/* ** 2011 March 24 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** Code for a demonstration virtual table that generates variations ** on an input word at increasing edit distances from the original. ** ** A fuzzer virtual table is created like this: ** ** CREATE VIRTUAL TABLE f USING fuzzer(); ** ** When it is created, the new fuzzer table must be supplied with the ** name of a "fuzzer data table", which must reside in the same database ** file as the new fuzzer table. The fuzzer data table contains the various ** transformations and their costs that the fuzzer logic uses to generate ** variations. ** ** The fuzzer data table must contain exactly four columns (more precisely, ** the statement "SELECT * FROM " must return records ** that consist of four columns). It does not matter what the columns are ** named. ** ** Each row in the fuzzer data table represents a single character ** transformation. The left most column of the row (column 0) contains an ** integer value - the identifier of the ruleset to which the transformation ** rule belongs (see "MULTIPLE RULE SETS" below). The second column of the ** row (column 0) contains the input character or characters. The third ** column contains the output character or characters. And the fourth column ** contains the integer cost of making the transformation. For example: ** ** CREATE TABLE f_data(ruleset, cFrom, cTo, Cost); ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, '', 'a', 100); ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'b', '', 87); ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38); ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40); ** ** The first row inserted into the fuzzer data table by the SQL script ** above indicates that the cost of inserting a letter 'a' is 100. (All ** costs are integers. We recommend that costs be scaled so that the ** average cost is around 100.) The second INSERT statement creates a rule ** saying that the cost of deleting a single letter 'b' is 87. The third ** and fourth INSERT statements mean that the cost of transforming a ** single letter "o" into the two-letter sequence "oe" is 38 and that the ** cost of transforming "oe" back into "o" is 40. ** ** The contents of the fuzzer data table are loaded into main memory when ** a fuzzer table is first created, and may be internally reloaded by the ** system at any subsequent time. Therefore, the fuzzer data table should be ** populated before the fuzzer table is created and not modified thereafter. ** If you do need to modify the contents of the fuzzer data table, it is ** recommended that the associated fuzzer table be dropped, the fuzzer data ** table edited, and the fuzzer table recreated within a single transaction. ** Alternatively, the fuzzer data table can be edited then the database ** connection can be closed and reopened. ** ** Once it has been created, the fuzzer table can be queried as follows: ** ** SELECT word, distance FROM f ** WHERE word MATCH 'abcdefg' ** AND distance<200; ** ** This first query outputs the string "abcdefg" and all strings that ** can be derived from that string by appling the specified transformations. ** The strings are output together with their total transformation cost ** (called "distance") and appear in order of increasing cost. No string ** is output more than once. If there are multiple ways to transform the ** target string into the output string then the lowest cost transform is ** the one that is returned. In the example, the search is limited to ** strings with a total distance of less than 200. ** ** The fuzzer is a read-only table. Any attempt to DELETE, INSERT, or ** UPDATE on a fuzzer table will throw an error. ** ** It is important to put some kind of a limit on the fuzzer output. This ** can be either in the form of a LIMIT