/* ** 2015-08-18 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file demonstrates how to create a table-valued-function using ** a virtual table. This demo implements the generate_series() function ** which gives similar results to the eponymous function in PostgreSQL. ** Examples: ** ** SELECT * FROM generate_series(0,100,5); ** ** The query above returns integers from 0 through 100 counting by steps ** of 5. ** ** SELECT * FROM generate_series(0,100); ** ** Integers from 0 through 100 with a step size of 1. ** ** SELECT * FROM generate_series(20) LIMIT 10; ** ** Integers 20 through 29. ** ** HOW IT WORKS ** ** The generate_series "function" is really a virtual table with the ** following schema: ** ** CREATE FUNCTION generate_series( ** value, ** start HIDDEN, ** stop HIDDEN, ** step HIDDEN ** ); ** ** Function arguments in queries against this virtual table are translated ** into equality constraints against successive hidden columns. In other ** words, the following pairs of queries are equivalent to each other: ** ** SELECT * FROM generate_series(0,100,5); ** SELECT * FROM generate_series WHERE start=0 AND stop=100 AND step=5; ** ** SELECT * FROM generate_series(0,100); ** SELECT * FROM generate_series WHERE start=0 AND stop=100; ** ** SELECT * FROM generate_series(20) LIMIT 10; ** SELECT * FROM generate_series WHERE start=20 LIMIT 10; ** ** The generate_series virtual table implementation leaves the xCreate method ** set to NULL. This means that it is not possible to do a CREATE VIRTUAL ** TABLE command with "generate_series" as the USING argument. Instead, there ** is a single generate_series virtual table that is always available without ** having to be created first. ** ** The xBestIndex method looks for equality constraints against the hidden ** start, stop, and step columns, and if present, it uses those constraints ** to bound the sequence of generated values. If the equality constraints ** are missing, it uses 0 for start, 4294967295 for stop, and 1 for step. ** xBestIndex returns a small cost when both start and stop are available, ** and a very large cost if either start or stop are unavailable. This ** encourages the query planner to order joins such that the bounds of the ** series are well-defined. */ #include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #include #include #ifndef SQLITE_OMIT_VIRTUALTABLE /* series_cursor is a subclass of sqlite3_vtab_cursor which will ** serve as the underlying representation of a cursor that scans ** over rows of the result */ typedef struct series_cursor series_cursor; struct series_cursor { sqlite3_vtab_cursor base; /* Base class - must be first */ int isDesc; /* True to count down rather than up */ sqlite3_int64 iRowid; /* The rowid */ sqlite3_int64 iValue; /* Current value ("value") */ sqlite3_int64 mnValue; /* Mimimum value ("start") */ sqlite3_int64 mxValue; /* Maximum value ("stop") */ sqlite3_int64 iStep; /* Increment ("step") */ }; /* ** The seriesConnect() method is invoked to create a new ** series_vtab that describes the generate_series virtual table. ** ** Think of this routine as the constructor for series_vtab objects. ** ** All this routine needs to do is: ** ** (1) Allocate the series_vtab object and initialize all fields. ** ** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the ** result set of queries against generate_series will look like. */ static int seriesConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ sqlite3_vtab *pNew; int rc; /* Column numbers */ #define SERIES_COLUMN_VALUE 0 #define SERIES_COLUMN_START 1 #define SERIES_COLUMN_STOP 2 #define SERIES_COLUMN_STEP 3 rc = sqlite3_declare_vtab(db, "CREATE TABLE x(value,start hidden,stop hidden,step hidden)"); if( rc==SQLITE_OK ){ pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) ); if( pNew==0 ) return SQLITE_NOMEM; memset(pNew, 0, sizeof(*pNew)); } return rc; } /* ** This method is the destructor for series_cursor objects. */ static int seriesDisconnect(sqlite3_vtab *pVtab){ sqlite3_free(pVtab); return SQLITE_OK; } /* ** Constructor for a new series_cursor object. */ static int seriesOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ series_cursor *pCur; pCur = sqlite3_malloc( sizeof(*pCur) ); if( pCur==0 ) return SQLITE_NOMEM; memset(pCur, 0, sizeof(*pCur)); *ppCursor = &pCur->base; return SQLITE_OK; } /* ** Destructor for a series_cursor. */ static int seriesClose(sqlite3_vtab_cursor *cur){ sqlite3_free(cur); return SQLITE_OK; } /* ** Advance a series_cursor to its next row of output. */ static int seriesNext(sqlite3_vtab_cursor *cur){ series_cursor *pCur = (series_cursor*)cur; if( pCur->isDesc ){ pCur->iValue -= pCur->iStep; }else{ pCur->iValue += pCur->iStep; } pCur->iRowid++; return SQLITE_OK; } /* ** Return values of columns for the row at which the series_cursor ** is currently pointing. */ static int seriesColumn( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int i /* Which column to return */ ){ series_cursor *pCur = (series_cursor*)cur; sqlite3_int64 x = 0; switch( i ){ case SERIES_COLUMN_START: x = pCur->mnValue; break; case SERIES_COLUMN_STOP: x = pCur->mxValue; break; case SERIES_COLUMN_STEP: x = pCur->iStep; break; default: x = pCur->iValue; break; } sqlite3_result_int64(ctx, x); return SQLITE_OK; } /* ** Return the rowid for the current row. In this implementation, the ** rowid is the same as the output value. */ static int seriesRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ series_cursor *pCur = (series_cursor*)cur; *pRowid = pCur->iRowid; return SQLITE_OK; } /* ** Return TRUE if the cursor has been moved off of the last ** row of output. */ static int seriesEof(sqlite3_vtab_cursor *cur){ series_cursor *pCur = (series_cursor*)cur; if( pCur->isDesc ){ return pCur->iValue < pCur->mnValue; }else{ return pCur->iValue > pCur->mxValue; } } /* True to omit run-time checking of the start=, stop=, and/or step= ** parameters. The only reason to not omit these is for testing the ** constraint checking logic for virtual tables in the SQLite core. */ #ifndef SERIES_OMIT_CONSTRAINT_VERIFY # define SERIES_OMIT_CONSTRAINT_VERIFY 1 #endif /* ** This method is called to "rewind" the series_cursor object back ** to the first row of output. This method is always called at least ** once prior to any call to seriesColumn() or seriesRowid() or ** seriesEof(). ** ** The query plan selected by seriesBestIndex is passed in the idxNum ** parameter. (idxStr is not used in this implementation.) idxNum ** is a bitmask showing which constraints are available: ** ** 1: start=VALUE ** 2: stop=VALUE ** 4: step=VALUE ** ** Also, if bit 8 is set, that means that the series should be output ** in descending order rather than in ascending order. ** ** This routine should initialize the cursor and position it so that it ** is pointing at the first row, or pointing off the end of the table ** (so that seriesEof() will return true) if the table is empty. */ static int seriesFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ series_cursor *pCur = (series_cursor *)pVtabCursor; int i = 0; if( idxNum & 1 ){ pCur->mnValue = sqlite3_value_int64(argv[i++]); }else{ pCur->mnValue = 0; } if( idxNum & 2 ){ pCur->mxValue = sqlite3_value_int64(argv[i++]); }else{ pCur->mxValue = 0xffffffff; } if( idxNum & 4 ){ pCur->iStep = sqlite3_value_int64(argv[i++]); if( pCur->iStep<1 ) pCur->iStep = 1; }else{ pCur->iStep = 1; } if( idxNum & 8 ){ pCur->isDesc = 1; pCur->iValue = pCur->mxValue; if( pCur->iStep>0 ){ pCur->iValue -= (pCur->mxValue - pCur->mnValue)%pCur->iStep; } }else{ pCur->isDesc = 0; pCur->iValue = pCur->mnValue; } pCur->iRowid = 1; return SQLITE_OK; } /* ** SQLite will invoke this method one or more times while planning a query ** that uses the generate_series virtual table. This routine needs to create ** a query plan for each invocation and compute an estimated cost for that ** plan. ** ** In this implementation idxNum is used to represent the ** query plan. idxStr is unused. ** ** The query plan is represented by bits in idxNum: ** ** (1) start = $value -- constraint exists ** (2) stop = $value -- constraint exists ** (4) step = $value -- constraint exists ** (8) output in descending order */ static int seriesBestIndex( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; /* Loop over constraints */ int idxNum = 0; /* The query plan bitmask */ int startIdx = -1; /* Index of the start= constraint, or -1 if none */ int stopIdx = -1; /* Index of the stop= constraint, or -1 if none */ int stepIdx = -1; /* Index of the step= constraint, or -1 if none */ int nArg = 0; /* Number of arguments that seriesFilter() expects */ const struct sqlite3_index_constraint *pConstraint; pConstraint = pIdxInfo->aConstraint; for(i=0; inConstraint; i++, pConstraint++){ if( pConstraint->usable==0 ) continue; if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; switch( pConstraint->iColumn ){ case SERIES_COLUMN_START: startIdx = i; idxNum |= 1; break; case SERIES_COLUMN_STOP: stopIdx = i; idxNum |= 2; break; case SERIES_COLUMN_STEP: stepIdx = i; idxNum |= 4; break; } } if( startIdx>=0 ){ pIdxInfo->aConstraintUsage[startIdx].argvIndex = ++nArg; pIdxInfo->aConstraintUsage[startIdx].omit = SERIES_OMIT_CONSTRAINT_VERIFY; } if( stopIdx>=0 ){ pIdxInfo->aConstraintUsage[stopIdx].argvIndex = ++nArg; pIdxInfo->aConstraintUsage[stopIdx].omit = SERIES_OMIT_CONSTRAINT_VERIFY; } if( stepIdx>=0 ){ pIdxInfo->aConstraintUsage[stepIdx].argvIndex = ++nArg; pIdxInfo->aConstraintUsage[stepIdx].omit = SERIES_OMIT_CONSTRAINT_VERIFY; } if( (idxNum & 3)==3 ){ /* Both start= and stop= boundaries are available. This is the ** the preferred case */ pIdxInfo->estimatedCost = (double)(2 - ((idxNum&4)!=0)); pIdxInfo->estimatedRows = 1000; if( pIdxInfo->nOrderBy==1 ){ if( pIdxInfo->aOrderBy[0].desc ) idxNum |= 8; pIdxInfo->orderByConsumed = 1; } }else{ /* If either boundary is missing, we have to generate a huge span ** of numbers. Make this case very expensive so that the query ** planner will work hard to avoid it. */ pIdxInfo->estimatedCost = (double)2147483647; pIdxInfo->estimatedRows = 2147483647; } pIdxInfo->idxNum = idxNum; return SQLITE_OK; } /* ** This following structure defines all the methods for the ** generate_series virtual table. */ static sqlite3_module seriesModule = { 0, /* iVersion */ 0, /* xCreate */ seriesConnect, /* xConnect */ seriesBestIndex, /* xBestIndex */ seriesDisconnect, /* xDisconnect */ 0, /* xDestroy */ seriesOpen, /* xOpen - open a cursor */ seriesClose, /* xClose - close a cursor */ seriesFilter, /* xFilter - configure scan constraints */ seriesNext, /* xNext - advance a cursor */ seriesEof, /* xEof - check for end of scan */ seriesColumn, /* xColumn - read data */ seriesRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ }; #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifdef _WIN32 __declspec(dllexport) #endif int sqlite3_series_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; SQLITE_EXTENSION_INIT2(pApi); #ifndef SQLITE_OMIT_VIRTUALTABLE if( sqlite3_libversion_number()<3008012 ){ *pzErrMsg = sqlite3_mprintf( "generate_series() requires SQLite 3.8.12 or later"); return SQLITE_ERROR; } rc = sqlite3_create_module(db, "generate_series", &seriesModule, 0); #endif return rc; }