/* ** The code in this file runs a few multi-threaded test cases using the ** SQLite library. It can be compiled to an executable on unix using the ** following command: ** ** gcc -O2 threadtest3.c sqlite3.c -ldl -lpthread -lm ** ** Then run the compiled program. The exit status is non-zero if any tests ** failed (hopefully there is also some output to stdout to clarify what went ** wrong). ** ** There are three parts to the code in this file, in the following order: ** ** 1. Code for the SQL aggregate function md5sum() copied from ** tclsqlite.c in the SQLite distribution. The names of all the ** types and functions in this section begin with "MD5" or "md5". ** ** 2. A set of utility functions that may be used to implement ** multi-threaded test cases. These are all called by test code ** via macros that help with error reporting. The macros are defined ** immediately below this comment. ** ** 3. The test code itself. And a main() routine to drive the test ** code. */ /************************************************************************* ** Start of test code/infrastructure interface macros. ** ** The following macros constitute the interface between the test ** programs and the test infrastructure. Test infrastructure code ** does not itself use any of these macros. Test code should not ** call any of the macroname_x() functions directly. ** ** See the header comments above the corresponding macroname_x() ** function for a description of each interface. */ /* Database functions */ #define opendb(w,x,y,z) (SEL(w), opendb_x(w,x,y,z)) #define closedb(y,z) (SEL(y), closedb_x(y,z)) /* Functions to execute SQL */ #define sql_script(x,y,z) (SEL(x), sql_script_x(x,y,z)) #define integrity_check(x,y) (SEL(x), integrity_check_x(x,y)) #define execsql_i64(x,y,...) (SEL(x), execsql_i64_x(x,y,__VA_ARGS__)) #define execsql_text(x,y,z,...) (SEL(x), execsql_text_x(x,y,z,__VA_ARGS__)) #define execsql(x,y,...) (SEL(x), (void)execsql_i64_x(x,y,__VA_ARGS__)) /* Thread functions */ #define launch_thread(w,x,y,z) (SEL(w), launch_thread_x(w,x,y,z)) #define join_all_threads(y,z) (SEL(y), join_all_threads_x(y,z)) /* Timer functions */ #define setstoptime(y,z) (SEL(y), setstoptime_x(y,z)) #define timetostop(z) (SEL(z), timetostop_x(z)) /* Report/clear errors. */ #define test_error(z, ...) test_error_x(z, sqlite3_mprintf(__VA_ARGS__)) #define clear_error(y,z) clear_error_x(y, z) /* File-system operations */ #define filesize(y,z) (SEL(y), filesize_x(y,z)) #define filecopy(x,y,z) (SEL(x), filecopy_x(x,y,z)) /* ** End of test code/infrastructure interface macros. *************************************************************************/ #include #include #include #include #include #include #include #include #include #include /* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. */ /* * If compiled on a machine that doesn't have a 32-bit integer, * you just set "uint32" to the appropriate datatype for an * unsigned 32-bit integer. For example: * * cc -Duint32='unsigned long' md5.c * */ #ifndef uint32 # define uint32 unsigned int #endif struct MD5Context { int isInit; uint32 buf[4]; uint32 bits[2]; unsigned char in[64]; }; typedef struct MD5Context MD5Context; /* * Note: this code is harmless on little-endian machines. */ static void byteReverse (unsigned char *buf, unsigned longs){ uint32 t; do { t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 | ((unsigned)buf[1]<<8 | buf[0]); *(uint32 *)buf = t; buf += 4; } while (--longs); } /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w = w<>(32-s), w += x ) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ static void MD5Transform(uint32 buf[4], const uint32 in[16]){ register uint32 a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17); MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ static void MD5Init(MD5Context *ctx){ ctx->isInit = 1; ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bits[0] = 0; ctx->bits[1] = 0; } /* * Update context to reflect the concatenation of another buffer full * of bytes. */ static void MD5Update(MD5Context *ctx, const unsigned char *buf, unsigned int len){ uint32 t; /* Update bitcount */ t = ctx->bits[0]; if ((ctx->bits[0] = t + ((uint32)len << 3)) < t) ctx->bits[1]++; /* Carry from low to high */ ctx->bits[1] += len >> 29; t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ /* Handle any leading odd-sized chunks */ if ( t ) { unsigned char *p = (unsigned char *)ctx->in + t; t = 64-t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32 *)ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= 64) { memcpy(ctx->in, buf, 64); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32 *)ctx->in); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); } /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ static void MD5Final(unsigned char digest[16], MD5Context *ctx){ unsigned count; unsigned char *p; /* Compute number of bytes mod 64 */ count = (ctx->bits[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, count); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32 *)ctx->in); /* Now fill the next block with 56 bytes */ memset(ctx->in, 0, 56); } else { /* Pad block to 56 bytes */ memset(p, 0, count-8); } byteReverse(ctx->in, 14); /* Append length in bits and transform */ ((uint32 *)ctx->in)[ 14 ] = ctx->bits[0]; ((uint32 *)ctx->in)[ 15 ] = ctx->bits[1]; MD5Transform(ctx->buf, (uint32 *)ctx->in); byteReverse((unsigned char *)ctx->buf, 4); memcpy(digest, ctx->buf, 16); memset(ctx, 0, sizeof(ctx)); /* In case it is sensitive */ } /* ** Convert a 128-bit MD5 digest into a 32-digit base-16 number. */ static void MD5DigestToBase16(unsigned char *digest, char *zBuf){ static char const zEncode[] = "0123456789abcdef"; int i, j; for(j=i=0; i<16; i++){ int a = digest[i]; zBuf[j++] = zEncode[(a>>4)&0xf]; zBuf[j++] = zEncode[a & 0xf]; } zBuf[j] = 0; } /* ** During testing, the special md5sum() aggregate function is available. ** inside SQLite. The following routines implement that function. */ static void md5step(sqlite3_context *context, int argc, sqlite3_value **argv){ MD5Context *p; int i; if( argc<1 ) return; p = sqlite3_aggregate_context(context, sizeof(*p)); if( p==0 ) return; if( !p->isInit ){ MD5Init(p); } for(i=0; izErr); p->zErr = 0; p->rc = 0; } static void print_err(Error *p){ if( p->rc!