/* ** 2002 February 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement various SQL ** functions of SQLite. ** ** There is only one exported symbol in this file - the function ** sqliteRegisterBuildinFunctions() found at the bottom of the file. ** All other code has file scope. ** ** $Id: func.c,v 1.29 2003/08/20 01:03:34 drh Exp $ */ #include #include #include #include #include "sqliteInt.h" #include "os.h" /* ** Implementation of the non-aggregate min() and max() functions */ static void minFunc(sqlite_func *context, int argc, const char **argv){ const char *zBest; int i; if( argc==0 ) return; zBest = argv[0]; if( zBest==0 ) return; for(i=1; i0 ){ zBest = argv[i]; } } sqlite_set_result_string(context, zBest, -1); } /* ** Implementation of the length() function */ static void lengthFunc(sqlite_func *context, int argc, const char **argv){ const char *z; int len; assert( argc==1 ); z = argv[0]; if( z==0 ) return; #ifdef SQLITE_UTF8 for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; } #else len = strlen(z); #endif sqlite_set_result_int(context, len); } /* ** Implementation of the abs() function */ static void absFunc(sqlite_func *context, int argc, const char **argv){ const char *z; assert( argc==1 ); z = argv[0]; if( z==0 ) return; if( z[0]=='-' && isdigit(z[1]) ) z++; sqlite_set_result_string(context, z, -1); } /* ** Implementation of the substr() function */ static void substrFunc(sqlite_func *context, int argc, const char **argv){ const char *z; #ifdef SQLITE_UTF8 const char *z2; int i; #endif int p1, p2, len; assert( argc==3 ); z = argv[0]; if( z==0 ) return; p1 = atoi(argv[1]?argv[1]:0); p2 = atoi(argv[2]?argv[2]:0); #ifdef SQLITE_UTF8 for(len=0, z2=z; *z2; z2++){ if( (0xc0&*z2)!=0x80 ) len++; } #else len = strlen(z); #endif if( p1<0 ){ p1 += len; if( p1<0 ){ p2 += p1; p1 = 0; } }else if( p1>0 ){ p1--; } if( p1+p2>len ){ p2 = len-p1; } #ifdef SQLITE_UTF8 for(i=0; i30 ) n = 30; if( n<0 ) n = 0; r = atof(argv[0]); sprintf(zBuf,"%.*f",n,r); sqlite_set_result_string(context, zBuf, -1); } /* ** Implementation of the upper() and lower() SQL functions. */ static void upperFunc(sqlite_func *context, int argc, const char **argv){ char *z; int i; if( argc<1 || argv[0]==0 ) return; z = sqlite_set_result_string(context, argv[0], -1); if( z==0 ) return; for(i=0; z[i]; i++){ if( islower(z[i]) ) z[i] = toupper(z[i]); } } static void lowerFunc(sqlite_func *context, int argc, const char **argv){ char *z; int i; if( argc<1 || argv[0]==0 ) return; z = sqlite_set_result_string(context, argv[0], -1); if( z==0 ) return; for(i=0; z[i]; i++){ if( isupper(z[i]) ) z[i] = tolower(z[i]); } } /* ** Implementation of the IFNULL(), NVL(), and COALESCE() functions. ** All three do the same thing. They return the first argument ** non-NULL argument. */ static void ifnullFunc(sqlite_func *context, int argc, const char **argv){ int i; for(i=0; i0 ){ zResult[j++] = code + '0'; } } while( j<4 ){ zResult[j++] = '0'; } zResult[j] = 0; sqlite_set_result_string(context, zResult, 4); }else{ sqlite_set_result_string(context, "?000", 4); } } #endif #ifdef SQLITE_TEST /* ** This function generates a string of random characters. Used for ** generating test data. */ static void randStr(sqlite_func *context, int argc, const char **argv){ static const char zSrc[] = "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789" ".-!,:*^+=_|?