/* ** 2006 June 10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to help implement virtual tables. */ #ifndef SQLITE_OMIT_VIRTUALTABLE #include "sqliteInt.h" /* ** Before a virtual table xCreate() or xConnect() method is invoked, the ** sqlite3.pVtabCtx member variable is set to point to an instance of ** this struct allocated on the stack. It is used by the implementation of ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which ** are invoked only from within xCreate and xConnect methods. */ struct VtabCtx { VTable *pVTable; /* The virtual table being constructed */ Table *pTab; /* The Table object to which the virtual table belongs */ VtabCtx *pPrior; /* Parent context (if any) */ int bDeclared; /* True after sqlite3_declare_vtab() is called */ }; /* ** Construct and install a Module object for a virtual table. When this ** routine is called, it is guaranteed that all appropriate locks are held ** and the module is not already part of the connection. */ Module *sqlite3VtabCreateModule( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ){ Module *pMod; int nName = sqlite3Strlen30(zName); pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1); if( pMod==0 ){ sqlite3OomFault(db); }else{ Module *pDel; char *zCopy = (char *)(&pMod[1]); memcpy(zCopy, zName, nName+1); pMod->zName = zCopy; pMod->pModule = pModule; pMod->pAux = pAux; pMod->xDestroy = xDestroy; pMod->pEpoTab = 0; pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); assert( pDel==0 || pDel==pMod ); if( pDel ){ sqlite3OomFault(db); sqlite3DbFree(db, pDel); pMod = 0; } } return pMod; } /* ** The actual function that does the work of creating a new module. ** This function implements the sqlite3_create_module() and ** sqlite3_create_module_v2() interfaces. */ static int createModule( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ){ int rc = SQLITE_OK; sqlite3_mutex_enter(db->mutex); if( sqlite3HashFind(&db->aModule, zName) ){ rc = SQLITE_MISUSE_BKPT; }else{ (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy); } rc = sqlite3ApiExit(db, rc); if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); sqlite3_mutex_leave(db->mutex); return rc; } /* ** External API function used to create a new virtual-table module. */ int sqlite3_create_module( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux /* Context pointer for xCreate/xConnect */ ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif return createModule(db, zName, pModule, pAux, 0); } /* ** External API function used to create a new virtual-table module. */ int sqlite3_create_module_v2( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif return createModule(db, zName, pModule, pAux, xDestroy); } /* ** Lock the virtual table so that it cannot be disconnected. ** Locks nest. Every lock should have a corresponding unlock. ** If an unlock is omitted, resources leaks will occur. ** ** If a disconnect is attempted while a virtual table is locked, ** the disconnect is deferred until all locks have been removed. */ void sqlite3VtabLock(VTable *pVTab){ pVTab->nRef++; } /* ** pTab is a pointer to a Table structure representing a virtual-table. ** Return a pointer to the VTable object used by connection db to access ** this virtual-table, if one has been created, or NULL otherwise. */ VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ VTable *pVtab; assert( IsVirtual(pTab) ); if( IsReuseSchema(db) ){ int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); if( iDb!=1 ){ for(pVtab=db->aDb[iDb].pVTable; pVtab; pVtab=pVtab->pNext){ if( sqlite3StrICmp(pTab->zName, pVtab->zName)==0 ) break; } return pVtab; } } for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); return pVtab; } /* ** Decrement the ref-count on a virtual table object. When the ref-count ** reaches zero, call the xDisconnect() method to delete the object. */ void sqlite3VtabUnlock(VTable *pVTab){ sqlite3 *db = pVTab->db; assert( db ); assert( pVTab->nRef>0 ); assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); pVTab->nRef--; if( pVTab->nRef==0 ){ sqlite3_vtab *p = pVTab->pVtab; if( p ){ p->pModule->xDisconnect(p); } sqlite3DbFree(db, pVTab); } } /* ** Table p is a virtual table. This function moves all elements in the ** p->pVTable