/* ** 2018 May 08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* */ #include "sqliteInt.h" #ifndef SQLITE_OMIT_WINDOWFUNC /* ** SELECT REWRITING ** ** Any SELECT statement that contains one or more window functions in ** either the select list or ORDER BY clause (the only two places window ** functions may be used) is transformed by function sqlite3WindowRewrite() ** in order to support window function processing. For example, with the ** schema: ** ** CREATE TABLE t1(a, b, c, d, e, f, g); ** ** the statement: ** ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; ** ** is transformed to: ** ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d ** ) ORDER BY e; ** ** The flattening optimization is disabled when processing this transformed ** SELECT statement. This allows the implementation of the window function ** (in this case max()) to process rows sorted in order of (c, d), which ** makes things easier for obvious reasons. More generally: ** ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to ** the sub-query. ** ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. ** ** * Terminals from each of the expression trees that make up the ** select-list and ORDER BY expressions in the parent query are ** selected by the sub-query. For the purposes of the transformation, ** terminals are column references and aggregate functions. ** ** If there is more than one window function in the SELECT that uses ** the same window declaration (the OVER bit), then a single scan may ** be used to process more than one window function. For example: ** ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), ** min(e) OVER (PARTITION BY c ORDER BY d) ** FROM t1; ** ** is transformed in the same way as the example above. However: ** ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), ** min(e) OVER (PARTITION BY a ORDER BY b) ** FROM t1; ** ** Must be transformed to: ** ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b ** ) ORDER BY c, d ** ) ORDER BY e; ** ** so that both min() and max() may process rows in the order defined by ** their respective window declarations. ** ** INTERFACE WITH SELECT.C ** ** When processing the rewritten SELECT statement, code in select.c calls ** sqlite3WhereBegin() to begin iterating through the results of the ** sub-query, which is always implemented as a co-routine. It then calls ** sqlite3WindowCodeStep() to process rows and finish the scan by calling ** sqlite3WhereEnd(). ** ** sqlite3WindowCodeStep() generates VM code so that, for each row returned ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. ** When the sub-routine is invoked: ** ** * The results of all window-functions for the row are stored ** in the associated Window.regResult registers. ** ** * The required terminal values are stored in the current row of ** temp table Window.iEphCsr. ** ** In some cases, depending on the window frame and the specific window ** functions invoked, sqlite3WindowCodeStep() caches each entire partition ** in a temp table before returning any rows. In other cases it does not. ** This detail is encapsulated within this file, the code generated by ** select.c is the same in either case. ** ** BUILT-IN WINDOW FUNCTIONS ** ** This implementation features the following built-in window functions: ** ** row_number() ** rank() ** dense_rank() ** percent_rank() ** cume_dist() ** ntile(N) ** lead(expr [, offset [, default]]) ** lag(expr [, offset [, default]]) ** first_value(expr) ** last_value(expr) ** nth_value(expr, N) ** ** These are the same built-in window functions supported by Postgres. ** Although the behaviour of aggregate window functions (functions that ** can be used as either aggregates or window funtions) allows them to ** be implemented using an API, built-in window functions are much more ** esoteric. Additionally, some window functions (e.g. nth_value()) ** may only be implemented by caching the entire partition in memory. ** As such, some built-in window functions use the same API as aggregate ** window functions and some are implemented directly using VDBE ** instructions. Additionally, for those functions that use the API, the ** window frame is sometimes modified before the SELECT statement is ** rewritten. For example, regardless of the specified window frame, the ** row_number() function always uses: ** ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ** ** See sqlite3WindowUpdate() for details. ** ** As well as some of the built-in window functions, aggregate window ** functions min() and max() are implemented using VDBE instructions if ** the start of the window frame is declared as anything other than ** UNBOUNDED PRECEDING. */ /* ** Implementation of built-in window function row_number(). Assumes that the ** window frame has been coerced to: ** ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void row_numberStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ) (*p)++; UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void row_numberValueFunc(sqlite3_context *pCtx){ i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); sqlite3_result_int64(pCtx, (p ? *p : 0)); } /* ** Context object type used by rank(), dense_rank(), percent_rank() and ** cume_dist(). */ struct CallCount { i64 nValue; i64 nStep; i64 nTotal; }; /* ** Implementation of built-in window function dense_rank(). Assumes that ** the window frame has been set to: ** ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void dense_rankStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ) p->nStep = 1; UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void dense_rankValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ if( p->nStep ){ p->nValue++; p->nStep = 0; } sqlite3_result_int64(pCtx, p->nValue); } } /* ** Implementation of built-in window function rank(). Assumes that ** the window frame has been set to: ** ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void rankStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ p->nStep++; if( p->nValue==0 ){ p->nValue = p->nStep; } } UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void rankValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ sqlite3_result_int64(pCtx, p->nValue); p->nValue = 0; } } /* ** Implementation of built-in window function percent_rank(). Assumes that ** the window frame has been set to: ** ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void percent_rankStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; UNUSED_PARAMETER(nArg); assert( nArg==1 ); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ if( p->nTotal==0 ){ p->nTotal = sqlite3_value_int64(apArg[0]); } p->nStep++; if( p->nValue==0 ){ p->nValue = p->nStep; } } } static void percent_rankValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ if( p->nTotal>1 ){ double r = (double)(p->nValue-1) / (double)(p->nTotal-1); sqlite3_result_double(pCtx, r); }else{ sqlite3_result_double(pCtx, 0.0); } p->nValue = 0; } } /* ** Implementation of built-in window function cume_dist(). Assumes that ** the window frame has been set to: ** ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void cume_distStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; assert( nArg==1 ); UNUSED_PARAMETER(nArg); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ if( p->nTotal==0 ){ p->nTotal = sqlite3_value_int64(apArg[0]); } p->nStep++; } } static void cume_distValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->nTotal ){ double r = (double)(p->nStep) / (double)(p->nTotal); sqlite3_result_double(pCtx, r); } } /* ** Context object for ntile() window function. */ struct NtileCtx { i64 nTotal; /* Total rows in partition */ i64 nParam; /* Parameter passed to ntile(N) */ i64 iRow; /* Current row */ }; /* ** Implementation of ntile(). This assumes that the window frame has ** been coerced to: ** ** ROWS UNBOUNDED PRECEDING AND CURRENT ROW */ static void ntileStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct NtileCtx *p; assert( nArg==2 ); UNUSED_PARAMETER(nArg); p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ if( p->nTotal==0 ){ p->nParam = sqlite3_value_int64(apArg[0]); p->nTotal = sqlite3_value_int64(apArg[1]); if( p->nParam<=0 ){ sqlite3_result_error( pCtx, "argument of ntile must be a positive integer", -1 ); } } p->iRow++; } } static void ntileValueFunc(sqlite3_context *pCtx){ struct NtileCtx *p; p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->nParam>0 ){ int nSize = (p->nTotal / p->nParam); if( nSize==0 ){ sqlite3_result_int64(pCtx, p->iRow); }else{ i64 nLarge = p->nTotal - p->nParam*nSize; i64 iSmall = nLarge*(nSize+1); i64 iRow = p->iRow-1; assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); if( iRowpVal); p->pVal = sqlite3_value_dup(apArg[0]); if( p->pVal==0 ){ sqlite3_result_error_nomem(pCtx); }else{ p->nVal++; } } } static void last_valueInvFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct LastValueCtx *p; UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( ALWAYS(p) ){ p->nVal--; if( p->nVal==0 ){ sqlite3_value_free(p->pVal); p->pVal = 0; } } } static void last_valueValueFunc(sqlite3_context *pCtx){ struct LastValueCtx *p; p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->pVal ){ sqlite3_result_value(pCtx, p->pVal); } } static void last_valueFinalizeFunc(sqlite3_context *pCtx){ struct LastValueCtx *p; p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->pVal ){ sqlite3_result_value(pCtx, p->pVal); sqlite3_value_free(p->pVal); p->pVal = 0; } } /* ** Static names for the built-in window function names. These static ** names are used, rather than string literals, so that FuncDef objects ** can be associated with a particular window function by direct ** comparison of the zName pointer. Example: ** ** if( pFuncDef->zName==row_valueName ){ ... } */ static const char row_numberName[] = "row_number"; static const char dense_rankName[] = "dense_rank"; static const char rankName[] = "rank"; static const char percent_rankName[] = "percent_rank"; static const char cume_distName[] = "cume_dist"; static const char ntileName[] = "ntile"; static const char last_valueName[] = "last_value"; static const char nth_valueName[] = "nth_value"; static const char first_valueName[] = "first_value"; static const char leadName[] = "lead"; static const char lagName[] = "lag"; /* ** No-op implementations of xStep() and xFinalize(). Used as place-holders ** for built-in window functions that never call those interfaces. ** ** The noopValueFunc() is called but is expected to do nothing. The ** noopStepFunc() is never called, and so it is marked with NO_TEST to ** let the test coverage routine know not to expect this function to be ** invoked. */ static void noopStepFunc( /*NO_TEST*/ sqlite3_context *p, /*NO_TEST*/ int n, /*NO_TEST*/ sqlite3_value **a /*NO_TEST*/ ){ /*NO_TEST*/ UNUSED_PARAMETER(p); /*NO_TEST*/ UNUSED_PARAMETER(n); /*NO_TEST*/ UNUSED_PARAMETER(a); /*NO_TEST*/ assert(0); /*NO_TEST*/ } /*NO_TEST*/ static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } /* Window functions that use all window interfaces: xStep, xFinal, ** xValue, and xInverse */ #define WINDOWFUNCALL(name,nArg,extra) { \ nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ name ## InvFunc, name ## Name, {0} \ } /* Window functions that are implemented using bytecode and thus have ** no-op routines for their methods */ #define WINDOWFUNCNOOP(name,nArg,extra) { \ nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ noopStepFunc, noopValueFunc, noopValueFunc, \ noopStepFunc, name ## Name, {0} \ } /* Window functions that use all window interfaces: xStep, the ** same routine for xFinalize and xValue and which never call ** xInverse. */ #define WINDOWFUNCX(name,nArg,extra) { \ nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ noopStepFunc, name ## Name, {0} \ } /* ** Register those built-in window functions that are not also aggregates. */ void sqlite3WindowFunctions(void){ static FuncDef aWindowFuncs[] = { WINDOWFUNCX(row_number, 0, 0), WINDOWFUNCX(dense_rank, 0, 0), WINDOWFUNCX(rank, 0, 0), WINDOWFUNCX(percent_rank, 0, SQLITE_FUNC_WINDOW_SIZE), WINDOWFUNCX(cume_dist, 0, SQLITE_FUNC_WINDOW_SIZE), WINDOWFUNCX(ntile, 1, SQLITE_FUNC_WINDOW_SIZE), WINDOWFUNCALL(last_value, 1, 0), WINDOWFUNCNOOP(nth_value, 2, 0), WINDOWFUNCNOOP(first_value, 1, 0), WINDOWFUNCNOOP(lead, 1, 0), WINDOWFUNCNOOP(lead, 2, 0), WINDOWFUNCNOOP(lead, 3, 0), WINDOWFUNCNOOP(lag, 1, 0), WINDOWFUNCNOOP(lag, 2, 0), WINDOWFUNCNOOP(lag, 3, 0), }; sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); } /* ** This function is called immediately after resolving the function name ** for a window function within a SELECT statement. Argument pList is a ** linked list of WINDOW definitions for the current SELECT statement. ** Argument pFunc is the function definition just resolved and pWin ** is the Window object representing the associated OVER clause. This ** function updates the contents of pWin as follows: ** ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), ** search list pList for a matching WINDOW definition, and update pWin ** accordingly. If no such WINDOW clause can be found, leave an error ** in pParse. ** ** * If the function is a built-in window function that requires the ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top ** of this file), pWin is updated here. */ void sqlite3WindowUpdate( Parse *pParse, Window *pList, /* List of named windows for this SELECT */ Window *pWin, /* Window frame to update */ FuncDef *pFunc /* Window function definition */ ){ if( pWin->zName && pWin->eType==0 ){ Window *p; for(p=pList; p; p=p->pNextWin){ if( sqlite3StrICmp(p->zName, pWin->zName)==0 ) break; } if( p==0 ){ sqlite3ErrorMsg(pParse, "no such window: %s", pWin->zName); return; } pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); pWin->eStart = p->eStart; pWin->eEnd = p->eEnd; pWin->eType = p->eType; } if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ sqlite3 *db = pParse->db; if( pWin->pFilter ){ sqlite3ErrorMsg(pParse, "FILTER clause may only be used with aggregate window functions" ); }else if( pFunc->zName==row_numberName || pFunc->zName==ntileName ){ sqlite3ExprDelete(db, pWin->pStart); sqlite3ExprDelete(db, pWin->pEnd); pWin->pStart = pWin->pEnd = 0; pWin->eType = TK_ROWS; pWin->eStart = TK_UNBOUNDED; pWin->eEnd = TK_CURRENT; }else if( pFunc->zName==dense_rankName || pFunc->zName==rankName || pFunc->zName==percent_rankName || pFunc->zName==cume_distName ){ sqlite3ExprDelete(db, pWin->pStart); sqlite3ExprDelete(db, pWin->pEnd); pWin->pStart = pWin->pEnd = 0; pWin->eType = TK_RANGE; pWin->eStart = TK_UNBOUNDED; pWin->eEnd = TK_CURRENT; } } pWin->pFunc = pFunc; } /* ** Context object passed through sqlite3WalkExprList() to ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). */ typedef struct WindowRewrite WindowRewrite; struct WindowRewrite { Window *pWin; ExprList *pSub; }; /* ** Callback function used by selectWindowRewriteEList(). If necessary, ** this function appends to the output expression-list and updates ** expression (*ppExpr) in place. */ static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ struct WindowRewrite *p = pWalker->u.pRewrite; Parse *pParse = pWalker->pParse; switch( pExpr->op ){ case TK_FUNCTION: if( pExpr->pWin==0 ){ break; }else{ Window *pWin; for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ if( pExpr->pWin==pWin ){ assert( pWin->pOwner==pExpr ); return WRC_Prune; } } } /* Fall through. */ case TK_AGG_FUNCTION: case TK_COLUMN: { Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); if( p->pSub ){ assert( ExprHasProperty(pExpr, EP_Static)==0 ); ExprSetProperty(pExpr, EP_Static); sqlite3ExprDelete(pParse->db, pExpr); ExprClearProperty(pExpr, EP_Static); memset(pExpr, 0, sizeof(Expr)); pExpr->op = TK_COLUMN; pExpr->iColumn = p->pSub->nExpr-1; pExpr->iTable = p->pWin->iEphCsr; } break; } default: /* no-op */ break; } return WRC_Continue; } static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ UNUSED_PARAMETER(pWalker); UNUSED_PARAMETER(pSelect); return WRC_Prune; } /* ** Iterate through each expression in expression-list pEList. For each: ** ** * TK_COLUMN, ** * aggregate function, or ** * window function with a Window object that is not a member of the ** linked list passed as the second argument (pWin) ** ** Append the node to output expression-list (*ppSub). And replace it ** with a TK_COLUMN that reads the (N-1)th element of table ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after ** appending the new one. */ static void selectWindowRewriteEList( Parse *pParse, Window *pWin, ExprList *pEList, /* Rewrite expressions in this list */ ExprList **ppSub /* IN/OUT: Sub-select expression-list */ ){ Walker sWalker; WindowRewrite sRewrite; memset(&sWalker, 0, sizeof(Walker)); memset(&sRewrite, 0, sizeof(WindowRewrite)); sRewrite.pSub = *ppSub; sRewrite.pWin = pWin; sWalker.pParse = pParse; sWalker.xExprCallback = selectWindowRewriteExprCb; sWalker.xSelectCallback = selectWindowRewriteSelectCb; sWalker.u.pRewrite = &sRewrite; (void)sqlite3WalkExprList(&sWalker, pEList); *ppSub = sRewrite.pSub; } /* ** Append a copy of each expression in expression-list pAppend to ** expression list pList. Return a pointer to the result list. */ static ExprList *exprListAppendList( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to append. Might be NULL */ ExprList *pAppend /* List of values to append. Might be NULL */ ){ if( pAppend ){ int i; int nInit = pList ? pList->nExpr : 0; for(i=0; inExpr; i++){ Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0); pList = sqlite3ExprListAppend(pParse, pList, pDup); if( pList ) pList->a[nInit+i].sortOrder = pAppend->a[i].sortOrder; } } return pList; } /* ** If the SELECT statement passed as the second argument does not invoke ** any SQL window functions, this function is a no-op. Otherwise, it ** rewrites the SELECT statement so that window function xStep functions ** are invoked in the correct order as described under "SELECT REWRITING" ** at the top of this file. */ int sqlite3WindowRewrite(Parse *pParse, Select *p){ int rc = SQLITE_OK; if( p->pWin ){ Vdbe *v = sqlite3GetVdbe(pParse); sqlite3 *db = pParse->db; Select *pSub = 0; /* The subquery */ SrcList *pSrc = p->pSrc; Expr *pWhere = p->pWhere; ExprList *pGroupBy = p->pGroupBy; Expr *pHaving = p->pHaving; ExprList *pSort = 0; ExprList *pSublist = 0; /* Expression list for sub-query */ Window *pMWin = p->pWin; /* Master window object */ Window *pWin; /* Window object iterator */ p->pSrc = 0; p->pWhere = 0; p->pGroupBy = 0; p->pHaving = 0; /* Create the ORDER BY clause for the sub-select. This is the concatenation ** of the window PARTITION and ORDER BY clauses. Then, if this makes it ** redundant, remove the ORDER BY from the parent SELECT. */ pSort = sqlite3ExprListDup(db, pMWin->pPartition, 0); pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy); if( pSort && p->pOrderBy ){ if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ sqlite3ExprListDelete(db, p->pOrderBy); p->pOrderBy = 0; } } /* Assign a cursor number for the ephemeral table used to buffer rows. ** The OpenEphemeral instruction is coded later, after it is known how ** many columns the table will have. */ pMWin->iEphCsr = pParse->nTab++; selectWindowRewriteEList(pParse, pMWin, p->pEList, &pSublist); selectWindowRewriteEList(pParse, pMWin, p->pOrderBy, &pSublist); pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); /* Append the PARTITION BY and ORDER BY expressions to the to the ** sub-select expression list. They are required to figure out where ** boundaries for partitions and sets of peer rows lie. */ pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition); pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy); /* Append the arguments passed to each window function to the ** sub-select expression list. Also allocate two registers for each ** window function - one for the accumulator, another for interim ** results. */ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); pSublist = exprListAppendList(pParse, pSublist, pWin->pOwner->x.pList); if( pWin->pFilter ){ Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); } pWin->regAccum = ++pParse->nMem; pWin->regResult = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); } /* If there is no ORDER BY or PARTITION BY clause, and the window ** function accepts zero arguments, and there are no other columns ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible ** that pSublist is still NULL here. Add a constant expression here to ** keep everything legal in this case. */ if( pSublist==0 ){ pSublist = sqlite3ExprListAppend(pParse, 0, sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0) ); } pSub = sqlite3SelectNew( pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 ); p->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); assert( p->pSrc || db->mallocFailed ); if( p->pSrc ){ p->pSrc->a[0].pSelect = pSub; sqlite3SrcListAssignCursors(pParse, p->pSrc); if( sqlite3ExpandSubquery(pParse, &p->pSrc->a[0]) ){ rc = SQLITE_NOMEM; }else{ pSub->selFlags |= SF_Expanded; p->selFlags &= ~SF_Aggregate; sqlite3SelectPrep(pParse, pSub, 0); } sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, pSublist->nExpr); }else{ sqlite3SelectDelete(db, pSub); } if( db->mallocFailed ) rc = SQLITE_NOMEM; } return rc; } /* ** Free the Window object passed as the second argument. */ void sqlite3WindowDelete(sqlite3 *db, Window *p){ if( p ){ sqlite3ExprDelete(db, p->pFilter); sqlite3ExprListDelete(db, p->pPartition); sqlite3ExprListDelete(db, p->pOrderBy); sqlite3ExprDelete(db, p->pEnd); sqlite3ExprDelete(db, p->pStart); sqlite3DbFree(db, p->zName); sqlite3DbFree(db, p); } } /* ** Free