clause at the end of the query, ** or better, a "distance #include #include #include #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Forward declaration of objects used by this implementation */ typedef struct fuzzer_vtab fuzzer_vtab; typedef struct fuzzer_cursor fuzzer_cursor; typedef struct fuzzer_rule fuzzer_rule; typedef struct fuzzer_seen fuzzer_seen; typedef struct fuzzer_stem fuzzer_stem; /* ** Various types. ** ** fuzzer_cost is the "cost" of an edit operation. ** ** fuzzer_len is the length of a matching string. ** ** fuzzer_ruleid is an ruleset identifier. */ typedef int fuzzer_cost; typedef signed char fuzzer_len; typedef int fuzzer_ruleid; /* ** Limits */ #define FUZZER_MX_LENGTH 50 /* Maximum length of a search string */ #define FUZZER_MX_RULEID 2147483647 /* Maximum rule ID */ #define FUZZER_MX_COST 1000 /* Maximum single-rule cost */ /* ** Each transformation rule is stored as an instance of this object. ** All rules are kept on a linked list sorted by rCost. */ struct fuzzer_rule { fuzzer_rule *pNext; /* Next rule in order of increasing rCost */ char *zFrom; /* Transform from */ fuzzer_cost rCost; /* Cost of this transformation */ fuzzer_len nFrom, nTo; /* Length of the zFrom and zTo strings */ fuzzer_ruleid iRuleset; /* The rule set to which this rule belongs */ char zTo[4]; /* Transform to (extra space appended) */ }; /* ** A stem object is used to generate variants. It is also used to record ** previously generated outputs. ** ** Every stem is added to a hash table as it is output. Generation of ** duplicate stems is suppressed. ** ** Active stems (those that might generate new outputs) are kepts on a linked ** list sorted by increasing cost. The cost is the sum of rBaseCost and ** pRule->rCost. */ struct fuzzer_stem { char *zBasis; /* Word being fuzzed */ const fuzzer_rule *pRule; /* Current rule to apply */ fuzzer_stem *pNext; /* Next stem in rCost order */ fuzzer_stem *pHash; /* Next stem with same hash on zBasis */ fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */ fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */ fuzzer_len nBasis; /* Length of the zBasis string */ fuzzer_len n; /* Apply pRule at this character offset */ }; /* ** A fuzzer virtual-table object */ struct fuzzer_vtab { sqlite3_vtab base; /* Base class - must be first */ char *zClassName; /* Name of this class. Default: "fuzzer" */ fuzzer_rule *pRule; /* All active rules in this fuzzer */ int nCursor; /* Number of active cursors */ }; #define FUZZER_HASH 4001 /* Hash table size */ #define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */ /* A fuzzer cursor object */ struct fuzzer_cursor { sqlite3_vtab_cursor base; /* Base class - must be first */ sqlite3_int64 iRowid; /* The rowid of the current word */ fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */ fuzzer_cost rLimit; /* Maximum cost of any term */ fuzzer_stem *pStem; /* Stem with smallest rCostX */ fuzzer_stem *pDone; /* Stems already processed to completion */ fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */ int mxQueue; /* Largest used index in aQueue[] */ char *zBuf; /* Temporary use buffer */ int nBuf; /* Bytes allocated for zBuf */ int nStem; /* Number of stems allocated */ int iRuleset; /* Only process rules from this ruleset */ fuzzer_rule nullRule; /* Null rule used first */ fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */ }; /* ** The two input rule lists are both sorted in order of increasing ** cost. Merge them together into a single list, sorted by cost, and ** return a pointer to the head of that list. */ static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){ fuzzer_rule head; fuzzer_rule *pTail; pTail = &head; while( pA && pB ){ if( pA->rCost<=pB->rCost ){ pTail->pNext = pA; pTail = pA; pA = pA->pNext; }else{ pTail->pNext = pB; pTail = pB; pB = pB->pNext; } } if( pA==0 ){ pTail->pNext = pB; }else{ pTail->pNext = pA; } return head.pNext; } /* ** Statement pStmt currently points to a row in the fuzzer data table. This ** function allocates and populates a fuzzer_rule structure according to ** the content of the row. ** ** If successful, *ppRule is set to point to the new object and SQLITE_OK ** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point ** to an error message and an SQLite error code returned. */ static int fuzzerLoadOneRule( fuzzer_vtab *p, /* Fuzzer virtual table handle */ sqlite3_stmt *pStmt, /* Base rule on statements current row */ fuzzer_rule **ppRule, /* OUT: New rule object */ char **pzErr /* OUT: Error message */ ){ int iRuleset = sqlite3_column_int(pStmt, 0); const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1); const char *zTo = (const char *)sqlite3_column_text(pStmt, 2); int nCost = sqlite3_column_int(pStmt, 3); int rc = SQLITE_OK; /* Return code */ int nFrom; /* Size of string zFrom, in bytes */ int nTo; /* Size of string zTo, in bytes */ fuzzer_rule *pRule = 0; /* New rule object to return */ if( zFrom==0 ) zFrom = ""; if( zTo==0 ) zTo = ""; nFrom = strlen(zFrom); nTo = strlen(zTo); /* Silently ignore null transformations */ if( strcmp(zFrom, zTo)==0 ){ *ppRule = 0; return SQLITE_OK; } if( nCost<=0 || nCost>FUZZER_MX_COST ){ *pzErr = sqlite3_mprintf("cost must be between 1 and %d", FUZZER_MX_COST); rc = SQLITE_ERROR; }else if( nFrom>FUZZER_MX_LENGTH || nTo>FUZZER_MX_LENGTH ){ *pzErr = sqlite3_mprintf("maximum string length is %d", FUZZER_MX_LENGTH); rc = SQLITE_ERROR; }else if( iRuleset<0 || iRuleset>FUZZER_MX_RULEID ){ *pzErr = sqlite3_mprintf( "ruleset must be between 0 and %d", FUZZER_MX_RULEID); rc = SQLITE_ERROR; }else{ pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo ); if( pRule==0 ){ rc = SQLITE_NOMEM; }else{ memset(pRule, 0, sizeof(*pRule)); pRule->zFrom = &pRule->zTo[nTo+1]; pRule->nFrom = nFrom; memcpy(pRule->zFrom, zFrom, nFrom+1); memcpy(pRule->zTo, zTo, nTo+1); pRule->nTo = nTo; pRule->rCost = nCost; pRule->iRuleset = iRuleset; } } *ppRule = pRule; return rc; } /* ** Load the content of the fuzzer data table into memory. */ static int fuzzerLoadRules( sqlite3 *db, /* Database handle */ fuzzer_vtab *p, /* Virtual fuzzer table to configure */ const char *zDb, /* Database containing rules data */ const char *zData, /* Table containing rules data */ char **pzErr /* OUT: Error message */ ){ int rc = SQLITE_OK; /* Return code */ char *zSql; /* SELECT used to read from rules table */ fuzzer_rule *pHead = 0; zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zData); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ int rc2; /* finalize() return code */ sqlite3_stmt *pStmt = 0; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ){ *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db)); }else if( sqlite3_column_count(pStmt)!=4 ){ *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4", p->zClassName, zData, sqlite3_column_count(pStmt) ); rc = SQLITE_ERROR; }else{ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ fuzzer_rule *pRule = 0; rc = fuzzerLoadOneRule(p, pStmt, &pRule, pzErr); if( pRule ){ pRule->pNext = pHead; pHead = pRule; } } } rc2 = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ) rc = rc2; } sqlite3_free(zSql); /* All rules are now in a singly linked list starting at pHead. This ** block sorts them by cost and then sets fuzzer_vtab.pRule to point to ** point to the head of the sorted list. */ if( rc==SQLITE_OK ){ unsigned int i; fuzzer_rule *pX; fuzzer_rule *a[15]; for(i=0; ipNext; pX->pNext = 0; for(i=0; a[i] && ipRule = fuzzerMergeRules(p->pRule, pX); }else{ /* An error has occurred. Setting p->pRule to point to the head of the ** allocated list ensures that the list will be cleaned up in this case. */ assert( p->pRule==0 ); p->pRule = pHead; } return rc; } /* ** xConnect/xCreate method for the fuzzer module. Arguments are: ** ** argv[0] -> module name ("fuzzer") ** argv[1] -> database name ** argv[2] -> table name ** argv[3] -> fuzzer rule table name */ static int fuzzerConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ int rc = SQLITE_OK; /* Return code */ fuzzer_vtab *pNew = 0; /* New virtual table */ const char *zModule = argv[0]; const char *zDb = argv[1]; if( argc!