/<> "; int iMin, iMax, n, r, i; char zBuf[1000]; if( argc>=1 ){ iMin = atoi(argv[0]); if( iMin<0 ) iMin = 0; if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1; }else{ iMin = 1; } if( argc>=2 ){ iMax = atoi(argv[1]); if( iMax=sizeof(zBuf) ) iMax = sizeof(zBuf); }else{ iMax = 50; } n = iMin; if( iMax>iMin ){ r = sqliteRandomInteger() & 0x7fffffff; n += r%(iMax + 1 - iMin); } r = 0; for(i=0; isum += atof(argv[0]); p->cnt++; } } static void sumFinalize(sqlite_func *context){ SumCtx *p; p = sqlite_aggregate_context(context, sizeof(*p)); sqlite_set_result_double(context, p ? p->sum : 0.0); } static void avgFinalize(sqlite_func *context){ SumCtx *p; p = sqlite_aggregate_context(context, sizeof(*p)); if( p && p->cnt>0 ){ sqlite_set_result_double(context, p->sum/(double)p->cnt); } } /* ** An instance of the following structure holds the context of a ** variance or standard deviation computation. */ typedef struct StdDevCtx StdDevCtx; struct StdDevCtx { double sum; /* Sum of terms */ double sum2; /* Sum of the squares of terms */ int cnt; /* Number of terms counted */ }; #if 0 /* Omit because math library is required */ /* ** Routines used to compute the standard deviation as an aggregate. */ static void stdDevStep(sqlite_func *context, int argc, const char **argv){ StdDevCtx *p; double x; if( argc<1 ) return; p = sqlite_aggregate_context(context, sizeof(*p)); if( p && argv[0] ){ x = atof(argv[0]); p->sum += x; p->sum2 += x*x; p->cnt++; } } static void stdDevFinalize(sqlite_func *context){ double rN = sqlite_aggregate_count(context); StdDevCtx *p = sqlite_aggregate_context(context, sizeof(*p)); if( p && p->cnt>1 ){ double rCnt = cnt; sqlite_set_result_double(context, sqrt((p->sum2 - p->sum*p->sum/rCnt)/(rCnt-1.0))); } } #endif /* ** The following structure keeps track of state information for the ** count() aggregate function. */ typedef struct CountCtx CountCtx; struct CountCtx { int n; }; /* ** Routines to implement the count() aggregate function. */ static void countStep(sqlite_func *context, int argc, const char **argv){ CountCtx *p; p = sqlite_aggregate_context(context, sizeof(*p)); if( (argc==0 || argv[0]) && p ){ p->n++; } } static void countFinalize(sqlite_func *context){ CountCtx *p; p = sqlite_aggregate_context(context, sizeof(*p)); sqlite_set_result_int(context, p ? p->n : 0); } /* ** This function tracks state information for the min() and max() ** aggregate functions. */ typedef struct MinMaxCtx MinMaxCtx; struct MinMaxCtx { char *z; /* The best so far */ char zBuf[28]; /* Space that can be used for storage */ }; /* ** Routines to implement min() and max() aggregate functions. */ static void minStep(sqlite_func *context, int argc, const char **argv){ MinMaxCtx *p; p = sqlite_aggregate_context(context, sizeof(*p)); if( p==0 || argc<1 || argv[0]==0 ) return; if( p->z==0 || sqliteCompare(argv[0],p->z)<0 ){ int len; if( p->z && p->z!=p->zBuf ){ sqliteFree(p->z); } len = strlen(argv[0]); if( len < sizeof(p->zBuf) ){ p->z = p->zBuf; }else{ p->z = sqliteMalloc( len+1 ); if( p->z==0 ) return; } strcpy(p->z, argv[0]); } } static void maxStep(sqlite_func *context, int argc, const char **argv){ MinMaxCtx *p; p = sqlite_aggregate_context(context, sizeof(*p)); if( p==0 || argc<1 || argv[0]==0 ) return; if( p->z==0 || sqliteCompare(argv[0],p->z)>0 ){ int len; if( p->z && p->z!