/* ** 2004 May 26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code use to implement APIs that are part of the ** VDBE. */ #include "sqliteInt.h" #include "vdbeInt.h" /**************************** sqlite3_value_ ******************************* ** The following routines extract information from a Mem or sqlite3_value ** structure. */ const void *sqlite3_value_blob(sqlite3_value *pVal){ Mem *p = (Mem*)pVal; if( p->flags & (MEM_Blob|MEM_Str) ){ return p->z; }else{ return sqlite3_value_text(pVal); } } int sqlite3_value_bytes(sqlite3_value *pVal){ return sqlite3ValueBytes(pVal, SQLITE_UTF8); } int sqlite3_value_bytes16(sqlite3_value *pVal){ return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); } double sqlite3_value_double(sqlite3_value *pVal){ return sqlite3VdbeRealValue((Mem*)pVal); } int sqlite3_value_int(sqlite3_value *pVal){ return sqlite3VdbeIntValue((Mem*)pVal); } sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ return sqlite3VdbeIntValue((Mem*)pVal); } const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ return (const char *)sqlite3ValueText(pVal, SQLITE_UTF8); } const void *sqlite3_value_text16(sqlite3_value* pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); } const void *sqlite3_value_text16be(sqlite3_value *pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16BE); } const void *sqlite3_value_text16le(sqlite3_value *pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16LE); } int sqlite3_value_type(sqlite3_value* pVal){ return pVal->type; } /**************************** sqlite3_result_ ******************************* ** The following routines are used by user-defined functions to specify ** the function result. */ void sqlite3_result_blob( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( n>0 ); sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel); } void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ sqlite3VdbeMemSetDouble(&pCtx->s, rVal); } void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ pCtx->isError = 1; sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); } void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ pCtx->isError = 1; sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); } void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); } void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ sqlite3VdbeMemSetInt64(&pCtx->s, iVal); } void sqlite3_result_null(sqlite3_context *pCtx){ sqlite3VdbeMemSetNull(&pCtx->s); } void sqlite3_result_text( sqlite3_context *pCtx, const char *z, int n, void (*xDel)(void *) ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel); } void sqlite3_result_text16( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel); } void sqlite3_result_text16be( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel); } void sqlite3_result_text16le( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel); } void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ sqlite3VdbeMemCopy(&pCtx->s, pValue); } /* ** Execute the statement pStmt, either until a row of data is ready, the ** statement is completely executed or an error occurs. */ int sqlite3_step(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe*)pStmt; sqlite *db; int rc; if( p==0 || p->magic!=VDBE_MAGIC_RUN ){ return SQLITE_MISUSE; } if( p->aborted ){ return SQLITE_ABORT; } db = p->db; if( sqlite3SafetyOn(db) ){ p->rc = SQLITE_MISUSE; return SQLITE_MISUSE; } if( p->pc<0 ){ db->activeVdbeCnt++; p->pc = 0; } if( p->explain ){ rc = sqlite3VdbeList(p); }else{ rc = sqlite3VdbeExec(p); } if( sqlite3SafetyOff(db) ){ rc = SQLITE_MISUSE; } sqlite3Error(p->db, rc, p->zErrMsg); return rc; } /* ** Extract the user data from a sqlite3_context structure and return a ** pointer to it. */ void *sqlite3_user_data(sqlite3_context *p){ assert( p && p->pFunc ); return p->pFunc->pUserData; } /* ** Allocate or return the aggregate context for a user function. A new ** context is allocated on the first call. Subsequent calls return the ** same context that was returned on prior calls. ** ** This routine is defined here in vdbe.c because it depends on knowing ** the internals of the sqlite3_context structure which is only defined in ** this source file. */ void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ assert( p && p->pFunc && p->pFunc->xStep ); if( p->pAgg==0 ){ if( nByte<=NBFS ){ p->pAgg = (void*)p->s.z; memset(p->pAgg, 0, nByte); }else{ p->pAgg = sqliteMalloc( nByte ); } } return p->pAgg; } /* ** Return the auxilary data pointer, if any, for the iArg'th argument to ** the user-function defined by pCtx. */ void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ VdbeFunc *pVdbeFunc = pCtx->pVdbeFunc; if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ return 0; } return pVdbeFunc->apAux[iArg].pAux; } /* ** Set the auxilary data pointer and delete function, for the iArg'th ** argument to the user-function defined by pCtx. Any previous value is ** deleted by calling the delete function specified when it was set. */ void sqlite3_set_auxdata( sqlite3_context *pCtx, int iArg, void *pAux, void (*xDelete)(void*) ){ struct AuxData *pAuxData; VdbeFunc *pVdbeFunc; if( iArg<0 ) return; pVdbeFunc = pCtx->pVdbeFunc; if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; pCtx->pVdbeFunc = pVdbeFunc = sqliteRealloc(pVdbeFunc, nMalloc); if( !pVdbeFunc ) return; memset(&pVdbeFunc->apAux[pVdbeFunc->nAux], 0, sizeof(struct AuxData)*(iArg+1-pVdbeFunc->nAux)); pVdbeFunc->nAux = iArg+1; pVdbeFunc->pFunc = pCtx->pFunc; } pAuxData = &pVdbeFunc->apAux[iArg]; if( pAuxData->pAux && pAuxData->xDelete ){ pAuxData->xDelete(pAuxData->pAux); } pAuxData->pAux = pAux; pAuxData->xDelete = xDelete; } /* ** Return the number of times the Step function of a aggregate has been ** called. ** ** This routine is defined here in vdbe.c because it depends on knowing ** the internals of the sqlite3_context structure which is only defined in ** this source file. */ int sqlite3_aggregate_count(sqlite3_context *p){ assert( p && p->pFunc && p->pFunc->xStep ); return p->cnt; } /* ** Return the number of columns in the result set for the statement pStmt. */ int sqlite3_column_count(sqlite3_stmt *pStmt){ Vdbe *pVm = (Vdbe *)pStmt; return pVm ? pVm->nResColumn : 0; } /* ** Return the number of values available from the current row of the ** currently executing statement pStmt. */ int sqlite3_data_count(sqlite3_stmt *pStmt){ Vdbe *pVm = (Vdbe *)pStmt; if( pVm==0 || !pVm->resOnStack ) return 0; return pVm->nResColumn; } /* ** Check to see if column iCol of the given statement is valid. If ** it is, return a pointer to the Mem for the value of that column. ** If iCol is not valid, return a pointer to a Mem which has a value ** of NULL. */ static Mem *columnMem(sqlite3_stmt *pStmt, int i){ Vdbe *pVm = (Vdbe *)pStmt; int vals = sqlite3_data_count(pStmt); if( i>=vals || i<0 ){ static Mem nullMem; if( nullMem.flags==0 ){ nullMem.flags = MEM_Null; } sqlite3Error(pVm->db, SQLITE_RANGE, 0); return &nullMem; } return &pVm->pTos[(1-vals)+i]; } /**************************** sqlite3_column_ ******************************* ** The following routines are used to access elements of the current row ** in the result set. */ const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ return sqlite3_value_blob( columnMem(pStmt,i) ); } int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ return sqlite3_value_bytes( columnMem(pStmt,i) ); } int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ return sqlite3_value_bytes16( columnMem(pStmt,i) ); } double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ return sqlite3_value_double( columnMem(pStmt,i) ); } int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ return sqlite3_value_int( columnMem(pStmt,i) ); } sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ return sqlite3_value_int64( columnMem(pStmt,i) ); } const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ return sqlite3_value_text( columnMem(pStmt,i) ); } const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ return sqlite3_value_text16( columnMem(pStmt,i) ); } int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ return sqlite3_value_type( columnMem(pStmt,i) ); } /* ** Return the name of the Nth column of the result set returned by SQL ** statement pStmt. */ const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ Vdbe *p = (Vdbe *)pStmt; Mem *pColName; if( N>=sqlite3_column_count(pStmt) || N<0 ){ return 0; } pColName = &(p->aColName[N]); return sqlite3_value_text(pColName); } /* ** Return the name of the 