/ Check-in [a32af0ab]
Login
SQLite training in Houston TX on 2019-11-05 (details)
Part of the 2019 Tcl Conference

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge the STAT4 capability into trunk.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: a32af0abe5fa6d570604fa3534e8230d5b6042fc
User & Date: drh 2013-08-26 23:18:06
References
2014-02-10
22:46 New ticket [4c86b126] Incorrect query result with SQLITE_ENABLE_STAT4. artifact: a444fa6b user: drh
Context
2013-08-27
14:14
In the ANALYZE command implementation make statInit() a 2-value function since the 3rd parameter was always the same constant. check-in: 959bb5ac user: drh tags: trunk
2013-08-26
23:18
Merge the STAT4 capability into trunk. check-in: a32af0ab user: drh tags: trunk
14:30
Fix for builds with both SQLITE_OMIT_WAL and SQLITE_MAX_MMAP_SIZE=0 defined. check-in: edd5dbdc user: dan tags: trunk
2013-08-17
18:57
Adjustments to #ifdefs in analyze.c to all a clean compile with no extra code with both ENABLE_STAT3 and ENABLE_STAT4 and with neither. Closed-Leaf check-in: f86b75b6 user: drh tags: sqlite_stat4
Changes
Hide Diffs Unified Diffs Show Whitespace Changes Patch

Changes to src/alter.c.

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    return;
  }

  /* Ensure the default expression is something that sqlite3ValueFromExpr()
  ** can handle (i.e. not CURRENT_TIME etc.)
  */
  if( pDflt ){
    sqlite3_value *pVal;
    if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
      db->mallocFailed = 1;
      return;
    }
    if( !pVal ){
      sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
      return;







|







683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    return;
  }

  /* Ensure the default expression is something that sqlite3ValueFromExpr()
  ** can handle (i.e. not CURRENT_TIME etc.)
  */
  if( pDflt ){
    sqlite3_value *pVal = 0;
    if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
      db->mallocFailed = 1;
      return;
    }
    if( !pVal ){
      sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
      return;

Changes to src/analyze.c.

16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31





32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
..
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

















115
116
117
118














119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
...
140
141
142
143
144
145
146



147
148

149
150
151
152
153
154
155
...
164
165
166
167
168
169
170

171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245






246
247
248
249
250
251
252
253



254

255
256
257




258





259
260
261
262
263
264

265

266
267





268

















269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284







285












286


























































































































































287
288
289
290

291
292
293
294
295
296
297
298



299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321


322


323
324
325
326
327
328













329
330

331


332
333
334
335
336
337

338
339
340







341
342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359





360
361
362
363


364
365
366
367
368
369
370
371
372
373
374
375
376
377






378
379
380
381
382

383
384
385
386
387




388
389
390
391
392
393



394
395









396
397



























398
399






















400
















401
402
403










404



405




406
407
408
409
410
411
412
413
414
415
416
417
418
419
420










421
422
423
424
425
426
427
428
429
430
431
432
433

434
435
436
437

438
439
440
441
442
443
444





445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

469
470
471
472
473
474
475
...
485
486
487
488
489
490
491
492



493
494

495


496

497
498

499
500
501



502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680


681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
...
715
716
717
718
719
720
721

722
723
724
725
726
727

728
729
730
731
732
733
734
735
736
737
738
...
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
...
831
832
833
834
835
836
837

































838
839
840
841
842
843
844
...
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
...
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887



888
889


890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925














































926






927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950



951
952
953



954
955
956
957
958
959
960






961




962
963
964
965
966
967
968








969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053



1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
....
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
....
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
** to help it make better decisions about how to perform queries.
**
** The following system tables are or have been supported:
**
**    CREATE TABLE sqlite_stat1(tbl, idx, stat);
**    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
**    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);

**
** Additional tables might be added in future releases of SQLite.
** The sqlite_stat2 table is not created or used unless the SQLite version
** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
** created and used by SQLite versions 3.7.9 and later and with
** SQLITE_ENABLE_STAT3 defined.  The fucntionality of sqlite_stat3
** is a superset of sqlite_stat2.  





**
** Format of sqlite_stat1:
**
** There is normally one row per index, with the index identified by the
** name in the idx column.  The tbl column is the name of the table to
** which the index belongs.  In each such row, the stat column will be
** a string consisting of a list of integers.  The first integer in this
** list is the number of rows in the index and in the table.  The second

** integer is the average number of rows in the index that have the same
** value in the first column of the index.  The third integer is the average
** number of rows in the index that have the same value for the first two
** columns.  The N-th integer (for N>1) is the average number of rows in 
** the index which have the same value for the first N-1 columns.  For
** a K-column index, there will be K+1 integers in the stat column.  If
** the index is unique, then the last integer will be 1.
................................................................................
** The format for sqlite_stat2 is recorded here for legacy reference.  This
** version of SQLite does not support sqlite_stat2.  It neither reads nor
** writes the sqlite_stat2 table.  This version of SQLite only supports
** sqlite_stat3.
**
** Format for sqlite_stat3:
**
** The sqlite_stat3 is an enhancement to sqlite_stat2.  A new name is
** used to avoid compatibility problems.  
**
** The format of the sqlite_stat3 table is similar to the format of
** the sqlite_stat2 table.  There are multiple entries for each index.
** The idx column names the index and the tbl column is the table of the
** index.  If the idx and tbl columns are the same, then the sample is
** of the INTEGER PRIMARY KEY.  The sample column is a value taken from
** the left-most column of the index.  The nEq column is the approximate
** number of entires in the index whose left-most column exactly matches
** the sample.  nLt is the approximate number of entires whose left-most
** column is less than the sample.  The nDLt column is the approximate
** number of distinct left-most entries in the index that are less than
** the sample.
**
** Future versions of SQLite might change to store a string containing
** multiple integers values in the nDLt column of sqlite_stat3.  The first
** integer will be the number of prior index entires that are distinct in
** the left-most column.  The second integer will be the number of prior index
** entries that are distinct in the first two columns.  The third integer
** will be the number of prior index entries that are distinct in the first
** three columns.  And so forth.  With that extension, the nDLt field is
** similar in function to the sqlite_stat1.stat field.
**
** There can be an arbitrary number of sqlite_stat3 entries per index.
** The ANALYZE command will typically generate sqlite_stat3 tables
** that contain between 10 and 40 samples which are distributed across
** the key space, though not uniformly, and which include samples with
** largest possible nEq values.

















*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"















/*
** This routine generates code that opens the sqlite_stat1 table for
** writing with cursor iStatCur. If the library was built with the
** SQLITE_ENABLE_STAT3 macro defined, then the sqlite_stat3 table is
** opened for writing using cursor (iStatCur+1)
**
** If the sqlite_stat1 tables does not previously exist, it is created.
** Similarly, if the sqlite_stat3 table does not exist and the library
** is compiled with SQLITE_ENABLE_STAT3 defined, it is created. 
**
** Argument zWhere may be a pointer to a buffer containing a table name,
** or it may be a NULL pointer. If it is not NULL, then all entries in
** the sqlite_stat1 and (if applicable) sqlite_stat3 tables associated
** with the named table are deleted. If zWhere==0, then code is generated
** to delete all stat table entries.
*/
static void openStatTable(
  Parse *pParse,          /* Parsing context */
  int iDb,                /* The database we are looking in */
  int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
................................................................................
  const char *zWhereType  /* Either "tbl" or "idx" */
){
  static const struct {
    const char *zName;
    const char *zCols;
  } aTable[] = {
    { "sqlite_stat1", "tbl,idx,stat" },



#ifdef SQLITE_ENABLE_STAT3
    { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },

#endif
  };

  int aRoot[] = {0, 0};
  u8 aCreateTbl[] = {0, 0};

  int i;
................................................................................
  /* Create new statistic tables if they do not exist, or clear them
  ** if they do already exist.
  */
  for(i=0; i<ArraySize(aTable); i++){
    const char *zTab = aTable[i].zName;
    Table *pStat;
    if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){

      /* The sqlite_stat[12] table does not exist. Create it. Note that a 
      ** side-effect of the CREATE TABLE statement is to leave the rootpage 
      ** of the new table in register pParse->regRoot. This is important 
      ** because the OpenWrite opcode below will be needing it. */
      sqlite3NestedParse(pParse,
          "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
      );
      aRoot[i] = pParse->regRoot;
      aCreateTbl[i] = OPFLAG_P2ISREG;

    }else{
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */
      aRoot[i] = pStat->tnum;
      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){
        sqlite3NestedParse(pParse,
           "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere
        );
      }else{
        /* The sqlite_stat[12] table already exists.  Delete all rows. */
        sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
      }
    }
  }

  /* Open the sqlite_stat[13] tables for writing. */
  for(i=0; i<ArraySize(aTable); i++){
    sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
    sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
    sqlite3VdbeChangeP5(v, aCreateTbl[i]);

  }
}

/*
** Recommended number of samples for sqlite_stat3
*/
#ifndef SQLITE_STAT3_SAMPLES
# define SQLITE_STAT3_SAMPLES 24
#endif

/*
** Three SQL functions - stat3_init(), stat3_push(), and stat3_pop() -
** share an instance of the following structure to hold their state
** information.
*/
typedef struct Stat3Accum Stat3Accum;
struct Stat3Accum {
  tRowcnt nRow;             /* Number of rows in the entire table */
  tRowcnt nPSample;         /* How often to do a periodic sample */
  int iMin;                 /* Index of entry with minimum nEq and hash */
  int mxSample;             /* Maximum number of samples to accumulate */
  int nSample;              /* Current number of samples */
  u32 iPrn;                 /* Pseudo-random number used for sampling */
  struct Stat3Sample {
    i64 iRowid;                /* Rowid in main table of the key */
    tRowcnt nEq;               /* sqlite_stat3.nEq */
    tRowcnt nLt;               /* sqlite_stat3.nLt */
    tRowcnt nDLt;              /* sqlite_stat3.nDLt */
    u8 isPSample;              /* True if a periodic sample */
    u32 iHash;                 /* Tiebreaker hash */
  } *a;                     /* An array of samples */
};

#ifdef SQLITE_ENABLE_STAT3
/*
** Implementation of the stat3_init(C,S) SQL function.  The two parameters
** are the number of rows in the table or index (C) and the number of samples
** to accumulate (S).
**
** This routine allocates the Stat3Accum object.
**
** The return value is the Stat3Accum object (P).
*/
static void stat3Init(






  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  Stat3Accum *p;
  tRowcnt nRow;
  int mxSample;
  int n;





  UNUSED_PARAMETER(argc);
  nRow = (tRowcnt)sqlite3_value_int64(argv[0]);
  mxSample = sqlite3_value_int(argv[1]);




  n = sizeof(*p) + sizeof(p->a[0])*mxSample;





  p = sqlite3MallocZero( n );
  if( p==0 ){
    sqlite3_result_error_nomem(context);
    return;
  }
  p->a = (struct Stat3Sample*)&p[1];

  p->nRow = nRow;

  p->mxSample = mxSample;
  p->nPSample = p->nRow/(mxSample/3+1) + 1;





  sqlite3_randomness(sizeof(p->iPrn), &p->iPrn);

















  sqlite3_result_blob(context, p, sizeof(p), sqlite3_free);
}
static const FuncDef stat3InitFuncdef = {
  2,                /* nArg */
  SQLITE_UTF8,      /* iPrefEnc */
  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Init,        /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_init",     /* zName */
  0,                /* pHash */
  0                 /* pDestructor */
};





















/*


























































































































































** Implementation of the stat3_push(nEq,nLt,nDLt,rowid,P) SQL function.  The
** arguments describe a single key instance.  This routine makes the 
** decision about whether or not to retain this key for the sqlite_stat3
** table.

**
** The return value is NULL.
*/
static void stat3Push(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){



  Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[4]);
  tRowcnt nEq = sqlite3_value_int64(argv[0]);
  tRowcnt nLt = sqlite3_value_int64(argv[1]);
  tRowcnt nDLt = sqlite3_value_int64(argv[2]);
  i64 rowid = sqlite3_value_int64(argv[3]);
  u8 isPSample = 0;
  u8 doInsert = 0;
  int iMin = p->iMin;
  struct Stat3Sample *pSample;
  int i;
  u32 h;

  UNUSED_PARAMETER(context);
  UNUSED_PARAMETER(argc);
  if( nEq==0 ) return;
  h = p->iPrn = p->iPrn*1103515245 + 12345;
  if( (nLt/p->nPSample)!=((nEq+nLt)/p->nPSample) ){
    doInsert = isPSample = 1;
  }else if( p->nSample<p->mxSample ){
    doInsert = 1;
  }else{
    if( nEq>p->a[iMin].nEq || (nEq==p->a[iMin].nEq && h>p->a[iMin].iHash) ){
      doInsert = 1;


    }


  }
  if( !doInsert ) return;
  if( p->nSample==p->mxSample ){
    assert( p->nSample - iMin - 1 >= 0 );
    memmove(&p->a[iMin], &p->a[iMin+1], sizeof(p->a[0])*(p->nSample-iMin-1));
    pSample = &p->a[p->nSample-1];













  }else{
    pSample = &p->a[p->nSample++];

  }


  pSample->iRowid = rowid;
  pSample->nEq = nEq;
  pSample->nLt = nLt;
  pSample->nDLt = nDLt;
  pSample->iHash = h;
  pSample->isPSample = isPSample;


  /* Find the new minimum */
  if( p->nSample==p->mxSample ){







    pSample = p->a;
    i = 0;

    while( pSample->isPSample ){
      i++;
      pSample++;
      assert( i<p->nSample );
    }
    nEq = pSample->nEq;
    h = pSample->iHash;
    iMin = i;
    for(i++, pSample++; i<p->nSample; i++, pSample++){
      if( pSample->isPSample ) continue;
      if( pSample->nEq<nEq
       || (pSample->nEq==nEq && pSample->iHash<h)
      ){
        iMin = i;
        nEq = pSample->nEq;
        h = pSample->iHash;
      }





    }
    p->iMin = iMin;
  }
}


static const FuncDef stat3PushFuncdef = {
  5,                /* nArg */
  SQLITE_UTF8,      /* iPrefEnc */
  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Push,        /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_push",     /* zName */
  0,                /* pHash */
  0                 /* pDestructor */
};







/*
** Implementation of the stat3_get(P,N,...) SQL function.  This routine is
** used to query the results.  Content is returned for the Nth sqlite_stat3
** row where N is between 0 and S-1 and S is the number of samples.  The
** value returned depends on the number of arguments.

**
**   argc==2    result:  rowid
**   argc==3    result:  nEq
**   argc==4    result:  nLt
**   argc==5    result:  nDLt




*/
static void stat3Get(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){



  int n = sqlite3_value_int(argv[1]);
  Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[0]);










  assert( p!=0 );



























  if( p->nSample<=n ) return;
  switch( argc ){






















    case 2:  sqlite3_result_int64(context, p->a[n].iRowid); break;
















    case 3:  sqlite3_result_int64(context, p->a[n].nEq);    break;
    case 4:  sqlite3_result_int64(context, p->a[n].nLt);    break;
    default: sqlite3_result_int64(context, p->a[n].nDLt);   break;










  }



}




static const FuncDef stat3GetFuncdef = {
  -1,               /* nArg */
  SQLITE_UTF8,      /* iPrefEnc */
  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Get,         /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_get",     /* zName */
  0,                /* pHash */
  0                 /* pDestructor */
};
#endif /* SQLITE_ENABLE_STAT3 */














/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
  Table *pTab,     /* Table whose indices are to be analyzed */
  Index *pOnlyIdx, /* If not NULL, only analyze this one index */
  int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
  int iMem         /* Available memory locations begin here */

){
  sqlite3 *db = pParse->db;    /* Database handle */
  Index *pIdx;                 /* An index to being analyzed */
  int iIdxCur;                 /* Cursor open on index being analyzed */

  Vdbe *v;                     /* The virtual machine being built up */
  int i;                       /* Loop counter */
  int topOfLoop;               /* The top of the loop */
  int endOfLoop;               /* The end of the loop */
  int jZeroRows = -1;          /* Jump from here if number of rows is zero */
  int iDb;                     /* Index of database containing pTab */
  u8 needTableCnt = 1;         /* True to count the table */





  int regTabname = iMem++;     /* Register containing table name */
  int regIdxname = iMem++;     /* Register containing index name */
  int regStat1 = iMem++;       /* The stat column of sqlite_stat1 */
#ifdef SQLITE_ENABLE_STAT3
  int regNumEq = regStat1;     /* Number of instances.  Same as regStat1 */
  int regNumLt = iMem++;       /* Number of keys less than regSample */
  int regNumDLt = iMem++;      /* Number of distinct keys less than regSample */
  int regSample = iMem++;      /* The next sample value */
  int regRowid = regSample;    /* Rowid of a sample */
  int regAccum = iMem++;       /* Register to hold Stat3Accum object */
  int regLoop = iMem++;        /* Loop counter */
  int regCount = iMem++;       /* Number of rows in the table or index */
  int regTemp1 = iMem++;       /* Intermediate register */
  int regTemp2 = iMem++;       /* Intermediate register */
  int once = 1;                /* One-time initialization */
  int shortJump = 0;           /* Instruction address */
  int iTabCur = pParse->nTab++; /* Table cursor */
#endif
  int regCol = iMem++;         /* Content of a column in analyzed table */
  int regRec = iMem++;         /* Register holding completed record */
  int regTemp = iMem++;        /* Temporary use register */
  int regNewRowid = iMem++;    /* Rowid for the inserted record */



  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( pTab->tnum==0 ){
    /* Do not gather statistics on views or virtual tables */
    return;
................................................................................
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      db->aDb[iDb].zName ) ){
    return;
  }
#endif

  /* Establish a read-lock on the table at the shared-cache level. */



  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);


  iIdxCur = pParse->nTab++;


  sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);

  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol;

    KeyInfo *pKey;
    int addrIfNot = 0;           /* address of OP_IfNot */
    int *aChngAddr;              /* Array of jump instruction addresses */




    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
    VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
    nCol = pIdx->nColumn;
    aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol);
    if( aChngAddr==0 ) continue;
    pKey = sqlite3IndexKeyinfo(pParse, pIdx);
    if( iMem+1+(nCol*2)>pParse->nMem ){
      pParse->nMem = iMem+1+(nCol*2);
    }

    /* Open a cursor to the index to be analyzed. */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
        (char *)pKey, P4_KEYINFO_HANDOFF);
    VdbeComment((v, "%s", pIdx->zName));

    /* Populate the register containing the index name. */
    sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);

#ifdef SQLITE_ENABLE_STAT3
    if( once ){
      once = 0;
      sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
    }
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount);
    sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT3_SAMPLES, regTemp1);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumEq);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumLt);
    sqlite3VdbeAddOp2(v, OP_Integer, -1, regNumDLt);
    sqlite3VdbeAddOp3(v, OP_Null, 0, regSample, regAccum);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regCount, regAccum,
                      (char*)&stat3InitFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2);
#endif /* SQLITE_ENABLE_STAT3 */

    /* The block of memory cells initialized here is used as follows.
    **
    **    iMem:                
    **        The total number of rows in the table.
    **
    **    iMem+1 .. iMem+nCol: 
    **        Number of distinct entries in index considering the 
    **        left-most N columns only, where N is between 1 and nCol, 
    **        inclusive.
    **
    **    iMem+nCol+1 .. Mem+2*nCol:  
    **        Previous value of indexed columns, from left to right.
    **
    ** Cells iMem through iMem+nCol are initialized to 0. The others are 
    ** initialized to contain an SQL NULL.
    */
    for(i=0; i<=nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
    }

    /* Start the analysis loop. This loop runs through all the entries in
    ** the index b-tree.  */
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);  /* Increment row counter */

    for(i=0; i<nCol; i++){
      CollSeq *pColl;
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
      if( i==0 ){
        /* Always record the very first row */
        addrIfNot = sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1);
      }
      assert( pIdx->azColl!=0 );
      assert( pIdx->azColl[i]!=0 );
      pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      aChngAddr[i] = sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1,
                                      (char*)pColl, P4_COLLSEQ);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
      VdbeComment((v, "jump if column %d changed", i));
#ifdef SQLITE_ENABLE_STAT3
      if( i==0 ){
        sqlite3VdbeAddOp2(v, OP_AddImm, regNumEq, 1);
        VdbeComment((v, "incr repeat count"));
      }
#endif
    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      sqlite3VdbeJumpHere(v, aChngAddr[i]);  /* Set jump dest for the OP_Ne */
      if( i==0 ){
        sqlite3VdbeJumpHere(v, addrIfNot);   /* Jump dest for OP_IfNot */
#ifdef SQLITE_ENABLE_STAT3
        sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
                          (char*)&stat3PushFuncdef, P4_FUNCDEF);
        sqlite3VdbeChangeP5(v, 5);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, pIdx->nColumn, regRowid);
        sqlite3VdbeAddOp3(v, OP_Add, regNumEq, regNumLt, regNumLt);
        sqlite3VdbeAddOp2(v, OP_AddImm, regNumDLt, 1);
        sqlite3VdbeAddOp2(v, OP_Integer, 1, regNumEq);
#endif        
      }
      sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
    }
    sqlite3DbFree(db, aChngAddr);

    /* Always jump here after updating the iMem+1...iMem+1+nCol counters */
    sqlite3VdbeResolveLabel(v, endOfLoop);

    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
#ifdef SQLITE_ENABLE_STAT3
    sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
                      (char*)&stat3PushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 5);
    sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop);
    shortJump = 
    sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regTemp1,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2);
    sqlite3VdbeAddOp1(v, OP_IsNull, regTemp1);
    sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, shortJump, regTemp1);
    sqlite3VdbeAddOp3(v, OP_Column, iTabCur, pIdx->aiColumn[0], regSample);
    sqlite3ColumnDefault(v, pTab, pIdx->aiColumn[0], regSample);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumEq,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 3);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumLt,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 4);
    sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumDLt,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 5);
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regRec, "bbbbbb", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regNewRowid);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, shortJump);
    sqlite3VdbeJumpHere(v, shortJump+2);
#endif        

    /* Store the results in sqlite_stat1.
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entries
    ** in the index.  There is one additional integer in the list for each
    ** column of the table.  This additional integer is a guess of how many
    ** rows of the table the index will select.  If D is the count of distinct
    ** values and K is the total number of rows, then the integer is computed
    ** as:
    **
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regStat1);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
      sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
      sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
      sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
      sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
    }
    if( pIdx->pPartIdxWhere!=0 ) sqlite3VdbeJumpHere(v, jZeroRows);
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    if( pIdx->pPartIdxWhere==0 ) sqlite3VdbeJumpHere(v, jZeroRows);
  }



  /* Create a single sqlite_stat1 entry containing NULL as the index
  ** name and the row count as the content.
  */
  if( pOnlyIdx==0 && needTableCnt ){
    sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat1);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
    sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, jZeroRows);
  }
  if( pParse->nMem<regRec ) pParse->nMem = regRec;
}


/*
** Generate code that will cause the most recent index analysis to
** be loaded into internal hash tables where is can be used.
*/
................................................................................
*/
static void analyzeDatabase(Parse *pParse, int iDb){
  sqlite3 *db = pParse->db;
  Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
  HashElem *k;
  int iStatCur;
  int iMem;


  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  openStatTable(pParse, iDb, iStatCur, 0, 0);
  iMem = pParse->nMem+1;

  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, 0, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
}

/*
** Generate code that will do an analysis of a single table in
** a database.  If pOnlyIdx is not NULL then it is a single index
................................................................................
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  if( pOnlyIdx ){
    openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
  }else{
    openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
  }
  analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1);
  loadAnalysis(pParse, iDb);
}

/*
** Generate code for the ANALYZE command.  The parser calls this routine
** when it recognizes an ANALYZE command.
**
................................................................................
** callback routine.
*/
typedef struct analysisInfo analysisInfo;
struct analysisInfo {
  sqlite3 *db;
  const char *zDatabase;
};


































/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.  
**
**     argv[0] = name of the table
**     argv[1] = name of the index (might be NULL)
................................................................................
** Entries for which argv[1]==NULL simply record the number of rows in
** the table.
*/
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
  analysisInfo *pInfo = (analysisInfo*)pData;
  Index *pIndex;
  Table *pTable;
  int i, c, n;
  tRowcnt v;
  const char *z;

  assert( argc==3 );
  UNUSED_PARAMETER2(NotUsed, argc);

  if( argv==0 || argv[0]==0 || argv[2]==0 ){
    return 0;
................................................................................
    return 0;
  }
  if( argv[1] ){
    pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
  }else{
    pIndex = 0;
  }
  n = pIndex ? pIndex->nColumn : 0;
  z = argv[2];
  for(i=0; *z && i<=n; i++){
    v = 0;
    while( (c=z[0])>='0' && c<='9' ){
      v = v*10 + c - '0';
      z++;
    }
    if( i==0 && (pIndex==0 || pIndex->pPartIdxWhere==0) ){
      if( v>0 ) pTable->nRowEst = v;
      if( pIndex==0 ) break;
    }
    pIndex->aiRowEst[i] = v;
    if( *z==' ' ) z++;
    if( strcmp(z, "unordered")==0 ){



      pIndex->bUnordered = 1;
      break;


    }
  }
  return 0;
}

/*
** If the Index.aSample variable is not NULL, delete the aSample[] array
** and its contents.
*/
void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
#ifdef SQLITE_ENABLE_STAT3
  if( pIdx->aSample ){
    int j;
    for(j=0; j<pIdx->nSample; j++){
      IndexSample *p = &pIdx->aSample[j];
      if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
        sqlite3DbFree(db, p->u.z);
      }
    }
    sqlite3DbFree(db, pIdx->aSample);
  }
  if( db && db->pnBytesFreed==0 ){
    pIdx->nSample = 0;
    pIdx->aSample = 0;
  }
#else
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(pIdx);
#endif
}

#ifdef SQLITE_ENABLE_STAT3
/*
** Load content from the sqlite_stat3 table into the Index.aSample[]
** arrays of all indices.
*/














































static int loadStat3(sqlite3 *db, const char *zDb){






  int rc;                       /* Result codes from subroutines */
  sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
  char *zSql;                   /* Text of the SQL statement */
  Index *pPrevIdx = 0;          /* Previous index in the loop */
  int idx = 0;                  /* slot in pIdx->aSample[] for next sample */
  int eType;                    /* Datatype of a sample */
  IndexSample *pSample;         /* A slot in pIdx->aSample[] */

  assert( db->lookaside.bEnabled==0 );
  if( !sqlite3FindTable(db, "sqlite_stat3", zDb) ){
    return SQLITE_OK;
  }

  zSql = sqlite3MPrintf(db, 
      "SELECT idx,count(*) FROM %Q.sqlite_stat3"
      " GROUP BY idx", zDb);
  if( !zSql ){
    return SQLITE_NOMEM;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){



    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int nSample;    /* Number of samples */




    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    nSample = sqlite3_column_int(pStmt, 1);
    pIdx = sqlite3FindIndex(db, zIndex, zDb);
    if( pIdx==0 ) continue;
    assert( pIdx->nSample==0 );






    pIdx->nSample = nSample;




    pIdx->aSample = sqlite3DbMallocZero(db, nSample*sizeof(IndexSample));
    pIdx->avgEq = pIdx->aiRowEst[1];
    if( pIdx->aSample==0 ){
      db->mallocFailed = 1;
      sqlite3_finalize(pStmt);
      return SQLITE_NOMEM;
    }








  }
  rc = sqlite3_finalize(pStmt);
  if( rc ) return rc;

  zSql = sqlite3MPrintf(db, 
      "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat3", zDb);
  if( !zSql ){
    return SQLITE_NOMEM;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int i;          /* Loop counter */
    tRowcnt sumEq;  /* Sum of the nEq values */

    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    pIdx = sqlite3FindIndex(db, zIndex, zDb);
    if( pIdx==0 ) continue;
    if( pIdx==pPrevIdx ){
      idx++;
    }else{
      pPrevIdx = pIdx;
      idx = 0;
    }
    assert( idx<pIdx->nSample );
    pSample = &pIdx->aSample[idx];
    pSample->nEq = (tRowcnt)sqlite3_column_int64(pStmt, 1);
    pSample->nLt = (tRowcnt)sqlite3_column_int64(pStmt, 2);
    pSample->nDLt = (tRowcnt)sqlite3_column_int64(pStmt, 3);
    if( idx==pIdx->nSample-1 ){
      if( pSample->nDLt>0 ){
        for(i=0, sumEq=0; i<=idx-1; i++) sumEq += pIdx->aSample[i].nEq;
        pIdx->avgEq = (pSample->nLt - sumEq)/pSample->nDLt;
      }
      if( pIdx->avgEq<=0 ) pIdx->avgEq = 1;
    }
    eType = sqlite3_column_type(pStmt, 4);
    pSample->eType = (u8)eType;
    switch( eType ){
      case SQLITE_INTEGER: {
        pSample->u.i = sqlite3_column_int64(pStmt, 4);
        break;
      }
      case SQLITE_FLOAT: {
        pSample->u.r = sqlite3_column_double(pStmt, 4);
        break;
      }
      case SQLITE_NULL: {
        break;
      }
      default: assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); {
        const char *z = (const char *)(
              (eType==SQLITE_BLOB) ?
              sqlite3_column_blob(pStmt, 4):
              sqlite3_column_text(pStmt, 4)
           );
        int n = z ? sqlite3_column_bytes(pStmt, 4) : 0;
        pSample->nByte = n;
        if( n < 1){
          pSample->u.z = 0;
        }else{
          pSample->u.z = sqlite3DbMallocRaw(db, n);
          if( pSample->u.z==0 ){
            db->mallocFailed = 1;
            sqlite3_finalize(pStmt);
            return SQLITE_NOMEM;
          }
          memcpy(pSample->u.z, z, n);
        }
      }
    }
  }
  return sqlite3_finalize(pStmt);
}
#endif /* SQLITE_ENABLE_STAT3 */

