/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the SQLite parser ** when syntax rules are reduced. The routines in this file handle the ** following kinds of SQL syntax: ** ** CREATE TABLE ** DROP TABLE ** CREATE INDEX ** DROP INDEX ** creating ID lists ** COPY ** VACUUM ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK ** PRAGMA ** ** $Id: build.c,v 1.138 2003/03/31 02:12:47 drh Exp $ */ #include "sqliteInt.h" #include /* ** This routine is called when a new SQL statement is beginning to ** be parsed. Check to see if the schema for the database needs ** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables. ** If it does, then read it. */ void sqliteBeginParse(Parse *pParse, int explainFlag){ sqlite *db = pParse->db; pParse->explain = explainFlag; if((db->flags & SQLITE_Initialized)==0 && pParse->initFlag==0 ){ int rc = sqliteInit(db, &pParse->zErrMsg); if( rc!=SQLITE_OK ){ pParse->rc = rc; pParse->nErr++; } } } /* ** This is a fake callback procedure used when sqlite_exec() is ** invoked with a NULL callback pointer. If we pass a NULL callback ** pointer into sqliteVdbeExec() it will return at every OP_Callback, ** which we do not want it to do. So we substitute a pointer to this ** procedure in place of the NULL. */ static int fakeCallback(void *NotUsed, int n, char **az1, char **az2){ return 0; } /* ** This routine is called after a single SQL statement has been ** parsed and we want to execute the VDBE code to implement ** that statement. Prior action routines should have already ** constructed VDBE code to do the work of the SQL statement. ** This routine just has to execute the VDBE code. ** ** Note that if an error occurred, it might be the case that ** no VDBE code was generated. */ void sqliteExec(Parse *pParse){ int rc = SQLITE_OK; sqlite *db = pParse->db; Vdbe *v = pParse->pVdbe; int (*xCallback)(void*,int,char**,char**); if( sqlite_malloc_failed ) return; xCallback = pParse->xCallback; if( xCallback==0 && pParse->useCallback ) xCallback = fakeCallback; if( v && pParse->nErr==0 ){ FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; sqliteVdbeTrace(v, trace); sqliteVdbeMakeReady(v, xCallback, pParse->pArg, pParse->explain); if( pParse->useCallback ){ if( pParse->explain ){ rc = sqliteVdbeList(v); db->next_cookie = db->aDb[0].schema_cookie; }else{ sqliteVdbeExec(v); } rc = sqliteVdbeFinalize(v, &pParse->zErrMsg); if( rc ) pParse->nErr++; pParse->pVdbe = 0; pParse->rc = rc; if( rc ) pParse->nErr++; }else{ pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE; } pParse->colNamesSet = 0; pParse->schemaVerified = 0; }else if( pParse->useCallback==0 ){ pParse->rc = SQLITE_ERROR; } pParse->nTab = 0; pParse->nMem = 0; pParse->nSet = 0; pParse->nAgg = 0; } /* ** Locate the in-memory structure that describes ** a particular database table given the name ** of that table. Return NULL if not found. */ Table *sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase){ Table *p = 0; int i; for(i=0; inDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDatabase!=0 && sqliteStrICmp(zDatabase, db->aDb[j].zName) ) continue; p = sqliteHashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1); if( p ) break; } return p; } /* ** Locate the in-memory structure that describes ** a particular index given the name of that index. ** Return NULL if not found. */ Index *sqliteFindIndex(sqlite *db, const char *zName, const char *zDb){ Index *p = 0; int i; for(i=0; inDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDb && sqliteStrICmp(zDb, db->aDb[j].zName) ) continue; p = sqliteHashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1); if( p ) break; } return p; } /* ** Remove the given index from the index hash table, and free ** its memory structures. ** ** The index is removed from the database hash tables but ** it is not unlinked from the Table that it indexes. ** Unlinking from the Table must be done by the calling function. */ static void sqliteDeleteIndex(sqlite *db, Index *p){ Index *pOld; assert( db!=0 && p->zName!=0 ); pOld = sqliteHashInsert(&db->aDb[p->iDb].idxHash, p->zName, strlen(p->zName)+1, 0); if( pOld!=0 && pOld!=p ){ sqliteHashInsert(&db->aDb[p->iDb].idxHash, pOld->zName, strlen(pOld->zName)+1, pOld); } sqliteFree(p); } /* ** Unlink the given index from its table, then remove ** the index from the index hash table and free its memory ** structures. */ void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){ if( pIndex->pTable->pIndex==pIndex ){ pIndex->pTable->pIndex = pIndex->pNext; }else{ Index *p; for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} if( p && p->pNext==pIndex ){ p->pNext = pIndex->pNext; } } sqliteDeleteIndex(db, pIndex); } /* ** Erase all schema information from the in-memory hash tables of ** database connection. This routine is called to reclaim memory ** before the connection closes. It is also called during a rollback ** if there were schema changes during the transaction. ** ** If iDb<=0 then reset the internal schema tables for all database ** files. If iDb>=2 then reset the internal schema for only the ** single file indicates. */ void sqliteResetInternalSchema(sqlite *db, int iDb){ HashElem *pElem; Hash temp1; Hash temp2; int i, j; assert( iDb>=0 && iDbnDb ); db->flags &= ~SQLITE_Initialized; for(i=iDb; inDb; i++){ Db *pDb = &db->aDb[i]; temp1 = pDb->tblHash; temp2 = pDb->trigHash; sqliteHashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0); sqliteHashClear(&pDb->aFKey); sqliteHashClear(&pDb->idxHash); for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ Trigger *pTrigger = sqliteHashData(pElem); sqliteDeleteTrigger(pTrigger); } sqliteHashClear(&temp2); sqliteHashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0); for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); sqliteDeleteTable(db, pTab); } sqliteHashClear(&temp1); db->aDb[i].flags &= ~SQLITE_Initialized; if( iDb>0 ) return; } assert( iDb==0 ); db->flags &= ~SQLITE_InternChanges; /* If one or more of the auxiliary database files has been closed, ** then remove then from the auxiliary database list. We take the ** opportunity to do this here since we have just deleted all of the ** schema hash tables and therefore do not have to make any changes ** to any of those tables. */ for(i=j=2; inDb; i++){ if( db->aDb[i].pBt==0 ){ sqliteFree(db->aDb[i].zName); db->aDb[i].zName = 0; continue; } if( jaDb[j++] = db->aDb[i]; } } memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); db->nDb = j; if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); sqliteFree(db->aDb); db->aDb = db->aDbStatic; } } /* ** This routine is called whenever a rollback occurs. If there were ** schema changes during the transaction, then we have to reset the ** internal hash tables and reload them from disk. */ void sqliteRollbackInternalChanges(sqlite *db){ if( db->flags & SQLITE_InternChanges ){ sqliteResetInternalSchema(db, 0); } } /* ** This routine is called when a commit occurs. */ void sqliteCommitInternalChanges(sqlite *db){ db->aDb[0].schema_cookie = db->next_cookie; db->flags &= ~SQLITE_InternChanges; } /* ** Remove the memory data structures associated with the given ** Table. No changes are made to disk by this routine. ** ** This routine just deletes the data structure. It does not unlink ** the table data structure from the hash table. Nor does it remove ** foreign keys from the sqlite.aFKey hash table. But it does destroy ** memory structures of the indices and foreign keys associated with ** the table. ** ** Indices associated with the table are unlinked from the "db" ** data structure if db!=NULL. If db==NULL, indices attached to ** the table are deleted, but it is assumed they have already been ** unlinked. */ void sqliteDeleteTable(sqlite *db, Table *pTable){ int i; Index *pIndex, *pNext; FKey *pFKey, *pNextFKey; if( pTable==0 ) return; /* Delete all indices associated with this table */ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ pNext = pIndex->pNext; assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) ); sqliteDeleteIndex(db, pIndex); } /* Delete all foreign keys associated with this table. The keys ** should have already been unlinked from the db->aFKey hash table */ for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ pNextFKey = pFKey->pNextFrom; assert( pTable->iDbnDb ); assert( sqliteHashFind(&db->aDb[pTable->iDb].aFKey, pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey ); sqliteFree(pFKey); } /* Delete the Table structure itself. */ for(i=0; inCol; i++){ sqliteFree(pTable->aCol[i].zName); sqliteFree(pTable->aCol[i].zDflt); sqliteFree(pTable->aCol[i].zType); } sqliteFree(pTable->zName); sqliteFree(pTable->aCol); sqliteSelectDelete(pTable->pSelect); sqliteFree(pTable); } /* ** Unlink the given table from the hash tables and the delete the ** table structure with all its indices and foreign keys. */ static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){ Table *pOld; FKey *pF1, *pF2; int i = p->iDb; assert( db!