=SQLITE_OK ){ printf("Error: (%d) \"%s\" at line %d\n", p->rc, p->zErr, p->iLine); nGlobalErr++; } } static void print_and_free_err(Error *p){ print_err(p); free_err(p); } static void system_error(Error *pErr, int iSys){ pErr->rc = iSys; pErr->zErr = (char *)sqlite3_malloc(512); strerror_r(iSys, pErr->zErr, 512); pErr->zErr[511] = '\0'; } static void sqlite_error( Error *pErr, Sqlite *pDb, const char *zFunc ){ pErr->rc = sqlite3_errcode(pDb->db); pErr->zErr = sqlite3_mprintf( "sqlite3_%s() - %s (%d)", zFunc, sqlite3_errmsg(pDb->db), sqlite3_extended_errcode(pDb->db) ); } static void test_error_x( Error *pErr, char *zErr ){ if( pErr->rc==SQLITE_OK ){ pErr->rc = 1; pErr->zErr = zErr; }else{ sqlite3_free(zErr); } } static void clear_error_x( Error *pErr, int rc ){ if( pErr->rc==rc ){ pErr->rc = SQLITE_OK; sqlite3_free(pErr->zErr); pErr->zErr = 0; } } static int busyhandler(void *pArg, int n){ usleep(10*1000); return 1; } static void opendb_x( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb, /* OUT: Database handle */ const char *zFile, /* Database file name */ int bDelete /* True to delete db file before opening */ ){ if( pErr->rc==SQLITE_OK ){ int rc; if( bDelete ) unlink(zFile); rc = sqlite3_open(zFile, &pDb->db); if( rc ){ sqlite_error(pErr, pDb, "open"); sqlite3_close(pDb->db); pDb->db = 0; }else{ sqlite3_create_function( pDb->db, "md5sum", -1, SQLITE_UTF8, 0, 0, md5step, md5finalize ); sqlite3_busy_handler(pDb->db, busyhandler, 0); sqlite3_exec(pDb->db, "PRAGMA synchronous=OFF", 0, 0, 0); } } } static void closedb_x( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb /* OUT: Database handle */ ){ int rc; int i; Statement *pIter; Statement *pNext; for(pIter=pDb->pCache; pIter; pIter=pNext){ pNext = pIter->pNext; sqlite3_finalize(pIter->pStmt); sqlite3_free(pIter); } for(i=0; inText; i++){ sqlite3_free(pDb->aText[i]); } sqlite3_free(pDb->aText); rc = sqlite3_close(pDb->db); if( rc && pErr->rc==SQLITE_OK ){ pErr->zErr = sqlite3_mprintf("%s", sqlite3_errmsg(pDb->db)); } memset(pDb, 0, sizeof(Sqlite)); } static void sql_script_x( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb, /* Database handle */ const char *zSql /* SQL script to execute */ ){ if( pErr->rc==SQLITE_OK ){ pErr->rc = sqlite3_exec(pDb->db, zSql, 0, 0, &pErr->zErr); } } static Statement *getSqlStatement( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb, /* Database handle */ const char *zSql /* SQL statement */ ){ Statement *pRet; int rc; for(pRet=pDb->pCache; pRet; pRet=pRet->pNext){ if( 0==strcmp(sqlite3_sql(pRet->pStmt), zSql) ){ return pRet; } } pRet = sqlite3_malloc(sizeof(Statement)); rc = sqlite3_prepare_v2(pDb->db, zSql, -1, &pRet->pStmt, 0); if( rc!=SQLITE_OK ){ sqlite_error(pErr, pDb, "prepare_v2"); return 0; } assert( 0==strcmp(sqlite3_sql(pRet->pStmt), zSql) ); pRet->pNext = pDb->pCache; pDb->pCache = pRet; return pRet; } static sqlite3_stmt *getAndBindSqlStatement( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb, /* Database handle */ va_list ap /* SQL followed by parameters */ ){ Statement *pStatement; /* The SQLite statement wrapper */ sqlite3_stmt *pStmt; /* The SQLite statement to return */ int i; /* Used to iterate through parameters */ pStatement = getSqlStatement(pErr, pDb, va_arg(ap, const char *)); if( !pStatement ) return 0; pStmt = pStatement->pStmt; for(i=1; i<=sqlite3_bind_parameter_count(pStmt); i++){ const char *zName = sqlite3_bind_parameter_name(pStmt, i); void * pArg = va_arg(ap, void*); switch( zName[1] ){ case 'i': sqlite3_bind_int64(pStmt, i, *(i64 *)pArg); break; default: pErr->rc = 1; pErr->zErr = sqlite3_mprintf("Cannot discern type: \"%s\"", zName); pStmt = 0; break; } } return pStmt; } static i64 