/* ** 2003 October 31 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement date and time ** functions for SQLite. ** ** There is only one exported symbol in this file - the function ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. ** All other code has file scope. ** ** SQLite processes all times and dates as Julian Day numbers. The ** dates and times are stored as the number of days since noon ** in Greenwich on November 24, 4714 B.C. according to the Gregorian ** calendar system. ** ** 1970-01-01 00:00:00 is JD 2440587.5 ** 2000-01-01 00:00:00 is JD 2451544.5 ** ** This implemention requires years to be expressed as a 4-digit number ** which means that only dates between 0000-01-01 and 9999-12-31 can ** be represented, even though julian day numbers allow a much wider ** range of dates. ** ** The Gregorian calendar system is used for all dates and times, ** even those that predate the Gregorian calendar. Historians usually ** use the Julian calendar for dates prior to 1582-10-15 and for some ** dates afterwards, depending on locale. Beware of this difference. ** ** The conversion algorithms are implemented based on descriptions ** in the following text: ** ** Jean Meeus ** Astronomical Algorithms, 2nd Edition, 1998 ** ISBM 0-943396-61-1 ** Willmann-Bell, Inc ** Richmond, Virginia (USA) */ #include "sqliteInt.h" #include #include #include #ifndef SQLITE_OMIT_DATETIME_FUNCS /* ** On recent Windows platforms, the localtime_s() function is available ** as part of the "Secure CRT". It is essentially equivalent to ** localtime_r() available under most POSIX platforms, except that the ** order of the parameters is reversed. ** ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. ** ** If the user has not indicated to use localtime_r() or localtime_s() ** already, check for an MSVC build environment that provides ** localtime_s(). */ #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \ defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) #define HAVE_LOCALTIME_S 1 #endif /* ** A structure for holding a single date and time. */ typedef struct DateTime DateTime; struct DateTime { sqlite3_int64 iJD; /* The julian day number times 86400000 */ int Y, M, D; /* Year, month, and day */ int h, m; /* Hour and minutes */ int tz; /* Timezone offset in minutes */ double s; /* Seconds */ char validYMD; /* True (1) if Y,M,D are valid */ char validHMS; /* True (1) if h,m,s are valid */ char validJD; /* True (1) if iJD is valid */ char validTZ; /* True (1) if tz is valid */ }; /* ** Convert zDate into one or more integers. Additional arguments ** come in groups of 5 as follows: ** ** N number of digits in the integer ** min minimum allowed value of the integer ** max maximum allowed value of the integer ** nextC first character after the integer ** pVal where to write the integers value. ** ** Conversions continue until one with nextC==0 is encountered. ** The function returns the number of successful conversions. */ static int getDigits(const char *zDate, ...){ va_list ap; int val; int N; int min; int max; int nextC; int *pVal; int cnt = 0; va_start(ap, zDate); do{ N = va_arg(ap, int); min = va_arg(ap, int); max = va_arg(ap, int); nextC = va_arg(ap, int); pVal = va_arg(ap, int*); val = 0; while( N-- ){ if( !sqlite3Isdigit(*zDate) ){ goto end_getDigits; } val = val*10 + *zDate - '0'; zDate++; } if( valmax || (nextC!=0 && nextC!=*zDate) ){ goto end_getDigits; } *pVal = val; zDate++; cnt++; }while( nextC ); end_getDigits: va_end(ap); return cnt; } /* ** Read text from z[] and convert into a floating point number. Return ** the number of digits converted. */ #define getValue sqlite3AtoF /* ** Parse a timezone extension on the end of a date-time. ** The extension is of the form: ** ** (+/-)HH:MM ** ** Or the "zulu" notation: ** ** Z ** ** If the parse is successful, write the number of minutes ** of change in p->tz and return 0. If a parser error occurs, ** return non-zero. ** ** A missing specifier is not considered an error. */ static int parseTimezone(const char *zDate, DateTime *p){ int sgn = 0; int nHr, nMn; int c; while( sqlite3Isspace(*zDate) ){ zDate++; } p->tz = 0; c = *zDate; if( c=='-' ){ sgn = -1; }else if( c=='+' ){ sgn = +1; }else if( c=='Z' || c=='z' ){ zDate++; goto zulu_time; }else{ return c!