/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. ** ** $Id: expr.c,v 1.396 2008/10/02 16:42:07 danielk1977 Exp $ */ #include "sqliteInt.h" #include /* ** Return the 'affinity' of the expression pExpr if any. ** ** If pExpr is a column, a reference to a column via an 'AS' alias, ** or a sub-select with a column as the return value, then the ** affinity of that column is returned. Otherwise, 0x00 is returned, ** indicating no affinity for the expression. ** ** i.e. the WHERE clause expresssions in the following statements all ** have an affinity: ** ** CREATE TABLE t1(a); ** SELECT * FROM t1 WHERE a; ** SELECT a AS b FROM t1 WHERE b; ** SELECT * FROM t1 WHERE (select a from t1); */ char sqlite3ExprAffinity(Expr *pExpr){ int op = pExpr->op; if( op==TK_SELECT ){ return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); } #ifndef SQLITE_OMIT_CAST if( op==TK_CAST ){ return sqlite3AffinityType(&pExpr->token); } #endif if( (op==TK_COLUMN || op==TK_REGISTER) && pExpr->pTab!=0 ){ /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally ** a TK_COLUMN but was previously evaluated and cached in a register */ int j = pExpr->iColumn; if( j<0 ) return SQLITE_AFF_INTEGER; assert( pExpr->pTab && jpTab->nCol ); return pExpr->pTab->aCol[j].affinity; } return pExpr->affinity; } /* ** Set the collating sequence for expression pExpr to be the collating ** sequence named by pToken. Return a pointer to the revised expression. ** The collating sequence is marked as "explicit" using the EP_ExpCollate ** flag. An explicit collating sequence will override implicit ** collating sequences. */ Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){ char *zColl = 0; /* Dequoted name of collation sequence */ CollSeq *pColl; sqlite3 *db = pParse->db; zColl = sqlite3NameFromToken(db, pCollName); if( pExpr && zColl ){ pColl = sqlite3LocateCollSeq(pParse, zColl, -1); if( pColl ){ pExpr->pColl = pColl; pExpr->flags |= EP_ExpCollate; } } sqlite3DbFree(db, zColl); return pExpr; } /* ** Return the default collation sequence for the expression pExpr. If ** there is no default collation type, return 0. */ CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ CollSeq *pColl = 0; Expr *p = pExpr; while( p ){ int op; pColl = p->pColl; if( pColl ) break; op = p->op; if( (op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){ /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally ** a TK_COLUMN but was previously evaluated and cached in a register */ const char *zColl; int j = p->iColumn; if( j>=0 ){ sqlite3 *db = pParse->db; zColl = p->pTab->aCol[j].zColl; pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0); pExpr->pColl = pColl; } break; } if( op!=TK_CAST && op!=TK_UPLUS ){ break; } p = p->pLeft; } if( sqlite3CheckCollSeq(pParse, pColl) ){ pColl = 0; } return pColl; } /* ** pExpr is an operand of a comparison operator. aff2 is the ** type affinity of the other operand. This routine returns the ** type affinity that should be used for the comparison operator. */ char sqlite3CompareAffinity(Expr *pExpr, char aff2){ char aff1 = sqlite3ExprAffinity(pExpr); if( aff1 && aff2 ){ /* Both sides of the comparison are columns. If one has numeric ** affinity, use that. Otherwise use no affinity. */ if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ return SQLITE_AFF_NUMERIC; }else{ return SQLITE_AFF_NONE; } }else if( !aff1 && !aff2 ){ /* Neither side of the comparison is a column. Compare the ** results directly. */ return SQLITE_AFF_NONE; }else{ /* One side is a column, the other is not. Use the columns affinity. */ assert( aff1==0 || aff2==0 ); return (aff1 + aff2); } } /* ** pExpr is a comparison operator. Return the type affinity that should ** be applied to both operands prior to doing the comparison. */ static char comparisonAffinity(Expr *pExpr){ char aff; assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || pExpr->op==TK_NE ); assert( pExpr->pLeft ); aff = sqlite3ExprAffinity(pExpr->pLeft); if( pExpr->pRight ){ aff = sqlite3CompareAffinity(pExpr->pRight, aff); } else if( pExpr->pSelect ){ aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); } else if( !aff ){ aff = SQLITE_AFF_NONE; } return aff; } /* ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. ** idx_affinity is the affinity of an indexed column. Return true ** if the index with affinity idx_affinity may be used to implement ** the comparison in pExpr. */ int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ char aff = comparisonAffinity(pExpr); switch( aff ){ case SQLITE_AFF_NONE: return 1; case SQLITE_AFF_TEXT: return idx_affinity==SQLITE_AFF_TEXT; default: return sqlite3IsNumericAffinity(idx_affinity); } } /* ** Return the P5 value that should be used for a binary comparison ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. */ static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ u8 aff = (char)sqlite3ExprAffinity(pExpr2); aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull; return aff; } /* ** Return a pointer to the collation sequence that should be used by ** a binary comparison operator comparing pLeft and pRight. ** ** If the left hand expression has a collating sequence type, then it is ** used. Otherwise the collation sequence for the right hand expression ** is used, or the default (BINARY) if neither expression has a collating ** type. ** ** Argument pRight (but not pLeft) may be a null pointer. In this case, ** it is not considered. */ CollSeq *sqlite3BinaryCompareCollSeq( Parse *pParse, Expr *pLeft, Expr *pRight ){ CollSeq *pColl; assert( pLeft ); if( pLeft->flags & EP_ExpCollate ){ assert( pLeft->pColl ); pColl = pLeft->pColl; }else if( pRight && pRight->flags & EP_ExpCollate ){ assert( pRight->pColl ); pColl = pRight->pColl; }else{ pColl = sqlite3ExprCollSeq(pParse, pLeft); if( !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pRight); } } return pColl; } /* ** Generate the operands for a comparison operation. Before ** generating the code for each operand, set the EP_AnyAff ** flag on the expression so that it will be able to used a ** cached column value that has previously undergone an ** affinity change. */ static void codeCompareOperands( Parse *pParse, /* Parsing and code generating context */ Expr *pLeft, /* The left operand */ int *pRegLeft, /* Register where left operand is stored */ int *pFreeLeft, /* Free this register when done */ Expr *pRight, /* The right operand */ int *pRegRight, /* Register where right operand is stored */ int *pFreeRight /* Write temp register for right operand there */ ){ while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft; pLeft->flags |= EP_AnyAff; *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft); while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft; pRight->flags |= EP_AnyAff; *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight); } /* ** Generate code for a comparison operator. */ static int codeCompare( Parse *pParse, /* The parsing (and code generating) context */ Expr *pLeft, /* The left operand */ Expr *pRight, /* The right operand */ int opcode, /* The comparison opcode */ int in1, int in2, /* Register holding operands */ int dest, /* Jump here if true. */ int jumpIfNull /* If true, jump if either operand is NULL */ ){ int p5; int addr; CollSeq *p4; p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, (void*)p4, P4_COLLSEQ); sqlite3VdbeChangeP5(pParse->pVdbe, p5); if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){ sqlite3ExprCacheAffinityChange(pParse, in1, 1); sqlite3ExprCacheAffinityChange(pParse, in2, 1); } return addr; } #if SQLITE_MAX_EXPR_DEPTH>0 /* ** Check that argument nHeight is less than or equal to the maximum ** expression depth allowed. If it is not, leave an error message in ** pParse. */ int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ int rc = SQLITE_OK; int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; if( nHeight>mxHeight ){ sqlite3ErrorMsg(pParse, "Expression tree is too large (maximum depth %d)", mxHeight ); rc = SQLITE_ERROR; } return rc; } /* The following three functions, heightOfExpr(), heightOfExprList() ** and heightOfSelect(), are used to determine the maximum height ** of any expression tree referenced by the structure passed as the ** first argument. ** ** If this maximum height is greater than the current value pointed ** to by pnHeight, the second parameter, then set *pnHeight to that ** value. */ static void heightOfExpr(Expr *p, int *pnHeight){ if( p ){ if( p->nHeight>*pnHeight ){ *pnHeight = p->nHeight; } } } static void heightOfExprList(ExprList *p, int *pnHeight){ if( p ){ int i; for(i=0; inExpr; i++){ heightOfExpr(p->a[i].pExpr, pnHeight); } } } static void heightOfSelect(Select *p, int *pnHeight){ if( p ){ heightOfExpr(p->pWhere, pnHeight); heightOfExpr(p->pHaving, pnHeight); heightOfExpr(p->pLimit, pnHeight); heightOfExpr(p->pOffset, pnHeight); heightOfExprList(p->pEList, pnHeight); heightOfExprList(p->pGroupBy, pnHeight); heightOfExprList(p->pOrderBy, pnHeight); heightOfSelect(p->pPrior, pnHeight); } } /* ** Set the Expr.nHeight variable in the structure passed as an ** argument. An expression with no children, Expr.pList or ** Expr.pSelect member has a height of 1. Any other expression ** has a height equal to the maximum height of any other ** referenced Expr plus one. */ static void exprSetHeight(Expr *p){ int nHeight = 0; heightOfExpr(p->pLeft, &nHeight); heightOfExpr(p->pRight, &nHeight); heightOfExprList(p->pList, &nHeight); heightOfSelect(p->pSelect, &nHeight); p->nHeight = nHeight + 1; } /* ** Set the Expr.nHeight variable using the exprSetHeight() function. If ** the height is greater than the maximum allowed expression depth, ** leave an error in pParse. */ void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ exprSetHeight(p); sqlite3ExprCheckHeight(pParse, p->nHeight); } /* ** Return the maximum height of any expression tree referenced ** by the select statement passed as an argument. */ int sqlite3SelectExprHeight(Select *p){ int nHeight = 0; heightOfSelect(p, &nHeight); return nHeight; } #else #define exprSetHeight(y) #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ /* ** Construct a new expression node and return a pointer to it. Memory ** for this node is obtained from sqlite3_malloc(). The calling function ** is responsible for making sure the node eventually gets