/*
** Load the content of the sqlite_stat1 and sqlite_stat3 tables. The
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
** arrays. The contents of sqlite_stat3 are used to populate the



** Index.aSample[] arrays.
**
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
** is returned. In this case, even if SQLITE_ENABLE_STAT3 was defined 
** during compilation and the sqlite_stat3 table is present, no data is 
** read from it.
**
** If SQLITE_ENABLE_STAT3 was defined during compilation and the 
** sqlite_stat3 table is not present in the database, SQLITE_ERROR is
** returned. However, in this case, data is read from the sqlite_stat1
** table (if it is present) before returning.
**
** If an OOM error occurs, this function always sets db->mallocFailed.
** This means if the caller does not care about other errors, the return
** code may be ignored.
*/
................................................................................
  assert( db->aDb[iDb].pBt!=0 );

  /* Clear any prior statistics */
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3DefaultRowEst(pIdx);
#ifdef SQLITE_ENABLE_STAT3
    sqlite3DeleteIndexSamples(db, pIdx);
    pIdx->aSample = 0;
#endif
  }

  /* Check to make sure the sqlite_stat1 table exists */
  sInfo.db = db;
................................................................................
    rc = SQLITE_NOMEM;
  }else{
    rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat3 table. */
#ifdef SQLITE_ENABLE_STAT3
  if( rc==SQLITE_OK ){
    int lookasideEnabled = db->lookaside.bEnabled;
    db->lookaside.bEnabled = 0;
    rc = loadStat3(db, sInfo.zDatabase);
    db->lookaside.bEnabled = lookasideEnabled;
  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */







>







|
|
>
>
>
>
>







|
>







 







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




>
>
>
>
>
>
>
>
>
>
>
>
>
>



|



|
|



|







 







>
>
>
|

>







 







>









>











|





|
|



>




|

|
|



|



|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
>
>




|
|
|
|
>
>
>

>


|
>
>
>
>
|
>
>
>
>
>





<
>

>


>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|
|
|
|
|
|
|
|
|
|
|
|


>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
<
<
|
>

|

|




>
>
>
|
<
|
<
|
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
>
>
|
>
>
|
<
<
<
<
<
>
>
>
>
>
>
>
>
>
>
>
>
>

<
>

>
>
|
<
<
<
<
<
>
|
<
<
>
>
>
>
>
>
>
|
|
>
|
<
<
<

<
<
<
<
<
<
<
<
<
<
<
|
>
>
>
>
>
|
<
|
|
>
>
|
|
|
|
|
|
|
|
|
|
|
|


>
>
>
>
>
>

|
|
<
<
>

<
<
<
<
>
>
>
>

|




>
>
>
|
<
>
>
>
>
>
>
>
>
>
|
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
<
<
>
>
>
>
>
>
>
>
>
>
|
>
>
>
|
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|

<

>
>
>
>
>
>
>
>
>
>
|

<









|
>




>


<
<



>
>
>
>
>


|
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<

<
>







 







|
>
>
>

<
>
|
>
>

>

<
>
|
<
|
>
>
>





|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>





<

|
<


|

|



<







 







>






>



|







 







|







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







<
<







 







<

<
<
<
<
<
|
<
<
|
<
<
<
<
>
>
>
|
<
>
>
|
|








|




<
|
<










|


|

|
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>




<
<



<
<
<
<
|
<
<








>
>
>



>
>
>





|
|
>
>
>
>
>
>
|
>
>
>
>
|
<

<



>
>
>
>
>
>
>
>




|
<










|
<





|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>



|
|


|
|







 







|







 







|
|



|












16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
..
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
...
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
...
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547


548
549
550
551
552
553
554
555
556
557
558
559
560
561

562

563






564











565
566
567
568
569
570





571
572
573
574
575
576
577
578
579
580
581
582
583
584

585
586
587
588
589





590
591


592
593
594
595
596
597
598
599
600
601
602



603











604
605
606
607
608
609
610

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637


638
639




640
641
642
643
644
645
646
647
648
649
650
651
652
653

654
655
656
657
658
659
660
661
662
663

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731


732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763

764
765
766
767
768
769
770
771
772
773
774
775
776

777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794


795
796
797
798
799
800
801
802
803
804
805





806













807

808
809
810
811
812
813
814
815
...
825
826
827
828
829
830
831
832
833
834
835
836

837
838
839
840
841
842
843

844
845

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

1036
1037

1038
1039
1040
1041
1042
1043
1044
1045

1046
1047
1048
1049
1050
1051
1052
....
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
....
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
....
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
....
1229
1230
1231
1232
1233
1234
1235


1236
1237
1238
1239
1240
1241
1242
....
1246
1247
1248
1249
1250
1251
1252

1253





1254


1255




1256
1257
1258
1259

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

1277

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352


1353
1354
1355




1356


1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392

1393

1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420

1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
....
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
....
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
** to help it make better decisions about how to perform queries.
**
** The following system tables are or have been supported:
**
**    CREATE TABLE sqlite_stat1(tbl, idx, stat);
**    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
**    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
**    CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
**
** Additional tables might be added in future releases of SQLite.
** The sqlite_stat2 table is not created or used unless the SQLite version
** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
** created and used by SQLite versions 3.7.9 and later and with
** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
** is a superset of sqlite_stat2.  The sqlite_stat4 is an enhanced
** version of sqlite_stat3 and is only available when compiled with
** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.0 and later.
**
** For most applications, sqlite_stat1 provides all the statisics required
** for the query planner to make good choices.
**
** Format of sqlite_stat1:
**
** There is normally one row per index, with the index identified by the
** name in the idx column.  The tbl column is the name of the table to
** which the index belongs.  In each such row, the stat column will be
** a string consisting of a list of integers.  The first integer in this
** list is the number of rows in the index.  (This is the same as the
** number of rows in the table, except for partial indices.)  The second
** integer is the average number of rows in the index that have the same
** value in the first column of the index.  The third integer is the average
** number of rows in the index that have the same value for the first two
** columns.  The N-th integer (for N>1) is the average number of rows in 
** the index which have the same value for the first N-1 columns.  For
** a K-column index, there will be K+1 integers in the stat column.  If
** the index is unique, then the last integer will be 1.
................................................................................
** The format for sqlite_stat2 is recorded here for legacy reference.  This
** version of SQLite does not support sqlite_stat2.  It neither reads nor
** writes the sqlite_stat2 table.  This version of SQLite only supports
** sqlite_stat3.
**
** Format for sqlite_stat3:
**
** The sqlite_stat3 format is a subset of sqlite_stat4.  Hence, the
** sqlite_stat4 format will be described first.  Further information
** about sqlite_stat3 follows the sqlite_stat4 description.
**
** Format for sqlite_stat4:
**
** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
** to aid the query planner in choosing good indices based on the values
** that indexed columns are compared against in the WHERE clauses of
** queries.
**
** The sqlite_stat4 table contains multiple entries for each index.
** The idx column names the index and the tbl column is the table of the
** index.  If the idx and tbl columns are the same, then the sample is
** of the INTEGER PRIMARY KEY.  The sample column is a blob which is the
** binary encoding of a key from the index, with the trailing rowid
** omitted.  The nEq column is a list of integers.  The first integer
** is the approximate number of entries in the index whose left-most 
** column exactly matches the left-most column of the sample.  The second
** integer in nEq is the approximate number of entries in the index where
** the first two columns match the first two columns of the sample.
** And so forth.  nLt is another list of integers that show the approximate
** number of entries that are strictly less than the sample.  The first
** integer in nLt contains the number of entries in the index where the
** left-most column is less than the left-most column of the sample.
** The K-th integer in the nLt entry is the number of index entries 
** where the first K columns are less than the first K columns of the
** sample.  The nDLt column is like nLt except that it contains the 
** number of distinct entries in the index that are less than the
** sample.
**
** There can be an arbitrary number of sqlite_stat4 entries per index.
** The ANALYZE command will typically generate sqlite_stat4 tables
** that contain between 10 and 40 samples which are distributed across
** the key space, though not uniformly, and which include samples with
** large nEq values.
**
** Format for sqlite_stat3 redux:
**
** The sqlite_stat3 table is like sqlite_stat4 except that it only
** looks at the left-most column of the index.  The sqlite_stat3.sample
** column contains the actual value of the left-most column instead
** of a blob encoding of the complete index key as is found in
** sqlite_stat4.sample.  The nEq, nLt, and nDLt entries of sqlite_stat3
** all contain just a single integer which is the same as the first
** integer in the equivalent columns in sqlite_stat4.
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"

#if defined(SQLITE_ENABLE_STAT4)
# define IsStat4     1
# define IsStat3     0
# define SQLITE_ENABLE_STAT34 1
#elif defined(SQLITE_ENABLE_STAT3)
# define IsStat4     0
# define IsStat3     1
# define SQLITE_ENABLE_STAT34 1
#else
# define IsStat4     0
# define IsStat3     0
# undef SQLITE_ENABLE_STAT34
#endif

/*
** This routine generates code that opens the sqlite_stat1 table for
** writing with cursor iStatCur. If the library was built with the
** SQLITE_ENABLE_STAT4 macro defined, then the sqlite_stat4 table is
** opened for writing using cursor (iStatCur+1)
**
** If the sqlite_stat1 tables does not previously exist, it is created.
** Similarly, if the sqlite_stat4 table does not exist and the library
** is compiled with SQLITE_ENABLE_STAT4 defined, it is created. 
**
** Argument zWhere may be a pointer to a buffer containing a table name,
** or it may be a NULL pointer. If it is not NULL, then all entries in
** the sqlite_stat1 and (if applicable) sqlite_stat4 tables associated
** with the named table are deleted. If zWhere==0, then code is generated
** to delete all stat table entries.
*/
static void openStatTable(
  Parse *pParse,          /* Parsing context */
  int iDb,                /* The database we are looking in */
  int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
................................................................................
  const char *zWhereType  /* Either "tbl" or "idx" */
){
  static const struct {
    const char *zName;
    const char *zCols;
  } aTable[] = {
    { "sqlite_stat1", "tbl,idx,stat" },
#if defined(SQLITE_ENABLE_STAT4)
    { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
    { "sqlite_stat3", 0 },
#elif defined(SQLITE_ENABLE_STAT3)
    { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
    { "sqlite_stat4", 0 },
#endif
  };

  int aRoot[] = {0, 0};
  u8 aCreateTbl[] = {0, 0};

  int i;
................................................................................
  /* Create new statistic tables if they do not exist, or clear them
  ** if they do already exist.
  */
  for(i=0; i<ArraySize(aTable); i++){
    const char *zTab = aTable[i].zName;
    Table *pStat;
    if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
      if( aTable[i].zCols ){
        /* The sqlite_stat[12] table does not exist. Create it. Note that a 
        ** side-effect of the CREATE TABLE statement is to leave the rootpage 
        ** of the new table in register pParse->regRoot. This is important 
        ** because the OpenWrite opcode below will be needing it. */
        sqlite3NestedParse(pParse,
            "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
        );
        aRoot[i] = pParse->regRoot;
        aCreateTbl[i] = OPFLAG_P2ISREG;
      }
    }else{
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */
      aRoot[i] = pStat->tnum;
      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){
        sqlite3NestedParse(pParse,
           "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere
        );
      }else{
        /* The sqlite_stat[134] table already exists.  Delete all rows. */
        sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
      }
    }
  }

  /* Open the sqlite_stat[134] tables for writing. */
  for(i=0; i<ArraySize(aRoot); i++){
    sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
    sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
    sqlite3VdbeChangeP5(v, aCreateTbl[i]);
    if( !IsStat3 && !IsStat4 ) break;
  }
}

/*
** Recommended number of samples for sqlite_stat4
*/
#ifndef SQLITE_STAT4_SAMPLES
# define SQLITE_STAT4_SAMPLES 24
#endif

/*
** Three SQL functions - stat_init(), stat_push(), and stat_get() -
** share an instance of the following structure to hold their state
** information.
*/
typedef struct Stat4Accum Stat4Accum;
typedef struct Stat4Sample Stat4Sample;
struct Stat4Sample {
  i64 iRowid;                     /* Rowid in main table of the key */
  tRowcnt *anEq;                  /* sqlite_stat4.nEq */
  tRowcnt *anLt;                  /* sqlite_stat4.nLt */
  tRowcnt *anDLt;                 /* sqlite_stat4.nDLt */
  u8 isPSample;                   /* True if a periodic sample */
  int iCol;                       /* If !isPSample, the reason for inclusion */
  u32 iHash;                      /* Tiebreaker hash */
};                                                    
struct Stat4Accum {
  tRowcnt nRow;             /* Number of rows in the entire table */
  tRowcnt nPSample;         /* How often to do a periodic sample */
  int nCol;                 /* Number of columns in index + rowid */
  int mxSample;             /* Maximum number of samples to accumulate */
  Stat4Sample current;      /* Current row as a Stat4Sample */
  u32 iPrn;                 /* Pseudo-random number used for sampling */
  Stat4Sample *aBest;       /* Array of (nCol-1) best samples */
  int iMin;                 /* Index in a[] of entry with minimum score */
  int nSample;              /* Current number of samples */
  int iGet;                 /* Index of current sample accessed by stat_get() */
  Stat4Sample *a;           /* Array of mxSample Stat4Sample objects */
};

/*
** Implementation of the stat_init(C,N,S) SQL function. The three parameters
** are the number of rows in the table or index (C), the number of columns
** in the index (N) and the number of samples to accumulate (S).
**
** This routine allocates the Stat4Accum object in heap memory. The return 
** value is a pointer to the the Stat4Accum object encoded as a blob (i.e. 
** the size of the blob is sizeof(void*) bytes). 
*/
static void statInit(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  Stat4Accum *p;
  u8 *pSpace;                     /* Allocated space not yet assigned */
  tRowcnt nRow;                   /* Number of rows in table (C) */
  int mxSample;                   /* Maximum number of samples collected */
  int nCol;                       /* Number of columns in index being sampled */
  int n;                          /* Bytes of space to allocate */
  int i;                          /* Used to iterate through p->aSample[] */

  /* Decode the three function arguments */
  UNUSED_PARAMETER(argc);
  nRow = (tRowcnt)sqlite3_value_int64(argv[0]);
  mxSample = sqlite3_value_int(argv[2]);
  nCol = sqlite3_value_int(argv[1]);
  assert( nCol>1 );               /* >1 because it includes the rowid column */

  /* Allocate the space required for the Stat4Accum object */
  n = sizeof(*p) 
    + sizeof(tRowcnt)*nCol                    /* Stat4Accum.anEq */
    + sizeof(tRowcnt)*nCol                    /* Stat4Accum.anLt */
    + sizeof(tRowcnt)*nCol                    /* Stat4Accum.anDLt */
    + sizeof(Stat4Sample)*(nCol+mxSample)     /* Stat4Accum.aBest[], a[] */
    + sizeof(tRowcnt)*3*nCol*(nCol+mxSample);
  p = sqlite3MallocZero(n);
  if( p==0 ){
    sqlite3_result_error_nomem(context);
    return;
  }


  p->nRow = nRow;
  p->nCol = nCol;
  p->mxSample = mxSample;
  p->nPSample = p->nRow/(mxSample/3+1) + 1;
  p->iGet = -1;

  p->current.anDLt = (tRowcnt*)&p[1];
  p->current.anEq = &p->current.anDLt[nCol];
  p->current.anLt = &p->current.anEq[nCol];
  sqlite3_randomness(sizeof(p->iPrn), &p->iPrn);

  /* Set up the Stat4Accum.a[] and aBest[] arrays */
  p->a = (struct Stat4Sample*)&p->current.anLt[nCol];
  p->aBest = &p->a[mxSample];
  pSpace = (u8*)(&p->a[mxSample+nCol]);
  for(i=0; i<(mxSample+nCol); i++){
    p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nCol);
    p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nCol);
    p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nCol);
  }
  assert( (pSpace - (u8*)p)==n );

  for(i=0; i<nCol; i++){
    p->aBest[i].iCol = i;
  }

  /* Return a pointer to the allocated object to the caller */
  sqlite3_result_blob(context, p, sizeof(p), sqlite3_free);
}
static const FuncDef statInitFuncdef = {
  3,               /* nArg */
  SQLITE_UTF8,     /* iPrefEnc */
  0,               /* flags */
  0,               /* pUserData */
  0,               /* pNext */
  statInit,        /* xFunc */
  0,               /* xStep */
  0,               /* xFinalize */
  "stat_init",     /* zName */
  0,               /* pHash */
  0                /* pDestructor */
};

#ifdef SQLITE_ENABLE_STAT34
/*
** Return true if pNew is to be preferred over pOld.
*/
static int sampleIsBetter(Stat4Sample *pNew, Stat4Sample *pOld){
  tRowcnt nEqNew = pNew->anEq[pNew->iCol];
  tRowcnt nEqOld = pOld->anEq[pOld->iCol];

  assert( pOld->isPSample==0 && pNew->isPSample==0 );
  assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );

  if( (nEqNew>nEqOld)
   || (nEqNew==nEqOld && pNew->iCol<pOld->iCol)
   || (nEqNew==nEqOld && pNew->iCol==pOld->iCol && pNew->iHash>pOld->iHash)
  ){
    return 1;
  }
  return 0;
}

/*
** Copy the contents of object (*pFrom) into (*pTo).
*/
void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){
  pTo->iRowid = pFrom->iRowid;
  pTo->isPSample = pFrom->isPSample;
  pTo->iCol = pFrom->iCol;
  pTo->iHash = pFrom->iHash;
  memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
  memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
  memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
}

/*
** Copy the contents of sample *pNew into the p->a[] array. If necessary,
** remove the least desirable sample from p->a[] to make room.
*/
static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){
  Stat4Sample *pSample;
  int i;
  i64 iSeq;
  i64 iPos;

  assert( IsStat4 || nEqZero==0 );

  if( pNew->isPSample==0 ){
    Stat4Sample *pUpgrade = 0;
    assert( pNew->anEq[pNew->iCol]>0 );

    /* This sample is being added because the prefix that ends in column 
    ** iCol occurs many times in the table. However, if we have already
    ** added a sample that shares this prefix, there is no need to add
    ** this one. Instead, upgrade the priority of the highest priority
    ** existing sample that shares this prefix.  */
    for(i=p->nSample-1; i>=0; i--){
      Stat4Sample *pOld = &p->a[i];
      if( pOld->anEq[pNew->iCol]==0 ){
        if( pOld->isPSample ) return;
        assert( sampleIsBetter(pNew, pOld) );
        if( pUpgrade==0 || sampleIsBetter(pOld, pUpgrade) ){
          pUpgrade = pOld;
        }
      }
    }
    if( pUpgrade ){
      pUpgrade->iCol = pNew->iCol;
      pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
      goto find_new_min;
    }
  }

  /* If necessary, remove sample iMin to make room for the new sample. */
  if( p->nSample>=p->mxSample ){
    Stat4Sample *pMin = &p->a[p->iMin];
    tRowcnt *anEq = pMin->anEq;
    tRowcnt *anLt = pMin->anLt;
    tRowcnt *anDLt = pMin->anDLt;
    memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
    pSample = &p->a[p->nSample-1];
    pSample->anEq = anEq;
    pSample->anDLt = anDLt;
    pSample->anLt = anLt;
    p->nSample = p->mxSample-1;
  }

  /* Figure out where in the a[] array the new sample should be inserted. */
  iSeq = pNew->anLt[p->nCol-1];
  for(iPos=p->nSample; iPos>0; iPos--){
    if( iSeq>p->a[iPos-1].anLt[p->nCol-1] ) break;
  }

  /* Insert the new sample */
  pSample = &p->a[iPos];
  if( iPos!=p->nSample ){
    Stat4Sample *pEnd = &p->a[p->nSample];
    tRowcnt *anEq = pEnd->anEq;
    tRowcnt *anLt = pEnd->anLt;
    tRowcnt *anDLt = pEnd->anDLt;
    memmove(&p->a[iPos], &p->a[iPos+1], (p->nSample-iPos)*sizeof(p->a[0]));
    pSample->anEq = anEq;
    pSample->anDLt = anDLt;
    pSample->anLt = anLt;
  }
  p->nSample++;
  sampleCopy(p, pSample, pNew);

  /* Zero the first nEqZero entries in the anEq[] array. */
  memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);

 find_new_min:
  if( p->nSample>=p->mxSample ){
    int iMin = -1;
    for(i=0; i<p->mxSample; i++){
      if( p->a[i].isPSample ) continue;
      if( iMin<0 || sampleIsBetter(&p->a[iMin], &p->a[i]) ){
        iMin = i;
      }
    }
    assert( iMin>=0 );
    p->iMin = iMin;
  }
}
#endif /* SQLITE_ENABLE_STAT34 */

/*
** Field iChng of the index being scanned has changed. So at this point
** p->current contains a sample that reflects the previous row of the
** index. The value of anEq[iChng] and subsequent anEq[] elements are
** correct at this point.
*/
static void samplePushPrevious(Stat4Accum *p, int iChng){
#ifdef SQLITE_ENABLE_STAT4
  int i;

  /* Check if any samples from the aBest[] array should be pushed
  ** into IndexSample.a[] at this point.  */
  for(i=(p->nCol-2); i>=iChng; i--){
    Stat4Sample *pBest = &p->aBest[i];
    if( p->nSample<p->mxSample
     || sampleIsBetter(pBest, &p->a[p->iMin])
    ){
      sampleInsert(p, pBest, i);
    }
  }

  /* Update the anEq[] fields of any samples already collected. */
  for(i=p->nSample-1; i>=0; i--){
    int j;
    for(j=iChng; j<p->nCol; j++){
      if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
    }
  }
#endif

#if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
  if( iChng==0 ){
    tRowcnt nLt = p->current.anLt[0];
    tRowcnt nEq = p->current.anEq[0];

    /* Check if this is to be a periodic sample. If so, add it. */
    if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){
      p->current.isPSample = 1;
      sampleInsert(p, &p->current, 0);
      p->current.isPSample = 0;
    }else 

    /* Or if it is a non-periodic sample. Add it in this case too. */
    if( p->nSample<p->mxSample || sampleIsBetter(&p->current, &p->a[p->iMin]) ){
      sampleInsert(p, &p->current, 0);
    }
  }
#endif
}

/*
** Implementation of the stat_push SQL function. 


**
**    stat_push(P,R,C)
**
** The return value is always NULL.
*/
static void statPush(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  int i;

  /* The three function arguments */
  Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);

  i64 rowid = sqlite3_value_int64(argv[1]);

  int iChng = sqlite3_value_int(argv[2]);


















  assert( p->nCol>1 );        /* Includes rowid field */
  assert( iChng<p->nCol );

  /* p->current.anEq[0] is false the first time this function is called. */
  if( p->current.anEq[0] ){






    samplePushPrevious(p, iChng);

    /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
    ** to the current row of the index. */
    for(i=0; i<iChng; i++){
      p->current.anEq[i]++;
    }
    for(i=iChng; i<p->nCol; i++){
      p->current.anDLt[i]++;
      p->current.anLt[i] += p->current.anEq[i];
      p->current.anEq[i] = 1;
    }

  }else{

    for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
  }

  if( IsStat4 || IsStat3 ){
    p->current.iRowid = rowid;





    p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
  }



#ifdef SQLITE_ENABLE_STAT4
  {
    tRowcnt nLt = p->current.anLt[p->nCol-1];

    /* Check if this is to be a periodic sample. If so, add it. */
    if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
      p->current.isPSample = 1;
      p->current.iCol = 0;
      sampleInsert(p, &p->current, p->nCol-1);
      p->current.isPSample = 0;



    }












    /* Update the aBest[] array. */
    for(i=0; i<(p->nCol-1); i++){
      p->current.iCol = i;
      if( i>=iChng || sampleIsBetter(&p->current, &p->aBest[i]) ){
        sampleCopy(p, &p->aBest[i], &p->current);
      }

    }
  }
#endif
}
static const FuncDef statPushFuncdef = {
  3,               /* nArg */
  SQLITE_UTF8,     /* iPrefEnc */
  0,               /* flags */
  0,               /* pUserData */
  0,               /* pNext */
  statPush,        /* xFunc */
  0,               /* xStep */
  0,               /* xFinalize */
  "stat_push",     /* zName */
  0,               /* pHash */
  0                /* pDestructor */
};

#define STAT_GET_STAT1 0          /* "stat" column of stat1 table */
#define STAT_GET_ROWID 1          /* "rowid" column of stat[34] entry */
#define STAT_GET_NEQ   2          /* "neq" column of stat[34] entry */
#define STAT_GET_NLT   3          /* "nlt" column of stat[34] entry */
#define STAT_GET_NDLT  4          /* "ndlt" column of stat[34] entry */

/*
** Implementation of the stat_get(P,J) SQL function.  This routine is
** used to query the results.  Content is returned for parameter J


** which is one of the STAT_GET_xxxx values defined above.
**




** If neither STAT3 nor STAT4 are enabled, then J is always
** STAT_GET_STAT1 and is hence omitted and this routine becomes
** a one-parameter function, stat_get(P), that always returns the
** stat1 table entry information.
*/
static void statGet(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
#ifdef SQLITE_ENABLE_STAT34
  /* STAT3 and STAT4 have a parameter on this routine. */
  int eCall = sqlite3_value_int(argv[1]);

  assert( argc==2 );
  assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 
       || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
       || eCall==STAT_GET_NDLT 
  );
  if( eCall==STAT_GET_STAT1 )
#else
  assert( argc==1 );
#endif
  {

    /* Return the value to store in the "stat" column of the sqlite_stat1
    ** table for this index.
    **
    ** The value is a string composed of a list of integers describing 
    ** the index. The first integer in the list is the total number of 
    ** entries in the index. There is one additional integer in the list 
    ** for each indexed column. This additional integer is an estimate of
    ** the number of rows matched by a stabbing query on the index using
    ** a key with the corresponding number of fields. In other words,
    ** if the index is on columns (a,b) and the sqlite_stat1 value is 
    ** "100 10 2", then SQLite estimates that:
    **
    **   * the index contains 100 rows,
    **   * "WHERE a=?" matches 10 rows, and
    **   * "WHERE a=? AND b=?" matches 2 rows.
    **
    ** If D is the count of distinct values and K is the total number of 
    ** rows, then each estimate is computed as:
    **
    **        I = (K+D-1)/D
    */
    char *z;
    int i;

    char *zRet = sqlite3MallocZero(p->nCol * 25);
    if( zRet==0 ){
      sqlite3_result_error_nomem(context);
      return;

    }

    sqlite3_snprintf(24, zRet, "%lld", p->nRow);
    z = zRet + sqlite3Strlen30(zRet);
    for(i=0; i<(p->nCol-1); i++){
      i64 nDistinct = p->current.anDLt[i] + 1;
      i64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
      sqlite3_snprintf(24, z, " %lld", iVal);
      z += sqlite3Strlen30(z);
      assert( p->current.anEq[i] );
    }
    assert( z[0]=='\0' && z>zRet );

    sqlite3_result_text(context, zRet, -1, sqlite3_free);
  }
#ifdef SQLITE_ENABLE_STAT34
  else if( eCall==STAT_GET_ROWID ){
    if( p->iGet<0 ){
      samplePushPrevious(p, 0);
      p->iGet = 0;
    }
    if( p->iGet<p->nSample ){
      sqlite3_result_int64(context, p->a[p->iGet].iRowid);
    }
  }else{
    tRowcnt *aCnt = 0;

    assert( p->iGet<p->nSample );
    switch( eCall ){
      case STAT_GET_NEQ:  aCnt = p->a[p->iGet].anEq; break;
      case STAT_GET_NLT:  aCnt = p->a[p->iGet].anLt; break;
      default: {
        aCnt = p->a[p->iGet].anDLt; 
        p->iGet++;
        break;
      }
    }

    if( IsStat3 ){
      sqlite3_result_int64(context, (i64)aCnt[0]);