=0; } zDate++; if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ return 1; } zDate += 5; p->tz = sgn*(nMn + nHr*60); zulu_time: while( sqlite3Isspace(*zDate) ){ zDate++; } return *zDate!=0; } /* ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. ** The HH, MM, and SS must each be exactly 2 digits. The ** fractional seconds FFFF can be one or more digits. ** ** Return 1 if there is a parsing error and 0 on success. */ static int parseHhMmSs(const char *zDate, DateTime *p){ int h, m, s; double ms = 0.0; if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ return 1; } zDate += 5; if( *zDate==':' ){ zDate++; if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ return 1; } zDate += 2; if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ double rScale = 1.0; zDate++; while( sqlite3Isdigit(*zDate) ){ ms = ms*10.0 + *zDate - '0'; rScale *= 10.0; zDate++; } ms /= rScale; } }else{ s = 0; } p->validJD = 0; p->validHMS = 1; p->h = h; p->m = m; p->s = s + ms; if( parseTimezone(zDate, p) ) return 1; p->validTZ = (p->tz!=0)?1:0; return 0; } /* ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume ** that the YYYY-MM-DD is according to the Gregorian calendar. ** ** Reference: Meeus page 61 */ static void computeJD(DateTime *p){ int Y, M, D, A, B, X1, X2; if( p->validJD ) return; if( p->validYMD ){ Y = p->Y; M = p->M; D = p->D; }else{ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ M = 1; D = 1; } if( M<=2 ){ Y--; M += 12; } A = Y/100; B = 2 - A + (A/4); X1 = 36525*(Y+4716)/100; X2 = 306001*(M+1)/10000; p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); p->validJD = 1; if( p->validHMS ){ p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); if( p->validTZ ){ p->iJD -= p->tz*60000; p->validYMD = 0; p->validHMS = 0; p->validTZ = 0; } } } /* ** Parse dates of the form ** ** YYYY-MM-DD HH:MM:SS.FFF ** YYYY-MM-DD HH:MM:SS ** YYYY-MM-DD HH:MM ** YYYY-MM-DD ** ** Write the result into the DateTime structure and return 0 ** on success and 1 if the input string is not a well-formed ** date. */ static int parseYyyyMmDd(const char *zDate, DateTime *p){ int Y, M, D, neg; if( zDate[0]=='-' ){ zDate++; neg = 1; }else{ neg = 0; } if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ return 1; } zDate += 10; while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } if( parseHhMmSs(zDate, p)==0 ){ /* We got the time */ }else if( *zDate==0 ){ p->validHMS = 0; }else{ return 1; } p->validJD = 0; p->validYMD = 1; p->Y = neg ? -Y : Y; p->M = M; p->D = D; if( p->validTZ ){ computeJD(p); } return 0; } /* ** Set the time to the current time reported by the VFS */ static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ sqlite3 *db = sqlite3_context_db_handle(context); sqlite3OsCurrentTimeInt64(db->pVfs, &p->iJD); p->validJD = 1; } /* ** Attempt to parse the given string into a Julian Day Number. Return ** the number of errors. ** ** The following are acceptable forms for the input string: ** ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM ** DDDD.DD ** now ** ** In the first form, the +/-HH:MM is always optional. The fractional ** seconds extension (the ".FFF") is optional. The seconds portion ** (":SS.FFF") is option. The year and date can be omitted as long ** as there is a time string. The time string can be omitted as long ** as there is a year and date. */ static int parseDateOrTime( sqlite3_context *context, const char *zDate, DateTime *p ){ int isRealNum; /* Return from sqlite3IsNumber(). Not used */ if( parseYyyyMmDd(zDate,p)==0 ){ return 0; }else if( parseHhMmSs(zDate, p)==0 ){ return 0; }else if( sqlite3StrICmp(zDate,"now")==0){ setDateTimeToCurrent(context, p); return 0; }else if( sqlite3IsNumber(zDate, &isRealNum, SQLITE_UTF8) ){ double r; getValue(zDate, &r); p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); p->validJD = 1; return 0; } return 1; } /* ** Compute the Year, Month, and Day from the julian day number. */ static void computeYMD(DateTime *p){ int Z, A, B, C, D, E, X1; if( p->validYMD ) return; if( !p->validJD ){ p->Y = 2000; p->M = 1; p->D = 1; }else{ Z = (int)((p->iJD + 43200000)/86400000); A = (int)((Z - 1867216.25)/36524.25); A = Z + 1 + A - (A/4); B = A + 1524; C = (int)((B - 122.1)/365.25); D = (36525*C)/100; E = (int)((B-D)/30.6001); X1 = (int)(30.6001*E); p->D = B - D - X1; p->M = E<14 ? E-1 : E-13; p->Y = p->M>2 ? C - 4716 : C - 4715; } p->validYMD = 1; } /* ** Compute the Hour, Minute, and Seconds from the julian day number. */ static void computeHMS(DateTime *p){ int s; if( p->validHMS ) return; computeJD(p); s = (int)((p->iJD + 43200000) % 86400000); p->s = s/1000.0; s = (int)p->s; p->s -= s; p->h = s/3600; s -= p->h*3600; p->m = s/60; p->s += s - p->m*60; p->validHMS = 1; } /* ** Compute both YMD and HMS */ static void computeYMD_HMS(DateTime *p){ computeYMD(p); computeHMS(p); } /* ** Clear the YMD and HMS and the TZ */ static void clearYMD_HMS_TZ(DateTime *p){ p->validYMD = 0; p->validHMS = 0; p->validTZ = 0; } #ifndef SQLITE_OMIT_LOCALTIME /* ** Compute the difference (in milliseconds) ** between localtime and UTC (a.k.a. GMT) ** for the time value p where p is in UTC. */ static sqlite3_int64 localtimeOffset(DateTime *p){ DateTime x, y; time_t t; x = *p; computeYMD_HMS(&x); if( x.Y<1971 || x.Y>=2038 ){ x.Y = 2000; x.M = 1; x.D = 1; x.h = 0; x.m = 0; x.s = 0.0; } else { int s = (int)(x.s + 0.5); x.s = s; } x.tz = 0; x.validJD = 0; computeJD(&x); t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); #ifdef HAVE_LOCALTIME_R { struct tm sLocal; localtime_r(&t, &sLocal); y.Y = sLocal.tm_year + 1900; y.M = sLocal.tm_mon + 1; y.D = sLocal.tm_mday; y.h = sLocal.tm_hour; y.m = sLocal.tm_min; y.s = sLocal.tm_sec; } #elif defined(HAVE_LOCALTIME_S) && HAVE_LOCALTIME_S { struct tm sLocal; localtime_s(&sLocal, &t); y.Y = sLocal.tm_year + 1900; y.M = sLocal.tm_mon + 1; y.D = sLocal.tm_mday; y.h = sLocal.tm_hour; y.m = sLocal.tm_min; y.s = sLocal.tm_sec; } #else { struct tm *pTm; sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); pTm = localtime(&t); y.Y = pTm->tm_year + 1900; y.M = pTm->tm_mon + 1; y.D = pTm->tm_mday; y.h = pTm->tm_hour; y.m = pTm->tm_min; y.s = pTm->tm_sec; sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); } #endif y.validYMD = 1; y.validHMS = 1; y.validJD = 0; y.validTZ = 0; computeJD(&y); return y.iJD - x.iJD; } #endif /* SQLITE_OMIT_LOCALTIME */ /* ** Process a modifier to a date-time stamp. The modifiers are ** as follows: ** ** NNN days ** NNN hours ** NNN minutes ** NNN.NNNN seconds ** NNN months ** NNN years ** start of month ** start of year ** start of week ** start of day ** weekday N ** unixepoch ** localtime ** utc ** ** Return 0 on success and 1 if there is any kind of error. */ static int parseModifier(const char *zMod, DateTime *p){ int rc = 1; int n; double r; char *z, zBuf[30]; z = zBuf; for(n=0; niJD += localtimeOffset(p); clearYMD_HMS_TZ(p); rc = 0; } break; } #endif case 'u': { /* ** unixepoch ** ** Treat the current value of p->iJD as the number of ** seconds since 1970. Convert to a real julian day number. */ if( strcmp(z, "unixepoch")==0 && p->validJD ){ p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; clearYMD_HMS_TZ(p); rc = 0; } #ifndef SQLITE_OMIT_LOCALTIME else if( strcmp(z, "utc")==0 ){ sqlite3_int64 c1; computeJD(p); c1 = localtimeOffset(p); p->iJD -= c1; clearYMD_HMS_TZ(p); p->iJD += c1 - localtimeOffset(p); rc = 0; } #endif break; } case 'w': { /* ** weekday N ** ** Move the date to the same time on the next occurrence of ** weekday N where 0==Sunday, 1==Monday, and so forth. If the ** date is already on the appropriate weekday, this is a no-op. */ if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0 && (n=(int)r)==r && n>=0 && r<7 ){ sqlite3_int64 Z; computeYMD_HMS(p); p->validTZ = 0; p->validJD = 0; computeJD(p); Z = ((p->iJD + 129600000)/86400000) % 7; if( Z>n ) Z -= 7; p->iJD += (n - Z)*86400000; clearYMD_HMS_TZ(p); rc = 0; } break; } case 's': { /* ** start of TTTTT ** ** Move the date backwards to the beginning of the current day, ** or month or year. */ if( strncmp(z, "start of ", 9)!