list to the sqlite3.pDisconnect lists of their associated ** database connections to be disconnected at the next opportunity. ** Except, if argument db is not NULL, then the entry associated with ** connection db is left in the p->pVTable list. */ static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ VTable *pRet = 0; VTable *pVTable = p->pVTable; p->pVTable = 0; /* Assert that the mutex (if any) associated with the BtShared database ** that contains table p is held by the caller. See header comments ** above function sqlite3VtabUnlockList() for an explanation of why ** this makes it safe to access the sqlite3.pDisconnect list of any ** database connection that may have an entry in the p->pVTable list. */ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); while( pVTable ){ sqlite3 *db2 = pVTable->db; VTable *pNext = pVTable->pNext; assert( db2 ); if( db2==db ){ pRet = pVTable; p->pVTable = pRet; pRet->pNext = 0; }else{ pVTable->pNext = db2->pDisconnect; db2->pDisconnect = pVTable; } pVTable = pNext; } assert( !db || pRet ); return pRet; } /* ** Table *p is a virtual table. This function removes the VTable object ** for table *p associated with database connection db from the linked ** list in p->pVTab. It also decrements the VTable ref count. This is ** used when closing database connection db to free all of its VTable ** objects without disturbing the rest of the Schema object (which may ** be being used by other shared-cache connections). */ void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ VTable **ppVTab; assert( IsVirtual(p) ); assert( sqlite3BtreeHoldsAllMutexes(db) ); assert( sqlite3_mutex_held(db->mutex) ); for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ if( (*ppVTab)->db==db ){ VTable *pVTab = *ppVTab; *ppVTab = pVTab->pNext; sqlite3VtabUnlock(pVTab); break; } } } /* ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. ** ** This function may only be called when the mutexes associated with all ** shared b-tree databases opened using connection db are held by the ** caller. This is done to protect the sqlite3.pDisconnect list. The ** sqlite3.pDisconnect list is accessed only as follows: ** ** 1) By this function. In this case, all BtShared mutexes and the mutex ** associated with the database handle itself must be held. ** ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to ** the sqlite3.pDisconnect list. In this case either the BtShared mutex ** associated with the database the virtual table is stored in is held ** or, if the virtual table is stored in a non-sharable database, then ** the database handle mutex is held. ** ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously ** by multiple threads. It is thread-safe. */ void sqlite3VtabUnlockList(sqlite3 *db){ VTable *p = db->pDisconnect; db->pDisconnect = 0; assert( sqlite3BtreeHoldsAllMutexes(db) ); assert( sqlite3_mutex_held(db->mutex) ); if( p ){ sqlite3ExpirePreparedStatements(db, 0); do { VTable *pNext = p->pNext; sqlite3VtabUnlock(p); p = pNext; }while( p ); } } /* ** Clear any and all virtual-table information from the Table record. ** This routine is called, for example, just before deleting the Table ** record. ** ** Since it is a virtual-table, the Table structure contains a pointer ** to the head of a linked list of VTable structures. Each VTable ** structure is associated with a single sqlite3* user of the schema. ** The reference count of the VTable structure associated with database ** connection db is decremented immediately (which may lead to the ** structure being xDisconnected and free). Any other VTable structures ** in the list are moved to the sqlite3.pDisconnect list of the associated ** database connection. */ void sqlite3VtabClear(sqlite3 *db, Table *p){ if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); if( p->azModuleArg ){ int i; for(i=0; inModuleArg; i++){ if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); } sqlite3DbFree(db, p->azModuleArg); } } /* ** Add a new module argument to pTable->azModuleArg[]. ** The string is not copied - the pointer is stored. The ** string will be freed automatically when the table is ** deleted. */ static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ int nBytes = sizeof(char *)*(2+pTable->nModuleArg); char **azModuleArg; azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); if( azModuleArg==0 ){ sqlite3DbFree(db, zArg); }else{ int i = pTable->nModuleArg++; azModuleArg[i] = zArg; azModuleArg[i+1] = 0; pTable->azModuleArg = azModuleArg; } } /* ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE ** statement. The module name has been parsed, but the optional list ** of parameters that follow the module name are still pending. */ void sqlite3VtabBeginParse( Parse *pParse, /* Parsing context */ Token *pName1, /* Name of new table, or database name */ Token *pName2, /* Name of new table or NULL */ Token *pModuleName, /* Name of the module for the virtual table */ int ifNotExists /* No error if the table already exists */ ){ Table *pTable; /* The new virtual table */ sqlite3 *db; /* Database connection */ sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); pTable = pParse->pNewTable; if( pTable==0 ) return; assert( 0==pTable->pIndex ); db = pParse->db; assert( pTable->nModuleArg==0 ); addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); addModuleArgument(db, pTable, 0); addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) || (pParse->sNameToken.z==pName1->z && pName2->z==0) ); pParse->sNameToken.n = (int)( &pModuleName->z[pModuleName->n] - pParse->sNameToken.z ); #ifndef SQLITE_OMIT_AUTHORIZATION /* Creating a virtual table invokes the authorization callback twice. ** The first invocation, to obtain permission to INSERT a row into the ** sqlite_master table, has already been made by sqlite3StartTable(). ** The second call, to obtain permission to create the table, is made now. */ if( pTable->azModuleArg ){ int iDb = sqlite3SchemaToIndex(db, pTable->pSchema); assert( iDb>=0 ); /* The database the table is being created in */ sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, pTable->azModuleArg[0], pParse->db->aDb[iDb].zDbSName); } #endif } /* ** This routine takes the module argument that has been accumulating ** in pParse->zArg[] and appends it to the list of arguments on the ** virtual table currently under construction in pParse->pTable. */ static void addArgumentToVtab(Parse *pParse){ if( pParse->sArg.z && pParse->pNewTable ){ const char *z = (const char*)pParse->sArg.z; int n = pParse->sArg.n; sqlite3 *db = pParse->db; addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); } } /* ** The parser calls this routine after the CREATE VIRTUAL TABLE statement ** has been completely parsed. */ void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ Table *pTab = pParse->pNewTable; /* The table being constructed */ sqlite3 *db = pParse->db; /* The database connection */ if( pTab==0 ) return; addArgumentToVtab(pParse); pParse->sArg.z = 0; if( pTab->nModuleArg<1 ) return; /* If the CREATE VIRTUAL TABLE statement is being entered for the ** first time (in other words if the virtual table is actually being ** created now instead of just being read out of sqlite_master) then ** do additional initialization work and store the statement text ** in the sqlite_master table. */ if( !db->init.busy ){ char *zStmt; char *zWhere; int iDb; int iReg; Vdbe *v; /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ if( pEnd ){ pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; } zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); /* A slot for the record has already been allocated in the ** SQLITE_MASTER table. We just need to update that slot with all ** the information we've collected. ** ** The VM register number pParse->regRowid holds the rowid of an ** entry in the sqlite_master table tht was created for this vtab ** by sqlite3StartTable(). */ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3NestedParse(pParse, "UPDATE %Q.