/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** The code in this file implements the function that runs the ** bytecode of a prepared statement. ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. */ #include "sqliteInt.h" #include "vdbeInt.h" /* ** Invoke this macro on memory cells just prior to changing the ** value of the cell. This macro verifies that shallow copies are ** not misused. A shallow copy of a string or blob just copies a ** pointer to the string or blob, not the content. If the original ** is changed while the copy is still in use, the string or blob might ** be changed out from under the copy. This macro verifies that nothing ** like that ever happens. */ #ifdef SQLITE_DEBUG # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) #else # define memAboutToChange(P,M) #endif /* ** The following global variable is incremented every time a cursor ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test ** procedures use this information to make sure that indices are ** working correctly. This variable has no function other than to ** help verify the correct operation of the library. */ #ifdef SQLITE_TEST int sqlite3_search_count = 0; #endif /* ** When this global variable is positive, it gets decremented once before ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted ** field of the sqlite3 structure is set in order to simulate an interrupt. ** ** This facility is used for testing purposes only. It does not function ** in an ordinary build. */ #ifdef SQLITE_TEST int sqlite3_interrupt_count = 0; #endif /* ** The next global variable is incremented each type the OP_Sort opcode ** is executed. The test procedures use this information to make sure that ** sorting is occurring or not occurring at appropriate times. This variable ** has no function other than to help verify the correct operation of the ** library. */ #ifdef SQLITE_TEST int sqlite3_sort_count = 0; #endif /* ** The next global variable records the size of the largest MEM_Blob ** or MEM_Str that has been used by a VDBE opcode. The test procedures ** use this information to make sure that the zero-blob functionality ** is working correctly. This variable has no function other than to ** help verify the correct operation of the library. */ #ifdef SQLITE_TEST int sqlite3_max_blobsize = 0; static void updateMaxBlobsize(Mem *p){ if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ sqlite3_max_blobsize = p->n; } } #endif /* ** This macro evaluates to true if either the update hook or the preupdate ** hook are enabled for database connect DB. */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) #else # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) #endif /* ** The next global variable is incremented each time the OP_Found opcode ** is executed. This is used to test whether or not the foreign key ** operation implemented using OP_FkIsZero is working. This variable ** has no function other than to help verify the correct operation of the ** library. */ #ifdef SQLITE_TEST int sqlite3_found_count = 0; #endif /* ** Test a register to see if it exceeds the current maximum blob size. ** If it does, record the new maximum blob size. */ #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) #else # define UPDATE_MAX_BLOBSIZE(P) #endif /* ** Invoke the VDBE coverage callback, if that callback is defined. This ** feature is used for test suite validation only and does not appear an ** production builds. ** ** M is an integer, 2 or 3, that indices how many different ways the ** branch can go. It is usually 2. "I" is the direction the branch ** goes. 0 means falls through. 1 means branch is taken. 2 means the ** second alternative branch is taken. ** ** iSrcLine is the source code line (from the __LINE__ macro) that ** generated the VDBE instruction. This instrumentation assumes that all ** source code is in a single file (the amalgamation). Special values 1 ** and 2 for the iSrcLine parameter mean that this particular branch is ** always taken or never taken, respectively. */ #if !defined(SQLITE_VDBE_COVERAGE) # define VdbeBranchTaken(I,M) #else # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ M = iSrcLine; /* Assert the truth of VdbeCoverageAlwaysTaken() and ** VdbeCoverageNeverTaken() */ assert( (M & I)==I ); }else{ if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, iSrcLine,I,M); } } #endif /* ** Convert the given register into a string if it isn't one ** already. Return non-zero if a malloc() fails. */ #define Stringify(P, enc) \ if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ { goto no_mem; } /* ** An ephemeral string value (signified by the MEM_Ephem flag) contains ** a pointer to a dynamically allocated string where some other entity ** is responsible for deallocating that string. Because the register ** does not control the string, it might be deleted without the register ** knowing it. ** ** This routine converts an ephemeral string into a dynamically allocated ** string that the register itself controls. In other words, it ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. */ #define Deephemeralize(P) \ if( ((P)->flags&MEM_Ephem)!=0 \ && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) /* ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL ** if we run out of memory. */ static VdbeCursor *allocateCursor( Vdbe *p, /* The virtual machine */ int iCur, /* Index of the new VdbeCursor */ int nField, /* Number of fields in the table or index */ int iDb, /* Database the cursor belongs to, or -1 */ u8 eCurType /* Type of the new cursor */ ){ /* Find the memory cell that will be used to store the blob of memory ** required for this VdbeCursor structure. It is convenient to use a ** vdbe memory cell to manage the memory allocation required for a ** VdbeCursor structure for the following reasons: ** ** * Sometimes cursor numbers are used for a couple of different ** purposes in a vdbe program. The different uses might require ** different sized allocations. Memory cells provide growable ** allocations. ** ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can ** be freed lazily via the sqlite3_release_memory() API. This ** minimizes the number of malloc calls made by the system. ** ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. ** Cursor 2 is at Mem[p->nMem-2]. And so forth. */ Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; int nByte; VdbeCursor *pCx = 0; nByte = ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); assert( iCur>=0 && iCurnCursor ); if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); p->apCsr[iCur] = 0; } if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); pCx->eCurType = eCurType; pCx->iDb = iDb; pCx->nField = nField; pCx->aOffset = &pCx->aType[nField]; if( eCurType==CURTYPE_BTREE ){ pCx->uc.pCursor = (BtCursor*) &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; sqlite3BtreeCursorZero(pCx->uc.pCursor); } } return pCx; } /* ** Try to convert a value into a numeric representation if we can ** do so without loss of information. In other words, if the string ** looks like a number, convert it into a number. If it does not ** look like a number, leave it alone. ** ** If the bTryForInt flag is true, then extra effort is made to give ** an integer representation. Strings that look like floating point ** values but which have no fractional component (example: '48.00') ** will have a MEM_Int representation when bTryForInt is true. ** ** If bTryForInt is false, then if the input string contains a decimal ** point or exponential notation, the result is only MEM_Real, even ** if there is an exact integer representation of the quantity. */ static void applyNumericAffinity(Mem *pRec, int bTryForInt){ double rValue; i64 iValue; u8 enc = pRec->enc; assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ pRec->u.i = iValue; pRec->flags |= MEM_Int; }else{ pRec->u.r = rValue; pRec->flags |= MEM_Real; if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); } } /* ** Processing is determine by the affinity parameter: ** ** SQLITE_AFF_INTEGER: ** SQLITE_AFF_REAL: ** SQLITE_AFF_NUMERIC: ** Try to convert pRec to an integer representation or a ** floating-point representation if an integer representation ** is not possible. Note that the integer representation is ** always preferred, even if the affinity is REAL, because ** an integer representation is more space efficient on disk. ** ** SQLITE_AFF_TEXT: ** Convert pRec to a text representation. ** ** SQLITE_AFF_BLOB: ** No-op. pRec is unchanged. */ static void applyAffinity( Mem *pRec, /* The value to apply affinity to */ char affinity, /* The affinity to be applied */ u8 enc /* Use this text encoding */ ){ if( affinity>=SQLITE_AFF_NUMERIC ){ assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL || affinity==SQLITE_AFF_NUMERIC ); if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ if( (pRec->flags & MEM_Real)==0 ){ if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); }else{ sqlite3VdbeIntegerAffinity(pRec); } } }else if( affinity==SQLITE_AFF_TEXT ){ /* Only attempt the conversion to TEXT if there is an integer or real ** representation (blob and NULL do not get converted) but no string ** representation. It would be harmless to repeat the conversion if ** there is already a string rep, but it is pointless to waste those ** CPU cycles. */ if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ if( (pRec->flags&(MEM_Real|MEM_Int)) ){ sqlite3VdbeMemStringify(pRec, enc, 1); } } pRec->flags &= ~(MEM_Real|MEM_Int); } } /* ** Try to convert the type of a function argument or a result column ** into a numeric representation. Use either INTEGER or REAL whichever ** is appropriate. But only do the conversion if it is possible without ** loss of information and return the revised type of the argument. */ int sqlite3_value_numeric_type(sqlite3_value *pVal){ int eType = sqlite3_value_type(pVal); if( eType==SQLITE_TEXT ){ Mem *pMem = (Mem*)pVal; applyNumericAffinity(pMem, 0); eType = sqlite3_value_type(pVal); } return eType; } /* ** Exported version of applyAffinity(). This one works on sqlite3_value*, ** not the internal Mem* type. */ void sqlite3ValueApplyAffinity( sqlite3_value *pVal, u8 affinity, u8 enc ){ applyAffinity((Mem *)pVal, affinity, enc); } /* ** pMem currently only holds a string type (or maybe a BLOB that we can ** interpret as a string if we want to). Compute its corresponding ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields ** accordingly. */ static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ return 0; } if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){ return MEM_Int; } return MEM_Real; } /* ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or ** none. ** ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. ** But it does set pMem->u.r and pMem->u.i appropriately. */ static u16 numericType(Mem *pMem){ if( pMem->flags & (MEM_Int|MEM_Real) ){ return pMem->flags & (MEM_Int|MEM_Real); } if( pMem->flags & (MEM_Str|MEM_Blob) ){ return computeNumericType(pMem); } return 0; } #ifdef SQLITE_DEBUG /* ** Write a nice string representation of the contents of cell pMem ** into buffer zBuf, length nBuf. */ void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ char *zCsr = zBuf; int f = pMem->flags; static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; if( f&MEM_Blob ){ int i; char c; if( f & MEM_Dyn ){ c = 'z'; assert( (f & (MEM_Static|MEM_Ephem))==0 ); }else if( f & MEM_Static ){ c = 't'; assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); }else if( f & MEM_Ephem ){ c = 'e'; assert( (f & (MEM_Static|MEM_Dyn))==0 ); }else{ c = 's'; } sqlite3_snprintf(100, zCsr, "%c", c); zCsr += sqlite3Strlen30(zCsr); sqlite3_snprintf(100, zCsr, "%d[", pMem->n); zCsr += sqlite3Strlen30(zCsr); for(i=0; i<16 && in; i++){ sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); zCsr += sqlite3Strlen30(zCsr); } for(i=0; i<16 && in; i++){ char z = pMem->z[i]; if( z<32 || z>126 ) *zCsr++ = '.'; else *zCsr++ = z; } sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); zCsr += sqlite3Strlen30(zCsr); if( f & MEM_Zero ){ sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); zCsr += sqlite3Strlen30(zCsr); } *zCsr = '\0'; }else if( f & MEM_Str ){ int j, k; zBuf[0] = ' '; if( f & MEM_Dyn ){ zBuf[1] = 'z'; assert( (f & (MEM_Static|MEM_Ephem))==0 ); }else if( f & MEM_Static ){ zBuf[1] = 't'; assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); }else if( f & MEM_Ephem ){ zBuf[1] = 'e'; assert( (f & (MEM_Static|MEM_Dyn))==0 ); }else{ zBuf[1] = 's'; } k = 2; sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); k += sqlite3Strlen30(&zBuf[k]); zBuf[k++] = '['; for(j=0; j<15 && jn; j++){ u8 c = pMem->z[j]; if( c>=0x20 && c<0x7f ){ zBuf[k++] = c; }else{ zBuf[k++] = '.'; } } zBuf[k++] = ']'; sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); k += sqlite3Strlen30(&zBuf[k]); zBuf[k++] = 0; } } #endif #ifdef SQLITE_DEBUG /* ** Print the value of a register for tracing purposes: */ static void memTracePrint(Mem *p){ if( p->flags & MEM_Undefined ){ printf(" undefined"); }else if( p->flags & MEM_Null ){ printf(" NULL"); }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ printf(" si:%lld", p->u.i); }else if( p->flags & MEM_Int ){ printf(" i:%lld", p->u.i); #ifndef SQLITE_OMIT_FLOATING_POINT }else if( p->flags & MEM_Real ){ printf(" r:%g", p->u.r); #endif }else if( p->flags & MEM_RowSet ){ printf(" (rowset)"); }else{ char zBuf[200]; sqlite3VdbeMemPrettyPrint(p, zBuf); printf(" %s", zBuf); } if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); } static void registerTrace(int iReg, Mem *p){ printf("REG[%d] = ", iReg); memTracePrint(p); printf("\n"); } #endif #ifdef SQLITE_DEBUG # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) #else # define REGISTER_TRACE(R,M) #endif #ifdef VDBE_PROFILE /* ** hwtime.h contains inline assembler code for implementing ** high-performance timing routines. */ #include "hwtime.h" #endif #ifndef NDEBUG /* ** This function is only called from within an assert() expression. It ** checks that the sqlite3.nTransaction variable is correctly set to ** the number of non-transaction savepoints currently in the ** linked list starting at sqlite3.pSavepoint. ** ** Usage: ** ** assert( checkSavepointCount(db) ); */ static int checkSavepointCount(sqlite3 *db){ int n = 0; Savepoint *p; for(p=db->pSavepoint; p; p=p->pNext) n++; assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); return 1; } #endif /* ** Return the register of pOp->p2 after first preparing it to be ** overwritten with an integer value. */ static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ sqlite3VdbeMemSetNull(pOut); pOut->flags = MEM_Int; return pOut; } static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ Mem *pOut; assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); pOut = &p->aMem[pOp->p2]; memAboutToChange(p, pOut); if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ return out2PrereleaseWithClear(pOut); }else{ pOut->flags = MEM_Int; return pOut; } } /* ** Execute as much of a VDBE program as we can. ** This is the core of sqlite3_step(). */ int sqlite3VdbeExec( Vdbe *p /* The VDBE */ ){ Op *aOp = p->aOp; /* Copy of p->aOp */ Op *pOp = aOp; /* Current operation */ #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) Op *pOrigOp; /* Value of pOp at the top of the loop */ #endif #ifdef SQLITE_DEBUG int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ #endif int rc = SQLITE_OK; /* Value to return */ sqlite3 *db = p->db; /* The database */ u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ u8 encoding = ENC(db); /* The database encoding */ int iCompare = 0; /* Result of last comparison */ unsigned nVmStep = 0; /* Number of virtual machine steps */ #ifndef SQLITE_OMIT_PROGRESS_CALLBACK unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ #endif Mem *aMem = p->aMem; /* Copy of p->aMem */ Mem *pIn1 = 0; /* 1st input operand */ Mem *pIn2 = 0; /* 2nd input operand */ Mem *pIn3 = 0; /* 3rd input operand */ Mem *pOut = 0; /* Output operand */ int *aPermute = 0; /* Permutation of columns for OP_Compare */ i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ #ifdef VDBE_PROFILE u64 start; /* CPU clock count at start of opcode */ #endif /*** INSERT STACK UNION HERE ***/ assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ sqlite3VdbeEnter(p); if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ goto no_mem; } assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); assert( p->bIsReader || p->readOnly!=0 ); p->rc = SQLITE_OK; p->iCurrentTime = 0; assert( p->explain==0 ); p->pResultSet = 0; db->busyHandler.nBusy = 0; if( db->u1.isInterrupted ) goto abort_due_to_interrupt; sqlite3VdbeIOTraceSql(p); #ifndef SQLITE_OMIT_PROGRESS_CALLBACK if( db->xProgress ){ u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; assert( 0 < db->nProgressOps ); nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); } #endif #ifdef SQLITE_DEBUG sqlite3BeginBenignMalloc(); if( p->pc==0 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 ){ int i; int once = 1; sqlite3VdbePrintSql(p); if( p->db->flags & SQLITE_VdbeListing ){ printf("VDBE Program Listing:\n"); for(i=0; inOp; i++){ sqlite3VdbePrintOp(stdout, i, &aOp[i]); } } if( p->db->flags & SQLITE_VdbeEQP ){ for(i=0; inOp; i++){ if( aOp[i].opcode==OP_Explain ){ if( once ) printf("VDBE Query Plan:\n"); printf("%s\n", aOp[i].p4.z); once = 0; } } } if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); } sqlite3EndBenignMalloc(); #endif for(pOp=&aOp[p->pc]; 1; pOp++){ /* Errors are detected by individual opcodes, with an immediate ** jumps to abort_due_to_error. */ assert( rc==SQLITE_OK ); assert( pOp>=aOp && pOp<&aOp[p->nOp]); #ifdef VDBE_PROFILE start = sqlite3Hwtime(); #endif nVmStep++; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; #endif /* Only allow tracing if SQLITE_DEBUG is defined. */ #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeTrace ){ sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); } #endif /* Check to see if we need to simulate an interrupt. This only happens ** if we have a special test build. */ #ifdef SQLITE_TEST if( sqlite3_interrupt_count>0 ){ sqlite3_interrupt_count--; if( sqlite3_interrupt_count==0 ){ sqlite3_interrupt(db); } } #endif /* Sanity checking on other operands */ #ifdef SQLITE_DEBUG { u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; if( (opProperty & OPFLG_IN1)!=0 ){ assert( pOp->p1>0 ); assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); assert( memIsValid(&aMem[pOp->p1]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); } if( (opProperty & OPFLG_IN2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); assert( memIsValid(&aMem[pOp->p2]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); } if( (opProperty & OPFLG_IN3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); assert( memIsValid(&aMem[pOp->p3]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); } if( (opProperty & OPFLG_OUT2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); memAboutToChange(p, &aMem[pOp->p2]); } if( (opProperty & OPFLG_OUT3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); memAboutToChange(p, &aMem[pOp->p3]); } } #endif #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) pOrigOp = pOp; #endif switch( pOp->opcode ){ /***************************************************************************** ** What follows is a massive switch statement where each case implements a ** separate instruction in the virtual machine. If we follow the usual ** indentation conventions, each case should be indented by 6 spaces. But ** that is a lot of wasted space on the left margin. So the code within ** the switch statement will break with convention and be flush-left. Another ** big comment (similar to this one) will mark the point in the code where ** we transition back to normal indentation. ** ** The formatting of each case is important. The makefile for SQLite ** generates two C files "opcodes.h" and "opcodes.c" by scanning this ** file looking for lines that begin with "case OP_". The opcodes.h files ** will be filled with #defines that give unique integer values to each ** opcode and the opcodes.c file is filled with an array of strings where ** each string is the symbolic name for the corresponding opcode. If the ** case statement is followed by a comment of the form "/# same as ... #/" ** that comment is used to determine the particular value of the opcode. ** ** Other keywords in the comment that follows each case are used to ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. ** Keywords include: in1, in2, in3, out2, out3. See ** the mkopcodeh.awk script for additional information. ** ** Documentation about VDBE opcodes is generated by scanning this file ** for lines of that contain "Opcode:". That line and all subsequent ** comment lines are used in the generation of the opcode.html documentation ** file. ** ** SUMMARY: ** ** Formatting is important to scripts that scan this file. ** Do not deviate from the formatting style currently in use. ** *****************************************************************************/ /* Opcode: Goto * P2 * * * ** ** An unconditional jump to address P2. ** The next instruction executed will be ** the one at index P2 from the beginning of ** the program. ** ** The P1 parameter is not actually used by this opcode. However, it ** is sometimes set to 1 instead of 0 as a hint to the command-line shell ** that this Goto is the bottom of a loop and that the lines from P2 down ** to the current line should be indented for EXPLAIN output. */ case OP_Goto: { /* jump */ jump_to_p2_and_check_for_interrupt: pOp = &aOp[pOp->p2 - 1]; /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon ** completion. Check to see if sqlite3_interrupt() has been called ** or if the progress callback needs to be invoked. ** ** This code uses unstructured "goto" statements and does not look clean. ** But that is not due to sloppy coding habits. The code is written this ** way for performance, to avoid having to run the interrupt and progress ** checks on every opcode. This helps sqlite3_step() to run about 1.5% ** faster according to "valgrind --tool=cachegrind" */ check_for_interrupt: if( db->u1.isInterrupted ) goto abort_due_to_interrupt; #ifndef SQLITE_OMIT_PROGRESS_CALLBACK /* Call the progress callback if it is configured and the required number ** of VDBE ops have been executed (either since this invocation of ** sqlite3VdbeExec() or since last time the progress callback was called). ** If the progress callback returns non-zero, exit the virtual machine with ** a return code SQLITE_ABORT. */ if( db->xProgress!=0 && nVmStep>=nProgressLimit ){ assert( db->nProgressOps!=0 ); nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); if( db->xProgress(db->pProgressArg) ){ rc = SQLITE_INTERRUPT; goto abort_due_to_error; } } #endif break; } /* Opcode: Gosub P1 P2 * * * ** ** Write the current address onto register P1 ** and then jump to address P2. */ case OP_Gosub: { /* jump */ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); memAboutToChange(p, pIn1); pIn1->flags = MEM_Int; pIn1->u.i = (int)(pOp-aOp); REGISTER_TRACE(pOp->p1, pIn1); /* Most jump operations do a goto to this spot in order to update ** the pOp pointer. */ jump_to_p2: pOp = &aOp[pOp->p2 - 1]; break; } /* Opcode: Return P1 * * * * ** ** Jump to the next instruction after the address in register P1. After ** the jump, register P1 becomes undefined. */ case OP_Return: { /* in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags==MEM_Int ); pOp = &aOp[pIn1->u.i]; pIn1->flags = MEM_Undefined; break; } /* Opcode: InitCoroutine P1 P2 P3 * * ** ** Set up register P1 so that it will Yield to the coroutine ** located at address P3. ** ** If P2!=0 then the coroutine implementation immediately follows ** this opcode. So jump over the coroutine implementation to ** address P2. ** ** See also: EndCoroutine */ case OP_InitCoroutine: { /* jump */ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); assert( pOp->p2>=0 && pOp->p2nOp ); assert( pOp->p3>=0 && pOp->p3nOp ); pOut = &aMem[pOp->p1]; assert( !VdbeMemDynamic(pOut) ); pOut->u.i = pOp->p3 - 1; pOut->flags = MEM_Int; if( pOp->p2 ) goto jump_to_p2; break; } /* Opcode: EndCoroutine P1 * * * * ** ** The instruction at the address in register P1 is a Yield. ** Jump to the P2 parameter of that Yield. ** After the jump, register P1 becomes undefined. ** ** See also: InitCoroutine */ case OP_EndCoroutine: { /* in1 */ VdbeOp *pCaller; pIn1 = &aMem[pOp->p1]; assert( pIn1->flags==MEM_Int ); assert( pIn1->u.i>=0 && pIn1->u.inOp ); pCaller = &aOp[pIn1->u.i]; assert( pCaller->opcode==OP_Yield ); assert( pCaller->p2>=0 && pCaller->p2nOp ); pOp = &aOp[pCaller->p2 - 1]; pIn1->flags = MEM_Undefined; break; } /* Opcode: Yield P1 P2 * * * ** ** Swap the program counter with the value in register P1. This ** has the effect of yielding to a coroutine. ** ** If the coroutine that is launched by this instruction ends with ** Yield or Return then continue to the next instruction. But if ** the coroutine launched by this instruction ends with ** EndCoroutine, then jump to P2 rather than continuing with the ** next instruction. ** ** See also: InitCoroutine */ case OP_Yield: { /* in1, jump */ int pcDest; pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); pIn1->flags = MEM_Int; pcDest = (int)pIn1->u.i; pIn1->u.i = (int)(pOp - aOp); REGISTER_TRACE(pOp->p1, pIn1); pOp = &aOp[pcDest]; break; } /* Opcode: HaltIfNull P1 P2 P3 P4 P5 ** Synopsis: if r[P3]=null halt ** ** Check the value in register P3. If it is NULL then Halt using ** parameter P1, P2, and P4 as if this were a Halt instruction. If the ** value in register P3 is not NULL, then this routine is a no-op. ** The P5 parameter should be 1. */ case OP_HaltIfNull: { /* in3 */ pIn3 = &aMem[pOp->p3]; if( (pIn3->flags & MEM_Null)==0 ) break; /* Fall through into OP_Halt */ } /* Opcode: Halt P1 P2 * P4 P5 ** ** Exit immediately. All open cursors, etc are closed ** automatically. ** ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). ** For errors, it can be some other value. If P1!