=0 ) break; z += 9; computeYMD(p); p->validHMS = 1; p->h = p->m = 0; p->s = 0.0; p->validTZ = 0; p->validJD = 0; if( strcmp(z,"month")==0 ){ p->D = 1; rc = 0; }else if( strcmp(z,"year")==0 ){ computeYMD(p); p->M = 1; p->D = 1; rc = 0; }else if( strcmp(z,"day")==0 ){ rc = 0; } break; } case '+': case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { double rRounder; n = getValue(z, &r); assert( n>=1 ); if( z[n]==':' ){ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the ** specified number of hours, minutes, seconds, and fractional seconds ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be ** omitted. */ const char *z2 = z; DateTime tx; sqlite3_int64 day; if( !sqlite3Isdigit(*z2) ) z2++; memset(&tx, 0, sizeof(tx)); if( parseHhMmSs(z2, &tx) ) break; computeJD(&tx); tx.iJD -= 43200000; day = tx.iJD/86400000; tx.iJD -= day*86400000; if( z[0]=='-' ) tx.iJD = -tx.iJD; computeJD(p); clearYMD_HMS_TZ(p); p->iJD += tx.iJD; rc = 0; break; } z += n; while( sqlite3Isspace(*z) ) z++; n = sqlite3Strlen30(z); if( n>10 || n<3 ) break; if( z[n-1]=='s' ){ z[n-1] = 0; n--; } computeJD(p); rc = 0; rRounder = r<0 ? -0.5 : +0.5; if( n==3 && strcmp(z,"day")==0 ){ p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); }else if( n==4 && strcmp(z,"hour")==0 ){ p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); }else if( n==6 && strcmp(z,"minute")==0 ){ p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); }else if( n==6 && strcmp(z,"second")==0 ){ p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); }else if( n==5 && strcmp(z,"month")==0 ){ int x, y; computeYMD_HMS(p); p->M += (int)r; x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; p->Y += x; p->M -= x*12; p->validJD = 0; computeJD(p); y = (int)r; if( y!=r ){ p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); } }else if( n==4 && strcmp(z,"year")==0 ){ int y = (int)r; computeYMD_HMS(p); p->Y += y; p->validJD = 0; computeJD(p); if( y!=r ){ p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); } }else{ rc = 1; } clearYMD_HMS_TZ(p); break; } default: { break; } } return rc; } /* ** Process time function arguments. argv[0] is a date-time stamp. ** argv[1] and following are modifiers. Parse them all and write ** the resulting time into the DateTime structure p. Return 0 ** on success and 1 if there are any errors. ** ** If there are zero parameters (if even argv[0] is undefined) ** then assume a default value of "now" for argv[0]. */ static int isDate( sqlite3_context *context, int argc, sqlite3_value **argv, DateTime *p ){ int i; const unsigned char *z; int eType; memset(p, 0, sizeof(*p)); if( argc==0 ){ setDateTimeToCurrent(context, p); }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT || eType==SQLITE_INTEGER ){ p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); p->validJD = 1; }else{ z = sqlite3_value_text(argv[0]); if( !z || parseDateOrTime(context, (char*)z, p) ){ return 1; } } for(i=1; iaLimit[SQLITE_LIMIT_LENGTH]+1 ); testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); if( n(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ sqlite3_result_error_toobig(context); return; }else{ z = sqlite3DbMallocRaw(db, (int)n); if( z==0 ){ sqlite3_result_error_nomem(context); return; } } computeJD(&x); computeYMD_HMS(&x); for(i=j=0; zFmt[i]; i++){ if( zFmt[i]!