%s " "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " "WHERE rowid=#%d", db->aDb[iDb].zDbSName, MASTER_NAME, pTab->zName, pTab->zName, zStmt, pParse->regRowid ); sqlite3DbFree(db, zStmt); v = sqlite3GetVdbe(pParse); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddOp0(v, OP_Expire); zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); sqlite3VdbeAddParseSchemaOp(pParse, iDb, zWhere); iReg = ++pParse->nMem; sqlite3VdbeLoadString(v, iReg, pTab->zName); sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); } /* If we are rereading the sqlite_master table create the in-memory ** record of the table. The xConnect() method is not called until ** the first time the virtual table is used in an SQL statement. This ** allows a schema that contains virtual tables to be loaded before ** the required virtual table implementations are registered. */ else { Table *pOld; Schema *pSchema = pTab->pSchema; const char *zName = pTab->zName; assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); if( pOld ){ sqlite3OomFault(db); assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ return; } pParse->pNewTable = 0; } } /* ** The parser calls this routine when it sees the first token ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. */ void sqlite3VtabArgInit(Parse *pParse){ addArgumentToVtab(pParse); pParse->sArg.z = 0; pParse->sArg.n = 0; } /* ** The parser calls this routine for each token after the first token ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. */ void sqlite3VtabArgExtend(Parse *pParse, Token *p){ Token *pArg = &pParse->sArg; if( pArg->z==0 ){ pArg->z = p->z; pArg->n = p->n; }else{ assert(pArg->z <= p->z); pArg->n = (int)(&p->z[p->n] - pArg->z); } } /* ** Invoke a virtual table constructor (either xCreate or xConnect). The ** pointer to the function to invoke is passed as the fourth parameter ** to this procedure. */ static int vtabCallConstructor( sqlite3 *db, Table *pTab, Module *pMod, int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), char **pzErr ){ VtabCtx sCtx; VTable *pVTable; int rc; const char *const*azArg = (const char *const*)pTab->azModuleArg; int nArg = pTab->nModuleArg; char *zErr = 0; char *zModuleName; int iDb; VtabCtx *pCtx; int nByte; /* Bytes of space to allocate */ /* Check that the virtual-table is not already being initialized */ for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ if( pCtx->pTab==pTab ){ *pzErr = sqlite3MPrintf(db, "vtable constructor called recursively: %s", pTab->zName ); return SQLITE_LOCKED; } } zModuleName = sqlite3DbStrDup(db, pTab->zName); if( !zModuleName ){ return SQLITE_NOMEM_BKPT; } nByte = sizeof(VTable) + sqlite3Strlen30(pTab->zName) + 1; pVTable = (VTable*)sqlite3MallocZero(nByte); if( !pVTable ){ sqlite3OomFault(db); sqlite3DbFree(db, zModuleName); return SQLITE_NOMEM_BKPT; } pVTable->db = db; pVTable->pMod = pMod; pVTable->zName = (char*)&pVTable[1]; memcpy(pVTable->zName, pTab->zName, nByte-sizeof(VTable)); iDb = sqlite3SchemaToIndex(db, pTab->pSchema); pTab->azModuleArg[1] = db->aDb[iDb].zDbSName; /* Invoke the virtual table constructor */ assert( &db->pVtabCtx ); assert( xConstruct ); sCtx.pTab = pTab; sCtx.pVTable = pVTable; sCtx.pPrior = db->pVtabCtx; sCtx.bDeclared = 0; db->pVtabCtx = &sCtx; rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); db->pVtabCtx = sCtx.pPrior; if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); assert( sCtx.pTab==pTab ); if( SQLITE_OK!=rc ){ if( zErr==0 ){ *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); }else { *pzErr = sqlite3MPrintf(db, "%s", zErr); sqlite3_free(zErr); } sqlite3DbFree(db, pVTable); }else if( ALWAYS(pVTable->pVtab) ){ /* Justification of ALWAYS(): A correct vtab constructor must allocate ** the sqlite3_vtab object if successful. */ memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); pVTable->pVtab->pModule = pMod->pModule; pVTable->nRef = 1; if( sCtx.bDeclared==0 ){ const char *zFormat = "vtable constructor did not declare schema: %s"; *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); sqlite3VtabUnlock(pVTable); rc = SQLITE_ERROR; }else{ int iCol; u8 oooHidden = 0; /* If everything went according to plan, link the new VTable structure ** into the linked list headed by pTab->pVTable. Or, if this is a ** reusable schema, into the linked list headed by Db.pVTable. ** ** Then loop through the columns of the table to see if any of them ** contain the token "hidden". If so, set the Column COLFLAG_HIDDEN flag ** and remove the token from the type string. */ if( IsReuseSchema(db) && iDb!