=4 ){ *pzErr = sqlite3_mprintf( "%s: wrong number of CREATE VIRTUAL TABLE arguments", zModule ); rc = SQLITE_ERROR; }else{ int nModule; /* Length of zModule, in bytes */ nModule = strlen(zModule); pNew = sqlite3_malloc( sizeof(*pNew) + nModule + 1); if( pNew==0 ){ rc = SQLITE_NOMEM; }else{ memset(pNew, 0, sizeof(*pNew)); pNew->zClassName = (char*)&pNew[1]; memcpy(pNew->zClassName, zModule, nModule+1); rc = fuzzerLoadRules(db, pNew, zDb, argv[3], pzErr); if( rc==SQLITE_OK ){ sqlite3_declare_vtab(db, "CREATE TABLE x(word, distance,ruleset)"); }else{ sqlite3_free(pNew); pNew = 0; } } } *ppVtab = (sqlite3_vtab *)pNew; return rc; } /* Note that for this virtual table, the xCreate and xConnect ** methods are identical. */ static int fuzzerDisconnect(sqlite3_vtab *pVtab){ fuzzer_vtab *p = (fuzzer_vtab*)pVtab; assert( p->nCursor==0 ); while( p->pRule ){ fuzzer_rule *pRule = p->pRule; p->pRule = pRule->pNext; sqlite3_free(pRule); } sqlite3_free(p); return SQLITE_OK; } /* The xDisconnect and xDestroy methods are also the same */ /* ** Open a new fuzzer cursor. */ static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ fuzzer_vtab *p = (fuzzer_vtab*)pVTab; fuzzer_cursor *pCur; pCur = sqlite3_malloc( sizeof(*pCur) ); if( pCur==0 ) return SQLITE_NOMEM; memset(pCur, 0, sizeof(*pCur)); pCur->pVtab = p; *ppCursor = &pCur->base; p->nCursor++; return SQLITE_OK; } /* ** Free all stems in a list. */ static void fuzzerClearStemList(fuzzer_stem *pStem){ while( pStem ){ fuzzer_stem *pNext = pStem->pNext; sqlite3_free(pStem); pStem = pNext; } } /* ** Free up all the memory allocated by a cursor. Set it rLimit to 0 ** to indicate that it is at EOF. */ static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){ int i; fuzzerClearStemList(pCur->pStem); fuzzerClearStemList(pCur->pDone); for(i=0; iaQueue[i]); pCur->rLimit = (fuzzer_cost)0; if( clearHash && pCur->nStem ){ pCur->mxQueue = 0; pCur->pStem = 0; pCur->pDone = 0; memset(pCur->aQueue, 0, sizeof(pCur->aQueue)); memset(pCur->apHash, 0, sizeof(pCur->apHash)); } pCur->nStem = 0; } /* ** Close a fuzzer cursor. */ static int fuzzerClose(sqlite3_vtab_cursor *cur){ fuzzer_cursor *pCur = (fuzzer_cursor *)cur; fuzzerClearCursor(pCur, 0); sqlite3_free(pCur->zBuf); pCur->pVtab->nCursor--; sqlite3_free(pCur); return SQLITE_OK; } /* ** Compute the current output term for a fuzzer_stem. */ static int fuzzerRender( fuzzer_stem *pStem, /* The stem to be rendered */ char **pzBuf, /* Write results into this buffer. realloc if needed */ int *pnBuf /* Size of the buffer */ ){ const fuzzer_rule *pRule = pStem->pRule; int n; char *z; n = pStem->nBasis + pRule->nTo - pRule->nFrom; if( (*pnBuf)n; z = *pzBuf; if( n<0 ){ memcpy(z, pStem->zBasis, pStem->nBasis+1); }else{ memcpy(z, pStem->zBasis, n); memcpy(&z[n], pRule->zTo, pRule->nTo); memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], pStem->nBasis-n-pRule->nFrom+1); } return SQLITE_OK; } /* ** Compute a hash on zBasis. */ static unsigned int fuzzerHash(const char *z){ unsigned int h = 0; while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); } return h % FUZZER_HASH; } /* ** Current cost of a stem */ static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){ return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost; } #if 0 /* ** Print a description of a fuzzer_stem on stderr. */ static void fuzzerStemPrint( const