/* ** 2005 May 25 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the implementation of the sqlite3_prepare() ** interface, and routines that contribute to loading the database schema ** from disk. */ #include "sqliteInt.h" /* ** Fill the InitData structure with an error message that indicates ** that the database is corrupt. */ static void corruptSchema( InitData *pData, /* Initialization context */ const char *zObj, /* Object being parsed at the point of error */ const char *zExtra /* Error information */ ){ sqlite3 *db = pData->db; if( db->mallocFailed ){ pData->rc = SQLITE_NOMEM_BKPT; }else if( pData->pzErrMsg[0]!=0 ){ /* A error message has already been generated. Do not overwrite it */ }else if( pData->mInitFlags & INITFLAG_AlterTable ){ *pData->pzErrMsg = sqlite3DbStrDup(db, zExtra); pData->rc = SQLITE_ERROR; }else if( db->flags & SQLITE_WriteSchema ){ pData->rc = SQLITE_CORRUPT_BKPT; }else if( IsSharedSchema(db) && 0==sqlite3StrNICmp(zExtra, "malformed database schema", 17) ){ pData->rc = SQLITE_CORRUPT_BKPT; *pData->pzErrMsg = sqlite3DbStrDup(db, zExtra); }else{ char *z; if( zObj==0 ) zObj = "?"; z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj); if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra); *pData->pzErrMsg = z; pData->rc = SQLITE_CORRUPT_BKPT; } } #ifdef SQLITE_ENABLE_SHARED_SCHEMA /* ** Update the Schema.cksum checksum to account for the database object ** specified by the three arguments following the first. */ static void schemaUpdateChecksum( InitData *pData, /* Schema parse context */ const char *zName, /* Name of new database object */ const char *zRoot, /* Root page of new database object */ const char *zSql /* SQL used to create new database object */ ){ int i; u64 cksum = pData->cksum; if( zName ){ for(i=0; zName[i]; i++) cksum += (cksum<<3) + zName[i]; } if( zRoot ) for(i=0; zRoot[i]; i++) cksum += (cksum<<3) + zRoot[i]; if( zSql ) for(i=0; zSql[i]; i++) cksum += (cksum<<3) + zSql[i]; pData->cksum = cksum; } #endif /* ifdef SQLITE_ENABLE_SHARED_SCHEMA */ /* ** Check to see if any sibling index (another index on the same table) ** of pIndex has the same root page number, and if it does, return true. ** This would indicate a corrupt schema. */ int sqlite3IndexHasDuplicateRootPage(Index *pIndex){ Index *p; for(p=pIndex->pTable->pIndex; p; p=p->pNext){ if( p->tnum==pIndex->tnum && p!=pIndex ) return 1; } return 0; } /* ** This is the callback routine for the code that initializes the ** database. See sqlite3Init() below for additional information. ** This routine is also called from the OP_ParseSchema opcode of the VDBE. ** ** Each callback contains the following information: ** ** argv[0] = type of object: "table", "index", "trigger", or "view". ** argv[1] = name of thing being created ** argv[2] = associated table if an index or trigger ** argv[3] = root page number for table or index. 0 for trigger or view. ** argv[4] = SQL text for the CREATE statement. ** */ int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){ InitData *pData = (InitData*)pInit; sqlite3 *db = pData->db; int iDb = pData->iDb; assert( argc==5 ); UNUSED_PARAMETER2(NotUsed, argc); assert( sqlite3_mutex_held(db->mutex) ); DbClearProperty(db, iDb, DB_Empty); pData->nInitRow++; if( db->mallocFailed ){ corruptSchema(pData, argv[1], 0); return 1; } assert( iDb>=0 && iDbnDb ); if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ if( argv[3]==0 ){ corruptSchema(pData, argv[1], 0); }else if( sqlite3_strnicmp(argv[4],"create ",7)==0 ){ /* Call the parser to process a CREATE TABLE, INDEX or VIEW. ** But because db->init.busy is set to 1, no VDBE code is generated ** or executed. All the parser does is build the internal data ** structures that describe the table, index, or view. */ int rc; u8 saved_iDb = db->init.iDb; sqlite3_stmt *pStmt; TESTONLY(int rcp); /* Return code from sqlite3_prepare() */ assert( db->init.busy ); db->init.iDb = iDb; db->init.newTnum = sqlite3Atoi(argv[3]); db->init.orphanTrigger = 0; db->init.azInit = argv; TESTONLY(rcp = ) sqlite3_prepare(db, argv[4], -1, &pStmt, 0); rc = db->errCode; assert( (rc&0xFF)==(rcp&0xFF) ); db->init.iDb = saved_iDb; /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */ if( SQLITE_OK!