=1 ){ pVTable->pNext = db->aDb[iDb].pVTable; db->aDb[iDb].pVTable = pVTable; }else{ pVTable->pNext = pTab->pVTable; pTab->pVTable = pVTable; } for(iCol=0; iColnCol; iCol++){ char *zType = sqlite3ColumnType(&pTab->aCol[iCol], ""); int nType; int i = 0; nType = sqlite3Strlen30(zType); for(i=0; i0 ){ assert(zType[i-1]==' '); zType[i-1] = '\0'; } pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; oooHidden = TF_OOOHidden; }else{ pTab->tabFlags |= oooHidden; } } } } sqlite3DbFree(db, zModuleName); return rc; } /* ** This function is invoked by the parser to call the xConnect() method ** of the virtual table pTab. If an error occurs, an error code is returned ** and an error left in pParse. ** ** This call is a no-op if table pTab is not a virtual table. */ int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ sqlite3 *db = pParse->db; const char *zMod; Module *pMod; int rc; assert( pTab ); if( !IsVirtual(pTab) || sqlite3GetVTable(db, pTab) ){ return SQLITE_OK; } /* Locate the required virtual table module */ zMod = pTab->azModuleArg[0]; pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); if( !pMod ){ const char *zModule = pTab->azModuleArg[0]; sqlite3ErrorMsg(pParse, "no such module: %s", zModule); rc = SQLITE_ERROR; }else{ char *zErr = 0; rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "%s", zErr); pParse->rc = rc; } sqlite3DbFree(db, zErr); } return rc; } /* ** Grow the db->aVTrans[] array so that there is room for at least one ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. */ static int growVTrans(sqlite3 *db){ const int ARRAY_INCR = 5; /* Grow the sqlite3.aVTrans array if required */ if( (db->nVTrans%ARRAY_INCR)==0 ){ VTable **aVTrans; int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); if( !aVTrans ){ return SQLITE_NOMEM_BKPT; } memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); db->aVTrans = aVTrans; } return SQLITE_OK; } /* ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should ** have already been reserved using growVTrans(). */ static void addToVTrans(sqlite3 *db, VTable *pVTab){ /* Add pVtab to the end of sqlite3.aVTrans */ db->aVTrans[db->nVTrans++] = pVTab; sqlite3VtabLock(pVTab); } /* ** This function is invoked by the vdbe to call the xCreate method ** of the virtual table named zTab in database iDb. ** ** If an error occurs, *pzErr is set to point to an English language ** description of the error and an SQLITE_XXX error code is returned. ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. */ int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ int rc = SQLITE_OK; Table *pTab; Module *pMod; const char *zMod; pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); assert( pTab && IsVirtual(pTab) && !pTab->pVTable ); /* Locate the required virtual table module */ zMod = pTab->azModuleArg[0]; pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); /* If the module has been registered and includes a Create method, ** invoke it now. If the module has not been registered, return an ** error. Otherwise, do nothing. */ if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); rc = SQLITE_ERROR; }else{ rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); } /* Justification of ALWAYS(): The xConstructor method is required to ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ rc = growVTrans(db); if( rc==SQLITE_OK ){ addToVTrans(db, sqlite3GetVTable(db, pTab)); } } return rc; } /* ** This function is used to set the schema of a virtual table. It is only ** valid to call this function from within the xCreate() or xConnect() of a ** virtual table module. */ int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ VtabCtx *pCtx; int rc = SQLITE_OK; Table *pTab; char *zErr = 0; Parse sParse; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); pCtx = db->pVtabCtx; if( !pCtx || pCtx->bDeclared ){ sqlite3Error(db, SQLITE_MISUSE); sqlite3_mutex_leave(db->mutex); return SQLITE_MISUSE_BKPT; } pTab = pCtx->pTab; assert( IsVirtual(pTab) ); memset(&sParse, 0, sizeof(sParse)); sParse.eParseMode = PARSE_MODE_DECLARE_VTAB; sParse.db = db; sParse.nQueryLoop = 1; if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable, &zErr) && sParse.pNewTable && !db->mallocFailed && !sParse.pNewTable->pSelect && !IsVirtual(sParse.pNewTable) ){ if( !pTab->aCol ){ Table *pNew = sParse.pNewTable; Index *pIdx; pTab->aCol = pNew->aCol; pTab->nCol = pNew->nCol; pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid); pNew->nCol = 0; pNew->aCol = 0; assert( pTab->pIndex==0 ); assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 ); if( !HasRowid(pNew) && pCtx->pVTable->pMod->pModule->xUpdate!