/* ** 2003 October 31 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement date and time ** functions for SQLite. ** ** There is only one exported symbol in this file - the function ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. ** All other code has file scope. ** ** SQLite processes all times and dates as julian day numbers. The ** dates and times are stored as the number of days since noon ** in Greenwich on November 24, 4714 B.C. according to the Gregorian ** calendar system. ** ** 1970-01-01 00:00:00 is JD 2440587.5 ** 2000-01-01 00:00:00 is JD 2451544.5 ** ** This implementation requires years to be expressed as a 4-digit number ** which means that only dates between 0000-01-01 and 9999-12-31 can ** be represented, even though julian day numbers allow a much wider ** range of dates. ** ** The Gregorian calendar system is used for all dates and times, ** even those that predate the Gregorian calendar. Historians usually ** use the julian calendar for dates prior to 1582-10-15 and for some ** dates afterwards, depending on locale. Beware of this difference. ** ** The conversion algorithms are implemented based on descriptions ** in the following text: ** ** Jean Meeus ** Astronomical Algorithms, 2nd Edition, 1998 ** ISBN 0-943396-61-1 ** Willmann-Bell, Inc ** Richmond, Virginia (USA) */ #include "sqliteInt.h" #include #include #include #ifndef SQLITE_OMIT_DATETIME_FUNCS /* ** The MSVC CRT on Windows CE may not have a localtime() function. ** So declare a substitute. The substitute function itself is ** defined in "os_win.c". */ #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) struct tm *__cdecl localtime(const time_t *); #endif /* ** A structure for holding a single date and time. */ typedef struct DateTime DateTime; struct DateTime { sqlite3_int64 iJD; /* The julian day number times 86400000 */ int Y, M, D; /* Year, month, and day */ int h, m; /* Hour and minutes */ int tz; /* Timezone offset in minutes */ double s; /* Seconds */ char validJD; /* True (1) if iJD is valid */ char validYMD; /* True (1) if Y,M,D are valid */ char validHMS; /* True (1) if h,m,s are valid */ char nFloor; /* Days to implement "floor" */ unsigned rawS : 1; /* Raw numeric value stored in s */ unsigned isError : 1; /* An overflow has occurred */ unsigned useSubsec : 1; /* Display subsecond precision */ unsigned isUtc : 1; /* Time is known to be UTC */ unsigned isLocal : 1; /* Time is known to be localtime */ }; /* ** Convert zDate into one or more integers according to the conversion ** specifier zFormat. ** ** zFormat[] contains 4 characters for each integer converted, except for ** the last integer which is specified by three characters. The meaning ** of a four-character format specifiers ABCD is: ** ** A: number of digits to convert. Always "2" or "4". ** B: minimum value. Always "0" or "1". ** C: maximum value, decoded as: ** a: 12 ** b: 14 ** c: 24 ** d: 31 ** e: 59 ** f: 9999 ** D: the separator character, or \000 to indicate this is the ** last number to convert. ** ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates ** the 2-digit day which is the last integer in the set. ** ** The function returns the number of successful conversions. */ static int getDigits(const char *zDate, const char *zFormat, ...){ /* The aMx[] array translates the 3rd character of each format ** spec into a max size: a b c d e f */ static const u16 aMx[] = { 12, 14, 24, 31, 59, 14712 }; va_list ap; int cnt = 0; char nextC; va_start(ap, zFormat); do{ char N = zFormat[0] - '0'; char min = zFormat[1] - '0'; int val = 0; u16 max; assert( zFormat[2]>='a' && zFormat[2]<='f' ); max = aMx[zFormat[2] - 'a']; nextC = zFormat[3]; val = 0; while( N-- ){ if( !sqlite3Isdigit(*zDate) ){ goto end_getDigits; } val = val*10 + *zDate - '0'; zDate++; } if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ goto end_getDigits; } *va_arg(ap,int*) = val; zDate++; cnt++; zFormat += 4; }while( nextC ); end_getDigits: va_end(ap); return cnt; } /* ** Parse a timezone extension on the end of a date-time. ** The extension is of the form: ** ** (+/-)HH:MM ** ** Or the "zulu" notation: ** ** Z ** ** If the parse is successful, write the number of minutes ** of change in p->tz and return 0. If a parser error occurs, ** return non-zero. ** ** A missing specifier is not considered an error. */ static int parseTimezone(const char *zDate, DateTime *p){ int sgn = 0; int nHr, nMn; int c; while( sqlite3Isspace(*zDate) ){ zDate++; } p->tz = 0; c = *zDate; if( c=='-' ){ sgn = -1; }else if( c=='+' ){ sgn = +1; }else if( c=='Z' || c=='z' ){ zDate++; p->isLocal = 0; p->isUtc = 1; goto zulu_time; }else{ return c!