/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** ** $Id: main.c,v 1.475 2008/07/10 18:13:42 drh Exp $ */ #include "sqliteInt.h" #include #ifdef SQLITE_ENABLE_FTS3 # include "fts3.h" #endif #ifdef SQLITE_ENABLE_RTREE # include "rtree.h" #endif /* ** The version of the library */ const char sqlite3_version[] = SQLITE_VERSION; const char *sqlite3_libversion(void){ return sqlite3_version; } int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) /* ** If the following function pointer is not NULL and if ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing ** I/O active are written using this function. These messages ** are intended for debugging activity only. */ void (*sqlite3IoTrace)(const char*, ...) = 0; #endif /* ** If the following global variable points to a string which is the ** name of a directory, then that directory will be used to store ** temporary files. ** ** See also the "PRAGMA temp_store_directory" SQL command. */ char *sqlite3_temp_directory = 0; /* ** Initialize SQLite. ** ** This routine must be called to initialize the memory allocation, ** VFS, and mutex subsystesms prior to doing any serious work with ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT ** this routine will be called automatically by key routines such as ** sqlite3_open(). ** ** This routine is a no-op except on its very first call for the process, ** or for the first call after a call to sqlite3_shutdown. */ int sqlite3_initialize(void){ static int inProgress = 0; int rc; /* If SQLite is already initialized, this call is a no-op. */ if( sqlite3Config.isInit ) return SQLITE_OK; /* Make sure the mutex system is initialized. */ rc = sqlite3MutexInit(); if( rc==SQLITE_OK ){ /* Initialize the malloc() system and the recursive pInitMutex mutex. ** This operation is protected by the STATIC_MASTER mutex. */ sqlite3_mutex *pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); sqlite3_mutex_enter(pMaster); if( !sqlite3Config.isMallocInit ){ rc = sqlite3MallocInit(); } if( rc==SQLITE_OK ){ sqlite3Config.isMallocInit = 1; if( !sqlite3Config.pInitMutex ){ sqlite3Config.pInitMutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); if( sqlite3Config.bCoreMutex && !sqlite3Config.pInitMutex ){ rc = SQLITE_NOMEM; } } } sqlite3_mutex_leave(pMaster); if( rc!=SQLITE_OK ){ return rc; } /* Enter the recursive pInitMutex mutex. After doing so, if the ** sqlite3Config.isInit flag is true, then some other thread has ** finished doing the initialization. If the inProgress flag is ** true, then this function is being called recursively from within ** the sqlite3_os_init() call below. In either case, exit early. */ sqlite3_mutex_enter(sqlite3Config.pInitMutex); if( sqlite3Config.isInit || inProgress ){ sqlite3_mutex_leave(sqlite3Config.pInitMutex); return SQLITE_OK; } sqlite3StatusReset(); inProgress = 1; rc = sqlite3_os_init(); inProgress = 0; sqlite3Config.isInit = (rc==SQLITE_OK ? 1 : 0); sqlite3_mutex_leave(sqlite3Config.pInitMutex); } return rc; } /* ** Undo the effects of sqlite3_initialize(). Must not be called while ** there are outstanding database connections or memory allocations or ** while any part of SQLite is otherwise in use in any thread. This ** routine is not threadsafe. Not by a long shot. */ int sqlite3_shutdown(void){ sqlite3_mutex_free(sqlite3Config.pInitMutex); sqlite3Config.pInitMutex = 0; sqlite3Config.isMallocInit = 0; if( sqlite3Config.isInit ){ sqlite3_os_end(); } if( sqlite3Config.m.xShutdown ){ sqlite3MallocEnd(); } if( sqlite3Config.mutex.xMutexEnd ){ sqlite3MutexEnd(); } sqlite3Config.isInit = 0; return SQLITE_OK; } /* ** This API allows applications to modify the global configuration of ** the SQLite library at run-time. ** ** This routine should only be called when there are no outstanding ** database connections or memory allocations. This routine is not ** threadsafe. Failure to heed these warnings can lead to unpredictable ** behavior. */ int sqlite3_config(int op, ...){ va_list ap; int rc = SQLITE_OK; /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while ** the SQLite library is in use. */ if( sqlite3Config.isInit ) return SQLITE_MISUSE; va_start(ap, op); switch( op ){ case SQLITE_CONFIG_SINGLETHREAD: { /* Disable all mutexing */ sqlite3Config.bCoreMutex = 0; sqlite3Config.bFullMutex = 0; break; } case SQLITE_CONFIG_MULTITHREAD: { /* Disable mutexing of database connections */ /* Enable mutexing of core data structures */ sqlite3Config.bCoreMutex = 1; sqlite3Config.bFullMutex = 0; break; } case SQLITE_CONFIG_SERIALIZED: { /* Enable all mutexing */ sqlite3Config.bCoreMutex = 1; sqlite3Config.bFullMutex = 1; break; } case SQLITE_CONFIG_MALLOC: { /* Specify an alternative malloc implementation */ sqlite3Config.m = *va_arg(ap, sqlite3_mem_methods*); break; } case SQLITE_CONFIG_GETMALLOC: { /* Retrieve the current malloc() implementation */ if( sqlite3Config.m.xMalloc==0 ) sqlite3MemSetDefault(); *va_arg(ap, sqlite3_mem_methods*) = sqlite3Config.m; break; } case SQLITE_CONFIG_MUTEX: { /* Specify an alternative mutex implementation */ sqlite3Config.mutex = *va_arg(ap, sqlite3_mutex_methods*); break; } case SQLITE_CONFIG_GETMUTEX: { /* Retrieve the current mutex implementation */ *va_arg(ap, sqlite3_mutex_methods*) = sqlite3Config.mutex; break; } case SQLITE_CONFIG_MEMSTATUS: { /* Enable or disable the malloc status collection */ sqlite3Config.bMemstat = va_arg(ap, int); break; } case SQLITE_CONFIG_SCRATCH: { /* Designate a buffer for scratch memory space */ sqlite3Config.pScratch = va_arg(ap, void*); sqlite3Config.szScratch = va_arg(ap, int); sqlite3Config.nScratch = va_arg(ap, int); break; } case SQLITE_CONFIG_PAGECACHE: { /* Designate a buffer for scratch memory space */ sqlite3Config.pPage = va_arg(ap, void*); sqlite3Config.szPage = va_arg(ap, int); sqlite3Config.nPage = va_arg(ap, int); break; } case