=rc ){ if( db->init.orphanTrigger ){ assert( iDb==1 ); }else{ if( rc > pData->rc ) pData->rc = rc; if( rc==SQLITE_NOMEM ){ sqlite3OomFault(db); }else if( rc!=SQLITE_INTERRUPT #ifdef SQLITE_ENABLE_SHARED_SCHEMA && (rc&0xFF)!=SQLITE_LOCKED && (rc&0xFF)!=SQLITE_IOERR #endif ){ corruptSchema(pData, argv[1], sqlite3_errmsg(db)); } } } sqlite3_finalize(pStmt); }else if( argv[1]==0 || (argv[4]!=0 && argv[4][0]!=0) ){ corruptSchema(pData, argv[1], 0); }else{ /* If the SQL column is blank it means this is an index that ** was created to be the PRIMARY KEY or to fulfill a UNIQUE ** constraint for a CREATE TABLE. The index should have already ** been created when we processed the CREATE TABLE. All we have ** to do here is record the root page number for that index. */ Index *pIndex; pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName); if( pIndex==0 || sqlite3GetInt32(argv[3],&pIndex->tnum)==0 || pIndex->tnum<2 || sqlite3IndexHasDuplicateRootPage(pIndex) ){ corruptSchema(pData, argv[1], pIndex?"invalid rootpage":"orphan index"); } } #ifdef SQLITE_ENABLE_SHARED_SCHEMA if( IsSharedSchema(db) && iDb!=1 ){ schemaUpdateChecksum(pData, argv[0], argv[1], argv[2]); } #endif return 0; } /* ** Attempt to read the database schema and initialize internal ** data structures for a single database file. The index of the ** database file is given by iDb. iDb==0 is used for the main ** database. iDb==1 should never be used. iDb>=2 is used for ** auxiliary databases. Return one of the SQLITE_ error codes to ** indicate success or failure. */ int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){ int rc; int i; #ifndef SQLITE_OMIT_DEPRECATED int size; #endif Db *pDb; char const *azArg[6]; int meta[5]; InitData initData; const char *zMasterName; int openedTransaction = 0; assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ); assert( iDb>=0 && iDbnDb ); assert( db->aDb[iDb].pSchema || (IsSharedSchema(db) && iDb!=1) ); assert( sqlite3_mutex_held(db->mutex) ); assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); pDb = &db->aDb[iDb]; #ifdef SQLITE_ENABLE_SHARED_SCHEMA assert( pDb->pSPool==0 || IsSharedSchema(db) ); if( pDb->pSPool ){ /* See if there is a free schema object in the schema-pool. If not, ** disconnect from said schema pool and continue. This function will ** connect to a (possibly different) schema-pool before returning. */ Schema *pNew = sqlite3SchemaExtract(pDb->pSPool); if( pNew ){ pDb->pSchema = pNew; return SQLITE_OK; } rc = sqlite3SchemaDisconnect(db, iDb, 1); if( rc!=SQLITE_OK ) goto error_out; assert( pDb->pSchema && pDb->pSPool==0 ); } #endif db->init.busy = 1; /* Construct the in-memory representation schema tables (sqlite_master or ** sqlite_temp_master) by invoking the parser directly. The appropriate ** table name will be inserted automatically by the parser so we can just ** use the abbreviation "x" here. The parser will also automatically tag ** the schema table as read-only. */ azArg[0] = "table"; azArg[1] = zMasterName = SCHEMA_TABLE(iDb); azArg[2] = azArg[1]; azArg[3] = "1"; azArg[4] = "CREATE TABLE x(type text,name text,tbl_name text," "rootpage int,sql text)"; azArg[5] = 0; initData.db = db; initData.iDb = iDb; initData.rc = SQLITE_OK; initData.pzErrMsg = pzErrMsg; initData.mInitFlags = mFlags; initData.nInitRow = 0; initData.cksum = 0; sqlite3InitCallback(&initData, 5, (char **)azArg, 0); if( initData.rc ){ rc = initData.rc; goto error_out; } /* Create a cursor to hold the database open */ if( pDb->pBt==0 ){ assert( iDb==1 ); DbSetProperty(db, 1, DB_SchemaLoaded); rc = SQLITE_OK; goto error_out; } /* If there is not already a read-only (or read-write) transaction opened ** on the b-tree database, open one now. If a transaction is opened, it ** will be closed before this function returns. */ sqlite3BtreeEnter(pDb->pBt); if( !sqlite3BtreeIsInReadTrans(pDb->pBt) ){ rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0); if( rc!