'i'th column of the result set of SQL statement ** pStmt, encoded as UTF-16. */ const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ Vdbe *p = (Vdbe *)pStmt; Mem *pColName; if( N>=sqlite3_column_count(pStmt) || N<0 ){ return 0; } pColName = &(p->aColName[N]); return sqlite3_value_text16(pColName); } /* ** Return the column declaration type (if applicable) of the 'i'th column ** of the result set of SQL statement pStmt, encoded as UTF-8. */ const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ Vdbe *p = (Vdbe *)pStmt; Mem *pColName; if( N>=sqlite3_column_count(pStmt) || N<0 ){ return 0; } pColName = &(p->aColName[N+sqlite3_column_count(pStmt)]); return sqlite3_value_text(pColName); } /* ** Return the column declaration type (if applicable) of the 'i'th column ** of the result set of SQL statement pStmt, encoded as UTF-16. */ const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ Vdbe *p = (Vdbe *)pStmt; Mem *pColName; if( N>=sqlite3_column_count(pStmt) || N<0 ){ return 0; } pColName = &(p->aColName[N+sqlite3_column_count(pStmt)]); return sqlite3_value_text16(pColName); } /******************************* sqlite3_bind_ *************************** ** ** Routines used to attach values to wildcards in a compiled SQL statement. */ /* ** Unbind the value bound to variable i in virtual machine p. This is the ** the same as binding a NULL value to the column. If the "i" parameter is ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. ** ** The error code stored in database p->db is overwritten with the return ** value in any case. */ static int vdbeUnbind(Vdbe *p, int i){ Mem *pVar; if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ sqlite3Error(p->db, SQLITE_MISUSE, 0); return SQLITE_MISUSE; } if( i<1 || i>p->nVar ){ sqlite3Error(p->db, SQLITE_RANGE, 0); return SQLITE_RANGE; } i--; pVar = &p->aVar[i]; sqlite3VdbeMemRelease(pVar); pVar->flags = MEM_Null; sqlite3Error(p->db, SQLITE_OK, 0); return SQLITE_OK; } /* ** Bind a blob value to an SQL statement variable. */ int sqlite3_bind_blob( sqlite3_stmt *pStmt, int i, const void *zData, int nData, void (*xDel)(void*) ){ Vdbe *p = (Vdbe *)pStmt; Mem *pVar; int rc; rc = vdbeUnbind(p, i); if( rc || zData==0 ){ return rc; } pVar = &p->aVar[i-1]; rc = sqlite3VdbeMemSetStr(pVar, zData, nData, 0, xDel); return rc; } int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, i); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); } return rc; } int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ return sqlite3_bind_int64(p, i, (i64)iValue); } int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, i); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); } return rc; } int sqlite3_bind_null(sqlite3_stmt* p, int i){ return vdbeUnbind((Vdbe *)p, i); } int sqlite3_bind_text( sqlite3_stmt *pStmt, int i, const char *zData, int nData, void (*xDel)(void*) ){ Vdbe *p = (Vdbe *)pStmt; Mem *pVar; int rc; rc = vdbeUnbind(p, i); if( rc || zData==0 ){ return rc; } pVar = &p->aVar[i-1]; rc = sqlite3VdbeMemSetStr(pVar, zData, nData, SQLITE_UTF8, xDel); if( rc ){ return rc; } rc = sqlite3VdbeChangeEncoding(pVar, p->db->enc); return rc; } int sqlite3_bind_text16( sqlite3_stmt *pStmt, int i, const void *zData, int nData, void (*xDel)(void*) ){ Vdbe *p = (Vdbe *)pStmt; Mem *pVar; int rc; rc = vdbeUnbind(p, i); if( rc || zData==0 ){ return rc; } pVar = &p->aVar[i-1]; rc = sqlite3VdbeMemSetStr(pVar, zData, nData, SQLITE_UTF16NATIVE, xDel); if( rc ){ return rc; } rc = sqlite3VdbeChangeEncoding(pVar, p->db->enc); return rc; } /* ** Return the number of wildcards that can be potentially bound to. ** This routine is added to support DBD::SQLite. */ int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe*)pStmt; return p ? p->nVar : 0; } /* ** Return the name of a wildcard parameter. Return NULL if the index ** is out of range or if the wildcard is unnamed. ** ** The result is always UTF-8. */ const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ Vdbe *p = (Vdbe*)pStmt; if( p==0 || i<1 || i>p->nVar ){ return 0; } if( !p->okVar ){ int j; Op *pOp; for(j=0, pOp=p->aOp; jnOp; j++, pOp++){ if( pOp->opcode==OP_Variable ){ assert( pOp->p1>0 && pOp->p1<=p->nVar ); p->azVar[pOp->p1-1] = pOp->p3; } } p->okVar = 1; } return p->azVar[i-1]; }