=0 && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1 ){ /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0) ** or else must have a single-column PRIMARY KEY */ rc = SQLITE_ERROR; } pIdx = pNew->pIndex; if( pIdx ){ assert( pIdx->pNext==0 ); pTab->pIndex = pIdx; pNew->pIndex = 0; pIdx->pTable = pTab; } } pCtx->bDeclared = 1; }else{ sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); sqlite3DbFree(db, zErr); rc = SQLITE_ERROR; } sParse.eParseMode = PARSE_MODE_NORMAL; if( sParse.pVdbe ){ sqlite3VdbeFinalize(sParse.pVdbe); } sqlite3DeleteTable(db, sParse.pNewTable); sqlite3ParserReset(&sParse); assert( (rc&0xff)==rc ); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** This function is invoked by the vdbe to call the xDestroy method ** of the virtual table named zTab in database iDb. This occurs ** when a DROP TABLE is mentioned. ** ** This call is a no-op if zTab is not a virtual table. */ int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ int rc = SQLITE_OK; Table *pTab; pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); if( pTab!=0 && ALWAYS(pTab->pVTable!=0) ){ VTable *p; int (*xDestroy)(sqlite3_vtab *); for(p=pTab->pVTable; p; p=p->pNext){ assert( p->pVtab ); if( p->pVtab->nRef>0 ){ return SQLITE_LOCKED; } } p = vtabDisconnectAll(db, pTab); xDestroy = p->pMod->pModule->xDestroy; assert( xDestroy!=0 ); /* Checked before the virtual table is created */ rc = xDestroy(p->pVtab); /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ if( rc==SQLITE_OK ){ assert( pTab->pVTable==p && p->pNext==0 ); p->pVtab = 0; pTab->pVTable = 0; sqlite3VtabUnlock(p); } } return rc; } /* ** This function invokes either the xRollback or xCommit method ** of each of the virtual tables in the sqlite3.aVTrans array. The method ** called is identified by the second argument, "offset", which is ** the offset of the method to call in the sqlite3_module structure. ** ** The array is cleared after invoking the callbacks. */ static void callFinaliser(sqlite3 *db, int offset){ int i; if( db->aVTrans ){ VTable **aVTrans = db->aVTrans; db->aVTrans = 0; for(i=0; inVTrans; i++){ VTable *pVTab = aVTrans[i]; sqlite3_vtab *p = pVTab->pVtab; if( p ){ int (*x)(sqlite3_vtab *); x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); if( x ) x(p); } pVTab->iSavepoint = 0; sqlite3VtabUnlock(pVTab); } sqlite3DbFree(db, aVTrans); db->nVTrans = 0; } } /* ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans ** array. Return the error code for the first error that occurs, or ** SQLITE_OK if all xSync operations are successful. ** ** If an error message is available, leave it in p->zErrMsg. */ int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ int i; int rc = SQLITE_OK; VTable **aVTrans = db->aVTrans; db->aVTrans = 0; for(i=0; rc==SQLITE_OK && inVTrans; i++){ int (*x)(sqlite3_vtab *); sqlite3_vtab *pVtab = aVTrans[i]->pVtab; if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ rc = x(pVtab); sqlite3VtabImportErrmsg(p, pVtab); } } db->aVTrans = aVTrans; return rc; } /* ** Invoke the xRollback method of all virtual tables in the ** sqlite3.aVTrans array. Then clear the array itself. */ int sqlite3VtabRollback(sqlite3 *db){ callFinaliser(db, offsetof(sqlite3_module,xRollback)); return SQLITE_OK; } /* ** Invoke the xCommit method of all virtual tables in the ** sqlite3.aVTrans array. Then clear the array itself. */ int sqlite3VtabCommit(sqlite3 *db){ callFinaliser(db, offsetof(sqlite3_module,xCommit)); return SQLITE_OK; } /* ** If the virtual table pVtab supports the transaction interface ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is ** not currently open, invoke the xBegin method now. ** ** If the xBegin call is successful, place the sqlite3_vtab pointer ** in the sqlite3.aVTrans array. */ int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ int rc = SQLITE_OK; const sqlite3_module *pModule; /* Special case: If db->aVTrans is NULL and db->nVTrans is greater ** than zero, then this function