key to write or delete */ + const void *pVal, int nVal /* Value to write. Or nVal==-1 for a delete */ +){ + int rc = LSM_OK; /* Return code */ + int bCommit = 0; /* True to commit before returning */ + + if( pDb->nTransOpen==0 ){ + bCommit = 1; + rc = lsm_begin(pDb, 1); + } + + if( rc==LSM_OK ){ + if( bDeleteRange==0 ){ + rc = lsmLogWrite(pDb, (void *)pKey, nKey, (void *)pVal, nVal); + }else{ + /* TODO */ + } + } + + lsmSortedSaveTreeCursors(pDb); + + if( rc==LSM_OK ){ + int pgsz = lsmFsPageSize(pDb->pFS); + int nQuant = LSM_AUTOWORK_QUANT * pgsz; + int nBefore; + int nAfter; + int nDiff; + + if( nQuant>pDb->nTreeLimit ){ + nQuant = pDb->nTreeLimit; + } + + nBefore = lsmTreeSize(pDb); + if( bDeleteRange ){ + rc = lsmTreeDelete(pDb, (void *)pKey, nKey, (void *)pVal, nVal); + }else{ + rc = lsmTreeInsert(pDb, (void *)pKey, nKey, (void *)pVal, nVal); + } + + nAfter = lsmTreeSize(pDb); + nDiff = (nAfter/nQuant) - (nBefore/nQuant); + if( rc==LSM_OK && pDb->bAutowork && nDiff!=0 ){ + rc = lsmSortedAutoWork(pDb, nDiff * LSM_AUTOWORK_QUANT); + } + } + + /* If a transaction was opened at the start of this function, commit it. + ** Or, if an error has occurred, roll it back. */ + if( bCommit ){ + if( rc==LSM_OK ){ + rc = lsm_commit(pDb, 0); + }else{ + lsm_rollback(pDb, 0); + } + } + + return rc; +} + +/* +** Write a new value into the database. +*/ +int lsm_insert( + lsm_db *db, /* Database connection */ + const void *pKey, int nKey, /* Key to write or delete */ + const void *pVal, int nVal /* Value to write. Or nVal==-1 for a delete */ +){ + return doWriteOp(db, 0, pKey, nKey, pVal, nVal); +} + +/* +** Delete a value from the database. +*/ +int lsm_delete(lsm_db *db, const void *pKey, int nKey){ + return doWriteOp(db, 0, pKey, nKey, 0, -1); +} + +/* +** Delete a range of database keys. +*/ +int lsm_delete_range( + lsm_db *db, /* Database handle */ + const void *pKey1, int nKey1, /* Lower bound of range to delete */ + const void *pKey2, int nKey2 /* Upper bound of range to delete */ +){ + int rc = LSM_OK; + if( db->xCmp((void *)pKey1, nKey1, (void *)pKey2, nKey2)<0 ){ + rc = doWriteOp(db, 1, pKey1, nKey1, pKey2, nKey2); + } + return rc; +} + +/* +** Open a new cursor handle. +** +** If there are currently no other open cursor handles, and no open write +** transaction, open a read transaction here. +*/ +int lsm_csr_open(lsm_db *pDb, lsm_cursor **ppCsr){ + int rc = LSM_OK; /* Return code */ + MultiCursor *pCsr = 0; /* New cursor object */ + + /* Open a read transaction if one is not already open. */ + assert_db_state(pDb); + + if( pDb->pShmhdr==0 ){ + assert( pDb->bReadonly ); + rc = lsmBeginRoTrans(pDb); + }else if( pDb->iReader<0 ){ + rc = lsmBeginReadTrans(pDb); + } + + /* Allocate the multi-cursor. */ + if( rc==LSM_OK ){ + rc = lsmMCursorNew(pDb, &pCsr); + } + + /* If an error has occured, set the output to NULL and delete any partially + ** allocated cursor. If this means there are no open cursors, release the + ** client snapshot. */ + if( rc!=LSM_OK ){ + lsmMCursorClose(pCsr, 0); + dbReleaseClientSnapshot(pDb); + } + + assert_db_state(pDb); + *ppCsr = (lsm_cursor *)pCsr; + return rc; +} + +/* +** Close a cursor opened using lsm_csr_open(). +*/ +int lsm_csr_close(lsm_cursor *p){ + if( p ){ + lsm_db *pDb = lsmMCursorDb((MultiCursor *)p); + assert_db_state(pDb); + lsmMCursorClose((MultiCursor *)p, 1); + dbReleaseClientSnapshot(pDb); + assert_db_state(pDb); + } + return LSM_OK; +} + +/* +** Attempt to seek the cursor to the database entry specified by pKey/nKey. +** If an error occurs (e.g. an OOM or IO error), return an LSM error code. +** Otherwise, return LSM_OK. +*/ +int lsm_csr_seek(lsm_cursor *pCsr, const void *pKey, int nKey, int eSeek){ + return lsmMCursorSeek((MultiCursor *)pCsr, 0, (void *)pKey, nKey, eSeek); +} + +int lsm_csr_next(lsm_cursor *pCsr){ + return lsmMCursorNext((MultiCursor *)pCsr); +} + +int lsm_csr_prev(lsm_cursor *pCsr){ + return lsmMCursorPrev((MultiCursor *)pCsr); +} + +int lsm_csr_first(lsm_cursor *pCsr){ + return lsmMCursorFirst((MultiCursor *)pCsr); +} + +int lsm_csr_last(lsm_cursor *pCsr){ + return lsmMCursorLast((MultiCursor *)pCsr); +} + +int lsm_csr_valid(lsm_cursor *pCsr){ + return lsmMCursorValid((MultiCursor *)pCsr); +} + +int lsm_csr_key(lsm_cursor *pCsr, const void **ppKey, int *pnKey){ + return lsmMCursorKey((MultiCursor *)pCsr, (void **)ppKey, pnKey); +} + +int lsm_csr_value(lsm_cursor *pCsr, const void **ppVal, int *pnVal){ + return lsmMCursorValue((MultiCursor *)pCsr, (void **)ppVal, pnVal); +} + +void lsm_config_log( + lsm_db *pDb, + void (*xLog)(void *, int, const char *), + void *pCtx +){ + pDb->xLog = xLog; + pDb->pLogCtx = pCtx; +} + +void lsm_config_work_hook( + lsm_db *pDb, + void (*xWork)(lsm_db *, void *), + void *pCtx +){ + pDb->xWork = xWork; + pDb->pWorkCtx = pCtx; +} + +void lsmLogMessage(lsm_db *pDb, int rc, const char *zFormat, ...){ + if( pDb->xLog ){ + LsmString s; + va_list ap, ap2; + lsmStringInit(&s, pDb->pEnv); + va_start(ap, zFormat); + va_start(ap2, zFormat); + lsmStringVAppendf(&s, zFormat, ap, ap2); + va_end(ap); + va_end(ap2); + pDb->xLog(pDb->pLogCtx, rc, s.z); + lsmStringClear(&s); + } +} + +int lsm_begin(lsm_db *pDb, int iLevel){ + int rc; + + assert_db_state( pDb ); + rc = (pDb->bReadonly ? LSM_READONLY : LSM_OK); + + /* A value less than zero means open one more transaction. */ + if( iLevel<0 ) iLevel = pDb->nTransOpen + 1; + if( iLevel>pDb->nTransOpen ){ + int i; + + /* Extend the pDb->aTrans[] array if required. */ + if( rc==LSM_OK && pDb->nTransAllocpEnv, pDb->aTrans, nByte); + if( !aNew ){ + rc = LSM_NOMEM; + }else{ + nByte = sizeof(TransMark) * (iLevel+1 - pDb->nTransAlloc); + memset(&aNew[pDb->nTransAlloc], 0, nByte); + pDb->nTransAlloc = iLevel+1; + pDb->aTrans = aNew; + } + } + + if( rc==LSM_OK && pDb->nTransOpen==0 ){ + rc = lsmBeginWriteTrans(pDb); + } + + if( rc==LSM_OK ){ + for(i=pDb->nTransOpen; iaTrans[i].tree); + lsmLogTell(pDb, &pDb->aTrans[i].log); + } + pDb->nTransOpen = iLevel; + } + } + + return rc; +} + +int lsm_commit(lsm_db *pDb, int iLevel){ + int rc = LSM_OK; + + assert_db_state( pDb ); + + /* A value less than zero means close the innermost nested transaction. */ + if( iLevel<0 ) iLevel = LSM_MAX(0, pDb->nTransOpen - 1); + + if( iLevelnTransOpen ){ + if( iLevel==0 ){ + /* Commit the transaction to disk. */ + if( rc==LSM_OK ) rc = lsmLogCommit(pDb); + if( rc==LSM_OK && pDb->eSafety==LSM_SAFETY_FULL ){ + rc = lsmFsSyncLog(pDb->pFS); + } + lsmFinishWriteTrans(pDb, (rc==LSM_OK)); + } + pDb->nTransOpen = iLevel; + } + dbReleaseClientSnapshot(pDb); + return rc; +} + +int lsm_rollback(lsm_db *pDb, int iLevel){ + int rc = LSM_OK; + assert_db_state( pDb ); + + if( pDb->nTransOpen ){ + /* A value less than zero means close the innermost nested transaction. */ + if( iLevel<0 ) iLevel = LSM_MAX(0, pDb->nTransOpen - 1); + + if( iLevel<=pDb->nTransOpen ){ + TransMark *pMark = &pDb->aTrans[(iLevel==0 ? 0 : iLevel-1)]; + lsmTreeRollback(pDb, &pMark->tree); + if( iLevel ) lsmLogSeek(pDb, &pMark->log); + pDb->nTransOpen = iLevel; + } + + if( pDb->nTransOpen==0 ){ + lsmFinishWriteTrans(pDb, 0); + } + dbReleaseClientSnapshot(pDb); + } + + return rc; +} + +int lsm_get_user_version(lsm_db *pDb, unsigned int *piUsr){ + int rc = LSM_OK; /* Return code */ + + /* Open a read transaction if one is not already open. */ + assert_db_state(pDb); + if( pDb->pShmhdr==0 ){ + assert( pDb->bReadonly ); + rc = lsmBeginRoTrans(pDb); + }else if( pDb->iReader<0 ){ + rc = lsmBeginReadTrans(pDb); + } + + /* Allocate the multi-cursor. */ + if( rc==LSM_OK ){ + *piUsr = pDb->treehdr.iUsrVersion; + } + + dbReleaseClientSnapshot(pDb); + assert_db_state(pDb); + return rc; +} + +int lsm_set_user_version(lsm_db *pDb, unsigned int iUsr){ + int rc = LSM_OK; /* Return code */ + int bCommit = 0; /* True to commit before returning */ + + if( pDb->nTransOpen==0 ){ + bCommit = 1; + rc = lsm_begin(pDb, 1); + } + + if( rc==LSM_OK ){ + pDb->treehdr.iUsrVersion = iUsr; + } + + /* If a transaction was opened at the start of this function, commit it. + ** Or, if an error has occurred, roll it back. */ + if( bCommit ){ + if( rc==LSM_OK ){ + rc = lsm_commit(pDb, 0); + }else{ + lsm_rollback(pDb, 0); + } + } + + return rc; +} ADDED ext/lsm1/lsm_mem.c Index: ext/lsm1/lsm_mem.c ================================================================== --- /dev/null +++ ext/lsm1/lsm_mem.c @@ -0,0 +1,104 @@ +/* +** 2011-08-18 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** Helper routines for memory allocation. +*/ +#include "lsmInt.h" + +/* +** The following routines are called internally by LSM sub-routines. In +** this case a valid environment pointer must be supplied. +*/ +void *lsmMalloc(lsm_env *pEnv, size_t N){ + assert( pEnv ); + return pEnv->xMalloc(pEnv, N); +} +void lsmFree(lsm_env *pEnv, void *p){ + assert( pEnv ); + pEnv->xFree(pEnv, p); +} +void *lsmRealloc(lsm_env *pEnv, void *p, size_t N){ + assert( pEnv ); + return pEnv->xRealloc(pEnv, p, N); +} + +/* +** Core memory allocation routines for LSM. +*/ +void *lsm_malloc(lsm_env *pEnv, size_t N){ + return lsmMalloc(pEnv ? pEnv : lsm_default_env(), N); +} +void lsm_free(lsm_env *pEnv, void *p){ + lsmFree(pEnv ? pEnv : lsm_default_env(), p); +} +void *lsm_realloc(lsm_env *pEnv, void *p, size_t N){ + return lsmRealloc(pEnv ? pEnv : lsm_default_env(), p, N); +} + +void *lsmMallocZero(lsm_env *pEnv, size_t N){ + void *pRet; + assert( pEnv ); + pRet = lsmMalloc(pEnv, N); + if( pRet ) memset(pRet, 0, N); + return pRet; +} + +void *lsmMallocRc(lsm_env *pEnv, size_t N, int *pRc){ + void *pRet = 0; + if( *pRc==LSM_OK ){ + pRet = lsmMalloc(pEnv, N); + if( pRet==0 ){ + *pRc = LSM_NOMEM_BKPT; + } + } + return pRet; +} + +void *lsmMallocZeroRc(lsm_env *pEnv, size_t N, int *pRc){ + void *pRet = 0; + if( *pRc==LSM_OK ){ + pRet = lsmMallocZero(pEnv, N); + if( pRet==0 ){ + *pRc = LSM_NOMEM_BKPT; + } + } + return pRet; +} + +void *lsmReallocOrFree(lsm_env *pEnv, void *p, size_t N){ + void *pNew; + pNew = lsm_realloc(pEnv, p, N); + if( !pNew ) lsm_free(pEnv, p); + return pNew; +} + +void *lsmReallocOrFreeRc(lsm_env *pEnv, void *p, size_t N, int *pRc){ + void *pRet = 0; + if( *pRc ){ + lsmFree(pEnv, p); + }else{ + pRet = lsmReallocOrFree(pEnv, p, N); + if( !pRet ) *pRc = LSM_NOMEM_BKPT; + } + return pRet; +} + +char *lsmMallocStrdup(lsm_env *pEnv, const char *zIn){ + int nByte; + char *zRet; + nByte = strlen(zIn); + zRet = lsmMalloc(pEnv, nByte+1); + if( zRet ){ + memcpy(zRet, zIn, nByte+1); + } + return zRet; +} ADDED ext/lsm1/lsm_mutex.c Index: ext/lsm1/lsm_mutex.c ================================================================== --- /dev/null +++ ext/lsm1/lsm_mutex.c @@ -0,0 +1,88 @@ +/* +** 2012-01-30 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** Mutex functions for LSM. +*/ +#include "lsmInt.h" + +/* +** Allocate a new mutex. +*/ +int lsmMutexNew(lsm_env *pEnv, lsm_mutex **ppNew){ + return pEnv->xMutexNew(pEnv, ppNew); +} + +/* +** Return a handle for one of the static mutexes. +*/ +int lsmMutexStatic(lsm_env *pEnv, int iMutex, lsm_mutex **ppStatic){ + return pEnv->xMutexStatic(pEnv, iMutex, ppStatic); +} + +/* +** Free a mutex allocated by lsmMutexNew(). +*/ +void lsmMutexDel(lsm_env *pEnv, lsm_mutex *pMutex){ + if( pMutex ) pEnv->xMutexDel(pMutex); +} + +/* +** Enter a mutex. +*/ +void lsmMutexEnter(lsm_env *pEnv, lsm_mutex *pMutex){ + pEnv->xMutexEnter(pMutex); +} + +/* +** Attempt to enter a mutex, but do not block. If successful, return zero. +** Otherwise, if the mutex is already held by some other thread and is not +** entered, return non zero. +** +** Each successful call to this function must be matched by a call to +** lsmMutexLeave(). +*/ +int lsmMutexTry(lsm_env *pEnv, lsm_mutex *pMutex){ + return pEnv->xMutexTry(pMutex); +} + +/* +** Leave a mutex. +*/ +void lsmMutexLeave(lsm_env *pEnv, lsm_mutex *pMutex){ + pEnv->xMutexLeave(pMutex); +} + +#ifndef NDEBUG +/* +** Return non-zero if the mutex passed as the second argument is held +** by the calling thread, or zero otherwise. If the implementation is not +** able to tell if the mutex is held by the caller, it should return +** non-zero. +** +** This function is only used as part of assert() statements. +*/ +int lsmMutexHeld(lsm_env *pEnv, lsm_mutex *pMutex){ + return pEnv->xMutexHeld ? pEnv->xMutexHeld(pMutex) : 1; +} + +/* +** Return non-zero if the mutex passed as the second argument is not +** held by the calling thread, or zero otherwise. If the implementation +** is not able to tell if the mutex is held by the caller, it should +** return non-zero. +** +** This function is only used as part of assert() statements. +*/ +int lsmMutexNotHeld(lsm_env *pEnv, lsm_mutex *pMutex){ + return pEnv->xMutexNotHeld ? pEnv->xMutexNotHeld(pMutex) : 1; +} +#endif ADDED ext/lsm1/lsm_shared.c Index: ext/lsm1/lsm_shared.c ================================================================== --- /dev/null +++ ext/lsm1/lsm_shared.c @@ -0,0 +1,1970 @@ +/* +** 2012-01-23 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** Utilities used to help multiple LSM clients to coexist within the +** same process space. +*/ +#include "lsmInt.h" + +/* +** Global data. All global variables used by code in this file are grouped +** into the following structure instance. +** +** pDatabase: +** Linked list of all Database objects allocated within this process. +** This list may not be traversed without holding the global mutex (see +** functions enterGlobalMutex() and leaveGlobalMutex()). +*/ +static struct SharedData { + Database *pDatabase; /* Linked list of all Database objects */ +} gShared; + +/* +** Database structure. There is one such structure for each distinct +** database accessed by this process. They are stored in the singly linked +** list starting at global variable gShared.pDatabase. Database objects are +** reference counted. Once the number of connections to the associated +** database drops to zero, they are removed from the linked list and deleted. +** +** pFile: +** In multi-process mode, this file descriptor is used to obtain locks +** and to access shared-memory. In single process mode, its only job is +** to hold the exclusive lock on the file. +** +*/ +struct Database { + /* Protected by the global mutex (enterGlobalMutex/leaveGlobalMutex): */ + char *zName; /* Canonical path to database file */ + int nName; /* strlen(zName) */ + int nDbRef; /* Number of associated lsm_db handles */ + Database *pDbNext; /* Next Database structure in global list */ + + /* Protected by the local mutex (pClientMutex) */ + int bReadonly; /* True if Database.pFile is read-only */ + int bMultiProc; /* True if running in multi-process mode */ + lsm_file *pFile; /* Used for locks/shm in multi-proc mode */ + LsmFile *pLsmFile; /* List of deferred closes */ + lsm_mutex *pClientMutex; /* Protects the apShmChunk[] and pConn */ + int nShmChunk; /* Number of entries in apShmChunk[] array */ + void **apShmChunk; /* Array of "shared" memory regions */ + lsm_db *pConn; /* List of connections to this db. */ +}; + +/* +** Functions to enter and leave the global mutex. This mutex is used +** to protect the global linked-list headed at gShared.pDatabase. +*/ +static int enterGlobalMutex(lsm_env *pEnv){ + lsm_mutex *p; + int rc = lsmMutexStatic(pEnv, LSM_MUTEX_GLOBAL, &p); + if( rc==LSM_OK ) lsmMutexEnter(pEnv, p); + return rc; +} +static void leaveGlobalMutex(lsm_env *pEnv){ + lsm_mutex *p; + lsmMutexStatic(pEnv, LSM_MUTEX_GLOBAL, &p); + lsmMutexLeave(pEnv, p); +} + +#ifdef LSM_DEBUG +static int holdingGlobalMutex(lsm_env *pEnv){ + lsm_mutex *p; + lsmMutexStatic(pEnv, LSM_MUTEX_GLOBAL, &p); + return lsmMutexHeld(pEnv, p); +} +#endif + +#if 0 +static void assertNotInFreelist(Freelist *p, int iBlk){ + int i; + for(i=0; inEntry; i++){ + assert( p->aEntry[i].iBlk!=iBlk ); + } +} +#else +# define assertNotInFreelist(x,y) +#endif + +/* +** Append an entry to the free-list. If (iId==-1), this is a delete. +*/ +int freelistAppend(lsm_db *db, int iBlk, i64 iId){ + lsm_env *pEnv = db->pEnv; + Freelist *p; + int i; + + assert( iId==-1 || iId>=0 ); + p = db->bUseFreelist ? db->pFreelist : &db->pWorker->freelist; + + /* Extend the space allocated for the freelist, if required */ + assert( p->nAlloc>=p->nEntry ); + if( p->nAlloc==p->nEntry ){ + int nNew; + int nByte; + FreelistEntry *aNew; + + nNew = (p->nAlloc==0 ? 4 : p->nAlloc*2); + nByte = sizeof(FreelistEntry) * nNew; + aNew = (FreelistEntry *)lsmRealloc(pEnv, p->aEntry, nByte); + if( !aNew ) return LSM_NOMEM_BKPT; + p->nAlloc = nNew; + p->aEntry = aNew; + } + + for(i=0; inEntry; i++){ + assert( i==0 || p->aEntry[i].iBlk > p->aEntry[i-1].iBlk ); + if( p->aEntry[i].iBlk>=iBlk ) break; + } + + if( inEntry && p->aEntry[i].iBlk==iBlk ){ + /* Clobber an existing entry */ + p->aEntry[i].iId = iId; + }else{ + /* Insert a new entry into the list */ + int nByte = sizeof(FreelistEntry)*(p->nEntry-i); + memmove(&p->aEntry[i+1], &p->aEntry[i], nByte); + p->aEntry[i].iBlk = iBlk; + p->aEntry[i].iId = iId; + p->nEntry++; + } + + return LSM_OK; +} + +/* +** This function frees all resources held by the Database structure passed +** as the only argument. +*/ +static void freeDatabase(lsm_env *pEnv, Database *p){ + assert( holdingGlobalMutex(pEnv) ); + if( p ){ + /* Free the mutexes */ + lsmMutexDel(pEnv, p->pClientMutex); + + if( p->pFile ){ + lsmEnvClose(pEnv, p->pFile); + } + + /* Free the array of shm pointers */ + lsmFree(pEnv, p->apShmChunk); + + /* Free the memory allocated for the Database struct itself */ + lsmFree(pEnv, p); + } +} + +typedef struct DbTruncateCtx DbTruncateCtx; +struct DbTruncateCtx { + int nBlock; + i64 iInUse; +}; + +static int dbTruncateCb(void *pCtx, int iBlk, i64 iSnapshot){ + DbTruncateCtx *p = (DbTruncateCtx *)pCtx; + if( iBlk!