the linked list of Window objects starting at the second argument. */ void sqlite3WindowListDelete(sqlite3 *db, Window *p){ while( p ){ Window *pNext = p->pNextWin; sqlite3WindowDelete(db, p); p = pNext; } } /* ** The argument expression is an PRECEDING or FOLLOWING offset. The ** value should be a non-negative integer. If the value is not a ** constant, change it to NULL. The fact that it is then a non-negative ** integer will be caught later. But it is important not to leave ** variable values in the expression tree. */ static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ if( 0==sqlite3ExprIsConstant(pExpr) ){ sqlite3ExprDelete(pParse->db, pExpr); pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); } return pExpr; } /* ** Allocate and return a new Window object describing a Window Definition. */ Window *sqlite3WindowAlloc( Parse *pParse, /* Parsing context */ int eType, /* Frame type. TK_RANGE or TK_ROWS */ int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ Expr *pEnd /* End window size if TK_FOLLOWING or PRECEDING */ ){ Window *pWin = 0; /* Parser assures the following: */ assert( eType==TK_RANGE || eType==TK_ROWS ); assert( eStart==TK_CURRENT || eStart==TK_PRECEDING || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); /* If a frame is declared "RANGE" (not "ROWS"), then it may not use ** either " PRECEDING" or " FOLLOWING". */ if( eType==TK_RANGE && (pStart!=0 || pEnd!=0) ){ sqlite3ErrorMsg(pParse, "RANGE must use only UNBOUNDED or CURRENT ROW"); goto windowAllocErr; } /* Additionally, the ** starting boundary type may not occur earlier in the following list than ** the ending boundary type: ** ** UNBOUNDED PRECEDING ** PRECEDING ** CURRENT ROW ** FOLLOWING ** UNBOUNDED FOLLOWING ** ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting ** frame boundary. */ if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) ){ sqlite3ErrorMsg(pParse, "unsupported frame delimiter for ROWS"); goto windowAllocErr; } pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); if( pWin==0 ) goto windowAllocErr; pWin->eType = eType; pWin->eStart = eStart; pWin->eEnd = eEnd; pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); return pWin; windowAllocErr: sqlite3ExprDelete(pParse->db, pEnd); sqlite3ExprDelete(pParse->db, pStart); return 0; } /* ** Attach window object pWin to expression p. */ void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ if( p ){ if( pWin ){ p->pWin = pWin; pWin->pOwner = p; if( p->flags & EP_Distinct ){ sqlite3ErrorMsg(pParse, "DISTINCT is not supported for window functions"); } } }else{ sqlite3WindowDelete(pParse->db, pWin); } } /* ** Return 0 if the two window objects are identical, or non-zero otherwise. ** Identical window objects can be processed in a single scan. */ int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2){ if( p1->eType!=p2->eType ) return 1; if( p1->eStart!=p2->eStart ) return 1; if( p1->eEnd!=p2->eEnd ) return 1; if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; if( sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1) ) return 1; if( sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1) ) return 1; return 0; } /* ** This is called by code in select.c before it calls sqlite3WhereBegin() ** to begin iterating through the sub-query results. It is used to allocate ** and initialize registers and cursors used by sqlite3WindowCodeStep(). */ void sqlite3WindowCodeInit(Parse *pParse, Window *pMWin){ Window *pWin; Vdbe *v = sqlite3GetVdbe(pParse); int nPart = (pMWin->pPartition ? pMWin->pPartition->nExpr : 0); nPart += (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); if( nPart ){ pMWin->regPart = pParse->nMem+1; pParse->nMem += nPart; sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nPart-1); } for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *p = pWin->pFunc; if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ /* The inline versions of min() and max() require a single ephemeral ** table and 3 registers. The registers are used as follows: ** ** regApp+0: slot to copy min()/max() argument to for MakeRecord ** regApp+1: integer value used to ensure keys are unique ** regApp+2: output of MakeRecord */ ExprList *pList = pWin->pOwner->x.pList; KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); pWin->csrApp = pParse->nTab++; pWin->regApp = pParse->nMem+1; pParse->nMem += 3; if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ assert( pKeyInfo->aSortOrder[0]==0 ); pKeyInfo->aSortOrder[0] = 1; } sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); } else if( p->zName==nth_valueName || p->zName==first_valueName ){ /* Allocate two registers at pWin->regApp. These will be used to ** store the start and end index of the current frame. */ assert( pMWin->iEphCsr ); pWin->regApp = pParse->nMem+1; pWin->csrApp = pParse->nTab++; pParse->nMem += 2; sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); } else if( p->zName==leadName || p->zName==lagName ){ assert( pMWin->iEphCsr ); pWin->csrApp = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); } } } /* ** A "PRECEDING " (eCond==0) or "FOLLOWING " (eCond==1) or the ** value of the second argument to nth_value() (eCond==2) has just been ** evaluated and the result left in register reg. This function generates VM ** code to check that the value is a non-negative integer and throws an ** exception if it is not. */ static void windowCheckIntValue(Parse *pParse, int reg, int eCond){ static const char *azErr[] = { "frame starting offset must be a non-negative integer", "frame ending offset must be a non-negative integer", "second argument to nth_value must be a positive integer" }; static int aOp[] = { OP_Ge, OP_Ge, OP_Gt }; Vdbe *v = sqlite3GetVdbe(pParse); int regZero = sqlite3GetTempReg(pParse); assert( eCond==0 || eCond==1 || eCond==2 ); sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverageIf(v, eCond==0); VdbeCoverageIf(v, eCond==1); VdbeCoverageIf(v, eCond==2); sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); VdbeCoverageIf(v, eCond==0); VdbeCoverageIf(v, eCond==1); VdbeCoverageIf(v, eCond==2); sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); sqlite3ReleaseTempReg(pParse, regZero); } /* ** Return the number of arguments passed to the window-function associated ** with the object passed as the only argument to this function. */ static int windowArgCount(Window *pWin){ ExprList *pList = pWin->pOwner->x.pList; return (pList ? pList->nExpr : 0); } /* ** Generate VM code to invoke either xStep() (if bInverse is 0) or ** xInverse (if bInverse is non-zero) for each window function in the ** linked list starting at pMWin. Or, for built-in window functions ** that do not use the standard function API, generate the required ** inline VM code. ** ** If argument csr is greater than or equal to 0, then argument reg is ** the first register in an array of registers guaranteed to be large ** enough to hold the array of arguments for each function. In this case ** the arguments are extracted from the current row of csr into the ** array of registers before invoking OP_AggStep or OP_AggInverse ** ** Or, if csr is less than zero, then the array of registers at reg is ** already populated with all columns from the current row of the sub-query. ** ** If argument regPartSize is non-zero, then it is a register containing the ** number of rows in the current partition. */ static void windowAggStep( Parse *pParse, Window *pMWin, /* Linked list of window functions */ int csr, /* Read arguments from this cursor */ int bInverse, /* True to invoke xInverse instead of xStep */ int reg, /* Array of registers */ int regPartSize /* Register containing size of partition */ ){ Vdbe *v = sqlite3GetVdbe(pParse); Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ int flags = pWin->pFunc->funcFlags; int regArg; int nArg = windowArgCount(pWin); if( csr>=0 ){ int i; for(i=0; iiArgCol+i, reg+i); } regArg = reg; if( flags & SQLITE_FUNC_WINDOW_SIZE ){ if( nArg==0 ){ regArg = regPartSize; }else{ sqlite3VdbeAddOp2(v, OP_SCopy, regPartSize, reg+nArg); } nArg++; } }else{ assert( !