execsql_i64_x( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb, /* Database handle */ ... /* SQL and pointers to parameter values */ ){ i64 iRet = 0; if( pErr->rc==SQLITE_OK ){ sqlite3_stmt *pStmt; /* SQL statement to execute */ va_list ap; /* ... arguments */ int i; /* Used to iterate through parameters */ va_start(ap, pDb); pStmt = getAndBindSqlStatement(pErr, pDb, ap); if( pStmt ){ int rc; int first = 1; while( SQLITE_ROW==sqlite3_step(pStmt) ){ if( first && sqlite3_column_count(pStmt)>0 ){ iRet = sqlite3_column_int64(pStmt, 0); } first = 0; } if( SQLITE_OK!=sqlite3_reset(pStmt) ){ sqlite_error(pErr, pDb, "reset"); } } va_end(ap); } return iRet; } static char * execsql_text_x( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb, /* Database handle */ int iSlot, /* Db handle slot to store text in */ ... /* SQL and pointers to parameter values */ ){ char *zRet = 0; if( iSlot>=pDb->nText ){ int nByte = sizeof(char *)*(iSlot+1); pDb->aText = (char **)sqlite3_realloc(pDb->aText, nByte); memset(&pDb->aText[pDb->nText], 0, sizeof(char*)*(iSlot+1-pDb->nText)); pDb->nText = iSlot+1; } if( pErr->rc==SQLITE_OK ){ sqlite3_stmt *pStmt; /* SQL statement to execute */ va_list ap; /* ... arguments */ int i; /* Used to iterate through parameters */ va_start(ap, iSlot); pStmt = getAndBindSqlStatement(pErr, pDb, ap); if( pStmt ){ int rc; int first = 1; while( SQLITE_ROW==sqlite3_step(pStmt) ){ if( first && sqlite3_column_count(pStmt)>0 ){ zRet = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0)); sqlite3_free(pDb->aText[iSlot]); pDb->aText[iSlot] = zRet; } first = 0; } if( SQLITE_OK!=sqlite3_reset(pStmt) ){ sqlite_error(pErr, pDb, "reset"); } } va_end(ap); } return zRet; } static void integrity_check_x( Error *pErr, /* IN/OUT: Error code */ Sqlite *pDb /* Database handle */ ){ if( pErr->rc==SQLITE_OK ){ Statement *pStatement; /* Statement to execute */ int rc; /* Return code */ char *zErr = 0; /* Integrity check error */ pStatement = getSqlStatement(pErr, pDb, "PRAGMA integrity_check"); if( pStatement ){ sqlite3_stmt *pStmt = pStatement->pStmt; while( SQLITE_ROW==sqlite3_step(pStmt) ){ const char *z = sqlite3_column_text(pStmt, 0); if( strcmp(z, "ok") ){ if( zErr==0 ){ zErr = sqlite3_mprintf("%s", z); }else{ zErr = sqlite3_mprintf("%z\n%s", zErr, z); } } } sqlite3_reset(pStmt); if( zErr ){ pErr->zErr = zErr; pErr->rc = 1; } } } } static void *launch_thread_main(void *pArg){ Thread *p = (Thread *)pArg; return (void *)p->xProc(p->iTid, p->iArg); } static void launch_thread_x( Error *pErr, /* IN/OUT: Error code */ Threadset *pThreads, /* Thread set */ char *(*xProc)(int, int), /* Proc to run */ int iArg /* Argument passed to thread proc */ ){ if( pErr->rc==SQLITE_OK ){ int iTid = ++pThreads->iMaxTid; Thread *p; int rc; p = (Thread *)sqlite3_malloc(sizeof(Thread)); memset(p, 0, sizeof(Thread)); p->iTid = iTid; p->iArg = iArg; p->xProc = xProc; rc = pthread_create(&p->tid, NULL, launch_thread_main, (void *)p); if( rc!=0 ){ system_error(pErr, rc); sqlite3_free(p); }else{ p->pNext = pThreads->pThread; pThreads->pThread = p; } } } static void join_all_threads_x( Error *pErr, /* IN/OUT: Error code */ Threadset *pThreads /* Thread set */ ){ Thread *p; Thread *pNext; for(p=pThreads->pThread; p; p=pNext){ void *ret; pNext = p->pNext; int rc; rc = pthread_join(p->tid, &ret); if( rc!