=0 ); pOld = sqliteHashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0); assert( pOld==0 || pOld==p ); for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ int nTo = strlen(pF1->zTo) + 1; pF2 = sqliteHashFind(&db->aDb[i].aFKey, pF1->zTo, nTo); if( pF2==pF1 ){ sqliteHashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo); }else{ while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } if( pF2 ){ pF2->pNextTo = pF1->pNextTo; } } } sqliteDeleteTable(db, p); } /* ** Construct the name of a user table or index from a token. ** ** Space to hold the name is obtained from sqliteMalloc() and must ** be freed by the calling function. */ char *sqliteTableNameFromToken(Token *pName){ char *zName = sqliteStrNDup(pName->z, pName->n); sqliteDequote(zName); return zName; } /* ** Generate code to open the appropriate master table. The table ** opened will be SQLITE_MASTER for persistent tables and ** SQLITE_TEMP_MASTER for temporary tables. The table is opened ** on cursor 0. */ void sqliteOpenMasterTable(Vdbe *v, int isTemp){ sqliteVdbeAddOp(v, OP_Integer, isTemp, 0); sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2); } /* ** Begin constructing a new table representation in memory. This is ** the first of several action routines that get called in response ** to a CREATE TABLE statement. In particular, this routine is called ** after seeing tokens "CREATE" and "TABLE" and the table name. The ** pStart token is the CREATE and pName is the table name. The isTemp ** flag is true if the table should be stored in the auxiliary database ** file instead of in the main database file. This is normally the case ** when the "TEMP" or "TEMPORARY" keyword occurs in between ** CREATE and TABLE. ** ** The new table record is initialized and put in pParse->pNewTable. ** As more of the CREATE TABLE statement is parsed, additional action ** routines will be called to add more information to this record. ** At the end of the CREATE TABLE statement, the sqliteEndTable() routine ** is called to complete the construction of the new table record. */ void sqliteStartTable( Parse *pParse, /* Parser context */ Token *pStart, /* The "CREATE" token */ Token *pName, /* Name of table or view to create */ int isTemp, /* True if this is a TEMP table */ int isView /* True if this is a VIEW */ ){ Table *pTable; Index *pIdx; char *zName; sqlite *db = pParse->db; Vdbe *v; int iDb; pParse->sFirstToken = *pStart; zName = sqliteTableNameFromToken(pName); if( zName==0 ) return; if( pParse->iDb==1 ) isTemp = 1; #ifndef SQLITE_OMIT_AUTHORIZATION assert( (isTemp & 1)==isTemp ); if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0) ){ sqliteFree(zName); return; } { int code; if( isView ){ if( isTemp ){ code = SQLITE_CREATE_TEMP_VIEW; }else{ code = SQLITE_CREATE_VIEW; } }else{ if( isTemp ){ code = SQLITE_CREATE_TEMP_TABLE; }else{ code = SQLITE_CREATE_TABLE; } } if( sqliteAuthCheck(pParse, code, zName, 0) ){ sqliteFree(zName); return; } } #endif /* Before trying to create a temporary table, make sure the Btree for ** holding temporary tables is open. */ if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){ int rc = sqliteBtreeOpen(0, 0, MAX_PAGES, &db->aDb[1].pBt); if( rc!=SQLITE_OK ){ sqliteSetString(&pParse->zErrMsg, "unable to open a temporary database " "file for storing temporary tables", 0); pParse->nErr++; return; } if( db->flags & SQLITE_InTrans ){ rc = sqliteBtreeBeginTrans(db->aDb[1].pBt); if( rc!=SQLITE_OK ){ sqliteSetNString(&pParse->zErrMsg, "unable to get a write lock on " "the temporary database file", 0); pParse->nErr++; return; } } } /* Make sure the new table name does not collide with an existing ** index or table name. Issue an error message if it does. ** ** If we are re-reading the sqlite_master table because of a schema ** change and a new permanent table is found whose name collides with ** an existing temporary table, that is not an error. */ pTable = sqliteFindTable(db, zName, 0); iDb = isTemp ? 1 : pParse->iDb; if( pTable!=0 && (pTable->iDb==iDb || !pParse->initFlag) ){ sqliteSetNString(&pParse->zErrMsg, "table ", 0, pName->z, pName->n, " already exists", 0, 0); sqliteFree(zName); pParse->nErr++; return; } if( (pIdx = sqliteFindIndex(db, zName, 0))!=0 && (pIdx->iDb==0 || !pParse->initFlag) ){ sqliteSetString(&pParse->zErrMsg, "there is already an index named ", zName, 0); sqliteFree(zName); pParse->nErr++; return; } pTable = sqliteMalloc( sizeof(Table) ); if( pTable==0 ){ sqliteFree(zName); return; } pTable->zName = zName; pTable->nCol = 0; pTable->aCol = 0; pTable->iPKey = -1; pTable->pIndex = 0; pTable->iDb = iDb; if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable); pParse->pNewTable = pTable; /* Begin generating the code that will insert the table record into ** the SQLITE_MASTER table. Note in particular that we must go ahead ** and allocate the record number for the table entry now. Before any ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause ** indices to be created and the table record must come before the ** indices. Hence, the record number for the table must be allocated ** now. */ if( !pParse->initFlag && (v = sqliteGetVdbe(pParse))!=0 ){ sqliteBeginWriteOperation(pParse, 0, isTemp); if( !isTemp ){ sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0); sqliteVdbeAddOp(v, OP_SetCookie, 0, 1); } sqliteOpenMasterTable(v, isTemp); sqliteVdbeAddOp(v, OP_NewRecno, 0, 0); sqliteVdbeAddOp(v, OP_Dup, 0, 0); sqliteVdbeAddOp(v, OP_String, 0, 0); sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0); } } /* ** Add a new column to the table currently being constructed. ** ** The parser calls this routine once for each column declaration ** in a CREATE TABLE statement. sqliteStartTable() gets called ** first to get things going. Then this routine is called for each ** column. */ void sqliteAddColumn(Parse *pParse, Token *pName){ Table *p; int i; char *z = 0; Column *pCol; if( (p = pParse->pNewTable)==0 ) return; sqliteSetNString(&z, pName->z, pName->n, 0); if( z==0 ) return; sqliteDequote(z); for(i=0; inCol; i++){ if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){ sqliteSetString(&pParse->zErrMsg, "duplicate column name: ", z, 0); pParse->nErr++; sqliteFree(z); return; } } if( (p->nCol & 0x7)==0 ){ Column *aNew; aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0])); if( aNew==0 ) return; p->aCol = aNew; } pCol = &p->aCol[p->nCol]; memset(pCol, 0, sizeof(p->aCol[0])); pCol->zName = z; pCol->sortOrder = SQLITE_SO_NUM; p->nCol++; } /* ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has ** been seen on a column. This routine sets the notNull flag on ** the column currently under construction. */ void sqliteAddNotNull(Parse *pParse, int onError){ Table *p; int i; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; if( i>=0 ) p->aCol[i].notNull = onError; } /* ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. The pFirst token is the first ** token in the sequence of tokens that describe the type of the ** column currently under construction. pLast is the last token ** in the sequence. Use this information to construct a string ** that contains the typename of the column and store that string ** in zType. */ void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){ Table *p; int i, j; int n; char *z, **pz; Column *pCol; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; if( i<0 ) return; pCol = &p->aCol[i]; pz = &pCol->zType; n = pLast->n + Addr(pLast->z) - Addr(pFirst->z); sqliteSetNString(pz, pFirst->z, n, 0); z = *pz; if( z==0 ) return; for(i=j=0; z[i]; i++){ int c = z[i]; if( isspace(c) ) continue; z[j++] = c; } z[j] = 0; if( pParse->db->file_format>=4 ){ pCol->sortOrder = sqliteCollateType(z, n); }else{ pCol->sortOrder = SQLITE_SO_NUM; } } /* ** The given token is the default value for the last column added to ** the table currently under construction. If "minusFlag" is true, it ** means the value token was preceded by a minus sign. ** ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. */ void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){ Table *p; int i; char **pz; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; if( i<0 ) return; pz = &p->aCol[i].zDflt; if( minusFlag ){ sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0); }else{ sqliteSetNString(pz, pVal->z, pVal->n, 0); } sqliteDequote(*pz); } /* ** Designate the PRIMARY KEY for the table. pList is a list of names ** of columns that form the primary key. If pList is NULL, then the ** most recently added column of the table is the primary key. ** ** A table can have at most one primary key. If the table already has ** a primary key (and this is the second primary key) then create an ** error. ** ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, ** then we will try to use that column as the row id. (Exception: ** For backwards compatibility with older databases, do not do this ** if the file format version number is less than 1.) Set the Table.iPKey ** field of the table under construction to be the index of the ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is ** no INTEGER PRIMARY KEY. ** ** If the key is not an INTEGER PRIMARY KEY, then create a unique ** index for the key. No index is created for INTEGER PRIMARY KEYs. */ void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){ Table *pTab = pParse->pNewTable; char *zType = 0; int iCol = -1; if( pTab==0 ) goto primary_key_exit; if( pTab->hasPrimKey ){ sqliteSetString(&pParse->zErrMsg, "table \"", pTab->zName, "\" has more than one primary key", 0); pParse->nErr++; goto primary_key_exit; } pTab->hasPrimKey = 1; if( pList==0 ){ iCol = pTab->nCol - 1; }else if( pList->nId==1 ){ for(iCol=0; iColnCol; iCol++){ if( sqliteStrICmp(pList->a[0].zName, pTab->aCol[iCol].zName)==0 ) break; } } if( iCol>=0 && iColnCol ){ zType = pTab->aCol[iCol].zType; } if( pParse->db->file_format>=1 && zType && sqliteStrICmp(zType, "INTEGER")==0 ){ pTab->iPKey = iCol; pTab->keyConf = onError; }else{ sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0, 0); pList = 0; } primary_key_exit: sqliteIdListDelete(pList); return; } /* ** Return the appropriate collating type given a type name. ** ** The collation type is text (SQLITE_SO_TEXT) if the type ** name contains the character stream "text" or "blob" or ** "clob". Any other type name is collated as numeric ** (SQLITE_SO_NUM). */ int sqliteCollateType(const char *zType, int nType){ int i; for(i=0; i=2 && sqliteStrNICmp(&zType[i-2],"text",4)==0 ){ return SQLITE_SO_TEXT; } break; } default: { break; } } } return SQLITE_SO_NUM; } /* ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. A "COLLATE" clause has ** been seen on a column. This routine sets the Column.sortOrder on ** the column currently under construction. */ void sqliteAddCollateType(Parse *pParse, int collType){ Table *p; int i; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; if( i>=0 ) p->aCol[i].sortOrder = collType; } /* ** Come up with a new random value for the schema cookie. Make sure ** the new value is different from the old. ** ** The schema cookie is used to determine when the schema for the ** database changes. After each schema change, the cookie value ** changes. When a process first reads the schema it records the ** cookie. Thereafter, whenever it goes to access the database, ** it checks the cookie to make sure the schema has not changed ** since it was last read. ** ** This plan is not completely bullet-proof. It is possible for ** the schema to change multiple times and for the cookie to be ** set back to prior value. But schema changes are infrequent ** and the probability of hitting the same cookie value is only ** 1 chance in 2^32. So we're safe enough. */ void sqliteChangeCookie(sqlite *db, Vdbe *v){ if( db->next_cookie==db->aDb[0].schema_cookie ){ db->next_cookie = db->aDb[0].schema_cookie + sqliteRandomByte() + 1; db->flags |= SQLITE_InternChanges; sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0); sqliteVdbeAddOp(v, OP_SetCookie, 0, 0); } } /* ** Measure the number of characters needed to output the given ** identifier. The number returned includes any quotes used ** but does not include the null terminator. */ static int identLength(const char *z){ int n; int needQuote = 0; for(n=0; *z; n++, z++){ if( *z=='\'' ){ n++; needQuote=1; } } return n + needQuote*2; } /* ** Write an identifier onto the end of the given string. Add ** quote characters as needed. */ static void identPut(char *z, int *pIdx, char *zIdent){ int i, j, needQuote; i = *pIdx; for(j=0; zIdent[j]; j++){ if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break; } needQuote = zIdent[j]!=0 || isdigit(zIdent[0]) || sqliteKeywordCode(zIdent, j)!=TK_ID; if( needQuote ) z[i++] = '\''; for(j=0; zIdent[j]; j++){ z[i++] = zIdent[j]; if( zIdent[j]=='\'' ) z[i++] = '\''; } if( needQuote ) z[i++] = '\''; z[i] = 0; *pIdx = i; } /* ** Generate a CREATE TABLE statement appropriate for the given ** table. Memory to hold the text of the statement is obtained ** from sqliteMalloc() and must be freed by the calling function. */ static char *createTableStmt(Table *p){ int i, k, n; char *zStmt; char *zSep, *zSep2, *zEnd; n = 0; for(i=0; inCol; i++){ n += identLength(p->aCol[i].zName); } n += identLength(p->zName); if( n<40 ){ zSep = ""; zSep2 = ","; zEnd = ")"; }else{ zSep = "\n "; zSep2 = ",\n "; zEnd = "\n)"; } n += 35 + 6*p->nCol; zStmt = sqliteMallocRaw( n ); if( zStmt==0 ) return 0; strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE "); k = strlen(zStmt); identPut(zStmt, &k, p->zName); zStmt[k++] = '('; for(i=0; inCol; i++){ strcpy(&zStmt[k], zSep); k += strlen(&zStmt[k]); zSep = zSep2; identPut(zStmt, &k, p->aCol[i].zName); } strcpy(&zStmt[k], zEnd); return zStmt; } /* ** This routine is called to report the final ")" that terminates ** a CREATE TABLE statement. ** ** The table structure that other action routines have been building ** is added to the internal hash tables, assuming no errors have ** occurred. ** ** An entry for the table is made in the master table on disk, ** unless this is a temporary table or initFlag==1. When initFlag==1, ** it means we are reading the sqlite_master table because we just ** connected to the database or because the sqlite_master table has ** recently changes, so the entry for this table already exists in ** the sqlite_master table. We do not want to create it again. ** ** If the pSelect argument is not NULL, it means that this routine ** was called to create a table generated from a ** "CREATE TABLE ... AS SELECT ..." statement. The column names of ** the new table will match the result set of the SELECT. */ void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){ Table *p; sqlite *db = pParse->db; if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return; p = pParse->pNewTable; if( p==0 ) return; /* If the table is generated from a SELECT, then construct the ** list of columns and the text of the table. */ if( pSelect ){ Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect); if( pSelTab==0 ) return; assert( p->aCol==0 ); p->nCol = pSelTab->nCol; p->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqliteDeleteTable(0, pSelTab); } /* If the initFlag is 1 it means we are reading the SQL off the ** "sqlite_master" or "sqlite_temp_master" table on the disk. ** So do not write to the disk again. Extract the root page number ** for the table from the pParse->newTnum field. (The page number ** should have been put there by the sqliteOpenCb routine.) */ if( pParse->initFlag ){ p->tnum = pParse->newTnum; } /* If not initializing, then create a record for the new table ** in the SQLITE_MASTER table of the database. The record number ** for the new table entry should already be on the stack. ** ** If this is a TEMPORARY table, write the entry into the auxiliary ** file instead of into the main database file. */ if( !pParse->initFlag ){ int n; Vdbe *v; v = sqliteGetVdbe(pParse); if( v==0 ) return; if( p->pSelect==0 ){ /* A regular table */ sqliteVdbeAddOp(v, OP_CreateTable, 0, p->iDb); sqliteVdbeChangeP3(v, -1, (char *)&p->tnum, P3_POINTER); }else{ /* A view */ sqliteVdbeAddOp(v, OP_Integer, 0, 0); } p->tnum = 0; sqliteVdbeAddOp(v, OP_Pull, 1, 0); sqliteVdbeAddOp(v, OP_String, 0, 0); if( p->pSelect==0 ){ sqliteVdbeChangeP3(v, -1, "table", P3_STATIC); }else{ sqliteVdbeChangeP3(v, -1, "view", P3_STATIC); } sqliteVdbeAddOp(v, OP_String, 0, 0); sqliteVdbeChangeP3(v, -1, p->zName, P3_STATIC); sqliteVdbeAddOp(v, OP_String, 0, 0); sqliteVdbeChangeP3(v, -1, p->zName, P3_STATIC); sqliteVdbeAddOp(v, OP_Dup, 4, 0); sqliteVdbeAddOp(v, OP_String, 0, 0); if( pSelect ){ char *z = createTableStmt(p); n = z ? strlen(z) : 0; sqliteVdbeChangeP3(v, -1, z, n); sqliteFree(z); }else{ assert( pEnd!=0 ); n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1; sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n); } sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0); sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0); if( !p->iDb ){ sqliteChangeCookie(db, v); } sqliteVdbeAddOp(v, OP_Close, 0, 0); if( pSelect ){ sqliteVdbeAddOp(v, OP_Integer, p->iDb, 0); sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0); pParse->nTab = 2; sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0); } sqliteEndWriteOperation(pParse); } /* Add the table to the in-memory representation of the database. */ if( pParse->explain==0 && pParse->nErr==0 ){ Table *pOld; FKey *pFKey; pOld = sqliteHashInsert(&db->aDb[p->iDb].tblHash, p->zName, strlen(p->zName)+1, p); if( pOld ){ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ return; } for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ int nTo = strlen(pFKey->zTo) + 1; pFKey->pNextTo = sqliteHashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo); sqliteHashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey); } pParse->pNewTable = 0; db->nTable++; db->flags |= SQLITE_InternChanges; } } /* ** The parser calls this routine in order to create a new VIEW */ void sqliteCreateView( Parse *pParse, /* The parsing context */ Token *pBegin, /* The CREATE token that begins the statement */ Token *pName, /* The token that holds the name of the view */ Select *pSelect, /* A SELECT statement that will become the new view */ int isTemp /* TRUE for a TEMPORARY view */ ){ Table *p; int n; const char *z; Token sEnd; sqliteStartTable(pParse, pBegin, pName, isTemp, 1); p = pParse->pNewTable; if( p==0 || pParse->nErr ){ sqliteSelectDelete(pSelect); return; } /* Make a copy of the entire SELECT statement that defines the view. ** This will force all the Expr.token.z values to be dynamically ** allocated rather than point to the input string - which means that ** they will persist after the current sqlite_exec() call returns. */ p->pSelect = sqliteSelectDup(pSelect); sqliteSelectDelete(pSelect); if( !pParse->initFlag ){ sqliteViewGetColumnNames(pParse, p); } /* Locate the end of the CREATE VIEW statement. Make sEnd point to ** the end. */ sEnd = pParse->sLastToken; if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ sEnd.z += sEnd.n; } sEnd.n = 0; n = ((int)sEnd.z) - (int)pBegin->z; z = pBegin->z; while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; } sEnd.z = &z[n-1]; sEnd.n = 1; /* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */ sqliteEndTable(pParse, &sEnd, 0); return; } /* ** The Table structure pTable