(flags & SQLITE_FUNC_WINDOW_SIZE) ); regArg = reg + pWin->iArgCol; } if( (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); VdbeCoverage(v); if( bInverse==0 ){ sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); }else{ sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); } sqlite3VdbeJumpHere(v, addrIsNull); }else if( pWin->regApp ){ assert( pWin->pFunc->zName==nth_valueName || pWin->pFunc->zName==first_valueName ); assert( bInverse==0 || bInverse==1 ); sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); }else if( pWin->pFunc->zName==leadName || pWin->pFunc->zName==lagName ){ /* no-op */ }else{ int addrIf = 0; if( pWin->pFilter ){ int regTmp; assert( nArg==0 || nArg==pWin->pOwner->x.pList->nExpr ); assert( nArg || pWin->pOwner->x.pList==0 ); if( csr>0 ){ regTmp = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); }else{ regTmp = regArg + nArg; } addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); VdbeCoverage(v); if( csr>0 ){ sqlite3ReleaseTempReg(pParse, regTmp); } } if( pWin->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ CollSeq *pColl; assert( nArg>0 ); pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, bInverse, regArg, pWin->regAccum); sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); } } } /* ** Generate VM code to invoke either xValue() (bFinal==0) or xFinalize() ** (bFinal==1) for each window function in the linked list starting at ** pMWin. Or, for built-in window-functions that do not use the standard ** API, generate the equivalent VM code. */ static void windowAggFinal(Parse *pParse, Window *pMWin, int bFinal){ Vdbe *v = sqlite3GetVdbe(pParse); Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ if( (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); if( bFinal ){ sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); } }else if( pWin->regApp ){ }else{ if( bFinal ){ sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, windowArgCount(pWin)); sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); }else{ sqlite3VdbeAddOp3(v, OP_AggValue, pWin->regAccum, windowArgCount(pWin), pWin->regResult); sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); } } } } /* ** This function generates VM code to invoke the sub-routine at address ** lblFlushPart once for each partition with the entire partition cached in ** the Window.iEphCsr temp table. */ static void windowPartitionCache( Parse *pParse, Select *p, /* The rewritten SELECT statement */ WhereInfo *pWInfo, /* WhereInfo to call WhereEnd() on */ int regFlushPart, /* Register to use with Gosub lblFlushPart */ int lblFlushPart, /* Subroutine to Gosub to */ int *pRegSize /* OUT: Register containing partition size */ ){ Window *pMWin = p->pWin; Vdbe *v = sqlite3GetVdbe(pParse); int iSubCsr = p->pSrc->a[0].iCursor; int nSub = p->pSrc->a[0].pTab->nCol; int k; int reg = pParse->nMem+1; int regRecord = reg+nSub; int regRowid = regRecord+1; *pRegSize = regRowid; pParse->nMem += nSub + 2; /* Martial the row returned by the sub-select into an array of ** registers. */ for(k=0; kpPartition ){ int addr; ExprList *pPart = pMWin->pPartition; int nPart = pPart->nExpr; int regNewPart = reg + pMWin->nBufferCol; KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart,nPart); sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); sqlite3VdbeAddOp2(v, OP_Gosub, regFlushPart, lblFlushPart); VdbeComment((v, "call flush_partition")); } /* Buffer the current row in the ephemeral table. */ sqlite3VdbeAddOp2(v, OP_NewRowid, pMWin->iEphCsr, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, pMWin->iEphCsr, regRecord, regRowid); /* End of the input loop */ sqlite3WhereEnd(pWInfo); /* Invoke "flush_partition" to deal with the final (or only) partition */ sqlite3VdbeAddOp2(v, OP_Gosub, regFlushPart, lblFlushPart); VdbeComment((v, "call flush_partition")); } /* ** Invoke the sub-routine at regGosub (generated by code in select.c) to ** return the current row of Window.iEphCsr. If all window functions are ** aggregate window functions that use the standard API, a single ** OP_Gosub instruction is all that this routine generates. Extra VM code ** for per-row processing is only generated for the following built-in window ** functions: ** ** nth_value() ** first_value() ** lag() ** lead() */ static void windowReturnOneRow( Parse *pParse, Window *pMWin, int regGosub, int addrGosub ){ Vdbe *v = sqlite3GetVdbe(pParse); Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pFunc; if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ int csr = pWin->csrApp; int lbl = sqlite3VdbeMakeLabel(v); int tmpReg = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); if( pFunc->zName==nth_valueName ){ sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+1,tmpReg); windowCheckIntValue(pParse, tmpReg, 2); }else{ sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); } sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); sqlite3VdbeResolveLabel(v, lbl); sqlite3ReleaseTempReg(pParse, tmpReg); } else if( pFunc->zName==leadName || pFunc->zName==lagName ){ int nArg = pWin->pOwner->x.pList->nExpr; int iEph = pMWin->iEphCsr; int csr = pWin->csrApp; int lbl = sqlite3VdbeMakeLabel(v); int tmpReg = sqlite3GetTempReg(pParse); if( nArg<3 ){ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); }else{ sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+2, pWin->regResult); } sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); if( nArg<2 ){ int val = (pFunc->zName==leadName ? 