=0 then P2 will determine ** whether or not to rollback the current transaction. Do not rollback ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, ** then back out all changes that have occurred during this execution of the ** VDBE, but do not rollback the transaction. ** ** If P4 is not null then it is an error message string. ** ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. ** ** 0: (no change) ** 1: NOT NULL contraint failed: P4 ** 2: UNIQUE constraint failed: P4 ** 3: CHECK constraint failed: P4 ** 4: FOREIGN KEY constraint failed: P4 ** ** If P5 is not zero and P4 is NULL, then everything after the ":" is ** omitted. ** ** There is an implied "Halt 0 0 0" instruction inserted at the very end of ** every program. So a jump past the last instruction of the program ** is the same as executing Halt. */ case OP_Halt: { VdbeFrame *pFrame; int pcx; pcx = (int)(pOp - aOp); if( pOp->p1==SQLITE_OK && p->pFrame ){ /* Halt the sub-program. Return control to the parent frame. */ pFrame = p->pFrame; p->pFrame = pFrame->pParent; p->nFrame--; sqlite3VdbeSetChanges(db, p->nChange); pcx = sqlite3VdbeFrameRestore(pFrame); lastRowid = db->lastRowid; if( pOp->p2==OE_Ignore ){ /* Instruction pcx is the OP_Program that invoked the sub-program ** currently being halted. If the p2 instruction of this OP_Halt ** instruction is set to OE_Ignore, then the sub-program is throwing ** an IGNORE exception. In this case jump to the address specified ** as the p2 of the calling OP_Program. */ pcx = p->aOp[pcx].p2-1; } aOp = p->aOp; aMem = p->aMem; pOp = &aOp[pcx]; break; } p->rc = pOp->p1; p->errorAction = (u8)pOp->p2; p->pc = pcx; assert( pOp->p5<=4 ); if( p->rc ){ if( pOp->p5 ){ static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", "FOREIGN KEY" }; testcase( pOp->p5==1 ); testcase( pOp->p5==2 ); testcase( pOp->p5==3 ); testcase( pOp->p5==4 ); sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); if( pOp->p4.z ){ p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); } }else{ sqlite3VdbeError(p, "%s", pOp->p4.z); } sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); } rc = sqlite3VdbeHalt(p); assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); if( rc==SQLITE_BUSY ){ p->rc = SQLITE_BUSY; }else{ assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; } goto vdbe_return; } /* Opcode: Integer P1 P2 * * * ** Synopsis: r[P2]=P1 ** ** The 32-bit integer value P1 is written into register P2. */ case OP_Integer: { /* out2 */ pOut = out2Prerelease(p, pOp); pOut->u.i = pOp->p1; break; } /* Opcode: Int64 * P2 * P4 * ** Synopsis: r[P2]=P4 ** ** P4 is a pointer to a 64-bit integer value. ** Write that value into register P2. */ case OP_Int64: { /* out2 */ pOut = out2Prerelease(p, pOp); assert( pOp->p4.pI64!=0 ); pOut->u.i = *pOp->p4.pI64; break; } #ifndef SQLITE_OMIT_FLOATING_POINT /* Opcode: Real * P2 * P4 * ** Synopsis: r[P2]=P4 ** ** P4 is a pointer to a 64-bit floating point value. ** Write that value into register P2. */ case OP_Real: { /* same as TK_FLOAT, out2 */ pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Real; assert( !sqlite3IsNaN(*pOp->p4.pReal) ); pOut->u.r = *pOp->p4.pReal; break; } #endif /* Opcode: String8 * P2 * P4 * ** Synopsis: r[P2]='P4' ** ** P4 points to a nul terminated UTF-8 string. This opcode is transformed ** into a String opcode before it is executed for the first time. During ** this transformation, the length of string P4 is computed and stored ** as the P1 parameter. */ case OP_String8: { /* same as TK_STRING, out2 */ assert( pOp->p4.z!=0 ); pOut = out2Prerelease(p, pOp); pOp->opcode = OP_String; pOp->p1 = sqlite3Strlen30(pOp->p4.z); #ifndef SQLITE_OMIT_UTF16 if( encoding!=SQLITE_UTF8 ){ rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); assert( VdbeMemDynamic(pOut)==0 ); pOut->szMalloc = 0; pOut->flags |= MEM_Static; if( pOp->p4type==P4_DYNAMIC ){ sqlite3DbFree(db, pOp->p4.z); } pOp->p4type = P4_DYNAMIC; pOp->p4.z = pOut->z; pOp->p1 = pOut->n; } testcase( rc==SQLITE_TOOBIG ); #endif if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } assert( rc==SQLITE_OK ); /* Fall through to the next case, OP_String */ } /* Opcode: String P1 P2 P3 P4 P5 ** Synopsis: r[P2]='P4' (len=P1) ** ** The string value P4 of length P1 (bytes) is stored in register P2. ** ** If P3 is not zero and the content of register P3 is equal to P5, then ** the datatype of the register P2 is converted to BLOB. The content is ** the same sequence of bytes, it is merely interpreted as a BLOB instead ** of a string, as if it had been CAST. In other words: ** ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) */ case OP_String: { /* out2 */ assert( pOp->p4.z!=0 ); pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Str|MEM_Static|MEM_Term; pOut->z = pOp->p4.z; pOut->n = pOp->p1; pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS if( pOp->p3>0 ){ assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); pIn3 = &aMem[pOp->p3]; assert( pIn3->flags & MEM_Int ); if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; } #endif break; } /* Opcode: Null P1 P2 P3 * * ** Synopsis: r[P2..P3]=NULL ** ** Write a NULL into registers P2. If P3 greater than P2, then also write ** NULL into register P3 and every register in between P2 and P3. If P3 ** is less than P2 (typically P3 is zero) then only register P2 is ** set to NULL. ** ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that ** NULL values will not compare equal even if SQLITE_NULLEQ is set on ** OP_Ne or OP_Eq. */ case OP_Null: { /* out2 */ int cnt; u16 nullFlag; pOut = out2Prerelease(p, pOp); cnt = pOp->p3-pOp->p2; assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; pOut->n = 0; while( cnt>0 ){ pOut++; memAboutToChange(p, pOut); sqlite3VdbeMemSetNull(pOut); pOut->flags = nullFlag; pOut->n = 0; cnt--; } break; } /* Opcode: SoftNull P1 * * * * ** Synopsis: r[P1]=NULL ** ** Set register P1 to have the value NULL as seen by the OP_MakeRecord ** instruction, but do not free any string or blob memory associated with ** the register, so that if the value was a string or blob that was ** previously copied using OP_SCopy, the copies will continue to be valid. */ case OP_SoftNull: { assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); pOut = &aMem[pOp->p1]; pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; break; } /* Opcode: Blob P1 P2 * P4 * ** Synopsis: r[P2]=P4 (len=P1) ** ** P4 points to a blob of data P1 bytes long. Store this ** blob in register P2. */ case OP_Blob: { /* out2 */ assert( pOp->p1 <= SQLITE_MAX_LENGTH ); pOut = out2Prerelease(p, pOp); sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Variable P1 P2 * P4 * ** Synopsis: r[P2]=parameter(P1,P4) ** ** Transfer the values of bound parameter P1 into register P2 ** ** If the parameter is named, then its name appears in P4. ** The P4 value is used by sqlite3_bind_parameter_name(). */ case OP_Variable: { /* out2 */ Mem *pVar; /* Value being transferred */ assert( pOp->p1>0 && pOp->p1<=p->nVar ); assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); pVar = &p->aVar[pOp->p1 - 1]; if( sqlite3VdbeMemTooBig(pVar) ){ goto too_big; } pOut = out2Prerelease(p, pOp); sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Move P1 P2 P3 * * ** Synopsis: r[P2@P3]=r[P1@P3] ** ** Move the P3 values in register P1..P1+P3-1 over into ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are ** left holding a NULL. It is an error for register ranges ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error ** for P3 to be less than 1. */ case OP_Move: { int n; /* Number of registers left to copy */ int p1; /* Register to copy from */ int p2; /* Register to copy to */ n = pOp->p3; p1 = pOp->p1; p2 = pOp->p2; assert( n>0 && p1>0 && p2>0 ); assert( p1+n<=p2 || p2+n<=p1 ); pIn1 = &aMem[p1]; pOut = &aMem[p2]; do{ assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); assert( memIsValid(pIn1) ); memAboutToChange(p, pOut); sqlite3VdbeMemMove(pOut, pIn1); #ifdef SQLITE_DEBUG if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrompScopyFrom += pOp->p2 - p1; } #endif Deephemeralize(pOut); REGISTER_TRACE(p2++, pOut); pIn1++; pOut++; }while( --n ); break; } /* Opcode: Copy P1 P2 P3 * * ** Synopsis: r[P2@P3+1]=r[P1@P3+1] ** ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. ** ** This instruction makes a deep copy of the value. A duplicate ** is made of any string or blob constant. See also OP_SCopy. */ case OP_Copy: { int n; n = pOp->p3; pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; assert( pOut!=pIn1 ); while( 1 ){ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); Deephemeralize(pOut); #ifdef SQLITE_DEBUG pOut->pScopyFrom = 0; #endif REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); if( (n--)==0 ) break; pOut++; pIn1++; } break; } /* Opcode: SCopy P1 P2 * * * ** Synopsis: r[P2]=r[P1] ** ** Make a shallow copy of register P1 into register P2. ** ** This instruction makes a shallow copy of the value. If the value ** is a string or blob, then the copy is only a pointer to the ** original and hence if the original changes so will the copy. ** Worse, if the original is deallocated, the copy becomes invalid. ** Thus the program must guarantee that the original will not change ** during the lifetime of the copy. Use OP_Copy to make a complete ** copy. */ case OP_SCopy: { /* out2 */ pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; assert( pOut!=pIn1 ); sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); #ifdef SQLITE_DEBUG if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; #endif break; } /* Opcode: IntCopy P1 P2 * * * ** Synopsis: r[P2]=r[P1] ** ** Transfer the integer value held in register P1 into register P2. ** ** This is an optimized version of SCopy that works only for integer ** values. */ case OP_IntCopy: { /* out2 */ pIn1 = &aMem[pOp->p1]; assert( (pIn1->flags & MEM_Int)!=0 ); pOut = &aMem[pOp->p2]; sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); break; } /* Opcode: ResultRow P1 P2 * * * ** Synopsis: output=r[P1@P2] ** ** The registers P1 through P1+P2-1 contain a single row of ** results. This opcode causes the sqlite3_step() call to terminate ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt ** structure to provide access to the r(P1)..r(P1+P2-1) values as ** the result row. */ case OP_ResultRow: { Mem *pMem; int i; assert( p->nResColumn==pOp->p2 ); assert( pOp->p1>0 ); assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); #ifndef SQLITE_OMIT_PROGRESS_CALLBACK /* Run the progress counter just before returning. */ if( db->xProgress!=0 && nVmStep>=nProgressLimit && db->xProgress(db->pProgressArg)!=0 ){ rc = SQLITE_INTERRUPT; goto abort_due_to_error; } #endif /* If this statement has violated immediate foreign key constraints, do ** not return the number of rows modified. And do not RELEASE the statement ** transaction. It needs to be rolled back. */ if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ assert( db->flags&SQLITE_CountRows ); assert( p->usesStmtJournal ); goto abort_due_to_error; } /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then ** DML statements invoke this opcode to return the number of rows ** modified to the user. This is the only way that a VM that ** opens a statement transaction may invoke this opcode. ** ** In case this is such a statement, close any statement transaction ** opened by this VM before returning control to the user. This is to ** ensure that statement-transactions are always nested, not overlapping. ** If the open statement-transaction is not closed here, then the user ** may step another VM that opens its own statement transaction. This ** may lead to overlapping statement transactions. ** ** The statement transaction is never a top-level transaction. Hence ** the RELEASE call below can never fail. */ assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); assert( rc==SQLITE_OK ); /* Invalidate all ephemeral cursor row caches */ p->cacheCtr = (p->cacheCtr + 2)|1; /* Make sure the results of the current row are \000 terminated ** and have an assigned type. The results are de-ephemeralized as ** a side effect. */ pMem = p->pResultSet = &aMem[pOp->p1]; for(i=0; ip2; i++){ assert( memIsValid(&pMem[i]) ); Deephemeralize(&pMem[i]); assert( (pMem[i].flags & MEM_Ephem)==0 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); sqlite3VdbeMemNulTerminate(&pMem[i]); REGISTER_TRACE(pOp->p1+i, &pMem[i]); } if( db->mallocFailed ) goto no_mem; if( db->mTrace & SQLITE_TRACE_ROW ){ db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); } /* Return SQLITE_ROW */ p->pc = (int)(pOp - aOp) + 1; rc = SQLITE_ROW; goto vdbe_return; } /* Opcode: Concat P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]+r[P1] ** ** Add the text in register P1 onto the end of the text in ** register P2 and store the result in register P3. ** If either the P1 or P2 text are NULL then store NULL in P3. ** ** P3 = P2 || P1 ** ** It is illegal for P1 and P3 to be the same register. Sometimes, ** if P3 is the same register as P2, the implementation is able ** to avoid a memcpy(). */ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ i64 nByte; pIn1 = &aMem[pOp->p1]; pIn2 = &aMem[pOp->p2]; pOut = &aMem[pOp->p3]; assert( pIn1!