/* ** 2018 May 08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* */ #include "sqliteInt.h" #ifndef SQLITE_OMIT_WINDOWFUNC /* ** SELECT REWRITING ** ** Any SELECT statement that contains one or more window functions in ** either the select list or ORDER BY clause (the only two places window ** functions may be used) is transformed by function sqlite3WindowRewrite() ** in order to support window function processing. For example, with the ** schema: ** ** CREATE TABLE t1(a, b, c, d, e, f, g); ** ** the statement: ** ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; ** ** is transformed to: ** ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d ** ) ORDER BY e; ** ** The flattening optimization is disabled when processing this transformed ** SELECT statement. This allows the implementation of the window function ** (in this case max()) to process rows sorted in order of (c, d), which ** makes things easier for obvious reasons. More generally: ** ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to ** the sub-query. ** ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. ** ** * Terminals from each of the expression trees that make up the ** select-list and ORDER BY expressions in the parent query are ** selected by the sub-query. For the purposes of the transformation, ** terminals are column references and aggregate functions. ** ** If there is more than one window function in the SELECT that uses ** the same window declaration (the OVER bit), then a single scan may ** be used to process more than one window function. For example: ** ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), ** min(e) OVER (PARTITION BY c ORDER BY d) ** FROM t1; ** ** is transformed in the same way as the example above. However: ** ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), ** min(e) OVER (PARTITION BY a ORDER BY b) ** FROM t1; ** ** Must be transformed to: ** ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b ** ) ORDER BY c, d ** ) ORDER BY e; ** ** so that both min() and max() may process rows in the order defined by ** their respective window declarations. ** ** INTERFACE WITH SELECT.C ** ** When processing the rewritten SELECT statement, code in select.c calls ** sqlite3WhereBegin() to begin iterating through the results of the ** sub-query, which is always implemented as a co-routine. It then calls ** sqlite3WindowCodeStep() to process rows and finish the scan by calling ** sqlite3WhereEnd(). ** ** sqlite3WindowCodeStep() generates VM code so that, for each row returned ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. ** When the sub-routine is invoked: ** ** * The results of all window-functions for the row are stored ** in the associated Window.regResult registers. ** ** * The required terminal values are stored in the current row of ** temp table Window.iEphCsr. ** ** In some cases, depending on the window frame and the specific window ** functions invoked, sqlite3WindowCodeStep() caches each entire partition ** in a temp table before returning any rows. In other cases it does not. ** This detail is encapsulated within this file, the code generated by ** select.c is the same in either case. ** ** BUILT-IN WINDOW FUNCTIONS ** ** This implementation features the following built-in window functions: ** ** row_number() ** rank() ** dense_rank() ** percent_rank() ** cume_dist() ** ntile(N) ** lead(expr [, offset [, default]]) ** lag(expr [, offset [, default]]) ** first_value(expr) ** last_value(expr) ** nth_value(expr, N) ** ** These are the same built-in window functions supported by Postgres. ** Although the behaviour of aggregate window functions (functions that ** can be used as either aggregates or window funtions) allows them to ** be implemented using an API, built-in window functions are much more ** esoteric. Additionally, some window functions (e.g. nth_value()) ** may only be implemented by caching the entire partition in memory. ** As such, some built-in window functions use the same API as aggregate ** window functions and some are implemented directly using VDBE ** instructions. Additionally, for those functions that use the API, the ** window frame is sometimes modified before the SELECT statement is ** rewritten. For example, regardless of the specified window frame, the ** row_number() function always uses: ** ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ** ** See sqlite3WindowUpdate() for details. ** ** As well as some of the built-in window functions, aggregate window ** functions min() and max() are implemented using VDBE instructions if ** the start of the window frame is declared as anything other than ** UNBOUNDED PRECEDING. */ /* ** Implementation of built-in window function row_number(). Assumes that the ** window frame has been coerced to: ** ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void row_numberStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ) (*p)++; UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void row_numberValueFunc(sqlite3_context *pCtx){ i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); sqlite3_result_int64(pCtx, (p ? *p : 0)); } /* ** Context object type used by rank(), dense_rank(), percent_rank() and ** cume_dist(). */ struct CallCount { i64 nValue; i64 nStep; i64 nTotal; }; /* ** Implementation of built-in window function dense_rank(). Assumes that ** the window frame has been set to: ** ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void dense_rankStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ) p->nStep = 1; UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void dense_rankValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ if( p->nStep ){ p->nValue++; p->nStep = 0; } sqlite3_result_int64(pCtx, p->nValue); } } /* ** Implementation of built-in window function nth_value(). This ** implementation is used in "slow mode" only - when the EXCLUDE clause ** is not set to the default value "NO OTHERS". */ struct NthValueCtx { i64 nStep; sqlite3_value *pValue; }; static void nth_valueStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct NthValueCtx *p; p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ i64 iVal; switch( sqlite3_value_numeric_type(apArg[1]) ){ case SQLITE_INTEGER: iVal = sqlite3_value_int64(apArg[1]); break; case SQLITE_FLOAT: { double fVal = sqlite3_value_double(apArg[1]); if( ((i64)fVal)!=fVal ) goto error_out; iVal = (i64)fVal; break; } default: goto error_out; } if( iVal<=0 ) goto error_out; p->nStep++; if( iVal==p->nStep ){ p->pValue = sqlite3_value_dup(apArg[0]); if( !p->pValue ){ sqlite3_result_error_nomem(pCtx); } } } UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); return; error_out: sqlite3_result_error( pCtx, "second argument to nth_value must be a positive integer", -1 ); } static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ struct NthValueCtx *p; p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); if( p && p->pValue ){ sqlite3_result_value(pCtx, p->pValue); sqlite3_value_free(p->pValue); p->pValue = 0; } } #define nth_valueInvFunc noopStepFunc #define nth_valueValueFunc noopValueFunc static void first_valueStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct NthValueCtx *p; p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->pValue==0 ){ p->pValue = sqlite3_value_dup(apArg[0]); if( !p->pValue ){ sqlite3_result_error_nomem(pCtx); } } UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void first_valueFinalizeFunc(sqlite3_context *pCtx){ struct NthValueCtx *p; p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->pValue ){ sqlite3_result_value(pCtx, p->pValue); sqlite3_value_free(p->pValue); p->pValue = 0; } } #define first_valueInvFunc noopStepFunc #define first_valueValueFunc noopValueFunc /* ** Implementation of built-in window function rank(). Assumes that ** the window frame has been set to: ** ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void rankStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ p->nStep++; if( p->nValue==0 ){ p->nValue = p->nStep; } } UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void rankValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ sqlite3_result_int64(pCtx, p->nValue); p->nValue = 0; } } /* ** Implementation of built-in window function percent_rank(). Assumes that ** the window frame has been set to: ** ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING */ static void percent_rankStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; UNUSED_PARAMETER(nArg); assert( nArg==0 ); UNUSED_PARAMETER(apArg); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ p->nTotal++; } } static void percent_rankInvFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; UNUSED_PARAMETER(nArg); assert( nArg==0 ); UNUSED_PARAMETER(apArg); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); p->nStep++; } static void percent_rankValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ p->nValue = p->nStep; if( p->nTotal>1 ){ double r = (double)p->nValue / (double)(p->nTotal-1); sqlite3_result_double(pCtx, r); }else{ sqlite3_result_double(pCtx, 0.0); } } } #define percent_rankFinalizeFunc percent_rankValueFunc /* ** Implementation of built-in window function cume_dist(). Assumes that ** the window frame has been set to: ** ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING */ static void cume_distStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; UNUSED_PARAMETER(nArg); assert( nArg==0 ); UNUSED_PARAMETER(apArg); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ p->nTotal++; } } static void cume_distInvFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; UNUSED_PARAMETER(nArg); assert( nArg==0 ); UNUSED_PARAMETER(apArg); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); p->nStep++; } static void cume_distValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); if( p ){ double r = (double)(p->nStep) / (double)(p->nTotal); sqlite3_result_double(pCtx, r); } } #define cume_distFinalizeFunc cume_distValueFunc /* ** Context object for ntile() window function. */ struct NtileCtx { i64 nTotal; /* Total rows in partition */ i64 nParam; /* Parameter passed to ntile(N) */ i64 iRow; /* Current row */ }; /* ** Implementation of ntile(). This assumes that the window frame has ** been coerced to: ** ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING */ static void ntileStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct NtileCtx *p; assert( nArg==1 ); UNUSED_PARAMETER(nArg); p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ if( p->nTotal==0 ){ p->nParam = sqlite3_value_int64(apArg[0]); if( p->nParam<=0 ){ sqlite3_result_error( pCtx, "argument of ntile must be a positive integer", -1 ); } } p->nTotal++; } } static void ntileInvFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct NtileCtx *p; assert( nArg==1 ); UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); p->iRow++; } static void ntileValueFunc(sqlite3_context *pCtx){ struct NtileCtx *p; p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->nParam>0 ){ int nSize = (p->nTotal / p->nParam); if( nSize==0 ){ sqlite3_result_int64(pCtx, p->iRow+1); }else{ i64 nLarge = p->nTotal - p->nParam*nSize; i64 iSmall = nLarge*(nSize+1); i64 iRow = p->iRow; assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); if( iRowpVal); p->pVal = sqlite3_value_dup(apArg[0]); if( p->pVal==0 ){ sqlite3_result_error_nomem(pCtx); }else{ p->nVal++; } } } static void last_valueInvFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct LastValueCtx *p; UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( ALWAYS(p) ){ p->nVal--; if( p->nVal==0 ){ sqlite3_value_free(p->pVal); p->pVal = 0; } } } static void last_valueValueFunc(sqlite3_context *pCtx){ struct LastValueCtx *p; p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); if( p && p->pVal ){ sqlite3_result_value(pCtx, p->pVal); } } static void last_valueFinalizeFunc(sqlite3_context *pCtx){ struct LastValueCtx *p; p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->pVal ){ sqlite3_result_value(pCtx, p->pVal); sqlite3_value_free(p->pVal); p->pVal = 0; } } /* ** Static names for the built-in window function names. These static ** names are used, rather than string literals, so that FuncDef objects ** can be associated with a particular window function by direct ** comparison of the zName pointer. Example: ** ** if( pFuncDef->zName==row_valueName ){ ... } */ static const char row_numberName[] = "row_number"; static const char dense_rankName[] = "dense_rank"; static const char rankName[] = "rank"; static const char percent_rankName[] = "percent_rank"; static const char cume_distName[] = "cume_dist"; static const char ntileName[] = "ntile"; static const char last_valueName[] = "last_value"; static const char nth_valueName[] = "nth_value"; static const char first_valueName[] = "first_value"; static const char leadName[] = "lead"; static const char lagName[] = "lag"; /* ** No-op implementations of xStep() and xFinalize(). Used as place-holders ** for built-in window functions that never call those interfaces. ** ** The noopValueFunc() is called but is expected to do nothing. The ** noopStepFunc() is never called, and so it is marked with NO_TEST to ** let the test coverage routine know not to expect this function to be ** invoked. */ static void noopStepFunc( /*NO_TEST*/ sqlite3_context *p, /*NO_TEST*/ int n, /*NO_TEST*/ sqlite3_value **a /*NO_TEST*/ ){ /*NO_TEST*/ UNUSED_PARAMETER(p); /*NO_TEST*/ UNUSED_PARAMETER(n); /*NO_TEST*/ UNUSED_PARAMETER(a); /*NO_TEST*/ assert(0); /*NO_TEST*/ } /*NO_TEST*/ static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } /* Window functions that use all window interfaces: xStep, xFinal, ** xValue, and xInverse */ #define WINDOWFUNCALL(name,nArg,extra) { \ nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ name ## InvFunc, name ## Name, {0} \ } /* Window functions that are implemented using bytecode and thus have ** no-op routines for their methods */ #define WINDOWFUNCNOOP(name,nArg,extra) { \ nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ noopStepFunc, noopValueFunc, noopValueFunc, \ noopStepFunc, name ## Name, {0} \ } /* Window functions that use all window interfaces: xStep, the ** same routine for xFinalize and xValue and which never call ** xInverse. */ #define WINDOWFUNCX(name,nArg,extra) { \ nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ noopStepFunc, name ## Name, {0} \ } /* ** Register those built-in window functions that are not also aggregates. */ void sqlite3WindowFunctions(void){ static FuncDef aWindowFuncs[] = { WINDOWFUNCX(row_number, 0, 0), WINDOWFUNCX(dense_rank, 0, 0), WINDOWFUNCX(rank, 0, 0), WINDOWFUNCALL(percent_rank, 0, 0), WINDOWFUNCALL(cume_dist, 0, 0), WINDOWFUNCALL(ntile, 1, 0), WINDOWFUNCALL(last_value, 1, 0), WINDOWFUNCALL(nth_value, 2, 0), WINDOWFUNCALL(first_value, 1, 0), WINDOWFUNCNOOP(lead, 1, 0), WINDOWFUNCNOOP(lead, 2, 0), WINDOWFUNCNOOP(lead, 3, 0), WINDOWFUNCNOOP(lag, 1, 0), WINDOWFUNCNOOP(lag, 2, 0), WINDOWFUNCNOOP(lag, 3, 0), }; sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); } static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ Window *p; for(p=pList; p; p=p->pNextWin){ if( sqlite3StrICmp(p->zName, zName)==0 ) break; } if( p==0 ){ sqlite3ErrorMsg(pParse, "no such window: %s", zName); } return p; } /* ** This function is called immediately after resolving the function name ** for a window function within a SELECT statement. Argument pList is a ** linked list of WINDOW definitions for the current SELECT statement. ** Argument pFunc is the function definition just resolved and pWin ** is the Window object representing the associated OVER clause. This ** function updates the contents of pWin as follows: ** ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), ** search list pList for a matching WINDOW definition, and update pWin ** accordingly. If no such WINDOW clause can be found, leave an error ** in pParse. ** ** * If the function is a built-in window function that requires the ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top ** of this file), pWin is updated here. */ void sqlite3WindowUpdate( Parse *pParse, Window *pList, /* List of named windows for this SELECT */ Window *pWin, /* Window frame to update */ FuncDef *pFunc /* Window function definition */ ){ if( pWin->zName && pWin->eFrmType==0 ){ Window *p = windowFind(pParse, pList, pWin->zName); if( p==0 ) return; pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); pWin->eStart = p->eStart; pWin->eEnd = p->eEnd; pWin->eFrmType = p->eFrmType; pWin->eExclude = p->eExclude; }else{ sqlite3WindowChain(pParse, pWin, pList); } if( (pWin->eFrmType==TK_RANGE) && (pWin->pStart || pWin->pEnd) && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) ){ sqlite3ErrorMsg(pParse, "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" ); }else if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ sqlite3 *db = pParse->db; if( pWin->pFilter ){ sqlite3ErrorMsg(pParse, "FILTER clause may only be used with aggregate window functions" ); }else{ struct WindowUpdate { const char *zFunc; int eFrmType; int eStart; int eEnd; } aUp[] = { { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, }; int i; for(i=0; izName==aUp[i].zFunc ){ sqlite3ExprDelete(db, pWin->pStart); sqlite3ExprDelete(db, pWin->pEnd); pWin->pEnd = pWin->pStart = 0; pWin->eFrmType = aUp[i].eFrmType; pWin->eStart = aUp[i].eStart; pWin->eEnd = aUp[i].eEnd; pWin->eExclude = 0; if( pWin->eStart==TK_FOLLOWING ){ pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); } break; } } } } pWin->pFunc = pFunc; } /* ** Context object passed through sqlite3WalkExprList() to ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). */ typedef struct WindowRewrite WindowRewrite; struct WindowRewrite { Window *pWin; SrcList *pSrc; ExprList *pSub; Table *pTab; Select *pSubSelect; /* Current sub-select, if any */ }; /* ** Callback function used by selectWindowRewriteEList(). If necessary, ** this function appends to the output expression-list and updates ** expression (*ppExpr) in place. */ static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ struct WindowRewrite *p = pWalker->u.pRewrite; Parse *pParse = pWalker->pParse; assert( p!=0 ); assert( p->pWin!=0 ); /* If this function is being called from within a scalar sub-select ** that used by the SELECT statement being processed, only process ** TK_COLUMN expressions that refer to it (the outer SELECT). Do ** not process aggregates or window functions at all, as they belong ** to the scalar sub-select. */ if( p->pSubSelect ){ if( pExpr->op!