=0; } zDate++; if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ return 1; } zDate += 5; p->tz = sgn*(nMn + nHr*60); zulu_time: while( sqlite3Isspace(*zDate) ){ zDate++; } return *zDate!=0; } /* ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. ** The HH, MM, and SS must each be exactly 2 digits. The ** fractional seconds FFFF can be one or more digits. ** ** Return 1 if there is a parsing error and 0 on success. */ static int parseHhMmSs(const char *zDate, DateTime *p){ int h, m, s; double ms = 0.0; if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ return 1; } zDate += 5; if( *zDate==':' ){ zDate++; if( getDigits(zDate, "20e", &s)!=1 ){ return 1; } zDate += 2; if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ double rScale = 1.0; zDate++; while( sqlite3Isdigit(*zDate) ){ ms = ms*10.0 + *zDate - '0'; rScale *= 10.0; zDate++; } ms /= rScale; } }else{ s = 0; } p->validJD = 0; p->rawS = 0; p->validHMS = 1; p->h = h; p->m = m; p->s = s + ms; if( parseTimezone(zDate, p) ) return 1; return 0; } /* ** Put the DateTime object into its error state. */ static void datetimeError(DateTime *p){ memset(p, 0, sizeof(*p)); p->isError = 1; } /* ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume ** that the YYYY-MM-DD is according to the Gregorian calendar. ** ** Reference: Meeus page 61 */ static void computeJD(DateTime *p){ int Y, M, D, A, B, X1, X2; if( p->validJD ) return; if( p->validYMD ){ Y = p->Y; M = p->M; D = p->D; }else{ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ M = 1; D = 1; } if( Y<-4713 || Y>9999 || p->rawS ){ datetimeError(p); return; } if( M<=2 ){ Y--; M += 12; } A = (Y+4800)/100; B = 38 - A + (A/4); X1 = 36525*(Y+4716)/100; X2 = 306001*(M+1)/10000; p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); p->validJD = 1; if( p->validHMS ){ p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000 + 0.5); if( p->tz ){ p->iJD -= p->tz*60000; p->validYMD = 0; p->validHMS = 0; p->tz = 0; p->isUtc = 1; p->isLocal = 0; } } } /* ** Given the YYYY-MM-DD information current in p, determine if there ** is day-of-month overflow and set nFloor to the number of days that ** would need to be subtracted from the date in order to bring the ** date back to the end of the month. */ static void computeFloor(DateTime *p){ assert( p->validYMD || p->isError ); assert( p->D>=0 && p->D<=31 ); assert( p->M>=0 && p->M<=12 ); if( p->D<=28 ){ p->nFloor = 0; }else if( (1<M) & 0x15aa ){ p->nFloor = 0; }else if( p->M!=2 ){ p->nFloor = (p->D==31); }else if( p->Y%4!=0 || (p->Y%100==0 && p->Y%400!=0) ){ p->nFloor = p->D - 28; }else{ p->nFloor = p->D - 29; } } /* ** Parse dates of the form ** ** YYYY-MM-DD HH:MM:SS.FFF ** YYYY-MM-DD HH:MM:SS ** YYYY-MM-DD HH:MM ** YYYY-MM-DD ** ** Write the result into the DateTime structure and return 0 ** on success and 1 if the input string is not a well-formed ** date. */ static int parseYyyyMmDd(const char *zDate, DateTime *p){ int Y, M, D, neg; if( zDate[0]=='-' ){ zDate++; neg = 1; }else{ neg = 0; } if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ return 1; } zDate += 10; while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } if( parseHhMmSs(zDate, p)==0 ){ /* We got the time */ }else if( *zDate==0 ){ p->validHMS = 0; }else{ return 1; } p->validJD = 0; p->validYMD = 1; p->Y = neg ? -Y : Y; p->M = M; p->D = D; computeFloor(p); if( p->tz ){ computeJD(p); } return 0; } static void clearYMD_HMS_TZ(DateTime *p); /* Forward declaration */ /* ** Set the time to the current time reported by the VFS. ** ** Return the number of errors. */ static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ p->iJD = sqlite3StmtCurrentTime(context); if( p->iJD>0 ){ p->validJD = 1; p->isUtc = 1; p->isLocal = 0; clearYMD_HMS_TZ(p); return 0; }else{ return 1; } } /* ** Input "r" is a numeric quantity which might be a julian day number, ** or the number of seconds since 1970. If the value if r is within ** range of a julian day number, install it as such and set validJD. ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. */ static void setRawDateNumber(DateTime *p, double r){ p->s = r; p->rawS = 1; if( r>=0.0 && r<5373484.5 ){ p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); p->validJD = 1; } } /* ** Attempt to parse the given string into a julian day number. Return ** the number of errors. ** ** The following are acceptable forms for the input string: ** ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM ** DDDD.DD ** now ** ** In the first form, the +/-HH:MM is always optional. The fractional ** seconds extension (the ".FFF") is optional. The seconds portion ** (":SS.FFF") is option. The year and date can be omitted as long ** as there is a time string. The time string can be omitted as long ** as there is a year and date. */ static int parseDateOrTime( sqlite3_context *context, const char *zDate, DateTime *p ){ double r; if( parseYyyyMmDd(zDate,p)==0 ){ return 0; }else if( parseHhMmSs(zDate, p)==0 ){ return 0; }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){ return setDateTimeToCurrent(context, p); }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){ setRawDateNumber(p, r); return 0; }else if( (sqlite3StrICmp(zDate,"subsec")==0 || sqlite3StrICmp(zDate,"subsecond")==0) && sqlite3NotPureFunc(context) ){ p->useSubsec = 1; return setDateTimeToCurrent(context, p); } return 1; } /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999. ** Multiplying this by 86400000 gives 464269060799999 as the maximum value ** for DateTime.iJD. ** ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with ** such a large integer literal, so we have to encode it. */ #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff) /* ** Return TRUE if the given julian day number is within range. ** ** The input is the JulianDay times 86400000. */ static int validJulianDay(sqlite3_int64 iJD){ return iJD>=0 && iJD<=INT_464269060799999; } /* ** Compute the Year, Month, and Day from the julian day number. */ static void computeYMD(DateTime *p){ int Z, alpha, A, B, C, D, E, X1; if( p->validYMD ) return; if( !p->validJD ){ p->Y = 2000; p->M = 1; p->D = 1; }else if( !validJulianDay(p->iJD) ){ datetimeError(p); return; }else{ Z = (int)((p->iJD + 43200000)/86400000); alpha = (int)((Z + 32044.75)/36524.25) - 52; A = Z + 1 + alpha - ((alpha+100)/4) + 25; B = A + 1524; C = (int)((B - 122.1)/365.25); D = (36525*(C&32767))/100; E = (int)((B-D)/30.6001); X1 = (int)(30.6001*E); p->D = B - D - X1; p->M = E<14 ? E-1 : E-13; p->Y = p->M>2 ? C - 4716 : C - 4715; } p->validYMD = 1; } /* ** Compute the Hour, Minute, and Seconds from the julian day number. */ static void computeHMS(DateTime *p){ int day_ms, day_min; /* milliseconds, minutes into the day */ if( p->validHMS ) return; computeJD(p); day_ms = (int)((p->iJD + 43200000) % 86400000); p->s = (day_ms % 60000)/1000.0; day_min = day_ms/60000; p->m = day_min % 60; p->h = day_min / 60; p->rawS = 0; p->validHMS = 1; } /* ** Compute both YMD and HMS */ static void computeYMD_HMS(DateTime *p){ computeYMD(p); computeHMS(p); } /* ** Clear the YMD and HMS and the TZ */ static void clearYMD_HMS_TZ(DateTime *p){ p->validYMD = 0; p->validHMS = 0; p->tz = 0; } #ifndef SQLITE_OMIT_LOCALTIME /* ** On recent Windows platforms, the localtime_s() function is available ** as part of the "Secure CRT". It is essentially equivalent to ** localtime_r() available under most POSIX platforms, except that the ** order of the parameters is reversed. ** ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. ** ** If the user has not indicated to use localtime_r() or localtime_s() ** already, check for an MSVC build environment that provides ** localtime_s(). */ #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) #undef HAVE_LOCALTIME_S #define HAVE_LOCALTIME_S 1 #endif /* ** The following routine implements the rough equivalent of localtime_r() ** using whatever operating-system specific localtime facility that ** is available. This routine returns 0 on success and ** non-zero on any kind of error. ** ** If the sqlite3GlobalConfig.bLocaltimeFault variable is non-zero then this ** routine will always fail. If bLocaltimeFault is nonzero and ** sqlite3GlobalConfig.xAltLocaltime is not NULL, then xAltLocaltime() is ** invoked in place of the OS-defined localtime() function. ** ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C ** library function localtime_r() is used to assist in the calculation of ** local time. */ static int osLocaltime(time_t *t, struct tm *pTm){ int rc; #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S struct tm *pX; #if SQLITE_THREADSAFE>0 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); #endif sqlite3_mutex_enter(mutex); pX = localtime(t); #ifndef SQLITE_UNTESTABLE if( sqlite3GlobalConfig.bLocaltimeFault ){ if( sqlite3GlobalConfig.xAltLocaltime!=0 && 0==sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm) ){ pX = pTm; }else{ pX = 0; } } #endif if( pX ) *pTm = *pX; #if SQLITE_THREADSAFE>0 sqlite3_mutex_leave(mutex); #endif rc = pX==0; #else #ifndef SQLITE_UNTESTABLE if( sqlite3GlobalConfig.bLocaltimeFault ){ if( sqlite3GlobalConfig.xAltLocaltime!