1 : -1); sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); }else{ int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); int tmpReg2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); sqlite3ReleaseTempReg(pParse, tmpReg2); } sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); sqlite3VdbeResolveLabel(v, lbl); sqlite3ReleaseTempReg(pParse, tmpReg); } } sqlite3VdbeAddOp2(v, OP_Gosub, regGosub, addrGosub); } /* ** Invoke the code generated by windowReturnOneRow() and, optionally, the ** xInverse() function for each window function, for one or more rows ** from the Window.iEphCsr temp table. This routine generates VM code ** similar to: ** ** while( regCtr>0 ){ ** regCtr--; ** windowReturnOneRow() ** if( bInverse ){ ** AggInverse ** } ** Next (Window.iEphCsr) ** } */ static void windowReturnRows( Parse *pParse, Window *pMWin, /* List of window functions */ int regCtr, /* Register containing number of rows */ int regGosub, /* Register for Gosub addrGosub */ int addrGosub, /* Address of sub-routine for ReturnOneRow */ int regInvArg, /* Array of registers for xInverse args */ int regInvSize /* Register containing size of partition */ ){ int addr; Vdbe *v = sqlite3GetVdbe(pParse); windowAggFinal(pParse, pMWin, 0); addr = sqlite3VdbeAddOp3(v, OP_IfPos, regCtr, sqlite3VdbeCurrentAddr(v)+2 ,1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); windowReturnOneRow(pParse, pMWin, regGosub, addrGosub); if( regInvArg ){ windowAggStep(pParse, pMWin, pMWin->iEphCsr, 1, regInvArg, regInvSize); } sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, addr); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr+1); /* The OP_Goto */ } /* ** Generate code to set the accumulator register for each window function ** in the linked list passed as the second argument to NULL. And perform ** any equivalent initialization required by any built-in window functions ** in the list. */ static int windowInitAccum(Parse *pParse, Window *pMWin){ Vdbe *v = sqlite3GetVdbe(pParse); int regArg; int nArg = 0; Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pFunc; sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); nArg = MAX(nArg, windowArgCount(pWin)); if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); } if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ assert( pWin->eStart!=TK_UNBOUNDED ); sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); } } regArg = pParse->nMem+1; pParse->nMem += nArg; return regArg; } /* ** This function does the work of sqlite3WindowCodeStep() for all "ROWS" ** window frame types except for "BETWEEN UNBOUNDED PRECEDING AND CURRENT ** ROW". Pseudo-code for each follows. ** ** ROWS BETWEEN PRECEDING AND FOLLOWING ** ** ... ** if( new partition ){ ** Gosub flush_partition ** } ** Insert (record in eph-table) ** sqlite3WhereEnd() ** Gosub flush_partition ** ** flush_partition: ** Once { ** OpenDup (iEphCsr -> csrStart) ** OpenDup (iEphCsr -> csrEnd) ** } ** regStart = // PRECEDING expression ** regEnd = // FOLLOWING expression ** if( regStart<0 || regEnd<0 ){ error! } ** Rewind (csr,csrStart,csrEnd) // if EOF goto flush_partition_done ** Next(csrEnd) // if EOF skip Aggstep ** Aggstep (csrEnd) ** if( (regEnd--)<=0 ){ ** AggFinal (xValue) ** Gosub addrGosub ** Next(csr) // if EOF goto flush_partition_done ** if( (regStart--)<=0 ){ ** AggInverse (csrStart) ** Next(csrStart) ** } ** } ** flush_partition_done: ** ResetSorter (csr) ** Return ** ** ROWS BETWEEN PRECEDING AND CURRENT ROW ** ROWS BETWEEN CURRENT ROW AND FOLLOWING ** ROWS BETWEEN UNBOUNDED PRECEDING AND FOLLOWING ** ** These are similar to the above. For "CURRENT ROW", intialize the ** register to 0. For "UNBOUNDED PRECEDING" to infinity. ** ** ROWS BETWEEN PRECEDING AND UNBOUNDED FOLLOWING ** ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING ** ** Rewind (csr,csrStart,csrEnd) // if EOF goto flush_partition_done ** while( 1 ){ ** Next(csrEnd) // Exit while(1) at EOF ** Aggstep (csrEnd) ** } ** while( 1 ){ ** AggFinal (xValue) ** Gosub addrGosub ** Next(csr) // if EOF goto flush_partition_done ** if( (regStart--)<=0 ){ ** AggInverse (csrStart) ** Next(csrStart) ** } ** } ** ** For the "CURRENT ROW AND UNBOUNDED FOLLOWING" case, the final if() ** condition is always true (as if regStart were initialized to 0). ** ** RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING ** ** This is the only RANGE case handled by this routine. It modifies the ** second while( 1 ) loop in "ROWS BETWEEN CURRENT ... UNBOUNDED..." to ** be: ** ** while( 1 ){ ** AggFinal (xValue) ** while( 1 ){ ** regPeer++ ** Gosub addrGosub ** Next(csr) // if EOF goto flush_partition_done ** if( new peer ) break; ** } ** while( (regPeer--)>0 ){ ** AggInverse (csrStart) ** Next(csrStart) ** } ** } ** ** ROWS BETWEEN FOLLOWING AND FOLLOWING ** ** regEnd = regEnd - regStart ** Rewind (csr,csrStart,csrEnd) // if EOF goto flush_partition_done ** Aggstep (csrEnd) ** Next(csrEnd) // if EOF fall-through ** if( (regEnd--)<=0 ){ ** if( (regStart--)<=0 ){ ** AggFinal (xValue) ** Gosub addrGosub ** Next(csr) // if EOF goto flush_partition_done ** } ** AggInverse (csrStart) ** Next (csrStart) ** } ** ** ROWS BETWEEN PRECEDING AND PRECEDING ** ** Replace the bit after "Rewind" in the above with: ** ** if( (regEnd--)<=0 ){ ** AggStep (csrEnd) ** Next (csrEnd) ** } ** AggFinal (xValue) ** Gosub addrGosub ** Next(csr) // if EOF goto flush_partition_done ** if( (regStart--)<=0 ){ ** AggInverse (csr2) ** Next (csr2) ** } ** */ static void windowCodeRowExprStep( Parse *pParse, Select *p, WhereInfo *pWInfo, int regGosub, int addrGosub ){ Window *pMWin = p->pWin; Vdbe *v = sqlite3GetVdbe(pParse); int regFlushPart; /* Register for "Gosub flush_partition" */ int lblFlushPart; /* Label for "Gosub flush_partition" */ int lblFlushDone; /* Label for "Gosub flush_partition_done" */ int regArg; int addr; int csrStart = pParse->nTab++; int csrEnd = pParse->nTab++; int regStart; /* Value of PRECEDING */ int regEnd; /* Value of FOLLOWING */ int addrGoto; int addrTop; int addrIfPos1 = 0; int addrIfPos2 = 0; int regSize = 0; assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED ); assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING ); /* Allocate register and label for the "flush_partition" sub-routine. */ regFlushPart = ++pParse->nMem; lblFlushPart = sqlite3VdbeMakeLabel(v); lblFlushDone = sqlite3VdbeMakeLabel(v); regStart = ++pParse->nMem; regEnd = ++pParse->nMem; windowPartitionCache(pParse, p, pWInfo, regFlushPart, lblFlushPart, ®Size); addrGoto = sqlite3VdbeAddOp0(v, OP_Goto); /* Start of "flush_partition" */ sqlite3VdbeResolveLabel(v, lblFlushPart); sqlite3VdbeAddOp2(v, OP_Once, 0, sqlite3VdbeCurrentAddr(v)+3); VdbeCoverage(v); VdbeComment((v, "Flush_partition subroutine")); sqlite3VdbeAddOp2(v, OP_OpenDup, csrStart, pMWin->iEphCsr); sqlite3VdbeAddOp2(v, OP_OpenDup, csrEnd, pMWin->iEphCsr); /* If either regStart or regEnd are not non-negative integers, throw ** an exception. */ if( pMWin->pStart ){ sqlite3ExprCode(pParse, pMWin->pStart, regStart); windowCheckIntValue(pParse, regStart, 0); } if( pMWin->pEnd ){ sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); windowCheckIntValue(pParse, regEnd, 1); } /* If this is "ROWS FOLLOWING AND ROWS FOLLOWING", do: ** ** if( regEndpEnd && pMWin->eStart==TK_FOLLOWING ){ assert( pMWin->pStart!=0 ); assert( pMWin->eEnd==TK_FOLLOWING ); sqlite3VdbeAddOp3(v, OP_Ge, regStart, sqlite3VdbeCurrentAddr(v)+2, regEnd); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Copy, regSize, regStart); sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regEnd); } if( pMWin->pStart && pMWin->eEnd==TK_PRECEDING ){ assert( pMWin->pEnd!