    }else{
      char *zRet = sqlite3MallocZero(p->nCol * 25);
      if( zRet==0 ){
        sqlite3_result_error_nomem(context);
      }else{
        int i;
        char *z = zRet;
        for(i=0; i<p->nCol; i++){
          sqlite3_snprintf(24, z, "%lld ", aCnt[i]);
          z += sqlite3Strlen30(z);
        }
        assert( z[0]=='\0' && z>zRet );
        z[-1] = '\0';
        sqlite3_result_text(context, zRet, -1, sqlite3_free);
      }
    }
  }
#endif /* SQLITE_ENABLE_STAT34 */
}
static const FuncDef statGetFuncdef = {
  2,               /* nArg */
  SQLITE_UTF8,     /* iPrefEnc */
  0,               /* flags */
  0,               /* pUserData */
  0,               /* pNext */
  statGet,         /* xFunc */
  0,               /* xStep */
  0,               /* xFinalize */
  "stat_get",      /* zName */
  0,               /* pHash */
  0                /* pDestructor */
};


static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){
  assert( regOut!=regStat4 && regOut!=regStat4+1 );
#ifdef SQLITE_ENABLE_STAT34
  sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1);
#else
  assert( iParam==STAT_GET_STAT1 );
#endif
  sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut);
  sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF);
  sqlite3VdbeChangeP5(v, 1 + IsStat3 + IsStat4);
}


/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
  Table *pTab,     /* Table whose indices are to be analyzed */
  Index *pOnlyIdx, /* If not NULL, only analyze this one index */
  int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
  int iMem,        /* Available memory locations begin here */
  int iTab         /* Next available cursor */
){
  sqlite3 *db = pParse->db;    /* Database handle */
  Index *pIdx;                 /* An index to being analyzed */
  int iIdxCur;                 /* Cursor open on index being analyzed */
  int iTabCur;                 /* Table cursor */
  Vdbe *v;                     /* The virtual machine being built up */
  int i;                       /* Loop counter */


  int jZeroRows = -1;          /* Jump from here if number of rows is zero */
  int iDb;                     /* Index of database containing pTab */
  u8 needTableCnt = 1;         /* True to count the table */
  int regNewRowid = iMem++;    /* Rowid for the inserted record */
  int regStat4 = iMem++;       /* Register to hold Stat4Accum object */
  int regRowid = iMem++;       /* Rowid argument passed to stat_push() */
  int regChng = iMem++;        /* Index of changed index field */
  int regTemp = iMem++;        /* Temporary use register */
  int regTabname = iMem++;     /* Register containing table name */
  int regIdxname = iMem++;     /* Register containing index name */
  int regStat1 = iMem++;       /* Value for the stat column of sqlite_stat1 */





  int regPrev = iMem;          /* MUST BE LAST (see below) */















  pParse->nMem = MAX(pParse->nMem, iMem);
  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( pTab->tnum==0 ){
    /* Do not gather statistics on views or virtual tables */
    return;
................................................................................
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      db->aDb[iDb].zName ) ){
    return;
  }
#endif

  /* Establish a read-lock on the table at the shared-cache level. 
  ** Open a read-only cursor on the table. Also allocate a cursor number
  ** to use for scanning indexes (iIdxCur). No index cursor is opened at
  ** this time though.  */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iTabCur = iTab++;
  iIdxCur = iTab++;
  pParse->nTab = MAX(pParse->nTab, iTab);
  sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
  sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);

  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){

    int nCol;                     /* Number of columns indexed by pIdx */
    KeyInfo *pKey;                /* KeyInfo structure for pIdx */

    int *aGotoChng;               /* Array of jump instruction addresses */
    int addrRewind;               /* Address of "OP_Rewind iIdxCur" */
    int addrGotoChng0;            /* Address of "Goto addr_chng_0" */
    int addrNextRow;              /* Address of "next_row:" */

    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
    VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
    nCol = pIdx->nColumn;
    aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*(nCol+1));
    if( aGotoChng==0 ) continue;
    pKey = sqlite3IndexKeyinfo(pParse, pIdx);

    /* Populate the register containing the index name. */
    sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);

    /*
    ** Pseudo-code for loop that calls stat_push():
    **
    **   Rewind csr
    **   if eof(csr) goto end_of_scan;
    **   regChng = 0
    **   goto chng_addr_0;
    **
    **  next_row:
    **   regChng = 0
    **   if( idx(0) != regPrev(0) ) goto chng_addr_0
    **   regChng = 1
    **   if( idx(1) != regPrev(1) ) goto chng_addr_1
    **   ...
    **   regChng = N
    **   goto chng_addr_N
    **
    **  chng_addr_0:
    **   regPrev(0) = idx(0)
    **  chng_addr_1:
    **   regPrev(1) = idx(1)
    **  ...
    **
    **  chng_addr_N:
    **   regRowid = idx(rowid)
    **   stat_push(P, regRowid, regChng)
    **   Next csr
    **   if !eof(csr) goto next_row;
    **
    **  end_of_scan:
    */

    /* Make sure there are enough memory cells allocated to accommodate 
    ** the regPrev array and a trailing rowid (the rowid slot is required
    ** when building a record to insert into the sample column of 
    ** the sqlite_stat4 table.  */
    pParse->nMem = MAX(pParse->nMem, regPrev+nCol);

    /* Open a read-only cursor on the index being analyzed. */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
    sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF); 
    VdbeComment((v, "%s", pIdx->zName));

    /* Invoke the stat_init() function. The arguments are:
    ** 
    **     * the number of rows in the index,
    **     * the number of columns in the index including the rowid,
    **     * the recommended number of samples for the stat3/stat4 table.
    */
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+1);
    sqlite3VdbeAddOp2(v, OP_Integer, nCol+1, regStat4+2);
    sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT4_SAMPLES, regStat4+3);
    sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4);
    sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 3);

    /* Implementation of the following:
    **
    **   Rewind csr
    **   if eof(csr) goto end_of_scan;
    **   regChng = 0
    **   goto next_push_0;
    **
    */
    addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
    addrGotoChng0 = sqlite3VdbeAddOp0(v, OP_Goto);

    /*
    **  next_row:
    **   regChng = 0
    **   if( idx(0) != regPrev(0) ) goto chng_addr_0
    **   regChng = 1
    **   if( idx(1) != regPrev(1) ) goto chng_addr_1
    **   ...
    **   regChng = N
    **   goto chng_addr_N
    */
    addrNextRow = sqlite3VdbeCurrentAddr(v);
    for(i=0; i<nCol; i++){
      char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
      aGotoChng[i] = 
      sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
    }
    sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng);
    aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto);

    /*
    **  chng_addr_0:
    **   regPrev(0) = idx(0)
    **  chng_addr_1:
    **   regPrev(1) = idx(1)
    **  ...
    */
    sqlite3VdbeJumpHere(v, addrGotoChng0);
    for(i=0; i<nCol; i++){
      sqlite3VdbeJumpHere(v, aGotoChng[i]);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
    }

    /*
    **  chng_addr_N:
    **   regRowid = idx(rowid)
    **   stat_push(P, regRowid, regChng)
    **   Next csr
    **   if !eof(csr) goto next_row;
    */
    sqlite3VdbeJumpHere(v, aGotoChng[nCol]);
    sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);
    sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 3);
    assert( regRowid==(regStat4+1) && regChng==(regStat4+2) );
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow);

    /* Add the entry to the stat1 table. */
    callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);

    /* Add the entries to the stat3 or stat4 table. */
    if( IsStat3 || IsStat4 ){
      int regEq = regStat1;
      int regLt = regStat1+1;
      int regDLt = regStat1+2;
      int regSample = regStat1+3;
      int regCol = regStat1+4;
      int regSampleRowid = regCol + nCol;
      int addrNext;
      int addrIsNull;

      pParse->nMem = MAX(pParse->nMem, regCol+nCol+1);

      addrNext = sqlite3VdbeCurrentAddr(v);
      callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid);
      addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
      callStatGet(v, regStat4, STAT_GET_NEQ, regEq);
      callStatGet(v, regStat4, STAT_GET_NLT, regLt);
      callStatGet(v, regStat4, STAT_GET_NDLT, regDLt);
      sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, addrNext, regSampleRowid);
      if( IsStat3 ){
        int iCol = pIdx->aiColumn[0];
        sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regSample);
      }else{
        for(i=0; i<nCol; i++){
          int iCol = pIdx->aiColumn[i];
          sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i);
        }
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol+1, regSample);
      }

      sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regTemp, "bbbbbb", 0);
      sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
      sqlite3VdbeJumpHere(v, addrIsNull);
    }

    /* Jump here if the index is empty */
    sqlite3VdbeJumpHere(v, addrRewind);
    sqlite3DbFree(db, aGotoChng);
  }


  /* Create a single sqlite_stat1 entry containing NULL as the index
  ** name and the row count as the content.
  */
  if( pOnlyIdx==0 && needTableCnt ){

    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);

    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
    sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, jZeroRows);
  }

}


/*
** Generate code that will cause the most recent index analysis to
** be loaded into internal hash tables where is can be used.
*/
................................................................................
*/
static void analyzeDatabase(Parse *pParse, int iDb){
  sqlite3 *db = pParse->db;
  Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
  HashElem *k;
  int iStatCur;
  int iMem;
  int iTab;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  openStatTable(pParse, iDb, iStatCur, 0, 0);
  iMem = pParse->nMem+1;
  iTab = pParse->nTab;
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
  }
  loadAnalysis(pParse, iDb);
}

/*
** Generate code that will do an analysis of a single table in
** a database.  If pOnlyIdx is not NULL then it is a single index
................................................................................
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  if( pOnlyIdx ){
    openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
  }else{
    openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
  }
  analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
  loadAnalysis(pParse, iDb);
}

/*
** Generate code for the ANALYZE command.  The parser calls this routine
** when it recognizes an ANALYZE command.
**
................................................................................
** callback routine.
*/
typedef struct analysisInfo analysisInfo;
struct analysisInfo {
  sqlite3 *db;
  const char *zDatabase;
};

/*
** The first argument points to a nul-terminated string containing a
** list of space separated integers. Read the first nOut of these into
** the array aOut[].
*/
static void decodeIntArray(
  char *zIntArray, 
  int nOut, 
  tRowcnt *aOut, 
  int *pbUnordered
){
  char *z = zIntArray;
  int c;
  int i;
  tRowcnt v;

  assert( pbUnordered==0 || *pbUnordered==0 );
  
  if( z==0 ) z = "";
  for(i=0; *z && i<nOut; i++){
    v = 0;
    while( (c=z[0])>='0' && c<='9' ){
      v = v*10 + c - '0';
      z++;
    }
    aOut[i] = v;
    if( *z==' ' ) z++;
  }
  if( pbUnordered && strcmp(z, "unordered")==0 ){
    *pbUnordered = 1;
  }
}

/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.  
**
**     argv[0] = name of the table
**     argv[1] = name of the index (might be NULL)
................................................................................
** Entries for which argv[1]==NULL simply record the number of rows in
** the table.
*/
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
  analysisInfo *pInfo = (analysisInfo*)pData;
  Index *pIndex;
  Table *pTable;


  const char *z;

  assert( argc==3 );
  UNUSED_PARAMETER2(NotUsed, argc);

  if( argv==0 || argv[0]==0 || argv[2]==0 ){
    return 0;
................................................................................
    return 0;
  }
  if( argv[1] ){
    pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
  }else{
    pIndex = 0;
  }

  z = argv[2];








  if( pIndex ){




    int bUnordered = 0;
    decodeIntArray((char*)z, pIndex->nColumn+1, pIndex->aiRowEst, &bUnordered);
    if( pIndex->pPartIdxWhere==0 ) pTable->nRowEst = pIndex->aiRowEst[0];
    pIndex->bUnordered = bUnordered;

  }else{
    decodeIntArray((char*)z, 1, &pTable->nRowEst, 0);
  }

  return 0;
}

/*
** If the Index.aSample variable is not NULL, delete the aSample[] array
** and its contents.
*/
void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
#ifdef SQLITE_ENABLE_STAT34
  if( pIdx->aSample ){
    int j;
    for(j=0; j<pIdx->nSample; j++){
      IndexSample *p = &pIdx->aSample[j];

      sqlite3DbFree(db, p->p);

    }
    sqlite3DbFree(db, pIdx->aSample);
  }
  if( db && db->pnBytesFreed==0 ){
    pIdx->nSample = 0;
    pIdx->aSample = 0;
  }
#else
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(pIdx);
#endif /* SQLITE_ENABLE_STAT34 */
}

#ifdef SQLITE_ENABLE_STAT34
/*
** Populate the pIdx->aAvgEq[] array based on the samples currently
** stored in pIdx->aSample[]. 
*/
static void initAvgEq(Index *pIdx){
  if( pIdx ){
    IndexSample *aSample = pIdx->aSample;
    IndexSample *pFinal = &aSample[pIdx->nSample-1];
    int iCol;
    for(iCol=0; iCol<pIdx->nColumn; iCol++){
      int i;                    /* Used to iterate through samples */
      tRowcnt sumEq = 0;        /* Sum of the nEq values */
      int nSum = 0;             /* Number of terms contributing to sumEq */
      tRowcnt avgEq = 0;
      tRowcnt nDLt = pFinal->anDLt[iCol];

      /* Set nSum to the number of distinct (iCol+1) field prefixes that
      ** occur in the stat4 table for this index before pFinal. Set
      ** sumEq to the sum of the nEq values for column iCol for the same
      ** set (adding the value only once where there exist dupicate 
      ** prefixes).  */
      for(i=0; i<(pIdx->nSample-1); i++){
        if( aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){
          sumEq += aSample[i].anEq[iCol];
          nSum++;
        }
      }
      if( nDLt>nSum ){
        avgEq = (pFinal->anLt[iCol] - sumEq)/(nDLt - nSum);
      }
      if( avgEq==0 ) avgEq = 1;
      pIdx->aAvgEq[iCol] = avgEq;
      if( pIdx->nSampleCol==1 ) break;
    }
  }
}

/*
** Load the content from either the sqlite_stat4 or sqlite_stat3 table 
** into the relevant Index.aSample[] arrays.
**
** Arguments zSql1 and zSql2 must point to SQL statements that return
** data equivalent to the following (statements are different for stat3,
** see the caller of this function for details):
**
**    zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
**    zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
**
** where %Q is replaced with the database name before the SQL is executed.
*/
static int loadStatTbl(
  sqlite3 *db,                  /* Database handle */
  int bStat3,                   /* Assume single column records only */
  const char *zSql1,            /* SQL statement 1 (see above) */
  const char *zSql2,            /* SQL statement 2 (see above) */
  const char *zDb               /* Database name (e.g. "main") */
){
  int rc;                       /* Result codes from subroutines */
  sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
  char *zSql;                   /* Text of the SQL statement */
  Index *pPrevIdx = 0;          /* Previous index in the loop */


  IndexSample *pSample;         /* A slot in pIdx->aSample[] */

  assert( db->lookaside.bEnabled==0 );




  zSql = sqlite3MPrintf(db, zSql1, zDb);


  if( !zSql ){
    return SQLITE_NOMEM;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    int nIdxCol = 1;              /* Number of columns in stat4 records */
    int nAvgCol = 1;              /* Number of entries in Index.aAvgEq */

    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int nSample;    /* Number of samples */
    int nByte;      /* Bytes of space required */
    int i;          /* Bytes of space required */
    tRowcnt *pSpace;

    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    nSample = sqlite3_column_int(pStmt, 1);
    pIdx = sqlite3FindIndex(db, zIndex, zDb);
    assert( pIdx==0 || bStat3 || pIdx->nSample==0 );
    /* Index.nSample is non-zero at this point if data has already been
    ** loaded from the stat4 table. In this case ignore stat3 data.  */
    if( pIdx==0 || pIdx->nSample ) continue;
    if( bStat3==0 ){
      nIdxCol = pIdx->nColumn+1;
      nAvgCol = pIdx->nColumn;
    }
    pIdx->nSampleCol = nIdxCol;
    nByte = sizeof(IndexSample) * nSample;
    nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
    nByte += nAvgCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */

    pIdx->aSample = sqlite3DbMallocZero(db, nByte);

    if( pIdx->aSample==0 ){

      sqlite3_finalize(pStmt);
      return SQLITE_NOMEM;
    }
    pSpace = (tRowcnt*)&pIdx->aSample[nSample];
    pIdx->aAvgEq = pSpace; pSpace += nAvgCol;
    for(i=0; i<nSample; i++){
      pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
      pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
      pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
    }
    assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
  }
  rc = sqlite3_finalize(pStmt);
  if( rc ) return rc;

  zSql = sqlite3MPrintf(db, zSql2, zDb);

  if( !zSql ){
    return SQLITE_NOMEM;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    char *zIndex;                 /* Index name */
    Index *pIdx;                  /* Pointer to the index object */
    int nCol = 1;                 /* Number of columns in index */


    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    pIdx = sqlite3FindIndex(db, zIndex, zDb);
    if( pIdx==0 ) continue;
    /* This next condition is true if data has already been loaded from 
    ** the sqlite_stat4 table. In this case ignore stat3 data.  */
    nCol = pIdx->nSampleCol;
    if( bStat3 && nCol>1 ) continue;
    if( pIdx!=pPrevIdx ){
      initAvgEq(pPrevIdx);
      pPrevIdx = pIdx;
    }
    pSample = &pIdx->aSample[pIdx->nSample];
    decodeIntArray((char*)sqlite3_column_text(pStmt,1), nCol, pSample->anEq, 0);
    decodeIntArray((char*)sqlite3_column_text(pStmt,2), nCol, pSample->anLt, 0);
    decodeIntArray((char*)sqlite3_column_text(pStmt,3), nCol, pSample->anDLt,0);

    /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
    ** This is in case the sample record is corrupted. In that case, the
    ** sqlite3VdbeRecordCompare() may read up to two varints past the
    ** end of the allocated buffer before it realizes it is dealing with
    ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
    ** a buffer overread.  */
    pSample->n = sqlite3_column_bytes(pStmt, 4);
    pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
    if( pSample->p==0 ){
      sqlite3_finalize(pStmt);
      return SQLITE_NOMEM;
    }
    memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
    pIdx->nSample++;
  }
  rc = sqlite3_finalize(pStmt);
  if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
  return rc;
}

/*
** Load content from the sqlite_stat4 and sqlite_stat3 tables into 
** the Index.aSample[] arrays of all indices.
*/
static int loadStat4(sqlite3 *db, const char *zDb){
  int rc = SQLITE_OK;             /* Result codes from subroutines */

  assert( db->lookaside.bEnabled==0 );
  if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
    rc = loadStatTbl(db, 0,
      "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 
      "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
      zDb
    );
  }

  if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){
    rc = loadStatTbl(db, 1,
      "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx", 
      "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3",
      zDb
    );
  }

  return rc;
}
#endif /* SQLITE_ENABLE_STAT34 */

/*
** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
** arrays. The contents of sqlite_stat3/4 are used to populate the
** Index.aSample[] arrays.
**
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined 
** during compilation and the sqlite_stat3/4 table is present, no data is 
** read from it.
**
** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the 
** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
** returned. However, in this case, data is read from the sqlite_stat1
** table (if it is present) before returning.
**
** If an OOM error occurs, this function always sets db->mallocFailed.
** This means if the caller does not care about other errors, the return
** code may be ignored.
*/
................................................................................
  assert( db->aDb[iDb].pBt!=0 );

  /* Clear any prior statistics */
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3DefaultRowEst(pIdx);
#ifdef SQLITE_ENABLE_STAT34
    sqlite3DeleteIndexSamples(db, pIdx);
    pIdx->aSample = 0;
#endif
  }

  /* Check to make sure the sqlite_stat1 table exists */
  sInfo.db = db;
................................................................................
    rc = SQLITE_NOMEM;
  }else{
    rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat4 table. */
#ifdef SQLITE_ENABLE_STAT34
  if( rc==SQLITE_OK ){
    int lookasideEnabled = db->lookaside.bEnabled;
    db->lookaside.bEnabled = 0;
    rc = loadStat4(db, sInfo.zDatabase);
    db->lookaside.bEnabled = lookasideEnabled;
  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */

Changes to src/btree.c.

2504
2505
2506
2507
2508
2509
2510

2511
2512
2513
2514
2515
2516
2517
    pBt->max1bytePayload = 127;
  }else{
    pBt->max1bytePayload = (u8)pBt->maxLocal;
  }
  assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
  pBt->pPage1 = pPage1;
  pBt->nPage = nPage;

  return SQLITE_OK;

page1_init_failed:
  releasePage(pPage1);
  pBt->pPage1 = 0;
  return rc;
}







>







2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
    pBt->max1bytePayload = 127;
  }else{
    pBt->max1bytePayload = (u8)pBt->maxLocal;
  }
  assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
  pBt->pPage1 = pPage1;
  pBt->nPage = nPage;
assert( pPage1->leaf==0 || pPage1->leaf==1 );
  return SQLITE_OK;

page1_init_failed:
  releasePage(pPage1);
  pBt->pPage1 = 0;
  return rc;
}

Changes to src/build.c.

2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
  Parse *pParse,         /* The parsing context */
  int iDb,               /* The database number */
  const char *zType,     /* "idx" or "tbl" */
  const char *zName      /* Name of index or table */
){
  int i;
  const char *zDbName = pParse->db->aDb[iDb].zName;
  for(i=1; i<=3; i++){
    char zTab[24];
    sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
    if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
      sqlite3NestedParse(pParse,
        "DELETE FROM %Q.%s WHERE %s=%Q",
        zDbName, zTab, zType, zName
      );







|







2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
  Parse *pParse,         /* The parsing context */
  int iDb,               /* The database number */
  const char *zType,     /* "idx" or "tbl" */
  const char *zName      /* Name of index or table */
){
  int i;
  const char *zDbName = pParse->db->aDb[iDb].zName;
  for(i=1; i<=4; i++){
    char zTab[24];
    sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
    if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
      sqlite3NestedParse(pParse,
        "DELETE FROM %Q.%s WHERE %s=%Q",
        zDbName, zTab, zType, zName
      );

Changes to src/ctime.c.

113
114
115
116
117
118
119


120
121
122
123
124
125
126
127
#endif
#ifdef SQLITE_ENABLE_OVERSIZE_CELL_CHECK
  "ENABLE_OVERSIZE_CELL_CHECK",
#endif
#ifdef SQLITE_ENABLE_RTREE
  "ENABLE_RTREE",
#endif


#ifdef SQLITE_ENABLE_STAT3
  "ENABLE_STAT3",
#endif
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
  "ENABLE_UNLOCK_NOTIFY",
#endif
#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
  "ENABLE_UPDATE_DELETE_LIMIT",







>
>
|







113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#endif
#ifdef SQLITE_ENABLE_OVERSIZE_CELL_CHECK
  "ENABLE_OVERSIZE_CELL_CHECK",
#endif
#ifdef SQLITE_ENABLE_RTREE
  "ENABLE_RTREE",
#endif
#if defined(SQLITE_ENABLE_STAT4)
  "ENABLE_STAT4",
#elif defined(SQLITE_ENABLE_STAT3)
  "ENABLE_STAT3",
#endif
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
  "ENABLE_UNLOCK_NOTIFY",
#endif
#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
  "ENABLE_UPDATE_DELETE_LIMIT",

Changes to src/func.c.

1710
1711
1712
1713
1714
1715
1716
1717



1718

  for(i=0; i<ArraySize(aBuiltinFunc); i++){
    sqlite3FuncDefInsert(pHash, &aFunc[i]);
  }
  sqlite3RegisterDateTimeFunctions();
#ifndef SQLITE_OMIT_ALTERTABLE
  sqlite3AlterFunctions();
#endif



}








>
>
>

1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

  for(i=0; i<ArraySize(aBuiltinFunc); i++){
    sqlite3FuncDefInsert(pHash, &aFunc[i]);
  }
  sqlite3RegisterDateTimeFunctions();
#ifndef SQLITE_OMIT_ALTERTABLE
  sqlite3AlterFunctions();
#endif
#if defined(SQLITE_ENABLE_STAT3) || defined(SQLITE_ENABLE_STAT4)
  sqlite3AnalyzeFunctions();
#endif
}

Changes to src/shell.c.

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
  if( nArg!=3 ) return 1;
  zTable = azArg[0];
  zType = azArg[1];
  zSql = azArg[2];
  
  if( strcmp(zTable, "sqlite_sequence")==0 ){
    zPrepStmt = "DELETE FROM sqlite_sequence;\n";
  }else if( strcmp(zTable, "sqlite_stat1")==0 ){
    fprintf(p->out, "ANALYZE sqlite_master;\n");
  }else if( strncmp(zTable, "sqlite_", 7)==0 ){
    return 0;
  }else if( strncmp(zSql, "CREATE VIRTUAL TABLE", 20)==0 ){
    char *zIns;
    if( !p->writableSchema ){
      fprintf(p->out, "PRAGMA writable_schema=ON;\n");







|







1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
  if( nArg!=3 ) return 1;
  zTable = azArg[0];
  zType = azArg[1];
  zSql = azArg[2];
  
  if( strcmp(zTable, "sqlite_sequence")==0 ){
    zPrepStmt = "DELETE FROM sqlite_sequence;\n";
  }else if( sqlite3_strglob("sqlite_stat?", zTable)==0 ){
    fprintf(p->out, "ANALYZE sqlite_master;\n");
  }else if( strncmp(zTable, "sqlite_", 7)==0 ){
    return 0;
  }else if( strncmp(zSql, "CREATE VIRTUAL TABLE", 20)==0 ){
    char *zIns;
    if( !p->writableSchema ){
      fprintf(p->out, "PRAGMA writable_schema=ON;\n");

Changes to src/sqliteInt.h.

1546
1547
1548
1549
1550
1551
1552
1553
1554
1555

1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
....
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
....
3059
3060
3061
3062
3063
3064
3065

3066
3067
3068
3069
3070
3071
3072
....
3108
3109
3110
3111
3112
3113
3114



3115
3116
3117
3118
3119
3120
3121
  Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
  int tnum;                /* DB Page containing root of this index */
  u16 nColumn;             /* Number of columns in table used by this index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned autoIndex:2;    /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */
  unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
#ifdef SQLITE_ENABLE_STAT3
  int nSample;             /* Number of elements in aSample[] */
  tRowcnt avgEq;           /* Average nEq value for key values not in aSample */

  IndexSample *aSample;    /* Samples of the left-most key */
#endif
};

/*
** Each sample stored in the sqlite_stat3 table is represented in memory 
** using a structure of this type.  See documentation at the top of the
** analyze.c source file for additional information.
*/
struct IndexSample {
  union {
    char *z;        /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
    double r;       /* Value if eType is SQLITE_FLOAT */
    i64 i;          /* Value if eType is SQLITE_INTEGER */
  } u;
  u8 eType;         /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
  int nByte;        /* Size in byte of text or blob. */
  tRowcnt nEq;      /* Est. number of rows where the key equals this sample */
  tRowcnt nLt;      /* Est. number of rows where key is less than this sample */
  tRowcnt nDLt;     /* Est. number of distinct keys less than this sample */
};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
................................................................................
const void *sqlite3ValueText(sqlite3_value*, u8);
int sqlite3ValueBytes(sqlite3_value*, u8);
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
                        void(*)(void*));
void sqlite3ValueFree(sqlite3_value*);
sqlite3_value *sqlite3ValueNew(sqlite3 *);
char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
#ifdef SQLITE_ENABLE_STAT3
char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *);
#endif
int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
extern const unsigned char sqlite3OpcodeProperty[];
extern const unsigned char sqlite3UpperToLower[];
extern const unsigned char sqlite3CtypeMap[];
extern const Token sqlite3IntTokens[];
................................................................................
#ifndef SQLITE_OMIT_WSD
extern int sqlite3PendingByte;
#endif
#endif
void sqlite3RootPageMoved(sqlite3*, int, int, int);
void sqlite3Reindex(Parse*, Token*, Token*);
void sqlite3AlterFunctions(void);

void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
int sqlite3GetToken(const unsigned char *, int *);
void sqlite3NestedParse(Parse*, const char*, ...);
void sqlite3ExpirePreparedStatements(sqlite3*);
int sqlite3CodeSubselect(Parse *, Expr *, int, int);
void sqlite3SelectPrep(Parse*, Select*, NameContext*);
int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
................................................................................
char *sqlite3StrAccumFinish(StrAccum*);
void sqlite3StrAccumReset(StrAccum*);
void sqlite3SelectDestInit(SelectDest*,int,int);
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);

void sqlite3BackupRestart(sqlite3_backup *);
void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);




/*
** The interface to the LEMON-generated parser
*/
void *sqlite3ParserAlloc(void*(*)(size_t));
void sqlite3ParserFree(void*, void(*)(void*));
void sqlite3Parser(void*, int, Token, Parse*);







|

|
>










|
|
<
<
<
<
<
|
|
|







 







<
<
<







 







>







 







>
>
>







1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568





1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
....
3036
3037
3038
3039
3040
3041
3042



3043
3044
3045
3046
3047
3048
3049
....
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
....
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
  Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
  int tnum;                /* DB Page containing root of this index */
  u16 nColumn;             /* Number of columns in table used by this index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned autoIndex:2;    /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */
  unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
  int nSample;             /* Number of elements in aSample[] */
  int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
  tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
#endif
};

/*
** Each sample stored in the sqlite_stat3 table is represented in memory 
** using a structure of this type.  See documentation at the top of the
** analyze.c source file for additional information.
*/
struct IndexSample {
  void *p;          /* Pointer to sampled record */
  int n;            /* Size of record in bytes */





  tRowcnt *anEq;    /* Est. number of rows where the key equals this sample */
  tRowcnt *anLt;    /* Est. number of rows where key is less than this sample */
  tRowcnt *anDLt;   /* Est. number of distinct keys less than this sample */
};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
................................................................................
const void *sqlite3ValueText(sqlite3_value*, u8);
int sqlite3ValueBytes(sqlite3_value*, u8);
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
                        void(*)(void*));
void sqlite3ValueFree(sqlite3_value*);
sqlite3_value *sqlite3ValueNew(sqlite3 *);
char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);



int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
extern const unsigned char sqlite3OpcodeProperty[];
extern const unsigned char sqlite3UpperToLower[];
extern const unsigned char sqlite3CtypeMap[];
extern const Token sqlite3IntTokens[];
................................................................................
#ifndef SQLITE_OMIT_WSD
extern int sqlite3PendingByte;
#endif
#endif
void sqlite3RootPageMoved(sqlite3*, int, int, int);
void sqlite3Reindex(Parse*, Token*, Token*);
void sqlite3AlterFunctions(void);
void sqlite3AnalyzeFunctions(void);
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
int sqlite3GetToken(const unsigned char *, int *);
void sqlite3NestedParse(Parse*, const char*, ...);
void sqlite3ExpirePreparedStatements(sqlite3*);
int sqlite3CodeSubselect(Parse *, Expr *, int, int);
void sqlite3SelectPrep(Parse*, Select*, NameContext*);
int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
................................................................................
char *sqlite3StrAccumFinish(StrAccum*);
void sqlite3StrAccumReset(StrAccum*);
void sqlite3SelectDestInit(SelectDest*,int,int);
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);

void sqlite3BackupRestart(sqlite3_backup *);
void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);

int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);
void sqlite3Stat4ProbeFree(UnpackedRecord*);

/*
** The interface to the LEMON-generated parser
*/
void *sqlite3ParserAlloc(void*(*)(size_t));
void sqlite3ParserFree(void*, void(*)(void*));
void sqlite3Parser(void*, int, Token, Parse*);

Changes to src/test_config.c.