=TK_COLUMN ){ return WRC_Continue; }else{ int nSrc = p->pSrc->nSrc; int i; for(i=0; iiTable==p->pSrc->a[i].iCursor ) break; } if( i==nSrc ) return WRC_Continue; } } switch( pExpr->op ){ case TK_FUNCTION: if( !ExprHasProperty(pExpr, EP_WinFunc) ){ break; }else{ Window *pWin; for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ if( pExpr->y.pWin==pWin ){ assert( pWin->pOwner==pExpr ); return WRC_Prune; } } } /* Fall through. */ case TK_AGG_FUNCTION: case TK_COLUMN: { Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); if( p->pSub ){ assert( ExprHasProperty(pExpr, EP_Static)==0 ); ExprSetProperty(pExpr, EP_Static); sqlite3ExprDelete(pParse->db, pExpr); ExprClearProperty(pExpr, EP_Static); memset(pExpr, 0, sizeof(Expr)); pExpr->op = TK_COLUMN; pExpr->iColumn = p->pSub->nExpr-1; pExpr->iTable = p->pWin->iEphCsr; pExpr->y.pTab = p->pTab; } break; } default: /* no-op */ break; } return WRC_Continue; } static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ struct WindowRewrite *p = pWalker->u.pRewrite; Select *pSave = p->pSubSelect; if( pSave==pSelect ){ return WRC_Continue; }else{ p->pSubSelect = pSelect; sqlite3WalkSelect(pWalker, pSelect); p->pSubSelect = pSave; } return WRC_Prune; } /* ** Iterate through each expression in expression-list pEList. For each: ** ** * TK_COLUMN, ** * aggregate function, or ** * window function with a Window object that is not a member of the ** Window list passed as the second argument (pWin). ** ** Append the node to output expression-list (*ppSub). And replace it ** with a TK_COLUMN that reads the (N-1)th element of table ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after ** appending the new one. */ static void selectWindowRewriteEList( Parse *pParse, Window *pWin, SrcList *pSrc, ExprList *pEList, /* Rewrite expressions in this list */ Table *pTab, ExprList **ppSub /* IN/OUT: Sub-select expression-list */ ){ Walker sWalker; WindowRewrite sRewrite; assert( pWin!=0 ); memset(&sWalker, 0, sizeof(Walker)); memset(&sRewrite, 0, sizeof(WindowRewrite)); sRewrite.pSub = *ppSub; sRewrite.pWin = pWin; sRewrite.pSrc = pSrc; sRewrite.pTab = pTab; sWalker.pParse = pParse; sWalker.xExprCallback = selectWindowRewriteExprCb; sWalker.xSelectCallback = selectWindowRewriteSelectCb; sWalker.u.pRewrite = &sRewrite; (void)sqlite3WalkExprList(&sWalker, pEList); *ppSub = sRewrite.pSub; } /* ** Append a copy of each expression in expression-list pAppend to ** expression list pList. Return a pointer to the result list. */ static ExprList *exprListAppendList( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to append. Might be NULL */ ExprList *pAppend, /* List of values to append. Might be NULL */ int bIntToNull ){ if( pAppend ){ int i; int nInit = pList ? pList->nExpr : 0; for(i=0; inExpr; i++){ Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0); if( bIntToNull && pDup && pDup->op==TK_INTEGER ){ pDup->op = TK_NULL; pDup->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); } pList = sqlite3ExprListAppend(pParse, pList, pDup); if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags; } } return pList; } /* ** If the SELECT statement passed as the second argument does not invoke ** any SQL window functions, this function is a no-op. Otherwise, it ** rewrites the SELECT statement so that window function xStep functions ** are invoked in the correct order as described under "SELECT REWRITING" ** at the top of this file. */ int sqlite3WindowRewrite(Parse *pParse, Select *p){ int rc = SQLITE_OK; if( p->pWin && p->pPrior==0 ){ Vdbe *v = sqlite3GetVdbe(pParse); sqlite3 *db = pParse->db; Select *pSub = 0; /* The subquery */ SrcList *pSrc = p->pSrc; Expr *pWhere = p->pWhere; ExprList *pGroupBy = p->pGroupBy; Expr *pHaving = p->pHaving; ExprList *pSort = 0; ExprList *pSublist = 0; /* Expression list for sub-query */ Window *pMWin = p->pWin; /* Master window object */ Window *pWin; /* Window object iterator */ Table *pTab; pTab = sqlite3DbMallocZero(db, sizeof(Table)); if( pTab==0 ){ return SQLITE_NOMEM; } p->pSrc = 0; p->pWhere = 0; p->pGroupBy = 0; p->pHaving = 0; p->selFlags &= ~SF_Aggregate; /* Create the ORDER BY clause for the sub-select. This is the concatenation ** of the window PARTITION and ORDER BY clauses. Then, if this makes it ** redundant, remove the ORDER BY from the parent SELECT. */ pSort = sqlite3ExprListDup(db, pMWin->pPartition, 0); pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ int nSave = pSort->nExpr; pSort->nExpr = p->pOrderBy->nExpr; if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ sqlite3ExprListDelete(db, p->pOrderBy); p->pOrderBy = 0; } pSort->nExpr = nSave; } /* Assign a cursor number for the ephemeral table used to buffer rows. ** The OpenEphemeral instruction is coded later, after it is known how ** many columns the table will have. */ pMWin->iEphCsr = pParse->nTab++; pParse->nTab += 3; selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); /* Append the PARTITION BY and ORDER BY expressions to the to the ** sub-select expression list. They are required to figure out where ** boundaries for partitions and sets of peer rows lie. */ pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); /* Append the arguments passed to each window function to the ** sub-select expression list. Also allocate two registers for each ** window function - one for the accumulator, another for interim ** results. */ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ ExprList *pArgs = pWin->pOwner->x.pList; if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){ selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist); pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); pWin->bExprArgs = 1; }else{ pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); pSublist = exprListAppendList(pParse, pSublist, pArgs, 0); } if( pWin->pFilter ){ Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); } pWin->regAccum = ++pParse->nMem; pWin->regResult = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); } /* If there is no ORDER BY or PARTITION BY clause, and the window ** function accepts zero arguments, and there are no other columns ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible ** that pSublist is still NULL here. Add a constant expression here to ** keep everything legal in this case. */ if( pSublist==0 ){ pSublist = sqlite3ExprListAppend(pParse, 0, sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0) ); } pSub = sqlite3SelectNew( pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 ); p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); if( p->pSrc ){ Table *pTab2; p->pSrc->a[0].pSelect = pSub; sqlite3SrcListAssignCursors(pParse, p->pSrc); pSub->selFlags |= SF_Expanded; pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); if( pTab2==0 ){ rc = SQLITE_NOMEM; }else{ memcpy(pTab, pTab2, sizeof(Table)); pTab->tabFlags |= TF_Ephemeral; p->pSrc->a[0].pTab = pTab; pTab = pTab2; } sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, pSublist->nExpr); sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); }else{ sqlite3SelectDelete(db, pSub); } if( db->mallocFailed ) rc = SQLITE_NOMEM; sqlite3DbFree(db, pTab); } return rc; } /* ** Unlink the Window object from the Select to which it is attached, ** if it is attached. */ void sqlite3WindowUnlinkFromSelect(Window *p){ if( p->ppThis ){ *p->ppThis = p->pNextWin; if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; p->ppThis = 0; } } /* ** Free the Window object passed as the second argument. */ void sqlite3WindowDelete(sqlite3 *db, Window *p){ if( p ){ sqlite3WindowUnlinkFromSelect(p); sqlite3ExprDelete(db, p->pFilter); sqlite3ExprListDelete(db, p->pPartition); sqlite3ExprListDelete(db, p->pOrderBy); sqlite3ExprDelete(db, p->pEnd); sqlite3ExprDelete(db, p->pStart); sqlite3DbFree(db, p->zName); sqlite3DbFree(db, p->zBase); sqlite3DbFree(db, p); } } /* ** Free the linked list of Window objects starting at the second argument. */ void sqlite3WindowListDelete(sqlite3 *db, Window *p){ while( p ){ Window *pNext = p->pNextWin; sqlite3WindowDelete(db, p); p = pNext; } } /* ** The argument expression is an PRECEDING or FOLLOWING offset. The ** value should be a non-negative integer. If the value is not a ** constant, change it to NULL. The fact that it is then a non-negative ** integer will be caught later. But it is important not to leave ** variable values in the expression tree. */ static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ if( 0==sqlite3ExprIsConstant(pExpr) ){ if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); sqlite3ExprDelete(pParse->db, pExpr); pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); } return pExpr; } /* ** Allocate and return a new Window object describing a Window Definition. */ Window *sqlite3WindowAlloc( Parse *pParse, /* Parsing context */ int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ u8 eExclude /* EXCLUDE clause */ ){ Window *pWin = 0; int bImplicitFrame = 0; /* Parser assures the following: */ assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); assert( eStart==TK_CURRENT || eStart==TK_PRECEDING || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); if( eType==0 ){ bImplicitFrame = 1; eType = TK_RANGE; } /* Additionally, the ** starting boundary type may not occur earlier in the following list than ** the ending boundary type: ** ** UNBOUNDED PRECEDING ** PRECEDING ** CURRENT ROW ** FOLLOWING ** UNBOUNDED FOLLOWING ** ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting ** frame boundary. */ if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) ){ sqlite3ErrorMsg(pParse, "unsupported frame specification"); goto windowAllocErr; } pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); if( pWin==0 ) goto windowAllocErr; pWin->eFrmType = eType; pWin->eStart = eStart; pWin->eEnd = eEnd; if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ eExclude = TK_NO; } pWin->eExclude = eExclude; pWin->bImplicitFrame = bImplicitFrame; pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); return