freed. */ Expr *sqlite3Expr( sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ int op, /* Expression opcode */ Expr *pLeft, /* Left operand */ Expr *pRight, /* Right operand */ const Token *pToken /* Argument token */ ){ Expr *pNew; pNew = sqlite3DbMallocZero(db, sizeof(Expr)); if( pNew==0 ){ /* When malloc fails, delete pLeft and pRight. Expressions passed to ** this function must always be allocated with sqlite3Expr() for this ** reason. */ sqlite3ExprDelete(db, pLeft); sqlite3ExprDelete(db, pRight); return 0; } pNew->op = op; pNew->pLeft = pLeft; pNew->pRight = pRight; pNew->iAgg = -1; pNew->span.z = (u8*)""; if( pToken ){ assert( pToken->dyn==0 ); pNew->span = pNew->token = *pToken; }else if( pLeft ){ if( pRight ){ if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){ sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); } if( pRight->flags & EP_ExpCollate ){ pNew->flags |= EP_ExpCollate; pNew->pColl = pRight->pColl; } } if( pLeft->flags & EP_ExpCollate ){ pNew->flags |= EP_ExpCollate; pNew->pColl = pLeft->pColl; } } exprSetHeight(pNew); return pNew; } /* ** Works like sqlite3Expr() except that it takes an extra Parse* ** argument and notifies the associated connection object if malloc fails. */ Expr *sqlite3PExpr( Parse *pParse, /* Parsing context */ int op, /* Expression opcode */ Expr *pLeft, /* Left operand */ Expr *pRight, /* Right operand */ const Token *pToken /* Argument token */ ){ Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); if( p ){ sqlite3ExprCheckHeight(pParse, p->nHeight); } return p; } /* ** When doing a nested parse, you can include terms in an expression ** that look like this: #1 #2 ... These terms refer to registers ** in the virtual machine. #N is the N-th register. ** ** This routine is called by the parser to deal with on of those terms. ** It immediately generates code to store the value in a memory location. ** The returns an expression that will code to extract the value from ** that memory location as needed. */ Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ Vdbe *v = pParse->pVdbe; Expr *p; if( pParse->nested==0 ){ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); } if( v==0 ) return 0; p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); if( p==0 ){ return 0; /* Malloc failed */ } p->iTable = atoi((char*)&pToken->z[1]); return p; } /* ** Join two expressions using an AND operator. If either expression is ** NULL, then just return the other expression. */ Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ if( pLeft==0 ){ return pRight; }else if( pRight==0 ){ return pLeft; }else{ return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); } } /* ** Set the Expr.span field of the given expression to span all ** text between the two given tokens. Both tokens must be pointing ** at the same string. */ void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ assert( pRight!=0 ); assert( pLeft!=0 ); if( pExpr ){ pExpr->span.z = pLeft->z; pExpr->span.n = pRight->n + (pRight->z - pLeft->z); } } /* ** Construct a new expression node for a function with multiple ** arguments. */ Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ Expr *pNew; sqlite3 *db = pParse->db; assert( pToken ); pNew = sqlite3DbMallocZero(db, sizeof(Expr) ); if( pNew==0 ){ sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */ return 0; } pNew->op = TK_FUNCTION; pNew->pList = pList; assert( pToken->dyn==0 ); pNew->token = *pToken; pNew->span = pNew->token; sqlite3ExprSetHeight(pParse, pNew); return pNew; } /* ** Assign a variable number to an expression that encodes a wildcard ** in the original SQL statement. ** ** Wildcards consisting of a single "?" are assigned the next sequential ** variable number. ** ** Wildcards of the form "?nnn" are assigned the number "nnn". We make ** sure "nnn" is not too be to avoid a denial of service attack when ** the SQL statement comes from an external source. ** ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number ** as the previous instance of the same wildcard. Or if this is the first ** instance of the wildcard, the next sequenial variable number is ** assigned. */ void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ Token *pToken; sqlite3 *db = pParse->db; if( pExpr==0 ) return; pToken = &pExpr->token; assert( pToken->n>=1 ); assert( pToken->z!=0 ); assert( pToken->z[0]!=0 ); if( pToken->n==1 ){ /* Wildcard of the form "?". Assign the next variable number */ pExpr->iTable = ++pParse->nVar; }else if( pToken->z[0]=='?' ){ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and ** use it as the variable number */ int i; pExpr->iTable = i = atoi((char*)&pToken->z[1]); testcase( i==0 ); testcase( i==1 ); testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); } if( i>pParse->nVar ){ pParse->nVar = i; } }else{ /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable ** number as the prior appearance of the same name, or if the name ** has never appeared before, reuse the same variable number */ int i, n; n = pToken->n; for(i=0; inVarExpr; i++){ Expr *pE; if( (pE = pParse->apVarExpr[i])!=0 && pE->token.n==n && memcmp(pE->token.z, pToken->z, n)==0 ){ pExpr->iTable = pE->iTable; break; } } if( i>=pParse->nVarExpr ){ pExpr->iTable = ++pParse->nVar; if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; pParse->apVarExpr = sqlite3DbReallocOrFree( db, pParse->apVarExpr, pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) ); } if( !db->mallocFailed ){ assert( pParse->apVarExpr!=0 ); pParse->apVarExpr[pParse->nVarExpr++] = pExpr; } } } if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ sqlite3ErrorMsg(pParse, "too many SQL variables"); } } /* ** Recursively delete an expression tree. */ void sqlite3ExprDelete(sqlite3 *db, Expr *p){ if( p==0 ) return; if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z); if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z); sqlite3ExprDelete(db, p->pLeft); sqlite3ExprDelete(db, p->pRight); sqlite3ExprListDelete(db, p->pList); sqlite3SelectDelete(db, p->pSelect); sqlite3DbFree(db, p); } /* ** The Expr.token field might be a string literal that is quoted. ** If so, remove the quotation marks. */ void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ if( ExprHasAnyProperty(p, EP_Dequoted) ){ return; } ExprSetProperty(p, EP_Dequoted); if( p->token.dyn==0 ){ sqlite3TokenCopy(db, &p->token, &p->token); } sqlite3Dequote((char*)p->token.z); } /* ** The following group of routines make deep copies of expressions, ** expression lists, ID lists, and select statements. The copies can ** be deleted (by being passed to their respective ...Delete() routines) ** without effecting the originals. ** ** The expression list, ID, and source lists return by sqlite3ExprListDup(), ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded ** by subsequent calls to sqlite*ListAppend() routines. ** ** Any tables that the SrcList might point to are not duplicated. */ Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ Expr *pNew; if( p==0 ) return 0; pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); if( pNew==0 ) return 0; memcpy(pNew, p, sizeof(*pNew)); if( p->token.z!=0 ){ pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); pNew->token.dyn = 1; }else{ assert( pNew->token.z==0 ); } pNew->span.z = 0; pNew->pLeft = sqlite3ExprDup(db, p->pLeft); pNew->pRight = sqlite3ExprDup(db, p->pRight); pNew->pList = sqlite3ExprListDup(db, p->pList); pNew->pSelect = sqlite3SelectDup(db, p->pSelect); return pNew; } void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z); if( pFrom->z ){ pTo->n = pFrom->n; pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); pTo->dyn = 1; }else{ pTo->z = 0; } } ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ ExprList *pNew; struct ExprList_item *pItem, *pOldItem; int i; if( p==0 ) return 0; pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); if( pNew==0 ) return 0; pNew->iECursor = 0; pNew->nExpr = pNew->nAlloc = p->nExpr; pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); if( pItem==0 ){ sqlite3DbFree(db, pNew); return 0; } pOldItem = p->a; for(i=0; inExpr; i++, pItem++, pOldItem++){ Expr *pNewExpr, *pOldExpr; pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); if( pOldExpr->span.z!=0 && pNewExpr ){ /* Always make a copy of the span for top-level expressions in the ** expression list. The logic in SELECT processing that determines ** the names of columns in the result set needs this information */ sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); } assert( pNewExpr==0 || pNewExpr->span.z!=0 || pOldExpr->span.z==0 || db->mallocFailed ); pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pItem->sortOrder = pOldItem->sortOrder; pItem->done = 0; pItem->iCol = pOldItem->iCol; pItem->iAlias = pOldItem->iAlias; } return pNew; } /* ** If cursors, triggers, views and subqueries are all omitted from ** the build, then none of the following routines, except for ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes ** called with a NULL argument. */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ || !defined(SQLITE_OMIT_SUBQUERY) SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ SrcList *pNew; int i; int nByte; if( p==0 ) return 0; nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); pNew = sqlite3DbMallocRaw(db, nByte ); if( pNew==0 ) return 0; pNew->nSrc = pNew->nAlloc = p->nSrc; for(i=0; inSrc; i++){ struct SrcList_item *pNewItem = &pNew->a[i]; struct SrcList_item *pOldItem = &p->a[i]; Table *pTab; pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); pNewItem->jointype = pOldItem->jointype; pNewItem->iCursor = pOldItem->iCursor; pNewItem->isPopulated = pOldItem->isPopulated; pTab = pNewItem->pTab = pOldItem->pTab; if( pTab ){ pTab->nRef++; } pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); pNewItem->colUsed = pOldItem->colUsed; } return pNew; } IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ IdList *pNew; int i; if( p==0 ) return 0; pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); if( pNew==0 ) return 0; pNew->nId = pNew->nAlloc = p->nId; pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); if( pNew->a==0 ){ sqlite3DbFree(db, pNew); return 0; } for(i=0; inId; i++){ struct IdList_item *pNewItem = &pNew->a[i]; struct IdList_item *pOldItem = &p->a[i]; pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pNewItem->idx = pOldItem->idx; } return pNew; } Select *sqlite3SelectDup(sqlite3 *db, Select *p){ Select *pNew; if( p==0 ) return 0; pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); if( pNew==0 ) return 0; pNew->pEList = sqlite3ExprListDup(db, p->pEList); pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); pNew->pWhere = sqlite3ExprDup(db, p->pWhere); pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); pNew->pHaving = sqlite3ExprDup(db, p->pHaving); pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); pNew->op = p->op; pNew->pPrior = sqlite3SelectDup(db, p->pPrior); pNew->pLimit = sqlite3ExprDup(db, p->pLimit); pNew->pOffset = sqlite3ExprDup(db, p->pOffset); pNew->iLimit = 0; pNew->iOffset = 0; pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; pNew->pRightmost = 0; pNew->addrOpenEphm[0] = -1; pNew->addrOpenEphm[1] = -1; pNew->addrOpenEphm[2] = -1; return pNew; } #else Select *sqlite3SelectDup(sqlite3 *db, Select *p){ assert( p==0 ); return 0; } #endif /* ** Add a new element to the end of an expression list. If pList is ** initially NULL, then create a new expression list. */ ExprList *sqlite3ExprListAppend( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to append. Might be NULL */ Expr *pExpr, /* Expression to be appended */ Token *pName /* AS keyword for the expression */ ){ sqlite3 *db = pParse->db; if( pList==0 ){ pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); if( pList==0 ){ goto no_mem; } assert( pList->nAlloc==0 ); } if( pList->nAlloc<=pList->nExpr ){ struct ExprList_item *a; int n = pList->nAlloc*2 + 4; a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); if( a==0 ){ goto no_mem; } pList->a = a; pList->nAlloc = n; } assert( pList->a!=0 ); if( pExpr || pName ){ struct ExprList_item *pItem = &pList->a[pList->nExpr++]; memset(pItem, 0, sizeof(*pItem)); pItem->zName = sqlite3NameFromToken(db, pName); pItem->pExpr = pExpr; pItem->iAlias = 0; } return pList; no_mem: /* Avoid leaking memory if malloc has failed. */ sqlite3ExprDelete(db, pExpr); sqlite3ExprListDelete(db, pList); return 0; } /* ** If the expression list pEList contains more than iLimit elements, ** leave an error message in pParse. */ void sqlite3ExprListCheckLength( Parse *pParse, ExprList *pEList, const char *zObject ){ int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; testcase( pEList && pEList->nExpr==mx ); testcase( pEList && pEList->nExpr==mx+1 ); if( pEList && pEList->nExpr>mx ){ sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); } } /* ** Delete an entire expression list. */ void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ int i; struct ExprList_item *pItem; if( pList==0 ) return; assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); assert( pList->nExpr<=pList->nAlloc ); for(pItem=pList->a, i=0; inExpr; i++, pItem++){ sqlite3ExprDelete(db, pItem->pExpr); sqlite3DbFree(db, pItem->zName); } sqlite3DbFree(db, pList->a); sqlite3DbFree(db, pList); } /* ** These routines are Walker callbacks. Walker.u.pi is a pointer ** to an integer. These routines are checking an expression to see ** if it is a constant. Set *Walker.u.pi to 0 if the expression is ** not constant. ** ** These callback routines are used to implement the following: ** ** sqlite3ExprIsConstant() ** sqlite3ExprIsConstantNotJoin() ** sqlite3ExprIsConstantOrFunction() ** */ static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ /* If pWalker->u.i is 3 then any term of the expression that comes from ** the ON or USING clauses of a join disqualifies the expression ** from being considered constant. */ if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ pWalker->u.i = 0; return WRC_Abort; } switch( pExpr->op ){ /* Consider functions to be constant if all their arguments are constant ** and pWalker->u.i==2 */ case TK_FUNCTION: if( pWalker->u.i==2 ) return 0; /* Fall through */ case TK_ID: case TK_COLUMN: case TK_DOT: case TK_AGG_FUNCTION: case TK_AGG_COLUMN: #ifndef SQLITE_OMIT_SUBQUERY case TK_SELECT: case TK_EXISTS: testcase( pExpr->op==TK_SELECT ); testcase( pExpr->op==TK_EXISTS ); #endif testcase( pExpr->op==TK_ID ); testcase( pExpr->op==TK_COLUMN ); testcase( pExpr->op==TK_DOT ); testcase( pExpr->op==TK_AGG_FUNCTION ); testcase( pExpr->op==TK_AGG_COLUMN ); pWalker->u.i = 0; return WRC_Abort; default: return WRC_Continue; } } static int selectNodeIsConstant(Walker *pWalker, Select *pSelect){ pWalker->u.i = 0; return WRC_Abort; } static int exprIsConst(Expr *p, int initFlag){ Walker w; w.u.i = initFlag; w.xExprCallback = exprNodeIsConstant; w.xSelectCallback = selectNodeIsConstant; sqlite3WalkExpr(&w, p); return w.u.i; } /* ** Walk an expression tree. Return 1 if the expression is constant ** and 0 if it involves variables or function calls. ** ** For the purposes of this function, a double-quoted string (ex: "abc") ** is considered a variable but a single-quoted string (ex: 'abc') is ** a constant. */ int sqlite3ExprIsConstant(Expr *p){ return exprIsConst(p, 1); } /* ** Walk an expression tree. Return 1 if the expression is constant ** that does no originate from the ON or USING clauses of a join. ** Return 0 if it involves variables or function calls or terms from ** an ON or USING clause. */ int sqlite3ExprIsConstantNotJoin(Expr *p){ return exprIsConst(p, 3); } /* ** Walk an expression tree. Return 1 if the expression is constant ** or a function call with constant arguments. Return and 0 if there ** are any variables. ** ** For the purposes of this function, a double-quoted string (ex: "abc") ** is considered a variable but a single-quoted string (ex: 'abc') is ** a constant. */ int sqlite3ExprIsConstantOrFunction(Expr *p){ return exprIsConst(p, 2); } /* ** If the expression p codes a constant integer that is small enough ** to fit in a 32-bit integer, return 1 and put the value of the integer ** in *pValue. If the expression is not an integer or if it is too big ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. */ int sqlite3ExprIsInteger(Expr *p, int *pValue){ int rc = 0; if( p->flags & EP_IntValue ){ *pValue = p->iTable; return 1; } switch( p->op ){ case TK_INTEGER: { rc = sqlite3GetInt32((char*)p->token.z, pValue); break; } case TK_UPLUS: { rc = sqlite3ExprIsInteger(p->pLeft, pValue); break; } case TK_UMINUS: { int v; if( sqlite3ExprIsInteger(p->pLeft, &v) ){ *pValue = -v; rc = 1; } break; } default: break; } if( rc ){ p->op = TK_INTEGER; p->flags |= EP_IntValue; p->iTable = *pValue; } return rc; } /* ** Return TRUE if the given string is a row-id column name. */ int sqlite3IsRowid(const char *z){ if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; if( sqlite3StrICmp(z, "OID")==0 ) return 1; return 0; } #ifdef SQLITE_TEST int sqlite3_enable_in_opt = 1; #else #define sqlite3_enable_in_opt 1 #endif /* ** Return true if the IN operator optimization is enabled and ** the SELECT statement p exists and is of the ** simple form: ** ** SELECT FROM ** ** If this is the case, it may be possible to use an existing table ** or index instead of generating an epheremal table. */ #ifndef SQLITE_OMIT_SUBQUERY static int isCandidateForInOpt(Select *p){ SrcList *pSrc; ExprList *pEList; Table *pTab; if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */ if( p==0 ) return 0; /* right-hand side of IN is SELECT */ if( p->pPrior ) return 0; /* Not a compound SELECT */ if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ return 0; /* No DISTINCT keyword and no aggregate functions */ } if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */ if( p->pLimit ) return 0; /* Has no LIMIT clause */ if( p->pOffset ) return 0; if( p->pWhere ) return 0; /* Has no WHERE clause */ pSrc = p->pSrc; if( pSrc==0 ) return 0; /* A single table in the FROM clause */ if( pSrc->nSrc!=1 ) return 0; if( pSrc->a[0].pSelect ) return 0; /* FROM clause is not a subquery */ pTab = pSrc->a[0].pTab; if( pTab==0 ) return 0; if( pTab->pSelect ) return 0; /* FROM clause is not a view */ if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ pEList = p->pEList; if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ return 1; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** This function is used by the implementation of the IN (...) operator. ** It's job is to find or create a b-tree structure that may be used ** either to test for membership of the (...) set or to iterate through ** its members, skipping duplicates. ** ** The cursor opened on the structure (database table, database index ** or ephermal table) is stored in pX->iTable before this function returns. ** The returned value indicates the structure type, as follows: ** ** IN_INDEX_ROWID - The cursor was opened on a database table. ** IN_INDEX_INDEX - The cursor was opened on a database index. ** IN_INDEX_EPH - The cursor was opened on a specially created and ** populated epheremal table. ** ** An existing structure may only be used if the SELECT is of the simple ** form: ** ** SELECT FROM