=p->nBlock || (p->iInUse>=0 && iSnapshot>=p->iInUse) ) return 1; + p->nBlock--; + return 0; +} + +static int dbTruncate(lsm_db *pDb, i64 iInUse){ + int rc = LSM_OK; +#if 0 + int i; + DbTruncateCtx ctx; + + assert( pDb->pWorker ); + ctx.nBlock = pDb->pWorker->nBlock; + ctx.iInUse = iInUse; + + rc = lsmWalkFreelist(pDb, 1, dbTruncateCb, (void *)&ctx); + for(i=ctx.nBlock+1; rc==LSM_OK && i<=pDb->pWorker->nBlock; i++){ + rc = freelistAppend(pDb, i, -1); + } + + if( rc==LSM_OK ){ +#ifdef LSM_LOG_FREELIST + if( ctx.nBlock!=pDb->pWorker->nBlock ){ + lsmLogMessage(pDb, 0, + "dbTruncate(): truncated db to %d blocks",ctx.nBlock + ); + } +#endif + pDb->pWorker->nBlock = ctx.nBlock; + } +#endif + return rc; +} + + +/* +** This function is called during database shutdown (when the number of +** connections drops from one to zero). It truncates the database file +** to as small a size as possible without truncating away any blocks that +** contain data. +*/ +static int dbTruncateFile(lsm_db *pDb){ + int rc; + + assert( pDb->pWorker==0 ); + assert( lsmShmAssertLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL) ); + rc = lsmCheckpointLoadWorker(pDb); + + if( rc==LSM_OK ){ + DbTruncateCtx ctx; + + /* Walk the database free-block-list in reverse order. Set ctx.nBlock + ** to the block number of the last block in the database that actually + ** contains data. */ + ctx.nBlock = pDb->pWorker->nBlock; + ctx.iInUse = -1; + rc = lsmWalkFreelist(pDb, 1, dbTruncateCb, (void *)&ctx); + + /* If the last block that contains data is not already the last block in + ** the database file, truncate the database file so that it is. */ + if( rc==LSM_OK && ctx.nBlock!=pDb->pWorker->nBlock ){ + rc = lsmFsTruncateDb( + pDb->pFS, (i64)ctx.nBlock*lsmFsBlockSize(pDb->pFS) + ); + } + } + + lsmFreeSnapshot(pDb->pEnv, pDb->pWorker); + pDb->pWorker = 0; + return rc; +} + +static void doDbDisconnect(lsm_db *pDb){ + int rc; + + if( pDb->bReadonly ){ + lsmShmLock(pDb, LSM_LOCK_DMS3, LSM_LOCK_UNLOCK, 0); + }else{ + /* Block for an exclusive lock on DMS1. This lock serializes all calls + ** to doDbConnect() and doDbDisconnect() across all processes. */ + rc = lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL, 1); + if( rc==LSM_OK ){ + + /* Try an exclusive lock on DMS2. If successful, this is the last + ** connection to the database. In this case flush the contents of the + ** in-memory tree to disk and write a checkpoint. */ + rc = lsmShmTestLock(pDb, LSM_LOCK_DMS2, 1, LSM_LOCK_EXCL); + if( rc==LSM_OK ){ + rc = lsmShmTestLock(pDb, LSM_LOCK_CHECKPOINTER, 1, LSM_LOCK_EXCL); + } + if( rc==LSM_OK ){ + int bReadonly = 0; /* True if there exist read-only conns. */ + + /* Flush the in-memory tree, if required. If there is data to flush, + ** this will create a new client snapshot in Database.pClient. The + ** checkpoint (serialization) of this snapshot may be written to disk + ** by the following block. + ** + ** There is no need to take a WRITER lock here. That there are no + ** other locks on DMS2 guarantees that there are no other read-write + ** connections at this time (and the lock on DMS1 guarantees that + ** no new ones may appear). + */ + rc = lsmTreeLoadHeader(pDb, 0); + if( rc==LSM_OK && (lsmTreeHasOld(pDb) || lsmTreeSize(pDb)>0) ){ + rc = lsmFlushTreeToDisk(pDb); + } + + /* Now check if there are any read-only connections. If there are, + ** then do not truncate the db file or unlink the shared-memory + ** region. */ + if( rc==LSM_OK ){ + rc = lsmShmTestLock(pDb, LSM_LOCK_DMS3, 1, LSM_LOCK_EXCL); + if( rc==LSM_BUSY ){ + bReadonly = 1; + rc = LSM_OK; + } + } + + /* Write a checkpoint to disk. */ + if( rc==LSM_OK ){ + rc = lsmCheckpointWrite(pDb, (bReadonly==0), 0); + } + + /* If the checkpoint was written successfully, delete the log file + ** and, if possible, truncate the database file. */ + if( rc==LSM_OK ){ + int bRotrans = 0; + Database *p = pDb->pDatabase; + + /* The log file may only be deleted if there are no clients + ** read-only clients running rotrans transactions. */ + rc = lsmDetectRoTrans(pDb, &bRotrans); + if( rc==LSM_OK && bRotrans==0 ){ + lsmFsCloseAndDeleteLog(pDb->pFS); + } + + /* The database may only be truncated if there exist no read-only + ** clients - either connected or running rotrans transactions. */ + if( bReadonly==0 && bRotrans==0 ){ + dbTruncateFile(pDb); + if( p->pFile && p->bMultiProc ){ + lsmEnvShmUnmap(pDb->pEnv, p->pFile, 1); + } + } + } + } + } + + if( pDb->iRwclient>=0 ){ + lsmShmLock(pDb, LSM_LOCK_RWCLIENT(pDb->iRwclient), LSM_LOCK_UNLOCK, 0); + pDb->iRwclient = -1; + } + + lsmShmLock(pDb, LSM_LOCK_DMS2, LSM_LOCK_UNLOCK, 0); + lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0); + } + pDb->pShmhdr = 0; +} + +static int doDbConnect(lsm_db *pDb){ + const int nUsMax = 100000; /* Max value for nUs */ + int nUs = 1000; /* us to wait between DMS1 attempts */ + int rc; + + /* Obtain a pointer to the shared-memory header */ + assert( pDb->pShmhdr==0 ); + assert( pDb->bReadonly==0 ); + rc = lsmShmCacheChunks(pDb, 1); + if( rc!=LSM_OK ) return rc; + pDb->pShmhdr = (ShmHeader *)pDb->apShm[0]; + + /* Block for an exclusive lock on DMS1. This lock serializes all calls + ** to doDbConnect() and doDbDisconnect() across all processes. */ + while( 1 ){ + rc = lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL, 1); + if( rc!=LSM_BUSY ) break; + lsmEnvSleep(pDb->pEnv, nUs); + nUs = nUs * 2; + if( nUs>nUsMax ) nUs = nUsMax; + } + if( rc!=LSM_OK ){ + pDb->pShmhdr = 0; + return rc; + } + + /* Try an exclusive lock on DMS2/DMS3. If successful, this is the first + ** and only connection to the database. In this case initialize the + ** shared-memory and run log file recovery. */ + assert( LSM_LOCK_DMS3==1+LSM_LOCK_DMS2 ); + rc = lsmShmTestLock(pDb, LSM_LOCK_DMS2, 2, LSM_LOCK_EXCL); + if( rc==LSM_OK ){ + memset(pDb->pShmhdr, 0, sizeof(ShmHeader)); + rc = lsmCheckpointRecover(pDb); + if( rc==LSM_OK ){ + rc = lsmLogRecover(pDb); + } + if( rc==LSM_OK ){ + ShmHeader *pShm = pDb->pShmhdr; + pShm->aReader[0].iLsmId = lsmCheckpointId(pShm->aSnap1, 0); + pShm->aReader[0].iTreeId = pDb->treehdr.iUsedShmid; + } + }else if( rc==LSM_BUSY ){ + rc = LSM_OK; + } + + /* Take a shared lock on DMS2. In multi-process mode this lock "cannot" + ** fail, as connections may only hold an exclusive lock on DMS2 if they + ** first hold an exclusive lock on DMS1. And this connection is currently + ** holding the exclusive lock on DSM1. + ** + ** However, if some other connection has the database open in single-process + ** mode, this operation will fail. In this case, return the error to the + ** caller - the attempt to connect to the db has failed. + */ + if( rc==LSM_OK ){ + rc = lsmShmLock(pDb, LSM_LOCK_DMS2, LSM_LOCK_SHARED, 0); + } + + /* If anything went wrong, unlock DMS2. Otherwise, try to take an exclusive + ** lock on one of the LSM_LOCK_RWCLIENT() locks. Unlock DMS1 in any case. */ + if( rc!=LSM_OK ){ + pDb->pShmhdr = 0; + }else{ + int i; + for(i=0; iiRwclient = i; + if( rc2!=LSM_BUSY ){ + rc = rc2; + break; + } + } + } + lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0); + + return rc; +} + +static int dbOpenSharedFd(lsm_env *pEnv, Database *p, int bRoOk){ + int rc; + + rc = lsmEnvOpen(pEnv, p->zName, 0, &p->pFile); + if( rc==LSM_IOERR && bRoOk ){ + rc = lsmEnvOpen(pEnv, p->zName, LSM_OPEN_READONLY, &p->pFile); + p->bReadonly = 1; + } + + return rc; +} + +/* +** Return a reference to the shared Database handle for the database +** identified by canonical path zName. If this is the first connection to +** the named database, a new Database object is allocated. Otherwise, a +** pointer to an existing object is returned. +** +** If successful, *ppDatabase is set to point to the shared Database +** structure and LSM_OK returned. Otherwise, *ppDatabase is set to NULL +** and and LSM error code returned. +** +** Each successful call to this function should be (eventually) matched +** by a call to lsmDbDatabaseRelease(). +*/ +int lsmDbDatabaseConnect( + lsm_db *pDb, /* Database handle */ + const char *zName /* Full-path to db file */ +){ + lsm_env *pEnv = pDb->pEnv; + int rc; /* Return code */ + Database *p = 0; /* Pointer returned via *ppDatabase */ + int nName = lsmStrlen(zName); + + assert( pDb->pDatabase==0 ); + rc = enterGlobalMutex(pEnv); + if( rc==LSM_OK ){ + + /* Search the global list for an existing object. TODO: Need something + ** better than the memcmp() below to figure out if a given Database + ** object represents the requested file. */ + for(p=gShared.pDatabase; p; p=p->pDbNext){ + if( nName==p->nName && 0==memcmp(zName, p->zName, nName) ) break; + } + + /* If no suitable Database object was found, allocate a new one. */ + if( p==0 ){ + p = (Database *)lsmMallocZeroRc(pEnv, sizeof(Database)+nName+1, &rc); + + /* If the allocation was successful, fill in other fields and + ** allocate the client mutex. */ + if( rc==LSM_OK ){ + p->bMultiProc = pDb->bMultiProc; + p->zName = (char *)&p[1]; + p->nName = nName; + memcpy((void *)p->zName, zName, nName+1); + rc = lsmMutexNew(pEnv, &p->pClientMutex); + } + + /* If nothing has gone wrong so far, open the shared fd. And if that + ** succeeds and this connection requested single-process mode, + ** attempt to take the exclusive lock on DMS2. */ + if( rc==LSM_OK ){ + int bReadonly = (pDb->bReadonly && pDb->bMultiProc); + rc = dbOpenSharedFd(pDb->pEnv, p, bReadonly); + } + + if( rc==LSM_OK && p->bMultiProc==0 ){ + assert( p->bReadonly==0 ); + rc = lsmEnvLock(pDb->pEnv, p->pFile, LSM_LOCK_DMS2, LSM_LOCK_EXCL); + } + + if( rc==LSM_OK ){ + p->pDbNext = gShared.pDatabase; + gShared.pDatabase = p; + }else{ + freeDatabase(pEnv, p); + p = 0; + } + } + + if( p ){ + p->nDbRef++; + } + leaveGlobalMutex(pEnv); + + if( p ){ + lsmMutexEnter(pDb->pEnv, p->pClientMutex); + pDb->pNext = p->pConn; + p->pConn = pDb; + lsmMutexLeave(pDb->pEnv, p->pClientMutex); + } + } + + pDb->pDatabase = p; + if( rc==LSM_OK ){ + assert( p ); + rc = lsmFsOpen(pDb, zName, p->bReadonly); + } + + /* If the db handle is read-write, then connect to the system now. Run + ** recovery as necessary. Or, if this is a read-only database handle, + ** defer attempting to connect to the system until a read-transaction + ** is opened. */ + if( pDb->bReadonly==0 ){ + if( rc==LSM_OK ){ + rc = lsmFsConfigure(pDb); + } + if( rc==LSM_OK ){ + rc = doDbConnect(pDb); + } + } + + return rc; +} + +static void dbDeferClose(lsm_db *pDb){ + if( pDb->pFS ){ + LsmFile *pLsmFile; + Database *p = pDb->pDatabase; + pLsmFile = lsmFsDeferClose(pDb->pFS); + pLsmFile->pNext = p->pLsmFile; + p->pLsmFile = pLsmFile; + } +} + +LsmFile *lsmDbRecycleFd(lsm_db *db){ + LsmFile *pRet; + Database *p = db->pDatabase; + lsmMutexEnter(db->pEnv, p->pClientMutex); + if( (pRet = p->pLsmFile)!=0 ){ + p->pLsmFile = pRet->pNext; + } + lsmMutexLeave(db->pEnv, p->pClientMutex); + return pRet; +} + +/* +** Release a reference to a Database object obtained from +** lsmDbDatabaseConnect(). There should be exactly one call to this function +** for each successful call to Find(). +*/ +void lsmDbDatabaseRelease(lsm_db *pDb){ + Database *p = pDb->pDatabase; + if( p ){ + lsm_db **ppDb; + + if( pDb->pShmhdr ){ + doDbDisconnect(pDb); + } + + lsmMutexEnter(pDb->pEnv, p->pClientMutex); + for(ppDb=&p->pConn; *ppDb!=pDb; ppDb=&((*ppDb)->pNext)); + *ppDb = pDb->pNext; + dbDeferClose(pDb); + lsmMutexLeave(pDb->pEnv, p->pClientMutex); + + enterGlobalMutex(pDb->pEnv); + p->nDbRef--; + if( p->nDbRef==0 ){ + LsmFile *pIter; + LsmFile *pNext; + Database **pp; + + /* Remove the Database structure from the linked list. */ + for(pp=&gShared.pDatabase; *pp!=p; pp=&((*pp)->pDbNext)); + *pp = p->pDbNext; + + /* If they were allocated from the heap, free the shared memory chunks */ + if( p->bMultiProc==0 ){ + int i; + for(i=0; inShmChunk; i++){ + lsmFree(pDb->pEnv, p->apShmChunk[i]); + } + } + + /* Close any outstanding file descriptors */ + for(pIter=p->pLsmFile; pIter; pIter=pNext){ + pNext = pIter->pNext; + lsmEnvClose(pDb->pEnv, pIter->pFile); + lsmFree(pDb->pEnv, pIter); + } + freeDatabase(pDb->pEnv, p); + } + leaveGlobalMutex(pDb->pEnv); + } +} + +Level *lsmDbSnapshotLevel(Snapshot *pSnapshot){ + return pSnapshot->pLevel; +} + +void lsmDbSnapshotSetLevel(Snapshot *pSnap, Level *pLevel){ + pSnap->pLevel = pLevel; +} + +/* TODO: Shuffle things around to get rid of this */ +static int firstSnapshotInUse(lsm_db *, i64 *); + +/* +** Context object used by the lsmWalkFreelist() utility. +*/ +typedef struct WalkFreelistCtx WalkFreelistCtx; +struct WalkFreelistCtx { + lsm_db *pDb; + int bReverse; + Freelist *pFreelist; + int iFree; + int (*xUsr)(void *, int, i64); /* User callback function */ + void *pUsrctx; /* User callback context */ + int bDone; /* Set to true after xUsr() returns true */ +}; + +/* +** Callback used by lsmWalkFreelist(). +*/ +static int walkFreelistCb(void *pCtx, int iBlk, i64 iSnapshot){ + WalkFreelistCtx *p = (WalkFreelistCtx *)pCtx; + const int iDir = (p->bReverse ? -1 : 1); + Freelist *pFree = p->pFreelist; + + assert( p->bDone==0 ); + if( pFree ){ + while( (p->iFree < pFree->nEntry) && p->iFree>=0 ){ + FreelistEntry *pEntry = &pFree->aEntry[p->iFree]; + if( (p->bReverse==0 && pEntry->iBlk>iBlk) + || (p->bReverse!=0 && pEntry->iBlkiFree += iDir; + if( pEntry->iId>=0 + && p->xUsr(p->pUsrctx, pEntry->iBlk, pEntry->iId) + ){ + p->bDone = 1; + return 1; + } + if( pEntry->iBlk==iBlk ) return 0; + } + } + } + + if( p->xUsr(p->pUsrctx, iBlk, iSnapshot) ){ + p->bDone = 1; + return 1; + } + return 0; +} + +/* +** The database handle passed as the first argument must be the worker +** connection. This function iterates through the contents of the current +** free block list, invoking the supplied callback once for each list +** element. +** +** The difference between this function and lsmSortedWalkFreelist() is +** that lsmSortedWalkFreelist() only considers those free-list elements +** stored within the LSM. This function also merges in any in-memory +** elements. +*/ +int lsmWalkFreelist( + lsm_db *pDb, /* Database handle (must be worker) */ + int bReverse, /* True to iterate from largest to smallest */ + int (*x)(void *, int, i64), /* Callback function */ + void *pCtx /* First argument to pass to callback */ +){ + const int iDir = (bReverse ? -1 : 1); + int rc; + int iCtx; + + WalkFreelistCtx ctx[2]; + + ctx[0].pDb = pDb; + ctx[0].bReverse = bReverse; + ctx[0].pFreelist = &pDb->pWorker->freelist; + if( ctx[0].pFreelist && bReverse ){ + ctx[0].iFree = ctx[0].pFreelist->nEntry-1; + }else{ + ctx[0].iFree = 0; + } + ctx[0].xUsr = walkFreelistCb; + ctx[0].pUsrctx = (void *)&ctx[1]; + ctx[0].bDone = 0; + + ctx[1].pDb = pDb; + ctx[1].bReverse = bReverse; + ctx[1].pFreelist = pDb->pFreelist; + if( ctx[1].pFreelist && bReverse ){ + ctx[1].iFree = ctx[1].pFreelist->nEntry-1; + }else{ + ctx[1].iFree = 0; + } + ctx[1].xUsr = x; + ctx[1].pUsrctx = pCtx; + ctx[1].bDone = 0; + + rc = lsmSortedWalkFreelist(pDb, bReverse, walkFreelistCb, (void *)&ctx[0]); + + if( ctx[0].bDone==0 ){ + for(iCtx=0; iCtx<2; iCtx++){ + int i; + WalkFreelistCtx *p = &ctx[iCtx]; + for(i=p->iFree; + p->pFreelist && rc==LSM_OK && ipFreelist->nEntry && i>=0; + i += iDir + ){ + FreelistEntry *pEntry = &p->pFreelist->aEntry[i]; + if( pEntry->iId>=0 && p->xUsr(p->pUsrctx, pEntry->iBlk, pEntry->iId) ){ + return LSM_OK; + } + } + } + } + + return rc; +} + + +typedef struct FindFreeblockCtx FindFreeblockCtx; +struct FindFreeblockCtx { + i64 iInUse; + int iRet; + int bNotOne; +}; + +static int findFreeblockCb(void *pCtx, int iBlk, i64 iSnapshot){ + FindFreeblockCtx *p = (FindFreeblockCtx *)pCtx; + if( iSnapshotiInUse && (iBlk!=1 || p->bNotOne==0) ){ + p->iRet = iBlk; + return 1; + } + return 0; +} + +static int findFreeblock(lsm_db *pDb, i64 iInUse, int bNotOne, int *piRet){ + int rc; /* Return code */ + FindFreeblockCtx ctx; /* Context object */ + + ctx.iInUse = iInUse; + ctx.iRet = 0; + ctx.bNotOne = bNotOne; + rc = lsmWalkFreelist(pDb, 0, findFreeblockCb, (void *)&ctx); + *piRet = ctx.iRet; + + return rc; +} + +/* +** Allocate a new database file block to write data to, either by extending +** the database file or by recycling a free-list entry. The worker snapshot +** must be held in order to call this function. +** +** If successful, *piBlk is set to the block number allocated and LSM_OK is +** returned. Otherwise, *piBlk is zeroed and an lsm error code returned. +*/ +int lsmBlockAllocate(lsm_db *pDb, int iBefore, int *piBlk){ + Snapshot *p = pDb->pWorker; + int iRet = 0; /* Block number of allocated block */ + int rc = LSM_OK; + i64 iInUse = 0; /* Snapshot id still in use */ + i64 iSynced = 0; /* Snapshot id synced to disk */ + + assert( p ); + +#ifdef LSM_LOG_FREELIST + { + static int nCall = 0; + char *zFree = 0; + nCall++; + rc = lsmInfoFreelist(pDb, &zFree); + if( rc!