is really a VIEW. Fill in the names of ** the columns of the view in the pTable structure. Return the number ** of errors. If an error is seen leave an error message in pPare->zErrMsg. */ int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){ ExprList *pEList; Select *pSel; Table *pSelTab; int nErr = 0; assert( pTable ); /* A positive nCol means the columns names for this view are ** already known. */ if( pTable->nCol>0 ) return 0; /* A negative nCol is a special marker meaning that we are currently ** trying to compute the column names. If we enter this routine with ** a negative nCol, it means two or more views form a loop, like this: ** ** CREATE VIEW one AS SELECT * FROM two; ** CREATE VIEW two AS SELECT * FROM one; ** ** Actually, this error is caught previously and so the following test ** should always fail. But we will leave it in place just to be safe. */ if( pTable->nCol<0 ){ sqliteSetString(&pParse->zErrMsg, "view ", pTable->zName, " is circularly defined", 0); pParse->nErr++; return 1; } /* If we get this far, it means we need to compute the table names. */ assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */ pSel = pTable->pSelect; /* Note that the call to sqliteResultSetOfSelect() will expand any ** "*" elements in this list. But we will need to restore the list ** back to its original configuration afterwards, so we save a copy of ** the original in pEList. */ pEList = pSel->pEList; pSel->pEList = sqliteExprListDup(pEList); if( pSel->pEList==0 ){ pSel->pEList = pEList; return 1; /* Malloc failed */ } pTable->nCol = -1; pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel); if( pSelTab ){ assert( pTable->aCol==0 ); pTable->nCol = pSelTab->nCol; pTable->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqliteDeleteTable(0, pSelTab); pParse->db->aDb[pTable->iDb].flags |= SQLITE_UnresetViews; }else{ pTable->nCol = 0; nErr++; } sqliteSelectUnbind(pSel); sqliteExprListDelete(pSel->pEList); pSel->pEList = pEList; return nErr; } /* ** Clear the column names from the VIEW pTable. ** ** This routine is called whenever any other table or view is modified. ** The view passed into this routine might depend directly or indirectly ** on the modified or deleted table so we need to clear the old column ** names so that they will be recomputed. */ static void sqliteViewResetColumnNames(Table *pTable){ int i; if( pTable==0 || pTable->pSelect==0 ) return; if( pTable->nCol==0 ) return; for(i=0; inCol; i++){ sqliteFree(pTable->aCol[i].zName); sqliteFree(pTable->aCol[i].zDflt); sqliteFree(pTable->aCol[i].zType); } sqliteFree(pTable->aCol); pTable->aCol = 0; pTable->nCol = 0; } /* ** Clear the column names from every VIEW. */ static void sqliteViewResetAll(sqlite *db, int idx){ HashElem *i; if( (db->aDb[idx].flags & SQLITE_UnresetViews)==0 ) return; for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); if( pTab->pSelect ){ sqliteViewResetColumnNames(pTab); } } db->aDb[idx].flags &= ~SQLITE_UnresetViews; } /* ** Given a token, look up a table with that name. If not found, leave ** an error for the parser to find and return NULL. */ Table *sqliteTableFromToken(Parse *pParse, Token *pTok){ char *zName; Table *pTab; zName = sqliteTableNameFromToken(pTok); if( zName==0 ) return 0; pTab = sqliteFindTable(pParse->db, zName, 0); sqliteFree(zName); if( pTab==0 ){ sqliteSetNString(&pParse->zErrMsg, "no such table: ", 0, pTok->z, pTok->n, 0); pParse->nErr++; } return pTab; } /* ** This routine is called to do the work of a DROP TABLE statement. ** pName is the name of the table to be dropped. */ void sqliteDropTable(Parse *pParse, Token *pName, int isView){ Table *pTable; Vdbe *v; int base; sqlite *db = pParse->db; int iDb; if( pParse->nErr || sqlite_malloc_failed ) return; pTable = sqliteTableFromToken(pParse, pName); if( pTable==0 ) return; iDb = pTable->iDb; #ifndef SQLITE_OMIT_AUTHORIZATION if( sqliteAuthCheck(pParse, SQLITE_DELETE, SCHEMA_TABLE(pTable->iDb),0)){ return; } { int code; if( isView ){ if( iDb==1 ){ code = SQLITE_DROP_TEMP_VIEW; }else{ code = SQLITE_DROP_VIEW; } }else{ if( iDb==1 ){ code = SQLITE_DROP_TEMP_TABLE; }else{ code = SQLITE_DROP_TABLE; } } if( sqliteAuthCheck(pParse, code, pTable->zName, 0) ){ return; } if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0) ){ return; } } #endif if( pTable->readOnly ){ sqliteSetString(&pParse->zErrMsg, "table ", pTable->zName, " may not be dropped", 0); pParse->nErr++; return; } if( isView && pTable->pSelect==0 ){ sqliteSetString(&pParse->zErrMsg, "use DROP TABLE to delete table ", pTable->zName, 0); pParse->nErr++; return; } if( !isView && pTable->pSelect ){ sqliteSetString(&pParse->zErrMsg, "use DROP VIEW to delete view ", pTable->zName, 0); pParse->nErr++; return; } /* Generate code to remove the table from the master table ** on disk. */ v = sqliteGetVdbe(pParse); if( v ){ static VdbeOp dropTable[] = { { OP_Rewind, 0, ADDR(8), 0}, { OP_String, 0, 0, 0}, /* 1 */ { OP_MemStore, 1, 1, 0}, { OP_MemLoad, 1, 0, 0}, /* 3 */ { OP_Column, 0, 2, 0}, { OP_Ne, 0, ADDR(7), 0}, { OP_Delete, 0, 0, 0}, { OP_Next, 0, ADDR(3), 0}, /* 7 */ }; Index *pIdx; Trigger *pTrigger; sqliteBeginWriteOperation(pParse, 0, pTable->iDb); sqliteOpenMasterTable(v, pTable->iDb); /* Drop all triggers associated with the table being dropped */ pTrigger = pTable->pTrigger; while( pTrigger ){ SrcList *pNm; assert( pTrigger->iDb==pTable->iDb ); pNm = sqliteSrcListAppend(0, 0, 0); pNm->a[0].zName = sqliteStrDup(pTrigger->name); pNm->a[0].zDatabase = sqliteStrDup(db->aDb[pTable->iDb].zName); sqliteDropTrigger(pParse, pNm, 1); if( pParse->explain ){ pTrigger = pTrigger->pNext; }else{ pTrigger = pTable->pTrigger; } } base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable); sqliteVdbeChangeP3(v, base+1, pTable->zName, 0); if( !pTable->iDb ){ sqliteChangeCookie(db, v); } sqliteVdbeAddOp(v, OP_Close, 0, 0); if( !isView ){ sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->iDb); for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){ sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pTable->iDb); } } sqliteEndWriteOperation(pParse); } /* Delete the in-memory description of the table. ** ** Exception: if the SQL statement began with the EXPLAIN keyword, ** then no changes should be made. */ if( !pParse->explain ){ sqliteUnlinkAndDeleteTable(db, pTable); db->flags |= SQLITE_InternChanges; } sqliteViewResetAll(db, iDb); } /* ** This routine constructs a P3 string suitable for an OP_MakeIdxKey ** opcode and adds that P3 string to the most recently inserted instruction ** in the virtual machine. The P3 string consists of a single character ** for each column in the index pIdx of table pTab. If the column uses ** a numeric sort order, then the P3 string character corresponding to ** that column is 'n'. If the column uses a text sort order, then the ** P3 string is 't'. See the OP_MakeIdxKey opcode documentation for ** additional information. See also the sqliteAddKeyType() routine. */ void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){ char *zType; Table *pTab; int i, n; assert( pIdx!=0 && pIdx->pTable!=0 ); pTab = pIdx->pTable; n = pIdx->nColumn; zType = sqliteMallocRaw( n+1 ); if( zType==0 ) return; for(i=0; iaiColumn[i]; assert( iCol>=0 && iColnCol ); if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){ zType[i] = 't'; }else{ zType[i] = 'n'; } } zType[n] = 0; sqliteVdbeChangeP3(v, -1, zType, n); sqliteFree(zType); } /* ** This routine is called to create a new foreign key on the table ** currently under construction. pFromCol determines which columns ** in the current table point to the foreign key. If pFromCol==0 then ** connect the key to the last column inserted. pTo is the name of ** the table referred to. pToCol is a list of tables in the other ** pTo table that the foreign key points to. flags contains all ** information about the conflict resolution algorithms specified ** in the ON DELETE, ON UPDATE and ON INSERT clauses. ** ** An FKey structure is created and added to the table currently ** under construction in the pParse->pNewTable field. The new FKey ** is not linked into db->aFKey at this point - that does not happen ** until sqliteEndTable(). ** ** The foreign key is set for IMMEDIATE processing. A subsequent call ** to sqliteDeferForeignKey() might change this to DEFERRED. */ void sqliteCreateForeignKey( Parse *pParse, /* Parsing context */ IdList *pFromCol, /* Columns in this table that point to other table */ Token *pTo, /* Name of the other table */ IdList *pToCol, /* Columns in the other table */ int flags /* Conflict resolution algorithms. */ ){ Table *p = pParse->pNewTable; int nByte; int i; int nCol; char *z; FKey *pFKey = 0; assert( pTo!=0 ); if( p==0 || pParse->nErr ) goto fk_end; if( pFromCol==0 ){ int iCol = p->nCol-1; if( iCol<0 ) goto fk_end; if( pToCol && pToCol->nId!=1 ){ sqliteSetNString(&pParse->zErrMsg, "foreign key on ", -1, p->aCol[iCol].zName, -1, " should reference only one column of table ", -1, pTo->z, pTo->n, 0); pParse->nErr++; goto fk_end; } nCol = 1; }else if( pToCol && pToCol->nId!