=SQLITE_OK ){ sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc)); goto initone_error_out; } openedTransaction = 1; } /* Get the database meta information. ** ** Meta values are as follows: ** meta[0] Schema cookie. Changes with each schema change. ** meta[1] File format of schema layer. ** meta[2] Size of the page cache. ** meta[3] Largest rootpage (auto/incr_vacuum mode) ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE ** meta[5] User version ** meta[6] Incremental vacuum mode ** meta[7] unused ** meta[8] unused ** meta[9] unused ** ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to ** the possible values of meta[4]. */ for(i=0; ipBt, i+1, (u32 *)&meta[i]); } if( (db->flags & SQLITE_ResetDatabase)!=0 ){ memset(meta, 0, sizeof(meta)); } pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; /* If opening a non-empty database, check the text encoding. For the ** main database, set sqlite3.enc to the encoding of the main database. ** For an attached db, it is an error if the encoding is not the same ** as sqlite3.enc. */ if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */ if( iDb==0 ){ #ifndef SQLITE_OMIT_UTF16 u8 encoding; /* If opening the main database, set ENC(db). */ encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3; if( encoding==0 ) encoding = SQLITE_UTF8; ENC(db) = encoding; #else ENC(db) = SQLITE_UTF8; #endif }else{ /* If opening an attached database, the encoding much match ENC(db) */ if( meta[BTREE_TEXT_ENCODING-1]!=ENC(db) ){ sqlite3SetString(pzErrMsg, db, "attached databases must use the same" " text encoding as main database"); rc = SQLITE_ERROR; goto initone_error_out; } } }else{ DbSetProperty(db, iDb, DB_Empty); } pDb->pSchema->enc = ENC(db); if( pDb->pSchema->cache_size==0 ){ #ifndef SQLITE_OMIT_DEPRECATED size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } pDb->pSchema->cache_size = size; #else pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE; #endif sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } /* ** file_format==1 Version 3.0.0. ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants */ pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1]; if( pDb->pSchema->file_format==0 ){ pDb->pSchema->file_format = 1; } if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ sqlite3SetString(pzErrMsg, db, "unsupported file format"); rc = SQLITE_ERROR; goto initone_error_out; } /* Ticket #2804: When we open a database in the newer file format, ** clear the legacy_file_format pragma flag so that a VACUUM will ** not downgrade the database and thus invalidate any descending ** indices that the user might have created. */ if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){ db->flags &= ~(u64)SQLITE_LegacyFileFmt; } /* Read the schema information out of the schema tables */ assert( db->init.busy ); { char *zSql; zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\".%s ORDER BY rowid", db->aDb[iDb].zDbSName, zMasterName); #ifndef SQLITE_OMIT_AUTHORIZATION { sqlite3_xauth xAuth; xAuth = db->xAuth; db->xAuth = 0; #endif rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; } #endif if( rc==SQLITE_OK ) rc = initData.rc; sqlite3DbFree(db, zSql); #ifndef SQLITE_OMIT_ANALYZE if( rc==SQLITE_OK ){ sqlite3AnalysisLoad(db, iDb); } #endif } if( db->mallocFailed ){ rc = SQLITE_NOMEM_BKPT; sqlite3ResetAllSchemasOfConnection(db); } if( rc==SQLITE_OK || (db->flags&SQLITE_NoSchemaError)){ /* Black magic: If the SQLITE_NoSchemaError flag is set, then consider ** the schema loaded, even if errors occurred. In this situation the ** current sqlite3_prepare() operation will fail, but the following one ** will attempt to compile the supplied statement against whatever subset ** of the schema was loaded before the error occurred. The primary ** purpose of this is to allow access to the sqlite_master table ** even when its contents have been corrupted. */ DbSetProperty(db, iDb, DB_SchemaLoaded); rc = SQLITE_OK; } if( rc==SQLITE_OK && iDb!