454
455
456
457
458
459
460
461





462
463
464
465
466
467
468

#ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
  Tcl_SetVar2(interp, "sqlite_options", "schema_version", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "schema_version", "1", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_ENABLE_STAT3





  Tcl_SetVar2(interp, "sqlite_options", "stat3", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "stat3", "0", TCL_GLOBAL_ONLY);
#endif

#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
#  if defined(__APPLE__)







|
>
>
>
>
>







454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

#ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
  Tcl_SetVar2(interp, "sqlite_options", "schema_version", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "schema_version", "1", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_ENABLE_STAT4
  Tcl_SetVar2(interp, "sqlite_options", "stat4", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "stat4", "0", TCL_GLOBAL_ONLY);
#endif
#if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
  Tcl_SetVar2(interp, "sqlite_options", "stat3", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "stat3", "0", TCL_GLOBAL_ONLY);
#endif

#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
#  if defined(__APPLE__)

Changes to src/test_func.c.

14
15
16
17
18
19
20



21
22
23
24
25
26
27
...
454
455
456
457
458
459
460













































































































































461
462
463
464
465
466
467
...
478
479
480
481
482
483
484


485
486
487
488
489
490
491
*/
#include "sqlite3.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>





/*
** Allocate nByte bytes of space using sqlite3_malloc(). If the
** allocation fails, call sqlite3_result_error_nomem() to notify
** the database handle that malloc() has failed.
*/
static void *testContextMalloc(sqlite3_context *context, int nByte){
................................................................................
      zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
    }
  }
  zOut[16] = 0;
  sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT);
}















































































































































static int registerTestFunctions(sqlite3 *db){
  static const struct {
     char *zName;
     signed char nArg;
     unsigned char eTextRep; /* 1: UTF-16.  0: UTF-8 */
     void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
................................................................................
    { "test_auxdata",         -1, SQLITE_UTF8, test_auxdata},
    { "test_error",            1, SQLITE_UTF8, test_error},
    { "test_error",            2, SQLITE_UTF8, test_error},
    { "test_eval",             1, SQLITE_UTF8, test_eval},
    { "test_isolation",        2, SQLITE_UTF8, test_isolation},
    { "test_counter",          1, SQLITE_UTF8, counterFunc},
    { "real2hex",              1, SQLITE_UTF8, real2hex},


  };
  int i;

  for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
    sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
        aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0);
  }







>
>
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
...
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
...
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
*/
#include "sqlite3.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "sqliteInt.h"
#include "vdbeInt.h"


/*
** Allocate nByte bytes of space using sqlite3_malloc(). If the
** allocation fails, call sqlite3_result_error_nomem() to notify
** the database handle that malloc() has failed.
*/
static void *testContextMalloc(sqlite3_context *context, int nByte){
................................................................................
      zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
    }
  }
  zOut[16] = 0;
  sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT);
}

/*
** tclcmd: test_extract(record, field)
**
** This function implements an SQL user-function that accepts a blob
** containing a formatted database record as the first argument. The
** second argument is the index of the field within that record to
** extract and return.
*/
static void test_extract(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3 *db = sqlite3_context_db_handle(context);
  u8 *pRec;
  u8 *pEndHdr;                    /* Points to one byte past record header */
  u8 *pHdr;                       /* Current point in record header */
  u8 *pBody;                      /* Current point in record data */
  u64 nHdr;                       /* Bytes in record header */
  int iIdx;                       /* Required field */
  int iCurrent = 0;               /* Current field */

  assert( argc==2 );
  pRec = (u8*)sqlite3_value_blob(argv[0]);
  iIdx = sqlite3_value_int(argv[1]);

  pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
  pBody = pEndHdr = &pRec[nHdr];

  for(iCurrent=0; pHdr<pEndHdr && iCurrent<=iIdx; iCurrent++){
    u64 iSerialType;
    Mem mem;

    memset(&mem, 0, sizeof(mem));
    mem.db = db;
    mem.enc = ENC(db);
    pHdr += sqlite3GetVarint(pHdr, &iSerialType);
    pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);
    sqlite3VdbeMemStoreType(&mem);

    if( iCurrent==iIdx ){
      sqlite3_result_value(context, &mem);
    }

    sqlite3DbFree(db, mem.zMalloc);
  }
}

/*
** tclcmd: test_decode(record)
**
** This function implements an SQL user-function that accepts a blob
** containing a formatted database record as its only argument. It returns
** a tcl list (type SQLITE_TEXT) containing each of the values stored
** in the record.
*/
static void test_decode(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3 *db = sqlite3_context_db_handle(context);
  u8 *pRec;
  u8 *pEndHdr;                    /* Points to one byte past record header */
  u8 *pHdr;                       /* Current point in record header */
  u8 *pBody;                      /* Current point in record data */
  u64 nHdr;                       /* Bytes in record header */
  Tcl_Obj *pRet;                  /* Return value */

  pRet = Tcl_NewObj();
  Tcl_IncrRefCount(pRet);

  assert( argc==1 );
  pRec = (u8*)sqlite3_value_blob(argv[0]);

  pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
  pBody = pEndHdr = &pRec[nHdr];
  while( pHdr<pEndHdr ){
    Tcl_Obj *pVal = 0;
    u64 iSerialType;
    Mem mem;

    memset(&mem, 0, sizeof(mem));
    mem.db = db;
    mem.enc = ENC(db);
    pHdr += sqlite3GetVarint(pHdr, &iSerialType);
    pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);

    sqlite3VdbeMemStoreType(&mem);
    switch( sqlite3_value_type(&mem) ){
      case SQLITE_TEXT:
        pVal = Tcl_NewStringObj((const char*)sqlite3_value_text(&mem), -1);
        break;

      case SQLITE_BLOB: {
        char hexdigit[] = {
          '0', '1', '2', '3', '4', '5', '6', '7',
          '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
        };
        int n = sqlite3_value_bytes(&mem);
        u8 *z = (u8*)sqlite3_value_blob(&mem);
        int i;
        pVal = Tcl_NewStringObj("x'", -1);
        for(i=0; i<n; i++){
          char hex[3];
          hex[0] = hexdigit[((z[i] >> 4) & 0x0F)];
          hex[1] = hexdigit[(z[i] & 0x0F)];
          hex[2] = '\0';
          Tcl_AppendStringsToObj(pVal, hex, 0);
        }
        Tcl_AppendStringsToObj(pVal, "'", 0);
        break;
      }

      case SQLITE_FLOAT:
        pVal = Tcl_NewDoubleObj(sqlite3_value_double(&mem));
        break;

      case SQLITE_INTEGER:
        pVal = Tcl_NewWideIntObj(sqlite3_value_int64(&mem));
        break;

      case SQLITE_NULL:
        pVal = Tcl_NewStringObj("NULL", -1);
        break;

      default:
        assert( 0 );
    }

    Tcl_ListObjAppendElement(0, pRet, pVal);

    if( mem.zMalloc ){
      sqlite3DbFree(db, mem.zMalloc);
    }
  }

  sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
  Tcl_DecrRefCount(pRet);
}


static int registerTestFunctions(sqlite3 *db){
  static const struct {
     char *zName;
     signed char nArg;
     unsigned char eTextRep; /* 1: UTF-16.  0: UTF-8 */
     void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
................................................................................
    { "test_auxdata",         -1, SQLITE_UTF8, test_auxdata},
    { "test_error",            1, SQLITE_UTF8, test_error},
    { "test_error",            2, SQLITE_UTF8, test_error},
    { "test_eval",             1, SQLITE_UTF8, test_eval},
    { "test_isolation",        2, SQLITE_UTF8, test_isolation},
    { "test_counter",          1, SQLITE_UTF8, counterFunc},
    { "real2hex",              1, SQLITE_UTF8, real2hex},
    { "test_decode",           1, SQLITE_UTF8, test_decode},
    { "test_extract",          2, SQLITE_UTF8, test_extract},
  };
  int i;

  for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
    sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
        aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0);
  }

Changes to src/update.c.

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
** on register iReg. This is used when an equivalent integer value is 
** stored in place of an 8-byte floating point value in order to save 
** space.
*/
void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i, int iReg){
  assert( pTab!=0 );
  if( !pTab->pSelect ){
    sqlite3_value *pValue;
    u8 enc = ENC(sqlite3VdbeDb(v));
    Column *pCol = &pTab->aCol[i];
    VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
    assert( i<pTab->nCol );
    sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, 
                         pCol->affinity, &pValue);
    if( pValue ){







|







57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
** on register iReg. This is used when an equivalent integer value is 
** stored in place of an 8-byte floating point value in order to save 
** space.
*/
void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i, int iReg){
  assert( pTab!=0 );
  if( !pTab->pSelect ){
    sqlite3_value *pValue = 0;
    u8 enc = ENC(sqlite3VdbeDb(v));
    Column *pCol = &pTab->aCol[i];
    VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
    assert( i<pTab->nCol );
    sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, 
                         pCol->affinity, &pValue);
    if( pValue ){

Changes to src/utf.c.

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
  assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Dyn)!=0 || db->mallocFailed );
  assert( m.z || db->mallocFailed );
  return m.z;
}

/*
** Convert a UTF-8 string to the UTF-16 encoding specified by parameter
** enc. A pointer to the new string is returned, and the value of *pnOut
** is set to the length of the returned string in bytes. The call should
** arrange to call sqlite3DbFree() on the returned pointer when it is
** no longer required.
** 
** If a malloc failure occurs, NULL is returned and the db.mallocFailed
** flag set.
*/
#ifdef SQLITE_ENABLE_STAT3
char *sqlite3Utf8to16(sqlite3 *db, u8 enc, char *z, int n, int *pnOut){
  Mem m;
  memset(&m, 0, sizeof(m));
  m.db = db;
  sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC);
  if( sqlite3VdbeMemTranslate(&m, enc) ){
    assert( db->mallocFailed );
    return 0;
  }
  assert( m.z==m.zMalloc );
  *pnOut = m.n;
  return m.z;
}
#endif

/*
** zIn is a UTF-16 encoded unicode string at least nChar characters long.
** Return the number of bytes in the first nChar unicode characters
** in pZ.  nChar must be non-negative.
*/
int sqlite3Utf16ByteLen(const void *zIn, int nChar){
  int c;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







446
447
448
449
450
451
452


























453
454
455
456
457
458
459
  assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Dyn)!=0 || db->mallocFailed );
  assert( m.z || db->mallocFailed );
  return m.z;
}



























/*
** zIn is a UTF-16 encoded unicode string at least nChar characters long.
** Return the number of bytes in the first nChar unicode characters
** in pZ.  nChar must be non-negative.
*/
int sqlite3Utf16ByteLen(const void *zIn, int nChar){
  int c;

Changes to src/vdbe.c.

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
...
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
...
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
....
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
....
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
....
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
....
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
....
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
....
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
....
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
....
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
....
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
....
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
....
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
....
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
....
4797
4798
4799
4800
4801
4802
4803

4804
4805
4806
4807
4808
4809
4810
....
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
....
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
....
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
....
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
    ** external allocations out of mem[p2] and set mem[p2] to be
    ** an undefined integer.  Opcodes will either fill in the integer
    ** value or convert mem[p2] to a different type.
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=p->nMem );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      VdbeMemRelease(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );
      assert( pOp->p1<=p->nMem );
      assert( memIsValid(&aMem[pOp->p1]) );
      REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
    }
    if( (pOp->opflags & OPFLG_IN2)!=0 ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=p->nMem );
      assert( memIsValid(&aMem[pOp->p2]) );
      REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
    }
    if( (pOp->opflags & OPFLG_IN3)!=0 ){
      assert( pOp->p3>0 );
      assert( pOp->p3<=p->nMem );
      assert( memIsValid(&aMem[pOp->p3]) );
      REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
    }
    if( (pOp->opflags & OPFLG_OUT2)!=0 ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=p->nMem );
      memAboutToChange(p, &aMem[pOp->p2]);
    }
    if( (pOp->opflags & OPFLG_OUT3)!=0 ){
      assert( pOp->p3>0 );
      assert( pOp->p3<=p->nMem );
      memAboutToChange(p, &aMem[pOp->p3]);
    }
#endif
  
    switch( pOp->opcode ){

/*****************************************************************************
................................................................................

/* Opcode:  Gosub P1 P2 * * *
**
** Write the current address onto register P1
** and then jump to address P2.
*/
case OP_Gosub: {            /* jump */
  assert( pOp->p1>0 && pOp->p1<=p->nMem );
  pIn1 = &aMem[pOp->p1];
  assert( (pIn1->flags & MEM_Dyn)==0 );
  memAboutToChange(p, pIn1);
  pIn1->flags = MEM_Int;
  pIn1->u.i = pc;
  REGISTER_TRACE(pOp->p1, pIn1);
  pc = pOp->p2 - 1;
................................................................................
** NULL values will not compare equal even if SQLITE_NULLEQ is set on
** OP_Ne or OP_Eq.
*/
case OP_Null: {           /* out2-prerelease */
  int cnt;
  u16 nullFlag;
  cnt = pOp->p3-pOp->p2;
  assert( pOp->p3<=p->nMem );
  pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
  while( cnt>0 ){
    pOut++;
    memAboutToChange(p, pOut);
    VdbeMemRelease(pOut);
    pOut->flags = nullFlag;
    cnt--;
................................................................................
  p2 = pOp->p2;
  assert( n>0 && p1>0 && p2>0 );
  assert( p1+n<=p2 || p2+n<=p1 );

  pIn1 = &aMem[p1];
  pOut = &aMem[p2];
  while( n-- ){
    assert( pOut<=&aMem[p->nMem] );
    assert( pIn1<=&aMem[p->nMem] );
    assert( memIsValid(pIn1) );
    memAboutToChange(p, pOut);
    zMalloc = pOut->zMalloc;
    pOut->zMalloc = 0;
    sqlite3VdbeMemMove(pOut, pIn1);
#ifdef SQLITE_DEBUG
    if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
................................................................................
** row.
*/
case OP_ResultRow: {
  Mem *pMem;
  int i;
  assert( p->nResColumn==pOp->p2 );
  assert( pOp->p1>0 );
  assert( pOp->p1+pOp->p2<=p->nMem+1 );

  /* If this statement has violated immediate foreign key constraints, do
  ** not return the number of rows modified. And do not RELEASE the statement
  ** transaction. It needs to be rolled back.  */
  if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
    assert( db->flags&SQLITE_CountRows );
    assert( p->usesStmtJournal );
................................................................................
  sqlite3_context ctx;
  sqlite3_value **apVal;
  int n;

  n = pOp->p5;
  apVal = p->apArg;
  assert( apVal || n==0 );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pOut = &aMem[pOp->p3];
  memAboutToChange(p, pOut);

  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pArg = &aMem[pOp->p2];
  for(i=0; i<n; i++, pArg++){
    assert( memIsValid(pArg) );
    apVal[i] = pArg;
    Deephemeralize(pArg);
    sqlite3VdbeMemStoreType(pArg);
................................................................................
  assert( pKeyInfo!=0 );
  p1 = pOp->p1;
  p2 = pOp->p2;
#if SQLITE_DEBUG
  if( aPermute ){
    int k, mx = 0;
    for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
    assert( p1>0 && p1+mx<=p->nMem+1 );
    assert( p2>0 && p2+mx<=p->nMem+1 );
  }else{
    assert( p1>0 && p1+n<=p->nMem+1 );
    assert( p2>0 && p2+n<=p->nMem+1 );
  }
#endif /* SQLITE_DEBUG */
  for(i=0; i<n; i++){
    idx = aPermute ? aPermute[i] : i;
    assert( memIsValid(&aMem[p1+idx]) );
    assert( memIsValid(&aMem[p2+idx]) );
    REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
................................................................................


  p1 = pOp->p1;
  p2 = pOp->p2;
  pC = 0;
  memset(&sMem, 0, sizeof(sMem));
  assert( p1<p->nCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  zRec = 0;

  /* This block sets the variable payloadSize to be the total number of
  ** bytes in the record.
  **
................................................................................
  char cAff;               /* A single character of affinity */

  zAffinity = pOp->p4.z;
  assert( zAffinity!=0 );
  assert( zAffinity[pOp->p2]==0 );
  pIn1 = &aMem[pOp->p1];
  while( (cAff = *(zAffinity++))!=0 ){
    assert( pIn1 <= &p->aMem[p->nMem] );
    assert( memIsValid(pIn1) );
    ExpandBlob(pIn1);
    applyAffinity(pIn1, cAff, encoding);
    pIn1++;
  }
  break;
}
................................................................................
  ** of the record to data0.
  */
  nData = 0;         /* Number of bytes of data space */
  nHdr = 0;          /* Number of bytes of header space */
  nZero = 0;         /* Number of zero bytes at the end of the record */
  nField = pOp->p1;
  zAffinity = pOp->p4.z;
  assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
  pData0 = &aMem[nField];
  nField = pOp->p2;
  pLast = &pData0[nField-1];
  file_format = p->minWriteFileFormat;

  /* Identify the output register */
  assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
................................................................................
    i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
  }
  for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
    i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
  }
  assert( i==nByte );

  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob | MEM_Dyn;
  pOut->xDel = 0;
  if( nZero ){
    pOut->u.nZero = nZero;
    pOut->flags |= MEM_Zero;
  }
................................................................................
      p->minWriteFileFormat = pDb->pSchema->file_format;
    }
  }else{
    wrFlag = 0;
  }
  if( pOp->p5 & OPFLAG_P2ISREG ){
    assert( p2>0 );
    assert( p2<=p->nMem );
    pIn2 = &aMem[p2];
    assert( memIsValid(pIn2) );
    assert( (pIn2->flags & MEM_Int)!=0 );
    sqlite3VdbeMemIntegerify(pIn2);
    p2 = (int)pIn2->u.i;
    /* The p2 value always comes from a prior OP_CreateTable opcode and
    ** that opcode will always set the p2 value to 2 or more or else fail.
................................................................................
  UnpackedRecord r;                  /* B-Tree index search key */
  i64 R;                             /* Rowid stored in register P3 */

  pIn3 = &aMem[pOp->p3];
  aMx = &aMem[pOp->p4.i];
  /* Assert that the values of parameters P1 and P4 are in range. */
  assert( pOp->p4type==P4_INT32 );
  assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );

  /* Find the index cursor. */
  pCx = p->apCsr[pOp->p1];
  assert( pCx->deferredMoveto==0 );
  pCx->seekResult = 0;
  pCx->cacheStatus = CACHE_STALE;
................................................................................
        if( p->pFrame ){
          for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=pFrame->nMem );
          pMem = &pFrame->aMem[pOp->p3];
        }else{
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=p->nMem );
          pMem = &aMem[pOp->p3];
          memAboutToChange(p, pMem);
        }
        assert( memIsValid(pMem) );

        REGISTER_TRACE(pOp->p3, pMem);
        sqlite3VdbeMemIntegerify(pMem);
................................................................................
case OP_IdxDelete: {
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  UnpackedRecord r;

  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  if( ALWAYS(pCrsr!=0) ){
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)pOp->p3;
................................................................................
** See also: Destroy
*/
case OP_Clear: {
  int nChange;
 
  nChange = 0;
  assert( p->readOnly==0 );

  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += nChange;
    if( pOp->p3>0 ){
................................................................................
  Mem *pnErr;     /* Register keeping track of errors remaining */

  assert( p->bIsReader );
  nRoot = pOp->p2;
  assert( nRoot>0 );
  aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
  if( aRoot==0 ) goto no_mem;
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pnErr = &aMem[pOp->p3];
  assert( (pnErr->flags & MEM_Int)!=0 );
  assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
  pIn1 = &aMem[pOp->p1];
  for(j=0; j<nRoot; j++){
    aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
  }
................................................................................
  for(i=0; i<n; i++, pRec++){
    assert( memIsValid(pRec) );
    apVal[i] = pRec;
    memAboutToChange(p, pRec);
    sqlite3VdbeMemStoreType(pRec);
  }
  ctx.pFunc = pOp->p4.pFunc;
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  ctx.pMem = pMem = &aMem[pOp->p3];
  pMem->n++;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.zMalloc = 0;
  ctx.s.xDel = 0;
  ctx.s.db = db;
................................................................................
** argument is not used by this opcode.  It is only there to disambiguate
** functions that can take varying numbers of arguments.  The
** P4 argument is only needed for the degenerate case where
** the step function was not previously called.
*/
case OP_AggFinal: {
  Mem *pMem;
  assert( pOp->p1>0 && pOp->p1<=p->nMem );
  pMem = &aMem[pOp->p1];
  assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
  rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
  if( rc ){
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
  }
  sqlite3VdbeChangeEncoding(pMem, encoding);
................................................................................
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  Mem *pDest;
  sqlite3_context sContext;

  VdbeCursor *pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  if( pCur->nullRow ){
    sqlite3VdbeMemSetNull(pDest);
    break;
  }
  pVtab = pCur->pVtabCursor->pVtab;







|










|





|





|





|




|







 







|







 







|







 







|
|







 







|







 







|



|







 







|
|

|
|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







>







 







|







 







|







 







|







 







|







634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
...
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
...
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
....
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
....
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
....
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
....
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
....
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
....
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
....
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
....
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
....
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
....
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
....
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
....
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
....
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
....
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
....
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
....
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
....
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
    ** external allocations out of mem[p2] and set mem[p2] to be
    ** an undefined integer.  Opcodes will either fill in the integer
    ** value or convert mem[p2] to a different type.
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=(p->nMem-p->nCursor) );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      VdbeMemRelease(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );
      assert( pOp->p1<=(p->nMem-p->nCursor) );
      assert( memIsValid(&aMem[pOp->p1]) );
      REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
    }
    if( (pOp->opflags & OPFLG_IN2)!=0 ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=(p->nMem-p->nCursor) );
      assert( memIsValid(&aMem[pOp->p2]) );
      REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
    }
    if( (pOp->opflags & OPFLG_IN3)!=0 ){
      assert( pOp->p3>0 );
      assert( pOp->p3<=(p->nMem-p->nCursor) );
      assert( memIsValid(&aMem[pOp->p3]) );
      REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
    }
    if( (pOp->opflags & OPFLG_OUT2)!=0 ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=(p->nMem-p->nCursor) );
      memAboutToChange(p, &aMem[pOp->p2]);
    }
    if( (pOp->opflags & OPFLG_OUT3)!=0 ){
      assert( pOp->p3>0 );
      assert( pOp->p3<=(p->nMem-p->nCursor) );
      memAboutToChange(p, &aMem[pOp->p3]);
    }
#endif
  
    switch( pOp->opcode ){

/*****************************************************************************
................................................................................