=LSM_OK ) return rc; + lsmLogMessage(pDb, 0, "lsmBlockAllocate(): %d freelist: %s", nCall, zFree); + lsmFree(pDb->pEnv, zFree); + } +#endif + + /* Set iInUse to the smallest snapshot id that is either: + ** + ** * Currently in use by a database client, + ** * May be used by a database client in the future, or + ** * Is the most recently checkpointed snapshot (i.e. the one that will + ** be used following recovery if a failure occurs at this point). + */ + rc = lsmCheckpointSynced(pDb, &iSynced, 0, 0); + if( rc==LSM_OK && iSynced==0 ) iSynced = p->iId; + iInUse = iSynced; + if( rc==LSM_OK && pDb->iReader>=0 ){ + assert( pDb->pClient ); + iInUse = LSM_MIN(iInUse, pDb->pClient->iId); + } + if( rc==LSM_OK ) rc = firstSnapshotInUse(pDb, &iInUse); + +#ifdef LSM_LOG_FREELIST + { + lsmLogMessage(pDb, 0, "lsmBlockAllocate(): " + "snapshot-in-use: %lld (iSynced=%lld) (client-id=%lld)", + iInUse, iSynced, (pDb->iReader>=0 ? pDb->pClient->iId : 0) + ); + } +#endif + + + /* Unless there exists a read-only transaction (which prevents us from + ** recycling any blocks regardless, query the free block list for a + ** suitable block to reuse. + ** + ** It might seem more natural to check for a read-only transaction at + ** the start of this function. However, it is better do wait until after + ** the call to lsmCheckpointSynced() to do so. + */ + if( rc==LSM_OK ){ + int bRotrans; + rc = lsmDetectRoTrans(pDb, &bRotrans); + + if( rc==LSM_OK && bRotrans==0 ){ + rc = findFreeblock(pDb, iInUse, (iBefore>0), &iRet); + } + } + + if( iBefore>0 && (iRet<=0 || iRet>=iBefore) ){ + iRet = 0; + + }else if( rc==LSM_OK ){ + /* If a block was found in the free block list, use it and remove it from + ** the list. Otherwise, if no suitable block was found, allocate one from + ** the end of the file. */ + if( iRet>0 ){ +#ifdef LSM_LOG_FREELIST + lsmLogMessage(pDb, 0, + "reusing block %d (snapshot-in-use=%lld)", iRet, iInUse); +#endif + rc = freelistAppend(pDb, iRet, -1); + if( rc==LSM_OK ){ + rc = dbTruncate(pDb, iInUse); + } + }else{ + iRet = ++(p->nBlock); +#ifdef LSM_LOG_FREELIST + lsmLogMessage(pDb, 0, "extending file to %d blocks", iRet); +#endif + } + } + + assert( iBefore>0 || iRet>0 || rc!=LSM_OK ); + *piBlk = iRet; + return rc; +} + +/* +** Free a database block. The worker snapshot must be held in order to call +** this function. +** +** If successful, LSM_OK is returned. Otherwise, an lsm error code (e.g. +** LSM_NOMEM). +*/ +int lsmBlockFree(lsm_db *pDb, int iBlk){ + Snapshot *p = pDb->pWorker; + assert( lsmShmAssertWorker(pDb) ); + +#ifdef LSM_LOG_FREELIST + lsmLogMessage(pDb, LSM_OK, "lsmBlockFree(): Free block %d", iBlk); +#endif + + return freelistAppend(pDb, iBlk, p->iId); +} + +/* +** Refree a database block. The worker snapshot must be held in order to call +** this function. +** +** Refreeing is required when a block is allocated using lsmBlockAllocate() +** but then not used. This function is used to push the block back onto +** the freelist. Refreeing a block is different from freeing is, as a refreed +** block may be reused immediately. Whereas a freed block can not be reused +** until (at least) after the next checkpoint. +*/ +int lsmBlockRefree(lsm_db *pDb, int iBlk){ + int rc = LSM_OK; /* Return code */ + +#ifdef LSM_LOG_FREELIST + lsmLogMessage(pDb, LSM_OK, "lsmBlockRefree(): Refree block %d", iBlk); +#endif + + rc = freelistAppend(pDb, iBlk, 0); + return rc; +} + +/* +** If required, copy a database checkpoint from shared memory into the +** database itself. +** +** The WORKER lock must not be held when this is called. This is because +** this function may indirectly call fsync(). And the WORKER lock should +** not be held that long (in case it is required by a client flushing an +** in-memory tree to disk). +*/ +int lsmCheckpointWrite(lsm_db *pDb, int bTruncate, u32 *pnWrite){ + int rc; /* Return Code */ + u32 nWrite = 0; + + assert( pDb->pWorker==0 ); + assert( 1 || pDb->pClient==0 ); + assert( lsmShmAssertLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_UNLOCK) ); + + rc = lsmShmLock(pDb, LSM_LOCK_CHECKPOINTER, LSM_LOCK_EXCL, 0); + if( rc!=LSM_OK ) return rc; + + rc = lsmCheckpointLoad(pDb, 0); + if( rc==LSM_OK ){ + int nBlock = lsmCheckpointNBlock(pDb->aSnapshot); + ShmHeader *pShm = pDb->pShmhdr; + int bDone = 0; /* True if checkpoint is already stored */ + + /* Check if this checkpoint has already been written to the database + ** file. If so, set variable bDone to true. */ + if( pShm->iMetaPage ){ + MetaPage *pPg; /* Meta page */ + u8 *aData; /* Meta-page data buffer */ + int nData; /* Size of aData[] in bytes */ + i64 iCkpt; /* Id of checkpoint just loaded */ + i64 iDisk; /* Id of checkpoint already stored in db */ + iCkpt = lsmCheckpointId(pDb->aSnapshot, 0); + rc = lsmFsMetaPageGet(pDb->pFS, 0, pShm->iMetaPage, &pPg); + if( rc==LSM_OK ){ + aData = lsmFsMetaPageData(pPg, &nData); + iDisk = lsmCheckpointId((u32 *)aData, 1); + nWrite = lsmCheckpointNWrite((u32 *)aData, 1); + lsmFsMetaPageRelease(pPg); + } + bDone = (iDisk>=iCkpt); + } + + if( rc==LSM_OK && bDone==0 ){ + int iMeta = (pShm->iMetaPage % 2) + 1; + if( pDb->eSafety!=LSM_SAFETY_OFF ){ + rc = lsmFsSyncDb(pDb->pFS, nBlock); + } + if( rc==LSM_OK ) rc = lsmCheckpointStore(pDb, iMeta); + if( rc==LSM_OK && pDb->eSafety!=LSM_SAFETY_OFF){ + rc = lsmFsSyncDb(pDb->pFS, 0); + } + if( rc==LSM_OK ){ + pShm->iMetaPage = iMeta; + nWrite = lsmCheckpointNWrite(pDb->aSnapshot, 0) - nWrite; + } +#ifdef LSM_LOG_WORK + lsmLogMessage(pDb, 0, "finish checkpoint %d", + (int)lsmCheckpointId(pDb->aSnapshot, 0) + ); +#endif + } + + if( rc==LSM_OK && bTruncate && nBlock>0 ){ + rc = lsmFsTruncateDb(pDb->pFS, (i64)nBlock*lsmFsBlockSize(pDb->pFS)); + } + } + + lsmShmLock(pDb, LSM_LOCK_CHECKPOINTER, LSM_LOCK_UNLOCK, 0); + if( pnWrite && rc==LSM_OK ) *pnWrite = nWrite; + return rc; +} + +int lsmBeginWork(lsm_db *pDb){ + int rc; + + /* Attempt to take the WORKER lock */ + rc = lsmShmLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_EXCL, 0); + + /* Deserialize the current worker snapshot */ + if( rc==LSM_OK ){ + rc = lsmCheckpointLoadWorker(pDb); + } + return rc; +} + +void lsmFreeSnapshot(lsm_env *pEnv, Snapshot *p){ + if( p ){ + lsmSortedFreeLevel(pEnv, p->pLevel); + lsmFree(pEnv, p->freelist.aEntry); + lsmFree(pEnv, p->redirect.a); + lsmFree(pEnv, p); + } +} + +/* +** Attempt to populate one of the read-lock slots to contain lock values +** iLsm/iShm. Or, if such a slot exists already, this function is a no-op. +** +** It is not an error if no slot can be populated because the write-lock +** cannot be obtained. If any other error occurs, return an LSM error code. +** Otherwise, LSM_OK. +** +** This function is called at various points to try to ensure that there +** always exists at least one read-lock slot that can be used by a read-only +** client. And so that, in the usual case, there is an "exact match" available +** whenever a read transaction is opened by any client. At present this +** function is called when: +** +** * A write transaction that called lsmTreeDiscardOld() is committed, and +** * Whenever the working snapshot is updated (i.e. lsmFinishWork()). +*/ +static int dbSetReadLock(lsm_db *db, i64 iLsm, u32 iShm){ + int rc = LSM_OK; + ShmHeader *pShm = db->pShmhdr; + int i; + + /* Check if there is already a slot containing the required values. */ + for(i=0; iaReader[i]; + if( p->iLsmId==iLsm && p->iTreeId==iShm ) return LSM_OK; + } + + /* Iterate through all read-lock slots, attempting to take a write-lock + ** on each of them. If a write-lock succeeds, populate the locked slot + ** with the required values and break out of the loop. */ + for(i=0; rc==LSM_OK && iaReader[i]; + p->iLsmId = iLsm; + p->iTreeId = iShm; + lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_UNLOCK, 0); + break; + } + } + + return rc; +} + +/* +** Release the read-lock currently held by connection db. +*/ +int dbReleaseReadlock(lsm_db *db){ + int rc = LSM_OK; + if( db->iReader>=0 ){ + rc = lsmShmLock(db, LSM_LOCK_READER(db->iReader), LSM_LOCK_UNLOCK, 0); + db->iReader = -1; + } + db->bRoTrans = 0; + return rc; +} + + +/* +** Argument bFlush is true if the contents of the in-memory tree has just +** been flushed to disk. The significance of this is that once the snapshot +** created to hold the updated state of the database is synced to disk, log +** file space can be recycled. +*/ +void lsmFinishWork(lsm_db *pDb, int bFlush, int *pRc){ + int rc = *pRc; + assert( rc!