SQLITE_CONFIG_HEAP: { /* Designate a buffer for heap memory space */ sqlite3Config.pHeap = va_arg(ap, void*); sqlite3Config.nHeap = va_arg(ap, int); sqlite3Config.mnReq = va_arg(ap, int); if( sqlite3Config.pHeap==0 ){ /* If the heap pointer is NULL, then restore the malloc implementation ** back to NULL pointers too. This will cause the malloc to go ** back to its default implementation when sqlite3_initialize() is ** run. */ memset(&sqlite3Config.m, 0, sizeof(sqlite3Config.m)); }else{ /* The heap pointer is not NULL, then install one of the ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor ** ENABLE_MEMSYS5 is defined, return an error. ** the default case and return an error. */ #ifdef SQLITE_ENABLE_MEMSYS3 sqlite3Config.m = sqlite3MemGetMemsys3(); #endif #ifdef SQLITE_ENABLE_MEMSYS5 sqlite3Config.m = sqlite3MemGetMemsys5(); #endif #if !defined(SQLITE_ENABLE_MEMSYS3) && !defined(SQLITE_ENABLE_MEMSYS5) rc = SQLITE_ERROR; #endif } break; } default: { rc = SQLITE_ERROR; break; } } va_end(ap); return rc; } /* ** Routine needed to support the testcase() macro. */ #ifdef SQLITE_COVERAGE_TEST void sqlite3Coverage(int x){ static int dummy = 0; dummy += x; } #endif /* ** Return true if the buffer z[0..n-1] contains all spaces. */ static int allSpaces(const char *z, int n){ while( n>0 && z[n-1]==' ' ){ n--; } return n==0; } /* ** This is the default collating function named "BINARY" which is always ** available. ** ** If the padFlag argument is not NULL then space padding at the end ** of strings is ignored. This implements the RTRIM collation. */ static int binCollFunc( void *padFlag, int nKey1, const void *pKey1, int nKey2, const void *pKey2 ){ int rc, n; n = nKey1lastRowid; } /* ** Return the number of changes in the most recent call to sqlite3_exec(). */ int sqlite3_changes(sqlite3 *db){ return db->nChange; } /* ** Return the number of changes since the database handle was opened. */ int sqlite3_total_changes(sqlite3 *db){ return db->nTotalChange; } /* ** Close an existing SQLite database */ int sqlite3_close(sqlite3 *db){ HashElem *i; int j; if( !db ){ return SQLITE_OK; } if( !sqlite3SafetyCheckSickOrOk(db) ){ return SQLITE_MISUSE; } sqlite3_mutex_enter(db->mutex); #ifdef SQLITE_SSE { extern void sqlite3SseCleanup(sqlite3*); sqlite3SseCleanup(db); } #endif sqlite3ResetInternalSchema(db, 0); /* If a transaction is open, the ResetInternalSchema() call above ** will not have called the xDisconnect() method on any virtual ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() ** call will do so. We need to do this before the check for active ** SQL statements below, as the v-table implementation may be storing ** some prepared statements internally. */ sqlite3VtabRollback(db); /* If there are any outstanding VMs, return SQLITE_BUSY. */ if( db->pVdbe ){ sqlite3Error(db, SQLITE_BUSY, "Unable to close due to unfinalised statements"); sqlite3_mutex_leave(db->mutex); return SQLITE_BUSY; } assert( sqlite3SafetyCheckSickOrOk(db) ); for(j=0; jnDb; j++){ struct Db *pDb = &db->aDb[j]; if( pDb->pBt ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; if( j!=1 ){ pDb->pSchema = 0; } } } sqlite3ResetInternalSchema(db, 0); assert( db->nDb<=2 ); assert( db->aDb==db->aDbStatic ); for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ FuncDef *pFunc, *pNext; for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){ pNext = pFunc->pNext; sqlite3_free(pFunc); } } for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ CollSeq *pColl = (CollSeq *)sqliteHashData(i); /* Invoke any destructors registered for collation sequence user data. */ for(j=0; j<3; j++){ if( pColl[j].xDel ){ pColl[j].xDel(pColl[j].pUser); } } sqlite3_free(pColl); } sqlite3HashClear(&db->aCollSeq); #ifndef SQLITE_OMIT_VIRTUALTABLE for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ Module *pMod = (Module *)sqliteHashData(i); if( pMod->xDestroy ){ pMod->xDestroy(pMod->pAux); } sqlite3_free(pMod); } sqlite3HashClear(&db->aModule); #endif sqlite3HashClear(&db->aFunc); sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ if( db->pErr ){ sqlite3ValueFree(db->pErr); } sqlite3CloseExtensions(db); db->magic = SQLITE_MAGIC_ERROR; /* The temp-database schema is allocated differently from the other schema ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). ** So it needs to be freed here. Todo: Why not roll the temp schema into ** the same sqliteMalloc() as the one that allocates the database ** structure? */ sqlite3_free(db->aDb[1].pSchema); sqlite3_mutex_leave(db->mutex); db->magic = SQLITE_MAGIC_CLOSED; sqlite3_mutex_free(db->mutex); sqlite3_free(db); return SQLITE_OK; } /* ** Rollback all database files. */ void sqlite3RollbackAll(sqlite3 *db){ int i; int inTrans = 0; assert( sqlite3_mutex_held(db->mutex) ); sqlite3BeginBenignMalloc(); for(i=0; inDb; i++){ if( db->aDb[i].pBt ){ if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){ inTrans = 1; } sqlite3BtreeRollback(db->aDb[i].pBt); db->aDb[i].inTrans = 0; } } sqlite3VtabRollback(db); sqlite3EndBenignMalloc(); if( db->flags&SQLITE_InternChanges ){ sqlite3ExpirePreparedStatements(db); sqlite3ResetInternalSchema(db, 0); } /* If one has been configured, invoke the rollback-hook callback */ if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ db->xRollbackCallback(db->pRollbackArg); } } /* ** Return a static string that describes the kind of error specified in the ** argument. */ const char *sqlite3ErrStr(int rc){ const char *z; switch( rc & 0xff ){ case SQLITE_ROW: case SQLITE_DONE: case SQLITE_OK: z = "not an error"; break; case SQLITE_ERROR: z = "SQL logic error or missing database"; break; case SQLITE_PERM: z = "access permission denied"; break; case SQLITE_ABORT: z = "callback requested query abort"; break; case SQLITE_BUSY: z = "database is locked"; break; case SQLITE_LOCKED: z = "database