=1 && IsSharedSchema(db) ){ rc = sqlite3SchemaConnect(db, iDb, initData.cksum); } /* Jump here for an error that occurs after successfully allocating ** curMain and calling sqlite3BtreeEnter(). For an error that occurs ** before that point, jump to error_out. */ initone_error_out: if( openedTransaction ){ sqlite3BtreeCommit(pDb->pBt); } sqlite3BtreeLeave(pDb->pBt); error_out: if( rc ){ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ sqlite3OomFault(db); } sqlite3ResetOneSchema(db, iDb); } db->init.busy = 0; return rc; } #ifdef SQLITE_ENABLE_SHARED_SCHEMA /* ** If this is a SHARED_SCHEMA connection and the DBFLAG_SchemaInUse flag ** is not currently set, set it and return non-zero. Otherwise, return 0. */ int sqlite3LockReusableSchema(sqlite3 *db){ if( IsSharedSchema(db) && (db->mDbFlags & DBFLAG_SchemaInuse)==0 ){ db->mDbFlags |= DBFLAG_SchemaInuse; return 1; } return 0; } #endif /* ifdef SQLITE_ENABLE_SHARED_SCHEMA */ #ifdef SQLITE_ENABLE_SHARED_SCHEMA /* ** This function is a no-op for non-SHARED_SCHEMA connections, or if bRelease ** is zero. Otherwise, clear the DBFLAG_SchemaInuse flag and release all ** schema references currently held. */ void sqlite3UnlockReusableSchema(sqlite3 *db, int bRelease){ if( bRelease ){ db->mDbFlags &= ~DBFLAG_SchemaInuse; sqlite3SchemaReleaseAll(db); } } #endif /* ifdef SQLITE_ENABLE_SHARED_SCHEMA */ /* ** Initialize all database files - the main database file, the file ** used to store temporary tables, and any additional database files ** created using ATTACH statements. Return a success code. If an ** error occurs, write an error message into *pzErrMsg. ** ** After a database is initialized, the DB_SchemaLoaded bit is set ** bit is set in the flags field of the Db structure. If the database ** file was of zero-length, then the DB_Empty flag is also set. */ int sqlite3Init(sqlite3 *db, char **pzErrMsg){ int rc = SQLITE_OK; int bReleaseSchema; int i; int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange); bReleaseSchema = sqlite3LockReusableSchema(db); assert( sqlite3_mutex_held(db->mutex) ); assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) ); assert( db->init.busy==0 ); ENC(db) = SCHEMA_ENC(db); assert( db->nDb>0 ); /* Do the main schema first */ if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){ rc = sqlite3InitOne(db, 0, pzErrMsg, 0); } /* All other schemas after the main schema. The "temp" schema must be last */ for(i=db->nDb-1; rc==SQLITE_OK && i>0; i--){ assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) ); if( !DbHasProperty(db, i, DB_SchemaLoaded) ){ rc = sqlite3InitOne(db, i, pzErrMsg, 0); } } if( rc==SQLITE_OK && commit_internal ){ sqlite3CommitInternalChanges(db); } sqlite3UnlockReusableSchema(db, bReleaseSchema); return rc; } /* ** This routine is a no-op if the database schema is already initialized. ** Otherwise, the schema is loaded. An error code is returned. */ int sqlite3ReadSchema(Parse *pParse){ int rc = SQLITE_OK; sqlite3 *db = pParse->db; assert( sqlite3_mutex_held(db->mutex) ); if( !db->init.busy ){ db->mDbFlags |= DBFLAG_FreeSchema; /* For sharable-schema mode */ rc = sqlite3Init(db, &pParse->zErrMsg); if( rc!=SQLITE_OK ){ pParse->rc = rc; pParse->nErr++; }else if( db->noSharedCache && !IsSharedSchema(db) ){ db->mDbFlags |= DBFLAG_SchemaKnownOk; } } return rc; } /* ** Check schema cookies in all databases. If any cookie is out ** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies ** make no changes to pParse->rc. */ static void schemaIsValid(Parse *pParse){ sqlite3 *db = pParse->db; int iDb; int rc; int cookie; assert( pParse->checkSchema ); assert( sqlite3_mutex_held(db->mutex) ); for(iDb=0; iDbnDb; iDb++){ int openedTransaction = 0; /* True if a transaction is opened */ Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ if( pBt==0 ) continue; #ifdef SQLITE_ENABLE_SHARED_SCHEMA if( IsSharedSchema(db) && iDb!=1 && db->aDb[iDb].pSPool==0 ) continue; #endif /* If there is not already a read-only (or read-write) transaction opened ** on the b-tree database, open one now. If a transaction is opened, it ** will be closed immediately after reading the meta-value. */ if( !sqlite3BtreeIsInReadTrans(pBt) ){ rc = sqlite3BtreeBeginTrans(pBt, 0, 0); if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ sqlite3OomFault(db); } if( rc!