=pFromCol->nId ){ sqliteSetString(&pParse->zErrMsg, "number of columns in foreign key does not match the number of " "columns in the referenced table", 0); pParse->nErr++; goto fk_end; }else{ nCol = pFromCol->nId; } nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; if( pToCol ){ for(i=0; inId; i++){ nByte += strlen(pToCol->a[i].zName) + 1; } } pFKey = sqliteMalloc( nByte ); if( pFKey==0 ) goto fk_end; pFKey->pFrom = p; pFKey->pNextFrom = p->pFKey; z = (char*)&pFKey[1]; pFKey->aCol = (struct sColMap*)z; z += sizeof(struct sColMap)*nCol; pFKey->zTo = z; memcpy(z, pTo->z, pTo->n); z[pTo->n] = 0; z += pTo->n+1; pFKey->pNextTo = 0; pFKey->nCol = nCol; if( pFromCol==0 ){ pFKey->aCol[0].iFrom = p->nCol-1; }else{ for(i=0; inCol; j++){ if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ pFKey->aCol[i].iFrom = j; break; } } if( j>=p->nCol ){ sqliteSetString(&pParse->zErrMsg, "unknown column \"", pFromCol->a[i].zName, "\" in foreign key definition", 0); pParse->nErr++; goto fk_end; } } } if( pToCol ){ for(i=0; ia[i].zName); pFKey->aCol[i].zCol = z; memcpy(z, pToCol->a[i].zName, n); z[n] = 0; z += n+1; } } pFKey->isDeferred = 0; pFKey->deleteConf = flags & 0xff; pFKey->updateConf = (flags >> 8 ) & 0xff; pFKey->insertConf = (flags >> 16 ) & 0xff; /* Link the foreign key to the table as the last step. */ p->pFKey = pFKey; pFKey = 0; fk_end: sqliteFree(pFKey); sqliteIdListDelete(pFromCol); sqliteIdListDelete(pToCol); } /* ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED ** clause is seen as part of a foreign key definition. The isDeferred ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. ** The behavior of the most recently created foreign key is adjusted ** accordingly. */ void sqliteDeferForeignKey(Parse *pParse, int isDeferred){ Table *pTab; FKey *pFKey; if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; pFKey->isDeferred = isDeferred; } /* ** Create a new index for an SQL table. pIndex is the name of the index ** and pTable is the name of the table that is to be indexed. Both will ** be NULL for a primary key or an index that is created to satisfy a ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable ** as the table to be indexed. pParse->pNewTable is a table that is ** currently being constructed by a CREATE TABLE statement. ** ** pList is a list of columns to be indexed. pList will be NULL if this ** is a primary key or unique-constraint on the most recent column added ** to the table currently under construction. */ void sqliteCreateIndex( Parse *pParse, /* All information about this parse */ Token *pName, /* Name of the index. May be NULL */ SrcList *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */ IdList *pList, /* A list of columns to be indexed */ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ int isTemp, /* True if this is a temporary index */ Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */ Token *pEnd /* The ")" that closes the CREATE INDEX statement */ ){ Table *pTab; /* Table to be indexed */ Index *pIndex; /* The index to be created */ char *zName = 0; int i, j; Token nullId; /* Fake token for an empty ID list */ sqlite *db = pParse->db; if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index; /* ** Find the table that is to be indexed. Return early if not found. */ if( pTable!=0 ){ assert( pName!=0 ); assert( pTable->nSrc==1 ); pTab = sqliteSrcListLookup(pParse, pTable); }else{ assert( pName==0 ); pTab = pParse->pNewTable; } if( pTab==0 || pParse->nErr ) goto exit_create_index; if( pTab->readOnly ){ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " may not be indexed", 0); pParse->nErr++; goto exit_create_index; } if( !isTemp && pTab->iDb>=2 && pParse->initFlag==0 ){ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " may not have non-temporary indices added", 0); pParse->nErr++; goto exit_create_index; } if( pTab->pSelect ){ sqliteSetString(&pParse->zErrMsg, "views may not be indexed", 0); pParse->nErr++; goto exit_create_index; } if( pTab->iDb==1 ){ isTemp = 1; } /* ** Find the name of the index. Make sure there is not already another ** index or table with the same name. ** ** Exception: If we are reading the names of permanent indices from the ** sqlite_master table (because some other process changed the schema) and ** one of the index names collides with the name of a temporary table or ** index, then we will continue to process this index. ** ** If pName==0 it means that we are ** dealing with a primary key or UNIQUE constraint. We have to invent our ** own name. */ if( pName && !pParse->initFlag ){ Index *pISameName; /* Another index with the same name */ Table *pTSameName; /* A table with same name as the index */ zName = sqliteStrNDup(pName->z, pName->n); if( zName==0 ) goto exit_create_index; if( (pISameName = sqliteFindIndex(db, zName, 0))!=0 ){ sqliteSetString(&pParse->zErrMsg, "index ", zName, " already exists", 0); pParse->nErr++; goto exit_create_index; } if( (pTSameName = sqliteFindTable(db, zName, 0))!=0 ){ sqliteSetString(&pParse->zErrMsg, "there is already a table named ", zName, 0); pParse->nErr++; goto exit_create_index; } }else if( pName==0 ){ char zBuf[30]; int n; Index *pLoop; for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} sprintf(zBuf,"%d)",n); zName = 0; sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, 0); if( zName==0 ) goto exit_create_index; }else{ zName = sqliteStrNDup(pName->z, pName->n); } /* Check for authorization to create an index. */ #ifndef SQLITE_OMIT_AUTHORIZATION assert( isTemp==0 || isTemp==1 ); assert( pTab->iDb==pParse->iDb || isTemp==1 ); if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0) ){ goto exit_create_index; } i = SQLITE_CREATE_INDEX; if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX; if( sqliteAuthCheck(pParse, i, zName, pTab->zName) ){ goto exit_create_index; } #endif /* If pList==0, it means this routine was called to make a primary ** key out of the last column added to the table under construction. ** So create a fake list to simulate this. */ if( pList==0 ){ nullId.z = pTab->aCol[pTab->nCol-1].zName; nullId.n = strlen(nullId.z); pList = sqliteIdListAppend(0, &nullId); if( pList==0 ) goto exit_create_index; } /* ** Allocate the index structure. */ pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 + sizeof(int)*pList->nId ); if( pIndex==0 ) goto exit_create_index; pIndex->aiColumn = (int*)&pIndex[1]; pIndex->zName = (char*)&pIndex->aiColumn[pList->nId]; strcpy(pIndex->zName, zName); pIndex->pTable = pTab; pIndex->nColumn = pList->nId; pIndex->onError = pIndex->isUnique = onError; pIndex->autoIndex = pName==0; pIndex->iDb = isTemp ? 1 : pParse->iDb; /* Scan the names of the columns of the table to be indexed and ** load the column indices into the Index structure. Report an error ** if any column is not found. */ for(i=0; inId; i++){ for(j=0; jnCol; j++){ if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break; } if( j>=pTab->nCol ){ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " has no column named ", pList->a[i].zName, 0); pParse->nErr++; sqliteFree(pIndex); goto exit_create_index; } pIndex->aiColumn[i] = j; } /* Link the new Index structure to its table and to the other ** in-memory database structures. */ if( !pParse->explain ){ Index *p; p = sqliteHashInsert(&db->aDb[isTemp].idxHash, pIndex->zName, strlen(zName)+1, pIndex); if( p ){ assert( p==pIndex ); /* Malloc must have failed */ sqliteFree(pIndex); goto exit_create_index; } db->flags |= SQLITE_InternChanges; } /* When adding an index to the list of indices for a table, make ** sure all indices labeled OE_Replace come after all those labeled ** OE_Ignore. This is necessary for the correct operation of UPDATE ** and INSERT. */ if( onError!=OE_Replace || pTab->pIndex==0 || pTab->pIndex->onError==OE_Replace){ pIndex->pNext = pTab->pIndex; pTab->pIndex = pIndex; }else{ Index *pOther = pTab->pIndex; while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ pOther = pOther->pNext; } pIndex->pNext = pOther->pNext; pOther->pNext = pIndex; } /* If the initFlag is 1 it means we are reading the SQL off the ** "sqlite_master" table on the disk. So do not write to the disk ** again. Extract the table number from the pParse->newTnum field. */ if( pParse->initFlag && pTable!=0 ){ pIndex->tnum = pParse->newTnum; } /* If the initFlag is 0 then create the index on disk. This ** involves writing the index into the master table and filling in the ** index with the current table contents. ** ** The initFlag is 0 when the user first enters a CREATE INDEX ** command. The initFlag is 1 when a database is opened and ** CREATE INDEX statements are read out of the master table. In ** the latter case the index already exists on disk, which is why ** we don't want to recreate it. ** ** If pTable==0 it means this index is generated as a primary key ** or UNIQUE constraint of a CREATE TABLE statement. Since the table ** has just been created, it contains no data and the index initialization ** step can be skipped. */ else if( pParse->initFlag==0 ){ int n; Vdbe *v; int lbl1, lbl2; int i; int addr; v = sqliteGetVdbe(pParse); if( v==0 ) goto exit_create_index; if( pTable!