is being called from within a ** virtual module xSync() callback. It is illegal to write to ** virtual module tables in this case, so return SQLITE_LOCKED. */ if( sqlite3VtabInSync(db) ){ return SQLITE_LOCKED; } if( !pVTab ){ return SQLITE_OK; } pModule = pVTab->pVtab->pModule; if( pModule->xBegin ){ int i; /* If pVtab is already in the aVTrans array, return early */ for(i=0; inVTrans; i++){ if( db->aVTrans[i]==pVTab ){ return SQLITE_OK; } } /* Invoke the xBegin method. If successful, add the vtab to the ** sqlite3.aVTrans[] array. */ rc = growVTrans(db); if( rc==SQLITE_OK ){ rc = pModule->xBegin(pVTab->pVtab); if( rc==SQLITE_OK ){ int iSvpt = db->nStatement + db->nSavepoint; addToVTrans(db, pVTab); if( iSvpt && pModule->xSavepoint ){ pVTab->iSavepoint = iSvpt; rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1); } } } } return rc; } /* ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all ** virtual tables that currently have an open transaction. Pass iSavepoint ** as the second argument to the virtual table method invoked. ** ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with ** an open transaction is invoked. ** ** If any virtual table method returns an error code other than SQLITE_OK, ** processing is abandoned and the error returned to the caller of this ** function immediately. If all calls to virtual table methods are successful, ** SQLITE_OK is returned. */ int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ int rc = SQLITE_OK; assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); assert( iSavepoint>=-1 ); if( db->aVTrans ){ int i; for(i=0; rc==SQLITE_OK && inVTrans; i++){ VTable *pVTab = db->aVTrans[i]; const sqlite3_module *pMod = pVTab->pMod->pModule; if( pVTab->pVtab && pMod->iVersion>=2 ){ int (*xMethod)(sqlite3_vtab *, int); sqlite3VtabLock(pVTab); switch( op ){ case SAVEPOINT_BEGIN: xMethod = pMod->xSavepoint; pVTab->iSavepoint = iSavepoint+1; break; case SAVEPOINT_ROLLBACK: xMethod = pMod->xRollbackTo; break; default: xMethod = pMod->xRelease; break; } if( xMethod && pVTab->iSavepoint>iSavepoint ){ rc = xMethod(pVTab->pVtab, iSavepoint); } sqlite3VtabUnlock(pVTab); } } } return rc; } /* ** The first parameter (pDef) is a function implementation. The ** second parameter (pExpr) is the first argument to this function. ** If pExpr is a column in a virtual table, then let the virtual ** table implementation have an opportunity to overload the function. ** ** This routine is used to allow virtual table implementations to ** overload MATCH, LIKE, GLOB, and REGEXP operators. ** ** Return either the pDef argument (indicating no change) or a ** new FuncDef structure that is marked as ephemeral using the ** SQLITE_FUNC_EPHEM flag. */ FuncDef *sqlite3VtabOverloadFunction( sqlite3 *db, /* Database connection for reporting malloc problems */ FuncDef *pDef, /* Function to possibly overload */ int nArg, /* Number of arguments to the function */ Expr *pExpr /* First argument to the function */ ){ Table *pTab; sqlite3_vtab *pVtab; sqlite3_module *pMod; void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; void *pArg = 0; FuncDef *pNew; int rc = 0; /* Check to see the left operand is a column in a virtual table */ if( NEVER(pExpr==0) ) return pDef; if( pExpr->op!=TK_COLUMN ) return pDef; pTab = pExpr->y.pTab; if( pTab==0 ) return pDef; if( !IsVirtual(pTab) ) return pDef; pVtab = sqlite3GetVTable(db, pTab)->pVtab; assert( pVtab!=0 ); assert( pVtab->pModule!=0 ); pMod = (sqlite3_module *)pVtab->pModule; if( pMod->xFindFunction==0 ) return pDef; /* Call the xFindFunction method on the virtual table implementation ** to see if the implementation wants to overload this function. ** ** Though undocumented, we have historically always invoked xFindFunction ** with an all lower-case function name. Continue in this tradition to ** avoid any chance of an incompatibility. */ #ifdef SQLITE_DEBUG { int i; for(i=0; pDef->zName[i]; i++){ unsigned char x = (unsigned char)pDef->zName[i]; assert( x==sqlite3UpperToLower[x] ); } } #endif rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg); if( rc==0 ){ return pDef; } /* Create a new ephemeral function definition for the overloaded ** function */ pNew = sqlite3DbMallocZero(db, sizeof(*pNew) + sqlite3Strlen30(pDef->zName) + 1); if( pNew==0 ){ return pDef; } *pNew = *pDef; pNew->zName = (const char*)&pNew[1]; memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1); pNew->xSFunc = xSFunc; pNew->pUserData = pArg; pNew->funcFlags |= SQLITE_FUNC_EPHEM; return pNew; } /* ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] ** array so that an OP_VBegin will get generated for it. Add pTab to the ** array if it is missing. If pTab is already in the array, this routine ** is a no-op. */ void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ Parse *pToplevel = sqlite3ParseToplevel(pParse); int i, n; Table **apVtabLock; assert( IsVirtual(pTab) ); for(i=0; inVtabLock; i++){ if( pTab==pToplevel->apVtabLock[i] ) return; } n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n); if( apVtabLock ){ pToplevel->apVtabLock = apVtabLock; pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; }else{ sqlite3OomFault(pToplevel->db); } } /* ** Check to see if virtual table module pMod can be have an eponymous ** virtual table instance. If it can, create one if one does not already ** exist. Return non-zero if the eponymous virtual table instance exists ** when this routine returns, and return zero if it does not exist. ** ** An eponymous virtual table instance is one that is named after its ** module, and more importantly, does not require a CREATE VIRTUAL TABLE ** statement in order to come into existance. Eponymous virtual table ** instances always exist. They cannot be DROP-ed. ** ** Any virtual table module for which xConnect and xCreate are the same ** method can have an eponymous virtual table instance. */ int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ const sqlite3_module *pModule = pMod->pModule; Table *pTab; char *zErr = 0; int rc; sqlite3 *db = pParse->db; if( pMod->pEpoTab ) return 1; if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; pTab = sqlite3DbMallocZero(db, sizeof(Table)); if( pTab==0 ) return 0; pTab->zName = sqlite3DbStrDup(db, pMod->zName); if( pTab->zName==0 ){ sqlite3DbFree(db, pTab); return 0; } pMod->pEpoTab = pTab; pTab->nTabRef = 1; pTab->pSchema = db->aDb[0].pSchema; assert( pTab->nModuleArg==0 ); pTab->iPKey = -1; addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); addModuleArgument(db, pTab, 0); addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); if( rc ){ sqlite3ErrorMsg(pParse, "%s", zErr); sqlite3DbFree(db, zErr); sqlite3VtabEponymousTableClear(db, pMod); return 0; } return 1; } /* ** Erase the eponymous virtual table instance associated with ** virtual table module pMod, if it exists. */ void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ Table *pTab = pMod->pEpoTab; if( pTab!=0 ){ /* Mark the table as Ephemeral prior to deleting it, so that the ** sqlite3DeleteTable() routine will know that it is not stored in ** the schema. */ pTab->tabFlags |= TF_Ephemeral; sqlite3DeleteTable(db, pTab); pMod->pEpoTab = 0; } } /* ** Return the ON CONFLICT resolution mode in effect for the virtual ** table update operation currently in progress. ** ** The results of this routine are undefined unless it is called from ** within an xUpdate method. */ int sqlite3_vtab_on_conflict(sqlite3 *db){ static const unsigned char aMap[] = { SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE }; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); assert( OE_Ignore==4 && OE_Replace==5 ); assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); return (int)aMap[db->vtabOnConflict-1]; } /* ** Call from within the xCreate() or xConnect() methods to provide ** the SQLite core with additional information about the behavior ** of the virtual table being implemented. */ int sqlite3_vtab_config(sqlite3 *db, int op, ...){ va_list ap; int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); va_start(ap, op); switch( op ){ case SQLITE_VTAB_CONSTRAINT_SUPPORT: { VtabCtx *p = db->pVtabCtx; if( !p ){ rc = SQLITE_MISUSE_BKPT; }else{ assert( p->pTab==0 || IsVirtual(p->pTab) ); p->pVTable->bConstraint = (u8)va_arg(ap, int); } break; } default: rc = SQLITE_MISUSE_BKPT; break; } va_end(ap); if( rc!=SQLITE_OK ) sqlite3Error(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* SQLITE_OMIT_VIRTUALTABLE */