char *zPrefix, fuzzer_stem *pStem, const char *zSuffix ){ if( pStem->n<0 ){ fprintf(stderr, "%s[%s](%d)-->self%s", zPrefix, pStem->zBasis, pStem->rBaseCost, zSuffix ); }else{ char *zBuf = 0; int nBuf = 0; if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return; fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s", zPrefix, pStem->zBasis, pStem->rBaseCost, zBuf, pStem->, zSuffix ); sqlite3_free(zBuf); } } #endif /* ** Return 1 if the string to which the cursor is point has already ** been emitted. Return 0 if not. Return -1 on a memory allocation ** failures. */ static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ unsigned int h; fuzzer_stem *pLookup; if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ return -1; } h = fuzzerHash(pCur->zBuf); pLookup = pCur->apHash[h]; while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ pLookup = pLookup->pHash; } return pLookup!=0; } /* ** Advance a fuzzer_stem to its next value. Return 0 if there are ** no more values that can be generated by this fuzzer_stem. Return ** -1 on a memory allocation failure. */ static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ const fuzzer_rule *pRule; const int iSet = pCur->iRuleset; while( (pRule = pStem->pRule)!=0 ){ assert( pRule==&pCur->nullRule || pRule->iRuleset==pCur->iRuleset ); while( pStem->n < pStem->nBasis - pRule->nFrom ){ pStem->n++; if( pRule->nFrom==0 || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0 ){ /* Found a rewrite case. Make sure it is not a duplicate */ int rc = fuzzerSeen(pCur, pStem); if( rc<0 ) return -1; if( rc==0 ){ fuzzerCost(pStem); return 1; } } } pStem->n = -1; do{ pRule = pRule->pNext; }while( pRule && pRule->iRuleset!=iSet ); pStem->pRule = pRule; if( pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; } return 0; } /* ** The two input stem lists are both sorted in order of increasing ** rCostX. Merge them together into a single list, sorted by rCostX, and ** return a pointer to the head of that new list. */ static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){ fuzzer_stem head; fuzzer_stem *pTail; pTail = &head; while( pA && pB ){ if( pA->rCostX<=pB->rCostX ){ pTail->pNext = pA; pTail = pA; pA = pA->pNext; }else{ pTail->pNext = pB; pTail = pB; pB = pB->pNext; } } if( pA==0 ){ pTail->pNext = pB; }else{ pTail->pNext = pA; } return head.pNext; } /* ** Load pCur->pStem with the lowest-cost stem. Return a pointer ** to the lowest-cost stem. */ static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){ fuzzer_stem *pBest, *pX; int iBest; int i; if( pCur->pStem==0 ){ iBest = -1; pBest = 0; for(i=0; i<=pCur->mxQueue; i++){ pX = pCur->aQueue[i]; if( pX==0 ) continue; if( pBest==0 || pBest->rCostX>pX->rCostX ){ pBest = pX; iBest = i; } } if( pBest ){ pCur->aQueue[iBest] = pBest->pNext; pBest->pNext = 0; pCur->pStem = pBest; } } return pCur->pStem; } /* ** Insert pNew into queue of pending stems. Then find the stem ** with the lowest rCostX and move it into pCur->pStem. ** list. The insert is done such the pNew is in the correct order ** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost. */ static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){ fuzzer_stem *pX; int i; /* If pCur->pStem exists and is greater than pNew, then make pNew ** the new pCur->pStem and insert the old pCur->pStem instead. */ if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){ pNew->pNext = 0; pCur->pStem = pNew; pNew = pX; } /* Insert the new value */ pNew->pNext = 0; pX = pNew; for(i=0; i<=pCur->mxQueue; i++){ if( pCur->aQueue[i] ){ pX = fuzzerMergeStems(pX, pCur->aQueue[i]); pCur->aQueue[i] = 0; }else{ pCur->aQueue[i] = pX; break; } } if( i>pCur->mxQueue ){ if( imxQueue = i; pCur->aQueue[i] = pX; }else{ assert( pCur->mxQueue==FUZZER_NQUEUE-1 ); pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]); pCur->aQueue[FUZZER_NQUEUE-1] = pX; } } return