table is locked"; break; case SQLITE_NOMEM: z = "out of memory"; break; case SQLITE_READONLY: z = "attempt to write a readonly database"; break; case SQLITE_INTERRUPT: z = "interrupted"; break; case SQLITE_IOERR: z = "disk I/O error"; break; case SQLITE_CORRUPT: z = "database disk image is malformed"; break; case SQLITE_FULL: z = "database or disk is full"; break; case SQLITE_CANTOPEN: z = "unable to open database file"; break; case SQLITE_EMPTY: z = "table contains no data"; break; case SQLITE_SCHEMA: z = "database schema has changed"; break; case SQLITE_TOOBIG: z = "String or BLOB exceeded size limit"; break; case SQLITE_CONSTRAINT: z = "constraint failed"; break; case SQLITE_MISMATCH: z = "datatype mismatch"; break; case SQLITE_MISUSE: z = "library routine called out of sequence";break; case SQLITE_NOLFS: z = "large file support is disabled"; break; case SQLITE_AUTH: z = "authorization denied"; break; case SQLITE_FORMAT: z = "auxiliary database format error"; break; case SQLITE_RANGE: z = "bind or column index out of range"; break; case SQLITE_NOTADB: z = "file is encrypted or is not a database";break; default: z = "unknown error"; break; } return z; } /* ** This routine implements a busy callback that sleeps and tries ** again until a timeout value is reached. The timeout value is ** an integer number of milliseconds passed in as the first ** argument. */ static int sqliteDefaultBusyCallback( void *ptr, /* Database connection */ int count /* Number of times table has been busy */ ){ #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) static const u8 delays[] = { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; static const u8 totals[] = { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; # define NDELAY (sizeof(delays)/sizeof(delays[0])) sqlite3 *db = (sqlite3 *)ptr; int timeout = db->busyTimeout; int delay, prior; assert( count>=0 ); if( count < NDELAY ){ delay = delays[count]; prior = totals[count]; }else{ delay = delays[NDELAY-1]; prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); } if( prior + delay > timeout ){ delay = timeout - prior; if( delay<=0 ) return 0; } sqlite3OsSleep(db->pVfs, delay*1000); return 1; #else sqlite3 *db = (sqlite3 *)ptr; int timeout = ((sqlite3 *)ptr)->busyTimeout; if( (count+1)*1000 > timeout ){ return 0; } sqlite3OsSleep(db->pVfs, 1000000); return 1; #endif } /* ** Invoke the given busy handler. ** ** This routine is called when an operation failed with a lock. ** If this routine returns non-zero, the lock is retried. If it ** returns 0, the operation aborts with an SQLITE_BUSY error. */ int sqlite3InvokeBusyHandler(BusyHandler *p){ int rc; failsafe( p==0, 0x912aaf8d, {return 0;}) if( p->xFunc==0 || p->nBusy<0 ) return 0; rc = p->xFunc(p->pArg, p->nBusy); if( rc==0 ){ p->nBusy = -1; }else{ p->nBusy++; } return rc; } /* ** This routine sets the busy callback for an Sqlite database to the ** given callback function with the given argument. */ int sqlite3_busy_handler( sqlite3 *db, int (*xBusy)(void*,int), void *pArg ){ sqlite3_mutex_enter(db->mutex); db->busyHandler.xFunc = xBusy; db->busyHandler.pArg = pArg; db->busyHandler.nBusy = 0; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_PROGRESS_CALLBACK /* ** This routine sets the progress callback for an Sqlite database to the ** given callback function with the given argument. The progress callback will ** be invoked every nOps opcodes. */ void sqlite3_progress_handler( sqlite3 *db, int nOps, int (*xProgress)(void*), void *pArg ){ sqlite3_mutex_enter(db->mutex); if( nOps>0 ){ db->xProgress = xProgress; db->nProgressOps = nOps; db->pProgressArg = pArg; }else{ db->xProgress = 0; db->nProgressOps = 0; db->pProgressArg = 0; } sqlite3_mutex_leave(db->mutex); } #endif /* ** This routine installs a default busy handler that waits for the ** specified number of milliseconds before returning 0. */ int sqlite3_busy_timeout(sqlite3 *db, int ms){ if( ms>0 ){ db->busyTimeout = ms; sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); }else{ sqlite3_busy_handler(db, 0, 0); } return SQLITE_OK; } /* ** Cause any pending operation to stop at its earliest opportunity. */ void sqlite3_interrupt(sqlite3 *db){ db->u1.isInterrupted = 1; } /* ** This function is exactly the same as sqlite3_create_function(), except ** that it is designed to be called by internal code. The difference is ** that if a malloc() fails in sqlite3_create_function(), an error code ** is returned and the mallocFailed flag cleared. */ int sqlite3CreateFunc( sqlite3 *db, const char *zFunctionName, int nArg, int enc, void *pUserData, void (*xFunc)(sqlite3_context*,int,sqlite3_value **), void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*) ){ FuncDef *p; int nName; assert( sqlite3_mutex_held(db->mutex) ); if( zFunctionName==0 || (xFunc && (xFinal || xStep)) || (!xFunc && (xFinal && !xStep)) || (!xFunc && (!xFinal && xStep)) || (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || (255<(nName = sqlite3Strlen(db, zFunctionName))) ){ sqlite3Error(db, SQLITE_ERROR, "bad parameters"); return SQLITE_ERROR; } #ifndef SQLITE_OMIT_UTF16 /* If SQLITE_UTF16 is specified as the encoding type, transform this ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. ** ** If SQLITE_ANY is specified, add three versions of the function ** to the hash table. */ if( enc==SQLITE_UTF16 ){ enc = SQLITE_UTF16NATIVE; }else if( enc==SQLITE_ANY ){ int rc; rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8, pUserData, xFunc, xStep, xFinal); if( rc==SQLITE_OK ){ rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE, pUserData, xFunc, xStep, xFinal); } if( rc!