=0 ){ if( pErr->rc==SQLITE_OK ) system_error(pErr, rc); }else{ printf("Thread %d says: %s\n", p->iTid, (ret==0 ? "..." : (char *)ret)); } sqlite3_free(p); } pThreads->pThread = 0; } static i64 filesize_x( Error *pErr, const char *zFile ){ i64 iRet = 0; if( pErr->rc==SQLITE_OK ){ struct stat sStat; if( stat(zFile, &sStat) ){ iRet = -1; }else{ iRet = sStat.st_size; } } return iRet; } static void filecopy_x( Error *pErr, const char *zFrom, const char *zTo ){ if( pErr->rc==SQLITE_OK ){ i64 nByte = filesize_x(pErr, zFrom); if( nByte<0 ){ test_error_x(pErr, sqlite3_mprintf("no such file: %s", zFrom)); }else{ i64 iOff; char aBuf[1024]; int fd1; int fd2; unlink(zTo); fd1 = open(zFrom, O_RDONLY); if( fd1<0 ){ system_error(pErr, errno); return; } fd2 = open(zTo, O_RDWR|O_CREAT|O_EXCL, 0644); if( fd2<0 ){ system_error(pErr, errno); close(fd1); return; } iOff = 0; while( iOffnByte ){ nCopy = nByte - iOff; } if( nCopy!=read(fd1, aBuf, nCopy) ){ system_error(pErr, errno); break; } if( nCopy!=write(fd2, aBuf, nCopy) ){ system_error(pErr, errno); break; } iOff += nCopy; } close(fd1); close(fd2); } } } /* ** Used by setstoptime() and timetostop(). */ static double timelimit = 0.0; static sqlite3_vfs *pTimelimitVfs = 0; static void setstoptime_x( Error *pErr, /* IN/OUT: Error code */ int nMs /* Milliseconds until "stop time" */ ){ if( pErr->rc==SQLITE_OK ){ double t; int rc; pTimelimitVfs = sqlite3_vfs_find(0); rc = pTimelimitVfs->xCurrentTime(pTimelimitVfs, &t); if( rc!=SQLITE_OK ){ pErr->rc = rc; }else{ timelimit = t + ((double)nMs)/(1000.0*60.0*60.0*24.0); } } } static int timetostop_x( Error *pErr /* IN/OUT: Error code */ ){ int ret = 1; if( pErr->rc==SQLITE_OK ){ double t; int rc; rc = pTimelimitVfs->xCurrentTime(pTimelimitVfs, &t); if( rc!=SQLITE_OK ){ pErr->rc = rc; }else{ ret = (t >= timelimit); } } return ret; } /* ** The "Set Error Line" macro. */ #define SEL(e) ((e)->iLine = ((e)->rc ? (e)->iLine : __LINE__)) /************************************************************************* ************************************************************************** ************************************************************************** ** End infrastructure. Begin tests. */ #define WALTHREAD1_NTHREAD 10 #define WALTHREAD3_NTHREAD 6 static char *walthread1_thread(int iTid, int iArg){ Error err = {0}; /* Error code and message */ Sqlite db = {0}; /* SQLite database connection */ int nIter = 0; /* Iterations so far */ opendb(&err, &db, "test.db", 0); while( !timetostop(&err) ){ const char *azSql[] = { "SELECT md5sum(x) FROM t1 WHERE rowid != (SELECT max(rowid) FROM t1)", "SELECT x FROM t1 WHERE rowid = (SELECT max(rowid) FROM t1)", }; char *z1, *z2, *z3; execsql(&err, &db, "BEGIN"); integrity_check(&err, &db); z1 = execsql_text(&err, &db, 1, azSql[0]); z2 = execsql_text(&err, &db, 2, azSql[1]); z3 = execsql_text(&err, &db, 3, azSql[0]); execsql(&err, &db, "COMMIT"); if( strcmp(z1, z2) || strcmp(z1, z3) ){ test_error(&err, "Failed read: %s %s %s", z1, z2, z3); } sql_script(&err, &db, "BEGIN;" "INSERT INTO t1 VALUES(randomblob(100));" "INSERT INTO t1 VALUES(randomblob(100));" "INSERT INTO t1 SELECT md5sum(x) FROM t1;" "COMMIT;" ); nIter++; } closedb(&err, &db); print_and_free_err(&err); return sqlite3_mprintf("%d iterations", nIter); } static char *walthread1_ckpt_thread(int iTid, int iArg){ Error err = {0}; /* Error code and message */ Sqlite db = {0}; /* SQLite database connection */ int nCkpt = 0; /* Checkpoints so far */ opendb(&err, &db, "test.db", 0); while( !timetostop(&err) ){ usleep(500*1000); execsql(&err, &db, "PRAGMA wal_checkpoint"); if( err.rc==SQLITE_OK ) nCkpt++; clear_error(&err, SQLITE_BUSY); } closedb(&err, &db); print_and_free_err(&err); return sqlite3_mprintf("%d checkpoints", nCkpt); } static void walthread1(int nMs){ Error err = {0}; /* Error code and message */ Sqlite db = {0}; /* SQLite database connection */ Threadset threads = {0}; /* Test threads */ int i; /* Iterator variable */ opendb(&err, &db, "test.db", 1); sql_script(&err, &db, "PRAGMA journal_mode = WAL;" "CREATE TABLE t1(x PRIMARY KEY);" "INSERT INTO t1 VALUES(randomblob(100));" "INSERT INTO t1 VALUES(randomblob(100));" "INSERT INTO t1 SELECT md5sum(x) FROM t1;" ); setstoptime(&err, nMs); for(i=0; i= 0); wal_exists = (filesize(&err, "test.db-wal") >= 0); if( (journal_exists+wal_exists)!=1 ){ test_error(&err, "File system looks incorrect (%d, %d)", journal_exists, wal_exists ); } anTrans[journal_exists]++; sql_script(&err, &db, "COMMIT"); integrity_check(&err, &db); closedb(&err, &db); } print_and_free_err(&err); return sqlite3_mprintf("W %d R %d", anTrans[0], anTrans[1]); } static void walthread2(int nMs){ Error err = {0}; Sqlite db = {0}; Threadset threads = {0}; opendb(&err, &db, "test.db", 1); sql_script(&err, &db, "CREATE TABLE t1(x INTEGER PRIMARY KEY, y UNIQUE)"); closedb(&err, &db); setstoptime(&err, nMs); launch_thread(&err, &threads, walthread2_thread, 0); launch_thread(&err, &threads, walthread2_thread, 0); launch_thread(&err, &threads, walthread2_thread, 1); launch_thread(&err, &threads, walthread2_thread, 1); join_all_threads(&err, &threads); print_and_free_err(&err); } static char *walthread3_thread(int iTid, int iArg){ Error err = {0}; /* Error code and message */ Sqlite db = {0}; /* SQLite database connection */ i64 iNextWrite; /* Next value this thread will write */ opendb(&err, &db, "test.db", 0); sql_script(&err, &db, "PRAGMA wal_autocheckpoint = 10"); iNextWrite = iArg+1; while( 1 ){ i64 sum1; i64 sum2; int stop = 0; /* True to stop executing (test timed out) */ while( 0==(stop = timetostop(&err)) ){ i64 iMax = execsql_i64(&err, &db, "SELECT max(cnt) FROM t1"); if( iMax+1==iNextWrite ) break; } if( stop ) break; sum1 = execsql_i64(&err, &db, "SELECT sum(cnt) FROM t1"); sum2 = execsql_i64(&err, &db, "SELECT sum(sum1) FROM t1"); execsql_i64(&err, &db, "INSERT INTO t1 VALUES(:iNextWrite, :iSum1, :iSum2)", &iNextWrite, &sum1, &sum2 ); integrity_check(&err, &db); iNextWrite += WALTHREAD3_NTHREAD; } closedb(&err, &db); print_and_free_err(&err); return 0; } static void walthread3(int nMs){ Error err = {0}; Sqlite db = {0}; Threadset threads = {0}; int i; opendb(&err, &db, "test.db", 1); sql_script(&err, &db, "PRAGMA journal_mode = WAL;" "CREATE TABLE t1(cnt PRIMARY KEY, sum1, sum2);" "CREATE INDEX i1 ON t1(sum1);" "CREATE INDEX i2 ON t1(sum2);" "INSERT INTO t1 VALUES(0, 0, 0);" ); closedb(&err, &db); setstoptime(&err, nMs); for(i=0; i2 ) goto usage; if( argc==2 ){ zTest = argv[1]; nTest = strlen(zTest); if( zTest[nTest-1]=='*' ){ nTest--; bPrefix = 1; } } sqlite3_config(SQLITE_CONFIG_MULTITHREAD); for(i=0; i0 ? 255 : 0); usage: printf("Usage: %s [testname|testprefix*]\n", argv[0]); printf("Available tests are:\n"); for(i=0; i