=0 || pDb->pWorker ); + if( pDb->pWorker ){ + /* If no error has occurred, serialize the worker snapshot and write + ** it to shared memory. */ + if( rc==LSM_OK ){ + rc = lsmSaveWorker(pDb, bFlush); + } + + /* Assuming no error has occurred, update a read lock slot with the + ** new snapshot id (see comments above function dbSetReadLock()). */ + if( rc==LSM_OK ){ + if( pDb->iReader<0 ){ + rc = lsmTreeLoadHeader(pDb, 0); + } + if( rc==LSM_OK ){ + rc = dbSetReadLock(pDb, pDb->pWorker->iId, pDb->treehdr.iUsedShmid); + } + } + + /* Free the snapshot object. */ + lsmFreeSnapshot(pDb->pEnv, pDb->pWorker); + pDb->pWorker = 0; + } + + lsmShmLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_UNLOCK, 0); + *pRc = rc; +} + +/* +** Called when recovery is finished. +*/ +int lsmFinishRecovery(lsm_db *pDb){ + lsmTreeEndTransaction(pDb, 1); + return LSM_OK; +} + +/* +** Check if the currently configured compression functions +** (LSM_CONFIG_SET_COMPRESSION) are compatible with a database that has its +** compression id set to iReq. Compression routines are compatible if iReq +** is zero (indicating the database is empty), or if it is equal to the +** compression id of the configured compression routines. +** +** If the check shows that the current compression are incompatible and there +** is a compression factory registered, give it a chance to install new +** compression routines. +** +** If, after any registered factory is invoked, the compression functions +** are still incompatible, return LSM_MISMATCH. Otherwise, LSM_OK. +*/ +int lsmCheckCompressionId(lsm_db *pDb, u32 iReq){ + if( iReq!=LSM_COMPRESSION_EMPTY && pDb->compress.iId!=iReq ){ + if( pDb->factory.xFactory ){ + pDb->bInFactory = 1; + pDb->factory.xFactory(pDb->factory.pCtx, pDb, iReq); + pDb->bInFactory = 0; + } + if( pDb->compress.iId!=iReq ){ + /* Incompatible */ + return LSM_MISMATCH; + } + } + /* Compatible */ + return LSM_OK; +} + +/* +** Begin a read transaction. This function is a no-op if the connection +** passed as the only argument already has an open read transaction. +*/ +int lsmBeginReadTrans(lsm_db *pDb){ + const int MAX_READLOCK_ATTEMPTS = 10; + const int nMaxAttempt = (pDb->bRoTrans ? 1 : MAX_READLOCK_ATTEMPTS); + + int rc = LSM_OK; /* Return code */ + int iAttempt = 0; + + assert( pDb->pWorker==0 ); + + while( rc==LSM_OK && pDb->iReader<0 && (iAttempt++)pCsr==0 && pDb->nTransOpen==0 ); + + /* Load the in-memory tree header. */ + rc = lsmTreeLoadHeader(pDb, &iTreehdr); + + /* Load the database snapshot */ + if( rc==LSM_OK ){ + if( lsmCheckpointClientCacheOk(pDb)==0 ){ + lsmFreeSnapshot(pDb->pEnv, pDb->pClient); + pDb->pClient = 0; + lsmMCursorFreeCache(pDb); + lsmFsPurgeCache(pDb->pFS); + rc = lsmCheckpointLoad(pDb, &iSnap); + }else{ + iSnap = 1; + } + } + + /* Take a read-lock on the tree and snapshot just loaded. Then check + ** that the shared-memory still contains the same values. If so, proceed. + ** Otherwise, relinquish the read-lock and retry the whole procedure + ** (starting with loading the in-memory tree header). */ + if( rc==LSM_OK ){ + u32 iShmMax = pDb->treehdr.iUsedShmid; + u32 iShmMin = pDb->treehdr.iNextShmid+1-LSM_MAX_SHMCHUNKS; + rc = lsmReadlock( + pDb, lsmCheckpointId(pDb->aSnapshot, 0), iShmMin, iShmMax + ); + if( rc==LSM_OK ){ + if( lsmTreeLoadHeaderOk(pDb, iTreehdr) + && lsmCheckpointLoadOk(pDb, iSnap) + ){ + /* Read lock has been successfully obtained. Deserialize the + ** checkpoint just loaded. TODO: This will be removed after + ** lsm_sorted.c is changed to work directly from the serialized + ** version of the snapshot. */ + if( pDb->pClient==0 ){ + rc = lsmCheckpointDeserialize(pDb, 0, pDb->aSnapshot,&pDb->pClient); + } + assert( (rc==LSM_OK)==(pDb->pClient!=0) ); + assert( pDb->iReader>=0 ); + + /* Check that the client has the right compression hooks loaded. + ** If not, set rc to LSM_MISMATCH. */ + if( rc==LSM_OK ){ + rc = lsmCheckCompressionId(pDb, pDb->pClient->iCmpId); + } + }else{ + rc = dbReleaseReadlock(pDb); + } + } + + if( rc==LSM_BUSY ){ + rc = LSM_OK; + } + } +#if 0 +if( rc==LSM_OK && pDb->pClient ){ + fprintf(stderr, + "reading %p: snapshot:%d used-shmid:%d trans-id:%d iOldShmid=%d\n", + (void *)pDb, + (int)pDb->pClient->iId, (int)pDb->treehdr.iUsedShmid, + (int)pDb->treehdr.root.iTransId, + (int)pDb->treehdr.iOldShmid + ); +} +#endif + } + + if( rc==LSM_OK ){ + rc = lsmShmCacheChunks(pDb, pDb->treehdr.nChunk); + } + if( rc!=LSM_OK ){ + dbReleaseReadlock(pDb); + } + if( pDb->pClient==0 && rc==LSM_OK ) rc = LSM_BUSY; + return rc; +} + +/* +** This function is used by a read-write connection to determine if there +** are currently one or more read-only transactions open on the database +** (in this context a read-only transaction is one opened by a read-only +** connection on a non-live database). +** +** If no error occurs, LSM_OK is returned and *pbExists is set to true if +** some other connection has a read-only transaction open, or false +** otherwise. If an error occurs an LSM error code is returned and the final +** value of *pbExist is undefined. +*/ +int lsmDetectRoTrans(lsm_db *db, int *pbExist){ + int rc; + + /* Only a read-write connection may use this function. */ + assert( db->bReadonly==0 ); + + rc = lsmShmTestLock(db, LSM_LOCK_ROTRANS, 1, LSM_LOCK_EXCL); + if( rc==LSM_BUSY ){ + *pbExist = 1; + rc = LSM_OK; + }else{ + *pbExist = 0; + } + + return rc; +} + +/* +** db is a read-only database handle in the disconnected state. This function +** attempts to open a read-transaction on the database. This may involve +** connecting to the database system (opening shared memory etc.). +*/ +int lsmBeginRoTrans(lsm_db *db){ + int rc = LSM_OK; + + assert( db->bReadonly && db->pShmhdr==0 ); + assert( db->iReader<0 ); + + if( db->bRoTrans==0 ){ + + /* Attempt a shared-lock on DMS1. */ + rc = lsmShmLock(db, LSM_LOCK_DMS1, LSM_LOCK_SHARED, 0); + if( rc!=LSM_OK ) return rc; + + rc = lsmShmTestLock( + db, LSM_LOCK_RWCLIENT(0), LSM_LOCK_NREADER, LSM_LOCK_SHARED + ); + if( rc==LSM_OK ){ + /* System is not live. Take a SHARED lock on the ROTRANS byte and + ** release DMS1. Locking ROTRANS tells all read-write clients that they + ** may not recycle any disk space from within the database or log files, + ** as a read-only client may be using it. */ + rc = lsmShmLock(db, LSM_LOCK_ROTRANS, LSM_LOCK_SHARED, 0); + lsmShmLock(db, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0); + + if( rc==LSM_OK ){ + db->bRoTrans = 1; + rc = lsmShmCacheChunks(db, 1); + if( rc==LSM_OK ){ + db->pShmhdr = (ShmHeader *)db->apShm[0]; + memset(db->pShmhdr, 0, sizeof(ShmHeader)); + rc = lsmCheckpointRecover(db); + if( rc==LSM_OK ){ + rc = lsmLogRecover(db); + } + } + } + }else if( rc==LSM_BUSY ){ + /* System is live! */ + rc = lsmShmLock(db, LSM_LOCK_DMS3, LSM_LOCK_SHARED, 0); + lsmShmLock(db, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0); + if( rc==LSM_OK ){ + rc = lsmShmCacheChunks(db, 1); + if( rc==LSM_OK ){ + db->pShmhdr = (ShmHeader *)db->apShm[0]; + } + } + } + + if( rc==LSM_OK ){ + rc = lsmBeginReadTrans(db); + } + } + + return rc; +} + +/* +** Close the currently open read transaction. +*/ +void lsmFinishReadTrans(lsm_db *pDb){ + + /* Worker connections should not be closing read transactions. And + ** read transactions should only be closed after all cursors and write + ** transactions have been closed. Finally pClient should be non-NULL + ** only iff pDb->iReader>=0. */ + assert( pDb->pWorker==0 ); + assert( pDb->pCsr==0 && pDb->nTransOpen==0 ); + + if( pDb->bRoTrans ){ + int i; + for(i=0; inShm; i++){ + lsmFree(pDb->pEnv, pDb->apShm[i]); + } + lsmFree(pDb->pEnv, pDb->apShm); + pDb->apShm = 0; + pDb->nShm = 0; + pDb->pShmhdr = 0; + + lsmShmLock(pDb, LSM_LOCK_ROTRANS, LSM_LOCK_UNLOCK, 0); + } + dbReleaseReadlock(pDb); +} + +/* +** Open a write transaction. +*/ +int lsmBeginWriteTrans(lsm_db *pDb){ + int rc = LSM_OK; /* Return code */ + ShmHeader *pShm = pDb->pShmhdr; /* Shared memory header */ + + assert( pDb->nTransOpen==0 ); + assert( pDb->bDiscardOld==0 ); + assert( pDb->bReadonly==0 ); + + /* If there is no read-transaction open, open one now. */ + if( pDb->iReader<0 ){ + rc = lsmBeginReadTrans(pDb); + } + + /* Attempt to take the WRITER lock */ + if( rc==LSM_OK ){ + rc = lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_EXCL, 0); + } + + /* If the previous writer failed mid-transaction, run emergency rollback. */ + if( rc==LSM_OK && pShm->bWriter ){ + rc = lsmTreeRepair(pDb); + if( rc==LSM_OK ) pShm->bWriter = 0; + } + + /* Check that this connection is currently reading from the most recent + ** version of the database. If not, return LSM_BUSY. */ + if( rc==LSM_OK && memcmp(&pShm->hdr1, &pDb->treehdr, sizeof(TreeHeader)) ){ + rc = LSM_BUSY; + } + + if( rc==LSM_OK ){ + rc = lsmLogBegin(pDb); + } + + /* If everything was successful, set the "transaction-in-progress" flag + ** and return LSM_OK. Otherwise, if some error occurred, relinquish the + ** WRITER lock and return an error code. */ + if( rc==LSM_OK ){ + TreeHeader *p = &pDb->treehdr; + pShm->bWriter = 1; + p->root.iTransId++; + if( lsmTreeHasOld(pDb) && p->iOldLog==pDb->pClient->iLogOff ){ + lsmTreeDiscardOld(pDb); + pDb->bDiscardOld = 1; + } + }else{ + lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_UNLOCK, 0); + if( pDb->pCsr==0 ) lsmFinishReadTrans(pDb); + } + return rc; +} + +/* +** End the current write transaction. The connection is left with an open +** read transaction. It is an error to call this if there is no open write +** transaction. +** +** If the transaction was committed, then a commit record has already been +** written into the log file when this function is called. Or, if the +** transaction was rolled back, both the log file and in-memory tree +** structure have already been restored. In either case, this function +** merely releases locks and other resources held by the write-transaction. +** +** LSM_OK is returned if successful, or an LSM error code otherwise. +*/ +int lsmFinishWriteTrans(lsm_db *pDb, int bCommit){ + int rc = LSM_OK; + int bFlush = 0; + + lsmLogEnd(pDb, bCommit); + if( rc==LSM_OK && bCommit && lsmTreeSize(pDb)>pDb->nTreeLimit ){ + bFlush = 1; + lsmTreeMakeOld(pDb); + } + lsmTreeEndTransaction(pDb, bCommit); + + if( rc==LSM_OK ){ + if( bFlush && pDb->bAutowork ){ + rc = lsmSortedAutoWork(pDb, 1); + }else if( bCommit && pDb->bDiscardOld ){ + rc = dbSetReadLock(pDb, pDb->pClient->iId, pDb->treehdr.iUsedShmid); + } + } + pDb->bDiscardOld = 0; + lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_UNLOCK, 0); + + if( bFlush && pDb->bAutowork==0 && pDb->xWork ){ + pDb->xWork(pDb, pDb->pWorkCtx); + } + return rc; +} + + +/* +** Return non-zero if the caller is holding the client mutex. +*/ +#ifdef LSM_DEBUG +int lsmHoldingClientMutex(lsm_db *pDb){ + return lsmMutexHeld(pDb->pEnv, pDb->pDatabase->pClientMutex); +} +#endif + +static int slotIsUsable(ShmReader *p, i64 iLsm, u32 iShmMin, u32 iShmMax){ + return( + p->iLsmId && p->iLsmId<=iLsm + && shm_sequence_ge(iShmMax, p->iTreeId) + && shm_sequence_ge(p->iTreeId, iShmMin) + ); +} + +/* +** Obtain a read-lock on database version identified by the combination +** of snapshot iLsm and tree iTree. Return LSM_OK if successful, or +** an LSM error code otherwise. +*/ +int lsmReadlock(lsm_db *db, i64 iLsm, u32 iShmMin, u32 iShmMax){ + int rc = LSM_OK; + ShmHeader *pShm = db->pShmhdr; + int i; + + assert( db->iReader<0 ); + assert( shm_sequence_ge(iShmMax, iShmMin) ); + + /* This is a no-op if the read-only transaction flag is set. */ + if( db->bRoTrans ){ + db->iReader = 0; + return LSM_OK; + } + + /* Search for an exact match. */ + for(i=0; db->iReader<0 && rc==LSM_OK && iaReader[i]; + if( p->iLsmId==iLsm && p->iTreeId==iShmMax ){ + rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_SHARED, 0); + if( rc==LSM_OK && p->iLsmId==iLsm && p->iTreeId==iShmMax ){ + db->iReader = i; + }else if( rc==LSM_BUSY ){ + rc = LSM_OK; + } + } + } + + /* Try to obtain a write-lock on each slot, in order. If successful, set + ** the slot values to iLsm/iTree. */ + for(i=0; db->iReader<0 && rc==LSM_OK && iaReader[i]; + p->iLsmId = iLsm; + p->iTreeId = iShmMax; + rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_SHARED, 0); + assert( rc!=LSM_BUSY ); + if( rc==LSM_OK ) db->iReader = i; + } + } + + /* Search for any usable slot */ + for(i=0; db->iReader<0 && rc==LSM_OK && iaReader[i]; + if( slotIsUsable(p, iLsm, iShmMin, iShmMax) ){ + rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_SHARED, 0); + if( rc==LSM_OK && slotIsUsable(p, iLsm, iShmMin, iShmMax) ){ + db->iReader = i; + }else if( rc==LSM_BUSY ){ + rc = LSM_OK; + } + } + } + + if( rc==LSM_OK && db->iReader<0 ){ + rc = LSM_BUSY; + } + return rc; +} + +/* +** This is used to check if there exists a read-lock locking a particular +** version of either the in-memory tree or database file. +** +** If iLsmId is non-zero, then it is a snapshot id. If there exists a +** read-lock using this snapshot or newer, set *pbInUse to true. Or, +** if there is no such read-lock, set it to false. +** +** Or, if iLsmId is zero, then iShmid is a shared-memory sequence id. +** Search for a read-lock using this sequence id or newer. etc. +*/ +static int isInUse(lsm_db *db, i64 iLsmId, u32 iShmid, int *pbInUse){ + ShmHeader *pShm = db->pShmhdr; + int i; + int rc = LSM_OK; + + for(i=0; rc==LSM_OK && iaReader[i]; + if( p->iLsmId ){ + if( (iLsmId!=0 && p->iLsmId!=0 && iLsmId>=p->iLsmId) + || (iLsmId==0 && shm_sequence_ge(p->iTreeId, iShmid)) + ){ + rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0); + if( rc==LSM_OK ){ + p->iLsmId = 0; + lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_UNLOCK, 0); + } + } + } + } + + if( rc==LSM_BUSY ){ + *pbInUse = 1; + return LSM_OK; + } + *pbInUse = 0; + return rc; +} + +/* +** This function is called by worker connections to determine the smallest +** snapshot id that is currently in use by a database client. The worker +** connection uses this result to determine whether or not it is safe to +** recycle a database block. +*/ +static int firstSnapshotInUse( + lsm_db *db, /* Database handle */ + i64 *piInUse /* IN/OUT: Smallest snapshot id in use */ +){ + ShmHeader *pShm = db->pShmhdr; + i64 iInUse = *piInUse; + int i; + + assert( iInUse>0 ); + for(i=0; iaReader[i]; + if( p->iLsmId ){ + i64 iThis = p->iLsmId; + if( iThis!=0 && iInUse>iThis ){ + int rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0); + if( rc==LSM_OK ){ + p->iLsmId = 0; + lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_UNLOCK, 0); + }else if( rc==LSM_BUSY ){ + iInUse = iThis; + }else{ + /* Some error other than LSM_BUSY. Return the error code to + ** the caller in this case. */ + return rc; + } + } + } + } + + *piInUse = iInUse; + return LSM_OK; +} + +int lsmTreeInUse(lsm_db *db, u32 iShmid, int *pbInUse){ + if( db->treehdr.iUsedShmid==iShmid ){ + *pbInUse = 1; + return LSM_OK; + } + return isInUse(db, 0, iShmid, pbInUse); +} + +int lsmLsmInUse(lsm_db *db, i64 iLsmId, int *pbInUse){ + if( db->pClient && db->pClient->iId<=iLsmId ){ + *pbInUse = 1; + return LSM_OK; + } + return isInUse(db, iLsmId, 0, pbInUse); +} + +/* +** This function may only be called after a successful call to +** lsmDbDatabaseConnect(). It returns true if the connection is in +** multi-process mode, or false otherwise. +*/ +int lsmDbMultiProc(lsm_db *pDb){ + return pDb->pDatabase && pDb->pDatabase->bMultiProc; +} + + +/************************************************************************* +************************************************************************** +************************************************************************** +************************************************************************** +************************************************************************** +*************************************************************************/ + +/* +** Ensure that database connection db has cached pointers to at least the +** first nChunk chunks of shared memory. +*/ +int lsmShmCacheChunks(lsm_db *db, int nChunk){ + int rc = LSM_OK; + if( nChunk>db->nShm ){ + static const int NINCR = 16; + Database *p = db->pDatabase; + lsm_env *pEnv = db->pEnv; + int nAlloc; + int i; + + /* Ensure that the db->apShm[] array is large enough. If an attempt to + ** allocate memory fails, return LSM_NOMEM immediately. The apShm[] array + ** is always extended in multiples of 16 entries - so the actual allocated + ** size can be inferred from nShm. */ + nAlloc = ((db->nShm + NINCR - 1) / NINCR) * NINCR; + while( nChunk>=nAlloc ){ + void **apShm; + nAlloc += NINCR; + apShm = lsmRealloc(pEnv, db->apShm, sizeof(void*)*nAlloc); + if( !apShm ) return LSM_NOMEM_BKPT; + db->apShm = apShm; + } + + if( db->bRoTrans ){ + for(i=db->nShm; rc==LSM_OK && iapShm[i] = lsmMallocZeroRc(pEnv, LSM_SHM_CHUNK_SIZE, &rc); + db->nShm++; + } + + }else{ + + /* Enter the client mutex */ + lsmMutexEnter(pEnv, p->pClientMutex); + + /* Extend the Database objects apShmChunk[] array if necessary. Using the + ** same pattern as for the lsm_db.apShm[] array above. */ + nAlloc = ((p->nShmChunk + NINCR - 1) / NINCR) * NINCR; + while( nChunk>=nAlloc ){ + void **apShm; + nAlloc += NINCR; + apShm = lsmRealloc(pEnv, p->apShmChunk, sizeof(void*)*nAlloc); + if( !apShm ){ + rc = LSM_NOMEM_BKPT; + break; + } + p->apShmChunk = apShm; + } + + for(i=db->nShm; rc==LSM_OK && i=p->nShmChunk ){ + void *pChunk = 0; + if( p->bMultiProc==0 ){ + /* Single process mode */ + pChunk = lsmMallocZeroRc(pEnv, LSM_SHM_CHUNK_SIZE, &rc); + }else{ + /* Multi-process mode */ + rc = lsmEnvShmMap(pEnv, p->pFile, i, LSM_SHM_CHUNK_SIZE, &pChunk); + } + if( rc==LSM_OK ){ + p->apShmChunk[i] = pChunk; + p->nShmChunk++; + } + } + if( rc==LSM_OK ){ + db->apShm[i] = p->apShmChunk[i]; + db->nShm++; + } + } + + /* Release the client mutex */ + lsmMutexLeave(pEnv, p->pClientMutex); + } + } + + return rc; +} + +static int lockSharedFile(lsm_env *pEnv, Database *p, int iLock, int eOp){ + int rc = LSM_OK; + if( p->bMultiProc ){ + rc = lsmEnvLock(pEnv, p->pFile, iLock, eOp); + } + return rc; +} + +/* +** Test if it would be possible for connection db to obtain a lock of type +** eType on the nLock locks starting at iLock. If so, return LSM_OK. If it +** would not be possible to obtain the lock due to a lock held by another +** connection, return LSM_BUSY. If an IO or other error occurs (i.e. in the +** lsm_env.xTestLock function), return some other LSM error code. +** +** Note that this function never actually locks the database - it merely +** queries the system to see if there exists a lock that would prevent +** it from doing so. +*/ +int lsmShmTestLock( + lsm_db *db, + int iLock, + int nLock, + int eOp +){ + int rc = LSM_OK; + lsm_db *pIter; + Database *p = db->pDatabase; + int i; + u64 mask = 0; + + for(i=iLock; i<(iLock+nLock); i++){ + mask |= ((u64)1 << (iLock-1)); + if( eOp==LSM_LOCK_EXCL ) mask |= ((u64)1 << (iLock+32-1)); + } + + lsmMutexEnter(db->pEnv, p->pClientMutex); + for(pIter=p->pConn; pIter; pIter=pIter->pNext){ + if( pIter!