=SQLITE_OK ){ return rc; } enc = SQLITE_UTF16BE; } #else enc = SQLITE_UTF8; #endif /* Check if an existing function is being overridden or deleted. If so, ** and there are active VMs, then return SQLITE_BUSY. If a function ** is being overridden/deleted but there are no active VMs, allow the ** operation to continue but invalidate all precompiled statements. */ p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0); if( p && p->iPrefEnc==enc && p->nArg==nArg ){ if( db->activeVdbeCnt ){ sqlite3Error(db, SQLITE_BUSY, "Unable to delete/modify user-function due to active statements"); assert( !db->mallocFailed ); return SQLITE_BUSY; }else{ sqlite3ExpirePreparedStatements(db); } } p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1); assert(p || db->mallocFailed); if( !p ){ return SQLITE_NOMEM; } p->flags = 0; p->xFunc = xFunc; p->xStep = xStep; p->xFinalize = xFinal; p->pUserData = pUserData; p->nArg = nArg; return SQLITE_OK; } /* ** Create new user functions. */ int sqlite3_create_function( sqlite3 *db, const char *zFunctionName, int nArg, int enc, void *p, void (*xFunc)(sqlite3_context*,int,sqlite3_value **), void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*) ){ int rc; sqlite3_mutex_enter(db->mutex); rc = sqlite3CreateFunc(db, zFunctionName, nArg, enc, p, xFunc, xStep, xFinal); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #ifndef SQLITE_OMIT_UTF16 int sqlite3_create_function16( sqlite3 *db, const void *zFunctionName, int nArg, int eTextRep, void *p, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ){ int rc; char *zFunc8; sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1); rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal); sqlite3_free(zFunc8); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* ** Declare that a function has been overloaded by a virtual table. ** ** If the function already exists as a regular global function, then ** this routine is a no-op. If the function does not exist, then create ** a new one that always throws a run-time error. ** ** When virtual tables intend to provide an overloaded function, they ** should call this routine to make sure the global function exists. ** A global function must exist in order for name resolution to work ** properly. */ int sqlite3_overload_function( sqlite3 *db, const char *zName, int nArg ){ int nName = sqlite3Strlen(db, zName); int rc; sqlite3_mutex_enter(db->mutex); if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 0, sqlite3InvalidFunction, 0, 0); } rc = sqlite3ApiExit(db, SQLITE_OK); sqlite3_mutex_leave(db->mutex); return rc; } #ifndef SQLITE_OMIT_TRACE /* ** Register a trace function. The pArg from the previously registered trace ** is returned. ** ** A NULL trace function means that no tracing is executes. A non-NULL ** trace is a pointer to a function that is invoked at the start of each ** SQL statement. */ void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ void *pOld; sqlite3_mutex_enter(db->mutex); pOld = db->pTraceArg; db->xTrace = xTrace; db->pTraceArg = pArg; sqlite3_mutex_leave(db->mutex); return pOld; } /* ** Register a profile function. The pArg from the previously registered ** profile function is returned. ** ** A NULL profile function means that no profiling is executes. A non-NULL ** profile is a pointer to a function that is invoked at the conclusion of ** each SQL statement that is run. */ void *sqlite3_profile( sqlite3 *db, void (*xProfile)(void*,const char*,sqlite_uint64), void *pArg ){ void *pOld; sqlite3_mutex_enter(db->mutex); pOld = db->pProfileArg; db->xProfile = xProfile; db->pProfileArg = pArg; sqlite3_mutex_leave(db->mutex); return pOld; } #endif /* SQLITE_OMIT_TRACE */ /*** EXPERIMENTAL *** ** ** Register a function to be invoked when a transaction comments. ** If the invoked function returns non-zero, then the commit becomes a ** rollback. */ void *sqlite3_commit_hook( sqlite3 *db, /* Attach the hook to this database */ int (*xCallback)(void*), /* Function to invoke on each commit */ void *pArg /* Argument to the function */ ){ void *pOld; sqlite3_mutex_enter(db->mutex); pOld = db->pCommitArg; db->xCommitCallback = xCallback; db->pCommitArg = pArg; sqlite3_mutex_leave(db->mutex); return pOld; } /* ** Register a callback to be invoked each time a row is updated, ** inserted or deleted using this database connection. */ void *sqlite3_update_hook( sqlite3 *db, /* Attach the hook to this database */ void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), void *pArg /* Argument to the function */ ){ void *pRet; sqlite3_mutex_enter(db->mutex); pRet = db->pUpdateArg; db->xUpdateCallback = xCallback; db->pUpdateArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; } /* ** Register a callback to be invoked each time a transaction is rolled ** back by this database connection. */ void *sqlite3_rollback_hook( sqlite3 *db, /* Attach the hook to this database */ void (*xCallback)(void*), /* Callback function */ void *pArg /* Argument to the function */ ){ void *pRet; sqlite3_mutex_enter(db->mutex); pRet = db->pRollbackArg; db->xRollbackCallback = xCallback; db->pRollbackArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; } /* ** This routine is called to create a connection to a database BTree ** driver. If zFilename is the name of a file, then that file is ** opened and used. If zFilename is the magic name ":memory:" then ** the database is stored in memory (and is thus forgotten as soon as ** the connection is closed.) If zFilename is NULL then the database ** is a "virtual" database for transient use only and is deleted as ** soon as the connection is closed. ** ** A virtual database can be either a disk file (that is automatically ** deleted when the file is closed) or it an be held entirely in memory, ** depending on the values of the SQLITE_TEMP_STORE compile-time macro and the ** db->temp_store variable, according to the following chart: ** ** SQLITE_TEMP_STORE db->temp_store Location of temporary database ** ----------------- -------------- ------------------------------ ** 