pWin; windowAllocErr: sqlite3ExprDelete(pParse->db, pEnd); sqlite3ExprDelete(pParse->db, pStart); return 0; } /* ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the ** equivalent nul-terminated string. */ Window *sqlite3WindowAssemble( Parse *pParse, Window *pWin, ExprList *pPartition, ExprList *pOrderBy, Token *pBase ){ if( pWin ){ pWin->pPartition = pPartition; pWin->pOrderBy = pOrderBy; if( pBase ){ pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); } }else{ sqlite3ExprListDelete(pParse->db, pPartition); sqlite3ExprListDelete(pParse->db, pOrderBy); } return pWin; } /* ** Window *pWin has just been created from a WINDOW clause. Tokne pBase ** is the base window. Earlier windows from the same WINDOW clause are ** stored in the linked list starting at pWin->pNextWin. This function ** either updates *pWin according to the base specification, or else ** leaves an error in pParse. */ void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ if( pWin->zBase ){ sqlite3 *db = pParse->db; Window *pExist = windowFind(pParse, pList, pWin->zBase); if( pExist ){ const char *zErr = 0; /* Check for errors */ if( pWin->pPartition ){ zErr = "PARTITION clause"; }else if( pExist->pOrderBy && pWin->pOrderBy ){ zErr = "ORDER BY clause"; }else if( pExist->bImplicitFrame==0 ){ zErr = "frame specification"; } if( zErr ){ sqlite3ErrorMsg(pParse, "cannot override %s of window: %s", zErr, pWin->zBase ); }else{ pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); if( pExist->pOrderBy ){ assert( pWin->pOrderBy==0 ); pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); } sqlite3DbFree(db, pWin->zBase); pWin->zBase = 0; } } } } /* ** Attach window object pWin to expression p. */ void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ if( p ){ assert( p->op==TK_FUNCTION ); assert( pWin ); p->y.pWin = pWin; ExprSetProperty(p, EP_WinFunc); pWin->pOwner = p; if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ sqlite3ErrorMsg(pParse, "DISTINCT is not supported for window functions" ); } }else{ sqlite3WindowDelete(pParse->db, pWin); } } /* ** Possibly link window pWin into the list at pSel->pWin (window functions ** to be processed as part of SELECT statement pSel). The window is linked ** in if either (a) there are no other windows already linked to this ** SELECT, or (b) the windows already linked use a compatible window frame. */ void sqlite3WindowLink(Select *pSel, Window *pWin){ if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){ pWin->pNextWin = pSel->pWin; if( pSel->pWin ){ pSel->pWin->ppThis = &pWin->pNextWin; } pSel->pWin = pWin; pWin->ppThis = &pSel->pWin; } } /* ** Return 0 if the two window objects are identical, or non-zero otherwise. ** Identical window objects can be processed in a single scan. */ int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){ if( p1->eFrmType!=p2->eFrmType ) return 1; if( p1->eStart!=p2->eStart ) return 1; if( p1->eEnd!=p2->eEnd ) return 1; if( p1->eExclude!=p2->eExclude ) return 1; if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; if( sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1) ) return 1; if( sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1) ) return 1; if( bFilter ){ if( sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1) ) return 1; } return 0; } /* ** This is called by code in select.c before it calls sqlite3WhereBegin() ** to begin iterating through the sub-query results. It is used to allocate ** and initialize registers and cursors used by sqlite3WindowCodeStep(). */ void sqlite3WindowCodeInit(Parse *pParse, Window *pMWin){ Window *pWin; Vdbe *v = sqlite3GetVdbe(pParse); /* Allocate registers to use for PARTITION BY values, if any. Initialize ** said registers to NULL. */ if( pMWin->pPartition ){ int nExpr = pMWin->pPartition->nExpr; pMWin->regPart = pParse->nMem+1; pParse->nMem += nExpr; sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); } pMWin->regOne = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); if( pMWin->eExclude ){ pMWin->regStartRowid = ++pParse->nMem; pMWin->regEndRowid = ++pParse->nMem; pMWin->csrApp = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); return; } for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *p = pWin->pFunc; if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ /* The inline versions of min() and max() require a single ephemeral ** table and 3 registers. The registers are used as follows: ** ** regApp+0: slot to copy min()/max() argument to for MakeRecord ** regApp+1: integer value used to ensure keys are unique ** regApp+2: output of MakeRecord */ ExprList *pList = pWin->pOwner->x.pList; KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); pWin->csrApp = pParse->nTab++; pWin->regApp = pParse->nMem+1; pParse->nMem += 3; if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ assert( pKeyInfo->aSortFlags[0]==0 ); pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC; } sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); } else if( p->zName==nth_valueName || p->zName==first_valueName ){ /* Allocate two registers at pWin->regApp. These will be used to ** store the start and end index of the current frame. */ pWin->regApp = pParse->nMem+1; pWin->csrApp = pParse->nTab++; pParse->nMem += 2; sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); } else if( p->zName==leadName || p->zName==lagName ){ pWin->csrApp = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); } } } #define WINDOW_STARTING_INT 0 #define WINDOW_ENDING_INT 1 #define WINDOW_NTH_VALUE_INT 2 #define WINDOW_STARTING_NUM 3 #define WINDOW_ENDING_NUM 4 /* ** A "PRECEDING " (eCond==0) or "FOLLOWING " (eCond==1) or the ** value of the second argument to nth_value() (eCond==2) has just been ** evaluated and the result left in register reg. This function generates VM ** code to check that the value is a non-negative integer and throws an ** exception if it is not. */ static void windowCheckValue(Parse *pParse, int reg, int eCond){ static const char *azErr[] = { "frame starting offset must be a non-negative integer", "frame ending offset must be a non-negative integer", "second argument to nth_value must be a positive integer", "frame starting offset must be a non-negative number", "frame ending offset must be a non-negative number", }; static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; Vdbe *v = sqlite3GetVdbe(pParse); int regZero = sqlite3GetTempReg(pParse); assert( eCond>=0 && eCond=WINDOW_STARTING_NUM ){ int regString = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); VdbeCoverage(v); assert( eCond==3 || eCond==4 ); VdbeCoverageIf(v, eCond==3); VdbeCoverageIf(v, eCond==4); }else{ sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); assert( eCond==0 || eCond==1 || eCond==2 ); VdbeCoverageIf(v, eCond==0); VdbeCoverageIf(v, eCond==1); VdbeCoverageIf(v, eCond==2); } sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ VdbeCoverageNeverNullIf(v, eCond==2); VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ sqlite3MayAbort(pParse); sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); sqlite3ReleaseTempReg(pParse, regZero); } /* ** Return the number of arguments passed to the window-function associated ** with the object passed as the only argument to this function. */ static int windowArgCount(Window *pWin){ ExprList *pList = pWin->pOwner->x.pList; return (pList ? pList->nExpr : 0); } /* ** Generate VM code to invoke either xStep() (if bInverse is 0) or ** xInverse (if bInverse is non-zero) for each window function in the ** linked list starting at pMWin. Or, for built-in window functions ** that do not use the standard function API, generate the required ** inline VM code. ** ** If argument csr is greater than or equal to 0, then argument reg is ** the first register in an array of registers guaranteed to be large ** enough to hold the array of arguments for each function. In this case ** the arguments are extracted from the current row of csr into the ** array of registers before invoking OP_AggStep or OP_AggInverse ** ** Or, if csr is less than zero, then the array of registers at reg is ** already populated with all columns from the current row of the sub-query. ** ** If argument regPartSize is non-zero, then it is a register containing the ** number of rows in the current partition. */ static void windowAggStep( Parse *pParse, Window *pMWin, /* Linked list of window functions */ int csr, /* Read arguments from this cursor */ int bInverse, /* True to invoke xInverse instead of xStep */ int reg /* Array of registers */ ){ Vdbe *v = sqlite3GetVdbe(pParse); Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pFunc; int regArg; int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin); int i; assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED ); for(i=0; izName!=nth_valueName ){ sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); }else{ sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); } } regArg = reg; if( pMWin->regStartRowid==0 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && (pWin->eStart!=TK_UNBOUNDED) ){ int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); VdbeCoverage(v); if( bInverse==0 ){ sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); }else{ sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); VdbeCoverageNeverTaken(v); sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); } sqlite3VdbeJumpHere(v, addrIsNull); }else if( pWin->regApp ){ assert( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ); assert( bInverse==0 || bInverse==1 ); sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); }else if( pFunc->xSFunc!