=SQLITE_OK ) return; openedTransaction = 1; } /* Read the schema cookie from the database. If it does not match the ** value stored as part of the in-memory schema representation, ** set Parse.rc to SQLITE_SCHEMA. */ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ sqlite3ResetOneSchema(db, iDb); pParse->rc = SQLITE_SCHEMA; } /* Close the transaction, if one was opened. */ if( openedTransaction ){ sqlite3BtreeCommit(pBt); } } } /* ** Convert a schema pointer into the iDb index that indicates ** which database file in db->aDb[] the schema refers to. ** ** If the same database is attached more than once, the first ** attached database is returned. */ int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ int i = -1000000; /* If pSchema is NULL, then return -1000000. This happens when code in ** expr.c is trying to resolve a reference to a transient table (i.e. one ** created by a sub-select). In this case the return value of this ** function should never be used. ** ** We return -1000000 instead of the more usual -1 simply because using ** -1000000 as the incorrect index into db->aDb[] is much ** more likely to cause a segfault than -1 (of course there are assert() ** statements too, but it never hurts to play the odds). */ assert( sqlite3_mutex_held(db->mutex) ); if( pSchema ){ for(i=0; 1; i++){ assert( inDb ); if( db->aDb[i].pSchema==pSchema ){ break; } } assert( i>=0 && inDb ); } return i; } /* ** Free all memory allocations in the pParse object */ void sqlite3ParserReset(Parse *pParse){ sqlite3 *db = pParse->db; sqlite3DbFree(db, pParse->aLabel); sqlite3ExprListDelete(db, pParse->pConstExpr); if( db ){ assert( db->lookaside.bDisable >= pParse->disableLookaside ); db->lookaside.bDisable -= pParse->disableLookaside; } pParse->disableLookaside = 0; } /* ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. */ static int sqlite3Prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ Vdbe *pReprepare, /* VM being reprepared */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ char *zErrMsg = 0; /* Error message */ int rc = SQLITE_OK; /* Result code */ int i; /* Loop counter */ Parse sParse; /* Parsing context */ memset(&sParse, 0, PARSE_HDR_SZ); memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ); sParse.pReprepare = pReprepare; assert( ppStmt && *ppStmt==0 ); /* assert( !db->mallocFailed ); // not true with SQLITE_USE_ALLOCA */ assert( sqlite3_mutex_held(db->mutex) ); /* For a long-term use prepared statement avoid the use of ** lookaside memory. */ if( prepFlags & SQLITE_PREPARE_PERSISTENT ){ sParse.disableLookaside++; db->lookaside.bDisable++; } sParse.disableVtab = (prepFlags & SQLITE_PREPARE_NO_VTAB)!=0; /* Check to verify that it is possible to get a read lock on all ** database schemas. The inability to get a read lock indicates that ** some other database connection is holding a write-lock, which in ** turn means that the other connection has made uncommitted changes ** to the schema. ** ** Were we to proceed and prepare the statement against the uncommitted ** schema changes and if those schema changes are subsequently rolled ** back and different changes are made in their place, then when this ** prepared statement goes to run the schema cookie would fail to detect ** the schema change. Disaster would follow. ** ** This thread is currently holding mutexes on all Btrees (because ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it ** is not possible for another thread to start a new schema change ** while this routine is running. Hence, we do not need to hold ** locks on the schema, we just need to make sure nobody else is ** holding them. ** ** Note that setting READ_UNCOMMITTED overrides most lock detection, ** but it does *not* override schema lock detection, so this all still ** works even if READ_UNCOMMITTED is set. */ for(i=0; inDb; i++) { Btree *pBt = db->aDb[i].pBt; if( pBt ){ assert( sqlite3BtreeHoldsMutex(pBt) ); rc = sqlite3BtreeSchemaLocked(pBt); if( rc ){ const char *zDb = db->aDb[i].zDbSName; sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb); testcase( db->flags & SQLITE_ReadUncommit ); goto end_prepare; } } } sqlite3VtabUnlockList(db); sParse.db = db; if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ char *zSqlCopy; int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; testcase( nBytes==mxLen ); testcase( nBytes==mxLen+1 ); if( nBytes>mxLen ){ sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long"); rc = sqlite3ApiExit(db, SQLITE_TOOBIG); goto end_prepare; } zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); if( zSqlCopy ){ sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg); sParse.zTail = &zSql[sParse.zTail-zSqlCopy]; sqlite3DbFree(db, zSqlCopy); }else{ sParse.zTail = &zSql[nBytes]; } }else{ sqlite3RunParser(&sParse, zSql, &zErrMsg); } assert( 0==sParse.nQueryLoop ); if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK; if( sParse.checkSchema ){ schemaIsValid(&sParse); } if( db->mallocFailed ){ sParse.rc = SQLITE_NOMEM_BKPT; } if( pzTail ){ *pzTail = sParse.zTail; } rc = sParse.rc; #ifndef SQLITE_OMIT_EXPLAIN /* Justification for the ALWAYS(): The only way for rc to be SQLITE_OK and ** sParse.pVdbe to be NULL is if the input SQL is an empty string, but in ** that case, sParse.explain will be false. */ if( sParse.explain && rc==SQLITE_OK && ALWAYS(sParse.pVdbe) ){ static const char * const azColName[] = { "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", "id", "parent", "notused", "detail" }; int iFirst, mx; if( sParse.explain==2 ){ sqlite3VdbeSetNumCols(sParse.pVdbe, 4); iFirst = 8; mx = 12; }else{ sqlite3VdbeSetNumCols(sParse.pVdbe, 8); iFirst = 0; mx = 8; } for(i=iFirst; iinit.busy==0 ){ sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags); } if( rc!=SQLITE_OK || db->mallocFailed ){ if( sParse.pVdbe ) sqlite3VdbeFinalize(sParse.pVdbe); assert(!(*ppStmt)); }else{ *ppStmt = (sqlite3_stmt*)sParse.pVdbe; } if( zErrMsg ){ sqlite3ErrorWithMsg(db, rc, "%s", zErrMsg); sqlite3DbFree(db, zErrMsg); }else{ sqlite3Error(db, rc); } /* Delete any TriggerPrg structures allocated while parsing this statement. */ while( sParse.pTriggerPrg ){ TriggerPrg *pT = sParse.pTriggerPrg; sParse.pTriggerPrg = pT->pNext; sqlite3DbFree(db, pT); } end_prepare: sqlite3ParserReset(&sParse); return rc; } static int sqlite3LockAndPrepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ Vdbe *pOld, /* VM being reprepared */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; int cnt = 0; int bReleaseSchema = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; #endif *ppStmt = 0; if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ return SQLITE_MISUSE_BKPT; } sqlite3_mutex_enter(db->mutex); bReleaseSchema = sqlite3LockReusableSchema(db); sqlite3BtreeEnterAll(db); do{ /* Make multiple attempts to compile the SQL, until it either succeeds ** or encounters a permanent error. A schema problem after one schema ** reset is considered a permanent error. */ rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail); assert( rc==SQLITE_OK || *ppStmt==0 ); }while( rc==SQLITE_ERROR_RETRY || (rc==SQLITE_SCHEMA && (sqlite3ResetOneSchema(db,-1), cnt++)==0) ); sqlite3BtreeLeaveAll(db); sqlite3UnlockReusableSchema(db, bReleaseSchema); rc = sqlite3ApiExit(db, rc); assert( (rc&db->errMask)==rc ); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Rerun the compilation of a statement after a schema change. ** ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, ** if the statement cannot be recompiled because another connection has ** locked the sqlite3_master table, return SQLITE_LOCKED. If any other error ** occurs, return SQLITE_SCHEMA. */ int sqlite3Reprepare(Vdbe *p){ int rc; sqlite3_stmt *pNew; const char *zSql; sqlite3 *db; u8 prepFlags; assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); zSql = sqlite3_sql((sqlite3_stmt *)p); assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ db = sqlite3VdbeDb(p); assert( sqlite3_mutex_held(db->mutex) ); prepFlags = sqlite3VdbePrepareFlags(p); rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0); if( rc ){ if( rc==SQLITE_NOMEM ){ sqlite3OomFault(db); } assert( pNew==0 ); return rc; }else{ assert( pNew!