0 any file ** 1 1 file ** 1 2 memory ** 1 0 file ** 2 1 file ** 2 2 memory ** 2 0 memory ** 3 any memory */ int sqlite3BtreeFactory( const sqlite3 *db, /* Main database when opening aux otherwise 0 */ const char *zFilename, /* Name of the file containing the BTree database */ int omitJournal, /* if TRUE then do not journal this file */ int nCache, /* How many pages in the page cache */ int vfsFlags, /* Flags passed through to vfsOpen */ Btree **ppBtree /* Pointer to new Btree object written here */ ){ int btFlags = 0; int rc; assert( sqlite3_mutex_held(db->mutex) ); assert( ppBtree != 0); if( omitJournal ){ btFlags |= BTREE_OMIT_JOURNAL; } if( db->flags & SQLITE_NoReadlock ){ btFlags |= BTREE_NO_READLOCK; } if( zFilename==0 ){ #if SQLITE_TEMP_STORE==0 /* Do nothing */ #endif #ifndef SQLITE_OMIT_MEMORYDB #if SQLITE_TEMP_STORE==1 if( db->temp_store==2 ) zFilename = ":memory:"; #endif #if SQLITE_TEMP_STORE==2 if( db->temp_store!=1 ) zFilename = ":memory:"; #endif #if SQLITE_TEMP_STORE==3 zFilename = ":memory:"; #endif #endif /* SQLITE_OMIT_MEMORYDB */ } if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (zFilename==0 || *zFilename==0) ){ vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; } rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btFlags, vfsFlags); /* If the B-Tree was successfully opened, set the pager-cache size to the ** default value. Except, if the call to BtreeOpen() returned a handle ** open on an existing shared pager-cache, do not change the pager-cache ** size. */ if( rc==SQLITE_OK && 0==sqlite3BtreeSchema(*ppBtree, 0, 0) ){ sqlite3BtreeSetCacheSize(*ppBtree, nCache); } return rc; } /* ** Return UTF-8 encoded English language explanation of the most recent ** error. */ const char *sqlite3_errmsg(sqlite3 *db){ const char *z; if( !db ){ return sqlite3ErrStr(SQLITE_NOMEM); } if( !sqlite3SafetyCheckSickOrOk(db) ){ return sqlite3ErrStr(SQLITE_MISUSE); } sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); z = (char*)sqlite3_value_text(db->pErr); assert( !db->mallocFailed ); if( z==0 ){ z = sqlite3ErrStr(db->errCode); } sqlite3_mutex_leave(db->mutex); return z; } #ifndef SQLITE_OMIT_UTF16 /* ** Return UTF-16 encoded English language explanation of the most recent ** error. */ const void *sqlite3_errmsg16(sqlite3 *db){ /* Because all the characters in the string are in the unicode ** range 0x00-0xFF, if we pad the big-endian string with a ** zero byte, we can obtain the little-endian string with ** &big_endian[1]. */ static const char outOfMemBe[] = { 0, 'o', 0, 'u', 0, 't', 0, ' ', 0, 'o', 0, 'f', 0, ' ', 0, 'm', 0, 'e', 0, 'm', 0, 'o', 0, 'r', 0, 'y', 0, 0, 0 }; static const char misuseBe [] = { 0, 'l', 0, 'i', 0, 'b', 0, 'r', 0, 'a', 0, 'r', 0, 'y', 0, ' ', 0, 'r', 0, 'o', 0, 'u', 0, 't', 0, 'i', 0, 'n', 0, 'e', 0, ' ', 0, 'c', 0, 'a', 0, 'l', 0, 'l', 0, 'e', 0, 'd', 0, ' ', 0, 'o', 0, 'u', 0, 't', 0, ' ', 0, 'o', 0, 'f', 0, ' ', 0, 's', 0, 'e', 0, 'q', 0, 'u', 0, 'e', 0, 'n', 0, 'c', 0, 'e', 0, 0, 0 }; const void *z; if( !db ){ return (void *)(&outOfMemBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); } if( !sqlite3SafetyCheckSickOrOk(db) ){ return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); } sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); z = sqlite3_value_text16(db->pErr); if( z==0 ){ sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), SQLITE_UTF8, SQLITE_STATIC); z = sqlite3_value_text16(db->pErr); } /* A malloc() may have failed within the call to sqlite3_value_text16() ** above. If this is the case, then the db->mallocFailed flag needs to ** be cleared before returning. Do this directly, instead of via ** sqlite3ApiExit(), to avoid setting the database handle error message. */ db->mallocFailed = 0; sqlite3_mutex_leave(db->mutex); return z; } #endif /* SQLITE_OMIT_UTF16 */ /* ** Return the most recent error code generated by an SQLite routine. If NULL is ** passed to this function, we assume a malloc() failed during sqlite3_open(). */ int sqlite3_errcode(sqlite3 *db){ if( db && !sqlite3SafetyCheckSickOrOk(db) ){ return SQLITE_MISUSE; } if( !db || db->mallocFailed ){ return SQLITE_NOMEM; } return db->errCode & db->errMask; } /* ** Create a new collating function for database "db". The name is zName ** and the encoding is enc. */ static int createCollation( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*), void(*xDel)(void*) ){ CollSeq *pColl; int enc2; int nName; assert( sqlite3_mutex_held(db->mutex) ); /* If SQLITE_UTF16 is specified as the encoding type, transform this ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. */ enc2 = enc & ~SQLITE_UTF16_ALIGNED; if( enc2==SQLITE_UTF16 ){ enc2 = SQLITE_UTF16NATIVE; } if( (enc2&~3)!=0 ){ return SQLITE_MISUSE; } /* Check if this call is removing or replacing an existing collation ** sequence. If so, and there are active VMs, return busy. If there ** are no active VMs, invalidate any pre-compiled statements. */ nName = sqlite3Strlen(db, zName); pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, nName, 0); if( pColl && pColl->xCmp ){ if( db->activeVdbeCnt ){ sqlite3Error(db, SQLITE_BUSY, "Unable to delete/modify collation sequence due to active statements"); return SQLITE_BUSY; } sqlite3ExpirePreparedStatements(db); /* If collation sequence pColl was created directly by a call to ** sqlite3_create_collation, and not generated by synthCollSeq(), ** then any copies made by synthCollSeq() need to be invalidated. ** Also, collation destructor - CollSeq.xDel() - function may need ** to be called. */ if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName); int j; for(j=0; j<3; j++){ CollSeq *p = &aColl[j]; if( p->enc==pColl->enc ){ if( p->xDel ){ p->xDel(p->pUser); } p->xCmp = 0; } } } } pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, nName, 1); if( pColl ){ pColl->xCmp = xCompare; pColl->pUser = pCtx; pColl->xDel = xDel; pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED); } sqlite3Error(db, SQLITE_OK, 0); return SQLITE_OK; } /* ** This array defines hard upper bounds on limit values. The ** initializer must be kept in sync with the SQLITE_LIMIT_* ** #defines in sqlite3.h. */ static const int aHardLimit[] = { SQLITE_MAX_LENGTH, SQLITE_MAX_SQL_LENGTH, SQLITE_MAX_COLUMN, SQLITE_MAX_EXPR_DEPTH, SQLITE_MAX_COMPOUND_SELECT, SQLITE_MAX_VDBE_OP, SQLITE_MAX_FUNCTION_ARG, SQLITE_MAX_ATTACHED, SQLITE_MAX_LIKE_PATTERN_LENGTH, SQLITE_MAX_VARIABLE_NUMBER, }; /* ** Make sure the hard limits are set to reasonable values */ #if SQLITE_MAX_LENGTH<100 # error SQLITE_MAX_LENGTH must be at least 100 #endif #if SQLITE_MAX_SQL_LENGTH<100 # error SQLITE_MAX_SQL_LENGTH must be at least 100 #endif #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH #endif #if SQLITE_MAX_COMPOUND_SELECT<2 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 #endif #if SQLITE_MAX_VDBE_OP<40 # error SQLITE_MAX_VDBE_OP must be at least 40 #endif #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>127 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 127 #endif #if SQLITE_MAX_ATTACH<0 || SQLITE_MAX_ATTACH>30 # error SQLITE_MAX_ATTACH must be between 0 and 30 #endif #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 #endif #if SQLITE_MAX_VARIABLE_NUMBER<1 # error SQLITE_MAX_VARIABLE_NUMBER must be at least 1 #endif /* ** Change the value of a limit. Report the old value. ** If an invalid limit index is supplied, report -1. ** Make no changes but still report the old value if the ** new limit is negative. ** ** A new lower limit does not shrink existing constructs. ** It merely prevents new constructs that exceed the limit ** from forming. */ int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ int oldLimit; if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ return -1; } oldLimit = db->aLimit[limitId]; if( newLimit>=0 ){ if( newLimit>aHardLimit[limitId] ){ newLimit = aHardLimit[limitId]; } db->aLimit[limitId] = newLimit; } return oldLimit; } /* ** This routine does the work of opening a database on behalf of ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" ** is UTF-8 encoded. */ static int openDatabase( const char *zFilename, /* Database filename UTF-8 encoded */ sqlite3 **ppDb, /* OUT: Returned database handle */ unsigned flags, /* Operational flags */ const char *zVfs /* Name of the VFS to use */ ){ sqlite3 *db; int rc; CollSeq *pColl; int isThreadsafe = 1; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif if( flags&SQLITE_OPEN_NOMUTEX ){ isThreadsafe = 0; } /* Remove harmful bits from the flags parameter */ flags &= ~( SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_MAIN_DB | SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_TRANSIENT_DB | SQLITE_OPEN_MAIN_JOURNAL | SQLITE_OPEN_TEMP_JOURNAL | SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_MASTER_JOURNAL | SQLITE_OPEN_NOMUTEX ); /* Allocate the sqlite data structure */ db = sqlite3MallocZero( sizeof(sqlite3) ); if( db==0 ) goto opendb_out; if( sqlite3Config.bFullMutex && isThreadsafe ){ db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); if( db->mutex==0 ){ sqlite3_free(db); db = 0; goto opendb_out; } } sqlite3_mutex_enter(db->mutex); db->errMask = 0xff; db->priorNewRowid = 0; db->nDb = 2; db->magic = SQLITE_MAGIC_BUSY; db->aDb = db->aDbStatic; assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); db->autoCommit = 1; db->nextAutovac = -1; db->nextPagesize = 0; db->flags |= SQLITE_ShortColNames #if SQLITE_DEFAULT_FILE_FORMAT<4 | SQLITE_LegacyFileFmt #endif #ifdef SQLITE_ENABLE_LOAD_EXTENSION | SQLITE_LoadExtension #endif ; sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0); #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3HashInit(&db->aModule, SQLITE_HASH_STRING, 0); #endif db->pVfs = sqlite3_vfs_find(zVfs); if( !db->pVfs ){ rc = SQLITE_ERROR; db->magic = SQLITE_MAGIC_SICK; sqlite3Error(db, rc, "no such vfs: %s", zVfs); goto opendb_out; } /* Add the default collation sequence BINARY. BINARY works for both UTF-8 ** and UTF-16, so add a version for each to avoid any unnecessary ** conversions. The only error that can occur here is a malloc() failure. */ createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); if( db->mallocFailed ){ db->magic = SQLITE_MAGIC_SICK; goto opendb_out; } db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0); assert( db->pDfltColl!=0 ); /* Also add a UTF-8 case-insensitive collation sequence. */ createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); /* Set flags on the built-in collating sequences */ db->pDfltColl->type = SQLITE_COLL_BINARY; pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0); if( pColl ){ pColl->type = SQLITE_COLL_NOCASE; } /* Open the backend database driver */ db->openFlags = flags; rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE, flags | SQLITE_OPEN_MAIN_DB, &db->aDb[0].pBt); if( rc!=SQLITE_OK ){ sqlite3Error(db, rc, 0); db->magic = SQLITE_MAGIC_SICK; goto opendb_out; } db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); /* The default safety_level for the main database is 'full'; for the temp ** database it is 'NONE'. This matches the pager layer defaults. */ db->aDb[0].zName = "main"; db->aDb[0].safety_level = 3; #ifndef SQLITE_OMIT_TEMPDB db->aDb[1].zName = "temp"; db->aDb[1].safety_level = 1; #endif db->magic = SQLITE_MAGIC_OPEN; if( db->mallocFailed ){ goto opendb_out; } /* Register all built-in functions, but do not attempt to read the ** database schema yet. This is delayed until the first time the database ** is accessed. */ sqlite3Error(db, SQLITE_OK, 0); sqlite3RegisterBuiltinFunctions(db); /* Load automatic extensions - extensions that have been registered ** using the sqlite3_automatic_extension() API. */ (void)sqlite3AutoLoadExtensions(db); if( sqlite3_errcode(db)!