/* Opcode:  Gosub P1 P2 * * *
**
** Write the current address onto register P1
** and then jump to address P2.
*/
case OP_Gosub: {            /* jump */
  assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
  pIn1 = &aMem[pOp->p1];
  assert( (pIn1->flags & MEM_Dyn)==0 );
  memAboutToChange(p, pIn1);
  pIn1->flags = MEM_Int;
  pIn1->u.i = pc;
  REGISTER_TRACE(pOp->p1, pIn1);
  pc = pOp->p2 - 1;
................................................................................
** NULL values will not compare equal even if SQLITE_NULLEQ is set on
** OP_Ne or OP_Eq.
*/
case OP_Null: {           /* out2-prerelease */
  int cnt;
  u16 nullFlag;
  cnt = pOp->p3-pOp->p2;
  assert( pOp->p3<=(p->nMem-p->nCursor) );
  pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
  while( cnt>0 ){
    pOut++;
    memAboutToChange(p, pOut);
    VdbeMemRelease(pOut);
    pOut->flags = nullFlag;
    cnt--;
................................................................................
  p2 = pOp->p2;
  assert( n>0 && p1>0 && p2>0 );
  assert( p1+n<=p2 || p2+n<=p1 );

  pIn1 = &aMem[p1];
  pOut = &aMem[p2];
  while( n-- ){
    assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
    assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
    assert( memIsValid(pIn1) );
    memAboutToChange(p, pOut);
    zMalloc = pOut->zMalloc;
    pOut->zMalloc = 0;
    sqlite3VdbeMemMove(pOut, pIn1);
#ifdef SQLITE_DEBUG
    if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
................................................................................
** row.
*/
case OP_ResultRow: {
  Mem *pMem;
  int i;
  assert( p->nResColumn==pOp->p2 );
  assert( pOp->p1>0 );
  assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );

  /* If this statement has violated immediate foreign key constraints, do
  ** not return the number of rows modified. And do not RELEASE the statement
  ** transaction. It needs to be rolled back.  */
  if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
    assert( db->flags&SQLITE_CountRows );
    assert( p->usesStmtJournal );
................................................................................
  sqlite3_context ctx;
  sqlite3_value **apVal;
  int n;

  n = pOp->p5;
  apVal = p->apArg;
  assert( apVal || n==0 );
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut = &aMem[pOp->p3];
  memAboutToChange(p, pOut);

  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pArg = &aMem[pOp->p2];
  for(i=0; i<n; i++, pArg++){
    assert( memIsValid(pArg) );
    apVal[i] = pArg;
    Deephemeralize(pArg);
    sqlite3VdbeMemStoreType(pArg);
................................................................................
  assert( pKeyInfo!=0 );
  p1 = pOp->p1;
  p2 = pOp->p2;
#if SQLITE_DEBUG
  if( aPermute ){
    int k, mx = 0;
    for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
    assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
    assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
  }else{
    assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
    assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
  }
#endif /* SQLITE_DEBUG */
  for(i=0; i<n; i++){
    idx = aPermute ? aPermute[i] : i;
    assert( memIsValid(&aMem[p1+idx]) );
    assert( memIsValid(&aMem[p2+idx]) );
    REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
................................................................................


  p1 = pOp->p1;
  p2 = pOp->p2;
  pC = 0;
  memset(&sMem, 0, sizeof(sMem));
  assert( p1<p->nCursor );
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  zRec = 0;

  /* This block sets the variable payloadSize to be the total number of
  ** bytes in the record.
  **
................................................................................
  char cAff;               /* A single character of affinity */

  zAffinity = pOp->p4.z;
  assert( zAffinity!=0 );
  assert( zAffinity[pOp->p2]==0 );
  pIn1 = &aMem[pOp->p1];
  while( (cAff = *(zAffinity++))!=0 ){
    assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
    assert( memIsValid(pIn1) );
    ExpandBlob(pIn1);
    applyAffinity(pIn1, cAff, encoding);
    pIn1++;
  }
  break;
}
................................................................................
  ** of the record to data0.
  */
  nData = 0;         /* Number of bytes of data space */
  nHdr = 0;          /* Number of bytes of header space */
  nZero = 0;         /* Number of zero bytes at the end of the record */
  nField = pOp->p1;
  zAffinity = pOp->p4.z;
  assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
  pData0 = &aMem[nField];
  nField = pOp->p2;
  pLast = &pData0[nField-1];
  file_format = p->minWriteFileFormat;

  /* Identify the output register */
  assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
................................................................................
    i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
  }
  for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
    i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
  }
  assert( i==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob | MEM_Dyn;
  pOut->xDel = 0;
  if( nZero ){
    pOut->u.nZero = nZero;
    pOut->flags |= MEM_Zero;
  }
................................................................................
      p->minWriteFileFormat = pDb->pSchema->file_format;
    }
  }else{
    wrFlag = 0;
  }
  if( pOp->p5 & OPFLAG_P2ISREG ){
    assert( p2>0 );
    assert( p2<=(p->nMem-p->nCursor) );
    pIn2 = &aMem[p2];
    assert( memIsValid(pIn2) );
    assert( (pIn2->flags & MEM_Int)!=0 );
    sqlite3VdbeMemIntegerify(pIn2);
    p2 = (int)pIn2->u.i;
    /* The p2 value always comes from a prior OP_CreateTable opcode and
    ** that opcode will always set the p2 value to 2 or more or else fail.
................................................................................
  UnpackedRecord r;                  /* B-Tree index search key */
  i64 R;                             /* Rowid stored in register P3 */

  pIn3 = &aMem[pOp->p3];
  aMx = &aMem[pOp->p4.i];
  /* Assert that the values of parameters P1 and P4 are in range. */
  assert( pOp->p4type==P4_INT32 );
  assert( pOp->p4.i>0 && pOp->p4.i<=(p->nMem-p->nCursor) );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );

  /* Find the index cursor. */
  pCx = p->apCsr[pOp->p1];
  assert( pCx->deferredMoveto==0 );
  pCx->seekResult = 0;
  pCx->cacheStatus = CACHE_STALE;
................................................................................
        if( p->pFrame ){
          for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=pFrame->nMem );
          pMem = &pFrame->aMem[pOp->p3];
        }else{
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=(p->nMem-p->nCursor) );
          pMem = &aMem[pOp->p3];
          memAboutToChange(p, pMem);
        }
        assert( memIsValid(pMem) );

        REGISTER_TRACE(pOp->p3, pMem);
        sqlite3VdbeMemIntegerify(pMem);
................................................................................
case OP_IdxDelete: {
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  UnpackedRecord r;

  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  if( ALWAYS(pCrsr!=0) ){
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)pOp->p3;
................................................................................
** See also: Destroy
*/
case OP_Clear: {
  int nChange;
 
  nChange = 0;
  assert( p->readOnly==0 );
  assert( pOp->p1!=1 );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += nChange;
    if( pOp->p3>0 ){
................................................................................
  Mem *pnErr;     /* Register keeping track of errors remaining */

  assert( p->bIsReader );
  nRoot = pOp->p2;
  assert( nRoot>0 );
  aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
  if( aRoot==0 ) goto no_mem;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pnErr = &aMem[pOp->p3];
  assert( (pnErr->flags & MEM_Int)!=0 );
  assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
  pIn1 = &aMem[pOp->p1];
  for(j=0; j<nRoot; j++){
    aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
  }
................................................................................
  for(i=0; i<n; i++, pRec++){
    assert( memIsValid(pRec) );
    apVal[i] = pRec;
    memAboutToChange(p, pRec);
    sqlite3VdbeMemStoreType(pRec);
  }
  ctx.pFunc = pOp->p4.pFunc;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  ctx.pMem = pMem = &aMem[pOp->p3];
  pMem->n++;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.zMalloc = 0;
  ctx.s.xDel = 0;
  ctx.s.db = db;
................................................................................
** argument is not used by this opcode.  It is only there to disambiguate
** functions that can take varying numbers of arguments.  The
** P4 argument is only needed for the degenerate case where
** the step function was not previously called.
*/
case OP_AggFinal: {
  Mem *pMem;
  assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
  pMem = &aMem[pOp->p1];
  assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
  rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
  if( rc ){
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
  }
  sqlite3VdbeChangeEncoding(pMem, encoding);
................................................................................
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  Mem *pDest;
  sqlite3_context sContext;

  VdbeCursor *pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  if( pCur->nullRow ){
    sqlite3VdbeMemSetNull(pDest);
    break;
  }
  pVtab = pCur->pVtabCursor->pVtab;

Changes to src/vdbemem.c.

997
998
999
1000
1001
1002
1003
1004













1005
1006
1007
1008
1009
1010
1011





1012



















































1013
1014
1015
1016
1017
1018

1019
1020
1021
1022
1023
1024

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
....
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
....
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075


1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

1115
1116
1117
1118
1119



















































































































































































1120
1121
1122
1123
1124
1125
1126
    p->type = SQLITE_NULL;
    p->db = db;
  }
  return p;
}

/*
** Create a new sqlite3_value object, containing the value of pExpr.













**
** This only works for very simple expressions that consist of one constant
** token (i.e. "5", "5.1", "'a string'"). If the expression can
** be converted directly into a value, then the value is allocated and
** a pointer written to *ppVal. The caller is responsible for deallocating
** the value by passing it to sqlite3ValueFree() later on. If the expression
** cannot be converted to a value, then *ppVal is set to NULL.





*/



















































int sqlite3ValueFromExpr(
  sqlite3 *db,              /* The database connection */
  Expr *pExpr,              /* The expression to evaluate */
  u8 enc,                   /* Encoding to use */
  u8 affinity,              /* Affinity to use */
  sqlite3_value **ppVal     /* Write the new value here */

){
  int op;
  char *zVal = 0;
  sqlite3_value *pVal = 0;
  int negInt = 1;
  const char *zNeg = "";


  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;

  /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT3.
  ** The ifdef here is to enable us to achieve 100% branch test coverage even
  ** when SQLITE_ENABLE_STAT3 is omitted.
  */
#ifdef SQLITE_ENABLE_STAT3
  if( op==TK_REGISTER ) op = pExpr->op2;
#else
  if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
#endif

  /* Handle negative integers in a single step.  This is needed in the
  ** case when the value is -9223372036854775808.
................................................................................
    pExpr = pExpr->pLeft;
    op = pExpr->op;
    negInt = -1;
    zNeg = "-";
  }

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = sqlite3ValueNew(db);
    if( pVal==0 ) goto no_mem;
    if( ExprHasProperty(pExpr, EP_IntValue) ){
      sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
    }else{
      zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
      if( zVal==0 ) goto no_mem;
      sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
................................................................................
    if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
    }
    if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
    if( enc!=SQLITE_UTF8 ){
      sqlite3VdbeChangeEncoding(pVal, enc);
    }
  }else if( op==TK_UMINUS ) {
    /* This branch happens for multiple negative signs.  Ex: -(-5) */
    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){


      sqlite3VdbeMemNumerify(pVal);
      if( pVal->u.i==SMALLEST_INT64 ){
        pVal->flags &= MEM_Int;
        pVal->flags |= MEM_Real;
        pVal->r = (double)LARGEST_INT64;
      }else{
        pVal->u.i = -pVal->u.i;
      }
      pVal->r = -pVal->r;
      sqlite3ValueApplyAffinity(pVal, affinity, enc);
    }
  }else if( op==TK_NULL ){
    pVal = sqlite3ValueNew(db);
    if( pVal==0 ) goto no_mem;
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
  else if( op==TK_BLOB ){
    int nVal;
    assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
    assert( pExpr->u.zToken[1]=='\'' );
    pVal = sqlite3ValueNew(db);
    if( !pVal ) goto no_mem;
    zVal = &pExpr->u.zToken[2];
    nVal = sqlite3Strlen30(zVal)-1;
    assert( zVal[nVal]=='\'' );
    sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
                         0, SQLITE_DYNAMIC);
  }
#endif

  if( pVal ){
    sqlite3VdbeMemStoreType(pVal);
  }
  *ppVal = pVal;
  return SQLITE_OK;

no_mem:
  db->mallocFailed = 1;
  sqlite3DbFree(db, zVal);

  sqlite3ValueFree(pVal);
  *ppVal = 0;
  return SQLITE_NOMEM;
}




















































































































































































/*
** Change the string value of an sqlite3_value object
*/
void sqlite3ValueSetStr(
  sqlite3_value *v,     /* Value to be set */
  int n,                /* Length of string z */
  const void *z,        /* Text of the new string */







|
>
>
>
>
>
>
>
>
>
>
>
>
>

<
<
<
<
<
<
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|




|
>






>







|

|

|







 







|







 







|



|
>
>












|







|













|




>
|
<



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018






1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
....
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
....
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
    p->type = SQLITE_NULL;
    p->db = db;
  }
  return p;
}

/*
** Context object passed by sqlite3Stat4ProbeSetValue() through to 
** valueNew(). See comments above valueNew() for details.
*/
struct ValueNewStat4Ctx {
  Parse *pParse;
  Index *pIdx;
  UnpackedRecord **ppRec;
  int iVal;
};

/*
** Allocate and return a pointer to a new sqlite3_value object. If
** the second argument to this function is NULL, the object is allocated
** by calling sqlite3ValueNew().
**






** Otherwise, if the second argument is non-zero, then this function is 
** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
** already been allocated, allocate the UnpackedRecord structure that 
** that function will return to its caller here. Then return a pointer 
** an sqlite3_value within the UnpackedRecord.a[] array.
*/
static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
  if( p ){
    UnpackedRecord *pRec = p->ppRec[0];

    if( pRec==0 ){
      Index *pIdx = p->pIdx;      /* Index being probed */
      int nByte;                  /* Bytes of space to allocate */
      int i;                      /* Counter variable */
      int nCol = pIdx->nColumn+1; /* Number of index columns including rowid */
  
      nByte = sizeof(Mem) * nCol + sizeof(UnpackedRecord);
      pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
      if( pRec ){
        pRec->pKeyInfo = sqlite3IndexKeyinfo(p->pParse, pIdx);
        if( pRec->pKeyInfo ){
          assert( pRec->pKeyInfo->nField+1==nCol );
          pRec->pKeyInfo->enc = ENC(db);
          pRec->flags = UNPACKED_PREFIX_MATCH;
          pRec->aMem = (Mem *)&pRec[1];
          for(i=0; i<nCol; i++){
            pRec->aMem[i].flags = MEM_Null;
            pRec->aMem[i].type = SQLITE_NULL;
            pRec->aMem[i].db = db;
          }
        }else{
          sqlite3DbFree(db, pRec);
          pRec = 0;
        }
      }
      if( pRec==0 ) return 0;
      p->ppRec[0] = pRec;
    }
  
    pRec->nField = p->iVal+1;
    return &pRec->aMem[p->iVal];
  }
#endif
  return sqlite3ValueNew(db);
}

/*
** Extract a value from the supplied expression in the manner described
** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
** using valueNew().
**
** If pCtx is NULL and an error occurs after the sqlite3_value object
** has been allocated, it is freed before returning. Or, if pCtx is not
** NULL, it is assumed that the caller will free any allocated object
** in all cases.
*/
int valueFromExpr(
  sqlite3 *db,                    /* The database connection */
  Expr *pExpr,                    /* The expression to evaluate */
  u8 enc,                         /* Encoding to use */
  u8 affinity,                    /* Affinity to use */
  sqlite3_value **ppVal,          /* Write the new value here */
  struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
){
  int op;
  char *zVal = 0;
  sqlite3_value *pVal = 0;
  int negInt = 1;
  const char *zNeg = "";
  int rc = SQLITE_OK;

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;

  /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT4.
  ** The ifdef here is to enable us to achieve 100% branch test coverage even
  ** when SQLITE_ENABLE_STAT4 is omitted.
  */
#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
  if( op==TK_REGISTER ) op = pExpr->op2;
#else
  if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
#endif

  /* Handle negative integers in a single step.  This is needed in the
  ** case when the value is -9223372036854775808.
................................................................................
    pExpr = pExpr->pLeft;
    op = pExpr->op;
    negInt = -1;
    zNeg = "-";
  }

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = valueNew(db, pCtx);
    if( pVal==0 ) goto no_mem;
    if( ExprHasProperty(pExpr, EP_IntValue) ){
      sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
    }else{
      zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
      if( zVal==0 ) goto no_mem;
      sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
................................................................................
    if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
    }
    if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
    if( enc!=SQLITE_UTF8 ){
      rc = sqlite3VdbeChangeEncoding(pVal, enc);
    }
  }else if( op==TK_UMINUS ) {
    /* This branch happens for multiple negative signs.  Ex: -(-5) */
    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) 
     && pVal!=0
    ){
      sqlite3VdbeMemNumerify(pVal);
      if( pVal->u.i==SMALLEST_INT64 ){
        pVal->flags &= MEM_Int;
        pVal->flags |= MEM_Real;
        pVal->r = (double)LARGEST_INT64;
      }else{
        pVal->u.i = -pVal->u.i;
      }
      pVal->r = -pVal->r;
      sqlite3ValueApplyAffinity(pVal, affinity, enc);
    }
  }else if( op==TK_NULL ){
    pVal = valueNew(db, pCtx);
    if( pVal==0 ) goto no_mem;
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
  else if( op==TK_BLOB ){
    int nVal;
    assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
    assert( pExpr->u.zToken[1]=='\'' );
    pVal = valueNew(db, pCtx);
    if( !pVal ) goto no_mem;
    zVal = &pExpr->u.zToken[2];
    nVal = sqlite3Strlen30(zVal)-1;
    assert( zVal[nVal]=='\'' );
    sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
                         0, SQLITE_DYNAMIC);
  }
#endif

  if( pVal ){
    sqlite3VdbeMemStoreType(pVal);
  }
  *ppVal = pVal;
  return rc;

no_mem:
  db->mallocFailed = 1;
  sqlite3DbFree(db, zVal);
  assert( *ppVal==0 );
  if( pCtx==0 ) sqlite3ValueFree(pVal);

  return SQLITE_NOMEM;
}

/*
** Create a new sqlite3_value object, containing the value of pExpr.
**
** This only works for very simple expressions that consist of one constant
** token (i.e. "5", "5.1", "'a string'"). If the expression can
** be converted directly into a value, then the value is allocated and
** a pointer written to *ppVal. The caller is responsible for deallocating
** the value by passing it to sqlite3ValueFree() later on. If the expression
** cannot be converted to a value, then *ppVal is set to NULL.
*/
int sqlite3ValueFromExpr(
  sqlite3 *db,              /* The database connection */
  Expr *pExpr,              /* The expression to evaluate */
  u8 enc,                   /* Encoding to use */
  u8 affinity,              /* Affinity to use */
  sqlite3_value **ppVal     /* Write the new value here */
){
  return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0);
}

#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
/*
** The implementation of the sqlite_record() function. This function accepts
** a single argument of any type. The return value is a formatted database 
** record (a blob) containing the argument value.
**
** This is used to convert the value stored in the 'sample' column of the
** sqlite_stat3 table to the record format SQLite uses internally.
*/
static void recordFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const int file_format = 1;
  int iSerial;                    /* Serial type */
  int nSerial;                    /* Bytes of space for iSerial as varint */
  int nVal;                       /* Bytes of space required for argv[0] */
  int nRet;
  sqlite3 *db;
  u8 *aRet;

  iSerial = sqlite3VdbeSerialType(argv[0], file_format);
  nSerial = sqlite3VarintLen(iSerial);
  nVal = sqlite3VdbeSerialTypeLen(iSerial);
  db = sqlite3_context_db_handle(context);

  nRet = 1 + nSerial + nVal;
  aRet = sqlite3DbMallocRaw(db, nRet);
  if( aRet==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    aRet[0] = nSerial+1;
    sqlite3PutVarint(&aRet[1], iSerial);
    sqlite3VdbeSerialPut(&aRet[1+nSerial], nVal, argv[0], file_format);
    sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
    sqlite3DbFree(db, aRet);
  }
}

/*
** Register built-in functions used to help read ANALYZE data.
*/
void sqlite3AnalyzeFunctions(void){
  static SQLITE_WSD FuncDef aAnalyzeTableFuncs[] = {
    FUNCTION(sqlite_record,   1, 0, 0, recordFunc),
  };
  int i;
  FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
  FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAnalyzeTableFuncs);
  for(i=0; i<ArraySize(aAnalyzeTableFuncs); i++){
    sqlite3FuncDefInsert(pHash, &aFunc[i]);
  }
}

/*
** This function is used to allocate and populate UnpackedRecord 
** structures intended to be compared against sample index keys stored 
** in the sqlite_stat4 table.
**
** A single call to this function attempts to populates field iVal (leftmost 
** is 0 etc.) of the unpacked record with a value extracted from expression
** pExpr. Extraction of values is possible if:
**
**  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
**
**  * The expression is a bound variable, and this is a reprepare, or
**
**  * The sqlite3ValueFromExpr() function is able to extract a value 
**    from the expression (i.e. the expression is a literal value).
**
** If a value can be extracted, the affinity passed as the 5th argument
** is applied to it before it is copied into the UnpackedRecord. Output
** parameter *pbOk is set to true if a value is extracted, or false 
** otherwise.
**
** When this function is called, *ppRec must either point to an object
** allocated by an earlier call to this function, or must be NULL. If it
** is NULL and a value can be successfully extracted, a new UnpackedRecord
** is allocated (and *ppRec set to point to it) before returning.
**
** Unless an error is encountered, SQLITE_OK is returned. It is not an
** error if a value cannot be extracted from pExpr. If an error does
** occur, an SQLite error code is returned.
*/
int sqlite3Stat4ProbeSetValue(
  Parse *pParse,                  /* Parse context */
  Index *pIdx,                    /* Index being probed */
  UnpackedRecord **ppRec,         /* IN/OUT: Probe record */
  Expr *pExpr,                    /* The expression to extract a value from */
  u8 affinity,                    /* Affinity to use */
  int iVal,                       /* Array element to populate */
  int *pbOk                       /* OUT: True if value was extracted */
){
  int rc = SQLITE_OK;
  sqlite3_value *pVal = 0;

  struct ValueNewStat4Ctx alloc;
  alloc.pParse = pParse;
  alloc.pIdx = pIdx;
  alloc.ppRec = ppRec;
  alloc.iVal = iVal;

  if( !pExpr ){
    pVal = valueNew(pParse->db, &alloc);
    if( pVal ){
      sqlite3VdbeMemSetNull((Mem*)pVal);
      *pbOk = 1;
    }
  }else if( pExpr->op==TK_VARIABLE
        || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
  ){
    Vdbe *v;
    int iBindVar = pExpr->iColumn;
    sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
    if( (v = pParse->pReprepare)!=0 ){
      pVal = valueNew(pParse->db, &alloc);
      if( pVal ){
        rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
        if( rc==SQLITE_OK ){
          sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
        }
        pVal->db = pParse->db;
        *pbOk = 1;
        sqlite3VdbeMemStoreType((Mem*)pVal);
      }
    }else{
      *pbOk = 0;
    }
  }else{
    sqlite3 *db = pParse->db;
    rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, &alloc);
    *pbOk = (pVal!=0);
  }

  assert( pVal==0 || pVal->db==pParse->db );
  return rc;
}

/*
** Unless it is NULL, the argument must be an UnpackedRecord object returned
** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
** the object.
*/
void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
  if( pRec ){
    int i;
    int nCol = pRec->pKeyInfo->nField+1;
    Mem *aMem = pRec->aMem;
    sqlite3 *db = aMem[0].db;
    for(i=0; i<nCol; i++){
      sqlite3DbFree(db, aMem[i].zMalloc);
    }
    sqlite3DbFree(db, pRec->pKeyInfo);
    sqlite3DbFree(db, pRec);
  }
}
#endif /* ifdef SQLITE_ENABLE_STAT4 */

/*
** Change the string value of an sqlite3_value object
*/
void sqlite3ValueSetStr(
  sqlite3_value *v,     /* Value to be set */
  int n,                /* Length of string z */
  const void *z,        /* Text of the new string */

Changes to src/where.c.

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
...
388
389
390
391
392
393
394




395
396
397
398
399
400
401
....
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
....
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415

2416
2417
2418
2419
2420
2421
2422
2423


2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438

2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470

2471






2472

2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493


2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505

2506
2507



2508
2509
2510
2511
2512

2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529

2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
....
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625

2626
2627
2628
2629
2630

2631
2632
2633
2634
2635
2636
2637
2638

2639
2640

2641
2642


2643



2644
2645
2646
2647


2648
2649
2650

































2651

2652
2653
2654

2655

2656
2657
2658
2659

2660
2661
2662


2663

2664
2665
2666

2667

2668
2669
2670
2671

2672
2673
2674


2675
2676

2677
2678


2679
2680




2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700


2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
....
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728


2729
2730
2731

2732


2733
2734
2735
2736
2737
2738
2739

2740



2741












2742


2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
....
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776


2777
2778
2779
2780
2781
2782
2783
2784
2785
2786

2787

2788
2789
2790
2791
2792

2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
....
4333
4334
4335
4336
4337
4338
4339







4340
4341
4342
4343
4344
4345


4346
4347
4348
4349
4350
4351
4352
....
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407

4408

4409


4410
4411
4412
4413
4414
4415
4416
4417
4418
4419

4420


4421
4422
4423
4424
4425
4426
4427
....
4430
4431
4432
4433
4434
4435
4436




4437
4438
4439
4440
4441
4442
4443
....
4659
4660
4661
4662
4663
4664
4665

4666





4667
4668
4669
4670
4671
4672
4673
#define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
#define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
#define TERM_CODED      0x04   /* This term is already coded */
#define TERM_COPIED     0x08   /* Has a child */
#define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
#define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
#define TERM_OR_OK      0x40   /* Used during OR-clause processing */
#ifdef SQLITE_ENABLE_STAT3
#  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
#else
#  define TERM_VNULL    0x00   /* Disabled if not using stat3 */
#endif

/*
** An instance of the WhereScan object is used as an iterator for locating
................................................................................
*/
struct WhereLoopBuilder {
  WhereInfo *pWInfo;        /* Information about this WHERE */
  WhereClause *pWC;         /* WHERE clause terms */
  ExprList *pOrderBy;       /* ORDER BY clause */
  WhereLoop *pNew;          /* Template WhereLoop */
  WhereOrSet *pOrSet;       /* Record best loops here, if not NULL */




};

/*
** The WHERE clause processing routine has two halves.  The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop.  An instance of
** this structure is returned by the first half and passed
................................................................................
      pTerm->nChild = 1;
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef SQLITE_ENABLE_STAT3
  /* When sqlite_stat3 histogram data is available an operator of the
  ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
  ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
  ** virtual term of that form.
  **
  ** Note that the virtual term must be tagged with TERM_VNULL.  This
  ** TERM_VNULL tag will suppress the not-null check at the beginning
................................................................................
  }

  return pParse->nErr;
}
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */


#ifdef SQLITE_ENABLE_STAT3
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:
**
**    aStat[0]      Est. number of rows less than pVal
**    aStat[1]      Est. number of rows equal to pVal
**
** Return SQLITE_OK on success.
*/
static int whereKeyStats(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  sqlite3_value *pVal,        /* Value to consider */
  int roundUp,                /* Round up if true.  Round down if false */
  tRowcnt *aStat              /* OUT: stats written here */
){
  tRowcnt n;
  IndexSample *aSample;

  int i, eType;
  int isEq = 0;
  i64 v;
  double r, rS;

  assert( roundUp==0 || roundUp==1 );
  assert( pIdx->nSample>0 );
  if( pVal==0 ) return SQLITE_ERROR;


  n = pIdx->aiRowEst[0];
  aSample = pIdx->aSample;
  eType = sqlite3_value_type(pVal);

  if( eType==SQLITE_INTEGER ){
    v = sqlite3_value_int64(pVal);
    r = (i64)v;
    for(i=0; i<pIdx->nSample; i++){
      if( aSample[i].eType==SQLITE_NULL ) continue;
      if( aSample[i].eType>=SQLITE_TEXT ) break;
      if( aSample[i].eType==SQLITE_INTEGER ){
        if( aSample[i].u.i>=v ){
          isEq = aSample[i].u.i==v;
          break;
        }

      }else{
        assert( aSample[i].eType==SQLITE_FLOAT );
        if( aSample[i].u.r>=r ){
          isEq = aSample[i].u.r==r;
          break;
        }
      }
    }
  }else if( eType==SQLITE_FLOAT ){
    r = sqlite3_value_double(pVal);
    for(i=0; i<pIdx->nSample; i++){
      if( aSample[i].eType==SQLITE_NULL ) continue;
      if( aSample[i].eType>=SQLITE_TEXT ) break;
      if( aSample[i].eType==SQLITE_FLOAT ){
        rS = aSample[i].u.r;
      }else{
        rS = aSample[i].u.i;
      }
      if( rS>=r ){
        isEq = rS==r;
        break;
      }
    }
  }else if( eType==SQLITE_NULL ){
    i = 0;
    if( aSample[0].eType==SQLITE_NULL ) isEq = 1;
  }else{
    assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
    for(i=0; i<pIdx->nSample; i++){
      if( aSample[i].eType==SQLITE_TEXT || aSample[i].eType==SQLITE_BLOB ){
        break;
      }

    }






    if( i<pIdx->nSample ){      

      sqlite3 *db = pParse->db;
      CollSeq *pColl;
      const u8 *z;
      if( eType==SQLITE_BLOB ){
        z = (const u8 *)sqlite3_value_blob(pVal);
        pColl = db->pDfltColl;
        assert( pColl->enc==SQLITE_UTF8 );
      }else{
        pColl = sqlite3GetCollSeq(pParse, SQLITE_UTF8, 0, *pIdx->azColl);
        /* If the collating sequence was unavailable, we should have failed
        ** long ago and never reached this point.  But we'll check just to
        ** be doubly sure. */
        if( NEVER(pColl==0) ) return SQLITE_ERROR;
        z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
        if( !z ){
          return SQLITE_NOMEM;
        }
        assert( z && pColl && pColl->xCmp );
      }
      n = sqlite3ValueBytes(pVal, pColl->enc);
  


      for(; i<pIdx->nSample; i++){
        int c;
        int eSampletype = aSample[i].eType;
        if( eSampletype<eType ) continue;
        if( eSampletype!=eType ) break;
#ifndef SQLITE_OMIT_UTF16
        if( pColl->enc!=SQLITE_UTF8 ){
          int nSample;
          char *zSample = sqlite3Utf8to16(
              db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
          );
          if( !zSample ){

            assert( db->mallocFailed );
            return SQLITE_NOMEM;



          }
          c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
          sqlite3DbFree(db, zSample);
        }else
#endif

        {
          c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
        }
        if( c>=0 ){
          if( c==0 ) isEq = 1;
          break;
        }
      }
    }
  }

  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then isEq==1.
  */
  if( isEq ){
    assert( i<pIdx->nSample );

    aStat[0] = aSample[i].nLt;
    aStat[1] = aSample[i].nEq;
  }else{
    tRowcnt iLower, iUpper, iGap;
    if( i==0 ){
      iLower = 0;
      iUpper = aSample[0].nLt;
    }else{
      iUpper = i>=pIdx->nSample ? n : aSample[i].nLt;
      iLower = aSample[i-1].nEq + aSample[i-1].nLt;
    }
    aStat[1] = pIdx->avgEq;
    if( iLower>=iUpper ){
      iGap = 0;
    }else{
      iGap = iUpper - iLower;
    }
    if( roundUp ){
      iGap = (iGap*2)/3;
    }else{
      iGap = iGap/3;
    }
    aStat[0] = iLower + iGap;
  }
  return SQLITE_OK;
}
#endif /* SQLITE_ENABLE_STAT3 */

/*
** If expression pExpr represents a literal value, set *pp to point to
** an sqlite3_value structure containing the same value, with affinity
** aff applied to it, before returning. It is the responsibility of the 
** caller to eventually release this structure by passing it to 
** sqlite3ValueFree().
**
** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
** is an SQL variable that currently has a non-NULL value bound to it,
** create an sqlite3_value structure containing this value, again with
** affinity aff applied to it, instead.
**
** If neither of the above apply, set *pp to NULL.
**
** If an error occurs, return an error code. Otherwise, SQLITE_OK.
*/
#ifdef SQLITE_ENABLE_STAT3
static int valueFromExpr(
  Parse *pParse, 
  Expr *pExpr, 
  u8 aff, 
  sqlite3_value **pp
){
  if( pExpr->op==TK_VARIABLE
   || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
  ){
    int iVar = pExpr->iColumn;
    sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
    *pp = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, aff);
    return SQLITE_OK;
  }
  return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
}
#endif

/*
** This function is used to estimate the number of rows that will be visited
** by scanning an index for a range of values. The range may have an upper
** bound, a lower bound, or both. The WHERE clause terms that set the upper
** and lower bounds are represented by pLower and pUpper respectively. For
** example, assuming that index p is on t1(a):
................................................................................
**                    |_____|   |_____|
**                       |         |
**                     pLower    pUpper
**
** If either of the upper or lower bound is not present, then NULL is passed in
** place of the corresponding WhereTerm.
**
** The nEq parameter is passed the index of the index column subject to the
** range constraint. Or, equivalently, the number of equality constraints
** optimized by the proposed index scan. For example, assuming index p is
** on t1(a, b), and the SQL query is:
**
**   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
**
** then nEq should be passed the value 1 (as the range restricted column,
** b, is the second left-most column of the index). Or, if the query is:
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq should be passed 0.
**
** The returned value is an integer divisor to reduce the estimated
** search space.  A return value of 1 means that range constraints are
** no help at all.  A return value of 2 means range constraints are
** expected to reduce the search space by half.  And so forth...