=0 ); assert( pMWin->eStart==TK_PRECEDING ); sqlite3VdbeAddOp3(v, OP_Le, regStart, sqlite3VdbeCurrentAddr(v)+3, regEnd); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Copy, regSize, regStart); sqlite3VdbeAddOp2(v, OP_Copy, regSize, regEnd); } /* Initialize the accumulator register for each window function to NULL */ regArg = windowInitAccum(pParse, pMWin); sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr, lblFlushDone); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Rewind, csrStart, lblFlushDone); VdbeCoverageNeverTaken(v); sqlite3VdbeChangeP5(v, 1); sqlite3VdbeAddOp2(v, OP_Rewind, csrEnd, lblFlushDone); VdbeCoverageNeverTaken(v); sqlite3VdbeChangeP5(v, 1); /* Invoke AggStep function for each window function using the row that ** csrEnd currently points to. Or, if csrEnd is already at EOF, ** do nothing. */ addrTop = sqlite3VdbeCurrentAddr(v); if( pMWin->eEnd==TK_PRECEDING ){ addrIfPos1 = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0 , 1); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, OP_Next, csrEnd, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); addr = sqlite3VdbeAddOp0(v, OP_Goto); windowAggStep(pParse, pMWin, csrEnd, 0, regArg, regSize); if( pMWin->eEnd==TK_UNBOUNDED ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); sqlite3VdbeJumpHere(v, addr); addrTop = sqlite3VdbeCurrentAddr(v); }else{ sqlite3VdbeJumpHere(v, addr); if( pMWin->eEnd==TK_PRECEDING ){ sqlite3VdbeJumpHere(v, addrIfPos1); } } if( pMWin->eEnd==TK_FOLLOWING ){ addrIfPos1 = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0 , 1); VdbeCoverage(v); } if( pMWin->eStart==TK_FOLLOWING ){ addrIfPos2 = sqlite3VdbeAddOp3(v, OP_IfPos, regStart, 0 , 1); VdbeCoverage(v); } windowAggFinal(pParse, pMWin, 0); windowReturnOneRow(pParse, pMWin, regGosub, addrGosub); sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, lblFlushDone); if( pMWin->eStart==TK_FOLLOWING ){ sqlite3VdbeJumpHere(v, addrIfPos2); } if( pMWin->eStart==TK_CURRENT || pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ int lblSkipInverse = sqlite3VdbeMakeLabel(v);; if( pMWin->eStart==TK_PRECEDING ){ sqlite3VdbeAddOp3(v, OP_IfPos, regStart, lblSkipInverse, 1); VdbeCoverage(v); } if( pMWin->eStart==TK_FOLLOWING ){ sqlite3VdbeAddOp2(v, OP_Next, csrStart, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, lblSkipInverse); }else{ sqlite3VdbeAddOp2(v, OP_Next, csrStart, sqlite3VdbeCurrentAddr(v)+1); VdbeCoverage(v); } windowAggStep(pParse, pMWin, csrStart, 1, regArg, regSize); sqlite3VdbeResolveLabel(v, lblSkipInverse); } if( pMWin->eEnd==TK_FOLLOWING ){ sqlite3VdbeJumpHere(v, addrIfPos1); } sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); /* flush_partition_done: */ sqlite3VdbeResolveLabel(v, lblFlushDone); sqlite3VdbeAddOp1(v, OP_ResetSorter, pMWin->iEphCsr); sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); VdbeComment((v, "end flush_partition subroutine")); /* Jump to here to skip over flush_partition */ sqlite3VdbeJumpHere(v, addrGoto); } /* ** This function does the work of sqlite3WindowCodeStep() for cases that ** would normally be handled by windowCodeDefaultStep() when there are ** one or more built-in window-functions that require the entire partition ** to be cached in a temp table before any rows can be returned. Additionally. ** "RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING" is always handled by ** this function. ** ** Pseudo-code corresponding to the VM code generated by this function ** for each type of window follows. ** ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ** ** flush_partition: ** Once { ** OpenDup (iEphCsr -> csrLead) ** } ** Integer ctr 0 ** foreach row (csrLead){ ** if( new peer ){ ** AggFinal (xValue) ** for(i=0; i csrLead) ** } ** foreach row (csrLead) { ** AggStep (csrLead) ** } ** foreach row (iEphCsr) { ** Gosub addrGosub ** } ** ** RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING ** ** flush_partition: ** Once { ** OpenDup (iEphCsr -> csrLead) ** } ** foreach row (csrLead){ ** AggStep (csrLead) ** } ** Rewind (csrLead) ** Integer ctr 0 ** foreach row (csrLead){ ** if( new peer ){ ** AggFinal (xValue) ** for(i=0; ipWin; Vdbe *v = sqlite3GetVdbe(pParse); int k; int addr; ExprList *pPart = pMWin->pPartition; ExprList *pOrderBy = pMWin->pOrderBy; int nPeer = pOrderBy ? pOrderBy->nExpr : 0; int regNewPeer; int addrGoto; /* Address of Goto used to jump flush_par.. */ int addrNext; /* Jump here for next iteration of loop */ int regFlushPart; int lblFlushPart; int csrLead; int regCtr; int regArg; /* Register array to martial function args */ int regSize; int lblEmpty; int bReverse = pMWin->pOrderBy && pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_UNBOUNDED; assert( (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_CURRENT) || (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_UNBOUNDED) || (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_CURRENT) || (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_UNBOUNDED) ); lblEmpty = sqlite3VdbeMakeLabel(v); regNewPeer = pParse->nMem+1; pParse->nMem += nPeer; /* Allocate register and label for the "flush_partition" sub-routine. */ regFlushPart = ++pParse->nMem; lblFlushPart = sqlite3VdbeMakeLabel(v); csrLead = pParse->nTab++; regCtr = ++pParse->nMem; windowPartitionCache(pParse, p, pWInfo, regFlushPart, lblFlushPart, ®Size); addrGoto = sqlite3VdbeAddOp0(v, OP_Goto); /* Start of "flush_partition" */ sqlite3VdbeResolveLabel(v, lblFlushPart); sqlite3VdbeAddOp2(v, OP_Once, 0, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_OpenDup, csrLead, pMWin->iEphCsr); /* Initialize the accumulator register for each window function to NULL */ regArg = windowInitAccum(pParse, pMWin); sqlite3VdbeAddOp2(v, OP_Integer, 0, regCtr); sqlite3VdbeAddOp2(v, OP_Rewind, csrLead, lblEmpty); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr, lblEmpty); VdbeCoverageNeverTaken(v); if( bReverse ){ int addr2 = sqlite3VdbeCurrentAddr(v); windowAggStep(pParse, pMWin, csrLead, 0, regArg, regSize); sqlite3VdbeAddOp2(v, OP_Next, csrLead, addr2); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Rewind, csrLead, lblEmpty); VdbeCoverageNeverTaken(v); } addrNext = sqlite3VdbeCurrentAddr(v); if( pOrderBy && (pMWin->eEnd==TK_CURRENT || pMWin->eStart==TK_CURRENT) ){ int bCurrent = (pMWin->eStart==TK_CURRENT); int addrJump = 0; /* Address of OP_Jump below */ if( pMWin->eType==TK_RANGE ){ int iOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); int regPeer = pMWin->regPart + (pPart ? pPart->nExpr : 0); KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); for(k=0; kiEphCsr); sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); /* Jump to here to skip over flush_partition */ sqlite3VdbeJumpHere(v, addrGoto); } /* ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ** ** ... ** if( new partition ){ ** AggFinal (xFinalize) ** Gosub addrGosub ** ResetSorter eph-table ** } ** else if( new peer ){ ** AggFinal (xValue) ** Gosub addrGosub ** ResetSorter eph-table ** } ** AggStep ** Insert (record into eph-table) ** sqlite3WhereEnd() ** AggFinal (xFinalize) ** Gosub addrGosub ** ** RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING ** ** As above, except take no action for a "new peer". Invoke ** the sub-routine once only for each partition. ** ** RANGE BETWEEN CURRENT ROW AND CURRENT ROW ** ** As above, except that the "new peer" condition is handled in the ** same way as "new partition" (so there is no "else if" block). ** ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ** ** As