=p->zBuf ){ sqliteFree(p->z); } len = strlen(argv[0]); if( len < sizeof(p->zBuf) ){ p->z = p->zBuf; }else{ p->z = sqliteMalloc( len+1 ); if( p->z==0 ) return; } strcpy(p->z, argv[0]); } } static void minMaxFinalize(sqlite_func *context){ MinMaxCtx *p; p = sqlite_aggregate_context(context, sizeof(*p)); if( p && p->z ){ sqlite_set_result_string(context, p->z, strlen(p->z)); } if( p && p->z && p->z!=p->zBuf ){ sqliteFree(p->z); } } /**************************************************************************** ** Time and date functions. ** ** SQLite processes all times and dates as Julian Day numbers. The ** dates and times are stored as the number of days since noon ** in Greenwich on November 24, 4714 B.C. according to the Gregorian ** calendar system. ** ** This implement requires years to be expressed as a 4-digit number ** which means that only dates between 0000-01-01 and 9999-12-31 can ** be represented, even though julian day numbers allow a much wider ** range of dates. ** ** The Gregorian calendar system is used for all dates and times, ** even those that predate the Gregorian calendar. Historians usually ** use the Julian calendar for dates prior to 1582-10-15 and for some ** dates afterwards, depending on locale. Beware of this difference. ** ** The conversion algorithms are implemented based on descriptions ** in the following text: ** ** Jean Meeus ** Astronomical Algorithms, 2nd Edition, 1998 ** ISBM 0-943396-61-1 ** Willmann-Bell, Inc ** Richmond, Virginia (USA) */ #ifndef SQLITE_OMIT_DATETIME_FUNCS /* ** Convert N digits from zDate into an integer. Return ** -1 if zDate does not begin with N digits. */ static int getDigits(const char *zDate, int N){ int val = 0; while( N-- ){ if( !isdigit(*zDate) ) return -1; val = val*10 + *zDate - '0'; zDate++; } return val; } /* ** Parse times of the form HH:MM:SS or HH:MM. Store the ** result (in days) in *prJD. ** ** Return 1 if there is a parsing error and 0 on success. */ static int parseHhMmSs(const char *zDate, double *prJD){ int h, m, s; h = getDigits(zDate, 2); if( h<0 || zDate[2]!=':' ) return 1; zDate += 3; m = getDigits(zDate, 2); if( m<0 || m>59 ) return 1; zDate += 2; if( *zDate==':' ){ s = getDigits(&zDate[1], 2); if( s<0 || s>59 ) return 1; zDate += 3; }else{ s = 0; } while( isspace(*zDate) ){ zDate++; } *prJD = (h*3600.0 + m*60.0 + s)/86400.0; return 0; } /* ** Parse dates of the form ** ** YYYY-MM-DD HH:MM:SS ** YYYY-MM-DD HH:MM ** YYYY-MM-DD ** ** Write the result as a julian day number in *prJD. Return 0 ** on success and 1 if the input string is not a well-formed ** date. */ static int parseYyyyMmDd(const char *zDate, double *prJD){ int Y, M, D; double rTime; int A, B, X1, X2; Y = getDigits(zDate, 4); if( Y<0 || zDate[4]!='-' ) return 1; zDate += 5; M = getDigits(zDate, 2); if( M<=0 || M>12 || zDate[2]!='-' ) return 1; zDate += 3; D = getDigits(zDate, 2); if( D<=0 || D>31 ) return 1; zDate += 2; while( isspace(*zDate) ){ zDate++; } if( isdigit(*zDate) ){ if( parseHhMmSs(zDate, &rTime) ) return 1; }else if( *zDate==0 ){ rTime = 0.0; }else{ return 1; } /* The year, month, and day are now stored in Y, M, and D. Convert ** these into the Julian Day number. See Meeus page 61. */ if( M<=2 ){ Y--; M += 12; } A = Y/100; B = 2 - A + (A/4); X1 = 365.25*(Y+4716); X2 = 30.6001*(M+1); *prJD = X1 + X2 + D + B - 1524.5 + rTime; return 0; } /* ** Attempt to parse the given string into a Julian Day Number. Return ** the number of errors. ** ** The following are acceptable forms for the input string: ** ** YYYY-MM-DD ** YYYY-MM-DD HH:MM ** YYYY-MM-DD HH:MM:SS ** HH:MM ** HH:MM:SS ** DDDD.DD ** now */ static int parseDateOrTime(const char *zDate, double *prJD){ int i; for(i=0; isdigit(zDate[i]); i++){} if( i==4 && zDate[i]=='-' ){ return parseYyyyMmDd(zDate, prJD); }else if( i==2 && zDate[i]==':' ){ return parseHhMmSs(zDate, prJD); }else if( i==0 && sqliteStrICmp(zDate,"now")==0 ){ return sqliteOsCurrentTime(prJD); }else if( sqliteIsNumber(zDate) ){ *prJD = atof(zDate); return 0; } return 1; } /* ** A structure for holding date and time. */ typedef struct DateTime DateTime; struct DateTime { double rJD; /* The julian day number */ int Y, M, D; /* Year, month, and day */ int h, m, s; /* Hour minute and second */ }; /* ** Break up a julian day number into year, month, day, hour, minute, second. ** This function assume the Gregorian calendar - even for dates prior ** to the invention of the Gregorian calendar in 1582. ** ** See Meeus page 63. ** ** If mode==1 only the year, month, and day are computed. If mode==2 ** then only the hour, minute, and second are computed. If mode==3 then ** everything is computed. If mode==0, this routine is a no-op. */ static void decomposeDate(DateTime *p, int mode){ int Z; Z = p->rJD + 0.5; if( mode & 1 ){ int A, B, C, D, E, X1; A = (Z - 1867216.25)/36524.25; A = Z + 1 + A - (A/4); B = A + 1524; C = (B - 122.1)/365.25; D = 365.25*C; E = (B-D)/30.6001; X1 = 30.6001*E; p->D = B - D - X1; p->M = E<14 ? E-1 : E-13; p->Y = p->M>2 ? C - 4716 : C - 4715; } if( mode & 2 ){ p->s = (p->rJD + 0.5 - Z)*86400.0; p->h = p->s/3600; p->s -= p->h*3600; p->m = p->s/60; p->s -= p->m*60; } } /* ** Check to see that all arguments are valid date strings. If any ** argument is not a valid date string, return 0. If all arguments ** are valid, return 1 and write into *p->rJD the sum of the julian day ** numbers for all date strings. ** ** A "valid" date string is one that is accepted by parseDateOrTime(). ** ** The mode argument is passed through to decomposeDate() in order to ** fill in the year, month, day, hour, minute, and second of the *p ** structure, if desired. */ static int isDate(int argc, const char **argv, DateTime *p, int mode){ double r; int i; p->rJD = 0.0; for(i=0; irJD += r; } decomposeDate(p, mode); return 1; } /* ** The following routines implement the various date and time functions ** of SQLite. */ static void juliandayFunc(sqlite_func *context, int argc, const char **argv){ DateTime x; if( isDate(argc, argv, &x, 0) ){ sqlite_set_result_double(context, x.rJD); } } static void timestampFunc(sqlite_func *context, int argc, const char **argv){ DateTime x; if( isDate(argc, argv, &x, 3) ){ char zBuf[100]; sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m, x.s); sqlite_set_result_string(context, zBuf, -1); } } static void timeFunc(sqlite_func *context, int argc, const char **argv){ DateTime x; if( isDate(argc, argv, &x, 2) ){ char zBuf[100]; sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, x.s); sqlite_set_result_string(context, zBuf, -1); } } static void dateFunc(sqlite_func *context, int argc, const char **argv){ DateTime x; if( isDate(argc, argv, &x, 1) ){ char zBuf[100]; sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); sqlite_set_result_string(context, zBuf, -1); } } static void yearFunc(sqlite_func *context, int argc, const char **argv){ DateTime x; if( isDate(argc, argv, &x, 1) ){ sqlite_set_result_int(context, x.Y); } } static void monthFunc(sqlite_func *context, int