='%' ){ z[j++] = zFmt[i]; }else{ i++; switch( zFmt[i] ){ case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; case 'f': { double s = x.s; if( s>59.999 ) s = 59.999; sqlite3_snprintf(7, &z[j],"%06.3f", s); j += sqlite3Strlen30(&z[j]); break; } case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; case 'W': /* Fall thru */ case 'j': { int nDay; /* Number of days since 1st day of year */ DateTime y = x; y.validJD = 0; y.M = 1; y.D = 1; computeJD(&y); nDay = (int)((x.iJD-y.iJD+43200000)/86400000); if( zFmt[i]=='W' ){ int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ wd = (int)(((x.iJD+43200000)/86400000)%7); sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); j += 2; }else{ sqlite3_snprintf(4, &z[j],"%03d",nDay+1); j += 3; } break; } case 'J': { sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); j+=sqlite3Strlen30(&z[j]); break; } case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; case 's': { sqlite3_snprintf(30,&z[j],"%lld", (i64)(x.iJD/1000 - 21086676*(i64)10000)); j += sqlite3Strlen30(&z[j]); break; } case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; case 'w': { z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; break; } case 'Y': { sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); break; } default: z[j++] = '%'; break; } } } z[j] = 0; sqlite3_result_text(context, z, -1, z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); } /* ** current_time() ** ** This function returns the same value as time('now'). */ static void ctimeFunc( sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); timeFunc(context, 0, 0); } /* ** current_date() ** ** This function returns the same value as date('now'). */ static void cdateFunc( sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); dateFunc(context, 0, 0); } /* ** current_timestamp() ** ** This function returns the same value as datetime('now'). */ static void ctimestampFunc( sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); datetimeFunc(context, 0, 0); } #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ #ifdef SQLITE_OMIT_DATETIME_FUNCS /* ** If the library is compiled to omit the full-scale date and time ** handling (to get a smaller binary), the following minimal version ** of the functions current_time(), current_date() and current_timestamp() ** are included instead. This is to support column declarations that ** include "DEFAULT CURRENT_TIME" etc. ** ** This function uses the C-library functions time(), gmtime() ** and strftime(). The format string to pass to strftime() is supplied ** as the user-data for the function. */ static void currentTimeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ time_t t; char *zFormat = (char *)sqlite3_user_data(context); sqlite3 *db; sqlite3_int64 iT; char zBuf[20]; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); db = sqlite3_context_db_handle(context); sqlite3OsCurrentTimeInt64(db->pVfs, &iT); t = iT/1000 - 10000*(sqlite3_int64)21086676; #ifdef HAVE_GMTIME_R { struct tm sNow; gmtime_r(&t, &sNow); strftime(zBuf, 20, zFormat, &sNow); } #else { struct tm *pTm; sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); pTm = gmtime(&t); strftime(zBuf, 20, zFormat, pTm); sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); } #endif sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); } #endif /* ** This function registered all of the above C functions as SQL ** functions. This should be the only routine in this file with ** external linkage. */ void sqlite3RegisterDateTimeFunctions(void){ static SQLITE_WSD FuncDef aDateTimeFuncs[] = { #ifndef SQLITE_OMIT_DATETIME_FUNCS FUNCTION(julianday, -1, 0, 0, juliandayFunc ), FUNCTION(date, -1, 0, 0, dateFunc ), FUNCTION(time, -1, 0, 0, timeFunc ), FUNCTION(datetime, -1, 0, 0, datetimeFunc ), FUNCTION(strftime, -1, 0, 0, strftimeFunc ), FUNCTION(current_time, 0, 0, 0, ctimeFunc ), FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), FUNCTION(current_date, 0, 0, 0, cdateFunc ), #else STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), #endif }; int i; FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs); for(i=0; i