** ** If prNotFound parameter is 0, then the structure will be used to iterate ** through the set members, skipping any duplicates. In this case an ** epheremal table must be used unless the selected is guaranteed ** to be unique - either because it is an INTEGER PRIMARY KEY or it ** is unique by virtue of a constraint or implicit index. ** ** If the prNotFound parameter is not 0, then the structure will be used ** for fast set membership tests. In this case an epheremal table must ** be used unless is an INTEGER PRIMARY KEY or an index can ** be found with as its left-most column. ** ** When the structure is being used for set membership tests, the user ** needs to know whether or not the structure contains an SQL NULL ** value in order to correctly evaluate expressions like "X IN (Y, Z)". ** If there is a chance that the structure may contain a NULL value at ** runtime, then a register is allocated and the register number written ** to *prNotFound. If there is no chance that the structure contains a ** NULL value, then *prNotFound is left unchanged. ** ** If a register is allocated and its location stored in *prNotFound, then ** its initial value is NULL. If the structure does not remain constant ** for the duration of the query (i.e. the set is a correlated sub-select), ** the value of the allocated register is reset to NULL each time the ** structure is repopulated. This allows the caller to use vdbe code ** equivalent to the following: ** ** if( register==NULL ){ ** has_null = ** register = 1 ** } ** ** in order to avoid running the ** test more often than is necessary. */ #ifndef SQLITE_OMIT_SUBQUERY int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ Select *p; int eType = 0; int iTab = pParse->nTab++; int mustBeUnique = !prNotFound; /* The follwing if(...) expression is true if the SELECT is of the ** simple form: ** ** SELECT FROM
** ** If this is the case, it may be possible to use an existing table ** or index instead of generating an epheremal table. */ p = pX->pSelect; if( isCandidateForInOpt(p) ){ sqlite3 *db = pParse->db; Index *pIdx; Expr *pExpr = p->pEList->a[0].pExpr; int iCol = pExpr->iColumn; Vdbe *v = sqlite3GetVdbe(pParse); /* This function is only called from two places. In both cases the vdbe ** has already been allocated. So assume sqlite3GetVdbe() is always ** successful here. */ assert(v); if( iCol<0 ){ int iMem = ++pParse->nMem; int iAddr; Table *pTab = p->pSrc->a[0].pTab; int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3VdbeUsesBtree(v, iDb); iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); eType = IN_INDEX_ROWID; sqlite3VdbeJumpHere(v, iAddr); }else{ /* The collation sequence used by the comparison. If an index is to ** be used in place of a temp-table, it must be ordered according ** to this collation sequence. */ CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); /* Check that the affinity that will be used to perform the ** comparison is the same as the affinity of the column. If ** it is not, it is not possible to use any index. */ Table *pTab = p->pSrc->a[0].pTab; char aff = comparisonAffinity(pX); int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ if( (pIdx->aiColumn[0]==iCol) && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0)) && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) ){ int iDb; int iMem = ++pParse->nMem; int iAddr; char *pKey; pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); sqlite3VdbeUsesBtree(v, iDb); iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn); sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, pKey,P4_KEYINFO_HANDOFF); VdbeComment((v, "%s", pIdx->zName)); eType = IN_INDEX_INDEX; sqlite3VdbeJumpHere(v, iAddr); if( prNotFound && !pTab->aCol[iCol].notNull ){ *prNotFound = ++pParse->nMem; } } } } } if( eType==0 ){ int rMayHaveNull = 0; eType = IN_INDEX_EPH; if( prNotFound ){ *prNotFound = rMayHaveNull = ++pParse->nMem; }else if( pX->pLeft->iColumn<0 && pX->pSelect==0 ){ eType = IN_INDEX_ROWID; } sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); }else{ pX->iTable = iTab; } return eType; } #endif /* ** Generate code for scalar subqueries used as an expression ** and IN operators. Examples: ** ** (SELECT a FROM b) -- subquery ** EXISTS (SELECT a FROM b) -- EXISTS subquery ** x IN (4,5,11) -- IN operator with list on right-hand side ** x IN (SELECT a FROM b) -- IN operator with subquery on the right ** ** The pExpr parameter describes the expression that contains the IN ** operator or subquery. ** ** If parameter isRowid is non-zero, then expression pExpr is guaranteed ** to be of the form " IN (?, ?, ?)", where is a reference ** to some integer key column of a table B-Tree. In this case, use an ** intkey B-Tree to store the set of IN(...) values instead of the usual ** (slower) variable length keys B-Tree. */ #ifndef SQLITE_OMIT_SUBQUERY void sqlite3CodeSubselect( Parse *pParse, Expr *pExpr, int rMayHaveNull, int isRowid ){ int testAddr = 0; /* One-time test address */ Vdbe *v = sqlite3GetVdbe(pParse); if( v==0 ) return; /* This code must be run in its entirety every time it is encountered ** if any of the following is true: ** ** * The right-hand side is a correlated subquery ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ int mem = ++pParse->nMem; sqlite3VdbeAddOp1(v, OP_If, mem); testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); assert( testAddr>0 || pParse->db->mallocFailed ); } switch( pExpr->op ){ case TK_IN: { char affinity; KeyInfo keyInfo; int addr; /* Address of OP_OpenEphemeral instruction */ Expr *pLeft = pExpr->pLeft; if( rMayHaveNull ){ sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); } affinity = sqlite3ExprAffinity(pLeft); /* Whether this is an 'x IN(SELECT...)' or an 'x IN()' ** expression it is handled the same way. A virtual table is ** filled with single-field index keys representing the results ** from the SELECT or the . ** ** If the 'x' expression is a column value, or the SELECT... ** statement returns a column value, then the affinity of that ** column is used to build the index keys. If both 'x' and the ** SELECT... statement are columns, then numeric affinity is used ** if either column has NUMERIC or INTEGER affinity. If neither ** 'x' nor the SELECT... statement are columns, then numeric affinity ** is used. */ pExpr->iTable = pParse->nTab++; addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); memset(&keyInfo, 0, sizeof(keyInfo)); keyInfo.nField = 1; if( pExpr->pSelect ){ /* Case 1: expr IN (SELECT ...) ** ** Generate code to write the results of the select into the temporary ** table allocated and opened above. */ SelectDest dest; ExprList *pEList; assert( !isRowid ); sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); dest.affinity = (int)affinity; assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); if( sqlite3Select(pParse, pExpr->pSelect, &dest) ){ return; } pEList = pExpr->pSelect->pEList; if( pEList && pEList->nExpr>0 ){ keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pEList->a[0].pExpr); } }else if( pExpr->pList ){ /* Case 2: expr IN (exprlist) ** ** For each expression, build an index key from the evaluation and ** store it in the temporary table. If is a column, then use ** that columns affinity when building index keys. If is not ** a column, use numeric affinity. */ int i; ExprList *pList = pExpr->pList; struct ExprList_item *pItem; int r1, r2, r3; if( !affinity ){ affinity = SQLITE_AFF_NONE; } keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); /* Loop through each expression in . */ r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Null, 0, r2); for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ Expr *pE2 = pItem->pExpr; /* If the expression is not constant then we will need to ** disable the test that was generated above that makes sure ** this code only executes once. Because for a non-constant ** expression we need to rerun this code each time. */ if( testAddr && !sqlite3ExprIsConstant(pE2) ){ sqlite3VdbeChangeToNoop(v, testAddr-1, 2); testAddr = 0; } /* Evaluate the expression and insert it into the temp table */ pParse->disableColCache++; r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); assert( pParse->disableColCache>0 ); pParse->disableColCache--; if( isRowid ){ sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2); sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); sqlite3ExprCacheAffinityChange(pParse, r3, 1); sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); } } sqlite3ReleaseTempReg(pParse, r1); sqlite3ReleaseTempReg(pParse, r2); } if( !isRowid ){ sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); } break; } case TK_EXISTS: case TK_SELECT: { /* This has to be a scalar SELECT. Generate code to put the ** value of this select in a memory cell and record the number ** of the memory cell in iColumn. */ static const Token one = { (u8*)"1", 0, 1 }; Select *pSel; SelectDest dest; pSel = pExpr->pSelect; sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); if( pExpr->op==TK_SELECT ){ dest.eDest = SRT_Mem; sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); VdbeComment((v, "Init subquery result")); }else{ dest.eDest = SRT_Exists; sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); VdbeComment((v, "Init EXISTS result")); } sqlite3ExprDelete(pParse->db, pSel->pLimit); pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); if( sqlite3Select(pParse, pSel, &dest) ){ return; } pExpr->iColumn = dest.iParm; break; } } if( testAddr ){ sqlite3VdbeJumpHere(v, testAddr-1); } return; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** Duplicate an 8-byte value */ static char *dup8bytes(Vdbe *v, const char *in){ char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); if( out ){ memcpy(out, in, 8); } return out; } /* ** Generate an instruction that will put the floating point ** value described by z[0..n-1] into register iMem. ** ** The z[] string will probably not be zero-terminated. But the ** z[n] character is guaranteed to be something that does not look ** like the continuation of the number. */ static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){ assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); if( z ){ double value; char *zV; assert( !isdigit(z[n]) ); sqlite3AtoF(z, &value); if( sqlite3IsNaN(value) ){ sqlite3VdbeAddOp2(v, OP_Null, 0, iMem); }else{ if( negateFlag ) value = -value; zV = dup8bytes(v, (char*)&value); sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); } } } /* ** Generate an instruction that will put the integer describe by ** text z[0..n-1] into register iMem. ** ** The z[] string will probably not be zero-terminated. But the ** z[n] character is guaranteed to be something that does not look ** like the continuation of the number. */ static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){ const char *z; if( pExpr->flags & EP_IntValue ){ int i = pExpr->iTable; if( negFlag ) i = -i; sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); }else if( (z = (char*)pExpr->token.z)!