=0 ){ sqliteBeginWriteOperation(pParse, 0, isTemp); sqliteOpenMasterTable(v, isTemp); } sqliteVdbeAddOp(v, OP_NewRecno, 0, 0); sqliteVdbeAddOp(v, OP_String, 0, 0); sqliteVdbeChangeP3(v, -1, "index", P3_STATIC); sqliteVdbeAddOp(v, OP_String, 0, 0); sqliteVdbeChangeP3(v, -1, pIndex->zName, P3_STATIC); sqliteVdbeAddOp(v, OP_String, 0, 0); sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC); addr = sqliteVdbeAddOp(v, OP_CreateIndex, 0, isTemp); sqliteVdbeChangeP3(v, addr, (char*)&pIndex->tnum, P3_POINTER); pIndex->tnum = 0; if( pTable ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0); sqliteVdbeAddOp(v, OP_Integer, isTemp, 0); sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0); } addr = sqliteVdbeAddOp(v, OP_String, 0, 0); if( pStart && pEnd ){ n = Addr(pEnd->z) - Addr(pStart->z) + 1; sqliteVdbeChangeP3(v, addr, pStart->z, n); } sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0); sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0); if( pTable ){ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0); sqliteVdbeAddOp(v, OP_OpenRead, 2, pTab->tnum); sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC); lbl2 = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2); lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0); for(i=0; inColumn; i++){ sqliteVdbeAddOp(v, OP_Column, 2, pIndex->aiColumn[i]); } sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0); if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex); sqliteVdbeAddOp(v, OP_IdxPut, 1, pIndex->onError!=OE_None); sqliteVdbeChangeP3(v, -1, "indexed columns are not unique", P3_STATIC); sqliteVdbeAddOp(v, OP_Next, 2, lbl1); sqliteVdbeResolveLabel(v, lbl2); sqliteVdbeAddOp(v, OP_Close, 2, 0); sqliteVdbeAddOp(v, OP_Close, 1, 0); } if( pTable!=0 ){ if( !isTemp ){ sqliteChangeCookie(db, v); } sqliteVdbeAddOp(v, OP_Close, 0, 0); sqliteEndWriteOperation(pParse); } } /* Clean up before exiting */ exit_create_index: sqliteIdListDelete(pList); sqliteSrcListDelete(pTable); sqliteFree(zName); return; } /* ** This routine will drop an existing named index. This routine ** implements the DROP INDEX statement. */ void sqliteDropIndex(Parse *pParse, SrcList *pName){ Index *pIndex; Vdbe *v; sqlite *db = pParse->db; if( pParse->nErr || sqlite_malloc_failed ) return; assert( pName->nSrc==1 ); pIndex = sqliteFindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); if( pIndex==0 ){ sqliteErrorMsg(pParse, "no such index: %S", pName, 0); goto exit_drop_index; } if( pIndex->autoIndex ){ sqliteErrorMsg(pParse, "index associated with UNIQUE " "or PRIMARY KEY constraint cannot be dropped", 0); goto exit_drop_index; } if( pIndex->iDb>1 ){ sqliteErrorMsg(pParse, "cannot alter schema of attached " "databases", 0); goto exit_drop_index; } #ifndef SQLITE_OMIT_AUTHORIZATION { int code = SQLITE_DROP_INDEX; Table *pTab = pIndex->pTable; if( sqliteAuthCheck(pParse, SQLITE_DELETE, SCHEMA_TABLE(pIndex->iDb), 0) ){ goto exit_drop_index; } if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX; if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName) ){ goto exit_drop_index; } } #endif /* Generate code to remove the index and from the master table */ v = sqliteGetVdbe(pParse); if( v ){ static VdbeOp dropIndex[] = { { OP_Rewind, 0, ADDR(9), 0}, { OP_String, 0, 0, 0}, /* 1 */ { OP_MemStore, 1, 1, 0}, { OP_MemLoad, 1, 0, 0}, /* 3 */ { OP_Column, 0, 1, 0}, { OP_Eq, 0, ADDR(8), 0}, { OP_Next, 0, ADDR(3), 0}, { OP_Goto, 0, ADDR(9), 0}, { OP_Delete, 0, 0, 0}, /* 8 */ }; int base; sqliteBeginWriteOperation(pParse, 0, pIndex->iDb); sqliteOpenMasterTable(v, pIndex->iDb); base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex); sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0); if( pIndex->iDb==0 ){ sqliteChangeCookie(db, v); } sqliteVdbeAddOp(v, OP_Close, 0, 0); sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb); sqliteEndWriteOperation(pParse); } /* Delete the in-memory description of this index. */ if( !pParse->explain ){ sqliteUnlinkAndDeleteIndex(db, pIndex); db->flags |= SQLITE_InternChanges; } exit_drop_index: sqliteSrcListDelete(pName); } /* ** Append a new element to the given IdList. Create a new IdList if ** need be. ** ** A new IdList is returned, or NULL if malloc() fails. */ IdList *sqliteIdListAppend(IdList *pList, Token *pToken){ if( pList==0 ){ pList = sqliteMalloc( sizeof(IdList) ); if( pList==0 ) return 0; } if( (pList->nId & 7)==0 ){ struct IdList_item *a; a = sqliteRealloc(pList->a, (pList->nId+8)*sizeof(pList->a[0]) ); if( a==0 ){ sqliteIdListDelete(pList); return 0; } pList->a = a; } memset(&pList->a[pList->nId], 0, sizeof(pList->a[0])); if( pToken ){ char **pz = &pList->a[pList->nId].zName; sqliteSetNString(pz, pToken->z, pToken->n, 0); if( *pz==0 ){ sqliteIdListDelete(pList); return 0; }else{ sqliteDequote(*pz); } } pList->nId++; return pList; } /* ** Append a new table name to the given SrcList. Create a new SrcList if ** need be. A new entry is created in the SrcList even if pToken is NULL. ** ** A new SrcList is returned, or NULL if malloc() fails. ** ** If pDatabase is not null, it means that the table has an optional ** database name prefix. Like this: "database.table". The pDatabase ** points to the table name and the pTable points to the database name. ** The SrcList.a[].zName field is filled with the table name which might ** come from pTable (if pDatabase is NULL) or from pDatabase. ** SrcList.a[].zDatabase is filled with the database name from pTable, ** or with NULL if no database is specified. ** ** In other words, if call like this: ** ** sqliteSrcListAppend(A,B,0); ** ** Then B is a table name and the database name is unspecified. If called ** like this: ** ** sqliteSrcListAppend(A,B,C); ** ** Then C is the table name and B is the database name. */ SrcList *sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){ if( pList==0 ){ pList = sqliteMalloc( sizeof(SrcList) ); if( pList==0 ) return 0; } if( (pList->nSrc & 7)==1 ){ SrcList *pNew; pNew = sqliteRealloc(pList, sizeof(*pList) + (pList->nSrc+8)*sizeof(pList->a[0]) ); if( pNew==0 ){ sqliteSrcListDelete(pList); return 0; } pList = pNew; } memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0])); if( pDatabase && pDatabase->z==0 ){ pDatabase = 0; } if( pDatabase && pTable ){ Token *pTemp = pDatabase; pDatabase = pTable; pTable = pTemp; } if( pTable ){ char **pz = &pList->a[pList->nSrc].zName; sqliteSetNString(pz, pTable->z, pTable->n, 0); if( *pz==0 ){ sqliteSrcListDelete(pList); return 0; }else{ sqliteDequote(*pz); } } if( pDatabase ){ char **pz = &pList->a[pList->nSrc].zDatabase; sqliteSetNString(pz, pDatabase->z, pDatabase->n, 0); if( *pz==0 ){ sqliteSrcListDelete(pList); return 0; }else{ sqliteDequote(*pz); } } pList->nSrc++; return pList; } /* ** Add an alias to the last identifier on the given identifier list. */ void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){ if( pList && pList->nSrc>0 ){ int i = pList->nSrc - 1; sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0); sqliteDequote(pList->a[i].zAlias); } } /* ** Delete an IdList. */ void sqliteIdListDelete(IdList *pList){ int i; if( pList==0 ) return; for(i=0; inId; i++){ sqliteFree(pList->a[i].zName); } sqliteFree(pList->a); sqliteFree(pList); } /* ** Return the index in pList of the identifier named zId. Return -1 ** if not found. */ int sqliteIdListIndex(IdList *pList, const char *zName){ int i; if( pList==0 ) return -1; for(i=0; inId; i++){ if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i; } return -1; } /* ** Delete an entire SrcList including all its substructure. */ void sqliteSrcListDelete(SrcList *pList){ int i; if( pList==0 ) return; for(i=0; inSrc; i++){ sqliteFree(pList->a[i].zDatabase); sqliteFree(pList->a[i].zName); sqliteFree(pList->a[i].zAlias); if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){ sqliteDeleteTable(0, pList->a[i].pTab); } sqliteSelectDelete(pList->a[i].pSelect); sqliteExprDelete(pList->a[i].pOn); sqliteIdListDelete(pList->a[i].pUsing); } sqliteFree(pList); } /* ** The COPY command is for compatibility with PostgreSQL and specificially ** for the ability to read the output of pg_dump. The format is as ** follows: ** ** COPY table FROM file [USING DELIMITERS string] ** ** "table" is an existing table name. We will read lines of code from ** file to fill this table with data. File might be "stdin". The optional ** delimiter string identifies the field separators. The default is a tab. */ void sqliteCopy( Parse *pParse, /* The parser context */ SrcList *pTableName, /* The name of the table into which we will insert */ Token *pFilename, /* The file from which to obtain information */ Token *pDelimiter, /* Use this as the field delimiter */ int onError /* What to do if a constraint fails */ ){ Table *pTab; int i; Vdbe *v; int addr, end; Index *pIdx; char *zFile = 0; sqlite *db = pParse->db; if( sqlite_malloc_failed ) goto copy_cleanup; assert( pTableName->nSrc==1 ); pTab = sqliteSrcListLookup(pParse, pTableName); if( pTab==0 || sqliteIsReadOnly(pParse, pTab) ) goto copy_cleanup; zFile = sqliteStrNDup(pFilename->z, pFilename->n); sqliteDequote(zFile); if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, zFile) || sqliteAuthCheck(pParse, SQLITE_COPY, pTab->zName, zFile) ){ goto copy_cleanup; } v = sqliteGetVdbe(pParse); if( v ){ sqliteBeginWriteOperation(pParse, 1, pTab->iDb==1); addr = sqliteVdbeAddOp(v, OP_FileOpen, 0, 0); sqliteVdbeChangeP3(v, addr, pFilename->z, pFilename->n); sqliteVdbeDequoteP3(v, addr); sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0); sqliteVdbeAddOp(v, OP_OpenWrite, 0, pTab->tnum); sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC); for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ assert( pIdx->iDb==1 || pIdx->iDb==pTab->iDb ); sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0); sqliteVdbeAddOp(v, OP_OpenWrite, i, pIdx->tnum); sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC); } if( db->flags & SQLITE_CountRows ){ sqliteVdbeAddOp(v, OP_Integer, 0, 0); /* Initialize the row count */ } end = sqliteVdbeMakeLabel(v); addr = sqliteVdbeAddOp(v, OP_FileRead, pTab->nCol, end); if( pDelimiter ){ sqliteVdbeChangeP3(v, addr, pDelimiter->z, pDelimiter->n); sqliteVdbeDequoteP3(v, addr); }else{ sqliteVdbeChangeP3(v, addr, "\t", 1); } if( pTab->iPKey>=0 ){ sqliteVdbeAddOp(v, OP_FileColumn, pTab->iPKey, 0); sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0); }else{ sqliteVdbeAddOp(v, OP_NewRecno, 0, 0); } for(i=0; inCol; i++){ if( i==pTab->iPKey ){ /* The integer primary key column is filled with NULL since its ** value is always pulled from the record number */ sqliteVdbeAddOp(v, OP_String, 0, 0); }else{ sqliteVdbeAddOp(v, OP_FileColumn, i, 0); } } sqliteGenerateConstraintChecks(pParse, pTab, 0, 0, 0, 0, onError, addr); sqliteCompleteInsertion(pParse, pTab, 0, 0, 0, 0); if( (db->flags & SQLITE_CountRows)!