=db && (pIter->mLock & mask) ) break; + } + + if( pIter ){ + rc = LSM_BUSY; + }else if( p->bMultiProc ){ + rc = lsmEnvTestLock(db->pEnv, p->pFile, iLock, nLock, eOp); + } + + lsmMutexLeave(db->pEnv, p->pClientMutex); + return rc; +} + +/* +** Attempt to obtain the lock identified by the iLock and bExcl parameters. +** If successful, return LSM_OK. If the lock cannot be obtained because +** there exists some other conflicting lock, return LSM_BUSY. If some other +** error occurs, return an LSM error code. +** +** Parameter iLock must be one of LSM_LOCK_WRITER, WORKER or CHECKPOINTER, +** or else a value returned by the LSM_LOCK_READER macro. +*/ +int lsmShmLock( + lsm_db *db, + int iLock, + int eOp, /* One of LSM_LOCK_UNLOCK, SHARED or EXCL */ + int bBlock /* True for a blocking lock */ +){ + lsm_db *pIter; + const u64 me = ((u64)1 << (iLock-1)); + const u64 ms = ((u64)1 << (iLock+32-1)); + int rc = LSM_OK; + Database *p = db->pDatabase; + + assert( eOp!=LSM_LOCK_EXCL || p->bReadonly==0 ); + assert( iLock>=1 && iLock<=LSM_LOCK_RWCLIENT(LSM_LOCK_NRWCLIENT-1) ); + assert( LSM_LOCK_RWCLIENT(LSM_LOCK_NRWCLIENT-1)<=32 ); + assert( eOp==LSM_LOCK_UNLOCK || eOp==LSM_LOCK_SHARED || eOp==LSM_LOCK_EXCL ); + + /* Check for a no-op. Proceed only if this is not one of those. */ + if( (eOp==LSM_LOCK_UNLOCK && (db->mLock & (me|ms))!=0) + || (eOp==LSM_LOCK_SHARED && (db->mLock & (me|ms))!=ms) + || (eOp==LSM_LOCK_EXCL && (db->mLock & me)==0) + ){ + int nExcl = 0; /* Number of connections holding EXCLUSIVE */ + int nShared = 0; /* Number of connections holding SHARED */ + lsmMutexEnter(db->pEnv, p->pClientMutex); + + /* Figure out the locks currently held by this process on iLock, not + ** including any held by connection db. */ + for(pIter=p->pConn; pIter; pIter=pIter->pNext){ + assert( (pIter->mLock & me)==0 || (pIter->mLock & ms)!=0 ); + if( pIter!=db ){ + if( pIter->mLock & me ){ + nExcl++; + }else if( pIter->mLock & ms ){ + nShared++; + } + } + } + assert( nExcl==0 || nExcl==1 ); + assert( nExcl==0 || nShared==0 ); + assert( nExcl==0 || (db->mLock & (me|ms))==0 ); + + switch( eOp ){ + case LSM_LOCK_UNLOCK: + if( nShared==0 ){ + lockSharedFile(db->pEnv, p, iLock, LSM_LOCK_UNLOCK); + } + db->mLock &= ~(me|ms); + break; + + case LSM_LOCK_SHARED: + if( nExcl ){ + rc = LSM_BUSY; + }else{ + if( nShared==0 ){ + rc = lockSharedFile(db->pEnv, p, iLock, LSM_LOCK_SHARED); + } + if( rc==LSM_OK ){ + db->mLock |= ms; + db->mLock &= ~me; + } + } + break; + + default: + assert( eOp==LSM_LOCK_EXCL ); + if( nExcl || nShared ){ + rc = LSM_BUSY; + }else{ + rc = lockSharedFile(db->pEnv, p, iLock, LSM_LOCK_EXCL); + if( rc==LSM_OK ){ + db->mLock |= (me|ms); + } + } + break; + } + + lsmMutexLeave(db->pEnv, p->pClientMutex); + } + + return rc; +} + +#ifdef LSM_DEBUG + +int shmLockType(lsm_db *db, int iLock){ + const u64 me = ((u64)1 << (iLock-1)); + const u64 ms = ((u64)1 << (iLock+32-1)); + + if( db->mLock & me ) return LSM_LOCK_EXCL; + if( db->mLock & ms ) return LSM_LOCK_SHARED; + return LSM_LOCK_UNLOCK; +} + +/* +** The arguments passed to this function are similar to those passed to +** the lsmShmLock() function. However, instead of obtaining a new lock +** this function returns true if the specified connection already holds +** (or does not hold) such a lock, depending on the value of eOp. As +** follows: +** +** (eOp==LSM_LOCK_UNLOCK) -> true if db has no lock on iLock +** (eOp==LSM_LOCK_SHARED) -> true if db has at least a SHARED lock on iLock. +** (eOp==LSM_LOCK_EXCL) -> true if db has an EXCLUSIVE lock on iLock. +*/ +int lsmShmAssertLock(lsm_db *db, int iLock, int eOp){ + int ret; + int eHave; + + assert( iLock>=1 && iLock<=LSM_LOCK_READER(LSM_LOCK_NREADER-1) ); + assert( iLock<=16 ); + assert( eOp==LSM_LOCK_UNLOCK || eOp==LSM_LOCK_SHARED || eOp==LSM_LOCK_EXCL ); + + eHave = shmLockType(db, iLock); + + switch( eOp ){ + case LSM_LOCK_UNLOCK: + ret = (eHave==LSM_LOCK_UNLOCK); + break; + case LSM_LOCK_SHARED: + ret = (eHave!=LSM_LOCK_UNLOCK); + break; + case LSM_LOCK_EXCL: + ret = (eHave==LSM_LOCK_EXCL); + break; + default: + assert( !"bad eOp value passed to lsmShmAssertLock()" ); + break; + } + + return ret; +} + +int lsmShmAssertWorker(lsm_db *db){ + return lsmShmAssertLock(db, LSM_LOCK_WORKER, LSM_LOCK_EXCL) && db->pWorker; +} + +/* +** This function does not contribute to library functionality, and is not +** included in release builds. It is intended to be called from within +** an interactive debugger. +** +** When called, this function prints a single line of human readable output +** to stdout describing the locks currently held by the connection. For +** example: +** +** (gdb) call print_db_locks(pDb) +** (shared on dms2) (exclusive on writer) +*/ +void print_db_locks(lsm_db *db){ + int iLock; + for(iLock=0; iLock<16; iLock++){ + int bOne = 0; + const char *azLock[] = {0, "shared", "exclusive"}; + const char *azName[] = { + 0, "dms1", "dms2", "writer", "worker", "checkpointer", + "reader0", "reader1", "reader2", "reader3", "reader4", "reader5" + }; + int eHave = shmLockType(db, iLock); + if( azLock[eHave] ){ + printf("%s(%s on %s)", (bOne?" ":""), azLock[eHave], azName[iLock]); + bOne = 1; + } + } + printf("\n"); +} +void print_all_db_locks(lsm_db *db){ + lsm_db *p; + for(p=db->pDatabase->pConn; p; p=p->pNext){ + printf("%s connection %p ", ((p==db)?"*":""), p); + print_db_locks(p); + } +} +#endif + +void lsmShmBarrier(lsm_db *db){ + lsmEnvShmBarrier(db->pEnv); +} + +int lsm_checkpoint(lsm_db *pDb, int *pnKB){ + int rc; /* Return code */ + u32 nWrite = 0; /* Number of pages checkpointed */ + + /* Attempt the checkpoint. If successful, nWrite is set to the number of + ** pages written between this and the previous checkpoint. */ + rc = lsmCheckpointWrite(pDb, 0, &nWrite); + + /* If required, calculate the output variable (KB of data checkpointed). + ** Set it to zero if an error occured. */ + if( pnKB ){ + int nKB = 0; + if( rc==LSM_OK && nWrite ){ + nKB = (((i64)nWrite * lsmFsPageSize(pDb->pFS)) + 1023) / 1024; + } + *pnKB = nKB; + } + + return rc; +} ADDED ext/lsm1/lsm_sorted.c Index: ext/lsm1/lsm_sorted.c ================================================================== --- /dev/null +++ ext/lsm1/lsm_sorted.c @@ -0,0 +1,6149 @@ +/* +** 2011-08-14 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** PAGE FORMAT: +** +** The maximum page size is 65536 bytes. +** +** Since all records are equal to or larger than 2 bytes in size, and +** some space within the page is consumed by the page footer, there must +** be less than 2^15 records on each page. +** +** Each page ends with a footer that describes the pages contents. This +** footer serves as similar purpose to the page header in an SQLite database. +** A footer is used instead of a header because it makes it easier to +** populate a new page based on a sorted list of key/value pairs. +** +** The footer consists of the following values (starting at the end of +** the page and continuing backwards towards the start). All values are +** stored as unsigned big-endian integers. +** +** * Number of records on page (2 bytes). +** * Flags field (2 bytes). +** * Left-hand pointer value (8 bytes). +** * The starting offset of each record (2 bytes per record). +** +** Records may span pages. Unless it happens to be an exact fit, the part +** of the final record that starts on page X that does not fit on page X +** is stored at the start of page (X+1). This means there may be pages where +** (N==0). And on most pages the first record that starts on the page will +** not start at byte offset 0. For example: +** +** aaaaa bbbbb ccc