**
** In the absence of sqlite_stat3 ANALYZE data, each range inequality
** reduces the search space by a factor of 4.  Hence a single constraint (x>?)
** results in a return of 4 and a range constraint (x>? AND x<?) results
** in a return of 16.

*/
static int whereRangeScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index containing the range-compared column; "x" */
  int nEq,             /* index into p->aCol[] of the range-compared column */
  WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
  WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
  WhereCost *pRangeDiv /* OUT: Reduce search space by this divisor */

){
  int rc = SQLITE_OK;


#ifdef SQLITE_ENABLE_STAT3






  if( nEq==0 && p->nSample && OptimizationEnabled(pParse->db, SQLITE_Stat3) ){
    sqlite3_value *pRangeVal;
    tRowcnt iLower = 0;
    tRowcnt iUpper = p->aiRowEst[0];


    tRowcnt a[2];
    u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;


































    if( pLower ){

      Expr *pExpr = pLower->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 );

      if( rc==SQLITE_OK

       && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE_OK
      ){
        iLower = a[0];
        if( (pLower->eOperator & WO_GT)!=0 ) iLower += a[1];

      }
      sqlite3ValueFree(pRangeVal);
    }


    if( rc==SQLITE_OK && pUpper ){

      Expr *pExpr = pUpper->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 );

      if( rc==SQLITE_OK

       && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE_OK
      ){
        iUpper = a[0];
        if( (pUpper->eOperator & WO_LE)!=0 ) iUpper += a[1];

      }
      sqlite3ValueFree(pRangeVal);
    }


    if( rc==SQLITE_OK ){
      WhereCost iBase = whereCost(p->aiRowEst[0]);

      if( iUpper>iLower ){
        iBase -= whereCost(iUpper - iLower);


      }
      *pRangeDiv = iBase;




      WHERETRACE(0x100, ("range scan regions: %u..%u  div=%d\n",
                         (u32)iLower, (u32)iUpper, *pRangeDiv));
      return SQLITE_OK;
    }
  }
#else
  UNUSED_PARAMETER(pParse);
  UNUSED_PARAMETER(p);
  UNUSED_PARAMETER(nEq);
#endif
  assert( pLower || pUpper );
  *pRangeDiv = 0;
  /* TUNING:  Each inequality constraint reduces the search space 4-fold.
  ** A BETWEEN operator, therefore, reduces the search space 16-fold */
  if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ){
    *pRangeDiv += 20;  assert( 20==whereCost(4) );
  }
  if( pUpper ){
    *pRangeDiv += 20;  assert( 20==whereCost(4) );
  }


  return rc;
}

#ifdef SQLITE_ENABLE_STAT3
/*
** Estimate the number of rows that will be returned based on
** an equality constraint x=VALUE and where that VALUE occurs in
** the histogram data.  This only works when x is the left-most
** column of an index and sqlite_stat3 histogram data is available
** for that index.  When pExpr==NULL that means the constraint is
** "x IS NULL" instead of "x=VALUE".
................................................................................
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison.  The error is stored
** in the pParse structure.
*/
static int whereEqualScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
  tRowcnt *pnRow       /* Write the revised row estimate here */
){
  sqlite3_value *pRhs = 0;  /* VALUE on right-hand side of pTerm */


  u8 aff;                   /* Column affinity */
  int rc;                   /* Subfunction return code */
  tRowcnt a[2];             /* Statistics */




  assert( p->aSample!=0 );
  assert( p->nSample>0 );
  aff = p->pTable->aCol[p->aiColumn[0]].affinity;
  if( pExpr ){
    rc = valueFromExpr(pParse, pExpr, aff, &pRhs);
    if( rc ) goto whereEqualScanEst_cancel;
  }else{

    pRhs = sqlite3ValueNew(pParse->db);



  }












  if( pRhs==0 ) return SQLITE_NOTFOUND;


  rc = whereKeyStats(pParse, p, pRhs, 0, a);
  if( rc==SQLITE_OK ){
    WHERETRACE(0x100,("equality scan regions: %d\n", (int)a[1]));
    *pnRow = a[1];
  }
whereEqualScanEst_cancel:
  sqlite3ValueFree(pRhs);
  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT3) */

#ifdef SQLITE_ENABLE_STAT3
/*
** Estimate the number of rows that will be returned based on
** an IN constraint where the right-hand side of the IN operator
** is a list of values.  Example:
**
**        WHERE x IN (1,2,3,4)
**
................................................................................
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison.  The error is stored
** in the pParse structure.
*/
static int whereInScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
  tRowcnt *pnRow       /* Write the revised row estimate here */
){


  int rc = SQLITE_OK;     /* Subfunction return code */
  tRowcnt nEst;           /* Number of rows for a single term */
  tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
  int i;                  /* Loop counter */

  assert( p->aSample!=0 );
  for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
    nEst = p->aiRowEst[0];
    rc = whereEqualScanEst(pParse, p, pList->a[i].pExpr, &nEst);
    nRowEst += nEst;

  }

  if( rc==SQLITE_OK ){
    if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
    *pnRow = nRowEst;
    WHERETRACE(0x100,("IN row estimate: est=%g\n", nRowEst));
  }

  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT3) */

/*
** Disable a term in the WHERE clause.  Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
**
** Consider the term t2.z='ok' in the following queries:
................................................................................
  saved_wsFlags = pNew->wsFlags;
  saved_prereq = pNew->prereq;
  saved_nOut = pNew->nOut;
  pNew->rSetup = 0;
  rLogSize = estLog(whereCost(pProbe->aiRowEst[0]));
  for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
    int nIn = 0;







    if( pTerm->prereqRight & pNew->maskSelf ) continue;
    if( (pTerm->eOperator==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
     && (iCol<0 || pSrc->pTab->aCol[iCol].notNull)
    ){
      continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
    }


    pNew->wsFlags = saved_wsFlags;
    pNew->u.btree.nEq = saved_nEq;
    pNew->nLTerm = saved_nLTerm;
    if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
    pNew->aLTerm[pNew->nLTerm++] = pTerm;
    pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
    pNew->rRun = rLogSize; /* Baseline cost is log2(N).  Adjustments below */
................................................................................
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
      pTop = pTerm;
      pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
                     pNew->aLTerm[pNew->nLTerm-2] : 0;
    }
    if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
      /* Adjust nOut and rRun for STAT3 range values */
      WhereCost rDiv;
      whereRangeScanEst(pParse, pProbe, pNew->u.btree.nEq,
                        pBtm, pTop, &rDiv);
      pNew->nOut = saved_nOut>rDiv+10 ? saved_nOut - rDiv : 10;
    }
#ifdef SQLITE_ENABLE_STAT3

    if( pNew->u.btree.nEq==1 && pProbe->nSample

     &&  OptimizationEnabled(db, SQLITE_Stat3) ){


      tRowcnt nOut = 0;
      if( (pTerm->eOperator & (WO_EQ|WO_ISNULL))!=0 ){
        testcase( pTerm->eOperator & WO_EQ );
        testcase( pTerm->eOperator & WO_ISNULL );
        rc = whereEqualScanEst(pParse, pProbe, pTerm->pExpr->pRight, &nOut);
      }else if( (pTerm->eOperator & WO_IN)
             &&  !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)  ){
        rc = whereInScanEst(pParse, pProbe, pTerm->pExpr->x.pList, &nOut);
      }
      assert( nOut==0 || rc==SQLITE_OK );

      if( nOut ) pNew->nOut = whereCost(nOut);


    }
#endif
    if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
      /* Each row involves a step of the index, then a binary search of
      ** the main table */
      pNew->rRun =  whereCostAdd(pNew->rRun, rLogSize>27 ? rLogSize-17 : 10);
    }
................................................................................
    /* TBD: Adjust nOut for additional constraints */
    rc = whereLoopInsert(pBuilder, pNew);
    if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
     && pNew->u.btree.nEq<(pProbe->nColumn + (pProbe->zName!=0))
    ){
      whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
    }




  }
  pNew->prereq = saved_prereq;
  pNew->u.btree.nEq = saved_nEq;
  pNew->wsFlags = saved_wsFlags;
  pNew->nOut = saved_nOut;
  pNew->nLTerm = saved_nLTerm;
  return rc;
................................................................................
          ** which we will simplify to just N*log2(N) */
          pNew->rRun = rSize + rLogSize;
        }
        rc = whereLoopInsert(pBuilder, pNew);
        if( rc ) break;
      }
    }

    rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);






    /* If there was an INDEXED BY clause, then only that one index is
    ** considered. */
    if( pSrc->pIndex ) break;
  }
  return rc;
}







|







 







>
>
>
>







 







|







 







|









|


|



<
|
>
|
|
|
|

<

<
>
>
|
|
|
<
<
<
<
<
<
<
<
<
<
<
<
>
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
|
>
|
>
>
>
>
>
>
|
>
|
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
>
>
|
<
<
<
<
<
<
<
<
<
<
<
>
|
<
>
>
>
|
<
<
<
<
>
|
<
<
<
<
<
<
<
<
<
<


|

<
<
>
|
|




|

|
|

|












<

|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







|
|
|
|



|
|



|

|
|
|
|
>
|
|
<
|
|
>



|
<


<
>


>

|
>
>

>
>
>
|
<
<
<
>
>



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>

<

>
|
>
|
<
<
|
>

<

>
>
|
>

<

>
|
>
|
<
<
|
>

<

>
>

<
>

|
>
>

<
>
>
>
>
|
|





|
<


<



|


|

>
>



|







 







|



|
>
>



>

>
>


<
<
<
|
<
>
|
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
|
<
|
|
|
<
<


|

|







 







|



>
>








|

>

>





>


|







 







>
>
>
>
>
>
>

<
<
<
<
|
>
>







 







|
|
<
<

|
>
|
>
|
>
>




|

|
|


>
|
>
>







 







>
>
>
>







 







>

>
>
>
>
>







282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
...
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
....
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
....
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417

2418
2419
2420
2421
2422
2423
2424

2425

2426
2427
2428
2429
2430












2431
2432























2433






2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445






2446













2447
2448
2449











2450
2451

2452
2453
2454
2455




2456
2457










2458
2459
2460
2461


2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486

2487
2488



































2489
2490
2491
2492
2493
2494
2495
....
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525

2526
2527
2528
2529
2530
2531
2532

2533
2534

2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547



2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588

2589
2590
2591
2592
2593


2594
2595
2596

2597
2598
2599
2600
2601
2602

2603
2604
2605
2606
2607


2608
2609
2610

2611
2612
2613
2614

2615
2616
2617
2618
2619
2620

2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632

2633
2634

2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
....
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683



2684

2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706

2707
2708
2709


2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
....
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
....
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312




4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
....
4365
4366
4367
4368
4369
4370
4371
4372
4373


4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
....
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
....
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
#define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
#define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
#define TERM_CODED      0x04   /* This term is already coded */
#define TERM_COPIED     0x08   /* Has a child */
#define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
#define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
#define TERM_OR_OK      0x40   /* Used during OR-clause processing */
#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
#  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
#else
#  define TERM_VNULL    0x00   /* Disabled if not using stat3 */
#endif

/*
** An instance of the WhereScan object is used as an iterator for locating
................................................................................
*/
struct WhereLoopBuilder {
  WhereInfo *pWInfo;        /* Information about this WHERE */
  WhereClause *pWC;         /* WHERE clause terms */
  ExprList *pOrderBy;       /* ORDER BY clause */
  WhereLoop *pNew;          /* Template WhereLoop */
  WhereOrSet *pOrSet;       /* Record best loops here, if not NULL */
#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
  UnpackedRecord *pRec;     /* Probe for stat4 (if required) */
  int nRecValid;            /* Number of valid fields currently in pRec */
#endif
};

/*
** The WHERE clause processing routine has two halves.  The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop.  An instance of
** this structure is returned by the first half and passed
................................................................................
      pTerm->nChild = 1;
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
  /* When sqlite_stat3 histogram data is available an operator of the
  ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
  ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
  ** virtual term of that form.
  **
  ** Note that the virtual term must be tagged with TERM_VNULL.  This
  ** TERM_VNULL tag will suppress the not-null check at the beginning
................................................................................
  }

  return pParse->nErr;
}
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */


#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:
**
**    aStat[0]      Est. number of rows less than pVal
**    aStat[1]      Est. number of rows equal to pVal
**
** Return SQLITE_OK on success.
*/
static void whereKeyStats(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  UnpackedRecord *pRec,       /* Vector of values to consider */
  int roundUp,                /* Round up if true.  Round down if false */
  tRowcnt *aStat              /* OUT: stats written here */
){

  IndexSample *aSample = pIdx->aSample;
  int iCol = pRec->nField-1;  /* Index of required stats in anEq[] etc. */
  int iMin = 0;               /* Smallest sample not yet tested */
  int i = pIdx->nSample;      /* Smallest sample larger than or equal to pRec */
  int iTest;                  /* Next sample to test */
  int res;                    /* Result of comparison operation */


  assert( pIdx->nSample>0 );

  assert( pRec->nField>0 && iCol<pIdx->nSampleCol );
  do{
    iTest = (iMin+i)/2;
    res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec);
    if( res<0 ){












      iMin = iTest+1;
    }else{























      i = iTest;






    }
  }while( res && iMin<i );

#ifdef SQLITE_DEBUG
  /* The following assert statements check that the binary search code
  ** above found the right answer. This block serves no purpose other
  ** than to invoke the asserts.  */
  if( res==0 ){
    /* If (res==0) is true, then sample $i must be equal to pRec */
    assert( i<pIdx->nSample );
    assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
         || pParse->db->mallocFailed );






  }else{













    /* Otherwise, pRec must be smaller than sample $i and larger than
    ** sample ($i-1).  */
    assert( i==pIdx->nSample 











         || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
         || pParse->db->mallocFailed );

    assert( i==0
         || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
         || pParse->db->mallocFailed );
  }




#endif /* ifdef SQLITE_DEBUG */











  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then res==0.
  */


  if( res==0 ){
    aStat[0] = aSample[i].anLt[iCol];
    aStat[1] = aSample[i].anEq[iCol];
  }else{
    tRowcnt iLower, iUpper, iGap;
    if( i==0 ){
      iLower = 0;
      iUpper = aSample[0].anLt[iCol];
    }else{
      iUpper = i>=pIdx->nSample ? pIdx->aiRowEst[0] : aSample[i].anLt[iCol];
      iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol];
    }
    aStat[1] = (pIdx->nColumn>iCol ? pIdx->aAvgEq[iCol] : 1);
    if( iLower>=iUpper ){
      iGap = 0;
    }else{
      iGap = iUpper - iLower;
    }
    if( roundUp ){
      iGap = (iGap*2)/3;
    }else{
      iGap = iGap/3;
    }
    aStat[0] = iLower + iGap;
  }

}
#endif /* SQLITE_ENABLE_STAT4 */




































/*
** This function is used to estimate the number of rows that will be visited
** by scanning an index for a range of values. The range may have an upper
** bound, a lower bound, or both. The WHERE clause terms that set the upper
** and lower bounds are represented by pLower and pUpper respectively. For
** example, assuming that index p is on t1(a):
................................................................................
**                    |_____|   |_____|
**                       |         |
**                     pLower    pUpper
**
** If either of the upper or lower bound is not present, then NULL is passed in
** place of the corresponding WhereTerm.
**
** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index
** column subject to the range constraint. Or, equivalently, the number of
** equality constraints optimized by the proposed index scan. For example,
** assuming index p is on t1(a, b), and the SQL query is:
**
**   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
**
** then nEq is set to 1 (as the range restricted column, b, is the second 
** left-most column of the index). Or, if the query is:
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq is set to 0.
**
** When this function is called, *pnOut is set to the whereCost() of the
** number of rows that the index scan is expected to visit without 
** considering the range constraints. If nEq is 0, this is the number of 
** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
** to account for the range contraints pLower and pUpper.
** 
** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be

** used, each range inequality reduces the search space by a factor of 4. 
** Hence a pair of constraints (x>? AND x<?) reduces the expected number of
** rows visited by a factor of 16.
*/
static int whereRangeScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  WhereLoopBuilder *pBuilder,

  WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
  WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */

  WhereCost *pnOut     /* IN/OUT: Number of rows visited */
){
  int rc = SQLITE_OK;
  int nOut = (int)*pnOut;

#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
  Index *p = pBuilder->pNew->u.btree.pIndex;
  int nEq = pBuilder->pNew->u.btree.nEq;

  if( nEq==pBuilder->nRecValid
   && nEq<p->nSampleCol
   && p->nSample 
   && OptimizationEnabled(pParse->db, SQLITE_Stat3) 



  ){
    UnpackedRecord *pRec = pBuilder->pRec;
    tRowcnt a[2];
    u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;

    /* Variable iLower will be set to the estimate of the number of rows in 
    ** the index that are less than the lower bound of the range query. The
    ** lower bound being the concatenation of $P and $L, where $P is the
    ** key-prefix formed by the nEq values matched against the nEq left-most
    ** columns of the index, and $L is the value in pLower.
    **
    ** Or, if pLower is NULL or $L cannot be extracted from it (because it
    ** is not a simple variable or literal value), the lower bound of the
    ** range is $P. Due to a quirk in the way whereKeyStats() works, even
    ** if $L is available, whereKeyStats() is called for both ($P) and 
    ** ($P:$L) and the larger of the two returned values used.
    **
    ** Similarly, iUpper is to be set to the estimate of the number of rows
    ** less than the upper bound of the range query. Where the upper bound
    ** is either ($P) or ($P:$U). Again, even if $U is available, both values
    ** of iUpper are requested of whereKeyStats() and the smaller used.
    */
    tRowcnt iLower;
    tRowcnt iUpper;

    /* Determine iLower and iUpper using ($P) only. */
    if( nEq==0 ){
      iLower = 0;
      iUpper = p->aiRowEst[0];
    }else{
      /* Note: this call could be optimized away - since the same values must 
      ** have been requested when testing key $P in whereEqualScanEst().  */
      whereKeyStats(pParse, p, pRec, 0, a);
      iLower = a[0];
      iUpper = a[0] + a[1];
    }

    /* If possible, improve on the iLower estimate using ($P:$L). */
    if( pLower ){
      int bOk;                    /* True if value is extracted from pExpr */
      Expr *pExpr = pLower->pExpr->pRight;

      assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 );
      rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
      if( rc==SQLITE_OK && bOk ){
        tRowcnt iNew;
        whereKeyStats(pParse, p, pRec, 0, a);


        iNew = a[0] + ((pLower->eOperator & WO_GT) ? a[1] : 0);
        if( iNew>iLower ) iLower = iNew;
      }

    }

    /* If possible, improve on the iUpper estimate using ($P:$U). */
    if( pUpper ){
      int bOk;                    /* True if value is extracted from pExpr */
      Expr *pExpr = pUpper->pExpr->pRight;

      assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
      rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
      if( rc==SQLITE_OK && bOk ){
        tRowcnt iNew;
        whereKeyStats(pParse, p, pRec, 1, a);


        iNew = a[0] + ((pUpper->eOperator & WO_LE) ? a[1] : 0);
        if( iNew<iUpper ) iUpper = iNew;
      }

    }

    pBuilder->pRec = pRec;
    if( rc==SQLITE_OK ){

      WhereCost nNew;
      if( iUpper>iLower ){
        nNew = whereCost(iUpper - iLower);
      }else{
        nNew = 10;        assert( 10==whereCost(2) );
      }

      if( nNew<nOut ){
        nOut = nNew;
      }
      *pnOut = (WhereCost)nOut;
      WHERETRACE(0x100, ("range scan regions: %u..%u  est=%d\n",
                         (u32)iLower, (u32)iUpper, nOut));
      return SQLITE_OK;
    }
  }
#else
  UNUSED_PARAMETER(pParse);
  UNUSED_PARAMETER(pBuilder);

#endif
  assert( pLower || pUpper );

  /* TUNING:  Each inequality constraint reduces the search space 4-fold.
  ** A BETWEEN operator, therefore, reduces the search space 16-fold */
  if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ){
    nOut -= 20;        assert( 20==whereCost(4) );
  }
  if( pUpper ){
    nOut -= 20;        assert( 20==whereCost(4) );
  }
  if( nOut<10 ) nOut = 10;
  *pnOut = (WhereCost)nOut;
  return rc;
}

#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
/*
** Estimate the number of rows that will be returned based on
** an equality constraint x=VALUE and where that VALUE occurs in
** the histogram data.  This only works when x is the left-most
** column of an index and sqlite_stat3 histogram data is available
** for that index.  When pExpr==NULL that means the constraint is
** "x IS NULL" instead of "x=VALUE".
................................................................................
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison.  The error is stored
** in the pParse structure.
*/
static int whereEqualScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  WhereLoopBuilder *pBuilder,
  Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
  tRowcnt *pnRow       /* Write the revised row estimate here */
){
  Index *p = pBuilder->pNew->u.btree.pIndex;
  int nEq = pBuilder->pNew->u.btree.nEq;
  UnpackedRecord *pRec = pBuilder->pRec;
  u8 aff;                   /* Column affinity */
  int rc;                   /* Subfunction return code */
  tRowcnt a[2];             /* Statistics */
  int bOk;

  assert( nEq>=1 );
  assert( nEq<=(p->nColumn+1) );
  assert( p->aSample!=0 );
  assert( p->nSample>0 );



  assert( pBuilder->nRecValid<nEq );


  /* If values are not available for all fields of the index to the left
  ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
  if( pBuilder->nRecValid<(nEq-1) ){
    return SQLITE_NOTFOUND;
  }

  /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
  ** below would return the same value.  */
  if( nEq>p->nColumn ){
    *pnRow = 1;
    return SQLITE_OK;
  }

  aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity;
  rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk);
  pBuilder->pRec = pRec;
  if( rc!=SQLITE_OK ) return rc;
  if( bOk==0 ) return SQLITE_NOTFOUND;
  pBuilder->nRecValid = nEq;

  whereKeyStats(pParse, p, pRec, 0, a);

  WHERETRACE(0x100,("equality scan regions: %d\n", (int)a[1]));
  *pnRow = a[1];
  


  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT4) */

#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
/*
** Estimate the number of rows that will be returned based on
** an IN constraint where the right-hand side of the IN operator
** is a list of values.  Example:
**
**        WHERE x IN (1,2,3,4)
**
................................................................................
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison.  The error is stored
** in the pParse structure.
*/
static int whereInScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  WhereLoopBuilder *pBuilder,
  ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
  tRowcnt *pnRow       /* Write the revised row estimate here */
){
  Index *p = pBuilder->pNew->u.btree.pIndex;
  int nRecValid = pBuilder->nRecValid;
  int rc = SQLITE_OK;     /* Subfunction return code */
  tRowcnt nEst;           /* Number of rows for a single term */
  tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
  int i;                  /* Loop counter */

  assert( p->aSample!=0 );
  for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
    nEst = p->aiRowEst[0];
    rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
    nRowEst += nEst;
    pBuilder->nRecValid = nRecValid;
  }

  if( rc==SQLITE_OK ){
    if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
    *pnRow = nRowEst;
    WHERETRACE(0x100,("IN row estimate: est=%g\n", nRowEst));
  }
  assert( pBuilder->nRecValid==nRecValid );
  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT4) */

/*
** Disable a term in the WHERE clause.  Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
**
** Consider the term t2.z='ok' in the following queries:
................................................................................
  saved_wsFlags = pNew->wsFlags;
  saved_prereq = pNew->prereq;
  saved_nOut = pNew->nOut;
  pNew->rSetup = 0;
  rLogSize = estLog(whereCost(pProbe->aiRowEst[0]));
  for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
    int nIn = 0;
#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
    int nRecValid = pBuilder->nRecValid;
    assert( pNew->nOut==saved_nOut );
    if( (pTerm->wtFlags & TERM_VNULL)!=0 && pSrc->pTab->aCol[iCol].notNull ){
      continue; /* skip IS NOT NULL constraints on a NOT NULL column */
    }
#endif
    if( pTerm->prereqRight & pNew->maskSelf ) continue;





    assert( pNew->nOut==saved_nOut );

    pNew->wsFlags = saved_wsFlags;
    pNew->u.btree.nEq = saved_nEq;
    pNew->nLTerm = saved_nLTerm;
    if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
    pNew->aLTerm[pNew->nLTerm++] = pTerm;
    pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
    pNew->rRun = rLogSize; /* Baseline cost is log2(N).  Adjustments below */
................................................................................
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
      pTop = pTerm;
      pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
                     pNew->aLTerm[pNew->nLTerm-2] : 0;
    }
    if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
      /* Adjust nOut and rRun for STAT3 range values */
      assert( pNew->nOut==saved_nOut );
      whereRangeScanEst(pParse, pBuilder, pBtm, pTop, &pNew->nOut);


    }
#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
    if( nInMul==0 
     && pProbe->nSample 
     && pNew->u.btree.nEq<=pProbe->nSampleCol
     && OptimizationEnabled(db, SQLITE_Stat3) 
    ){
      Expr *pExpr = pTerm->pExpr;
      tRowcnt nOut = 0;
      if( (pTerm->eOperator & (WO_EQ|WO_ISNULL))!=0 ){
        testcase( pTerm->eOperator & WO_EQ );
        testcase( pTerm->eOperator & WO_ISNULL );
        rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
      }else if( (pTerm->eOperator & WO_IN)
             &&  !ExprHasProperty(pExpr, EP_xIsSelect)  ){
        rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
      }
      assert( nOut==0 || rc==SQLITE_OK );
      if( nOut ){
        nOut = whereCost(nOut);
        pNew->nOut = MIN(nOut, saved_nOut);
      }
    }
#endif
    if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
      /* Each row involves a step of the index, then a binary search of
      ** the main table */
      pNew->rRun =  whereCostAdd(pNew->rRun, rLogSize>27 ? rLogSize-17 : 10);
    }
................................................................................
    /* TBD: Adjust nOut for additional constraints */
    rc = whereLoopInsert(pBuilder, pNew);
    if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
     && pNew->u.btree.nEq<(pProbe->nColumn + (pProbe->zName!=0))
    ){
      whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
    }
    pNew->nOut = saved_nOut;
#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
    pBuilder->nRecValid = nRecValid;
#endif
  }
  pNew->prereq = saved_prereq;
  pNew->u.btree.nEq = saved_nEq;
  pNew->wsFlags = saved_wsFlags;
  pNew->nOut = saved_nOut;
  pNew->nLTerm = saved_nLTerm;
  return rc;
................................................................................
          ** which we will simplify to just N*log2(N) */
          pNew->rRun = rSize + rLogSize;
        }
        rc = whereLoopInsert(pBuilder, pNew);
        if( rc ) break;
      }
    }

    rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_ENABLE_STAT3)
    sqlite3Stat4ProbeFree(pBuilder->pRec);
    pBuilder->nRecValid = 0;
    pBuilder->pRec = 0;
#endif

    /* If there was an INDEXED BY clause, then only that one index is
    ** considered. */
    if( pSrc->pIndex ) break;
  }
  return rc;
}

Changes to test/alter.test.

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

#-------------------------------------------------------------------------
# Test that it is not possible to use ALTER TABLE on any system table.
#
set system_table_list {1 sqlite_master}
catchsql ANALYZE
ifcapable analyze { lappend system_table_list 2 sqlite_stat1 }
ifcapable stat3   { lappend system_table_list 4 sqlite_stat3 }

foreach {tn tbl} $system_table_list {
  do_test alter-15.$tn.1 {
    catchsql "ALTER TABLE $tbl RENAME TO xyz"
  } [list 1 "table $tbl may not be altered"]

  do_test alter-15.$tn.2 {
    catchsql "ALTER TABLE $tbl ADD COLUMN xyz"
  } [list 1 "table $tbl may not be altered"]
}


finish_test







|













843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

#-------------------------------------------------------------------------
# Test that it is not possible to use ALTER TABLE on any system table.
#
set system_table_list {1 sqlite_master}
catchsql ANALYZE
ifcapable analyze { lappend system_table_list 2 sqlite_stat1 }
ifcapable stat4   { lappend system_table_list 4 sqlite_stat4 }

foreach {tn tbl} $system_table_list {
  do_test alter-15.$tn.1 {
    catchsql "ALTER TABLE $tbl RENAME TO xyz"
  } [list 1 "table $tbl may not be altered"]

  do_test alter-15.$tn.2 {
    catchsql "ALTER TABLE $tbl ADD COLUMN xyz"
  } [list 1 "table $tbl may not be altered"]
}


finish_test

Changes to test/alter4.test.