argc, const char **argv){ DateTime x; if( isDate(argc, argv, &x, 1) ){ sqlite_set_result_int(context, x.M); } } static void dayofweekFunc(sqlite_func *context, int argc, const char **argv){ DateTime x; if( isDate(argc, argv, &x, 0) ){ int Z = x.rJD + 1.5; sqlite_set_result_int(context, Z % 7); } } static void dayofmonthFunc(sqlite_func *context, int argc, const char **argv){ DateTime x; if( isDate(argc, argv, &x, 1) ){ sqlite_set_result_int(context, x.D); } } static void secondFunc(sqlite_func *context, int argc, const char **argv){ DateTime x; if( isDate(argc, argv, &x, 2) ){ sqlite_set_result_int(context, x.s); } } static void minuteFunc(sqlite_func *context, int argc, const char **argv){ DateTime x; if( isDate(argc, argv, &x, 2) ){ sqlite_set_result_int(context, x.m); } } static void hourFunc(sqlite_func *context, int argc, const char **argv){ DateTime x; if( isDate(argc, argv, &x, 2) ){ sqlite_set_result_int(context, x.h); } } #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ /***************************************************************************/ /* ** This function registered all of the above C functions as SQL ** functions. This should be the only routine in this file with ** external linkage. */ void sqliteRegisterBuiltinFunctions(sqlite *db){ static struct { char *zName; int nArg; int dataType; void (*xFunc)(sqlite_func*,int,const char**); } aFuncs[] = { { "min", -1, SQLITE_ARGS, minFunc }, { "min", 0, 0, 0 }, { "max", -1, SQLITE_ARGS, maxFunc }, { "max", 0, 0, 0 }, { "length", 1, SQLITE_NUMERIC, lengthFunc }, { "substr", 3, SQLITE_TEXT, substrFunc }, { "abs", 1, SQLITE_NUMERIC, absFunc }, { "round", 1, SQLITE_NUMERIC, roundFunc }, { "round", 2, SQLITE_NUMERIC, roundFunc }, { "upper", 1, SQLITE_TEXT, upperFunc }, { "lower", 1, SQLITE_TEXT, lowerFunc }, { "coalesce", -1, SQLITE_ARGS, ifnullFunc }, { "coalesce", 0, 0, 0 }, { "coalesce", 1, 0, 0 }, { "ifnull", 2, SQLITE_ARGS, ifnullFunc }, { "random", -1, SQLITE_NUMERIC, randomFunc }, { "like", 2, SQLITE_NUMERIC, likeFunc }, { "glob", 2, SQLITE_NUMERIC, globFunc }, { "nullif", 2, SQLITE_ARGS, nullifFunc }, { "sqlite_version",0,SQLITE_TEXT, versionFunc}, { "quote", 1, SQLITE_ARGS, quoteFunc }, #ifndef SQLITE_OMIT_DATETIME_FUNCS { "julianday", -1, SQLITE_NUMERIC, juliandayFunc }, { "timestamp", -1, SQLITE_TEXT, timestampFunc }, { "time", -1, SQLITE_TEXT, timeFunc }, { "date", -1, SQLITE_TEXT, dateFunc }, { "year", -1, SQLITE_NUMERIC, yearFunc }, { "month", -1, SQLITE_NUMERIC, monthFunc }, { "dayofmonth",-1, SQLITE_NUMERIC, dayofmonthFunc }, { "dayofweek", -1, SQLITE_NUMERIC, dayofweekFunc }, { "hour", -1, SQLITE_NUMERIC, hourFunc }, { "minute", -1, SQLITE_NUMERIC, minuteFunc }, { "second", -1, SQLITE_NUMERIC, secondFunc }, #endif #ifdef SQLITE_SOUNDEX { "soundex", 1, SQLITE_TEXT, soundexFunc}, #endif #ifdef SQLITE_TEST { "randstr", 2, SQLITE_TEXT, randStr }, #endif }; static struct { char *zName; int nArg; int dataType; void (*xStep)(sqlite_func*,int,const char**); void (*xFinalize)(sqlite_func*); } aAggs[] = { { "min", 1, 0, minStep, minMaxFinalize }, { "max", 1, 0, maxStep, minMaxFinalize }, { "sum", 1, SQLITE_NUMERIC, sumStep, sumFinalize }, { "avg", 1, SQLITE_NUMERIC, sumStep, avgFinalize }, { "count", 0, SQLITE_NUMERIC, countStep, countFinalize }, { "count", 1, SQLITE_NUMERIC, countStep, countFinalize }, #if 0 { "stddev", 1, SQLITE_NUMERIC, stdDevStep, stdDevFinalize }, #endif }; int i; for(i=0; i