=noopStepFunc ){ int addrIf = 0; if( pWin->pFilter ){ int regTmp; assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr ); assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 ); regTmp = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, regTmp); } if( pWin->bExprArgs ){ int iStart = sqlite3VdbeCurrentAddr(v); VdbeOp *pOp, *pEnd; nArg = pWin->pOwner->x.pList->nExpr; regArg = sqlite3GetTempRange(pParse, nArg); sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0); pEnd = sqlite3VdbeGetOp(v, -1); for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){ if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){ pOp->p1 = csr; } } } if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ CollSeq *pColl; assert( nArg>0 ); pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, bInverse, regArg, pWin->regAccum); sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); if( pWin->bExprArgs ){ sqlite3ReleaseTempRange(pParse, regArg, nArg); } if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); } } } typedef struct WindowCodeArg WindowCodeArg; typedef struct WindowCsrAndReg WindowCsrAndReg; /* ** See comments above struct WindowCodeArg. */ struct WindowCsrAndReg { int csr; /* Cursor number */ int reg; /* First in array of peer values */ }; /* ** A single instance of this structure is allocated on the stack by ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper ** routines. This is to reduce the number of arguments required by each ** helper function. ** ** regArg: ** Each window function requires an accumulator register (just as an ** ordinary aggregate function does). This variable is set to the first ** in an array of accumulator registers - one for each window function ** in the WindowCodeArg.pMWin list. ** ** eDelete: ** The window functions implementation sometimes caches the input rows ** that it processes in a temporary table. If it is not zero, this ** variable indicates when rows may be removed from the temp table (in ** order to reduce memory requirements - it would always be safe just ** to leave them there). Possible values for eDelete are: ** ** WINDOW_RETURN_ROW: ** An input row can be discarded after it is returned to the caller. ** ** WINDOW_AGGINVERSE: ** An input row can be discarded after the window functions xInverse() ** callbacks have been invoked in it. ** ** WINDOW_AGGSTEP: ** An input row can be discarded after the window functions xStep() ** callbacks have been invoked in it. ** ** start,current,end ** Consider a window-frame similar to the following: ** ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) ** ** The windows functions implmentation caches the input rows in a temp ** table, sorted by "a, b" (it actually populates the cache lazily, and ** aggressively removes rows once they are no longer required, but that's ** a mere detail). It keeps three cursors open on the temp table. One ** (current) that points to the next row to return to the query engine ** once its window function values have been calculated. Another (end) ** points to the next row to call the xStep() method of each window function ** on (so that it is 2 groups ahead of current). And a third (start) that ** points to the next row to call the xInverse() method of each window ** function on. ** ** Each cursor (start, current and end) consists of a VDBE cursor ** (WindowCsrAndReg.csr) and an array of registers (starting at ** WindowCodeArg.reg) that always contains a copy of the peer values ** read from the corresponding cursor. ** ** Depending on the window-frame in question, all three cursors may not ** be required. In this case both WindowCodeArg.csr and reg are set to ** 0. */ struct WindowCodeArg { Parse *pParse; /* Parse context */ Window *pMWin; /* First in list of functions being processed */ Vdbe *pVdbe; /* VDBE object */ int addrGosub; /* OP_Gosub to this address to return one row */ int regGosub; /* Register used with OP_Gosub(addrGosub) */ int regArg; /* First in array of accumulator registers */ int eDelete; /* See above */ WindowCsrAndReg start; WindowCsrAndReg current; WindowCsrAndReg end; }; /* ** Values that may be passed as the second argument to windowCodeOp(). */ #define WINDOW_RETURN_ROW 1 #define WINDOW_AGGINVERSE 2 #define WINDOW_AGGSTEP 3 /* ** Generate VM code to read the window frames peer values from cursor csr into ** an array of registers starting at reg. */ static void windowReadPeerValues( WindowCodeArg *p, int csr, int reg ){ Window *pMWin = p->pMWin; ExprList *pOrderBy = pMWin->pOrderBy; if( pOrderBy ){ Vdbe *v = sqlite3GetVdbe(p->pParse); ExprList *pPart = pMWin->pPartition; int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); int i; for(i=0; inExpr; i++){ sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); } } } /* ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() ** (bFin==1) for each window function in the linked list starting at ** pMWin. Or, for built-in window-functions that do not use the standard ** API, generate the equivalent VM code. */ static void windowAggFinal(WindowCodeArg *p, int bFin){ Parse *pParse = p->pParse; Window *pMWin = p->pMWin; Vdbe *v = sqlite3GetVdbe(pParse); Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ if( pMWin->regStartRowid==0 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) && (pWin->eStart!=TK_UNBOUNDED) ){ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); }else if( pWin->regApp ){ assert( pMWin->regStartRowid==0 ); }else{ int nArg = windowArgCount(pWin); if( bFin ){ sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); }else{ sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); } } } } /* ** Generate code to calculate the current values of all window functions in the ** p->pMWin list by doing a full scan of the current window frame. Store the ** results in the Window.regResult registers, ready to return the upper ** layer. */ static void windowFullScan(WindowCodeArg *p){ Window *pWin; Parse *pParse = p->pParse; Window *pMWin = p->pMWin; Vdbe *v = p->pVdbe; int regCRowid = 0; /* Current rowid value */ int regCPeer = 0; /* Current peer values */ int regRowid = 0; /* AggStep rowid value */ int regPeer = 0; /* AggStep peer values */ int nPeer; int lblNext; int lblBrk; int addrNext; int csr; assert( pMWin!=0 ); csr = pMWin->csrApp; nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); lblNext = sqlite3VdbeMakeLabel(pParse); lblBrk = sqlite3VdbeMakeLabel(pParse); regCRowid = sqlite3GetTempReg(pParse); regRowid = sqlite3GetTempReg(pParse); if( nPeer ){ regCPeer = sqlite3GetTempRange(pParse, nPeer); regPeer = sqlite3GetTempRange(pParse, nPeer); } sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); } sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); VdbeCoverage(v); addrNext = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); VdbeCoverageNeverNull(v); if( pMWin->eExclude==TK_CURRENT ){ sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); VdbeCoverageNeverNull(v); }else if( pMWin->eExclude!=TK_NO ){ int addr; int addrEq = 0; KeyInfo *pKeyInfo = 0; if( pMWin->pOrderBy ){ pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); } if( pMWin->eExclude==TK_TIES ){ addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); VdbeCoverageNeverNull(v); } if( pKeyInfo ){ windowReadPeerValues(p, csr, regPeer); sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); addr = sqlite3VdbeCurrentAddr(v)+1; sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); VdbeCoverageEqNe(v); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); } if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); } windowAggStep(pParse, pMWin, csr, 0, p->regArg); sqlite3VdbeResolveLabel(v, lblNext); sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrNext-1); sqlite3VdbeJumpHere(v, addrNext+1); sqlite3ReleaseTempReg(pParse, regRowid); sqlite3ReleaseTempReg(pParse, regCRowid); if( nPeer ){ sqlite3ReleaseTempRange(pParse, regPeer, nPeer); sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); } windowAggFinal(p, 1); } /* ** Invoke the sub-routine at regGosub (generated by code in select.c) to ** return the current row of Window.iEphCsr. If all window functions are ** aggregate window functions that use the standard API, a single ** OP_Gosub instruction is all that this routine generates. Extra VM code ** for per-row processing is only generated for the following built-in window ** functions: ** ** nth_value() ** first_value() ** lag() ** lead() */ static void windowReturnOneRow(WindowCodeArg *p){ Window *pMWin = p->pMWin; Vdbe *v = p->pVdbe; if( pMWin->regStartRowid ){ windowFullScan(p); }else{ Parse *pParse = p->pParse; Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pFunc; if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ int csr = pWin->csrApp; int lbl = sqlite3VdbeMakeLabel(pParse); int tmpReg = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); if( pFunc->zName==nth_valueName ){ sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); windowCheckValue(pParse, tmpReg, 2); }else{ sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); } sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); VdbeCoverageNeverNull(v); sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); VdbeCoverageNeverTaken(v); sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); sqlite3VdbeResolveLabel(v, lbl); sqlite3ReleaseTempReg(pParse, tmpReg); } else if( pFunc->zName==leadName || pFunc->zName==lagName ){ int nArg = pWin->pOwner->x.pList->nExpr; int csr = pWin->csrApp; int lbl = sqlite3VdbeMakeLabel(pParse); int tmpReg = sqlite3GetTempReg(pParse); int iEph = pMWin->iEphCsr; if( nArg<3 ){ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); }else{ sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); } sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); if( nArg<2 ){ int val = (pFunc->zName==leadName ? 