=0 ){ sqliteVdbeAddOp(v, OP_AddImm, 1, 0); /* Increment row count */ } sqliteVdbeAddOp(v, OP_Goto, 0, addr); sqliteVdbeResolveLabel(v, end); sqliteVdbeAddOp(v, OP_Noop, 0, 0); sqliteEndWriteOperation(pParse); if( db->flags & SQLITE_CountRows ){ sqliteVdbeAddOp(v, OP_ColumnName, 0, 0); sqliteVdbeChangeP3(v, -1, "rows inserted", P3_STATIC); sqliteVdbeAddOp(v, OP_Callback, 1, 0); } } copy_cleanup: sqliteSrcListDelete(pTableName); sqliteFree(zFile); return; } /* ** The non-standard VACUUM command is used to clean up the database, ** collapse free space, etc. It is modelled after the VACUUM command ** in PostgreSQL. ** ** In version 1.0.x of SQLite, the VACUUM command would call ** gdbm_reorganize() on all the database tables. But beginning ** with 2.0.0, SQLite no longer uses GDBM so this command has ** become a no-op. */ void sqliteVacuum(Parse *pParse, Token *pTableName){ /* Do nothing */ } /* ** Begin a transaction */ void sqliteBeginTransaction(Parse *pParse, int onError){ sqlite *db; if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; if( pParse->nErr || sqlite_malloc_failed ) return; if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0) ) return; if( db->flags & SQLITE_InTrans ){ sqliteErrorMsg(pParse, "cannot start a transaction within a transaction"); return; } sqliteBeginWriteOperation(pParse, 0, 0); db->flags |= SQLITE_InTrans; db->onError = onError; } /* ** Commit a transaction */ void sqliteCommitTransaction(Parse *pParse){ sqlite *db; if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; if( pParse->nErr || sqlite_malloc_failed ) return; if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0) ) return; if( (db->flags & SQLITE_InTrans)==0 ){ sqliteErrorMsg(pParse, "cannot commit - no transaction is active"); return; } db->flags &= ~SQLITE_InTrans; sqliteEndWriteOperation(pParse); db->onError = OE_Default; } /* ** Rollback a transaction */ void sqliteRollbackTransaction(Parse *pParse){ sqlite *db; Vdbe *v; if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; if( pParse->nErr || sqlite_malloc_failed ) return; if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0) ) return; if( (db->flags & SQLITE_InTrans)==0 ){ sqliteErrorMsg(pParse, "cannot rollback - no transaction is active"); return; } v = sqliteGetVdbe(pParse); if( v ){ sqliteVdbeAddOp(v, OP_Rollback, 0, 0); } db->flags &= ~SQLITE_InTrans; db->onError = OE_Default; } /* ** Generate VDBE code that will verify the schema cookie for all ** named database files. */ void sqliteCodeVerifySchema(Parse *pParse){ int i; sqlite *db = pParse->db; Vdbe *v = sqliteGetVdbe(pParse); for(i=0; inDb; i++){ if( i==1 || db->aDb[i].pBt==0 ) continue; sqliteVdbeAddOp(v, OP_VerifyCookie, i, db->aDb[i].schema_cookie); } pParse->schemaVerified = 1; } /* ** Generate VDBE code that prepares for doing an operation that ** might change the database. ** ** This routine starts a new transaction if we are not already within ** a transaction. If we are already within a transaction, then a checkpoint ** is set if the setCheckpoint parameter is true. A checkpoint should ** be set for operations that might fail (due to a constraint) part of ** the way through and which will need to undo some writes without having to ** rollback the whole transaction. For operations where all constraints ** can be checked before any changes are made to the database, it is never ** necessary to undo a write and the checkpoint should not be set. ** ** The tempOnly flag indicates that only temporary tables will be changed ** during this write operation. The primary database table is not ** write-locked. Only the temporary database file gets a write lock. ** Other processes can continue to read or write the primary database file. */ void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int tempOnly){ Vdbe *v; v = sqliteGetVdbe(pParse); if( v==0 ) return; if( pParse->trigStack ) return; /* if this is in a trigger */ if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 1, 0); if( !tempOnly ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0); sqliteCodeVerifySchema(pParse); } }else if( setCheckpoint ){ sqliteVdbeAddOp(v, OP_Checkpoint, 0, 0); sqliteVdbeAddOp(v, OP_Checkpoint, 1, 0); } } /* ** Generate code that concludes an operation that may have changed ** the database. This is a companion function to BeginWriteOperation(). ** If a transaction was started, then commit it. If a checkpoint was ** started then commit that. */ void sqliteEndWriteOperation(Parse *pParse){ Vdbe *v; if( pParse->trigStack ) return; /* if this is in a trigger */ v = sqliteGetVdbe(pParse); if( v==0 ) return; if( pParse->db->flags & SQLITE_InTrans ){ /* Do Nothing */ }else{ sqliteVdbeAddOp(v, OP_Commit, 0, 0); } } /* ** Interpret the given string as a boolean value. */ static int getBoolean(char *z){ static char *azTrue[] = { "yes", "on", "true" }; int i; if( z[0]==0 ) return 0; if( isdigit(z[0]) || (z[0]=='-' && isdigit(z[1])) ){ return atoi(z); } for(i=0; idb; Vdbe *v = sqliteGetVdbe(pParse); if( v==0 ) return; zLeft = sqliteStrNDup(pLeft->z, pLeft->n); sqliteDequote(zLeft); if( minusFlag ){ zRight = 0; sqliteSetNString(&zRight, "-", 1, pRight->z, pRight->n, 0); }else{ zRight = sqliteStrNDup(pRight->z, pRight->n); sqliteDequote(zRight); } if( sqliteAuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight) ){ sqliteFree(zLeft); sqliteFree(zRight); return; } /* ** PRAGMA default_cache_size ** PRAGMA default_cache_size=N ** ** The first form reports the current persistent setting for the ** page cache size. The value returned is the maximum number of ** pages in the page cache. The second form sets both the current ** page cache size value and the persistent page cache size value ** stored in the database file. ** ** The default cache size is stored in meta-value 2 of page 1 of the ** database file. The cache size is actually the absolute value of ** this memory location. The sign of meta-value 2 determines the ** synchronous setting. A negative value means synchronous is off ** and a positive value means synchronous is on. */ if( sqliteStrICmp(zLeft,"default_cache_size")==0 ){ static VdbeOp getCacheSize[] = { { OP_ReadCookie, 0, 2, 0}, { OP_AbsValue, 0, 0, 0}, { OP_Dup, 0, 0, 0}, { OP_Integer, 0, 0, 0}, { OP_Ne, 0, 6, 0}, { OP_Integer, MAX_PAGES,0, 0}, { OP_ColumnName, 0, 0, "cache_size"}, { OP_Callback, 1, 0, 0}, }; if( pRight->z==pLeft->z ){ sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); }else{ int addr; int size = atoi(zRight); if( size<0 ) size = -size; sqliteBeginWriteOperation(pParse, 0, 0); sqliteVdbeAddOp(v, OP_Integer, size, 0); sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2); addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0); sqliteVdbeAddOp(v, OP_Ge, 0, addr+3); sqliteVdbeAddOp(v, OP_Negative, 0, 0); sqliteVdbeAddOp(v, OP_SetCookie, 0, 2); sqliteEndWriteOperation(pParse); db->cache_size = db->cache_size<0 ? -size : size; sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size); } }else /* ** PRAGMA cache_size ** PRAGMA cache_size=N ** ** The first form reports the current local setting for the ** page cache size. The local setting can be different from ** the persistent cache size value that is stored in the database ** file itself. The value returned is the maximum number of ** pages in the page cache. The second form sets the local ** page cache size value. It does not change the persistent ** cache size stored on the disk so the cache size will revert ** to its default value when the database is closed and reopened. ** N should be a positive integer. */ if( sqliteStrICmp(zLeft,"cache_size")==0 ){ static VdbeOp getCacheSize[] = { { OP_ColumnName, 0, 0, "cache_size"}, { OP_Callback, 1, 0, 0}, }; if( pRight->z==pLeft->z ){ int size = db->cache_size;; if( size<0 ) size = -size; sqliteVdbeAddOp(v, OP_Integer, size, 0); sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); }else{ int size = atoi(zRight); if( size<0 ) size = -size; if( db->cache_size<0 ) size = -size; db->cache_size = size; sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size); } }else /* ** PRAGMA default_synchronous ** PRAGMA default_synchronous=ON|OFF|NORMAL|FULL ** ** The first form returns the persistent value of the "synchronous" setting ** that is stored in the database. This is the synchronous setting that ** is used whenever the database is opened unless overridden by a separate ** "synchronous" pragma. The second form changes the persistent and the ** local synchronous setting to the value given. ** ** If synchronous is OFF, SQLite does not attempt any fsync() systems calls ** to make sure data is committed to disk. Write operations are very fast, ** but a power failure can