=0 ){ int i; int n = pExpr->token.n; assert( !isdigit(z[n]) ); if( sqlite3GetInt32(z, &i) ){ if( negFlag ) i = -i; sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); }else if( sqlite3FitsIn64Bits(z, negFlag) ){ i64 value; char *zV; sqlite3Atoi64(z, &value); if( negFlag ) value = -value; zV = dup8bytes(v, (char*)&value); sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); }else{ codeReal(v, z, n, negFlag, iMem); } } } /* ** Generate code that will extract the iColumn-th column from ** table pTab and store the column value in a register. An effort ** is made to store the column value in register iReg, but this is ** not guaranteed. The location of the column value is returned. ** ** There must be an open cursor to pTab in iTable when this routine ** is called. If iColumn<0 then code is generated that extracts the rowid. ** ** This routine might attempt to reuse the value of the column that ** has already been loaded into a register. The value will always ** be used if it has not undergone any affinity changes. But if ** an affinity change has occurred, then the cached value will only be ** used if allowAffChng is true. */ int sqlite3ExprCodeGetColumn( Parse *pParse, /* Parsing and code generating context */ Table *pTab, /* Description of the table we are reading from */ int iColumn, /* Index of the table column */ int iTable, /* The cursor pointing to the table */ int iReg, /* Store results here */ int allowAffChng /* True if prior affinity changes are OK */ ){ Vdbe *v = pParse->pVdbe; int i; struct yColCache *p; for(i=0, p=pParse->aColCache; inColCache; i++, p++){ if( p->iTable==iTable && p->iColumn==iColumn && (!p->affChange || allowAffChng) ){ #if 0 sqlite3VdbeAddOp0(v, OP_Noop); VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg)); #endif return p->iReg; } } assert( v!=0 ); if( iColumn<0 ){ int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; sqlite3VdbeAddOp2(v, op, iTable, iReg); }else if( pTab==0 ){ sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg); }else{ int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg); sqlite3ColumnDefault(v, pTab, iColumn); #ifndef SQLITE_OMIT_FLOATING_POINT if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); } #endif } if( pParse->disableColCache==0 ){ i = pParse->iColCache; p = &pParse->aColCache[i]; p->iTable = iTable; p->iColumn = iColumn; p->iReg = iReg; p->affChange = 0; i++; if( i>=ArraySize(pParse->aColCache) ) i = 0; if( i>pParse->nColCache ) pParse->nColCache = i; pParse->iColCache = i; } return iReg; } /* ** Clear all column cache entries associated with the vdbe ** cursor with cursor number iTable. */ void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){ if( iTable<0 ){ pParse->nColCache = 0; pParse->iColCache = 0; }else{ int i; for(i=0; inColCache; i++){ if( pParse->aColCache[i].iTable==iTable ){ testcase( i==pParse->nColCache-1 ); pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; pParse->iColCache = pParse->nColCache; } } } } /* ** Record the fact that an affinity change has occurred on iCount ** registers starting with iStart. */ void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ int iEnd = iStart + iCount - 1; int i; for(i=0; inColCache; i++){ int r = pParse->aColCache[i].iReg; if( r>=iStart && r<=iEnd ){ pParse->aColCache[i].affChange = 1; } } } /* ** Generate code to move content from registers iFrom...iFrom+nReg-1 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. */ void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ int i; if( iFrom==iTo ) return; sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); for(i=0; inColCache; i++){ int x = pParse->aColCache[i].iReg; if( x>=iFrom && xaColCache[i].iReg += iTo-iFrom; } } } /* ** Generate code to copy content from registers iFrom...iFrom+nReg-1 ** over to iTo..iTo+nReg-1. */ void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ int i; if( iFrom==iTo ) return; for(i=0; ipVdbe, OP_Copy, iFrom+i, iTo+i); } } /* ** Return true if any register in the range iFrom..iTo (inclusive) ** is used as part of the column cache. */ static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ int i; for(i=0; inColCache; i++){ int r = pParse->aColCache[i].iReg; if( r>=iFrom && r<=iTo ) return 1; } return 0; } /* ** Theres is a value in register iCurrent. We ultimately want ** the value to be in register iTarget. It might be that ** iCurrent and iTarget are the same register. ** ** We are going to modify the value, so we need to make sure it ** is not a cached register. If iCurrent is a cached register, ** then try to move the value over to iTarget. If iTarget is a ** cached register, then clear the corresponding cache line. ** ** Return the register that the value ends up in. */ int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){ int i; assert( pParse->pVdbe!=0 ); if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){ return iCurrent; } if( iCurrent!=iTarget ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget); } for(i=0; inColCache; i++){ if( pParse->aColCache[i].iReg==iTarget ){ pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; pParse->iColCache = pParse->nColCache; } } return iTarget; } /* ** If the last instruction coded is an ephemeral copy of any of ** the registers in the nReg registers beginning with iReg, then ** convert the last instruction from OP_SCopy to OP_Copy. */ void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ int addr; VdbeOp *pOp; Vdbe *v; v = pParse->pVdbe; addr = sqlite3VdbeCurrentAddr(v); pOp = sqlite3VdbeGetOp(v, addr-1); assert( pOp || pParse->db->mallocFailed ); if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1opcode = OP_Copy; } } /* ** Generate code to store the value of the iAlias-th alias in register ** target. The first time this is called, pExpr is evaluated to compute ** the value of the alias. The value is stored in an auxiliary register ** and the number of that register is returned. On subsequent calls, ** the register number is returned without generating any code. ** ** Note that in order for this to work, code must be generated in the ** same order that it is executed. ** ** Aliases are numbered starting with 1. So iAlias is in the range ** of 1 to pParse->nAlias inclusive. ** ** pParse->aAlias[iAlias-1] records the register number where the value ** of the iAlias-th alias is stored. If zero, that means that the ** alias has not yet been computed. */ static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr){ sqlite3 *db = pParse->db; int iReg; if( pParse->aAlias==0 ){ pParse->aAlias = sqlite3DbMallocZero(db, sizeof(pParse->aAlias[0])*pParse->nAlias ); if( db->mallocFailed ) return 0; } assert( iAlias>0 && iAlias<=pParse->nAlias ); iReg = pParse->aAlias[iAlias-1]; if( iReg==0 ){ iReg = ++pParse->nMem; sqlite3ExprCode(pParse, pExpr, iReg); pParse->aAlias[iAlias-1] = iReg; } return iReg; } /* ** Generate code into the current Vdbe to evaluate the given ** expression. Attempt to store the results in register "target". ** Return the register where results are stored. ** ** With this routine, there is no guarantee that results will ** be stored in target. The result might be stored in some other ** register if it is convenient to do so. The calling function ** must check the return code and move the results to the desired ** register. */ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ Vdbe *v = pParse->pVdbe; /* The VM under construction */ int op; /* The opcode being coded */ int inReg = target; /* Results stored in register inReg */ int regFree1 = 0; /* If non-zero free this temporary register */ int regFree2 = 0; /* If non-zero free this temporary register */ int r1, r2, r3, r4; /* Various register numbers */ sqlite3 *db; db = pParse->db; assert( v!=0 || db->mallocFailed ); assert( target>0 && target<=pParse->nMem ); if( v==0 ) return 0; if( pExpr==0 ){ op = TK_NULL; }else{ op = pExpr->op; } switch( op ){ case TK_AGG_COLUMN: { AggInfo *pAggInfo = pExpr->pAggInfo; struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; if( !pAggInfo->directMode ){ assert( pCol->iMem>0 ); inReg = pCol->iMem; break; }else if( pAggInfo->useSortingIdx ){ sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, pCol->iSorterColumn, target); break; } /* Otherwise, fall thru into the TK_COLUMN case */ } case TK_COLUMN: { if( pExpr->iTable<0 ){ /* This only happens when coding check constraints */ assert( pParse->ckBase>0 ); inReg = pExpr->iColumn + pParse->ckBase; }else{ testcase( (pExpr->flags & EP_AnyAff)!=0 ); inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, pExpr->iColumn, pExpr->iTable, target, pExpr->flags & EP_AnyAff); } break; } case TK_INTEGER: { codeInteger(v, pExpr, 0, target); break; } case TK_FLOAT: { codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target); break; } case TK_STRING: { sqlite3DequoteExpr(db, pExpr); sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0, (char*)pExpr->token.z, pExpr->token.n); break; } case TK_NULL: { sqlite3VdbeAddOp2(v, OP_Null, 0, target); break; } #ifndef SQLITE_OMIT_BLOB_LITERAL case TK_BLOB: { int n; const char *z; char *zBlob; assert( pExpr->token.n>=3 ); assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' ); assert( pExpr->token.z[1]=='\'' ); assert( pExpr->token.z[pExpr->token.n-1]=='\'' ); n = pExpr->token.n - 3; z = (char*)pExpr->token.z + 2; zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); break; } #endif case TK_VARIABLE: { sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target); if( pExpr->token.n>1 ){ sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n); } break; } case TK_REGISTER: { inReg = pExpr->iTable; break; } case TK_AS: { inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft); break; } #ifndef SQLITE_OMIT_CAST case TK_CAST: { /* Expressions of the form: CAST(pLeft AS token) */ int aff, to_op; inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); aff = sqlite3AffinityType(&pExpr->token); to_op = aff - SQLITE_AFF_TEXT + OP_ToText; assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); testcase( to_op==OP_ToText ); testcase( to_op==OP_ToBlob ); testcase( to_op==OP_ToNumeric ); testcase( to_op==OP_ToInt ); testcase( to_op==OP_ToReal ); sqlite3VdbeAddOp1(v, to_op, inReg); testcase( usedAsColumnCache(pParse, inReg, inReg) ); sqlite3ExprCacheAffinityChange(pParse, inReg, 1); break; } #endif /* SQLITE_OMIT_CAST */ case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { assert( TK_LT==OP_Lt ); assert( TK_LE==OP_Le ); assert( TK_GT==OP_Gt ); assert( TK_GE==OP_Ge ); assert( TK_EQ==OP_Eq ); assert( TK_NE==OP_Ne ); testcase( op==TK_LT ); testcase( op==TK_LE ); testcase( op==TK_GT ); testcase( op==TK_GE ); testcase( op==TK_EQ ); testcase( op==TK_NE ); codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, pExpr->pRight, &r2, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, inReg, SQLITE_STOREP2); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_AND: case TK_OR: case TK_PLUS: case TK_STAR: case TK_MINUS: case TK_REM: case TK_BITAND: case TK_BITOR: case TK_SLASH: case TK_LSHIFT: case TK_RSHIFT: case TK_CONCAT: { assert( TK_AND==OP_And ); assert( TK_OR==OP_Or ); assert( TK_PLUS==OP_Add ); assert( TK_MINUS==OP_Subtract ); assert( TK_REM==OP_Remainder ); assert( TK_BITAND==OP_BitAnd ); assert( TK_BITOR==OP_BitOr ); assert( TK_SLASH==OP_Divide ); assert( TK_LSHIFT==OP_ShiftLeft ); assert( TK_RSHIFT==OP_ShiftRight ); assert( TK_CONCAT==OP_Concat ); testcase( op==TK_AND ); testcase( op==TK_OR ); testcase( op==TK_PLUS ); testcase( op==TK_MINUS ); testcase( op==TK_REM ); testcase( op==TK_BITAND ); testcase( op==TK_BITOR ); testcase( op==TK_SLASH ); testcase( op==TK_LSHIFT ); testcase( op==TK_RSHIFT ); testcase( op==TK_CONCAT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); sqlite3VdbeAddOp3(v, op, r2, r1, target); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_UMINUS: { Expr *pLeft = pExpr->pLeft; assert( pLeft ); if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ if( pLeft->op==TK_FLOAT ){ codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target); }else{ codeInteger(v, pLeft, 1, target); } }else{ regFree1 = r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); testcase( regFree2==0 ); } inReg = target; break; } case TK_BITNOT: case TK_NOT: { assert( TK_BITNOT==OP_BitNot ); assert( TK_NOT==OP_Not ); testcase( op==TK_BITNOT ); testcase( op==TK_NOT ); inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); testcase( inReg==target ); testcase( usedAsColumnCache(pParse, inReg, inReg) ); inReg = sqlite3ExprWritableRegister(pParse, inReg, target); sqlite3VdbeAddOp1(v, op, inReg); break; } case TK_ISNULL: case TK_NOTNULL: { int addr; assert( TK_ISNULL==OP_IsNull ); assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_ISNULL ); testcase( op==TK_NOTNULL ); sqlite3VdbeAddOp2(v, OP_Integer, 1, target); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); addr = sqlite3VdbeAddOp1(v, op, r1); sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); sqlite3VdbeJumpHere(v, addr); break; } case TK_AGG_FUNCTION: { AggInfo *pInfo = pExpr->pAggInfo; if( pInfo==0 ){ sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", &pExpr->span); }else{ inReg = pInfo->aFunc[pExpr->iAgg].iMem; } break; } case TK_CONST_FUNC: case TK_FUNCTION: { ExprList *pList = pExpr->pList; int nExpr = pList ? pList->nExpr : 0; FuncDef *pDef; int nId; const char *zId; int constMask = 0; int i; u8 enc = ENC(db); CollSeq *pColl = 0; testcase( op==TK_CONST_FUNC ); testcase( op==TK_FUNCTION ); zId = (char*)pExpr->token.z; nId = pExpr->token.n; pDef = sqlite3FindFunction(db, zId, nId, nExpr, enc, 0); assert( pDef!=0 ); if( pList ){ nExpr = pList->nExpr; r1 = sqlite3GetTempRange(pParse, nExpr); sqlite3ExprCodeExprList(pParse, pList, r1, 1); }else{ nExpr = r1 = 0; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Possibly overload the function if the first argument is ** a virtual table column. ** ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the ** second argument, not the first, as the argument to test to ** see if it is a column in a virtual table. This is done because ** the left operand of infix functions (the operand we want to ** control overloading) ends up as the second argument to the ** function. The expression "A glob B" is equivalent to ** "glob(B,A). We want to use the A in "A glob B" to test ** for function overloading. But we use the B term in "glob(B,A)". */ if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); }else if( nExpr>0 ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); } #endif for(i=0; ia[i].pExpr) ){ constMask |= (1<needCollSeq && !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); } } if( pDef->needCollSeq ){ if( !pColl ) pColl = db->pDfltColl; sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, (char*)pDef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, nExpr); if( nExpr ){ sqlite3ReleaseTempRange(pParse, r1, nExpr); } sqlite3ExprCacheAffinityChange(pParse, r1, nExpr); break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: case TK_SELECT: { testcase( op==TK_EXISTS ); testcase( op==TK_SELECT ); if( pExpr->iColumn==0 ){ sqlite3CodeSubselect(pParse, pExpr, 0, 0); } inReg = pExpr->iColumn; break; } case TK_IN: { int rNotFound = 0; int rMayHaveNull = 0; int j2, j3, j4, j5; char affinity; int eType; VdbeNoopComment((v, "begin IN expr r%d", target)); eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull); if( rMayHaveNull ){ rNotFound = ++pParse->nMem; } /* Figure out the affinity to use to create a key from the results ** of the expression. affinityStr stores a static string suitable for ** P4 of OP_MakeRecord. */ affinity = comparisonAffinity(pExpr); /* Code the from " IN (...)". The temporary table ** pExpr->iTable contains the values that make up the (...) set. */ pParse->disableColCache++; sqlite3ExprCode(pParse, pExpr->pLeft, target); pParse->disableColCache--; j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target); if( eType==IN_INDEX_ROWID ){ j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target); j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target); sqlite3VdbeAddOp2(v, OP_Integer, 1, target); j5 = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeJumpHere(v, j3); sqlite3VdbeJumpHere(v, j4); sqlite3VdbeAddOp2(v, OP_Integer, 0, target); }else{ r2 = regFree2 = sqlite3GetTempReg(pParse); /* Create a record and test for set membership. If the set contains ** the value, then jump to the end of the test code. The target ** register still contains the true (1) value written to it earlier. */ sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1); sqlite3VdbeAddOp2(v, OP_Integer, 1, target); j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2); /* If the set membership test fails, then the result of the ** "x IN (...)" expression must be either 0 or NULL. If the set ** contains no NULL values, then the result is 0. If the set ** contains one or more NULL values, then the result of the ** expression is also NULL. */ if( rNotFound==0 ){ /* This branch runs if it is known at compile time (now) that ** the set contains no NULL values. This happens as the result ** of a "NOT NULL" constraint in the database schema. No need ** to test the data structure at runtime in this case. */ sqlite3VdbeAddOp2(v, OP_Integer, 0, target); }else{ /* This block populates the rNotFound register with either NULL ** or 0 (an integer value). If the data structure contains one ** or more NULLs, then set rNotFound to NULL. Otherwise, set it ** to 0. If register rMayHaveNull is already set to some value ** other than NULL, then the test has already been run and ** rNotFound is already populated. */ static const char nullRecord[] = { 0x02, 0x00 }; j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull); sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound); sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, nullRecord, P4_STATIC); j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull); sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound); sqlite3VdbeJumpHere(v, j4); sqlite3VdbeJumpHere(v, j3); /* Copy the value of register rNotFound (which is either NULL or 0) ** into the target register. This will be the result of the ** expression. */ sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target); } } sqlite3VdbeJumpHere(v, j2); sqlite3VdbeJumpHere(v, j5); VdbeComment((v, "end IN expr r%d", target)); break; } #endif /* ** x BETWEEN y AND z ** ** This is equivalent to ** ** x>=y AND x<=z ** ** X is stored in pExpr->pLeft. ** Y is stored in pExpr->pList->a[0].pExpr. ** Z is stored in pExpr->pList->a[1].pExpr. */ case TK_BETWEEN: { Expr *pLeft = pExpr->pLeft; struct ExprList_item *pLItem = pExpr->pList->a; Expr *pRight = pLItem->pExpr; codeCompareOperands(pParse, pLeft, &r1, ®Free1, pRight, &r2, ®Free2); testcase( regFree1==0 ); testcase( regFree2==0 ); r3 = sqlite3GetTempReg(pParse); r4 = sqlite3GetTempReg(pParse); codeCompare(pParse, pLeft, pRight, OP_Ge, r1, r2, r3, SQLITE_STOREP2); pLItem++; pRight = pLItem->pExpr; sqlite3ReleaseTempReg(pParse, regFree2); r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); testcase( regFree2==0 ); codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); sqlite3ReleaseTempReg(pParse, r3); sqlite3ReleaseTempReg(pParse, r4); break; } case TK_UPLUS: { inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); break; } /* ** Form A: ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END ** ** Form B: ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END ** ** Form A is can be transformed into the equivalent form B as follows: ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... ** WHEN x=eN THEN rN ELSE y END ** ** X (if it exists) is in pExpr->pLeft. ** Y is in pExpr->pRight. The Y is also optional. If there is no ** ELSE clause and no other term matches, then the result of the ** exprssion is NULL. ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. ** ** The result of the expression is the Ri for the first matching Ei, ** or if there is no matching Ei, the ELSE term Y, or if there is ** no ELSE term, NULL. */ case TK_CASE: { int endLabel; /* GOTO label for end of CASE stmt */ int nextCase; /* GOTO label for next WHEN clause */ int nExpr; /* 2x number of WHEN terms */ int i; /* Loop counter */ ExprList *pEList; /* List of WHEN terms */ struct ExprList_item *aListelem; /* Array of WHEN terms */ Expr opCompare; /* The X==Ei expression */ Expr cacheX; /* Cached expression X */ Expr *pX; /* The X expression */ Expr *pTest; /* X==Ei (form A) or just Ei (form B) */ assert(pExpr->pList); assert((pExpr->pList->nExpr % 2) == 0); assert(pExpr->pList->nExpr > 0); pEList = pExpr->pList; aListelem = pEList->a; nExpr = pEList->nExpr; endLabel = sqlite3VdbeMakeLabel(v); if( (pX = pExpr->pLeft)!=0 ){ cacheX = *pX; testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER ); cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); testcase( regFree1==0 ); cacheX.op = TK_REGISTER; opCompare.op = TK_EQ; opCompare.pLeft = &cacheX; pTest = &opCompare; } pParse->disableColCache++; for(i=0; iop==TK_COLUMN || pTest->op==TK_REGISTER ); sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); sqlite3VdbeResolveLabel(v, nextCase); } if( pExpr->pRight ){ sqlite3ExprCode(pParse, pExpr->pRight, target); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, target); } sqlite3VdbeResolveLabel(v, endLabel); assert( pParse->disableColCache>0 ); pParse->disableColCache--; break; } #ifndef SQLITE_OMIT_TRIGGER case TK_RAISE: { if( !pParse->trigStack ){ sqlite3ErrorMsg(pParse, "RAISE() may only be used within a trigger-program"); return 0; } if( pExpr->iColumn!