137
138
139
140
141
142
143





144
145
146
147
148
149
150
      alter table v1 add column d;
    }
  } {1 {Cannot add a column to a view}}
}
do_test alter4-2.6 {
  catchsql {
    alter table t1 add column d DEFAULT CURRENT_TIME;





  }
} {1 {Cannot add a column with non-constant default}}
do_test alter4-2.99 {
  execsql {
    DROP TABLE t1;
  }
} {}







>
>
>
>
>







137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
      alter table v1 add column d;
    }
  } {1 {Cannot add a column to a view}}
}
do_test alter4-2.6 {
  catchsql {
    alter table t1 add column d DEFAULT CURRENT_TIME;
  }
} {1 {Cannot add a column with non-constant default}}
do_test alter4-2.7 {
  catchsql {
    alter table t1 add column d default (-+1);
  }
} {1 {Cannot add a column with non-constant default}}
do_test alter4-2.99 {
  execsql {
    DROP TABLE t1;
  }
} {}

Changes to test/analyze.test.

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
...
302
303
304
305
306
307
308
309

310
311
312
313
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

345
346
347
348
349
350
351
...
355
356
357
358
359
360
361
362
363
364
  sqlite3 db test.db
  execsql {
    SELECT * FROM t4 WHERE x=1234;
  }
} {}

# Verify that DROP TABLE and DROP INDEX remove entries from the 
# sqlite_stat1 and sqlite_stat3 tables.
#
do_test analyze-5.0 {
  execsql {
    DELETE FROM t3;
    DELETE FROM t4;
    INSERT INTO t3 VALUES(1,2,3,4);
    INSERT INTO t3 VALUES(5,6,7,8);
................................................................................
    INSERT INTO t3 SELECT a+64, b+64, c+64, d+64 FROM t3;
    INSERT INTO t4 SELECT a, b, c FROM t3;
    ANALYZE;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t3i1 t3i2 t3i3 t4i1 t4i2 t3 t4}
ifcapable stat3 {

  do_test analyze-5.1 {
    execsql {
      SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1;
      SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1;
    }

  } {t3i1 t3i2 t3i3 t4i1 t4i2 t3 t4}
}
do_test analyze-5.2 {
  execsql {
    DROP INDEX t3i2;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t3i1 t3i3 t4i1 t4i2 t3 t4}
ifcapable stat3 {
  do_test analyze-5.3 {
    execsql {
      SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1;
      SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1;
    }

  } {t3i1 t3i3 t4i1 t4i2 t3 t4}
}
do_test analyze-5.4 {
  execsql {
    DROP TABLE t3;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t4i1 t4i2 t4}
ifcapable stat3 {
  do_test analyze-5.5 {
    execsql {
      SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1;
      SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1;
    }

  } {t4i1 t4i2 t4}
}

# This test corrupts the database file so it must be the last test
# in the series.
#
do_test analyze-99.1 {
................................................................................
  }
  db close
  catch { sqlite3 db test.db }
  catchsql {
    ANALYZE
  }
} {1 {malformed database schema (sqlite_stat1) - near "nonsense": syntax error}}


finish_test







|







 







|
>

|
|
|
<
>









|

|
|
|
<
>









|

|
|
|
<
>







 








<

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
...
302
303
304
305
306
307
308
309
310
311
312
313
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

345
346
347
348
349
350
351
352
...
356
357
358
359
360
361
362
363

364
  sqlite3 db test.db
  execsql {
    SELECT * FROM t4 WHERE x=1234;
  }
} {}

# Verify that DROP TABLE and DROP INDEX remove entries from the 
# sqlite_stat1, sqlite_stat3 and sqlite_stat4 tables.
#
do_test analyze-5.0 {
  execsql {
    DELETE FROM t3;
    DELETE FROM t4;
    INSERT INTO t3 VALUES(1,2,3,4);
    INSERT INTO t3 VALUES(5,6,7,8);
................................................................................
    INSERT INTO t3 SELECT a+64, b+64, c+64, d+64 FROM t3;
    INSERT INTO t4 SELECT a, b, c FROM t3;
    ANALYZE;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t3i1 t3i2 t3i3 t4i1 t4i2 t3 t4}
ifcapable stat4||stat3 {
  ifcapable stat4 {set stat sqlite_stat4} else {set stat sqlite_stat3}
  do_test analyze-5.1 {
    execsql "
      SELECT DISTINCT idx FROM $stat ORDER BY 1;
      SELECT DISTINCT tbl FROM $stat ORDER BY 1;

    "
  } {t3i1 t3i2 t3i3 t4i1 t4i2 t3 t4}
}
do_test analyze-5.2 {
  execsql {
    DROP INDEX t3i2;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t3i1 t3i3 t4i1 t4i2 t3 t4}
ifcapable stat4||stat3 {
  do_test analyze-5.3 {
    execsql "
      SELECT DISTINCT idx FROM $stat ORDER BY 1;
      SELECT DISTINCT tbl FROM $stat ORDER BY 1;

    "
  } {t3i1 t3i3 t4i1 t4i2 t3 t4}
}
do_test analyze-5.4 {
  execsql {
    DROP TABLE t3;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t4i1 t4i2 t4}
ifcapable stat4||stat3 {
  do_test analyze-5.5 {
    execsql "
      SELECT DISTINCT idx FROM $stat ORDER BY 1;
      SELECT DISTINCT tbl FROM $stat ORDER BY 1;

    "
  } {t4i1 t4i2 t4}
}

# This test corrupts the database file so it must be the last test
# in the series.
#
do_test analyze-99.1 {
................................................................................
  }
  db close
  catch { sqlite3 db test.db }
  catchsql {
    ANALYZE
  }
} {1 {malformed database schema (sqlite_stat1) - near "nonsense": syntax error}}


finish_test

Changes to test/analyze3.test.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
..
91
92
93
94
95
96
97






98
99
100
101
102
103
104
105
...
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# implements tests for range and LIKE constraints that use bound variables
# instead of literal constant arguments.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

#----------------------------------------------------------------------
# Test Organization:
#
................................................................................
  for {set i 0} {$i < 1000} {incr i} {
    execsql { INSERT INTO t1 VALUES($i+100, $i) }
  }
  execsql {
    COMMIT;
    ANALYZE;
  }






} {}

do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
................................................................................
  }
  for {set i 0} {$i < 100} {incr i} {
    execsql { INSERT INTO t1 VALUES($i, $i, $i) }
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_test analyze3-3.2.1 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE b>?" -1 dummy]
  sqlite3_expired $S
} {0}
do_test analyze3-3.2.2 {
  sqlite3_bind_text $S 1 "abc" 3
  sqlite3_expired $S







|







 







>
>
>
>
>
>
|







 







<







13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
..
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
...
314
315
316
317
318
319
320

321
322
323
324
325
326
327
# implements tests for range and LIKE constraints that use bound variables
# instead of literal constant arguments.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat4&&!stat3 {
  finish_test
  return
}

#----------------------------------------------------------------------
# Test Organization:
#
................................................................................
  for {set i 0} {$i < 1000} {incr i} {
    execsql { INSERT INTO t1 VALUES($i+100, $i) }
  }
  execsql {
    COMMIT;
    ANALYZE;
  }

  ifcapable stat4 {
    execsql { SELECT count(*)>0 FROM sqlite_stat4; }
  } else {
    execsql { SELECT count(*)>0 FROM sqlite_stat3; }
  }
} {1}

do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
................................................................................
  }
  for {set i 0} {$i < 100} {incr i} {
    execsql { INSERT INTO t1 VALUES($i, $i, $i) }
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_test analyze3-3.2.1 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE b>?" -1 dummy]
  sqlite3_expired $S
} {0}
do_test analyze3-3.2.2 {
  sqlite3_bind_text $S 1 "abc" 3
  sqlite3_expired $S

Changes to test/analyze5.test.

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30











31
32
33
34
35
36
37
..
51
52
53
54
55
56
57








58
59

60
61
62







63
64


65





66
67
68

69
70
71
72
73
74
75
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements tests for SQLite library.  The focus of the tests
# in this file is the use of the sqlite_stat3 histogram data on tables
# with many repeated values and only a few distinct values.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

set testprefix analyze5

proc eqp {sql {db db}} {
  uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db
}












unset -nocomplain i t u v w x y z
do_test analyze5-1.0 {
  db eval {CREATE TABLE t1(t,u,v TEXT COLLATE nocase,w,x,y,z)}
  for {set i 0} {$i < 1000} {incr i} {
    set y [expr {$i>=25 && $i<=50}]
    set z [expr {($i>=400) + ($i>=700) + ($i>=875)}]
    set x $z
................................................................................
    CREATE INDEX t1u ON t1(u);  -- text
    CREATE INDEX t1v ON t1(v);  -- mixed case text
    CREATE INDEX t1w ON t1(w);  -- integers 0, 1, 2 and a few NULLs
    CREATE INDEX t1x ON t1(x);  -- integers 1, 2, 3 and many NULLs
    CREATE INDEX t1y ON t1(y);  -- integers 0 and very few 1s
    CREATE INDEX t1z ON t1(z);  -- integers 0, 1, 2, and 3
    ANALYZE;








    SELECT sample FROM sqlite_stat3 WHERE idx='t1u' ORDER BY nlt;
  }

} {alpha bravo charlie delta}

do_test analyze5-1.1 {







  db eval {SELECT DISTINCT lower(sample) FROM sqlite_stat3 WHERE idx='t1v'
             ORDER BY 1}


} {alpha bravo charlie delta}





do_test analyze5-1.2 {
  db eval {SELECT idx, count(*) FROM sqlite_stat3 GROUP BY 1 ORDER BY 1}
} {t1t 4 t1u 4 t1v 4 t1w 4 t1x 4 t1y 2 t1z 4}


# Verify that range queries generate the correct row count estimates
#
foreach {testid where index rows} {
    1  {z>=0 AND z<=0}       t1z  400
    2  {z>=1 AND z<=1}       t1z  300
    3  {z>=2 AND z<=2}       t1z  175







|






|










>
>
>
>
>
>
>
>
>
>
>







 







>
>
>
>
>
>
>
>
|
|
>



>
>
>
>
>
>
>
|
<
>
>

>
>
>
>
>



>







6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
..
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements tests for SQLite library.  The focus of the tests
# in this file is the use of the sqlite_stat4 histogram data on tables
# with many repeated values and only a few distinct values.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat4&&!stat3 {
  finish_test
  return
}

set testprefix analyze5

proc eqp {sql {db db}} {
  uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db
}

proc alpha {blob} {
  set ret ""
  foreach c [split $blob {}] {
    if {[string is alpha $c]} {append ret $c}
  }
  return $ret
}
db func alpha alpha

db func lindex lindex

unset -nocomplain i t u v w x y z
do_test analyze5-1.0 {
  db eval {CREATE TABLE t1(t,u,v TEXT COLLATE nocase,w,x,y,z)}
  for {set i 0} {$i < 1000} {incr i} {
    set y [expr {$i>=25 && $i<=50}]
    set z [expr {($i>=400) + ($i>=700) + ($i>=875)}]
    set x $z
................................................................................
    CREATE INDEX t1u ON t1(u);  -- text
    CREATE INDEX t1v ON t1(v);  -- mixed case text
    CREATE INDEX t1w ON t1(w);  -- integers 0, 1, 2 and a few NULLs
    CREATE INDEX t1x ON t1(x);  -- integers 1, 2, 3 and many NULLs
    CREATE INDEX t1y ON t1(y);  -- integers 0 and very few 1s
    CREATE INDEX t1z ON t1(z);  -- integers 0, 1, 2, and 3
    ANALYZE;
  }
  ifcapable stat4 {
    db eval {
      SELECT DISTINCT lindex(test_decode(sample),0) 
        FROM sqlite_stat4 WHERE idx='t1u' ORDER BY nlt;
    }
  } else {
    db eval {
      SELECT sample FROM sqlite_stat3 WHERE idx='t1u' ORDER BY nlt;
    }
  }
} {alpha bravo charlie delta}

do_test analyze5-1.1 {
  ifcapable stat4 {
    db eval {
      SELECT DISTINCT lower(lindex(test_decode(sample), 0)) 
        FROM sqlite_stat4 WHERE idx='t1v' ORDER BY 1
    }
  } else {
    db eval {
      SELECT lower(sample) FROM sqlite_stat3 WHERE idx='t1v' ORDER BY 1

    }
  }
} {alpha bravo charlie delta}
ifcapable stat4 {
  do_test analyze5-1.2 {
    db eval {SELECT idx, count(*) FROM sqlite_stat4 GROUP BY 1 ORDER BY 1}
  } {t1t 8 t1u 8 t1v 8 t1w 8 t1x 8 t1y 9 t1z 8}
} else {
  do_test analyze5-1.2 {
    db eval {SELECT idx, count(*) FROM sqlite_stat3 GROUP BY 1 ORDER BY 1}
  } {t1t 4 t1u 4 t1v 4 t1w 4 t1x 4 t1y 2 t1z 4}
}

# Verify that range queries generate the correct row count estimates
#
foreach {testid where index rows} {
    1  {z>=0 AND z<=0}       t1z  400
    2  {z>=1 AND z<=1}       t1z  300
    3  {z>=2 AND z<=2}       t1z  175

Changes to test/analyze6.test.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# in this file a corner-case query planner optimization involving the
# join order of two tables of different sizes.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

set testprefix analyze6

proc eqp {sql {db db}} {







|







13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# in this file a corner-case query planner optimization involving the
# join order of two tables of different sizes.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat4&&!stat3 {
  finish_test
  return
}

set testprefix analyze6

proc eqp {sql {db db}} {

Changes to test/analyze7.test.

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

101
102
103
104
105
106
107
108
109
110
111
112
113
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-3.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-3.2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=?;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
ifcapable stat3 {
  # If ENABLE_STAT3 is defined, SQLite comes up with a different estimated
  # row count for (c=2) than it does for (c=?).
  do_test analyze7-3.2.2 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
} else {
  # If ENABLE_STAT3 is not defined, the expected row count for (c=2) is the
  # same as that for (c=?).
  do_test analyze7-3.2.3 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
}
do_test analyze7-3.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}

ifcapable {!stat3} {
  do_test analyze7-3.4 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND b=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
  do_test analyze7-3.5 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND c=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
}
do_test analyze7-3.6 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND d=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=? AND d=?)}}

finish_test







|
|





|








>
|












78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-3.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-3.2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=?;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
ifcapable stat4||stat3 {
  # If ENABLE_STAT4 is defined, SQLite comes up with a different estimated
  # row count for (c=2) than it does for (c=?).
  do_test analyze7-3.2.2 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
} else {
  # If ENABLE_STAT4 is not defined, the expected row count for (c=2) is the
  # same as that for (c=?).
  do_test analyze7-3.2.3 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
}
do_test analyze7-3.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}

ifcapable {!stat4 && !stat3} {
  do_test analyze7-3.4 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND b=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
  do_test analyze7-3.5 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND c=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
}
do_test analyze7-3.6 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND d=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=? AND d=?)}}

finish_test

Changes to test/analyze8.test.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
..
81
82
83
84
85
86
87












88
89
90
91
92
93
94
# This file implements tests for SQLite library.  The focus of the tests
# in this file is testing the capabilities of sqlite_stat3.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}

set testprefix analyze8

proc eqp {sql {db db}} {
................................................................................
  eqp {SELECT * FROM t1 WHERE a=100 AND b BETWEEN 50 AND 54}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

# There are many more values of c between 0 and 100000 than there are
# between 800000 and 900000.  So t1c is more selective for the latter
# range.
#












do_test 3.1 {
  eqp {SELECT * FROM t1 WHERE b BETWEEN 50 AND 54 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}
do_test 3.2 {
  eqp {SELECT * FROM t1
       WHERE b BETWEEN 50 AND 54 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}







|







 







>
>
>
>
>
>
>
>
>
>
>
>







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
..
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# This file implements tests for SQLite library.  The focus of the tests
# in this file is testing the capabilities of sqlite_stat3.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat4&&!stat3 {
  finish_test
  return
}

set testprefix analyze8

proc eqp {sql {db db}} {
................................................................................
  eqp {SELECT * FROM t1 WHERE a=100 AND b BETWEEN 50 AND 54}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

# There are many more values of c between 0 and 100000 than there are
# between 800000 and 900000.  So t1c is more selective for the latter
# range.
# 
# Test 3.2 is a little unstable. It depends on the planner estimating
# that (b BETWEEN 50 AND 54) will match more rows than (c BETWEEN
# 800000 AND 900000). Which is a pretty close call (50 vs. 32), so
# the planner could get it wrong with an unlucky set of samples. This
# case happens to work, but others ("b BETWEEN 40 AND 44" for example) 
# will fail.
#
do_execsql_test 3.0 {
  SELECT count(*) FROM t1 WHERE b BETWEEN 50 AND 54;
  SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 100000;
  SELECT count(*) FROM t1 WHERE c BETWEEN 800000 AND 900000;
} {50 376 32}
do_test 3.1 {
  eqp {SELECT * FROM t1 WHERE b BETWEEN 50 AND 54 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}
do_test 3.2 {
  eqp {SELECT * FROM t1
       WHERE b BETWEEN 50 AND 54 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}

Added test/analyze9.test.





















































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# 2013 August 3
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains automated tests used to verify that the sqlite_stat4
# functionality is working.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix analyze9

ifcapable !stat4 {
  finish_test
  return
}

proc s {blob} {
  set ret ""
  binary scan $blob c* bytes
  foreach b $bytes {
    set t [binary format c $b]
    if {[string is print $t]} {
      append ret $t
    } else {
      append ret .
    }
  }
  return $ret
}
db function s s

do_execsql_test 1.0 {
  CREATE TABLE t1(a TEXT, b TEXT); 
  INSERT INTO t1 VALUES('(0)', '(0)');
  INSERT INTO t1 VALUES('(1)', '(1)');
  INSERT INTO t1 VALUES('(2)', '(2)');
  INSERT INTO t1 VALUES('(3)', '(3)');
  INSERT INTO t1 VALUES('(4)', '(4)');
  CREATE INDEX i1 ON t1(a, b);
} {}


do_execsql_test 1.1 {
  ANALYZE;
} {}

do_execsql_test 1.2 {
  SELECT tbl,idx,nEq,nLt,nDLt,test_decode(sample) FROM sqlite_stat4;
} {
  t1 i1 {1 1 1} {0 0 0} {0 0 0} {(0) (0) 1}
  t1 i1 {1 1 1} {1 1 1} {1 1 1} {(1) (1) 2}
  t1 i1 {1 1 1} {2 2 2} {2 2 2} {(2) (2) 3}
  t1 i1 {1 1 1} {3 3 3} {3 3 3} {(3) (3) 4}
  t1 i1 {1 1 1} {4 4 4} {4 4 4} {(4) (4) 5}
}

if {[permutation] != "utf16"} {
  do_execsql_test 1.3 {
    SELECT tbl,idx,nEq,nLt,nDLt,s(sample) FROM sqlite_stat4;
  } {
    t1 i1 {1 1 1} {0 0 0} {0 0 0} ....(0)(0)
    t1 i1 {1 1 1} {1 1 1} {1 1 1} ....(1)(1).
    t1 i1 {1 1 1} {2 2 2} {2 2 2} ....(2)(2).
    t1 i1 {1 1 1} {3 3 3} {3 3 3} ....(3)(3).
    t1 i1 {1 1 1} {4 4 4} {4 4 4} ....(4)(4).
  }
}


#-------------------------------------------------------------------------
# This is really just to test SQL user function "test_decode".
#
reset_db
do_execsql_test 2.1 {
  CREATE TABLE t1(a, b, c);
  INSERT INTO t1 VALUES('some text', 14, NULL);
  INSERT INTO t1 VALUES(22.0, NULL, x'656667');
  CREATE INDEX i1 ON t1(a, b, c);
  ANALYZE;
  SELECT test_decode(sample) FROM sqlite_stat4;
} {
  {22.0 NULL x'656667' 2} 
  {{some text} 14 NULL 1}
}

#-------------------------------------------------------------------------
# 
reset_db
do_execsql_test 3.1 {
  CREATE TABLE t2(a, b);
  CREATE INDEX i2 ON t2(a, b);
  BEGIN;
}

do_test 3.2 {
  for {set i 0} {$i < 1000} {incr i} {
    set a [expr $i / 10]
    set b [expr int(rand() * 15.0)]
    execsql { INSERT INTO t2 VALUES($a, $b) }
  }
  execsql COMMIT
} {}

db func lindex lindex

# Each value of "a" occurs exactly 10 times in the table.
#
do_execsql_test 3.3.1 {
  SELECT count(*) FROM t2 GROUP BY a;
} [lrange [string repeat "10 " 100] 0 99]

# The first element in the "nEq" list of all samples should therefore be 10.
#
do_execsql_test 3.3.2 {
  ANALYZE;
  SELECT lindex(nEq, 0) FROM sqlite_stat4;
} [lrange [string repeat "10 " 100] 0 23]

#-------------------------------------------------------------------------
# 
do_execsql_test 3.4 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c);
  INSERT INTO t1 VALUES(1, 1, 'one-a');
  INSERT INTO t1 VALUES(11, 1, 'one-b');
  INSERT INTO t1 VALUES(21, 1, 'one-c');
  INSERT INTO t1 VALUES(31, 1, 'one-d');
  INSERT INTO t1 VALUES(41, 1, 'one-e');
  INSERT INTO t1 VALUES(51, 1, 'one-f');
  INSERT INTO t1 VALUES(61, 1, 'one-g');
  INSERT INTO t1 VALUES(71, 1, 'one-h');
  INSERT INTO t1 VALUES(81, 1, 'one-i');
  INSERT INTO t1 VALUES(91, 1, 'one-j');
  INSERT INTO t1 SELECT a+1,2,'two' || substr(c,4) FROM t1;
  INSERT INTO t1 SELECT a+2,3,'three'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';
  INSERT INTO t1 SELECT a+3,4,'four'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';
  INSERT INTO t1 SELECT a+4,5,'five'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';
  INSERT INTO t1 SELECT a+5,6,'six'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';	
  CREATE INDEX t1b ON t1(b);
  ANALYZE;
  SELECT c FROM t1 WHERE b=3 AND a BETWEEN 30 AND 60;
} {three-d three-e three-f}


#-------------------------------------------------------------------------
# These tests verify that the sample selection for stat4 appears to be 
# working as designed.
#

reset_db
db func lindex lindex
db func lrange lrange

do_execsql_test 4.0 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(a, b, c);
  CREATE INDEX i1 ON t1(c, b, a);
}


proc insert_filler_rows_n {iStart args} {
  set A(-ncopy) 1
  set A(-nval) 1

  foreach {k v} $args {
    if {[info exists A($k)]==0} { error "no such option: $k" }
    set A($k) $v
  }
  if {[llength $args] % 2} {
    error "option requires an argument: [lindex $args end]"
  }

  for {set i 0} {$i < $A(-nval)} {incr i} {
    set iVal [expr $iStart+$i]
    for {set j 0} {$j < $A(-ncopy)} {incr j} {
      execsql { INSERT INTO t1 VALUES($iVal, $iVal, $iVal) }
    }
  }
}

do_test 4.1 {
  execsql { BEGIN }
  insert_filler_rows_n  0  -ncopy 10 -nval 19
  insert_filler_rows_n 20  -ncopy  1 -nval 100

  execsql {
    INSERT INTO t1(c, b, a) VALUES(200, 1, 'a');
    INSERT INTO t1(c, b, a) VALUES(200, 1, 'b');
    INSERT INTO t1(c, b, a) VALUES(200, 1, 'c');

    INSERT INTO t1(c, b, a) VALUES(200, 2, 'e');
    INSERT INTO t1(c, b, a) VALUES(200, 2, 'f');

    INSERT INTO t1(c, b, a) VALUES(201, 3, 'g');
    INSERT INTO t1(c, b, a) VALUES(201, 4, 'h');

    ANALYZE;
    SELECT count(*) FROM sqlite_stat4;
    SELECT count(*) FROM t1;
  }
} {24 297}

do_execsql_test 4.2 {
  SELECT 
    neq,
    lrange(nlt, 0, 2),
    lrange(ndlt, 0, 2),
    lrange(test_decode(sample), 0, 2)
    FROM sqlite_stat4
  ORDER BY rowid LIMIT 16;
} {
  {10 10 10 1} {0 0 0} {0 0 0} {0 0 0}
  {10 10 10 1} {10 10 10} {1 1 1} {1 1 1}
  {10 10 10 1} {20 20 20} {2 2 2} {2 2 2}
  {10 10 10 1} {30 30 30} {3 3 3} {3 3 3}
  {10 10 10 1} {40 40 40} {4 4 4} {4 4 4}
  {10 10 10 1} {50 50 50} {5 5 5} {5 5 5}
  {10 10 10 1} {60 60 60} {6 6 6} {6 6 6}
  {10 10 10 1} {70 70 70} {7 7 7} {7 7 7}
  {10 10 10 1} {80 80 80} {8 8 8} {8 8 8}
  {10 10 10 1} {90 90 90} {9 9 9} {9 9 9}
  {10 10 10 1} {100 100 100} {10 10 10} {10 10 10}
  {10 10 10 1} {110 110 110} {11 11 11} {11 11 11}
  {10 10 10 1} {120 120 120} {12 12 12} {12 12 12}
  {10 10 10 1} {130 130 130} {13 13 13} {13 13 13}
  {10 10 10 1} {140 140 140} {14 14 14} {14 14 14}
  {10 10 10 1} {150 150 150} {15 15 15} {15 15 15}
}

do_execsql_test 4.3 {
  SELECT 
    neq,
    lrange(nlt, 0, 2),
    lrange(ndlt, 0, 2),
    lrange(test_decode(sample), 0, 1)
    FROM sqlite_stat4
  ORDER BY rowid DESC LIMIT 2;
} {
  {2 1 1 1} {295 296 296} {120 122 125} {201 4} 
  {5 3 1 1} {290 290 292} {119 119 121} {200 1}
}

do_execsql_test 4.4 { SELECT count(DISTINCT c) FROM t1 WHERE c<201 } 120
do_execsql_test 4.5 { SELECT count(DISTINCT c) FROM t1 WHERE c<200 } 119

# Check that the perioidic samples are present.
do_execsql_test 4.6 {
  SELECT count(*) FROM sqlite_stat4
  WHERE lindex(test_decode(sample), 3) IN 
    ('34', '68', '102', '136', '170', '204', '238', '272')
} {8}

reset_db
do_test 4.7 {
  execsql { 
    BEGIN;
    CREATE TABLE t1(o,t INTEGER PRIMARY KEY);
    CREATE INDEX i1 ON t1(o);
  }
  for {set i 0} {$i<10000} {incr i [expr (($i<1000)?1:10)]} {
    execsql { INSERT INTO t1 VALUES('x', $i) }
  }
  execsql {
    COMMIT;
    ANALYZE;
    SELECT count(*) FROM sqlite_stat4;
  }
} {8}
do_execsql_test 4.8 {
  SELECT test_decode(sample) FROM sqlite_stat4;
} {
  {x 211} {x 423} {x 635} {x 847} 
  {x 1590} {x 3710} {x 5830} {x 7950}
}


#-------------------------------------------------------------------------
# The following would cause a crash at one point.
#
reset_db
do_execsql_test 5.1 {
  PRAGMA encoding = 'utf-16';
  CREATE TABLE t0(v);
  ANALYZE;
}

#-------------------------------------------------------------------------
# This was also crashing (corrupt sqlite_stat4 table).
#
reset_db
do_execsql_test 6.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a);
  CREATE INDEX i2 ON t1(b);
  INSERT INTO t1 VALUES(1, 1);
  INSERT INTO t1 VALUES(2, 2);
  INSERT INTO t1 VALUES(3, 3);
  INSERT INTO t1 VALUES(4, 4);
  INSERT INTO t1 VALUES(5, 5);
  ANALYZE;
  PRAGMA writable_schema = 1;
  CREATE TEMP TABLE x1 AS
    SELECT tbl,idx,neq,nlt,ndlt,sample FROM sqlite_stat4
    ORDER BY (rowid%5), rowid;
  DELETE FROM sqlite_stat4;
  INSERT INTO sqlite_stat4 SELECT * FROM x1;
  PRAGMA writable_schema = 0;
  ANALYZE sqlite_master;
}
do_execsql_test 6.2 {
  SELECT * FROM t1 WHERE a = 'abc';
}