=0 ){ return sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm); }else{ return 1; } } #endif #if HAVE_LOCALTIME_R rc = localtime_r(t, pTm)==0; #else rc = localtime_s(pTm, t); #endif /* HAVE_LOCALTIME_R */ #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ return rc; } #endif /* SQLITE_OMIT_LOCALTIME */ #ifndef SQLITE_OMIT_LOCALTIME /* ** Assuming the input DateTime is UTC, move it to its localtime equivalent. */ static int toLocaltime( DateTime *p, /* Date at which to calculate offset */ sqlite3_context *pCtx /* Write error here if one occurs */ ){ time_t t; struct tm sLocal; int iYearDiff; /* Initialize the contents of sLocal to avoid a compiler warning. */ memset(&sLocal, 0, sizeof(sLocal)); computeJD(p); if( p->iJD<2108667600*(i64)100000 /* 1970-01-01 */ || p->iJD>2130141456*(i64)100000 /* 2038-01-18 */ ){ /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only ** works for years between 1970 and 2037. For dates outside this range, ** SQLite attempts to map the year into an equivalent year within this ** range, do the calculation, then map the year back. */ DateTime x = *p; computeYMD_HMS(&x); iYearDiff = (2000 + x.Y%4) - x.Y; x.Y += iYearDiff; x.validJD = 0; computeJD(&x); t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); }else{ iYearDiff = 0; t = (time_t)(p->iJD/1000 - 21086676*(i64)10000); } if( osLocaltime(&t, &sLocal) ){ sqlite3_result_error(pCtx, "local time unavailable", -1); return SQLITE_ERROR; } p->Y = sLocal.tm_year + 1900 - iYearDiff; p->M = sLocal.tm_mon + 1; p->D = sLocal.tm_mday; p->h = sLocal.tm_hour; p->m = sLocal.tm_min; p->s = sLocal.tm_sec + (p->iJD%1000)*0.001; p->validYMD = 1; p->validHMS = 1; p->validJD = 0; p->rawS = 0; p->tz = 0; p->isError = 0; return SQLITE_OK; } #endif /* SQLITE_OMIT_LOCALTIME */ /* ** The following table defines various date transformations of the form ** ** 'NNN days' ** ** Where NNN is an arbitrary floating-point number and "days" can be one ** of several units of time. */ static const struct { u8 nName; /* Length of the name */ char zName[7]; /* Name of the transformation */ float rLimit; /* Maximum NNN value for this transform */ float rXform; /* Constant used for this transform */ } aXformType[] = { /* 0 */ { 6, "second", 4.6427e+14, 1.0 }, /* 1 */ { 6, "minute", 7.7379e+12, 60.0 }, /* 2 */ { 4, "hour", 1.2897e+11, 3600.0 }, /* 3 */ { 3, "day", 5373485.0, 86400.0 }, /* 4 */ { 5, "month", 176546.0, 2592000.0 }, /* 5 */ { 4, "year", 14713.0, 31536000.0 }, }; /* ** If the DateTime p is raw number, try to figure out if it is ** a julian day number of a unix timestamp. Set the p value ** appropriately. */ static void autoAdjustDate(DateTime *p){ if( !p->rawS || p->validJD ){ p->rawS = 0; }else if( p->s>=-21086676*(i64)10000 /* -4713-11-24 12:00:00 */ && p->s<=(25340230*(i64)10000)+799 /* 9999-12-31 23:59:59 */ ){ double r = p->s*1000.0 + 210866760000000.0; clearYMD_HMS_TZ(p); p->iJD = (sqlite3_int64)(r + 0.5); p->validJD = 1; p->rawS = 0; } } /* ** Process a modifier to a date-time stamp. The modifiers are ** as follows: ** ** NNN days ** NNN hours ** NNN minutes ** NNN.NNNN seconds ** NNN months ** NNN years ** +/-YYYY-MM-DD HH:MM:SS.SSS ** ceiling ** floor ** start of month ** start of year ** start of week ** start of day ** weekday N ** unixepoch ** auto ** localtime ** utc ** subsec ** subsecond ** ** Return 0 on success and 1 if there is any kind of error. If the error ** is in a system call (i.e. localtime()), then an error message is written ** to context pCtx. If the error is an unrecognized modifier, no error is ** written to pCtx. */ static int parseModifier( sqlite3_context *pCtx, /* Function context */ const char *z, /* The text of the modifier */ int n, /* Length of zMod in bytes */ DateTime *p, /* The date/time value to be modified */ int idx /* Parameter index of the modifier */ ){ int rc = 1; double r; switch(sqlite3UpperToLower[(u8)z[0]] ){ case 'a': { /* ** auto ** ** If rawS is available, then interpret as a julian day number, or ** a unix timestamp, depending on its magnitude. */ if( sqlite3_stricmp(z, "auto")==0 ){ if( idx>1 ) return 1; /* IMP: R-33611-57934 */ autoAdjustDate(p); rc = 0; } break; } case 'c': { /* ** ceiling ** ** Resolve day-of-month overflow by rolling forward into the next ** month. As this is the default action, this modifier is really ** a no-op that is only included for symmetry. See "floor". */ if( sqlite3_stricmp(z, "ceiling")==0 ){ computeJD(p); clearYMD_HMS_TZ(p); rc = 0; p->nFloor = 0; } break; } case 'f': { /* ** floor ** ** Resolve day-of-month overflow by rolling back to the end of the ** previous month. */ if( sqlite3_stricmp(z, "floor")==0 ){ computeJD(p); p->iJD -= p->nFloor*86400000; clearYMD_HMS_TZ(p); rc = 0; } break; } case 'j': { /* ** julianday ** ** Always interpret the prior number as a julian-day value. If this ** is not the first modifier, or if the prior argument is not a numeric ** value in the allowed range of julian day numbers understood by ** SQLite (0..5373484.5) then the result will be NULL. */ if( sqlite3_stricmp(z, "julianday")==0 ){ if( idx>1 ) return 1; /* IMP: R-31176-64601 */ if( p->validJD && p->rawS ){ rc = 0; p->rawS = 0; } } break; } #ifndef SQLITE_OMIT_LOCALTIME