above, except assume every row is a "new peer". */ static void windowCodeDefaultStep( Parse *pParse, Select *p, WhereInfo *pWInfo, int regGosub, int addrGosub ){ Window *pMWin = p->pWin; Vdbe *v = sqlite3GetVdbe(pParse); int k; int iSubCsr = p->pSrc->a[0].iCursor; int nSub = p->pSrc->a[0].pTab->nCol; int reg = pParse->nMem+1; int regRecord = reg+nSub; int regRowid = regRecord+1; int addr; ExprList *pPart = pMWin->pPartition; ExprList *pOrderBy = pMWin->pOrderBy; assert( pMWin->eType==TK_RANGE || (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_CURRENT) ); assert( (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_CURRENT) || (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_UNBOUNDED) || (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_CURRENT) || (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_UNBOUNDED && !pOrderBy) ); if( pMWin->eEnd==TK_UNBOUNDED ){ pOrderBy = 0; } pParse->nMem += nSub + 2; /* Martial the row returned by the sub-select into an array of ** registers. */ for(k=0; knExpr : 0); int addrGoto = 0; int addrJump = 0; int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); if( pPart ){ int regNewPart = reg + pMWin->nBufferCol; KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart,nPart); sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); addrJump = sqlite3VdbeAddOp3(v, OP_Jump, addr+2, 0, addr+2); VdbeCoverage(v); windowAggFinal(pParse, pMWin, 1); if( pOrderBy ){ addrGoto = sqlite3VdbeAddOp0(v, OP_Goto); } } if( pOrderBy ){ int regNewPeer = reg + pMWin->nBufferCol + nPart; int regPeer = pMWin->regPart + nPart; if( addrJump ) sqlite3VdbeJumpHere(v, addrJump); if( pMWin->eType==TK_RANGE ){ KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPeer, regPeer, nPeer); sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); addrJump = sqlite3VdbeAddOp3(v, OP_Jump, addr+2, 0, addr+2); VdbeCoverage(v); }else{ addrJump = 0; } windowAggFinal(pParse, pMWin, pMWin->eStart==TK_CURRENT); if( addrGoto ) sqlite3VdbeJumpHere(v, addrGoto); } sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr,sqlite3VdbeCurrentAddr(v)+3); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Gosub, regGosub, addrGosub); sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, sqlite3VdbeCurrentAddr(v)-1); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_ResetSorter, pMWin->iEphCsr); sqlite3VdbeAddOp3( v, OP_Copy, reg+pMWin->nBufferCol, pMWin->regPart, nPart+nPeer-1 ); if( addrJump ) sqlite3VdbeJumpHere(v, addrJump); } /* Invoke step function for window functions */ windowAggStep(pParse, pMWin, -1, 0, reg, 0); /* Buffer the current row in the ephemeral table. */ if( pMWin->nBufferCol>0 ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, reg, pMWin->nBufferCol, regRecord); }else{ sqlite3VdbeAddOp2(v, OP_Blob, 0, regRecord); sqlite3VdbeAppendP4(v, (void*)"", 0); } sqlite3VdbeAddOp2(v, OP_NewRowid, pMWin->iEphCsr, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, pMWin->iEphCsr, regRecord, regRowid); /* End the database scan loop. */ sqlite3WhereEnd(pWInfo); windowAggFinal(pParse, pMWin, 1); sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr,sqlite3VdbeCurrentAddr(v)+3); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Gosub, regGosub, addrGosub); sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, sqlite3VdbeCurrentAddr(v)-1); VdbeCoverage(v); } /* ** Allocate and return a duplicate of the Window object indicated by the ** third argument. Set the Window.pOwner field of the new object to ** pOwner. */ Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ Window *pNew = 0; if( p ){ pNew = sqlite3DbMallocZero(db, sizeof(Window)); if( pNew ){ pNew->zName = sqlite3DbStrDup(db, p->zName); pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); pNew->eType = p->eType; pNew->eEnd = p->eEnd; pNew->eStart = p->eStart; pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); pNew->pOwner = pOwner; } } return pNew; } /* ** Return a copy of the linked list of Window objects passed as the ** second argument. */ Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ Window *pWin; Window *pRet = 0; Window **pp = &pRet; for(pWin=p; pWin; pWin=pWin->pNextWin){ *pp = sqlite3WindowDup(db, 0, pWin); if( *pp==0 ) break; pp = &((*pp)->pNextWin); } return pRet; } /* ** sqlite3WhereBegin() has already been called for the SELECT statement ** passed as the second argument when this function is invoked. It generates ** code to populate the Window.regResult register for each window function and ** invoke the sub-routine at instruction addrGosub once for each row. ** This function calls sqlite3WhereEnd() before returning. */ void sqlite3WindowCodeStep( Parse *pParse, /* Parse context */ Select *p, /* Rewritten SELECT statement */ WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ int regGosub, /* Register for OP_Gosub */ int addrGosub /* OP_Gosub here to return each row */ ){ Window *pMWin = p->pWin; /* There are three different functions that may be used to do the work ** of this one, depending on the window frame and the specific built-in ** window functions used (if any). ** ** windowCodeRowExprStep() handles all "ROWS" window frames, except for: ** ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ** ** The exception is because windowCodeRowExprStep() implements all window ** frame types by caching the entire partition in a temp table, and ** "ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW" is easy enough to ** implement without such a cache. ** ** windowCodeCacheStep() is used for: ** ** RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING ** ** It is also used for anything not handled by windowCodeRowExprStep() ** that invokes a built-in window function that requires the entire ** partition to be cached in a temp table before any rows are returned ** (e.g. nth_value() or percent_rank()). ** ** Finally, assuming there is no built-in window function that requires ** the partition to be cached, windowCodeDefaultStep() is used for: ** ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ** RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING ** RANGE BETWEEN CURRENT ROW AND CURRENT ROW ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ** ** windowCodeDefaultStep() is the only one of the three functions that ** does not cache each partition in a temp table before beginning to ** return rows. */ if( pMWin->eType==TK_ROWS && (pMWin->eStart!=TK_UNBOUNDED||pMWin->eEnd!=TK_CURRENT||!pMWin->pOrderBy) ){ windowCodeRowExprStep(pParse, p, pWInfo, regGosub, addrGosub); }else{ Window *pWin; int bCache = 0; /* True to use CacheStep() */ if( pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_UNBOUNDED ){ bCache = 1; }else{ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pFunc; if( (pFunc->funcFlags & SQLITE_FUNC_WINDOW_SIZE) || (pFunc->zName==nth_valueName) || (pFunc->zName==first_valueName) || (pFunc->zName==leadName) || (pFunc->zName==lagName) ){ bCache = 1; break; } } } /* Otherwise, call windowCodeDefaultStep(). */ if( bCache ){ windowCodeCacheStep(pParse, p, pWInfo, regGosub, addrGosub); }else{ windowCodeDefaultStep(pParse, p, pWInfo, regGosub, addrGosub); } } } #endif /* SQLITE_OMIT_WINDOWFUNC */