=pOut ); if( (pIn1->flags | pIn2->flags) & MEM_Null ){ sqlite3VdbeMemSetNull(pOut); break; } if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; Stringify(pIn1, encoding); Stringify(pIn2, encoding); nByte = pIn1->n + pIn2->n; if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ goto no_mem; } MemSetTypeFlag(pOut, MEM_Str); if( pOut!=pIn2 ){ memcpy(pOut->z, pIn2->z, pIn2->n); } memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); pOut->z[nByte]=0; pOut->z[nByte+1] = 0; pOut->flags |= MEM_Term; pOut->n = (int)nByte; pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Add P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]+r[P2] ** ** Add the value in register P1 to the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Multiply P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]*r[P2] ** ** ** Multiply the value in register P1 by the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Subtract P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]-r[P1] ** ** Subtract the value in register P1 from the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Divide P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]/r[P1] ** ** Divide the value in register P1 by the value in register P2 ** and store the result in register P3 (P3=P2/P1). If the value in ** register P1 is zero, then the result is NULL. If either input is ** NULL, the result is NULL. */ /* Opcode: Remainder P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]%r[P1] ** ** Compute the remainder after integer register P2 is divided by ** register P1 and store the result in register P3. ** If the value in register P1 is zero the result is NULL. ** If either operand is NULL, the result is NULL. */ case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ char bIntint; /* Started out as two integer operands */ u16 flags; /* Combined MEM_* flags from both inputs */ u16 type1; /* Numeric type of left operand */ u16 type2; /* Numeric type of right operand */ i64 iA; /* Integer value of left operand */ i64 iB; /* Integer value of right operand */ double rA; /* Real value of left operand */ double rB; /* Real value of right operand */ pIn1 = &aMem[pOp->p1]; type1 = numericType(pIn1); pIn2 = &aMem[pOp->p2]; type2 = numericType(pIn2); pOut = &aMem[pOp->p3]; flags = pIn1->flags | pIn2->flags; if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; if( (type1 & type2 & MEM_Int)!=0 ){ iA = pIn1->u.i; iB = pIn2->u.i; bIntint = 1; switch( pOp->opcode ){ case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; case OP_Divide: { if( iA==0 ) goto arithmetic_result_is_null; if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; iB /= iA; break; } default: { if( iA==0 ) goto arithmetic_result_is_null; if( iA==-1 ) iA = 1; iB %= iA; break; } } pOut->u.i = iB; MemSetTypeFlag(pOut, MEM_Int); }else{ bIntint = 0; fp_math: rA = sqlite3VdbeRealValue(pIn1); rB = sqlite3VdbeRealValue(pIn2); switch( pOp->opcode ){ case OP_Add: rB += rA; break; case OP_Subtract: rB -= rA; break; case OP_Multiply: rB *= rA; break; case OP_Divide: { /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ if( rA==(double)0 ) goto arithmetic_result_is_null; rB /= rA; break; } default: { iA = (i64)rA; iB = (i64)rB; if( iA==0 ) goto arithmetic_result_is_null; if( iA==-1 ) iA = 1; rB = (double)(iB % iA); break; } } #ifdef SQLITE_OMIT_FLOATING_POINT pOut->u.i = rB; MemSetTypeFlag(pOut, MEM_Int); #else if( sqlite3IsNaN(rB) ){ goto arithmetic_result_is_null; } pOut->u.r = rB; MemSetTypeFlag(pOut, MEM_Real); if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ sqlite3VdbeIntegerAffinity(pOut); } #endif } break; arithmetic_result_is_null: sqlite3VdbeMemSetNull(pOut); break; } /* Opcode: CollSeq P1 * * P4 ** ** P4 is a pointer to a CollSeq struct. If the next call to a user function ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will ** be returned. This is used by the built-in min(), max() and nullif() ** functions. ** ** If P1 is not zero, then it is a register that a subsequent min() or ** max() aggregate will set to 1 if the current row is not the minimum or ** maximum. The P1 register is initialized to 0 by this instruction. ** ** The interface used by the implementation of the aforementioned functions ** to retrieve the collation sequence set by this opcode is not available ** publicly. Only built-in functions have access to this feature. */ case OP_CollSeq: { assert( pOp->p4type==P4_COLLSEQ ); if( pOp->p1 ){ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); } break; } /* Opcode: Function0 P1 P2 P3 P4 P5 ** Synopsis: r[P3]=func(r[P2@P5]) ** ** Invoke a user function (P4 is a pointer to a FuncDef object that ** defines the function) with P5 arguments taken from register P2 and ** successors. The result of the function is stored in register P3. ** Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** See also: Function, AggStep, AggFinal */ /* Opcode: Function P1 P2 P3 P4 P5 ** Synopsis: r[P3]=func(r[P2@P5]) ** ** Invoke a user function (P4 is a pointer to an sqlite3_context object that ** contains a pointer to the function to be run) with P5 arguments taken ** from register P2 and successors. The result of the function is stored ** in register P3. Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** SQL functions are initially coded as OP_Function0 with P4 pointing ** to a FuncDef object. But on first evaluation, the P4 operand is ** automatically converted into an sqlite3_context object and the operation ** changed to this OP_Function opcode. In this way, the initialization of ** the sqlite3_context object occurs only once, rather than once for each ** evaluation of the function. ** ** See also: Function0, AggStep, AggFinal */ case OP_Function0: { int n; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCDEF ); n = pOp->p5; assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); assert( pOp->p3p2 || pOp->p3>=pOp->p2+n ); pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); if( pCtx==0 ) goto no_mem; pCtx->pOut = 0; pCtx->pFunc = pOp->p4.pFunc; pCtx->iOp = (int)(pOp - aOp); pCtx->pVdbe = p; pCtx->argc = n; pOp->p4type = P4_FUNCCTX; pOp->p4.pCtx = pCtx; pOp->opcode = OP_Function; /* Fall through into OP_Function */ } case OP_Function: { int i; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCCTX ); pCtx = pOp->p4.pCtx; /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relavant parts of the sqlite3_context object */ pOut = &aMem[pOp->p3]; if( pCtx->pOut != pOut ){ pCtx->pOut = pOut; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } memAboutToChange(p, pCtx->pOut); #ifdef SQLITE_DEBUG for(i=0; iargc; i++){ assert( memIsValid(pCtx->argv[i]) ); REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); } #endif MemSetTypeFlag(pCtx->pOut, MEM_Null); pCtx->fErrorOrAux = 0; db->lastRowid = lastRowid; (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ lastRowid = db->lastRowid; /* Remember rowid changes made by xSFunc */ /* If the function returned an error, throw an exception */ if( pCtx->fErrorOrAux ){ if( pCtx->isError ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); rc = pCtx->isError; } sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); if( rc ) goto abort_due_to_error; } /* Copy the result of the function into register P3 */ if( pOut->flags & (MEM_Str|MEM_Blob) ){ sqlite3VdbeChangeEncoding(pCtx->pOut, encoding); if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big; } REGISTER_TRACE(pOp->p3, pCtx->pOut); UPDATE_MAX_BLOBSIZE(pCtx->pOut); break; } /* Opcode: BitAnd P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]&r[P2] ** ** Take the bit-wise AND of the values in register P1 and P2 and ** store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: BitOr P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]|r[P2] ** ** Take the bit-wise OR of the values in register P1 and P2 and ** store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: ShiftLeft P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]<>r[P1] ** ** Shift the integer value in register P2 to the right by the ** number of bits specified by the integer in register P1. ** Store the result in register P3. ** If either input is NULL, the result is NULL. */ case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ i64 iA; u64 uA; i64 iB; u8 op; pIn1 = &aMem[pOp->p1]; pIn2 = &aMem[pOp->p2]; pOut = &aMem[pOp->p3]; if( (pIn1->flags | pIn2->flags) & MEM_Null ){ sqlite3VdbeMemSetNull(pOut); break; } iA = sqlite3VdbeIntValue(pIn2); iB = sqlite3VdbeIntValue(pIn1); op = pOp->opcode; if( op==OP_BitAnd ){ iA &= iB; }else if( op==OP_BitOr ){ iA |= iB; }else if( iB!=0 ){ assert( op==OP_ShiftRight || op==OP_ShiftLeft ); /* If shifting by a negative amount, shift in the other direction */ if( iB<0 ){ assert( OP_ShiftRight==OP_ShiftLeft+1 ); op = 2*OP_ShiftLeft + 1 - op; iB = iB>(-64) ? -iB : 64; } if( iB>=64 ){ iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; }else{ memcpy(&uA, &iA, sizeof(uA)); if( op==OP_ShiftLeft ){ uA <<= iB; }else{ uA >>= iB; /* Sign-extend on a right shift of a negative number */ if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); } memcpy(&iA, &uA, sizeof(iA)); } } pOut->u.i = iA; MemSetTypeFlag(pOut, MEM_Int); break; } /* Opcode: AddImm P1 P2 * * * ** Synopsis: r[P1]=r[P1]+P2 ** ** Add the constant P2 to the value in register P1. ** The result is always an integer. ** ** To force any register to be an integer, just add 0. */ case OP_AddImm: { /* in1 */ pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); sqlite3VdbeMemIntegerify(pIn1); pIn1->u.i += pOp->p2; break; } /* Opcode: MustBeInt P1 P2 * * * ** ** Force the value in register P1 to be an integer. If the value ** in P1 is not an integer and cannot be converted into an integer ** without data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. */ case OP_MustBeInt: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Int)==0 ){ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); if( (pIn1->flags & MEM_Int)==0 ){ if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ goto jump_to_p2; } } } MemSetTypeFlag(pIn1, MEM_Int); break; } #ifndef SQLITE_OMIT_FLOATING_POINT /* Opcode: RealAffinity P1 * * * * ** ** If register P1 holds an integer convert it to a real value. ** ** This opcode is used when extracting information from a column that ** has REAL affinity. Such column values may still be stored as ** integers, for space efficiency, but after extraction we want them ** to have only a real value. */ case OP_RealAffinity: { /* in1 */ pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Int ){ sqlite3VdbeMemRealify(pIn1); } break; } #endif #ifndef SQLITE_OMIT_CAST /* Opcode: Cast P1 P2 * * * ** Synopsis: affinity(r[P1]) ** ** Force the value in register P1 to be the type defined by P2. ** **
    **
  • TEXT **
  • BLOB **
  • NUMERIC **
  • INTEGER **
  • REAL **
** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_Cast: { /* in1 */ assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); testcase( pOp->p2==SQLITE_AFF_TEXT ); testcase( pOp->p2==SQLITE_AFF_BLOB ); testcase( pOp->p2==SQLITE_AFF_NUMERIC ); testcase( pOp->p2==SQLITE_AFF_INTEGER ); testcase( pOp->p2==SQLITE_AFF_REAL ); pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); rc = ExpandBlob(pIn1); sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); UPDATE_MAX_BLOBSIZE(pIn1); if( rc ) goto abort_due_to_error; break; } #endif /* SQLITE_OMIT_CAST */ /* Opcode: Eq P1 P2 P3 P4 P5 ** Synopsis: IF r[P3]==r[P1] ** ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then ** store the result of comparison in register P2. ** ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made ** to coerce both inputs according to this affinity before the ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric ** affinity is used. Note that the affinity conversions are stored ** back into the input registers P1 and P3. So this opcode can cause ** persistent changes to registers P1 and P3. ** ** Once any conversions have taken place, and neither value is NULL, ** the values are compared. If both values are blobs then memcmp() is ** used to determine the results of the comparison. If both values ** are text, then the appropriate collating function specified in ** P4 is used to do the comparison. If P4 is not specified then ** memcmp() is used to compare text string. If both values are ** numeric, then a numeric comparison is used. If the two values ** are of different types, then numbers are considered less than ** strings and strings are considered less than blobs. ** ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either ** true or false and is never NULL. If both operands are NULL then the result ** of comparison is true. If either operand is NULL then the result is false. ** If neither operand is NULL the result is the same as it would be if ** the SQLITE_NULLEQ flag were omitted from P5. ** ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the ** content of r[P2] is only changed if the new value is NULL or 0 (false). ** In other words, a prior r[P2] value will not be overwritten by 1 (true). */ /* Opcode: Ne P1 P2 P3 P4 P5 ** Synopsis: IF r[P3]!=r[P1] ** ** This works just like the Eq opcode except that the jump is taken if ** the operands in registers P1 and P3 are not equal. See the Eq opcode for ** additional information. ** ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the ** content of r[P2] is only changed if the new value is NULL or 1 (true). ** In other words, a prior r[P2] value will not be overwritten by 0 (false). */ /* Opcode: Lt P1 P2 P3 P4 P5 ** Synopsis: IF r[P3]r[P1] ** ** This works just like the Lt opcode except that the jump is taken if ** the content of register P3 is greater than the content of ** register P1. See the Lt opcode for additional information. */ /* Opcode: Ge P1 P2 P3 P4 P5 ** Synopsis: IF r[P3]>=r[P1] ** ** This works just like the Lt opcode except that the jump is taken if ** the content of register P3 is greater than or equal to the content of ** register P1. See the Lt opcode for additional information. */ case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ case OP_Ne: /* same as TK_NE, jump, in1, in3 */ case OP_Lt: /* same as TK_LT, jump, in1, in3 */ case OP_Le: /* same as TK_LE, jump, in1, in3 */ case OP_Gt: /* same as TK_GT, jump, in1, in3 */ case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ int res, res2; /* Result of the comparison of pIn1 against pIn3 */ char affinity; /* Affinity to use for comparison */ u16 flags1; /* Copy of initial value of pIn1->flags */ u16 flags3; /* Copy of initial value of pIn3->flags */ pIn1 = &aMem[pOp->p1]; pIn3 = &aMem[pOp->p3]; flags1 = pIn1->flags; flags3 = pIn3->flags; if( (flags1 | flags3)&MEM_Null ){ /* One or both operands are NULL */ if( pOp->p5 & SQLITE_NULLEQ ){ /* If SQLITE_NULLEQ is set (which will only happen if the operator is ** OP_Eq or OP_Ne) then take the jump or not depending on whether ** or not both operands are null. */ assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); assert( (flags1 & MEM_Cleared)==0 ); assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); if( (flags1&flags3&MEM_Null)!=0 && (flags3&MEM_Cleared)==0 ){ res = 0; /* Operands are equal */ }else{ res = 1; /* Operands are not equal */ } }else{ /* SQLITE_NULLEQ is clear and at least one operand is NULL, ** then the result is always NULL. ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. */ if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; iCompare = 1; /* Operands are not equal */ memAboutToChange(p, pOut); MemSetTypeFlag(pOut, MEM_Null); REGISTER_TRACE(pOp->p2, pOut); }else{ VdbeBranchTaken(2,3); if( pOp->p5 & SQLITE_JUMPIFNULL ){ goto jump_to_p2; } } break; } }else{ /* Neither operand is NULL. Do a comparison. */ affinity = pOp->p5 & SQLITE_AFF_MASK; if( affinity>=SQLITE_AFF_NUMERIC ){ if( (flags1 | flags3)&MEM_Str ){ if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn1,0); testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */ flags3 = pIn3->flags; } if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn3,0); } } /* Handle the common case of integer comparison here, as an ** optimization, to avoid a call to sqlite3MemCompare() */ if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } res = 0; goto compare_op; } }else if( affinity==SQLITE_AFF_TEXT ){ if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){ testcase( pIn1->flags & MEM_Int ); testcase( pIn1->flags & MEM_Real ); sqlite3VdbeMemStringify(pIn1, encoding, 1); testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); assert( pIn1!=pIn3 ); } if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){ testcase( pIn3->flags & MEM_Int ); testcase( pIn3->flags & MEM_Real ); sqlite3VdbeMemStringify(pIn3, encoding, 1); testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); } } assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); } compare_op: switch( pOp->opcode ){ case OP_Eq: res2 = res==0; break; case OP_Ne: res2 = res; break; case OP_Lt: res2 = res<0; break; case OP_Le: res2 = res<=0; break; case OP_Gt: res2 = res>0; break; default: res2 = res>=0; break; } /* Undo any changes made by applyAffinity() to the input registers. */ assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); pIn1->flags = flags1; assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); pIn3->flags = flags3; if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; iCompare = res; res2 = res2!=0; /* For this path res2 must be exactly 0 or 1 */ if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 ** and prevents OP_Ne from overwriting NULL with 0. This flag ** is only used in contexts where either: ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) ** Therefore it is not necessary to check the content of r[P2] for ** NULL. */ assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); assert( res2==0 || res2==1 ); testcase( res2==0 && pOp->opcode==OP_Eq ); testcase( res2==1 && pOp->opcode==OP_Eq ); testcase( res2==0 && pOp->opcode==OP_Ne ); testcase( res2==1 && pOp->opcode==OP_Ne ); if( (pOp->opcode==OP_Eq)==res2 ) break; } memAboutToChange(p, pOut); MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = res2; REGISTER_TRACE(pOp->p2, pOut); }else{ VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); if( res2 ){ goto jump_to_p2; } } break; } /* Opcode: ElseNotEq * P2 * * * ** ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator. ** If result of an OP_Eq comparison on the same two operands ** would have be NULL or false (0), then then jump to P2. ** If the result of an OP_Eq comparison on the two previous operands ** would have been true (1), then fall through. */ case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ assert( pOp>aOp ); assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt ); assert( pOp[-1].p5 & SQLITE_STOREP2 ); VdbeBranchTaken(iCompare!=0, 2); if( iCompare!=0 ) goto jump_to_p2; break; } /* Opcode: Permutation * * * P4 * ** ** Set the permutation used by the OP_Compare operator to be the array ** of integers in P4. ** ** The permutation is only valid until the next OP_Compare that has ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should ** occur immediately prior to the OP_Compare. ** ** The first integer in the P4 integer array is the length of the array ** and does not become part of the permutation. */ case OP_Permutation: { assert( pOp->p4type==P4_INTARRAY ); assert( pOp->p4.ai ); aPermute = pOp->p4.ai + 1; break; } /* Opcode: Compare P1 P2 P3 P4 P5 ** Synopsis: r[P1@P3] <-> r[P2@P3] ** ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of ** the comparison for use by the next OP_Jump instruct. ** ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is ** determined by the most recent OP_Permutation operator. If the ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential ** order. ** ** P4 is a KeyInfo structure that defines collating sequences and sort ** orders for the comparison. The permutation applies to registers ** only. The KeyInfo elements are used sequentially. ** ** The comparison is a sort comparison, so NULLs compare equal, ** NULLs are less than numbers, numbers are less than strings, ** and strings are less than blobs. */ case OP_Compare: { int n; int i; int p1; int p2; const KeyInfo *pKeyInfo; int idx; CollSeq *pColl; /* Collating sequence to use on this term */ int bRev; /* True for DESCENDING sort order */ if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; n = pOp->p3; pKeyInfo = pOp->p4.pKeyInfo; assert( n>0 ); assert( pKeyInfo!=0 ); p1 = pOp->p1; p2 = pOp->p2; #if SQLITE_DEBUG if( aPermute ){ int k, mx = 0; for(k=0; kmx ) mx = aPermute[k]; assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); }else{ assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); } #endif /* SQLITE_DEBUG */ for(i=0; inField ); pColl = pKeyInfo->aColl[i]; bRev = pKeyInfo->aSortOrder[i]; iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); if( iCompare ){ if( bRev ) iCompare = -iCompare; break; } } aPermute = 0; break; } /* Opcode: Jump P1 P2 P3 * * ** ** Jump to the instruction at address P1, P2, or P3 depending on whether ** in the most recent OP_Compare instruction the P1 vector was less than ** equal to, or greater than the P2 vector, respectively. */ case OP_Jump: { /* jump */ if( iCompare<0 ){ VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1]; }else if( iCompare==0 ){ VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1]; }else{ VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1]; } break; } /* Opcode: And P1 P2 P3 * * ** Synopsis: r[P3]=(r[P1] && r[P2]) ** ** Take the logical AND of the values in registers P1 and P2 and ** write the result into register P3. ** ** If either P1 or P2 is 0 (false) then the result is 0 even if ** the other input is NULL. A NULL and true or two NULLs give ** a NULL output. */ /* Opcode: Or P1 P2 P3 * * ** Synopsis: r[P3]=(r[P1] || r[P2]) ** ** Take the logical OR of the values in register P1 and P2 and ** store the answer in register P3. ** ** If either P1 or P2 is nonzero (true) then the result is 1 (true) ** even if the other input is NULL. A NULL and false or two NULLs ** give a NULL output. */ case OP_And: /* same as TK_AND, in1, in2, out3 */ case OP_Or: { /* same as TK_OR, in1, in2, out3 */ int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Null ){ v1 = 2; }else{ v1 = sqlite3VdbeIntValue(pIn1)!=0; } pIn2 = &aMem[pOp->p2]; if( pIn2->flags & MEM_Null ){ v2 = 2; }else{ v2 = sqlite3VdbeIntValue(pIn2)!=0; } if( pOp->opcode==OP_And ){ static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; v1 = and_logic[v1*3+v2]; }else{ static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; v1 = or_logic[v1*3+v2]; } pOut = &aMem[pOp->p3]; if( v1==2 ){ MemSetTypeFlag(pOut, MEM_Null); }else{ pOut->u.i = v1; MemSetTypeFlag(pOut, MEM_Int); } break; } /* Opcode: Not P1 P2 * * * ** Synopsis: r[P2]= !r[P1] ** ** Interpret the value in register P1 as a boolean value. Store the ** boolean complement in register P2. If the value in register P1 is ** NULL, then a NULL is stored in P2. */ case OP_Not: { /* same as TK_NOT, in1, out2 */ pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; sqlite3VdbeMemSetNull(pOut); if( (pIn1->flags & MEM_Null)==0 ){ pOut->flags = MEM_Int; pOut->u.i = !sqlite3VdbeIntValue(pIn1); } break; } /* Opcode: BitNot P1 P2 * * * ** Synopsis: r[P1]= ~r[P1] ** ** Interpret the content of register P1 as an integer. Store the ** ones-complement of the P1 value into register P2. If P1 holds ** a NULL then store a NULL in P2. */ case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; sqlite3VdbeMemSetNull(pOut); if( (pIn1->flags & MEM_Null)==0 ){ pOut->flags = MEM_Int; pOut->u.i = ~sqlite3VdbeIntValue(pIn1); } break; } /* Opcode: Once P1 P2 * * * ** ** If the P1 value is equal to the P1 value on the OP_Init opcode at ** instruction 0, then jump to P2. If the two P1 values differ, then ** set the P1 value on this opcode to equal the P1 value on the OP_Init ** and fall through. */ case OP_Once: { /* jump */ assert( p->aOp[0].opcode==OP_Init ); VdbeBranchTaken(p->aOp[0].p1==pOp->p1, 2); if( p->aOp[0].p1==pOp->p1 ){ goto jump_to_p2; }else{ pOp->p1 = p->aOp[0].p1; } break; } /* Opcode: If P1 P2 P3 * * ** ** Jump to P2 if the value in register P1 is true. The value ** is considered true if it is numeric and non-zero. If the value ** in P1 is NULL then take the jump if and only if P3 is non-zero. */ /* Opcode: IfNot P1 P2 P3 * * ** ** Jump to P2 if the value in register P1 is False. The value ** is considered false if it has a numeric value of zero. If the value ** in P1 is NULL then take the jump if and only if P3 is non-zero. */ case OP_If: /* jump, in1 */ case OP_IfNot: { /* jump, in1 */ int c; pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Null ){ c = pOp->p3; }else{ #ifdef SQLITE_OMIT_FLOATING_POINT c = sqlite3VdbeIntValue(pIn1)!=0; #else c = sqlite3VdbeRealValue(pIn1)!=0.0; #endif if( pOp->opcode==OP_IfNot ) c = !c; } VdbeBranchTaken(c!=0, 2); if( c ){ goto jump_to_p2; } break; } /* Opcode: IsNull P1 P2 * * * ** Synopsis: if r[P1]==NULL goto P2 ** ** Jump to P2 if the value in register P1 is NULL. */ case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); if( (pIn1->flags & MEM_Null)!=0 ){ goto jump_to_p2; } break; } /* Opcode: NotNull P1 P2 * * * ** Synopsis: if r[P1]!