/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** Memory allocation functions used throughout sqlite. */ #include "sqliteInt.h" #include /* ** Attempt to release up to n bytes of non-essential memory currently ** held by SQLite. An example of non-essential memory is memory used to ** cache database pages that are not currently in use. */ int sqlite3_release_memory(int n){ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT return sqlite3PcacheReleaseMemory(n); #else /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine ** is a no-op returning zero if SQLite is not compiled with ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ UNUSED_PARAMETER(n); return 0; #endif } /* ** Default value of the hard heap limit. 0 means "no limit". */ #ifndef SQLITE_MAX_MEMORY # define SQLITE_MAX_MEMORY 0 #endif /* ** State information local to the memory allocation subsystem. */ static SQLITE_WSD struct Mem0Global { sqlite3_mutex *mutex; /* Mutex to serialize access */ sqlite3_int64 alarmThreshold; /* The soft heap limit */ sqlite3_int64 hardLimit; /* The hard upper bound on memory */ /* ** True if heap is nearly "full" where "full" is defined by the ** sqlite3_soft_heap_limit() setting. */ int nearlyFull; } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 }; #define mem0 GLOBAL(struct Mem0Global, mem0) /* ** Return the memory allocator mutex. sqlite3_status() needs it. */ sqlite3_mutex *sqlite3MallocMutex(void){ return mem0.mutex; } #ifndef SQLITE_OMIT_DEPRECATED /* ** Deprecated external interface. It used to set an alarm callback ** that was invoked when memory usage grew too large. Now it is a ** no-op. */ int sqlite3_memory_alarm( void(*xCallback)(void *pArg, sqlite3_int64 used,int N), void *pArg, sqlite3_int64 iThreshold ){ (void)xCallback; (void)pArg; (void)iThreshold; return SQLITE_OK; } #endif /* ** Set the soft heap-size limit for the library. An argument of ** zero disables the limit. A negative argument is a no-op used to ** obtain the return value. ** ** The return value is the value of the heap limit just before this ** interface was called. ** ** If the hard heap limit is enabled, then the soft heap limit cannot ** be disabled nor raised above the hard heap limit. */ sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ sqlite3_int64 priorLimit; sqlite3_int64 excess; sqlite3_int64 nUsed; #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return -1; #endif sqlite3_mutex_enter(mem0.mutex); priorLimit = mem0.alarmThreshold; if( n<0 ){ sqlite3_mutex_leave(mem0.mutex); return priorLimit; } if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){ n = mem0.hardLimit; } mem0.alarmThreshold = n; nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed); sqlite3_mutex_leave(mem0.mutex); excess = sqlite3_memory_used() - n; if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); return priorLimit; } void sqlite3_soft_heap_limit(int n){ if( n<0 ) n = 0; sqlite3_soft_heap_limit64(n); } /* ** Set the hard heap-size limit for the library. An argument of zero ** disables the hard heap limit. A negative argument is a no-op used ** to obtain the return value without affecting the hard heap limit. ** ** The return value is the value of the hard heap limit just prior to ** calling this interface. ** ** Setting the hard heap limit will also activate the soft heap limit ** and constrain the soft heap limit to be no more than the hard heap ** limit. */ sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){ sqlite3_int64 priorLimit; #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return -1; #endif sqlite3_mutex_enter(mem0.mutex); priorLimit = mem0.hardLimit; if( n>=0 ){ mem0.hardLimit = n; if( n0 ); /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal ** implementation of malloc_good_size(), which must be called in debug ** mode and specifically when the DMD "Dark Matter Detector" is enabled ** or else a crash results. Hence, do not attempt to optimize out the ** following xRoundup() call. */ nFull = sqlite3GlobalConfig.m.xRoundup(n); sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); if( mem0.alarmThreshold>0 ){ sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); if( nUsed >= mem0.alarmThreshold - nFull ){ AtomicStore(&mem0.nearlyFull, 1); sqlite3MallocAlarm(nFull); if( mem0.hardLimit ){ nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); if( nUsed >= mem0.hardLimit - nFull ){ *pp = 0; return; } } }else{ AtomicStore(&mem0.nearlyFull, 0); } } p = sqlite3GlobalConfig.m.xMalloc(nFull); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT if( p==0 && mem0.alarmThreshold>0 ){ sqlite3MallocAlarm(nFull); p = sqlite3GlobalConfig.m.xMalloc(nFull); } #endif if( p ){ nFull = sqlite3MallocSize(p); sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); } *pp = p; } /* ** Allocate memory. This routine is like sqlite3_malloc() except that it ** assumes the memory subsystem has already been initialized. */ void *sqlite3Malloc(u64 n){ void *p; if( n==0 || n>=0x7fffff00 ){ /* A memory allocation of a number of bytes which is near the maximum ** signed integer value might cause an integer overflow inside of the ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving ** 255 bytes of overhead. SQLite itself will never use anything near ** this amount. The only way to reach the limit is with sqlite3_malloc() */ p = 0; }else if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); mallocWithAlarm((int)n, &p); sqlite3_mutex_leave(mem0.mutex); }else{ p = sqlite3GlobalConfig.m.xMalloc((int)n); } assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ return p; } /* ** This version of the memory allocation is for use by the application. ** First make sure the memory subsystem is initialized, then do the ** allocation. */ void *sqlite3_malloc(int n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return n<=0 ? 0 : sqlite3Malloc(n); } void *sqlite3_malloc64(sqlite3_uint64 n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return sqlite3Malloc(n); } /* ** TRUE if p is a lookaside memory allocation from db */ #ifndef SQLITE_OMIT_LOOKASIDE static int isLookaside(sqlite3 *db, void *p){ return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd); } #else #define isLookaside(A,B) 0 #endif /* ** Return the size of a memory allocation previously obtained from ** sqlite3Malloc() or sqlite3_malloc(). */ int sqlite3MallocSize(void *p){ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); return sqlite3GlobalConfig.m.xSize(p); } static int lookasideMallocSize(sqlite3 *db, void *p){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE return plookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL; #else return db->lookaside.szTrue; #endif } int sqlite3DbMallocSize(sqlite3 *db, void *p){ assert( p!=0 ); #ifdef SQLITE_DEBUG if( db==0 || !isLookaside(db,p) ){ if( db==0 ){ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); }else{ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); } } #endif if( db ){ if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ assert( sqlite3_mutex_held(db->mutex) ); return LOOKASIDE_SMALL; } #endif if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ assert( sqlite3_mutex_held(db->mutex) ); return db->lookaside.szTrue; } } } return sqlite3GlobalConfig.m.xSize(p); } sqlite3_uint64 sqlite3_msize(void *p){ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); return p ? sqlite3GlobalConfig.m.xSize(p) : 0; } /* ** Free memory previously obtained from sqlite3Malloc(). */ void sqlite3_free(void *p){ if( p==0 ) return; /* IMP: R-49053-54554 */ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); sqlite3GlobalConfig.m.xFree(p); sqlite3_mutex_leave(mem0.mutex); }else{ sqlite3GlobalConfig.m.xFree(p); } } /* ** Add the size of memory allocation "p" to the count in ** *db->pnBytesFreed. */ static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ *db->pnBytesFreed += sqlite3DbMallocSize(db,p); } /* ** Free memory that might be associated with a particular database ** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op. ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL. */ void sqlite3DbFreeNN(sqlite3 *db, void *p){ assert( db==0 || sqlite3_mutex_held(db->mutex) ); assert( p!=0 ); if( db ){ if( db->pnBytesFreed ){ measureAllocationSize(db, p); return; } if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ LookasideSlot *pBuf = (LookasideSlot*)p; #ifdef SQLITE_DEBUG memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pSmallFree; db->lookaside.pSmallFree = pBuf; return; } #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ LookasideSlot *pBuf = (LookasideSlot*)p; #ifdef SQLITE_DEBUG memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pFree; db->lookaside.pFree = pBuf; return; } } } assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); sqlite3_free(p); } void sqlite3DbFree(sqlite3 *db, void *p){ assert( db==0 || sqlite3_mutex_held(db->mutex) ); if( p ) sqlite3DbFreeNN(db, p); } /* ** Change the size of an existing memory allocation */ void *sqlite3Realloc(void *pOld, u64 nBytes){ int nOld, nNew, nDiff; void *pNew; assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); if( pOld==0 ){ return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ } if( nBytes==0 ){ sqlite3_free(pOld); /* IMP: R-26507-47431 */ return 0; } if( nBytes>=0x7fffff00 ){ /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ return 0; } nOld = sqlite3MallocSize(pOld); /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second ** argument to xRealloc is always a value returned by a prior call to ** xRoundup. */ nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); if( nOld==nNew ){ pNew = pOld; }else if( sqlite3GlobalConfig.bMemstat ){ sqlite3_int64 nUsed; sqlite3_mutex_enter(mem0.mutex); sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); nDiff = nNew - nOld; if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >= mem0.alarmThreshold-nDiff ){ sqlite3MallocAlarm(nDiff); if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){ sqlite3_mutex_leave(mem0.mutex); return 0; } } pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT if( pNew==0 && mem0.alarmThreshold>0 ){ sqlite3MallocAlarm((int)nBytes); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } #endif if( pNew ){ nNew = sqlite3MallocSize(pNew); sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); } sqlite3_mutex_leave(mem0.mutex); }else{ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ return pNew; } /* ** The public interface to sqlite3Realloc. Make sure that the memory ** subsystem is initialized prior to invoking sqliteRealloc. */ void *sqlite3_realloc(void *pOld, int n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif if( n<0 ) n = 0; /* IMP: R-26507-47431 */ return sqlite3Realloc(pOld, n); } void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return sqlite3Realloc(pOld, n); } /* ** Allocate and zero memory. */ void *sqlite3MallocZero(u64 n){ void *p = sqlite3Malloc(n); if( p ){ memset(p, 0, (size_t)n); } return p; } /* ** Allocate and zero memory. If the allocation fails, make ** the mallocFailed flag in the connection pointer. */ void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ void *p; testcase( db==0 ); p = sqlite3DbMallocRaw(db, n); if( p ) memset(p, 0, (size_t)n); return p; } /* Finish the work of sqlite3DbMallocRawNN for the unusual and ** slower case when the allocation cannot be fulfilled using lookaside. */ static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){ void *p; assert( db!=0 ); p = sqlite3Malloc(n); if( !p ) sqlite3OomFault(db); sqlite3MemdebugSetType(p, (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); return p; } /* ** Allocate memory, either lookaside (if possible) or heap. ** If the allocation fails, set the mallocFailed flag in ** the connection pointer. ** ** If db!=0 and db->mallocFailed is true (indicating a prior malloc ** failure on the same database connection) then always return 0. ** Hence for a particular database connection, once malloc starts ** failing, it fails consistently until mallocFailed is reset. ** This is an important assumption. There are many places in the ** code that do things like this: ** ** int *a = (int*)sqlite3DbMallocRaw(db, 100); ** int *b = (int*)sqlite3DbMallocRaw(db, 200); ** if( b ) a[10] = 9; ** ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed ** that all prior mallocs (ex: "a") worked too. ** ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is ** not a NULL pointer. */ void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ void *p; if( db ) return sqlite3DbMallocRawNN(db, n); p = sqlite3Malloc(n); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); return p; } void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){ #ifndef SQLITE_OMIT_LOOKASIDE LookasideSlot *pBuf; assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); assert( db->pnBytesFreed==0 ); if( n>db->lookaside.sz ){ if( !db->lookaside.bDisable ){ db->lookaside.anStat[1]++; }else if( db->mallocFailed ){ return 0; } return dbMallocRawFinish(db, n); } #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( n<=LOOKASIDE_SMALL ){ if( (pBuf = db->lookaside.pSmallFree)!=0 ){ db->lookaside.pSmallFree = pBuf->pNext; db->lookaside.anStat[0]++; return (void*)pBuf; }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){ db->lookaside.pSmallInit = pBuf->pNext; db->lookaside.anStat[0]++; return (void*)pBuf; } } #endif if( (pBuf = db->lookaside.pFree)!=0 ){ db->lookaside.pFree = pBuf->pNext; db->lookaside.anStat[0]++; return (void*)pBuf; }else if( (pBuf = db->lookaside.pInit)!=0 ){ db->lookaside.pInit = pBuf->pNext; db->lookaside.anStat[0]++; return (void*)pBuf; }else{ db->lookaside.anStat[2]++; } #else assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); assert( db->pnBytesFreed==0 ); if( db->mallocFailed ){ return 0; } #endif return dbMallocRawFinish(db, n); } /* Forward declaration */ static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n); /* ** Resize the block of memory pointed to by p to n bytes. If the ** resize fails, set the mallocFailed flag in the connection object. */ void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ assert( db!