1 : -1); sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); }else{ int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); int tmpReg2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); sqlite3ReleaseTempReg(pParse, tmpReg2); } sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); sqlite3VdbeResolveLabel(v, lbl); sqlite3ReleaseTempReg(pParse, tmpReg); } } } sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); } /* ** Generate code to set the accumulator register for each window function ** in the linked list passed as the second argument to NULL. And perform ** any equivalent initialization required by any built-in window functions ** in the list. */ static int windowInitAccum(Parse *pParse, Window *pMWin){ Vdbe *v = sqlite3GetVdbe(pParse); int regArg; int nArg = 0; Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pFunc; sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); nArg = MAX(nArg, windowArgCount(pWin)); if( pMWin->regStartRowid==0 ){ if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); } if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ assert( pWin->eStart!=TK_UNBOUNDED ); sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); } } } regArg = pParse->nMem+1; pParse->nMem += nArg; return regArg; } /* ** Return true if the current frame should be cached in the ephemeral table, ** even if there are no xInverse() calls required. */ static int windowCacheFrame(Window *pMWin){ Window *pWin; if( pMWin->regStartRowid ) return 1; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pFunc; if( (pFunc->zName==nth_valueName) || (pFunc->zName==first_valueName) || (pFunc->zName==leadName) || (pFunc->zName==lagName) ){ return 1; } } return 0; } /* ** regOld and regNew are each the first register in an array of size ** pOrderBy->nExpr. This function generates code to compare the two ** arrays of registers using the collation sequences and other comparison ** parameters specified by pOrderBy. ** ** If the two arrays are not equal, the contents of regNew is copied to ** regOld and control falls through. Otherwise, if the contents of the arrays ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. */ static void windowIfNewPeer( Parse *pParse, ExprList *pOrderBy, int regNew, /* First in array of new values */ int regOld, /* First in array of old values */ int addr /* Jump here */ ){ Vdbe *v = sqlite3GetVdbe(pParse); if( pOrderBy ){ int nVal = pOrderBy->nExpr; KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); sqlite3VdbeAddOp3(v, OP_Jump, sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 ); VdbeCoverageEqNe(v); sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); } } /* ** This function is called as part of generating VM programs for RANGE ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates ** code equivalent to: ** ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; ** ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the ** operator in the above pseudo-code is replaced with ">" or "<=", respectively. ** ** If the sort-order for the ORDER BY term in the window is DESC, then the ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=", ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op ** is OP_Ge, the generated code is equivalent to: ** ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl; ** ** A special type of arithmetic is used such that if csr1.peerVal is not ** a numeric type (real or integer), then the result of the addition addition ** or subtraction is a a copy of csr1.peerVal. */ static void windowCodeRangeTest( WindowCodeArg *p, int op, /* OP_Ge, OP_Gt, or OP_Le */ int csr1, /* Cursor number for cursor 1 */ int regVal, /* Register containing non-negative number */ int csr2, /* Cursor number for cursor 2 */ int lbl /* Jump destination if condition is true */ ){ Parse *pParse = p->pParse; Vdbe *v = sqlite3GetVdbe(pParse); ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */ int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */ int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */ int regString = ++pParse->nMem; /* Reg. for constant value '' */ int arith = OP_Add; /* OP_Add or OP_Subtract */ int addrGe; /* Jump destination */ assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); assert( pOrderBy && pOrderBy->nExpr==1 ); if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){ switch( op ){ case OP_Ge: op = OP_Le; break; case OP_Gt: op = OP_Lt; break; default: assert( op==OP_Le ); op = OP_Ge; break; } arith = OP_Subtract; } /* Read the peer-value from each cursor into a register */ windowReadPeerValues(p, csr1, reg1); windowReadPeerValues(p, csr2, reg2); VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl", reg1, (arith==OP_Add ? "+" : "-"), regVal, ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2 )); /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1). ** This block adds (or subtracts for DESC) the numeric value in regVal ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob), ** then leave reg1 as it is. In pseudo-code, this is implemented as: ** ** if( reg1>='' ) goto addrGe; ** reg1 = reg1 +/- regVal ** addrGe: ** ** Since all strings and blobs are greater-than-or-equal-to an empty string, ** the add/subtract is skipped for these, as required. If reg1 is a NULL, ** then the arithmetic is performed, but since adding or subtracting from ** NULL is always NULL anyway, this case is handled as required too. */ sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); VdbeCoverage(v); sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); sqlite3VdbeJumpHere(v, addrGe); /* If the BIGNULL flag is set for the ORDER BY, then it is required to ** consider NULL values to be larger than all other values, instead of ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this ** (and adding that capability causes a performance regression), so ** instead if the BIGNULL flag is set then cases where either reg1 or ** reg2 are NULL are handled separately in the following block. The code ** generated is equivalent to: ** ** if( reg1 IS NULL ){ ** if( op==OP_Ge ) goto lbl; ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl; ** if( op==OP_Le && reg2 IS NULL ) goto lbl; ** }else if( reg2 IS NULL ){ ** if( op==OP_Le ) goto lbl; ** } ** ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is ** not taken, control jumps over the comparison operator coded below this ** block. */ if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){ /* This block runs if reg1 contains a NULL. */ int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v); switch( op ){ case OP_Ge: sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); break; case OP_Gt: sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); VdbeCoverage(v); break; case OP_Le: sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); break; default: assert( op==OP_Lt ); /* no-op */ break; } sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); /* This block runs if reg1 is not NULL, but reg2 is. */ sqlite3VdbeJumpHere(v, addr); sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); if( op==OP_Gt || op==OP_Ge ){ sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1); } } /* Compare registers reg2 and reg1, taking the jump if required. Note that ** control skips over this test if the BIGNULL flag is set and either ** reg1 or reg2 contain a NULL value. */ sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); sqlite3ReleaseTempReg(pParse, reg1); sqlite3ReleaseTempReg(pParse, reg2); VdbeModuleComment((v, "CodeRangeTest: end")); } /* ** Helper function for sqlite3WindowCodeStep(). Each call to this function ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE ** operation. Refer to the header comment for sqlite3WindowCodeStep() for ** details. */ static int windowCodeOp( WindowCodeArg *p, /* Context object */ int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ int regCountdown, /* Register for OP_IfPos countdown */ int jumpOnEof /* Jump here if stepped cursor reaches EOF */ ){ int csr, reg; Parse *pParse = p->pParse; Window *pMWin = p->pMWin; int ret = 0; Vdbe *v = p->pVdbe; int addrIf = 0; int addrContinue = 0; int addrGoto = 0; int bPeer = (pMWin->eFrmType!