=NULL goto P2 ** ** Jump to P2 if the value in register P1 is not NULL. */ case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); if( (pIn1->flags & MEM_Null)==0 ){ goto jump_to_p2; } break; } /* Opcode: Column P1 P2 P3 P4 P5 ** Synopsis: r[P3]=PX ** ** Interpret the data that cursor P1 points to as a structure built using ** the MakeRecord instruction. (See the MakeRecord opcode for additional ** information about the format of the data.) Extract the P2-th column ** from this record. If there are less that (P2+1) ** values in the record, extract a NULL. ** ** The value extracted is stored in register P3. ** ** If the column contains fewer than P2 fields, then extract a NULL. Or, ** if the P4 argument is a P4_MEM use the value of the P4 argument as ** the result. ** ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, ** then the cache of the cursor is reset prior to extracting the column. ** The first OP_Column against a pseudo-table after the value of the content ** register has changed should have this bit set. ** ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when ** the result is guaranteed to only be used as the argument of a length() ** or typeof() function, respectively. The loading of large blobs can be ** skipped for length() and all content loading can be skipped for typeof(). */ case OP_Column: { int p2; /* column number to retrieve */ VdbeCursor *pC; /* The VDBE cursor */ BtCursor *pCrsr; /* The BTree cursor */ u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ int len; /* The length of the serialized data for the column */ int i; /* Loop counter */ Mem *pDest; /* Where to write the extracted value */ Mem sMem; /* For storing the record being decoded */ const u8 *zData; /* Part of the record being decoded */ const u8 *zHdr; /* Next unparsed byte of the header */ const u8 *zEndHdr; /* Pointer to first byte after the header */ u32 offset; /* Offset into the data */ u64 offset64; /* 64-bit offset */ u32 avail; /* Number of bytes of available data */ u32 t; /* A type code from the record header */ Mem *pReg; /* PseudoTable input register */ pC = p->apCsr[pOp->p1]; p2 = pOp->p2; /* If the cursor cache is stale, bring it up-to-date */ rc = sqlite3VdbeCursorMoveto(&pC, &p2); if( rc ) goto abort_due_to_error; assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pC!=0 ); assert( p2nField ); aOffset = pC->aOffset; assert( pC->eCurType!=CURTYPE_VTAB ); assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); assert( pC->eCurType!=CURTYPE_SORTER ); if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ if( pC->nullRow ){ if( pC->eCurType==CURTYPE_PSEUDO ){ assert( pC->uc.pseudoTableReg>0 ); pReg = &aMem[pC->uc.pseudoTableReg]; assert( pReg->flags & MEM_Blob ); assert( memIsValid(pReg) ); pC->payloadSize = pC->szRow = avail = pReg->n; pC->aRow = (u8*)pReg->z; }else{ sqlite3VdbeMemSetNull(pDest); goto op_column_out; } }else{ pCrsr = pC->uc.pCursor; assert( pC->eCurType==CURTYPE_BTREE ); assert( pCrsr ); assert( sqlite3BtreeCursorIsValid(pCrsr) ); pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &avail); assert( avail<=65536 ); /* Maximum page size is 64KiB */ if( pC->payloadSize <= (u32)avail ){ pC->szRow = pC->payloadSize; }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; }else{ pC->szRow = avail; } } pC->cacheStatus = p->cacheCtr; pC->iHdrOffset = getVarint32(pC->aRow, offset); pC->nHdrParsed = 0; aOffset[0] = offset; if( availaRow does not have to hold the entire row, but it does at least ** need to cover the header of the record. If pC->aRow does not contain ** the complete header, then set it to zero, forcing the header to be ** dynamically allocated. */ pC->aRow = 0; pC->szRow = 0; /* Make sure a corrupt database has not given us an oversize header. ** Do this now to avoid an oversize memory allocation. ** ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte ** types use so much data space that there can only be 4096 and 32 of ** them, respectively. So the maximum header length results from a ** 3-byte type for each of the maximum of 32768 columns plus three ** extra bytes for the header length itself. 32768*3 + 3 = 98307. */ if( offset > 98307 || offset > pC->payloadSize ){ rc = SQLITE_CORRUPT_BKPT; goto abort_due_to_error; } }else if( offset>0 ){ /*OPTIMIZATION-IF-TRUE*/ /* The following goto is an optimization. It can be omitted and ** everything will still work. But OP_Column is measurably faster ** by skipping the subsequent conditional, which is always true. */ zData = pC->aRow; assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ goto op_column_read_header; } } /* Make sure at least the first p2+1 entries of the header have been ** parsed and valid information is in aOffset[] and pC->aType[]. */ if( pC->nHdrParsed<=p2 ){ /* If there is more header available for parsing in the record, try ** to extract additional fields up through the p2+1-th field */ if( pC->iHdrOffsetaRow==0 ){ memset(&sMem, 0, sizeof(sMem)); rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem); if( rc!=SQLITE_OK ) goto abort_due_to_error; zData = (u8*)sMem.z; }else{ zData = pC->aRow; } /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ op_column_read_header: i = pC->nHdrParsed; offset64 = aOffset[i]; zHdr = zData + pC->iHdrOffset; zEndHdr = zData + aOffset[0]; do{ if( (t = zHdr[0])<0x80 ){ zHdr++; offset64 += sqlite3VdbeOneByteSerialTypeLen(t); }else{ zHdr += sqlite3GetVarint32(zHdr, &t); offset64 += sqlite3VdbeSerialTypeLen(t); } pC->aType[i++] = t; aOffset[i] = (u32)(offset64 & 0xffffffff); }while( i<=p2 && zHdr=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) || (offset64 > pC->payloadSize) ){ if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); rc = SQLITE_CORRUPT_BKPT; goto abort_due_to_error; } pC->nHdrParsed = i; pC->iHdrOffset = (u32)(zHdr - zData); if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); }else{ t = 0; } /* If after trying to extract new entries from the header, nHdrParsed is ** still not up to p2, that means that the record has fewer than p2 ** columns. So the result will be either the default value or a NULL. */ if( pC->nHdrParsed<=p2 ){ if( pOp->p4type==P4_MEM ){ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); }else{ sqlite3VdbeMemSetNull(pDest); } goto op_column_out; } }else{ t = pC->aType[p2]; } /* Extract the content for the p2+1-th column. Control can only ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are ** all valid. */ assert( p2nHdrParsed ); assert( rc==SQLITE_OK ); assert( sqlite3VdbeCheckMemInvariants(pDest) ); if( VdbeMemDynamic(pDest) ){ sqlite3VdbeMemSetNull(pDest); } assert( t==pC->aType[p2] ); if( pC->szRow>=aOffset[p2+1] ){ /* This is the common case where the desired content fits on the original ** page - where the content is not on an overflow page */ zData = pC->aRow + aOffset[p2]; if( t<12 ){ sqlite3VdbeSerialGet(zData, t, pDest); }else{ /* If the column value is a string, we need a persistent value, not ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). */ static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; pDest->n = len = (t-12)/2; pDest->enc = encoding; if( pDest->szMalloc < len+2 ){ pDest->flags = MEM_Null; if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; }else{ pDest->z = pDest->zMalloc; } memcpy(pDest->z, zData, len); pDest->z[len] = 0; pDest->z[len+1] = 0; pDest->flags = aFlag[t&1]; } }else{ pDest->enc = encoding; /* This branch happens only when content is on overflow pages */ if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) || (len = sqlite3VdbeSerialTypeLen(t))==0 ){ /* Content is irrelevant for ** 1. the typeof() function, ** 2. the length(X) function if X is a blob, and ** 3. if the content length is zero. ** So we might as well use bogus content rather than reading ** content from disk. */ static u8 aZero[8]; /* This is the bogus content */ sqlite3VdbeSerialGet(aZero, t, pDest); }else{ rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); if( rc!=SQLITE_OK ) goto abort_due_to_error; sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); pDest->flags &= ~MEM_Ephem; } } op_column_out: UPDATE_MAX_BLOBSIZE(pDest); REGISTER_TRACE(pOp->p3, pDest); break; } /* Opcode: Affinity P1 P2 * P4 * ** Synopsis: affinity(r[P1@P2]) ** ** Apply affinities to a range of P2 registers starting with P1. ** ** P4 is a string that is P2 characters long. The nth character of the ** string indicates the column affinity that should be used for the nth ** memory cell in the range. */ case OP_Affinity: { const char *zAffinity; /* The affinity to be applied */ char cAff; /* A single character of affinity */ zAffinity = pOp->p4.z; assert( zAffinity!=0 ); assert( zAffinity[pOp->p2]==0 ); pIn1 = &aMem[pOp->p1]; while( (cAff = *(zAffinity++))!=0 ){ assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); assert( memIsValid(pIn1) ); applyAffinity(pIn1, cAff, encoding); pIn1++; } break; } /* Opcode: MakeRecord P1 P2 P3 P4 * ** Synopsis: r[P3]=mkrec(r[P1@P2]) ** ** Convert P2 registers beginning with P1 into the [record format] ** use as a data record in a database table or as a key ** in an index. The OP_Column opcode can decode the record later. ** ** P4 may be a string that is P2 characters long. The nth character of the ** string indicates the column affinity that should be used for the nth ** field of the index key. ** ** The mapping from character to affinity is given by the SQLITE_AFF_ ** macros defined in sqliteInt.h. ** ** If P4 is NULL then all index fields have the affinity BLOB. */ case OP_MakeRecord: { u8 *zNewRecord; /* A buffer to hold the data for the new record */ Mem *pRec; /* The new record */ u64 nData; /* Number of bytes of data space */ int nHdr; /* Number of bytes of header space */ i64 nByte; /* Data space required for this record */ i64 nZero; /* Number of zero bytes at the end of the record */ int nVarint; /* Number of bytes in a varint */ u32 serial_type; /* Type field */ Mem *pData0; /* First field to be combined into the record */ Mem *pLast; /* Last field of the record */ int nField; /* Number of fields in the record */ char *zAffinity; /* The affinity string for the record */ int file_format; /* File format to use for encoding */ int i; /* Space used in zNewRecord[] header */ int j; /* Space used in zNewRecord[] content */ u32 len; /* Length of a field */ /* Assuming the record contains N fields, the record format looks ** like this: ** ** ------------------------------------------------------------------------ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | ** ------------------------------------------------------------------------ ** ** Data(0) is taken from register P1. Data(1) comes from register P1+1 ** and so forth. ** ** Each type field is a varint representing the serial type of the ** corresponding data element (see sqlite3VdbeSerialType()). The ** hdr-size field is also a varint which is the offset from the beginning ** of the record to data0. */ nData = 0; /* Number of bytes of data space */ nHdr = 0; /* Number of bytes of header space */ nZero = 0; /* Number of zero bytes at the end of the record */ nField = pOp->p1; zAffinity = pOp->p4.z; assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); pData0 = &aMem[nField]; nField = pOp->p2; pLast = &pData0[nField-1]; file_format = p->minWriteFileFormat; /* Identify the output register */ assert( pOp->p3p1 || pOp->p3>=pOp->p1+pOp->p2 ); pOut = &aMem[pOp->p3]; memAboutToChange(p, pOut); /* Apply the requested affinity to all inputs */ assert( pData0<=pLast ); if( zAffinity ){ pRec = pData0; do{ applyAffinity(pRec++, *(zAffinity++), encoding); assert( zAffinity[0]==0 || pRec<=pLast ); }while( zAffinity[0] ); } /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. */ pRec = pLast; do{ assert( memIsValid(pRec) ); pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len); if( pRec->flags & MEM_Zero ){ if( nData ){ if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; }else{ nZero += pRec->u.nZero; len -= pRec->u.nZero; } } nData += len; testcase( serial_type==127 ); testcase( serial_type==128 ); nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); if( pRec==pData0 ) break; pRec--; }while(1); /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint ** which determines the total number of bytes in the header. The varint ** value is the size of the header in bytes including the size varint ** itself. */ testcase( nHdr==126 ); testcase( nHdr==127 ); if( nHdr<=126 ){ /* The common case */ nHdr += 1; }else{ /* Rare case of a really large header */ nVarint = sqlite3VarintLen(nHdr); nHdr += nVarint; if( nVarintdb->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } /* Make sure the output register has a buffer large enough to store ** the new record. The output register (pOp->p3) is not allowed to ** be one of the input registers (because the following call to ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). */ if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ goto no_mem; } zNewRecord = (u8 *)pOut->z; /* Write the record */ i = putVarint32(zNewRecord, nHdr); j = nHdr; assert( pData0<=pLast ); pRec = pData0; do{ serial_type = pRec->uTemp; /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more ** additional varints, one per column. */ i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ /* EVIDENCE-OF: R-64536-51728 The values for each column in the record ** immediately follow the header. */ j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ }while( (++pRec)<=pLast ); assert( i==nHdr ); assert( j==nByte ); assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); pOut->n = (int)nByte; pOut->flags = MEM_Blob; if( nZero ){ pOut->u.nZero = nZero; pOut->flags |= MEM_Zero; } pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ REGISTER_TRACE(pOp->p3, pOut); UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Count P1 P2 * * * ** Synopsis: r[P2]=count() ** ** Store the number of entries (an integer value) in the table or index ** opened by cursor P1 in register P2 */ #ifndef SQLITE_OMIT_BTREECOUNT case OP_Count: { /* out2 */ i64 nEntry; BtCursor *pCrsr; assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); pCrsr = p->apCsr[pOp->p1]->uc.pCursor; assert( pCrsr ); nEntry = 0; /* Not needed. Only used to silence a warning. */ rc = sqlite3BtreeCount(pCrsr, &nEntry); if( rc ) goto abort_due_to_error; pOut = out2Prerelease(p, pOp); pOut->u.i = nEntry; break; } #endif /* Opcode: Savepoint P1 * * P4 * ** ** Open, release or rollback the savepoint named by parameter P4, depending ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. */ case OP_Savepoint: { int p1; /* Value of P1 operand */ char *zName; /* Name of savepoint */ int nName; Savepoint *pNew; Savepoint *pSavepoint; Savepoint *pTmp; int iSavepoint; int ii; p1 = pOp->p1; zName = pOp->p4.z; /* Assert that the p1 parameter is valid. Also that if there is no open ** transaction, then there cannot be any savepoints. */ assert( db->pSavepoint==0 || db->autoCommit==0 ); assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); assert( db->pSavepoint || db->isTransactionSavepoint==0 ); assert( checkSavepointCount(db) ); assert( p->bIsReader ); if( p1==SAVEPOINT_BEGIN ){ if( db->nVdbeWrite>0 ){ /* A new savepoint cannot be created if there are active write ** statements (i.e. open read/write incremental blob handles). */ sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); rc = SQLITE_BUSY; }else{ nName = sqlite3Strlen30(zName); #ifndef SQLITE_OMIT_VIRTUALTABLE /* This call is Ok even if this savepoint is actually a transaction ** savepoint (and therefore should not prompt xSavepoint()) callbacks. ** If this is a transaction savepoint being opened, it is guaranteed ** that the db->aVTrans[] array is empty. */ assert( db->autoCommit==0 || db->nVTrans==0 ); rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, db->nStatement+db->nSavepoint); if( rc!=SQLITE_OK ) goto abort_due_to_error; #endif /* Create a new savepoint structure. */ pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); if( pNew ){ pNew->zName = (char *)&pNew[1]; memcpy(pNew->zName, zName, nName+1); /* If there is no open transaction, then mark this as a special ** "transaction savepoint". */ if( db->autoCommit ){ db->autoCommit = 0; db->isTransactionSavepoint = 1; }else{ db->nSavepoint++; } /* Link the new savepoint into the database handle's list. */ pNew->pNext = db->pSavepoint; db->pSavepoint = pNew; pNew->nDeferredCons = db->nDeferredCons; pNew->nDeferredImmCons = db->nDeferredImmCons; } } }else{ iSavepoint = 0; /* Find the named savepoint. If there is no such savepoint, then an ** an error is returned to the user. */ for( pSavepoint = db->pSavepoint; pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); pSavepoint = pSavepoint->pNext ){ iSavepoint++; } if( !pSavepoint ){ sqlite3VdbeError(p, "no such savepoint: %s", zName); rc = SQLITE_ERROR; }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ /* It is not possible to release (commit) a savepoint if there are ** active write statements. */ sqlite3VdbeError(p, "cannot release savepoint - " "SQL statements in progress"); rc = SQLITE_BUSY; }else{ /* Determine whether or not this is a transaction savepoint. If so, ** and this is a RELEASE command, then the current transaction ** is committed. */ int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; if( isTransaction && p1==SAVEPOINT_RELEASE ){ if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ goto vdbe_return; } db->autoCommit = 1; if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ p->pc = (int)(pOp - aOp); db->autoCommit = 0; p->rc = rc = SQLITE_BUSY; goto vdbe_return; } db->isTransactionSavepoint = 0; rc = p->rc; }else{ int isSchemaChange; iSavepoint = db->nSavepoint - iSavepoint - 1; if( p1==SAVEPOINT_ROLLBACK ){ isSchemaChange = (db->flags & SQLITE_InternChanges)!=0; for(ii=0; iinDb; ii++){ rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT_ROLLBACK, isSchemaChange==0); if( rc!=SQLITE_OK ) goto abort_due_to_error; } }else{ isSchemaChange = 0; } for(ii=0; iinDb; ii++){ rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } } if( isSchemaChange ){ sqlite3ExpirePreparedStatements(db); sqlite3ResetAllSchemasOfConnection(db); db->flags = (db->flags | SQLITE_InternChanges); } } /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all ** savepoints nested inside of the savepoint being operated on. */ while( db->pSavepoint!=pSavepoint ){ pTmp = db->pSavepoint; db->pSavepoint = pTmp->pNext; sqlite3DbFree(db, pTmp); db->nSavepoint--; } /* If it is a RELEASE, then destroy the savepoint being operated on ** too. If it is a ROLLBACK TO, then set the number of deferred ** constraint violations present in the database to the value stored ** when the savepoint was created. */ if( p1==SAVEPOINT_RELEASE ){ assert( pSavepoint==db->pSavepoint ); db->pSavepoint = pSavepoint->pNext; sqlite3DbFree(db, pSavepoint); if( !isTransaction ){ db->nSavepoint--; } }else{ db->nDeferredCons = pSavepoint->nDeferredCons; db->nDeferredImmCons = pSavepoint->nDeferredImmCons; } if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ rc = sqlite3VtabSavepoint(db, p1, iSavepoint); if( rc!=SQLITE_OK ) goto abort_due_to_error; } } } if( rc ) goto abort_due_to_error; break; } /* Opcode: AutoCommit P1 P2 * * * ** ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll ** back any currently active btree transactions. If there are any active ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if ** there are active writing VMs or active VMs that use shared cache. ** ** This instruction causes the VM to halt. */ case OP_AutoCommit: { int desiredAutoCommit; int iRollback; desiredAutoCommit = pOp->p1; iRollback = pOp->p2; assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); assert( desiredAutoCommit==1 || iRollback==0 ); assert( db->nVdbeActive>0 ); /* At least this one VM is active */ assert( p->bIsReader ); if( desiredAutoCommit!=db->autoCommit ){ if( iRollback ){ assert( desiredAutoCommit==1 ); sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); db->autoCommit = 1; }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ /* If this instruction implements a COMMIT and other VMs are writing ** return an error indicating that the other VMs must complete first. */ sqlite3VdbeError(p, "cannot commit transaction - " "SQL statements in progress"); rc = SQLITE_BUSY; goto abort_due_to_error; }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ goto vdbe_return; }else{ db->autoCommit = (u8)desiredAutoCommit; } if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ p->pc = (int)(pOp - aOp); db->autoCommit = (u8)(1-desiredAutoCommit); p->rc = rc = SQLITE_BUSY; goto vdbe_return; } assert( db->nStatement==0 ); sqlite3CloseSavepoints(db); if( p->rc==SQLITE_OK ){ rc = SQLITE_DONE; }else{ rc = SQLITE_ERROR; } goto vdbe_return; }else{ sqlite3VdbeError(p, (!desiredAutoCommit)?"cannot start a transaction within a transaction":( (iRollback)?"cannot rollback - no transaction is active": "cannot commit - no transaction is active")); rc = SQLITE_ERROR; goto abort_due_to_error; } break; } /* Opcode: Transaction P1 P2 P3 P4 P5 ** ** Begin a transaction on database P1 if a transaction is not already ** active. ** If P2 is non-zero, then a write-transaction is started, or if a ** read-transaction is already active, it is upgraded to a write-transaction. ** If P2 is zero, then a read-transaction is started. ** ** P1 is the index of the database file on which the transaction is ** started. Index 0 is the main database file and index 1 is the ** file used for temporary tables. Indices of 2 or more are used for ** attached databases. ** ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is ** true (this flag is set if the Vdbe may modify more than one row and may ** throw an ABORT exception), a statement transaction may also be opened. ** More specifically, a statement transaction is opened iff the database ** connection is currently not in autocommit mode, or if there are other ** active statements. A statement transaction allows the changes made by this ** VDBE to be rolled back after an error without having to roll back the ** entire transaction. If no error is encountered, the statement transaction ** will automatically commit when the VDBE halts. ** ** If P5!=0 then this opcode also checks the schema cookie against P3 ** and the schema generation counter against P4. ** The cookie changes its value whenever the database schema changes. ** This operation is used to detect when that the cookie has changed ** and that the current process needs to reread the schema. If the schema ** cookie in P3 differs from the schema cookie in the database header or ** if the schema generation counter in P4 differs from the current ** generation counter, then an SQLITE_SCHEMA error is raised and execution ** halts. The sqlite3_step() wrapper function might then reprepare the ** statement and rerun it from the beginning. */ case OP_Transaction: { Btree *pBt; int iMeta; int iGen; assert( p->bIsReader ); assert( p->readOnly==0 || pOp->p2==0 ); assert( pOp->p1>=0 && pOp->p1nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ rc = SQLITE_READONLY; goto abort_due_to_error; } pBt = db->aDb[pOp->p1].pBt; if( pBt ){ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); testcase( rc==SQLITE_BUSY_SNAPSHOT ); testcase( rc==SQLITE_BUSY_RECOVERY ); if( rc!=SQLITE_OK ){ if( (rc&0xff)==SQLITE_BUSY ){ p->pc = (int)(pOp - aOp); p->rc = rc; goto vdbe_return; } goto abort_due_to_error; } if( pOp->p2 && p->usesStmtJournal && (db->autoCommit==0 || db->nVdbeRead>1) ){ assert( sqlite3BtreeIsInTrans(pBt) ); if( p->iStatement==0 ){ assert( db->nStatement>=0 && db->nSavepoint>=0 ); db->nStatement++; p->iStatement = db->nSavepoint + db->nStatement; } rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); } /* Store the current value of the database handles deferred constraint ** counter. If the statement transaction needs to be rolled back, ** the value of this counter needs to be restored too. */ p->nStmtDefCons = db->nDeferredCons; p->nStmtDefImmCons = db->nDeferredImmCons; } /* Gather the schema version number for checking: ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema ** version is checked to ensure that the schema has not changed since the ** SQL statement was prepared. */ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); iGen = db->aDb[pOp->p1].pSchema->iGeneration; }else{ iGen = iMeta = 0; } assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); /* If the schema-cookie from the database file matches the cookie ** stored with the in-memory representation of the schema, do ** not reload the schema from the database file. ** ** If virtual-tables are in use, this is not just an optimization. ** Often, v-tables store their data in other SQLite tables, which ** are queried from within xNext() and other v-table methods using ** prepared queries. If such a query is out-of-date, we do not want to ** discard the database schema, as the user code implementing the ** v-table would have to be ready for the sqlite3_vtab structure itself ** to be invalidated whenever sqlite3_step() is called from within ** a v-table method. */ if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ sqlite3ResetOneSchema(db, pOp->p1); } p->expired = 1; rc = SQLITE_SCHEMA; } if( rc ) goto abort_due_to_error; break; } /* Opcode: ReadCookie P1 P2 P3 * * ** ** Read cookie number P3 from database P1 and write it into register P2. ** P3==1 is the schema version. P3==2 is the database format. ** P3==3 is the recommended pager cache size, and so forth. P1==0 is ** the main database file and P1==1 is the database file used to store ** temporary tables. ** ** There must be a read-lock on the database (either a transaction ** must be started or there must be an open cursor) before ** executing this instruction. */ case OP_ReadCookie: { /* out2 */ int iMeta; int iDb; int iCookie; assert( p->bIsReader ); iDb = pOp->p1; iCookie = pOp->p3; assert( pOp->p3=0 && iDbnDb ); assert( db->aDb[iDb].pBt!=0 ); assert( DbMaskTest(p->btreeMask, iDb) ); sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); pOut = out2Prerelease(p, pOp); pOut->u.i = iMeta; break; } /* Opcode: SetCookie P1 P2 P3 * * ** ** Write the integer value P3 into cookie number P2 of database P1. ** P2==1 is the schema version. P2==2 is the database format. ** P2==3 is the recommended pager cache ** size, and so forth. P1==0 is the main database file and P1==1 is the ** database file used to store temporary tables. ** ** A transaction must be started before executing this opcode. */ case OP_SetCookie: { Db *pDb; assert( pOp->p2p1>=0 && pOp->p1nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pDb = &db->aDb[pOp->p1]; assert( pDb->pBt!