leave the database in an inconsistent state. ** If synchronous is ON or NORMAL, SQLite will do an fsync() system call to ** make sure data is being written to disk. The risk of corruption due to ** a power loss in this mode is negligible but non-zero. If synchronous ** is FULL, extra fsync()s occur to reduce the risk of corruption to near ** zero, but with a write performance penalty. The default mode is NORMAL. */ if( sqliteStrICmp(zLeft,"default_synchronous")==0 ){ static VdbeOp getSync[] = { { OP_ColumnName, 0, 0, "synchronous"}, { OP_ReadCookie, 0, 3, 0}, { OP_Dup, 0, 0, 0}, { OP_If, 0, 0, 0}, /* 3 */ { OP_ReadCookie, 0, 2, 0}, { OP_Integer, 0, 0, 0}, { OP_Lt, 0, 5, 0}, { OP_AddImm, 1, 0, 0}, { OP_Callback, 1, 0, 0}, { OP_Halt, 0, 0, 0}, { OP_AddImm, -1, 0, 0}, /* 10 */ { OP_Callback, 1, 0, 0} }; if( pRight->z==pLeft->z ){ int addr = sqliteVdbeAddOpList(v, ArraySize(getSync), getSync); sqliteVdbeChangeP2(v, addr+3, addr+10); }else{ int addr; int size = db->cache_size; if( size<0 ) size = -size; sqliteBeginWriteOperation(pParse, 0, 0); sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2); sqliteVdbeAddOp(v, OP_Dup, 0, 0); addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0); sqliteVdbeAddOp(v, OP_Ne, 0, addr+3); sqliteVdbeAddOp(v, OP_AddImm, MAX_PAGES, 0); sqliteVdbeAddOp(v, OP_AbsValue, 0, 0); db->safety_level = getSafetyLevel(zRight)+1; if( db->safety_level==1 ){ sqliteVdbeAddOp(v, OP_Negative, 0, 0); size = -size; } sqliteVdbeAddOp(v, OP_SetCookie, 0, 2); sqliteVdbeAddOp(v, OP_Integer, db->safety_level, 0); sqliteVdbeAddOp(v, OP_SetCookie, 0, 3); sqliteEndWriteOperation(pParse); db->cache_size = size; sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size); sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level); } }else /* ** PRAGMA synchronous ** PRAGMA synchronous=OFF|ON|NORMAL|FULL ** ** Return or set the local value of the synchronous flag. Changing ** the local value does not make changes to the disk file and the ** default value will be restored the next time the database is ** opened. */ if( sqliteStrICmp(zLeft,"synchronous")==0 ){ static VdbeOp getSync[] = { { OP_ColumnName, 0, 0, "synchronous"}, { OP_Callback, 1, 0, 0}, }; if( pRight->z==pLeft->z ){ sqliteVdbeAddOp(v, OP_Integer, db->safety_level-1, 0); sqliteVdbeAddOpList(v, ArraySize(getSync), getSync); }else{ int size = db->cache_size; if( size<0 ) size = -size; db->safety_level = getSafetyLevel(zRight)+1; if( db->safety_level==1 ) size = -size; db->cache_size = size; sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size); sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level); } }else if( sqliteStrICmp(zLeft, "trigger_overhead_test")==0 ){ if( getBoolean(zRight) ){ always_code_trigger_setup = 1; }else{ always_code_trigger_setup = 0; } }else if( sqliteStrICmp(zLeft, "vdbe_trace")==0 ){ if( getBoolean(zRight) ){ db->flags |= SQLITE_VdbeTrace; }else{ db->flags &= ~SQLITE_VdbeTrace; } }else if( sqliteStrICmp(zLeft, "full_column_names")==0 ){ if( getBoolean(zRight) ){ db->flags |= SQLITE_FullColNames; }else{ db->flags &= ~SQLITE_FullColNames; } }else if( sqliteStrICmp(zLeft, "show_datatypes")==0 ){ if( getBoolean(zRight) ){ db->flags |= SQLITE_ReportTypes; }else{ db->flags &= ~SQLITE_ReportTypes; } }else if( sqliteStrICmp(zLeft, "result_set_details")==0 ){ if( getBoolean(zRight) ){ db->flags |= SQLITE_ResultDetails; }else{ db->flags &= ~SQLITE_ResultDetails; } }else if( sqliteStrICmp(zLeft, "count_changes")==0 ){ if( getBoolean(zRight) ){ db->flags |= SQLITE_CountRows; }else{ db->flags &= ~SQLITE_CountRows; } }else if( sqliteStrICmp(zLeft, "empty_result_callbacks")==0 ){ if( getBoolean(zRight) ){ db->flags |= SQLITE_NullCallback; }else{ db->flags &= ~SQLITE_NullCallback; } }else if( sqliteStrICmp(zLeft, "table_info")==0 ){ Table *pTab; pTab = sqliteFindTable(db, zRight, 0); if( pTab ){ static VdbeOp tableInfoPreface[] = { { OP_ColumnName, 0, 0, "cid"}, { OP_ColumnName, 1, 0, "name"}, { OP_ColumnName, 2, 0, "type"}, { OP_ColumnName, 3, 0, "notnull"}, { OP_ColumnName, 4, 0, "dflt_value"}, }; int i; sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface); sqliteViewGetColumnNames(pParse, pTab); for(i=0; inCol; i++){ sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeAddOp(v, OP_String, 0, 0); sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zName, P3_STATIC); sqliteVdbeAddOp(v, OP_String, 0, 0); sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zType ? pTab->aCol[i].zType : "numeric", P3_STATIC); sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0); sqliteVdbeAddOp(v, OP_String, 0, 0); sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zDflt, P3_STATIC); sqliteVdbeAddOp(v, OP_Callback, 5, 0); } } }else if( sqliteStrICmp(zLeft, "index_info")==0 ){ Index *pIdx; Table *pTab; pIdx = sqliteFindIndex(db, zRight, 0); if( pIdx ){ static VdbeOp tableInfoPreface[] = { { OP_ColumnName, 0, 0, "seqno"}, { OP_ColumnName, 1, 0, "cid"}, { OP_ColumnName, 2, 0, "name"}, }; int i; pTab = pIdx->pTable; sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface); for(i=0; inColumn; i++){ int cnum = pIdx->aiColumn[i]; sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeAddOp(v, OP_Integer, cnum, 0); sqliteVdbeAddOp(v, OP_String, 0, 0); assert( pTab->nCol>cnum ); sqliteVdbeChangeP3(v, -1, pTab->aCol[cnum].zName, P3_STATIC); sqliteVdbeAddOp(v, OP_Callback, 3, 0); } } }else if( sqliteStrICmp(zLeft, "index_list")==0 ){ Index *pIdx; Table *pTab; pTab = sqliteFindTable(db, zRight, 0); if( pTab ){ v = sqliteGetVdbe(pParse); pIdx = pTab->pIndex; } if( pTab && pIdx ){ int i = 0; static VdbeOp indexListPreface[] = { { OP_ColumnName, 0, 0, "seq"}, { OP_ColumnName, 1, 0, "name"}, { OP_ColumnName, 2, 0, "unique"}, }; sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface); while(pIdx){ sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeAddOp(v, OP_String, 0, 0); sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC); sqliteVdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0); sqliteVdbeAddOp(v, OP_Callback, 3, 0); ++i; pIdx = pIdx->pNext; } } }else #ifndef NDEBUG if( sqliteStrICmp(zLeft, "parser_trace")==0 ){ extern void sqliteParserTrace(FILE*, char *); if( getBoolean(zRight) ){ sqliteParserTrace(stdout, "parser: "); }else{ sqliteParserTrace(0, 0); } }else #endif if( sqliteStrICmp(zLeft, "integrity_check")==0 ){ static VdbeOp checkDb[] = { { OP_SetInsert, 0, 0, "2"}, { OP_Integer, 0, 0, 0}, { OP_OpenRead, 0, 2, 0}, { OP_Rewind, 0, 7, 0}, { OP_Column, 0, 3, 0}, /* 4 */ { OP_SetInsert, 0, 0, 0}, { OP_Next, 0, 4, 0}, { OP_IntegrityCk, 0, 0, 0}, /* 7 */ { OP_ColumnName, 0, 0, "integrity_check"}, { OP_Callback, 1, 0, 0}, { OP_SetInsert, 1, 0, "2"}, { OP_Integer, 1, 0, 0}, { OP_OpenRead, 1, 2, 0}, { OP_Rewind, 1, 17, 0}, { OP_Column, 1, 3, 0}, /* 14 */ { OP_SetInsert, 1, 0, 0}, { OP_Next, 1, 14, 0}, { OP_IntegrityCk, 1, 1, 0}, /* 17 */ { OP_Callback, 1, 0, 0}, }; sqliteVdbeAddOpList(v, ArraySize(checkDb), checkDb); }else {} sqliteFree(zLeft); sqliteFree(zRight); } /* ** This routine is called by the parser to process an ATTACH statement: ** ** ATTACH DATABASE filename AS dbname ** ** The pFilename and pDbname arguments are the tokens that define the ** filename and dbname in the ATTACH statement. */ void sqliteAttach(Parse *pParse, Token *pFilename, Token *pDbname){ Db *aNew; int rc, i; char *zFile, *zName; sqlite *db; if( pParse->explain ) return; db = pParse->db; if( db->aDb==db->aDbStatic ){ aNew = sqliteMalloc( sizeof(db->aDb[0])*3 ); if( aNew==0 ) return; memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2); }else{ aNew = sqliteRealloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) ); if( aNew==0 ) return; } db->aDb = aNew; aNew = &db->aDb[db->nDb++]; memset(aNew, 0, sizeof(*aNew)); sqliteHashInit(&aNew->tblHash, SQLITE_HASH_STRING, 0); sqliteHashInit(&aNew->idxHash, SQLITE_HASH_STRING, 0); sqliteHashInit(&aNew->trigHash, SQLITE_HASH_STRING, 0); sqliteHashInit(&aNew->aFKey, SQLITE_HASH_STRING, 1); zName = 0; sqliteSetNString(&zName, pDbname->z, pDbname->n, 0); if( zName==0 ) return; sqliteDequote(zName); for(i=0; inDb; i++){ if( db->aDb[i].zName && sqliteStrICmp(db->aDb[i].zName, zName)==0 ){ sqliteErrorMsg(pParse, "database %z is already in use", zName); return; } } aNew->zName = zName; zFile = 0; sqliteSetNString(&zFile, pFilename->z, pFilename->n, 0); if( zFile==0 ) return; sqliteDequote(zFile); rc = sqliteBtreeOpen(zFile, 0, MAX_PAGES, &aNew->pBt); if( rc ){ sqliteErrorMsg(pParse, "unable to open database: %s", zFile); } sqliteFree(zFile); db->flags &= ~SQLITE_Initialized; if( pParse->nErr ) return; rc = sqliteInit(pParse->db, &pParse->zErrMsg); if( rc ){ pParse->nErr++; } } /* ** This routine is called by the parser to process a DETACH statement: ** ** DETACH DATABASE dbname ** ** The pDbname argument is the name of the database in the DETACH statement. */ void sqliteDetach(Parse *pParse, Token *pDbname){ int i; sqlite *db; if( pParse->explain ) return; db = pParse->db; for(i=0; inDb; i++){ if( db->aDb[i].pBt==0 || db->aDb[i].zName==0 ) continue; if( strlen(db->aDb[i].zName)!=pDbname->n ) continue; if( sqliteStrNICmp(db->aDb[i].zName, pDbname->z, pDbname->n)==0 ) break; } if( i>=db->nDb ){ sqliteErrorMsg(pParse, "no such database: %T", pDbname); return; } if( i<2 ){ sqliteErrorMsg(pParse, "cannot detached database %T", pDbname); return; } sqliteBtreeClose(db->aDb[i].pBt); db->aDb[i].pBt = 0; sqliteResetInternalSchema(db, 0); }