fuzzerLowestCostStem(pCur); } /* ** Allocate a new fuzzer_stem. Add it to the hash table but do not ** link it into either the pCur->pStem or pCur->pDone lists. */ static fuzzer_stem *fuzzerNewStem( fuzzer_cursor *pCur, const char *zWord, fuzzer_cost rBaseCost ){ fuzzer_stem *pNew; fuzzer_rule *pRule; unsigned int h; pNew = sqlite3_malloc( sizeof(*pNew) + strlen(zWord) + 1 ); if( pNew==0 ) return 0; memset(pNew, 0, sizeof(*pNew)); pNew->zBasis = (char*)&pNew[1]; pNew->nBasis = strlen(zWord); memcpy(pNew->zBasis, zWord, pNew->nBasis+1); pRule = pCur->pVtab->pRule; while( pRule && pRule->iRuleset!=pCur->iRuleset ){ pRule = pRule->pNext; } pNew->pRule = pRule; pNew->n = -1; pNew->rBaseCost = pNew->rCostX = rBaseCost; h = fuzzerHash(pNew->zBasis); pNew->pHash = pCur->apHash[h]; pCur->apHash[h] = pNew; pCur->nStem++; return pNew; } /* ** Advance a cursor to its next row of output */ static int fuzzerNext(sqlite3_vtab_cursor *cur){ fuzzer_cursor *pCur = (fuzzer_cursor*)cur; int rc; fuzzer_stem *pStem, *pNew; pCur->iRowid++; /* Use the element the cursor is currently point to to create ** a new stem and insert the new stem into the priority queue. */ pStem = pCur->pStem; if( pStem->rCostX>0 ){ rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf); if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX); if( pNew ){ if( fuzzerAdvance(pCur, pNew)==0 ){ pNew->pNext = pCur->pDone; pCur->pDone = pNew; }else{ if( fuzzerInsert(pCur, pNew)==pNew ){ return SQLITE_OK; } } }else{ return SQLITE_NOMEM; } } /* Adjust the priority queue so that the first element of the ** stem list is the next lowest cost word. */ while( (pStem = pCur->pStem)!=0 ){ if( fuzzerAdvance(pCur, pStem) ){ pCur->pStem = 0; pStem = fuzzerInsert(pCur, pStem); if( (rc = fuzzerSeen(pCur, pStem))!=0 ){ if( rc<0 ) return SQLITE_NOMEM; continue; } return SQLITE_OK; /* New word found */ } pCur->pStem = 0; pStem->pNext = pCur->pDone; pCur->pDone = pStem; if( fuzzerLowestCostStem(pCur) ){ rc = fuzzerSeen(pCur, pCur->pStem); if( rc<0 ) return SQLITE_NOMEM; if( rc==0 ){ return SQLITE_OK; } } } /* Reach this point only if queue has been exhausted and there is ** nothing left to be output. */ pCur->rLimit = (fuzzer_cost)0; return SQLITE_OK; } /* ** Called to "rewind" a cursor back to the beginning so that ** it starts its output over again. Always called at least once ** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call. */ static int fuzzerFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor; const char *zWord = 0; fuzzer_stem *pStem; int idx; fuzzerClearCursor(pCur, 1); pCur->rLimit = 2147483647; idx = 0; if( idxNum & 1 ){ zWord = (const char*)sqlite3_value_text(argv[0]); idx++; } if( idxNum & 2 ){ pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[idx]); idx++; } if( idxNum & 4 ){ pCur->iRuleset = (fuzzer_cost)sqlite3_value_int(argv[idx]); idx++; } if( zWord==0 ) zWord = ""; pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); if( pStem==0 ) return SQLITE_NOMEM; pCur->nullRule.pNext = pCur->pVtab->pRule; pCur->nullRule.rCost = 0; pCur->nullRule.nFrom = 0; pCur->nullRule.nTo = 0; pCur->nullRule.zFrom = ""; pStem->pRule = &pCur->nullRule; pStem->n = pStem->nBasis; pCur->iRowid = 1; return SQLITE_OK; } /* ** Only the word and distance columns have values. All other columns ** return NULL */ static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ fuzzer_cursor *pCur = (fuzzer_cursor*)cur; if( i==0 ){ /* the "word" column */ if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ return SQLITE_NOMEM; } sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT); }else if( i==1 ){ /* the "distance" column */ sqlite3_result_int(ctx, pCur->pStem->rCostX); }else{ /* All other columns are NULL */ sqlite3_result_null(ctx); } return SQLITE_OK; } /* ** The