case 'l': { /* localtime ** ** Assuming the current time value is UTC (a.k.a. GMT), shift it to ** show local time. */ if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){ rc = p->isLocal ? SQLITE_OK : toLocaltime(p, pCtx); p->isUtc = 0; p->isLocal = 1; } break; } #endif case 'u': { /* ** unixepoch ** ** Treat the current value of p->s as the number of ** seconds since 1970. Convert to a real julian day number. */ if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ if( idx>1 ) return 1; /* IMP: R-49255-55373 */ r = p->s*1000.0 + 210866760000000.0; if( r>=0.0 && r<464269060800000.0 ){ clearYMD_HMS_TZ(p); p->iJD = (sqlite3_int64)(r + 0.5); p->validJD = 1; p->rawS = 0; rc = 0; } } #ifndef SQLITE_OMIT_LOCALTIME else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){ if( p->isUtc==0 ){ i64 iOrigJD; /* Original localtime */ i64 iGuess; /* Guess at the corresponding utc time */ int cnt = 0; /* Safety to prevent infinite loop */ i64 iErr; /* Guess is off by this much */ computeJD(p); iGuess = iOrigJD = p->iJD; iErr = 0; do{ DateTime new; memset(&new, 0, sizeof(new)); iGuess -= iErr; new.iJD = iGuess; new.validJD = 1; rc = toLocaltime(&new, pCtx); if( rc ) return rc; computeJD(&new); iErr = new.iJD - iOrigJD; }while( iErr && cnt++<3 ); memset(p, 0, sizeof(*p)); p->iJD = iGuess; p->validJD = 1; p->isUtc = 1; p->isLocal = 0; } rc = SQLITE_OK; } #endif break; } case 'w': { /* ** weekday N ** ** Move the date to the same time on the next occurrence of ** weekday N where 0==Sunday, 1==Monday, and so forth. If the ** date is already on the appropriate weekday, this is a no-op. */ if( sqlite3_strnicmp(z, "weekday ", 8)==0 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0 && r>=0.0 && r<7.0 && (n=(int)r)==r ){ sqlite3_int64 Z; computeYMD_HMS(p); p->tz = 0; p->validJD = 0; computeJD(p); Z = ((p->iJD + 129600000)/86400000) % 7; if( Z>n ) Z -= 7; p->iJD += (n - Z)*86400000; clearYMD_HMS_TZ(p); rc = 0; } break; } case 's': { /* ** start of TTTTT ** ** Move the date backwards to the beginning of the current day, ** or month or year. ** ** subsecond ** subsec ** ** Show subsecond precision in the output of datetime() and ** unixepoch() and strftime('%s'). */ if( sqlite3_strnicmp(z, "start of ", 9)!=0 ){ if( sqlite3_stricmp(z, "subsec")==0 || sqlite3_stricmp(z, "subsecond")==0 ){ p->useSubsec = 1; rc = 0; } break; } if( !p->validJD && !p->validYMD && !p->validHMS ) break; z += 9; computeYMD(p); p->validHMS = 1; p->h = p->m = 0; p->s = 0.0; p->rawS = 0; p->tz = 0; p->validJD = 0; if( sqlite3_stricmp(z,"month")==0 ){ p->D = 1; rc = 0; }else if( sqlite3_stricmp(z,"year")==0 ){ p->M = 1; p->D = 1; rc = 0; }else if( sqlite3_stricmp(z,"day")==0 ){ rc = 0; } break; } case '+': case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { double rRounder; int i; int Y,M,D,h,m,x; const char *z2 = z; char z0 = z[0]; for(n=1; z[n]; n++){ if( z[n]==':' ) break; if( sqlite3Isspace(z[n]) ) break; if( z[n]=='-' ){ if( n==5 && getDigits(&z[1], "40f", &Y)==1 ) break; if( n==6 && getDigits(&z[1], "50f", &Y)==1 ) break; } } if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){ assert( rc==1 ); break; } if( z[n]=='-' ){ /* A modifier of the form (+|-)YYYY-MM-DD adds or subtracts the ** specified number of years, months, and days. MM is limited to ** the range 0-11 and DD is limited to 0-30. */ if( z0!='+' && z0!='-' ) break; /* Must start with +/- */ if( n==5 ){ if( getDigits(&z[1], "40f-20a-20d", &Y, &M, &D)!=3 ) break; }else{ assert( n==6 ); if( getDigits(&z[1], "50f-20a-20d", &Y, &M, &D)!=3 ) break; z++; } if( M>=12 ) break; /* M range 0..11 */ if( D>=31 ) break; /* D range 0..30 */ computeYMD_HMS(p); p->validJD = 0; if( z0=='-' ){ p->Y -= Y; p->M -= M; D = -D; }else{ p->Y += Y; p->M += M; } x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; p->Y += x; p->M -= x*12; computeFloor(p); computeJD(p); p->validHMS = 0; p->validYMD = 0; p->iJD += (i64)D*86400000; if( z[11]==0 ){ rc = 0; break; } if( sqlite3Isspace(z[11]) && getDigits(&z[12], "20c:20e", &h, &m)==2 ){ z2 = &z[12]; n = 2; }else{ break; } } if( z2[n]==':' ){ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the ** specified number of hours, minutes, seconds, and fractional seconds ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be ** omitted. */ DateTime tx; sqlite3_int64 day; if( !sqlite3Isdigit(*z2) ) z2++; memset(&tx, 0, sizeof(tx)); if( parseHhMmSs(z2, &tx) ) break; computeJD(&tx); tx.iJD -= 43200000; day = tx.iJD/86400000; tx.iJD -= day*86400000; if( z0=='-' ) tx.iJD = -tx.iJD; computeJD(p); clearYMD_HMS_TZ(p); p->iJD += tx.iJD; rc = 0; break; } /* If control reaches this point, it means the transformation is ** one of the forms like "+NNN days". */ z += n; while( sqlite3Isspace(*z) ) z++; n = sqlite3Strlen30(z); if( n<3 || n>10 ) break; if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; computeJD(p); assert( rc==1 ); rRounder = r<0 ? -0.5 : +0.5; p->nFloor = 0; for(i=0; i-aXformType[i].rLimit && rM += (int)r; x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; p->Y += x; p->M -= x*12; computeFloor(p); p->validJD = 0; r -= (int)r; break; } case 5: { /* Special processing to add years */ int y = (int)r; assert( strcmp(aXformType[5].zName,"year")==0 ); computeYMD_HMS(p); assert( p->M>=0 && p->M<=12 ); p->Y += y; computeFloor(p); p->validJD = 0; r -= (int)r; break; } } computeJD(p); p->iJD += (sqlite3_int64)(r*1000.0*aXformType[i].rXform + rRounder); rc = 0; break; } } clearYMD_HMS_TZ(p); break; } default: { break; } } return rc; } /* ** Process time function arguments. argv[0] is a date-time stamp. ** argv[1] and following are modifiers. Parse them all and write ** the resulting time into the DateTime structure p. Return 0 ** on success and 1 if there are any errors. ** ** If there are zero parameters (if even argv[0] is undefined) ** then assume a default value of "now" for argv[0]. */ static int isDate( sqlite3_context *context, int argc, sqlite3_value **argv, DateTime *p ){ int i, n; const unsigned char *z; int eType; memset(p, 0, sizeof(*p)); if( argc==0 ){ if( !sqlite3NotPureFunc(context) ) return 1; return setDateTimeToCurrent(context, p); } if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT || eType==SQLITE_INTEGER ){ setRawDateNumber(p, sqlite3_value_double(argv[0])); }else{ z = sqlite3_value_text(argv[0]); if( !z || parseDateOrTime(context, (char*)z, p) ){ return 1; } } for(i=1; iisError || !validJulianDay(p->iJD) ) return 1; if( argc==1 && p->validYMD && p->D>28 ){ /* Make sure a YYYY-MM-DD is normalized. ** Example: 2023-02-31 -> 2023-03-03 */ assert( p->validJD ); p->validYMD = 0; } return 0; } /* ** The following routines implement the various date and time functions ** of SQLite. */ /* ** julianday( TIMESTRING, MOD, MOD, ...) ** ** Return the julian day number of the date specified in the arguments */ static void juliandayFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ computeJD(&x); sqlite3_result_double(context, x.iJD/86400000.0); } } /* ** unixepoch( TIMESTRING, MOD, MOD, ...) ** ** Return the number of seconds (including fractional seconds) since ** the unix epoch of 1970-01-01 00:00:00 GMT. */ static void unixepochFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ computeJD(&x); if( x.useSubsec ){ sqlite3_result_double(context, (x.iJD - 21086676*(i64)10000000)/1000.0); }else{ sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000); } } } /* ** datetime( TIMESTRING, MOD, MOD, ...) ** ** Return YYYY-MM-DD HH:MM:SS */ static void datetimeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ int Y, s, n; char zBuf[32]; computeYMD_HMS(&x); Y = x.Y; if( Y<0 ) Y = -Y; zBuf[1] = '0' + (Y/1000)%10; zBuf[2] = '0' + (Y/100)%10; zBuf[3] = '0' + (Y/10)%10; zBuf[4] = '0' + (Y)%10; zBuf[5] = '-'; zBuf[6] = '0' + (x.M/10)%10; zBuf[7] = '0' + (x.M)%10; zBuf[8] = '-'; zBuf[9] = '0' + (x.D/10)%10; zBuf[10] = '0' + (x.D)%10; zBuf[11] = ' '; zBuf[12] = '0' + (x.h/10)%10; zBuf[13] = '0' + (x.h)%10; zBuf[14] = ':'; zBuf[15] = '0' + (x.m/10)%10; zBuf[16] = '0' + (x.m)%10; zBuf[17] = ':'; if( x.useSubsec ){ s = (int)(1000.0*x.s + 0.5); zBuf[18] = '0' + (s/10000)%10; zBuf[19] = '0' + (s/1000)%10; zBuf[20] = '.'; zBuf[21] = '0' + (s/100)%10; zBuf[22] = '0' + (s/10)%10; zBuf[23] = '0' + (s)%10; zBuf[24] = 0; n = 24; }else{ s = (int)x.s; zBuf[18] = '0' + (s/10)%10; zBuf[19] = '0' + (s)%10; zBuf[20] = 0; n = 20; } if( x.Y<0 ){ zBuf[0] = '-'; sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT); }else{ sqlite3_result_text(context, &zBuf[1], n-1, SQLITE_TRANSIENT); } } } /* ** time( TIMESTRING, MOD, MOD, ...) ** ** Return HH:MM:SS */ static void timeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ int s, n; char zBuf[16]; computeHMS(&x); zBuf[0] = '0' + (x.h/10)%10; zBuf[1] = '0' + (x.h)%10; zBuf[2] = ':'; zBuf[3] = '0' + (x.m/10)%10; zBuf[4] = '0' + (x.m)%10; zBuf[5] = ':'; if( x.useSubsec ){ s = (int)(1000.0*x.s + 0.5); zBuf[6] = '0' + (s/10000)%10; zBuf[7] = '0' + (s/1000)%10; zBuf[8] = '.'; zBuf[9] = '0' + (s/100)%10; zBuf[10] = '0' + (s/10)%10; zBuf[11] = '0' + (s)%10; zBuf[12] = 0; n = 12; }else{ s = (int)x.s; zBuf[6] = '0' + (s/10)%10; zBuf[7] = '0' + (s)%10; zBuf[8] = 0; n = 8; } sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT); } } /* ** date( TIMESTRING, MOD, MOD, ...) ** ** Return YYYY-MM-DD */ static void dateFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ int Y; char zBuf[16]; computeYMD(&x); Y = x.Y; if( Y<0 ) Y = -Y; zBuf[1] = '0' + (Y/1000)%10; zBuf[2] = '0' + (Y/100)%10; zBuf[3] = '0' + (Y/10)%10; zBuf[4] = '0' + (Y)%10; zBuf[5] = '-'; zBuf[6] = '0' + (x.M/10)%10; zBuf[7] = '0' + (x.M)%10; zBuf[8] = '-'; zBuf[9] = '0' + (x.D/10)%10; zBuf[10] = '0' + (x.D)%10; zBuf[11] = 0; if( x.Y<0 ){ zBuf[0] = '-'; sqlite3_result_text(context, zBuf, 11, SQLITE_TRANSIENT); }else{ sqlite3_result_text(context, &zBuf[1], 10, SQLITE_TRANSIENT); } } } /* ** Compute the number of days after the most recent January 1. ** ** In other words, compute the zero-based day number for the ** current year: ** ** Jan01 = 0, Jan02 = 1, ..., Jan31 = 30, Feb01 = 31, ... ** Dec31 = 364 or 365. */ static int daysAfterJan01(DateTime *pDate){ DateTime jan01 = *pDate; assert( jan01.validYMD ); assert( jan01.validHMS ); assert( pDate->validJD ); jan01.validJD = 0; jan01.M = 1; jan01.D = 1; computeJD(&jan01); return (int)((pDate->iJD-jan01.iJD+43200000)/86400000); } /* ** Return the number of days after the most recent Monday. ** ** In other words, return the day of the week according ** to this code: ** ** 0=Monday, 1=Tuesday, 2=Wednesday, ..., 6=Sunday. */ static int daysAfterMonday(DateTime *pDate){ assert( pDate->validJD ); return (int)((pDate->iJD+43200000)/86400000) % 7; } /* ** Return the number of days after the most recent Sunday. ** ** In other words, return the day of the week according ** to this code: ** ** 0=Sunday, 1=Monday, 2=Tues, ..., 6=Saturday */ static int daysAfterSunday(DateTime *pDate){ assert( pDate->validJD ); return (int)((pDate->iJD+129600000)/86400000) % 7; } /* ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) ** ** Return a string described by FORMAT. Conversions as follows: ** ** %d day of month 01-31 ** %e day of month 1-31 ** %f ** fractional seconds SS.SSS ** %F ISO date. YYYY-MM-DD ** %G ISO year corresponding to %V 0000-9999. ** %g 2-digit ISO year corresponding to %V 00-99 ** %H hour 00-24 ** %k hour 0-24 (leading zero converted to space) ** %I hour 01-12 ** %j day of year 001-366 ** %J ** julian day number ** %l hour 1-12 (leading zero converted to space) ** %m month 01-12 ** %M minute 00-59 ** %p "am" or "pm" ** %P "AM" or "PM" ** %R time as HH:MM ** %s seconds since 1970-01-01 ** %S seconds 00-59 ** %T time as HH:MM:SS ** %u day of week 1-7 Monday==1, Sunday==7 ** %w day of week 0-6 Sunday==0, Monday==1 ** %U week of year 00-53 (First Sunday is start of week 01) ** %V week of year 01-53 (First week containing Thursday is week 01) ** %W week of year 00-53 (First Monday is start of week 01) ** %Y year 0000-9999 ** %% % */ static void strftimeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; size_t i,j; sqlite3 *db; const char *zFmt; sqlite3_str sRes; if( argc==0 ) return; zFmt = (const char*)sqlite3_value_text(argv[0]); if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; db = sqlite3_context_db_handle(context); sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); computeJD(&x); computeYMD_HMS(&x); for(i=j=0; zFmt[i]; i++){ char cf; if( zFmt[i]!='%' ) continue; if( j59.999 ) s = 59.999; sqlite3_str_appendf(&sRes, "%06.3f", s); break; } case 'F': { sqlite3_str_appendf(&sRes, "%04d-%02d-%02d", x.Y, x.M, x.D); break; } case 'G': /* Fall thru */ case 'g': { DateTime y = x; assert( y.validJD ); /* Move y so that it is the Thursday in the same week as x */ y.iJD += (3 - daysAfterMonday(&x))*86400000; y.validYMD = 0; computeYMD(&y); if( cf=='g' ){ sqlite3_str_appendf(&sRes, "%02d", y.Y%100); }else{ sqlite3_str_appendf(&sRes, "%04d", y.Y); } break; } case 'H': case 'k': { sqlite3_str_appendf(&sRes, cf=='H' ? "%02d" : "%2d", x.h); break; } case 'I': /* Fall thru */ case 'l': { int h = x.h; if( h>12 ) h -= 12; if( h==0 ) h = 12; sqlite3_str_appendf(&sRes, cf=='I' ? "%02d" : "%2d", h); break; } case 'j': { /* Day of year. Jan01==1, Jan02==2, and so forth */ sqlite3_str_appendf(&sRes,"%03d",daysAfterJan01(&x)+1); break; } case 'J': { /* Julian day number. (Non-standard) */ sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0); break; } case 'm': { sqlite3_str_appendf(&sRes,"%02d",x.M); break; } case 'M': { sqlite3_str_appendf(&sRes,"%02d",x.m); break; } case 'p': /* Fall thru */ case 'P': { if( x.h>=12 ){ sqlite3_str_append(&sRes, cf=='p' ? "PM" : "pm", 2); }else{ sqlite3_str_append(&sRes, cf=='p' ? "AM" : "am", 2); } break; } case 'R': { sqlite3_str_appendf(&sRes, "%02d:%02d", x.h, x.m); break; } case 's': { if( x.useSubsec ){ sqlite3_str_appendf(&sRes,"%.3f", (x.iJD - 21086676*(i64)10000000)/1000.0); }else{ i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000); sqlite3_str_appendf(&sRes,"%lld",iS); } break; } case 'S': { sqlite3_str_appendf(&sRes,"%02d",(int)x.s); break; } case 'T': { sqlite3_str_appendf(&sRes,"%02d:%02d:%02d", x.h, x.m, (int)x.s); break; } case 'u': /* Day of week. 1 to 7. Monday==1, Sunday==7 */ case 'w': { /* Day of week. 0 to 6. Sunday==0, Monday==1 */ char c = (char)daysAfterSunday(&x) + '0'; if( c=='0' && cf=='u' ) c = '7'; sqlite3_str_appendchar(&sRes, 1, c); break; } case 'U': { /* Week num. 00-53. First Sun of the year is week 01 */ sqlite3_str_appendf(&sRes,"%02d", (daysAfterJan01(&x)-daysAfterSunday(&x)+7)/7); break; } case 'V': { /* Week num. 01-53. First week with a Thur is week 01 */ DateTime y = x; /* Adjust y so that is the Thursday in the same week as x */ assert( y.validJD ); y.iJD += (3 - daysAfterMonday(&x))*86400000; y.validYMD = 0; computeYMD(&y); sqlite3_str_appendf(&sRes,"%02d", daysAfterJan01(&y)/7+1); break; } case 'W': { /* Week num. 00-53. First Mon of the year is week 01 */ sqlite3_str_appendf(&sRes,"%02d", (daysAfterJan01(&x)-daysAfterMonday(&x)+7)/7); break; } case 'Y': { sqlite3_str_appendf(&sRes,"%04d",x.Y); break; } case '%': { sqlite3_str_appendchar(&sRes, 1, '%'); break; } default: { sqlite3_str_reset(&sRes); return; } } } if( j=d2.iJD ){ sign = '+'; Y = d1.Y - d2.Y; if( Y ){ d2.Y = d1.Y; d2.validJD = 0; computeJD(&d2); } M = d1.M - d2.M; if( M<0 ){ Y--; M += 12; } if( M!=0 ){ d2.M = d1.M; d2.validJD = 0; computeJD(&d2); } while( d1.iJDd2.iJD ){ M--; if( M<0 ){ M = 11; Y--; } d2.M++; if( d2.M>12 ){ d2.M = 1; d2.Y++; } d2.validJD = 0; computeJD(&d2); } d1.iJD = d2.iJD - d1.iJD; d1.iJD += (u64)1486995408 * (u64)100000; } clearYMD_HMS_TZ(&d1); computeYMD_HMS(&d1); sqlite3StrAccumInit(&sRes, 0, 0, 0, 100); sqlite3_str_appendf(&sRes, "%c%04d-%02d-%02d %02d:%02d:%06.3f", sign, Y, M, d1.D-1, d1.h, d1.m, d1.s); sqlite3ResultStrAccum(context, &sRes); } /* ** current_timestamp() ** ** This function returns the same value as datetime('now'). */ static void ctimestampFunc( sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); datetimeFunc(context, 0, 0); } #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ #ifdef SQLITE_OMIT_DATETIME_FUNCS /* ** If the library is compiled to omit the full-scale date and time ** handling (to get a smaller binary), the following minimal version ** of the functions current_time(), current_date() and current_timestamp() ** are included instead. This is to support column declarations that ** include "DEFAULT CURRENT_TIME" etc. ** ** This function uses the C-library functions time(), gmtime() ** and strftime(). The format string to pass to strftime() is supplied ** as the user-data for the function. */ static void currentTimeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ time_t t; char *zFormat = (char *)sqlite3_user_data(context); sqlite3_int64 iT; struct tm *pTm; struct tm sNow; char zBuf[20]; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); iT = sqlite3StmtCurrentTime(context); if( iT<=0 ) return; t = iT/1000 - 10000*(sqlite3_int64)21086676; #if HAVE_GMTIME_R pTm = gmtime_r(&t, &sNow); #else sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); pTm = gmtime(&t); if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); #endif if( pTm ){ strftime(zBuf, 20, zFormat, &sNow); sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); } } #endif #if !defined(SQLITE_OMIT_DATETIME_FUNCS) && defined(SQLITE_DEBUG) /* ** datedebug(...) ** ** This routine returns JSON that describes the internal DateTime object. ** Used for debugging and testing only. Subject to change. */ static void datedebugFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ char *zJson; zJson = sqlite3_mprintf( "{iJD:%lld,Y:%d,M:%d,D:%d,h:%d,m:%d,tz:%d," "s:%.3f,validJD:%d,validYMS:%d,validHMS:%d," "nFloor:%d,rawS:%d,isError:%d,useSubsec:%d," "isUtc:%d,isLocal:%d}", x.iJD, x.Y, x.M, x.D, x.h, x.m, x.tz, x.s, x.validJD, x.validYMD, x.validHMS, x.nFloor, x.rawS, x.isError, x.useSubsec, x.isUtc, x.isLocal); sqlite3_result_text(context, zJson, -1, sqlite3_free); } } #endif /* !SQLITE_OMIT_DATETIME_FUNCS && SQLITE_DEBUG */ /* ** This function registered all of the above C functions as SQL ** functions. This should be the only routine in this file with ** external linkage. */ void sqlite3RegisterDateTimeFunctions(void){ static FuncDef aDateTimeFuncs[] = { #ifndef SQLITE_OMIT_DATETIME_FUNCS PURE_DATE(julianday, -1, 0, 0, juliandayFunc ), PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ), PURE_DATE(date, -1, 0, 0, dateFunc ), PURE_DATE(time, -1, 0, 0, timeFunc ), PURE_DATE(datetime, -1, 0, 0, datetimeFunc ), PURE_DATE(strftime, -1, 0, 0, strftimeFunc ), PURE_DATE(timediff, 2, 0, 0, timediffFunc ), #ifdef SQLITE_DEBUG PURE_DATE(datedebug, -1, 0, 0, datedebugFunc ), #endif DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), DFUNCTION(current_date, 0, 0, 0, cdateFunc ), #else STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), #endif }; sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); }