=OE_Ignore ){ assert( pExpr->iColumn==OE_Rollback || pExpr->iColumn == OE_Abort || pExpr->iColumn == OE_Fail ); sqlite3DequoteExpr(db, pExpr); sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0, (char*)pExpr->token.z, pExpr->token.n); } else { assert( pExpr->iColumn == OE_Ignore ); sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0); sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump); VdbeComment((v, "raise(IGNORE)")); } break; } #endif } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); return inReg; } /* ** Generate code to evaluate an expression and store the results ** into a register. Return the register number where the results ** are stored. ** ** If the register is a temporary register that can be deallocated, ** then write its number into *pReg. If the result register is not ** a temporary, then set *pReg to zero. */ int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ int r1 = sqlite3GetTempReg(pParse); int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); if( r2==r1 ){ *pReg = r1; }else{ sqlite3ReleaseTempReg(pParse, r1); *pReg = 0; } return r2; } /* ** Generate code that will evaluate expression pExpr and store the ** results in register target. The results are guaranteed to appear ** in register target. */ int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ int inReg; assert( target>0 && target<=pParse->nMem ); inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); assert( pParse->pVdbe || pParse->db->mallocFailed ); if( inReg!=target && pParse->pVdbe ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); } return target; } /* ** Generate code that evalutes the given expression and puts the result ** in register target. ** ** Also make a copy of the expression results into another "cache" register ** and modify the expression so that the next time it is evaluated, ** the result is a copy of the cache register. ** ** This routine is used for expressions that are used multiple ** times. They are evaluated once and the results of the expression ** are reused. */ int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ Vdbe *v = pParse->pVdbe; int inReg; inReg = sqlite3ExprCode(pParse, pExpr, target); assert( target>0 ); if( pExpr->op!=TK_REGISTER ){ int iMem; iMem = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); pExpr->iTable = iMem; pExpr->op = TK_REGISTER; } return inReg; } /* ** Return TRUE if pExpr is an constant expression that is appropriate ** for factoring out of a loop. Appropriate expressions are: ** ** * Any expression that evaluates to two or more opcodes. ** ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, ** or OP_Variable that does not need to be placed in a ** specific register. ** ** There is no point in factoring out single-instruction constant ** expressions that need to be placed in a particular register. ** We could factor them out, but then we would end up adding an ** OP_SCopy instruction to move the value into the correct register ** later. We might as well just use the original instruction and ** avoid the OP_SCopy. */ static int isAppropriateForFactoring(Expr *p){ if( !sqlite3ExprIsConstantNotJoin(p) ){ return 0; /* Only constant expressions are appropriate for factoring */ } if( (p->flags & EP_FixedDest)==0 ){ return 1; /* Any constant without a fixed destination is appropriate */ } while( p->op==TK_UPLUS ) p = p->pLeft; switch( p->op ){ #ifndef SQLITE_OMIT_BLOB_LITERAL case TK_BLOB: #endif case TK_VARIABLE: case TK_INTEGER: case TK_FLOAT: case TK_NULL: case TK_STRING: { testcase( p->op==TK_BLOB ); testcase( p->op==TK_VARIABLE ); testcase( p->op==TK_INTEGER ); testcase( p->op==TK_FLOAT ); testcase( p->op==TK_NULL ); testcase( p->op==TK_STRING ); /* Single-instruction constants with a fixed destination are ** better done in-line. If we factor them, they will just end ** up generating an OP_SCopy to move the value to the destination ** register. */ return 0; } case TK_UMINUS: { if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ return 0; } break; } default: { break; } } return 1; } /* ** If pExpr is a constant expression that is appropriate for ** factoring out of a loop, then evaluate the expression ** into a register and convert the expression into a TK_REGISTER ** expression. */ static int evalConstExpr(Walker *pWalker, Expr *pExpr){ Parse *pParse = pWalker->pParse; switch( pExpr->op ){ case TK_REGISTER: { return 1; } case TK_FUNCTION: case TK_AGG_FUNCTION: case TK_CONST_FUNC: { /* The arguments to a function have a fixed destination. ** Mark them this way to avoid generated unneeded OP_SCopy ** instructions. */ ExprList *pList = pExpr->pList; if( pList ){ int i = pList->nExpr; struct ExprList_item *pItem = pList->a; for(; i>0; i--, pItem++){ if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest; } } break; } } if( isAppropriateForFactoring(pExpr) ){ int r1 = ++pParse->nMem; int r2; r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1); pExpr->op = TK_REGISTER; pExpr->iTable = r2; return WRC_Prune; } return WRC_Continue; } /* ** Preevaluate constant subexpressions within pExpr and store the ** results in registers. Modify pExpr so that the constant subexpresions ** are TK_REGISTER opcodes that refer to the precomputed values. */ void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ Walker w; w.xExprCallback = evalConstExpr; w.xSelectCallback = 0; w.pParse = pParse; sqlite3WalkExpr(&w, pExpr); } /* ** Generate code that pushes the value of every element of the given ** expression list into a sequence of registers beginning at target. ** ** Return the number of elements evaluated. */ int sqlite3ExprCodeExprList( Parse *pParse, /* Parsing context */ ExprList *pList, /* The expression list to be coded */ int target, /* Where to write results */ int doHardCopy /* Make a hard copy of every element */ ){ struct ExprList_item *pItem; int i, n; assert( pList!=0 ); assert( target>0 ); n = pList->nExpr; for(pItem=pList->a, i=0; iiAlias ){ int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr); Vdbe *v = sqlite3GetVdbe(pParse); sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i); }else{ sqlite3ExprCode(pParse, pItem->pExpr, target+i); } if( doHardCopy ){ sqlite3ExprHardCopy(pParse, target, n); } } return n; } /* ** Generate code for a boolean expression such that a jump is made ** to the label "dest" if the expression is true but execution ** continues straight thru if the expression is false. ** ** If the expression evaluates to NULL (neither true nor false), then ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. ** ** This code depends on the fact that certain token values (ex: TK_EQ) ** are the same as opcode values (ex: OP_Eq) that implement the corresponding ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in ** the make process cause these values to align. Assert()s in the code ** below verify that the numbers are aligned correctly. */ void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ Vdbe *v = pParse->pVdbe; int op = 0; int regFree1 = 0; int regFree2 = 0; int r1, r2; assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); if( v==0 || pExpr==0 ) return; op = pExpr->op; switch( op ){ case TK_AND: { int d2 = sqlite3VdbeMakeLabel(v); testcase( jumpIfNull==0 ); testcase( pParse->disableColCache==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); pParse->disableColCache++; sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); assert( pParse->disableColCache>0 ); pParse->disableColCache--; sqlite3VdbeResolveLabel(v, d2); break; } case TK_OR: { testcase( jumpIfNull==0 ); testcase( pParse->disableColCache==0 ); sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); pParse->disableColCache++; sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); assert( pParse->disableColCache>0 ); pParse->disableColCache--; break; } case TK_NOT: { testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); break; } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { assert( TK_LT==OP_Lt ); assert( TK_LE==OP_Le ); assert( TK_GT==OP_Gt ); assert( TK_GE==OP_Ge ); assert( TK_EQ==OP_Eq ); assert( TK_NE==OP_Ne ); testcase( op==TK_LT ); testcase( op==TK_LE ); testcase( op==TK_GT ); testcase( op==TK_GE ); testcase( op==TK_EQ ); testcase( op==TK_NE ); testcase( jumpIfNull==0 ); codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, pExpr->pRight, &r2, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_ISNULL: case TK_NOTNULL: { assert( TK_ISNULL==OP_IsNull ); assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_ISNULL ); testcase( op==TK_NOTNULL ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sqlite3VdbeAddOp2(v, op, r1, dest); testcase( regFree1==0 ); break; } case TK_BETWEEN: { /* x BETWEEN y AND z ** ** Is equivalent to ** ** x>=y AND x<=z ** ** Code it as such, taking care to do the common subexpression ** elementation of x. */ Expr exprAnd; Expr compLeft; Expr compRight; Expr exprX; exprX = *pExpr->pLeft; exprAnd.op = TK_AND; exprAnd.pLeft = &compLeft; exprAnd.pRight = &compRight; compLeft.op = TK_GE; compLeft.pLeft = &exprX; compLeft.pRight = pExpr->pList->a[0].pExpr; compRight.op = TK_LE; compRight.pLeft = &exprX; compRight.pRight = pExpr->pList->a[1].pExpr; exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); testcase( regFree1==0 ); exprX.op = TK_REGISTER; testcase( jumpIfNull==0 ); sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); break; } default: { r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); break; } } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); } /* ** Generate code for a boolean expression such that a jump is made ** to the label "dest" if the expression is false but execution ** continues straight thru if the expression is true. ** ** If the expression evaluates to NULL (neither true nor false) then ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull ** is 0. */ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ Vdbe *v = pParse->pVdbe; int op = 0; int regFree1 = 0; int regFree2 = 0; int r1, r2; assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); if( v==0 || pExpr==0 ) return; /* The value of pExpr->op and op are related as follows: ** ** pExpr->op op ** --------- ---------- ** TK_ISNULL OP_NotNull ** TK_NOTNULL OP_IsNull ** TK_NE OP_Eq ** TK_EQ OP_Ne ** TK_GT OP_Le ** TK_LE OP_Gt ** TK_GE OP_Lt ** TK_LT OP_Ge ** ** For other values of pExpr->op, op is undefined and unused. ** The value of TK_ and OP_ constants are arranged such that we ** can compute the mapping above using the following expression. ** Assert()s verify that the computation is correct. */ op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); /* Verify correct alignment of TK_ and OP_ constants */ assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); assert( pExpr->op!