rowid. */ static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ fuzzer_cursor *pCur = (fuzzer_cursor*)cur; *pRowid = pCur->iRowid; return SQLITE_OK; } /* ** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal ** that the cursor has nothing more to output. */ static int fuzzerEof(sqlite3_vtab_cursor *cur){ fuzzer_cursor *pCur = (fuzzer_cursor*)cur; return pCur->rLimit<=(fuzzer_cost)0; } /* ** Search for terms of these forms: ** ** (A) word MATCH $str ** (B1) distance < $value ** (B2) distance <= $value ** (C) ruleid == $ruleid ** ** The distance< and distance<= are both treated as distance<=. ** The query plan number is a bit vector: ** ** bit 1: Term of the form (A) found ** bit 2: Term like (B1) or (B2) found ** bit 3: Term like (C) found ** ** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set ** then $value is in filter.argv[0] if bit-1 is clear and is in ** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is ** in filter.argv[0] if bit-1 and bit-2 are both zero, is in ** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in ** filter.argv[2] if both bit-1 and bit-2 are set. */ static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ int iPlan = 0; int iDistTerm = -1; int iRulesetTerm = -1; int i; const struct sqlite3_index_constraint *pConstraint; pConstraint = pIdxInfo->aConstraint; for(i=0; inConstraint; i++, pConstraint++){ if( pConstraint->usable==0 ) continue; if( (iPlan & 1)==0 && pConstraint->iColumn==0 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ iPlan |= 1; pIdxInfo->aConstraintUsage[i].argvIndex = 1; pIdxInfo->aConstraintUsage[i].omit = 1; } if( (iPlan & 2)==0 && pConstraint->iColumn==1 && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE) ){ iPlan |= 2; iDistTerm = i; } if( (iPlan & 4)==0 && pConstraint->iColumn==2 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ iPlan |= 4; pIdxInfo->aConstraintUsage[i].omit = 1; iRulesetTerm = i; } } if( iPlan & 2 ){ pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0); } if( iPlan & 4 ){ int idx = 1; if( iPlan & 1 ) idx++; if( iPlan & 2 ) idx++; pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx; } pIdxInfo->idxNum = iPlan; if( pIdxInfo->nOrderBy==1 && pIdxInfo->aOrderBy[0].iColumn==1 && pIdxInfo->aOrderBy[0].desc==0 ){ pIdxInfo->orderByConsumed = 1; } pIdxInfo->estimatedCost = (double)10000; return SQLITE_OK; } /* ** A virtual table module that provides read-only access to a ** Tcl global variable namespace. */ static sqlite3_module fuzzerModule = { 0, /* iVersion */ fuzzerConnect, fuzzerConnect, fuzzerBestIndex, fuzzerDisconnect, fuzzerDisconnect, fuzzerOpen, /* xOpen - open a cursor */ fuzzerClose, /* xClose - close a cursor */ fuzzerFilter, /* xFilter - configure scan constraints */ fuzzerNext, /* xNext - advance a cursor */ fuzzerEof, /* xEof - check for end of scan */ fuzzerColumn, /* xColumn - read data */ fuzzerRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ }; #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** Register the fuzzer virtual table */ int fuzzer_register(sqlite3 *db){ int rc = SQLITE_OK; #ifndef SQLITE_OMIT_VIRTUALTABLE rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0); #endif return rc; } #ifdef SQLITE_TEST #include /* ** Decode a pointer to an sqlite3 object. */ extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); /* ** Register the echo virtual table module. */ static int register_fuzzer_module( ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ sqlite3 *db; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; fuzzer_register(db); return TCL_OK; } /* ** Register commands with the TCL interpreter. */ int Sqlitetestfuzzer_Init(Tcl_Interp *interp){ static struct { char *zName; Tcl_ObjCmdProc *xProc; void *clientData; } aObjCmd[] = { { "register_fuzzer_module", register_fuzzer_module, 0 }, }; int i; for(i=0; i