=SQLITE_OK ){ goto opendb_out; } #ifdef SQLITE_ENABLE_FTS1 if( !db->mallocFailed ){ extern int sqlite3Fts1Init(sqlite3*); rc = sqlite3Fts1Init(db); } #endif #ifdef SQLITE_ENABLE_FTS2 if( !db->mallocFailed && rc==SQLITE_OK ){ extern int sqlite3Fts2Init(sqlite3*); rc = sqlite3Fts2Init(db); } #endif #ifdef SQLITE_ENABLE_FTS3 if( !db->mallocFailed && rc==SQLITE_OK ){ rc = sqlite3Fts3Init(db); } #endif #ifdef SQLITE_ENABLE_ICU if( !db->mallocFailed && rc==SQLITE_OK ){ extern int sqlite3IcuInit(sqlite3*); rc = sqlite3IcuInit(db); } #endif #ifdef SQLITE_ENABLE_RTREE if( !db->mallocFailed && rc==SQLITE_OK){ rc = sqlite3RtreeInit(db); } #endif sqlite3Error(db, rc, 0); /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking ** mode. Doing nothing at all also makes NORMAL the default. */ #ifdef SQLITE_DEFAULT_LOCKING_MODE db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), SQLITE_DEFAULT_LOCKING_MODE); #endif opendb_out: if( db ){ assert( db->mutex!=0 || isThreadsafe==0 || sqlite3Config.bFullMutex==0 ); sqlite3_mutex_leave(db->mutex); } if( SQLITE_NOMEM==(rc = sqlite3_errcode(db)) ){ sqlite3_close(db); db = 0; } *ppDb = db; return sqlite3ApiExit(0, rc); } /* ** Open a new database handle. */ int sqlite3_open( const char *zFilename, sqlite3 **ppDb ){ return openDatabase(zFilename, ppDb, SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); } int sqlite3_open_v2( const char *filename, /* Database filename (UTF-8) */ sqlite3 **ppDb, /* OUT: SQLite db handle */ int flags, /* Flags */ const char *zVfs /* Name of VFS module to use */ ){ return openDatabase(filename, ppDb, flags, zVfs); } #ifndef SQLITE_OMIT_UTF16 /* ** Open a new database handle. */ int sqlite3_open16( const void *zFilename, sqlite3 **ppDb ){ char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ sqlite3_value *pVal; int rc; assert( zFilename ); assert( ppDb ); *ppDb = 0; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); if( zFilename8 ){ rc = openDatabase(zFilename8, ppDb, SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); assert( *ppDb || rc==SQLITE_NOMEM ); if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ ENC(*ppDb) = SQLITE_UTF16NATIVE; } }else{ rc = SQLITE_NOMEM; } sqlite3ValueFree(pVal); return sqlite3ApiExit(0, rc); } #endif /* SQLITE_OMIT_UTF16 */ /* ** Register a new collation sequence with the database handle db. */ int sqlite3_create_collation( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ int rc; sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); rc = createCollation(db, zName, enc, pCtx, xCompare, 0); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Register a new collation sequence with the database handle db. */ int sqlite3_create_collation_v2( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*), void(*xDel)(void*) ){ int rc; sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); rc = createCollation(db, zName, enc, pCtx, xCompare, xDel); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #ifndef SQLITE_OMIT_UTF16 /* ** Register a new collation sequence with the database handle db. */ int sqlite3_create_collation16( sqlite3* db, const void *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ int rc = SQLITE_OK; char *zName8; sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); zName8 = sqlite3Utf16to8(db, zName, -1); if( zName8 ){ rc = createCollation(db, zName8, enc, pCtx, xCompare, 0); sqlite3_free(zName8); } rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* SQLITE_OMIT_UTF16 */ /* ** Register a collation sequence factory callback with the database handle ** db. Replace any previously installed collation sequence factory. */ int sqlite3_collation_needed( sqlite3 *db, void *pCollNeededArg, void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) ){ sqlite3_mutex_enter(db->mutex); db->xCollNeeded = xCollNeeded; db->xCollNeeded16 = 0; db->pCollNeededArg = pCollNeededArg; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_UTF16 /* ** Register a collation sequence factory callback with the database handle ** db. Replace any previously installed collation sequence factory. */ int sqlite3_collation_needed16( sqlite3 *db, void *pCollNeededArg, void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) ){ sqlite3_mutex_enter(db->mutex); db->xCollNeeded = 0; db->xCollNeeded16 = xCollNeeded16; db->pCollNeededArg = pCollNeededArg; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #endif /* SQLITE_OMIT_UTF16 */ #ifndef SQLITE_OMIT_GLOBALRECOVER /* ** This function is now an anachronism. It used to be used to recover from a ** malloc() failure, but SQLite now does this automatically. */ int sqlite3_global_recover(void){ return SQLITE_OK; } #endif /* ** Test to see whether or not the database connection is in autocommit ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on ** by default. Autocommit is disabled by a BEGIN statement and reenabled ** by the next COMMIT or ROLLBACK. ** ******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** */ int sqlite3_get_autocommit(sqlite3 *db){ return db->autoCommit; } #ifdef SQLITE_DEBUG /* ** The following routine is subtituted for constant SQLITE_CORRUPT in ** debugging builds. This provides a way to set a breakpoint for when ** corruption is first detected. */ int sqlite3Corrupt(void){ return SQLITE_CORRUPT; } #endif /* ** This is a convenience routine that makes sure that all thread-specific ** data for this thread has been deallocated. ** ** SQLite no longer uses thread-specific data so this routine is now a ** no-op. It is retained for historical compatibility. */ void sqlite3_thread_cleanup(void){ } /* ** Return meta information about a specific column of a database table. ** See comment in sqlite3.h (sqlite.h.in) for details. */ #ifdef SQLITE_ENABLE_COLUMN_METADATA int sqlite3_table_column_metadata( sqlite3 *db, /* Connection handle */ const char *zDbName, /* Database name or NULL */ const char *zTableName, /* Table name */ const char *zColumnName, /* Column name */ char const **pzDataType, /* OUTPUT: Declared data type */ char const **pzCollSeq, /* OUTPUT: Collation sequence name */ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ int *pPrimaryKey, /* OUTPUT: True if column part of PK */ int *pAutoinc /* OUTPUT: True if column is auto-increment */ ){ int rc; char *zErrMsg = 0; Table *pTab = 0; Column *pCol = 0; int iCol; char const *zDataType = 0; char const *zCollSeq = 0; int notnull = 0; int primarykey = 0; int autoinc = 0; /* Ensure the database schema has been loaded */ sqlite3_mutex_enter(db->mutex); (void)sqlite3SafetyOn(db); sqlite3BtreeEnterAll(db); rc = sqlite3Init(db, &zErrMsg); sqlite3BtreeLeaveAll(db); if( SQLITE_OK!