#-------------------------------------------------------------------------
# The following tests experiment with adding corrupted records to the
# 'sample' column of the sqlite_stat4 table.
#
reset_db
sqlite3_db_config_lookaside db 0 0 0

do_execsql_test 7.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a, b);
  INSERT INTO t1 VALUES(1, 1);
  INSERT INTO t1 VALUES(2, 2);
  INSERT INTO t1 VALUES(3, 3);
  INSERT INTO t1 VALUES(4, 4);
  INSERT INTO t1 VALUES(5, 5);
  ANALYZE;
  UPDATE sqlite_stat4 SET sample = X'' WHERE rowid = 1;
  ANALYZE sqlite_master;
}

do_execsql_test 7.2 {
  UPDATE sqlite_stat4 SET sample = X'FFFF';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 1;
} {1 1}

do_execsql_test 7.3 {
  ANALYZE;
  UPDATE sqlite_stat4 SET neq = '0 0 0';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 1;
} {1 1}

do_execsql_test 7.4 {
  ANALYZE;
  UPDATE sqlite_stat4 SET ndlt = '0 0 0';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 3;
} {3 3}

do_execsql_test 7.5 {
  ANALYZE;
  UPDATE sqlite_stat4 SET nlt = '0 0 0';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 5;
} {5 5}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 8.1 {
  CREATE TABLE t1(x TEXT);
  CREATE INDEX i1 ON t1(x);
  INSERT INTO t1 VALUES('1');
  INSERT INTO t1 VALUES('2');
  INSERT INTO t1 VALUES('3');
  INSERT INTO t1 VALUES('4');
  ANALYZE;
}
do_execsql_test 8.2 {
  SELECT * FROM t1 WHERE x = 3;
} {3}

#-------------------------------------------------------------------------
# Check that the bug fixed by [91733bc485] really is fixed.
#
reset_db
do_execsql_test 9.1 {
  CREATE TABLE t1(a, b, c, d, e);
  CREATE INDEX i1 ON t1(a, b, c, d);
  CREATE INDEX i2 ON t1(e);
}
do_test 9.2 {
  execsql BEGIN;
  for {set i 0} {$i < 100} {incr i} {
    execsql "INSERT INTO t1 VALUES('x', 'y', 'z', $i, [expr $i/2])"
  }
  for {set i 0} {$i < 20} {incr i} {
    execsql "INSERT INTO t1 VALUES('x', 'y', 'z', 101, $i)"
  }
  for {set i 102} {$i < 200} {incr i} {
    execsql "INSERT INTO t1 VALUES('x', 'y', 'z', $i, [expr $i/2])"
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_eqp_test 9.3.1 {
  SELECT * FROM t1 WHERE a='x' AND b='y' AND c='z' AND d=101 AND e=5;
} {/t1 USING INDEX i2/}
do_eqp_test 9.3.2 {
  SELECT * FROM t1 WHERE a='x' AND b='y' AND c='z' AND d=99 AND e=5;
} {/t1 USING INDEX i1/}

set value_d [expr 101]
do_eqp_test 9.4.1 {
  SELECT * FROM t1 WHERE a='x' AND b='y' AND c='z' AND d=$value_d AND e=5
} {/t1 USING INDEX i2/}
set value_d [expr 99]
do_eqp_test 9.4.2 {
  SELECT * FROM t1 WHERE a='x' AND b='y' AND c='z' AND d=$value_d AND e=5
} {/t1 USING INDEX i1/}

finish_test

Added test/analyzeA.test.















































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# 2013 August 3
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains automated tests used to verify that the current build
# (which must be either ENABLE_STAT3 or ENABLE_STAT4) works with both stat3
# and stat4 data.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix analyzeA

ifcapable !stat4&&!stat3 {
  finish_test
  return
}

# Populate the stat3 table according to the current contents of the db
#
proc populate_stat3 {{bDropTable 1}} {
  # Open a second connection on database "test.db" and run ANALYZE. If this
  # is an ENABLE_STAT3 build, this is all that is required to create and
  # populate the sqlite_stat3 table. 
  # 
  sqlite3 db2 test.db
  execsql { ANALYZE }

  # Now, if this is an ENABLE_STAT4 build, create and populate the 
  # sqlite_stat3 table based on the stat4 data gathered by the ANALYZE
  # above. Then drop the sqlite_stat4 table.
  #
  ifcapable stat4 {
    db2 func lindex lindex
    execsql {
      PRAGMA writable_schema = on;
      CREATE TABLE sqlite_stat3(tbl,idx,neq,nlt,ndlt,sample);
      INSERT INTO sqlite_stat3 
      SELECT DISTINCT tbl, idx, 
        lindex(neq,0), lindex(nlt,0), lindex(ndlt,0), test_extract(sample, 0)
      FROM sqlite_stat4;
    } db2
    if {$bDropTable} { execsql {DROP TABLE sqlite_stat4} db2 }
    execsql { PRAGMA writable_schema = off }
  }

  # Modify the database schema cookie to ensure that the other connection
  # reloads the schema.
  #
  execsql {
    CREATE TABLE obscure_tbl_nm(x);
    DROP TABLE obscure_tbl_nm;
  } db2
  db2 close
}

# Populate the stat4 table according to the current contents of the db
#
proc populate_stat4 {{bDropTable 1}} {
  sqlite3 db2 test.db
  execsql { ANALYZE }

  ifcapable stat3 {
    execsql {
      PRAGMA writable_schema = on;
      CREATE TABLE sqlite_stat4(tbl,idx,neq,nlt,ndlt,sample);
      INSERT INTO sqlite_stat4 
      SELECT tbl, idx, neq, nlt, ndlt, sqlite_record(sample) 
      FROM sqlite_stat3;
    } db2
    if {$bDropTable} { execsql {DROP TABLE sqlite_stat3} db2 }
    execsql { PRAGMA writable_schema = off }
  }
 
  # Modify the database schema cookie to ensure that the other connection
  # reloads the schema.
  #
  execsql {
    CREATE TABLE obscure_tbl_nm(x);
    DROP TABLE obscure_tbl_nm;
  } db2
  db2 close
}

# Populate the stat4 table according to the current contents of the db.
# Leave deceptive data in the stat3 table. This data should be ignored
# in favour of that from the stat4 table.
#
proc populate_both {} {
  ifcapable stat4 { populate_stat3 0 }
  ifcapable stat3 { populate_stat4 0 }

  sqlite3 db2 test.db
  execsql {
    PRAGMA writable_schema = on;
    UPDATE sqlite_stat3 SET idx = 
      CASE idx WHEN 't1b' THEN 't1c' ELSE 't1b'
    END;
    PRAGMA writable_schema = off;
    CREATE TABLE obscure_tbl_nm(x);
    DROP TABLE obscure_tbl_nm;
  } db2
  db2 close
}

foreach {tn analyze_cmd} {
  1 populate_stat4 
  2 populate_stat3
  3 populate_both
} {
  reset_db
  do_test 1.$tn.1 {
    execsql { CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c) }
    for {set i 0} {$i < 100} {incr i} {
      set c [expr int(pow(1.1,$i)/100)]
      set b [expr 125 - int(pow(1.1,99-$i))/100]
      execsql {INSERT INTO t1 VALUES($i, $b, $c)}
    }
  } {}

  execsql { CREATE INDEX t1b ON t1(b) }
  execsql { CREATE INDEX t1c ON t1(c) }
  $analyze_cmd

  do_execsql_test 1.$tn.2.1 { SELECT count(*) FROM t1 WHERE b=31 } 1
  do_execsql_test 1.$tn.2.2 { SELECT count(*) FROM t1 WHERE c=0  } 49
  do_execsql_test 1.$tn.2.3 { SELECT count(*) FROM t1 WHERE b=125  } 49
  do_execsql_test 1.$tn.2.4 { SELECT count(*) FROM t1 WHERE c=16  } 1

  do_eqp_test 1.$tn.2.5 {
    SELECT * FROM t1 WHERE b = 31 AND c = 0;
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
  do_eqp_test 1.$tn.2.6 {
    SELECT * FROM t1 WHERE b = 125 AND c = 16;
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c=?)}}

  do_execsql_test 1.$tn.3.1 { 
    SELECT count(*) FROM t1 WHERE b BETWEEN 0 AND 50
  } {6}
  do_execsql_test 1.$tn.3.2 { 
    SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 50
  } {90}
  do_execsql_test 1.$tn.3.3 { 
    SELECT count(*) FROM t1 WHERE b BETWEEN 75 AND 125
  } {90}
  do_execsql_test 1.$tn.3.4 { 
    SELECT count(*) FROM t1 WHERE c BETWEEN 75 AND 125
  } {6}

  do_eqp_test 1.$tn.3.5 {
    SELECT * FROM t1 WHERE b BETWEEN 0 AND 50 AND c BETWEEN 0 AND 50
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

  do_eqp_test 1.$tn.3.6 {
    SELECT * FROM t1 WHERE b BETWEEN 75 AND 125 AND c BETWEEN 75 AND 125
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}
}

finish_test

Changes to test/auth.test.

2321
2322
2323
2324
2325
2326
2327



2328
2329
2330
2331

2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
    }
    ifcapable view {
      execsql {
        DROP TABLE v1chng;
      }
    }
  }



  ifcapable stat3 {
    set stat3 "sqlite_stat3 "
  } else {
    set stat3 ""

  }
  do_test auth-5.2 {
    execsql {
      SELECT name FROM (
        SELECT * FROM sqlite_master UNION ALL SELECT * FROM sqlite_temp_master)
      WHERE type='table'
      ORDER BY name
    }
  } "sqlite_stat1 ${stat3}t1 t2 t3 t4"
}

# Ticket #3944
#
ifcapable trigger {
  do_test auth-5.3.1 {
    execsql {







>
>
>
|
|
|
|
>








|







2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
    }
    ifcapable view {
      execsql {
        DROP TABLE v1chng;
      }
    }
  }
  ifcapable stat4 {
    set stat4 "sqlite_stat4 "
  } else {
    ifcapable stat3 {
      set stat4 "sqlite_stat3 "
    } else {
      set stat4 ""
    }
  }
  do_test auth-5.2 {
    execsql {
      SELECT name FROM (
        SELECT * FROM sqlite_master UNION ALL SELECT * FROM sqlite_temp_master)
      WHERE type='table'
      ORDER BY name
    }
  } "sqlite_stat1 ${stat4}t1 t2 t3 t4"
}

# Ticket #3944
#
ifcapable trigger {
  do_test auth-5.3.1 {
    execsql {

Changes to test/dbstatus.test.

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
...
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

proc lookaside {db} {
  expr { $::lookaside_buffer_size *
    [lindex [sqlite3_db_status $db SQLITE_DBSTATUS_LOOKASIDE_USED 0] 1]
  }
}

ifcapable stat3 {
  set STAT3 1
} else {
  set STAT3 0
}

ifcapable malloc_usable_size {
  finish_test
................................................................................
    # for any reason is not counted as "schema memory".
    #
    # Additionally, in auto-vacuum mode, dropping tables and indexes causes
    # the page-cache to shrink. So the amount of memory freed is always
    # much greater than just that reported by DBSTATUS_SCHEMA_USED in this
    # case.
    #
    # Some of the memory used for sqlite_stat3 is unaccounted for by
    # dbstatus.
    #
    # Finally, on osx the estimate of memory used by the schema may be
    # slightly low. 
    #
    if {[string match *x $tn] || $AUTOVACUUM
         || ([string match *y $tn] && $STAT3)







|







 







|







57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
...
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

proc lookaside {db} {
  expr { $::lookaside_buffer_size *
    [lindex [sqlite3_db_status $db SQLITE_DBSTATUS_LOOKASIDE_USED 0] 1]
  }
}

ifcapable stat4||stat3 {
  set STAT3 1
} else {
  set STAT3 0
}

ifcapable malloc_usable_size {
  finish_test
................................................................................
    # for any reason is not counted as "schema memory".
    #
    # Additionally, in auto-vacuum mode, dropping tables and indexes causes
    # the page-cache to shrink. So the amount of memory freed is always
    # much greater than just that reported by DBSTATUS_SCHEMA_USED in this
    # case.
    #
    # Some of the memory used for sqlite_stat4 is unaccounted for by
    # dbstatus.
    #
    # Finally, on osx the estimate of memory used by the schema may be
    # slightly low. 
    #
    if {[string match *x $tn] || $AUTOVACUUM
         || ([string match *y $tn] && $STAT3)

Changes to test/index6.test.

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
} {800}
do_test index6-2.2 {
  execsql {
    EXPLAIN QUERY PLAN
    SELECT * FROM t2 WHERE a=5;
  }
} {/.* TABLE t2 USING INDEX t2a1 .*/}
ifcapable stat3 {
  do_test index6-2.3stat3 {
    execsql {
      EXPLAIN QUERY PLAN
      SELECT * FROM t2 WHERE a IS NOT NULL;
    }
  } {/.* TABLE t2 USING INDEX t2a1 .*/}
} else {
  do_test index6-2.3stat3 {
    execsql {
      EXPLAIN QUERY PLAN
      SELECT * FROM t2 WHERE a IS NOT NULL AND a>0;
    }
  } {/.* TABLE t2 USING INDEX t2a1 .*/}
}
do_test index6-2.4 {







|
|






|







145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
} {800}
do_test index6-2.2 {
  execsql {
    EXPLAIN QUERY PLAN
    SELECT * FROM t2 WHERE a=5;
  }
} {/.* TABLE t2 USING INDEX t2a1 .*/}
ifcapable stat4||stat3 {
  do_test index6-2.3stat4 {
    execsql {
      EXPLAIN QUERY PLAN
      SELECT * FROM t2 WHERE a IS NOT NULL;
    }
  } {/.* TABLE t2 USING INDEX t2a1 .*/}
} else {
  do_test index6-2.3stat4 {
    execsql {
      EXPLAIN QUERY PLAN
      SELECT * FROM t2 WHERE a IS NOT NULL AND a>0;
    }
  } {/.* TABLE t2 USING INDEX t2a1 .*/}
}
do_test index6-2.4 {

Changes to test/mallocA.test.

11
12
13
14
15
16
17

18
19
20
21
22
23
24
..
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
..
63
64
65
66
67
68
69





























70
71
72
73
74
75
76
77
78
# This file contains additional out-of-memory checks (see malloc.tcl).
#
# $Id: mallocA.test,v 1.8 2008/02/18 22:24:58 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/malloc_common.tcl


# Only run these tests if memory debugging is turned on.
#
if {!$MEMDEBUG} {
   puts "Skipping mallocA tests: not compiled with -DSQLITE_MEMDEBUG..."
   finish_test
   return
................................................................................
  CREATE INDEX t1i1 ON t1(a);
  CREATE INDEX t1i2 ON t1(b,c);
  CREATE TABLE t2(x,y,z);
}
db close
copy_file test.db test.db.bu


do_malloc_test mallocA-1 -testdb test.db.bu -sqlbody {
  ANALYZE
}
do_malloc_test mallocA-1.1 -testdb test.db.bu -sqlbody {
  ANALYZE t1
}
do_malloc_test mallocA-1.2 -testdb test.db.bu -sqlbody {
  ANALYZE main
}
do_malloc_test mallocA-1.3 -testdb test.db.bu -sqlbody {
  ANALYZE main.t1
}

ifcapable reindex {
  do_malloc_test mallocA-2 -testdb test.db.bu -sqlbody {
    REINDEX;
  }
  do_malloc_test mallocA-3 -testdb test.db.bu -sqlbody {
    REINDEX t1;
  }
................................................................................
  do_malloc_test mallocA-4 -testdb test.db.bu -sqlbody {
    REINDEX main.t1;
  }
  do_malloc_test mallocA-5 -testdb test.db.bu -sqlbody {
    REINDEX nocase;
  }
}






























# Ensure that no file descriptors were leaked.
do_test malloc-99.X {
  catch {db close}
  set sqlite_open_file_count
} {0}

forcedelete test.db.bu
finish_test







>







 







<












>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
..
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
..
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# This file contains additional out-of-memory checks (see malloc.tcl).
#
# $Id: mallocA.test,v 1.8 2008/02/18 22:24:58 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/malloc_common.tcl
set testprefix mallocA

# Only run these tests if memory debugging is turned on.
#
if {!$MEMDEBUG} {
   puts "Skipping mallocA tests: not compiled with -DSQLITE_MEMDEBUG..."
   finish_test
   return
................................................................................
  CREATE INDEX t1i1 ON t1(a);
  CREATE INDEX t1i2 ON t1(b,c);
  CREATE TABLE t2(x,y,z);
}
db close
copy_file test.db test.db.bu


do_malloc_test mallocA-1 -testdb test.db.bu -sqlbody {
  ANALYZE
}
do_malloc_test mallocA-1.1 -testdb test.db.bu -sqlbody {
  ANALYZE t1
}
do_malloc_test mallocA-1.2 -testdb test.db.bu -sqlbody {
  ANALYZE main
}
do_malloc_test mallocA-1.3 -testdb test.db.bu -sqlbody {
  ANALYZE main.t1
}

ifcapable reindex {
  do_malloc_test mallocA-2 -testdb test.db.bu -sqlbody {
    REINDEX;
  }
  do_malloc_test mallocA-3 -testdb test.db.bu -sqlbody {
    REINDEX t1;
  }
................................................................................
  do_malloc_test mallocA-4 -testdb test.db.bu -sqlbody {
    REINDEX main.t1;
  }
  do_malloc_test mallocA-5 -testdb test.db.bu -sqlbody {
    REINDEX nocase;
  }
}

reset_db
sqlite3_db_config_lookaside db 0 0 0
do_execsql_test 6-prep {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a, b);
  INSERT INTO t1 VALUES('abc', 'w'); -- rowid=1
  INSERT INTO t1 VALUES('abc', 'x'); -- rowid=2
  INSERT INTO t1 VALUES('abc', 'y'); -- rowid=3
  INSERT INTO t1 VALUES('abc', 'z'); -- rowid=4

  INSERT INTO t1 VALUES('def', 'w'); -- rowid=5
  INSERT INTO t1 VALUES('def', 'x'); -- rowid=6
  INSERT INTO t1 VALUES('def', 'y'); -- rowid=7
  INSERT INTO t1 VALUES('def', 'z'); -- rowid=8

  ANALYZE;
}

do_faultsim_test 6.1 -faults oom* -body {
  execsql { SELECT rowid FROM t1 WHERE a='abc' AND b='x' }
} -test {
  faultsim_test_result [list 0 2]
}
do_faultsim_test 6.2 -faults oom* -body {
  execsql { SELECT rowid FROM t1 WHERE a='abc' AND b<'y' }
} -test {
  faultsim_test_result [list 0 {1 2}]
}

# Ensure that no file descriptors were leaked.
do_test malloc-99.X {
  catch {db close}
  set sqlite_open_file_count
} {0}

forcedelete test.db.bu
finish_test

Changes to test/permutations.test.

496
497
498
499
500
501
502


503
504
505
506
507
508
509
#
test_suite "utf16" -description {
  Run tests using UTF-16 databases
} -presql {
  pragma encoding = 'UTF-16'
} -files {
    alter.test alter3.test


    auth.test bind.test blob.test capi2.test capi3.test collate1.test
    collate2.test collate3.test collate4.test collate5.test collate6.test
    conflict.test date.test delete.test expr.test fkey1.test func.test
    hook.test index.test insert2.test insert.test interrupt.test in.test
    intpkey.test ioerr.test join2.test join.test lastinsert.test
    laststmtchanges.test limit.test lock2.test lock.test main.test 
    memdb.test minmax.test misc1.test misc2.test misc3.test notnull.test







>
>







496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#
test_suite "utf16" -description {
  Run tests using UTF-16 databases
} -presql {
  pragma encoding = 'UTF-16'
} -files {
    alter.test alter3.test
    analyze.test analyze3.test analyze4.test analyze5.test analyze6.test
    analyze7.test analyze8.test analyze9.test analyzeA.test
    auth.test bind.test blob.test capi2.test capi3.test collate1.test
    collate2.test collate3.test collate4.test collate5.test collate6.test
    conflict.test date.test delete.test expr.test fkey1.test func.test
    hook.test index.test insert2.test insert.test interrupt.test in.test
    intpkey.test ioerr.test join2.test join.test lastinsert.test
    laststmtchanges.test limit.test lock2.test lock.test main.test 
    memdb.test minmax.test misc1.test misc2.test misc3.test notnull.test

Changes to test/table.test.

264
265
266
267
268
269
270

271
272
273
274
275
276
277
#
do_test table-5.2.1 {
  db eval {
    ANALYZE;
    DROP TABLE IF EXISTS sqlite_stat1;
    DROP TABLE IF EXISTS sqlite_stat2;
    DROP TABLE IF EXISTS sqlite_stat3;

    SELECT name FROM sqlite_master WHERE name GLOB 'sqlite_stat*';
  }
} {}

# Make sure an EXPLAIN does not really create a new table
#
do_test table-5.3 {







>







264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#
do_test table-5.2.1 {
  db eval {
    ANALYZE;
    DROP TABLE IF EXISTS sqlite_stat1;
    DROP TABLE IF EXISTS sqlite_stat2;
    DROP TABLE IF EXISTS sqlite_stat3;
    DROP TABLE IF EXISTS sqlite_stat4;
    SELECT name FROM sqlite_master WHERE name GLOB 'sqlite_stat*';
  }
} {}

# Make sure an EXPLAIN does not really create a new table
#
do_test table-5.3 {

Changes to test/tkt-cbd054fa6b.test.

12
13
14
15
16
17
18
19
20
21
22















23
24
25
26
27
28
29
..
35
36
37
38
39
40
41


42
43











44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
..
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# This file implements tests to verify that ticket [cbd054fa6b] has been
# fixed.  
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat3 {
  finish_test
  return
}
















do_test tkt-cbd05-1.1 {
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT UNIQUE NOT NULL);
    CREATE INDEX t1_x ON t1(b);
    INSERT INTO t1 VALUES (NULL, '');
    INSERT INTO t1 VALUES (NULL, 'A');
................................................................................
    INSERT INTO t1 VALUES (NULL, 'G');
    INSERT INTO t1 VALUES (NULL, 'H');
    INSERT INTO t1 VALUES (NULL, 'I');
    SELECT count(*) FROM t1;
  }
} {10}
do_test tkt-cbd05-1.2 {


  db eval {
    ANALYZE;











  }
} {}
do_test tkt-cbd05-1.3 {
  execsql { 
    SELECT tbl,idx,group_concat(sample,' ') 
    FROM sqlite_stat3 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {/t1 t1_x .[ ABCDEFGHI]{10}./}

do_test tkt-cbd05-2.1 {
  db eval {
    DROP TABLE t1;
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b BLOB UNIQUE NOT NULL);
    CREATE INDEX t1_x ON t1(b);
    INSERT INTO t1 VALUES(NULL, X'');
................................................................................
do_test tkt-cbd05-2.2 {
  db eval {
    ANALYZE;
  }
} {}
do_test tkt-cbd05-2.3 {
  execsql { 
    SELECT tbl,idx,group_concat(sample,' ') 
    FROM sqlite_stat3 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {/t1 t1_x .[ ABCDEFGHI]{10}./}

finish_test







|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>
|
<
>
>
>
>
>
>
>
>
>
>
>




|
|



|







 







|
|



|


12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
..
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
...
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# This file implements tests to verify that ticket [cbd054fa6b] has been
# fixed.  
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat4&&!stat3 {
  finish_test
  return
}

proc s {blob} {
  set ret ""
  binary scan $blob c* bytes
  foreach b $bytes {
    set t [binary format c $b]
    if {[string is print $t]} {
      append ret $t
    } else {
      append ret .
    }
  }
  return $ret
}
db function s s

do_test tkt-cbd05-1.1 {
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT UNIQUE NOT NULL);
    CREATE INDEX t1_x ON t1(b);
    INSERT INTO t1 VALUES (NULL, '');
    INSERT INTO t1 VALUES (NULL, 'A');
................................................................................
    INSERT INTO t1 VALUES (NULL, 'G');
    INSERT INTO t1 VALUES (NULL, 'H');
    INSERT INTO t1 VALUES (NULL, 'I');
    SELECT count(*) FROM t1;
  }
} {10}
do_test tkt-cbd05-1.2 {
  db eval { ANALYZE; }
  ifcapable stat4 {
    db eval {

      PRAGMA writable_schema = 1;
      CREATE VIEW vvv AS 
      SELECT tbl,idx,neq,nlt,ndlt,test_extract(sample,0) AS sample
      FROM sqlite_stat4;
      PRAGMA writable_schema = 0;
    }
  } else {
    db eval {
      CREATE VIEW vvv AS 
      SELECT tbl,idx,neq,nlt,ndlt,sample FROM sqlite_stat3;
    }
  }
} {}
do_test tkt-cbd05-1.3 {
  execsql { 
    SELECT tbl,idx,group_concat(s(sample),' ') 
    FROM vvv 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {t1 t1_x { A B C D E F G H I}}

do_test tkt-cbd05-2.1 {
  db eval {
    DROP TABLE t1;
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b BLOB UNIQUE NOT NULL);
    CREATE INDEX t1_x ON t1(b);
    INSERT INTO t1 VALUES(NULL, X'');
................................................................................
do_test tkt-cbd05-2.2 {
  db eval {
    ANALYZE;
  }
} {}
do_test tkt-cbd05-2.3 {
  execsql { 
    SELECT tbl,idx,group_concat(s(sample),' ') 
    FROM vvv 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {t1 t1_x { A B C D E F G H I}}

finish_test

Changes to test/where9.test.

777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
...
846
847
848
849
850
851
852





853
854
855
856
857
858
859
  catchsql {
    UPDATE t1 INDEXED BY t1b SET a=a+100
     WHERE (+b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
  }
} {1 {no query solution}}
ifcapable stat3 {
  # When STAT3 is enabled, the "b NOT NULL" terms get translated
  # into b>NULL, which can be satified by the index t1b.  It is a very
  # expensive way to do the query, but it works, and so a solution is possible.
  do_test where9-6.8.3-stat3 {
    catchsql {
      UPDATE t1 INDEXED BY t1b SET a=a+100
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {0 {}}
  do_test where9-6.8.4-stat3 {
    catchsql {
      DELETE FROM t1 INDEXED BY t1b
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {0 {}}
................................................................................
    CREATE INDEX t5yd ON t5(y, d);
    CREATE INDEX t5ye ON t5(y, e);
    CREATE INDEX t5yf ON t5(y, f);
    CREATE INDEX t5yg ON t5(y, g);
    CREATE TABLE t6(a, b, c, e, d, f, g, x, y);
    INSERT INTO t6 SELECT * FROM t5;
    ANALYZE t5;





  }
} {}
do_test where9-7.1.1 {
  count_steps {
    SELECT a FROM t5 WHERE x='y' AND (b=913 OR c=27027) ORDER BY a;
  }
} {79 81 83 scan 0 sort 1}







|



|







|







 







>
>
>
>
>







777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
...
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
  catchsql {
    UPDATE t1 INDEXED BY t1b SET a=a+100
     WHERE (+b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
  }
} {1 {no query solution}}
ifcapable stat4||stat3 {
  # When STAT3 is enabled, the "b NOT NULL" terms get translated
  # into b>NULL, which can be satified by the index t1b.  It is a very
  # expensive way to do the query, but it works, and so a solution is possible.
  do_test where9-6.8.3-stat4 {
    catchsql {
      UPDATE t1 INDEXED BY t1b SET a=a+100
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {0 {}}
  do_test where9-6.8.4-stat4 {
    catchsql {
      DELETE FROM t1 INDEXED BY t1b
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {0 {}}
................................................................................
    CREATE INDEX t5yd ON t5(y, d);
    CREATE INDEX t5ye ON t5(y, e);
    CREATE INDEX t5yf ON t5(y, f);
    CREATE INDEX t5yg ON t5(y, g);
    CREATE TABLE t6(a, b, c, e, d, f, g, x, y);
    INSERT INTO t6 SELECT * FROM t5;
    ANALYZE t5;
  }
  ifcapable stat3 {
    sqlite3 db2 test.db
    db2 eval { DROP TABLE IF EXISTS sqlite_stat3 }
    db2 close
  }
} {}
do_test where9-7.1.1 {
  count_steps {
    SELECT a FROM t5 WHERE x='y' AND (b=913 OR c=27027) ORDER BY a;
  }
} {79 81 83 scan 0 sort 1}

Changes to test/wild001.test.

37
38
39
40
41
42
43




44
45
46
47
48
49
50
#
# This test should work the same with and without SQLITE_ENABLE_STAT3
#
###############################################################################

set testdir [file dirname $argv0]
source $testdir/tester.tcl





ifcapable !stat3 {
  finish_test
  return
}

do_execsql_test wild001.01 {







>
>
>
>







37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#
# This test should work the same with and without SQLITE_ENABLE_STAT3
#
###############################################################################

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# TODO: Reenable this test.
  finish_test
  return

ifcapable !stat3 {
  finish_test
  return
}

do_execsql_test wild001.01 {