=0 ); if( p==0 ) return sqlite3DbMallocRawNN(db, n); assert( sqlite3_mutex_held(db->mutex) ); if( ((uptr)p)<(uptr)db->lookaside.pEnd ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){ if( n<=LOOKASIDE_SMALL ) return p; }else #endif if( ((uptr)p)>=(uptr)db->lookaside.pStart ){ if( n<=db->lookaside.szTrue ) return p; } } return dbReallocFinish(db, p, n); } static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){ void *pNew = 0; assert( db!=0 ); assert( p!=0 ); if( db->mallocFailed==0 ){ if( isLookaside(db, p) ){ pNew = sqlite3DbMallocRawNN(db, n); if( pNew ){ memcpy(pNew, p, lookasideMallocSize(db, p)); sqlite3DbFree(db, p); } }else{ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); pNew = sqlite3Realloc(p, n); if( !pNew ){ sqlite3OomFault(db); } sqlite3MemdebugSetType(pNew, (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); } } return pNew; } /* ** Attempt to reallocate p. If the reallocation fails, then free p ** and set the mallocFailed flag in the database connection. */ void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ void *pNew; pNew = sqlite3DbRealloc(db, p, n); if( !pNew ){ sqlite3DbFree(db, p); } return pNew; } /* ** Make a copy of a string in memory obtained from sqliteMalloc(). These ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This ** is because when memory debugging is turned on, these two functions are ** called via macros that record the current file and line number in the ** ThreadData structure. */ char *sqlite3DbStrDup(sqlite3 *db, const char *z){ char *zNew; size_t n; if( z==0 ){ return 0; } n = strlen(z) + 1; zNew = sqlite3DbMallocRaw(db, n); if( zNew ){ memcpy(zNew, z, n); } return zNew; } char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ char *zNew; assert( db!=0 ); assert( z!=0 || n==0 ); assert( (n&0x7fffffff)==n ); zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0; if( zNew ){ memcpy(zNew, z, (size_t)n); zNew[n] = 0; } return zNew; } /* ** The text between zStart and zEnd represents a phrase within a larger ** SQL statement. Make a copy of this phrase in space obtained form ** sqlite3DbMalloc(). Omit leading and trailing whitespace. */ char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){ int n; while( sqlite3Isspace(zStart[0]) ) zStart++; n = (int)(zEnd - zStart); while( ALWAYS(n>0) && sqlite3Isspace(zStart[n-1]) ) n--; return sqlite3DbStrNDup(db, zStart, n); } /* ** Free any prior content in *pz and replace it with a copy of zNew. */ void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){ sqlite3DbFree(db, *pz); *pz = sqlite3DbStrDup(db, zNew); } /* ** Call this routine to record the fact that an OOM (out-of-memory) error ** has happened. This routine will set db->mallocFailed, and also ** temporarily disable the lookaside memory allocator and interrupt ** any running VDBEs. */ void sqlite3OomFault(sqlite3 *db){ if( db->mallocFailed==0 && db->bBenignMalloc==0 ){ db->mallocFailed = 1; if( db->nVdbeExec>0 ){ AtomicStore(&db->u1.isInterrupted, 1); } DisableLookaside; if( db->pParse ){ db->pParse->rc = SQLITE_NOMEM_BKPT; } } } /* ** This routine reactivates the memory allocator and clears the ** db->mallocFailed flag as necessary. ** ** The memory allocator is not restarted if there are running ** VDBEs. */ void sqlite3OomClear(sqlite3 *db){ if( db->mallocFailed && db->nVdbeExec==0 ){ db->mallocFailed = 0; AtomicStore(&db->u1.isInterrupted, 0); assert( db->lookaside.bDisable>0 ); EnableLookaside; } } /* ** Take actions at the end of an API call to deal with error codes. */ static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){ if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ sqlite3OomClear(db); sqlite3Error(db, SQLITE_NOMEM); return SQLITE_NOMEM_BKPT; } return rc & db->errMask; } /* ** This function must be called before exiting any API function (i.e. ** returning control to the user) that has called sqlite3_malloc or ** sqlite3_realloc. ** ** The returned value is normally a copy of the second argument to this ** function. However, if a malloc() failure has occurred since the previous ** invocation SQLITE_NOMEM is returned instead. ** ** If an OOM as occurred, then the connection error-code (the value ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. */ int sqlite3ApiExit(sqlite3* db, int rc){ /* If the db handle must hold the connection handle mutex here. ** Otherwise the read (and possible write) of db->mallocFailed ** is unsafe, as is the call to sqlite3Error(). */ assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); if( db->mallocFailed || rc ){ return apiHandleError(db, rc); } return rc & db->errMask; }