=TK_ROWS); int lblDone = sqlite3VdbeMakeLabel(pParse); int addrNextRange = 0; /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame ** starts with UNBOUNDED PRECEDING. */ if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ assert( regCountdown==0 && jumpOnEof==0 ); return 0; } if( regCountdown>0 ){ if( pMWin->eFrmType==TK_RANGE ){ addrNextRange = sqlite3VdbeCurrentAddr(v); assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); if( op==WINDOW_AGGINVERSE ){ if( pMWin->eStart==TK_FOLLOWING ){ windowCodeRangeTest( p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone ); }else{ windowCodeRangeTest( p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone ); } }else{ windowCodeRangeTest( p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone ); } }else{ addrIf = sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, 0, 1); VdbeCoverage(v); } } if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ windowAggFinal(p, 0); } addrContinue = sqlite3VdbeCurrentAddr(v); switch( op ){ case WINDOW_RETURN_ROW: csr = p->current.csr; reg = p->current.reg; windowReturnOneRow(p); break; case WINDOW_AGGINVERSE: csr = p->start.csr; reg = p->start.reg; if( pMWin->regStartRowid ){ assert( pMWin->regEndRowid ); sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); }else{ windowAggStep(pParse, pMWin, csr, 1, p->regArg); } break; default: assert( op==WINDOW_AGGSTEP ); csr = p->end.csr; reg = p->end.reg; if( pMWin->regStartRowid ){ assert( pMWin->regEndRowid ); sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); }else{ windowAggStep(pParse, pMWin, csr, 0, p->regArg); } break; } if( op==p->eDelete ){ sqlite3VdbeAddOp1(v, OP_Delete, csr); sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); } if( jumpOnEof ){ sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); ret = sqlite3VdbeAddOp0(v, OP_Goto); }else{ sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); VdbeCoverage(v); if( bPeer ){ addrGoto = sqlite3VdbeAddOp0(v, OP_Goto); } } if( bPeer ){ int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); windowReadPeerValues(p, csr, regTmp); windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); sqlite3ReleaseTempRange(pParse, regTmp, nReg); } if( addrNextRange ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); } sqlite3VdbeResolveLabel(v, lblDone); if( addrGoto ) sqlite3VdbeJumpHere(v, addrGoto); if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); return ret; } /* ** Allocate and return a duplicate of the Window object indicated by the ** third argument. Set the Window.pOwner field of the new object to ** pOwner. */ Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ Window *pNew = 0; if( ALWAYS(p) ){ pNew = sqlite3DbMallocZero(db, sizeof(Window)); if( pNew ){ pNew->zName = sqlite3DbStrDup(db, p->zName); pNew->zBase = sqlite3DbStrDup(db, p->zBase); pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); pNew->pFunc = p->pFunc; pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); pNew->eFrmType = p->eFrmType; pNew->eEnd = p->eEnd; pNew->eStart = p->eStart; pNew->eExclude = p->eExclude; pNew->regResult = p->regResult; pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); pNew->pOwner = pOwner; pNew->bImplicitFrame = p->bImplicitFrame; } } return pNew; } /* ** Return a copy of the linked list of Window objects passed as the ** second argument. */ Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ Window *pWin; Window *pRet = 0; Window **pp = &pRet; for(pWin=p; pWin; pWin=pWin->pNextWin){ *pp = sqlite3WindowDup(db, 0, pWin); if( *pp==0 ) break; pp = &((*pp)->pNextWin); } return pRet; } /* ** Return true if it can be determined at compile time that expression ** pExpr evaluates to a value that, when cast to an integer, is greater ** than zero. False otherwise. ** ** If an OOM error occurs, this function sets the Parse.db.mallocFailed ** flag and returns zero. */ static int windowExprGtZero(Parse *pParse, Expr *pExpr){ int ret = 0; sqlite3 *db = pParse->db; sqlite3_value *pVal = 0; sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); if( pVal && sqlite3_value_int(pVal)>0 ){ ret = 1; } sqlite3ValueFree(pVal); return ret; } /* ** sqlite3WhereBegin() has already been called for the SELECT statement ** passed as the second argument when this function is invoked. It generates ** code to populate the Window.regResult register for each window function ** and invoke the sub-routine at instruction addrGosub once for each row. ** sqlite3WhereEnd() is always called before returning. ** ** This function handles several different types of window frames, which ** require slightly different processing. The following pseudo code is ** used to implement window frames of the form: ** ** ROWS BETWEEN PRECEDING AND FOLLOWING ** ** Other window frame types use variants of the following: ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** ** if( first row of partition ){ ** // Rewind three cursors, all open on the eph table. ** Rewind(csrEnd); ** Rewind(csrStart); ** Rewind(csrCurrent); ** ** regEnd = // FOLLOWING expression ** regStart = // PRECEDING expression ** }else{ ** // First time this branch is taken, the eph table contains two ** // rows. The first row in the partition, which all three cursors ** // currently point to, and the following row. ** AGGSTEP ** if( (regEnd--)<=0 ){ ** RETURN_ROW ** if( (regStart--)<=0 ){ ** AGGINVERSE ** } ** } ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** RETURN ROW ** if( csrCurrent is EOF ) break; ** if( (regStart--)<=0 ){ ** AggInverse(csrStart) ** Next(csrStart) ** } ** } ** ** The pseudo-code above uses the following shorthand: ** ** AGGSTEP: invoke the aggregate xStep() function for each window function ** with arguments read from the current row of cursor csrEnd, then ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). ** ** RETURN_ROW: return a row to the caller based on the contents of the ** current row of csrCurrent and the current state of all ** aggregates. Then step cursor csrCurrent forward one row. ** ** AGGINVERSE: invoke the aggregate xInverse() function for each window ** functions with arguments read from the current row of cursor ** csrStart. Then step csrStart forward one row. ** ** There are two other ROWS window frames that are handled significantly ** differently from the above - "BETWEEN PRECEDING AND PRECEDING" ** and "BETWEEN FOLLOWING AND FOLLOWING". These are special ** cases because they change the order in which the three cursors (csrStart, ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these ** three. ** ** ROWS BETWEEN PRECEDING AND PRECEDING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else{ ** if( (regEnd--)<=0 ){ ** AGGSTEP ** } ** RETURN_ROW ** if( (regStart--)<=0 ){ ** AGGINVERSE ** } ** } ** } ** flush: ** if( (regEnd--)<=0 ){ ** AGGSTEP ** } ** RETURN_ROW ** ** ** ROWS BETWEEN FOLLOWING AND FOLLOWING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = regEnd - ** }else{ ** AGGSTEP ** if( (regEnd--)<=0 ){ ** RETURN_ROW ** } ** if( (regStart--)<=0 ){ ** AGGINVERSE ** } ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** if( (regEnd--)<=0 ){ ** RETURN_ROW ** if( eof ) break; ** } ** if( (regStart--)<=0 ){ ** AGGINVERSE ** if( eof ) break ** } ** } ** while( !eof csrCurrent ){ ** RETURN_ROW ** } ** ** For the most part, the patterns above are adapted to support UNBOUNDED by ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". ** This is optimized of course - branches that will never be taken and ** conditions that are always true are omitted from the VM code. The only ** exceptional case is: ** ** ROWS BETWEEN FOLLOWING AND UNBOUNDED FOLLOWING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regStart = ** }else{ ** AGGSTEP ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** if( (regStart--)<=0 ){ ** AGGINVERSE ** if( eof ) break ** } ** RETURN_ROW ** } ** while( !eof csrCurrent ){ ** RETURN_ROW ** } ** ** Also requiring special handling are the cases: ** ** ROWS BETWEEN PRECEDING AND PRECEDING ** ROWS BETWEEN FOLLOWING AND FOLLOWING ** ** when (expr1 < expr2). This is detected at runtime, not by this function. ** To handle this case, the pseudo-code programs depicted above are modified ** slightly to be: ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** if( regEnd < regStart ){ ** RETURN_ROW ** delete eph table contents ** continue ** } ** ... ** ** The new "continue" statement in the above jumps to the next iteration ** of the outer loop - the one started by sqlite3WhereBegin(). ** ** The various GROUPS cases are implemented using the same patterns as ** ROWS. The VM code is modified slightly so that: ** ** 1. The else branch in the main loop is only taken if the row just ** added to the ephemeral table is the start of a new group. In ** other words, it becomes: ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else if( new group ){ ** ... ** } ** } ** ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or ** AGGINVERSE step processes the current row of the relevant cursor and ** all subsequent rows belonging to the same group. ** ** RANGE window frames are a little different again. As for GROUPS, the ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE ** deal in groups instead of rows. As for ROWS and GROUPS, there are three ** basic cases: ** ** RANGE BETWEEN PRECEDING AND FOLLOWING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else{ ** AGGSTEP ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ ** RETURN_ROW ** while( csrStart.key + regStart) < csrCurrent.key ){ ** AGGINVERSE ** } ** } ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** RETURN ROW ** if( csrCurrent is EOF ) break; ** while( csrStart.key + regStart) < csrCurrent.key ){ ** AGGINVERSE ** } ** } ** } ** ** In the above notation, "csr.key" means the current value of the ORDER BY ** expression (there is only ever 1 for a RANGE that uses an FOLLOWING ** or PRECEDING AND PRECEDING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else{ ** if( (csrEnd.key + regEnd) <= csrCurrent.key ){ ** AGGSTEP ** } ** while( (csrStart.key + regStart) < csrCurrent.key ){ ** AGGINVERSE ** } ** RETURN_ROW ** } ** } ** flush: ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ ** AGGSTEP ** } ** while( (csrStart.key + regStart) < csrCurrent.key ){ ** AGGINVERSE ** } ** RETURN_ROW ** ** RANGE BETWEEN FOLLOWING AND FOLLOWING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else{ ** AGGSTEP ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ ** while( (csrCurrent.key + regStart) > csrStart.key ){ ** AGGINVERSE ** } ** RETURN_ROW ** } ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** while( (csrCurrent.key + regStart) > csrStart.key ){ ** AGGINVERSE ** if( eof ) break "while( 1 )" loop. ** } ** RETURN_ROW ** } ** while( !eof csrCurrent ){ ** RETURN_ROW ** } ** ** The text above leaves out many details. Refer to the code and comments ** below for a more complete picture. */ void sqlite3WindowCodeStep( Parse *pParse, /* Parse context */ Select *p, /* Rewritten SELECT statement */ WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ int regGosub, /* Register for OP_Gosub */ int addrGosub /* OP_Gosub here to return each row */ ){ Window *pMWin = p->pWin; ExprList *pOrderBy = pMWin->pOrderBy; Vdbe *v = sqlite3GetVdbe(pParse); int csrWrite; /* Cursor used to write to eph. table */ int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ int iInput; /* To iterate through sub cols */ int addrNe; /* Address of OP_Ne */ int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ int addrInteger = 0; /* Address of OP_Integer */ int addrEmpty; /* Address of OP_Rewind in flush: */ int regStart = 0; /* Value of PRECEDING */ int regEnd = 0; /* Value of FOLLOWING */ int regNew; /* Array of registers holding new input row */ int regRecord; /* regNew array in record form */ int regRowid; /* Rowid for regRecord in eph table */ int regNewPeer = 0; /* Peer values for new row (part of regNew) */ int regPeer = 0; /* Peer values for current row */ int regFlushPart = 0; /* Register for "Gosub flush_partition" */ WindowCodeArg s; /* Context object for sub-routines */ int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED ); assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING ); assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES || pMWin->eExclude==TK_NO ); lblWhereEnd = sqlite3VdbeMakeLabel(pParse); /* Fill in the context object */ memset(&s, 0, sizeof(WindowCodeArg)); s.pParse = pParse; s.pMWin = pMWin; s.pVdbe = v; s.regGosub = regGosub; s.addrGosub = addrGosub; s.current.csr = pMWin->iEphCsr; csrWrite = s.current.csr+1; s.start.csr = s.current.csr+2; s.end.csr = s.current.csr+3; /* Figure out when rows may be deleted from the ephemeral table. There ** are four options - they may never be deleted (eDelete==0), they may ** be deleted as soon as they are no longer part of the window frame ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row ** has been returned to the caller (WINDOW_RETURN_ROW), or they may ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ switch( pMWin->eStart ){ case TK_FOLLOWING: if( pMWin->eFrmType!=TK_RANGE && windowExprGtZero(pParse, pMWin->pStart) ){ s.eDelete = WINDOW_RETURN_ROW; } break; case TK_UNBOUNDED: if( windowCacheFrame(pMWin)==0 ){ if( pMWin->eEnd==TK_PRECEDING ){ if( pMWin->eFrmType!=TK_RANGE && windowExprGtZero(pParse, pMWin->pEnd) ){ s.eDelete = WINDOW_AGGSTEP; } }else{ s.eDelete = WINDOW_RETURN_ROW; } } break; default: s.eDelete = WINDOW_AGGINVERSE; break; } /* Allocate registers for the array of values from the sub-query, the ** samve values in record form, and the rowid used to insert said record ** into the ephemeral table. */ regNew = pParse->nMem+1; pParse->nMem += nInput; regRecord = ++pParse->nMem; regRowid = ++pParse->nMem; /* If the window frame contains an " PRECEDING" or " FOLLOWING" ** clause, allocate registers to store the results of evaluating each ** . */ if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ regStart = ++pParse->nMem; } if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ regEnd = ++pParse->nMem; } /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of ** registers to store copies of the ORDER BY expressions (peer values) ** for the main loop, and for each cursor (start, current and end). */ if( pMWin->eFrmType!=TK_ROWS ){ int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); regNewPeer = regNew + pMWin->nBufferCol; if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; regPeer = pParse->nMem+1; pParse->nMem += nPeer; s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; } /* Load the column values for the row returned by the sub-select ** into an array of registers starting at regNew. Assemble them into ** a record in register regRecord. */ for(iInput=0; iInputpPartition ){ int addr; ExprList *pPart = pMWin->pPartition; int nPart = pPart->nExpr; int regNewPart = regNew + pMWin->nBufferCol; KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); regFlushPart = ++pParse->nMem; addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); VdbeCoverageEqNe(v); addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); VdbeComment((v, "call flush_partition")); sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); } /* Insert the new row into the ephemeral table */ sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid); addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid); VdbeCoverageNeverNull(v); /* This block is run for the first row of each partition */ s.regArg = windowInitAccum(pParse, pMWin); if( regStart ){ sqlite3ExprCode(pParse, pMWin->pStart, regStart); windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE ? 3 : 0)); } if( regEnd ){ sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE ? 3 : 0)); } if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){ int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound */ VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ windowAggFinal(&s, 0); sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); VdbeCoverageNeverTaken(v); windowReturnOneRow(&s); sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); sqlite3VdbeJumpHere(v, addrGe); } if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ assert( pMWin->eEnd==TK_FOLLOWING ); sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); } if( pMWin->eStart!=TK_UNBOUNDED ){ sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); VdbeCoverageNeverTaken(v); } sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); VdbeCoverageNeverTaken(v); sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); VdbeCoverageNeverTaken(v); if( regPeer && pOrderBy ){ sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); } sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); sqlite3VdbeJumpHere(v, addrNe); /* Beginning of the block executed for the second and subsequent rows. */ if( regPeer ){ windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); } if( pMWin->eStart==TK_FOLLOWING ){ windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); if( pMWin->eEnd!=TK_UNBOUNDED ){ if( pMWin->eFrmType==TK_RANGE ){ int lbl = sqlite3VdbeMakeLabel(pParse); int addrNext = sqlite3VdbeCurrentAddr(v); windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); sqlite3VdbeResolveLabel(v, lbl); }else{ windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); } } }else if( pMWin->eEnd==TK_PRECEDING ){ int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); }else{ int addr = 0; windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); if( pMWin->eEnd!=TK_UNBOUNDED ){ if( pMWin->eFrmType==TK_RANGE ){ int lbl = 0; addr = sqlite3VdbeCurrentAddr(v); if( regEnd ){ lbl = sqlite3VdbeMakeLabel(pParse); windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); } windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); if( regEnd ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); sqlite3VdbeResolveLabel(v, lbl); } }else{ if( regEnd ){ addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); VdbeCoverage(v); } windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); if( regEnd ) sqlite3VdbeJumpHere(v, addr); } } } /* End of the main input loop */ sqlite3VdbeResolveLabel(v, lblWhereEnd); sqlite3WhereEnd(pWInfo); /* Fall through */ if( pMWin->pPartition ){ addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); sqlite3VdbeJumpHere(v, addrGosubFlush); } addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); VdbeCoverage(v); if( pMWin->eEnd==TK_PRECEDING ){ int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); }else if( pMWin->eStart==TK_FOLLOWING ){ int addrStart; int addrBreak1; int addrBreak2; int addrBreak3; windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); if( pMWin->eFrmType==TK_RANGE ){ addrStart = sqlite3VdbeCurrentAddr(v); addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); }else if( pMWin->eEnd==TK_UNBOUNDED ){ addrStart = sqlite3VdbeCurrentAddr(v); addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); }else{ assert( pMWin->eEnd==TK_FOLLOWING ); addrStart = sqlite3VdbeCurrentAddr(v); addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); } sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); sqlite3VdbeJumpHere(v, addrBreak2); addrStart = sqlite3VdbeCurrentAddr(v); addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); sqlite3VdbeJumpHere(v, addrBreak1); sqlite3VdbeJumpHere(v, addrBreak3); }else{ int addrBreak; int addrStart; windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); addrStart = sqlite3VdbeCurrentAddr(v); addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); sqlite3VdbeJumpHere(v, addrBreak); } sqlite3VdbeJumpHere(v, addrEmpty); sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); if( pMWin->pPartition ){ if( pMWin->regStartRowid ){ sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); } sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); } } #endif /* SQLITE_OMIT_WINDOWFUNC */