=0 ); } sqlite3VdbeSwap((Vdbe*)pNew, p); sqlite3TransferBindings(pNew, (sqlite3_stmt*)p); sqlite3VdbeResetStepResult((Vdbe*)pNew); sqlite3VdbeFinalize((Vdbe*)pNew); return SQLITE_OK; } /* ** Two versions of the official API. Legacy and new use. In the legacy ** version, the original SQL text is not saved in the prepared statement ** and so if a schema change occurs, SQLITE_SCHEMA is returned by ** sqlite3_step(). In the new version, the original SQL text is retained ** and the statement is automatically recompiled if an schema change ** occurs. */ int sqlite3_prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } int sqlite3_prepare_v2( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags ** parameter. ** ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */ rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0, ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); return rc; } int sqlite3_prepare_v3( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from ** sqlite3_prepare_v2() only in having the extra prepFlags parameter, ** which is a bit array consisting of zero or more of the ** SQLITE_PREPARE_* flags. ** ** Proof by comparison to the implementation of sqlite3_prepare_v2() ** directly above. */ rc = sqlite3LockAndPrepare(db,zSql,nBytes, SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 0,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); return rc; } #ifndef SQLITE_OMIT_UTF16 /* ** Compile the UTF-16 encoded SQL statement zSql into a statement handle. */ static int sqlite3Prepare16( sqlite3 *db, /* Database handle. */ const void *zSql, /* UTF-16 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const void **pzTail /* OUT: End of parsed string */ ){ /* This function currently works by first transforming the UTF-16 ** encoded string to UTF-8, then invoking sqlite3_prepare(). The ** tricky bit is figuring out the pointer to return in *pzTail. */ char *zSql8; const char *zTail8 = 0; int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_API_ARMOR if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; #endif *ppStmt = 0; if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ return SQLITE_MISUSE_BKPT; } if( nBytes>=0 ){ int sz; const char *z = (const char*)zSql; for(sz=0; szmutex); zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); if( zSql8 ){ rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8); } if( zTail8 && pzTail ){ /* If sqlite3_prepare returns a tail pointer, we calculate the ** equivalent pointer into the UTF-16 string by counting the unicode ** characters between zSql8 and zTail8, and then returning a pointer ** the same number of characters into the UTF-16 string. */ int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8)); *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); } sqlite3DbFree(db, zSql8); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Two versions of the official API. Legacy and new use. In the legacy ** version, the original SQL text is not saved in the prepared statement ** and so if a schema change occurs, SQLITE_SCHEMA is returned by ** sqlite3_step(). In the new version, the original SQL text is retained ** and the statement is automatically recompiled if an schema change ** occurs. */ int sqlite3_prepare16( sqlite3 *db, /* Database handle. */ const void *zSql, /* UTF-16 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const void **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } int sqlite3_prepare16_v2( sqlite3 *db, /* Database handle. */ const void *zSql, /* UTF-16 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const void **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } int sqlite3_prepare16_v3( sqlite3 *db, /* Database handle. */ const void *zSql, /* UTF-16 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const void **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3Prepare16(db,zSql,nBytes, SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } #endif /* SQLITE_OMIT_UTF16 */