=rc ){ goto error_out; } /* Locate the table in question */ pTab = sqlite3FindTable(db, zTableName, zDbName); if( !pTab || pTab->pSelect ){ pTab = 0; goto error_out; } /* Find the column for which info is requested */ if( sqlite3IsRowid(zColumnName) ){ iCol = pTab->iPKey; if( iCol>=0 ){ pCol = &pTab->aCol[iCol]; } }else{ for(iCol=0; iColnCol; iCol++){ pCol = &pTab->aCol[iCol]; if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ break; } } if( iCol==pTab->nCol ){ pTab = 0; goto error_out; } } /* The following block stores the meta information that will be returned ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey ** and autoinc. At this point there are two possibilities: ** ** 1. The specified column name was rowid", "oid" or "_rowid_" ** and there is no explicitly declared IPK column. ** ** 2. The table is not a view and the column name identified an ** explicitly declared column. Copy meta information from *pCol. */ if( pCol ){ zDataType = pCol->zType; zCollSeq = pCol->zColl; notnull = pCol->notNull!=0; primarykey = pCol->isPrimKey!=0; autoinc = pTab->iPKey==iCol && pTab->autoInc; }else{ zDataType = "INTEGER"; primarykey = 1; } if( !zCollSeq ){ zCollSeq = "BINARY"; } error_out: (void)sqlite3SafetyOff(db); /* Whether the function call succeeded or failed, set the output parameters ** to whatever their local counterparts contain. If an error did occur, ** this has the effect of zeroing all output parameters. */ if( pzDataType ) *pzDataType = zDataType; if( pzCollSeq ) *pzCollSeq = zCollSeq; if( pNotNull ) *pNotNull = notnull; if( pPrimaryKey ) *pPrimaryKey = primarykey; if( pAutoinc ) *pAutoinc = autoinc; if( SQLITE_OK==rc && !pTab ){ sqlite3_free(zErrMsg); zErrMsg = sqlite3MPrintf("no such table column: %s.%s", zTableName, zColumnName); rc = SQLITE_ERROR; } sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg); sqlite3_free(zErrMsg); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* ** Sleep for a little while. Return the amount of time slept. */ int sqlite3_sleep(int ms){ sqlite3_vfs *pVfs; int rc; pVfs = sqlite3_vfs_find(0); if( pVfs==0 ) return 0; /* This function works in milliseconds, but the underlying OsSleep() ** API uses microseconds. Hence the 1000's. */ rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); return rc; } /* ** Enable or disable the extended result codes. */ int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ sqlite3_mutex_enter(db->mutex); db->errMask = onoff ? 0xffffffff : 0xff; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } /* ** Invoke the xFileControl method on a particular database. */ int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ int rc = SQLITE_ERROR; int iDb; sqlite3_mutex_enter(db->mutex); if( zDbName==0 ){ iDb = 0; }else{ for(iDb=0; iDbnDb; iDb++){ if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break; } } if( iDbnDb ){ Btree *pBtree = db->aDb[iDb].pBt; if( pBtree ){ Pager *pPager; sqlite3_file *fd; sqlite3BtreeEnter(pBtree); pPager = sqlite3BtreePager(pBtree); assert( pPager!=0 ); fd = sqlite3PagerFile(pPager); assert( fd!=0 ); if( fd->pMethods ){ rc = sqlite3OsFileControl(fd, op, pArg); } sqlite3BtreeLeave(pBtree); } } sqlite3_mutex_leave(db->mutex); return rc; } /* ** Interface to the testing logic. */ int sqlite3_test_control(int op, ...){ int rc = 0; #ifndef SQLITE_OMIT_BUILTIN_TEST va_list ap; va_start(ap, op); switch( op ){ /* ** Save the current state of the PRNG. */ case SQLITE_TESTCTRL_PRNG_SAVE: { sqlite3PrngSaveState(); break; } /* ** Restore the state of the PRNG to the last state saved using ** PRNG_SAVE. If PRNG_SAVE has never before been called, then ** this verb acts like PRNG_RESET. */ case SQLITE_TESTCTRL_PRNG_RESTORE: { sqlite3PrngRestoreState(); break; } /* ** Reset the PRNG back to its uninitialized state. The next call ** to sqlite3_randomness() will reseed the PRNG using a single call ** to the xRandomness method of the default VFS. */ case SQLITE_TESTCTRL_PRNG_RESET: { sqlite3PrngResetState(); break; } /* ** sqlite3_test_control(BITVEC_TEST, size, program) ** ** Run a test against a Bitvec object of size. The program argument ** is an array of integers that defines the test. Return -1 on a ** memory allocation error, 0 on success, or non-zero for an error. ** See the sqlite3BitvecBuiltinTest() for additional information. */ case SQLITE_TESTCTRL_BITVEC_TEST: { int sz = va_arg(ap, int); int *aProg = va_arg(ap, int*); rc = sqlite3BitvecBuiltinTest(sz, aProg); break; } /* ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) ** ** Register hooks to call to indicate which malloc() failures ** are benign. */ case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { typedef void (*void_function)(void); void_function xBenignBegin; void_function xBenignEnd; xBenignBegin = va_arg(ap, void_function); xBenignEnd = va_arg(ap, void_function); sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); break; } } va_end(ap); #endif /* SQLITE_OMIT_BUILTIN_TEST */ return rc; }