=TK_NE || op==OP_Eq ); assert( pExpr->op!=TK_EQ || op==OP_Ne ); assert( pExpr->op!=TK_LT || op==OP_Ge ); assert( pExpr->op!=TK_LE || op==OP_Gt ); assert( pExpr->op!=TK_GT || op==OP_Le ); assert( pExpr->op!=TK_GE || op==OP_Lt ); switch( pExpr->op ){ case TK_AND: { testcase( jumpIfNull==0 ); testcase( pParse->disableColCache==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); pParse->disableColCache++; sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); assert( pParse->disableColCache>0 ); pParse->disableColCache--; break; } case TK_OR: { int d2 = sqlite3VdbeMakeLabel(v); testcase( jumpIfNull==0 ); testcase( pParse->disableColCache==0 ); sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); pParse->disableColCache++; sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); assert( pParse->disableColCache>0 ); pParse->disableColCache--; sqlite3VdbeResolveLabel(v, d2); break; } case TK_NOT: { sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); break; } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { testcase( op==TK_LT ); testcase( op==TK_LE ); testcase( op==TK_GT ); testcase( op==TK_GE ); testcase( op==TK_EQ ); testcase( op==TK_NE ); testcase( jumpIfNull==0 ); codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, pExpr->pRight, &r2, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_ISNULL: case TK_NOTNULL: { testcase( op==TK_ISNULL ); testcase( op==TK_NOTNULL ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sqlite3VdbeAddOp2(v, op, r1, dest); testcase( regFree1==0 ); break; } case TK_BETWEEN: { /* x BETWEEN y AND z ** ** Is equivalent to ** ** x>=y AND x<=z ** ** Code it as such, taking care to do the common subexpression ** elementation of x. */ Expr exprAnd; Expr compLeft; Expr compRight; Expr exprX; exprX = *pExpr->pLeft; exprAnd.op = TK_AND; exprAnd.pLeft = &compLeft; exprAnd.pRight = &compRight; compLeft.op = TK_GE; compLeft.pLeft = &exprX; compLeft.pRight = pExpr->pList->a[0].pExpr; compRight.op = TK_LE; compRight.pLeft = &exprX; compRight.pRight = pExpr->pList->a[1].pExpr; exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); testcase( regFree1==0 ); exprX.op = TK_REGISTER; testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); break; } default: { r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); break; } } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); } /* ** Do a deep comparison of two expression trees. Return TRUE (non-zero) ** if they are identical and return FALSE if they differ in any way. ** ** Sometimes this routine will return FALSE even if the two expressions ** really are equivalent. If we cannot prove that the expressions are ** identical, we return FALSE just to be safe. So if this routine ** returns false, then you do not really know for certain if the two ** expressions are the same. But if you get a TRUE return, then you ** can be sure the expressions are the same. In the places where ** this routine is used, it does not hurt to get an extra FALSE - that ** just might result in some slightly slower code. But returning ** an incorrect TRUE could lead to a malfunction. */ int sqlite3ExprCompare(Expr *pA, Expr *pB){ int i; if( pA==0||pB==0 ){ return pB==pA; } if( pA->op!=pB->op ) return 0; if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; if( pA->pList ){ if( pB->pList==0 ) return 0; if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; for(i=0; ipList->nExpr; i++){ if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ return 0; } } }else if( pB->pList ){ return 0; } if( pA->pSelect || pB->pSelect ) return 0; if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; if( pA->op!=TK_COLUMN && pA->token.z ){ if( pB->token.z==0 ) return 0; if( pB->token.n!=pA->token.n ) return 0; if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ return 0; } } return 1; } /* ** Add a new element to the pAggInfo->aCol[] array. Return the index of ** the new element. Return a negative number if malloc fails. */ static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ int i; pInfo->aCol = sqlite3ArrayAllocate( db, pInfo->aCol, sizeof(pInfo->aCol[0]), 3, &pInfo->nColumn, &pInfo->nColumnAlloc, &i ); return i; } /* ** Add a new element to the pAggInfo->aFunc[] array. Return the index of ** the new element. Return a negative number if malloc fails. */ static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ int i; pInfo->aFunc = sqlite3ArrayAllocate( db, pInfo->aFunc, sizeof(pInfo->aFunc[0]), 3, &pInfo->nFunc, &pInfo->nFuncAlloc, &i ); return i; } /* ** This is the xExprCallback for a tree walker. It is used to ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates ** for additional information. */ static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ int i; NameContext *pNC = pWalker->u.pNC; Parse *pParse = pNC->pParse; SrcList *pSrcList = pNC->pSrcList; AggInfo *pAggInfo = pNC->pAggInfo; switch( pExpr->op ){ case TK_AGG_COLUMN: case TK_COLUMN: { testcase( pExpr->op==TK_AGG_COLUMN ); testcase( pExpr->op==TK_COLUMN ); /* Check to see if the column is in one of the tables in the FROM ** clause of the aggregate query */ if( pSrcList ){ struct SrcList_item *pItem = pSrcList->a; for(i=0; inSrc; i++, pItem++){ struct AggInfo_col *pCol; if( pExpr->iTable==pItem->iCursor ){ /* If we reach this point, it means that pExpr refers to a table ** that is in the FROM clause of the aggregate query. ** ** Make an entry for the column in pAggInfo->aCol[] if there ** is not an entry there already. */ int k; pCol = pAggInfo->aCol; for(k=0; knColumn; k++, pCol++){ if( pCol->iTable==pExpr->iTable && pCol->iColumn==pExpr->iColumn ){ break; } } if( (k>=pAggInfo->nColumn) && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 ){ pCol = &pAggInfo->aCol[k]; pCol->pTab = pExpr->pTab; pCol->iTable = pExpr->iTable; pCol->iColumn = pExpr->iColumn; pCol->iMem = ++pParse->nMem; pCol->iSorterColumn = -1; pCol->pExpr = pExpr; if( pAggInfo->pGroupBy ){ int j, n; ExprList *pGB = pAggInfo->pGroupBy; struct ExprList_item *pTerm = pGB->a; n = pGB->nExpr; for(j=0; jpExpr; if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && pE->iColumn==pExpr->iColumn ){ pCol->iSorterColumn = j; break; } } } if( pCol->iSorterColumn<0 ){ pCol->iSorterColumn = pAggInfo->nSortingColumn++; } } /* There is now an entry for pExpr in pAggInfo->aCol[] (either ** because it was there before or because we just created it). ** Convert the pExpr to be a TK_AGG_COLUMN referring to that ** pAggInfo->aCol[] entry. */ pExpr->pAggInfo = pAggInfo; pExpr->op = TK_AGG_COLUMN; pExpr->iAgg = k; break; } /* endif pExpr->iTable==pItem->iCursor */ } /* end loop over pSrcList */ } return WRC_Prune; } case TK_AGG_FUNCTION: { /* The pNC->nDepth==0 test causes aggregate functions in subqueries ** to be ignored */ if( pNC->nDepth==0 ){ /* Check to see if pExpr is a duplicate of another aggregate ** function that is already in the pAggInfo structure */ struct AggInfo_func *pItem = pAggInfo->aFunc; for(i=0; inFunc; i++, pItem++){ if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ break; } } if( i>=pAggInfo->nFunc ){ /* pExpr is original. Make a new entry in pAggInfo->aFunc[] */ u8 enc = ENC(pParse->db); i = addAggInfoFunc(pParse->db, pAggInfo); if( i>=0 ){ pItem = &pAggInfo->aFunc[i]; pItem->pExpr = pExpr; pItem->iMem = ++pParse->nMem; pItem->pFunc = sqlite3FindFunction(pParse->db, (char*)pExpr->token.z, pExpr->token.n, pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); if( pExpr->flags & EP_Distinct ){ pItem->iDistinct = pParse->nTab++; }else{ pItem->iDistinct = -1; } } } /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry */ pExpr->iAgg = i; pExpr->pAggInfo = pAggInfo; return WRC_Prune; } } } return WRC_Continue; } static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ NameContext *pNC = pWalker->u.pNC; if( pNC->nDepth==0 ){ pNC->nDepth++; sqlite3WalkSelect(pWalker, pSelect); pNC->nDepth--; return WRC_Prune; }else{ return WRC_Continue; } } /* ** Analyze the given expression looking for aggregate functions and ** for variables that need to be added to the pParse->aAgg[] array. ** Make additional entries to the pParse->aAgg[] array as necessary. ** ** This routine should only be called after the expression has been ** analyzed by sqlite3ResolveExprNames(). */ void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ Walker w; w.xExprCallback = analyzeAggregate; w.xSelectCallback = analyzeAggregatesInSelect; w.u.pNC = pNC; sqlite3WalkExpr(&w, pExpr); } /* ** Call sqlite3ExprAnalyzeAggregates() for every expression in an ** expression list. Return the number of errors. ** ** If an error is found, the analysis is cut short. */ void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ struct ExprList_item *pItem; int i; if( pList ){ for(pItem=pList->a, i=0; inExpr; i++, pItem++){ sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); } } } /* ** Allocate or deallocate temporary use registers during code generation. */ int sqlite3GetTempReg(Parse *pParse){ if( pParse->nTempReg==0 ){ return ++pParse->nMem; } return pParse->aTempReg[--pParse->nTempReg]; } void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ if( iReg && pParse->nTempRegaTempReg) ){ sqlite3ExprWritableRegister(pParse, iReg, iReg); pParse->aTempReg[pParse->nTempReg++] = iReg; } } /* ** Allocate or deallocate a block of nReg consecutive registers */ int sqlite3GetTempRange(Parse *pParse, int nReg){ int i, n; i = pParse->iRangeReg; n = pParse->nRangeReg; if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){ pParse->iRangeReg += nReg; pParse->nRangeReg -= nReg; }else{ i = pParse->nMem+1; pParse->nMem += nReg; } return i; } void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ if( nReg>pParse->nRangeReg ){ pParse->nRangeReg = nReg; pParse->iRangeReg = iReg; } }