=0 ); assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); /* See note about index shifting on OP_ReadCookie */ rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); if( pOp->p2==BTREE_SCHEMA_VERSION ){ /* When the schema cookie changes, record the new cookie internally */ pDb->pSchema->schema_cookie = pOp->p3; db->flags |= SQLITE_InternChanges; }else if( pOp->p2==BTREE_FILE_FORMAT ){ /* Record changes in the file format */ pDb->pSchema->file_format = pOp->p3; } if( pOp->p1==1 ){ /* Invalidate all prepared statements whenever the TEMP database ** schema is changed. Ticket #1644 */ sqlite3ExpirePreparedStatements(db); p->expired = 0; } if( rc ) goto abort_due_to_error; break; } /* Opcode: OpenRead P1 P2 P3 P4 P5 ** Synopsis: root=P2 iDb=P3 ** ** Open a read-only cursor for the database table whose root page is ** P2 in a database file. The database file is determined by P3. ** P3==0 means the main database, P3==1 means the database used for ** temporary tables, and P3>1 means used the corresponding attached ** database. Give the new cursor an identifier of P1. The P1 ** values need not be contiguous but all P1 values should be small integers. ** It is an error for P1 to be negative. ** ** If P5!=0 then use the content of register P2 as the root page, not ** the value of P2 itself. ** ** There will be a read lock on the database whenever there is an ** open cursor. If the database was unlocked prior to this instruction ** then a read lock is acquired as part of this instruction. A read ** lock allows other processes to read the database but prohibits ** any other process from modifying the database. The read lock is ** released when all cursors are closed. If this instruction attempts ** to get a read lock but fails, the script terminates with an ** SQLITE_BUSY error code. ** ** The P4 value may be either an integer (P4_INT32) or a pointer to ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo ** structure, then said structure defines the content and collating ** sequence of the index being opened. Otherwise, if P4 is an integer ** value, it is set to the number of columns in the table. ** ** See also: OpenWrite, ReopenIdx */ /* Opcode: ReopenIdx P1 P2 P3 P4 P5 ** Synopsis: root=P2 iDb=P3 ** ** The ReopenIdx opcode works exactly like ReadOpen except that it first ** checks to see if the cursor on P1 is already open with a root page ** number of P2 and if it is this opcode becomes a no-op. In other words, ** if the cursor is already open, do not reopen it. ** ** The ReopenIdx opcode may only be used with P5==0 and with P4 being ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as ** every other ReopenIdx or OpenRead for the same cursor number. ** ** See the OpenRead opcode documentation for additional information. */ /* Opcode: OpenWrite P1 P2 P3 P4 P5 ** Synopsis: root=P2 iDb=P3 ** ** Open a read/write cursor named P1 on the table or index whose root ** page is P2. Or if P5!=0 use the content of register P2 to find the ** root page. ** ** The P4 value may be either an integer (P4_INT32) or a pointer to ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo ** structure, then said structure defines the content and collating ** sequence of the index being opened. Otherwise, if P4 is an integer ** value, it is set to the number of columns in the table, or to the ** largest index of any column of the table that is actually used. ** ** This instruction works just like OpenRead except that it opens the cursor ** in read/write mode. For a given table, there can be one or more read-only ** cursors or a single read/write cursor but not both. ** ** See also OpenRead. */ case OP_ReopenIdx: { int nField; KeyInfo *pKeyInfo; int p2; int iDb; int wrFlag; Btree *pX; VdbeCursor *pCur; Db *pDb; assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); assert( pOp->p4type==P4_KEYINFO ); pCur = p->apCsr[pOp->p1]; if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ goto open_cursor_set_hints; } /* If the cursor is not currently open or is open on a different ** index, then fall through into OP_OpenRead to force a reopen */ case OP_OpenRead: case OP_OpenWrite: assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); assert( p->bIsReader ); assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx || p->readOnly==0 ); if( p->expired ){ rc = SQLITE_ABORT_ROLLBACK; goto abort_due_to_error; } nField = 0; pKeyInfo = 0; p2 = pOp->p2; iDb = pOp->p3; assert( iDb>=0 && iDbnDb ); assert( DbMaskTest(p->btreeMask, iDb) ); pDb = &db->aDb[iDb]; pX = pDb->pBt; assert( pX!=0 ); if( pOp->opcode==OP_OpenWrite ){ assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( pDb->pSchema->file_format < p->minWriteFileFormat ){ p->minWriteFileFormat = pDb->pSchema->file_format; } }else{ wrFlag = 0; } if( pOp->p5 & OPFLAG_P2ISREG ){ assert( p2>0 ); assert( p2<=(p->nMem+1 - p->nCursor) ); pIn2 = &aMem[p2]; assert( memIsValid(pIn2) ); assert( (pIn2->flags & MEM_Int)!=0 ); sqlite3VdbeMemIntegerify(pIn2); p2 = (int)pIn2->u.i; /* The p2 value always comes from a prior OP_CreateTable opcode and ** that opcode will always set the p2 value to 2 or more or else fail. ** If there were a failure, the prepared statement would have halted ** before reaching this instruction. */ assert( p2>=2 ); } if( pOp->p4type==P4_KEYINFO ){ pKeyInfo = pOp->p4.pKeyInfo; assert( pKeyInfo->enc==ENC(db) ); assert( pKeyInfo->db==db ); nField = pKeyInfo->nField+pKeyInfo->nXField; }else if( pOp->p4type==P4_INT32 ){ nField = pOp->p4.i; } assert( pOp->p1>=0 ); assert( nField>=0 ); testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); if( pCur==0 ) goto no_mem; pCur->nullRow = 1; pCur->isOrdered = 1; pCur->pgnoRoot = p2; #ifdef SQLITE_DEBUG pCur->wrFlag = wrFlag; #endif rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); pCur->pKeyInfo = pKeyInfo; /* Set the VdbeCursor.isTable variable. Previous versions of ** SQLite used to check if the root-page flags were sane at this point ** and report database corruption if they were not, but this check has ** since moved into the btree layer. */ pCur->isTable = pOp->p4type!=P4_KEYINFO; open_cursor_set_hints: assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); testcase( pOp->p5 & OPFLAG_BULKCSR ); #ifdef SQLITE_ENABLE_CURSOR_HINTS testcase( pOp->p2 & OPFLAG_SEEKEQ ); #endif sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); if( rc ) goto abort_due_to_error; break; } /* Opcode: OpenEphemeral P1 P2 * P4 P5 ** Synopsis: nColumn=P2 ** ** Open a new cursor P1 to a transient table. ** The cursor is always opened read/write even if ** the main database is read-only. The ephemeral ** table is deleted automatically when the cursor is closed. ** ** P2 is the number of columns in the ephemeral table. ** The cursor points to a BTree table if P4==0 and to a BTree index ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure ** that defines the format of keys in the index. ** ** The P5 parameter can be a mask of the BTREE_* flags defined ** in btree.h. These flags control aspects of the operation of ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are ** added automatically. */ /* Opcode: OpenAutoindex P1 P2 * P4 * ** Synopsis: nColumn=P2 ** ** This opcode works the same as OP_OpenEphemeral. It has a ** different name to distinguish its use. Tables created using ** by this opcode will be used for automatically created transient ** indices in joins. */ case OP_OpenAutoindex: case OP_OpenEphemeral: { VdbeCursor *pCx; KeyInfo *pKeyInfo; static const int vfsFlags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TRANSIENT_DB; assert( pOp->p1>=0 ); assert( pOp->p2>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; pCx->isEphemeral = 1; rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1); } if( rc==SQLITE_OK ){ /* If a transient index is required, create it by calling ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before ** opening it. If a transient table is required, just use the ** automatically created table with root-page 1 (an BLOB_INTKEY table). */ if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ int pgno; assert( pOp->p4type==P4_KEYINFO ); rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5); if( rc==SQLITE_OK ){ assert( pgno==MASTER_ROOT+1 ); assert( pKeyInfo->db==db ); assert( pKeyInfo->enc==ENC(db) ); rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR, pKeyInfo, pCx->uc.pCursor); } pCx->isTable = 0; }else{ rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR, 0, pCx->uc.pCursor); pCx->isTable = 1; } } if( rc ) goto abort_due_to_error; pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); break; } /* Opcode: SorterOpen P1 P2 P3 P4 * ** ** This opcode works like OP_OpenEphemeral except that it opens ** a transient index that is specifically designed to sort large ** tables using an external merge-sort algorithm. ** ** If argument P3 is non-zero, then it indicates that the sorter may ** assume that a stable sort considering the first P3 fields of each ** key is sufficient to produce the required results. */ case OP_SorterOpen: { VdbeCursor *pCx; assert( pOp->p1>=0 ); assert( pOp->p2>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); if( pCx==0 ) goto no_mem; pCx->pKeyInfo = pOp->p4.pKeyInfo; assert( pCx->pKeyInfo->db==db ); assert( pCx->pKeyInfo->enc==ENC(db) ); rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); if( rc ) goto abort_due_to_error; break; } /* Opcode: SequenceTest P1 P2 * * * ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 ** ** P1 is a sorter cursor. If the sequence counter is currently zero, jump ** to P2. Regardless of whether or not the jump is taken, increment the ** the sequence value. */ case OP_SequenceTest: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); if( (pC->seqCount++)==0 ){ goto jump_to_p2; } break; } /* Opcode: OpenPseudo P1 P2 P3 * * ** Synopsis: P3 columns in r[P2] ** ** Open a new cursor that points to a fake table that contains a single ** row of data. The content of that one row is the content of memory ** register P2. In other words, cursor P1 becomes an alias for the ** MEM_Blob content contained in register P2. ** ** A pseudo-table created by this opcode is used to hold a single ** row output from the sorter so that the row can be decomposed into ** individual columns using the OP_Column opcode. The OP_Column opcode ** is the only cursor opcode that works with a pseudo-table. ** ** P3 is the number of fields in the records that will be stored by ** the pseudo-table. */ case OP_OpenPseudo: { VdbeCursor *pCx; assert( pOp->p1>=0 ); assert( pOp->p3>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; pCx->uc.pseudoTableReg = pOp->p2; pCx->isTable = 1; assert( pOp->p5==0 ); break; } /* Opcode: Close P1 * * * * ** ** Close a cursor previously opened as P1. If P1 is not ** currently open, this instruction is a no-op. */ case OP_Close: { assert( pOp->p1>=0 && pOp->p1nCursor ); sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); p->apCsr[pOp->p1] = 0; break; } #ifdef SQLITE_ENABLE_COLUMN_USED_MASK /* Opcode: ColumnsUsed P1 * * P4 * ** ** This opcode (which only exists if SQLite was compiled with ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the ** table or index for cursor P1 are used. P4 is a 64-bit integer ** (P4_INT64) in which the first 63 bits are one for each of the ** first 63 columns of the table or index that are actually used ** by the cursor. The high-order bit is set if any column after ** the 64th is used. */ case OP_ColumnsUsed: { VdbeCursor *pC; pC = p->apCsr[pOp->p1]; assert( pC->eCurType==CURTYPE_BTREE ); pC->maskUsed = *(u64*)pOp->p4.pI64; break; } #endif /* Opcode: SeekGE P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as the key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the smallest entry that ** is greater than or equal to the key value. If there are no records ** greater than or equal to the key and P2 is not zero, then jump to P2. ** ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this ** opcode will always land on a record that equally equals the key, or ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this ** opcode must be followed by an IdxLE opcode with the same arguments. ** The IdxLE opcode will be skipped if this opcode succeeds, but the ** IdxLE opcode will be used on subsequent loop iterations. ** ** This opcode leaves the cursor configured to move in forward order, ** from the beginning toward the end. In other words, the cursor is ** configured to use Next, not Prev. ** ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe */ /* Opcode: SeekGT P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as a key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the smallest entry that ** is greater than the key value. If there are no records greater than ** the key and P2 is not zero, then jump to P2. ** ** This opcode leaves the cursor configured to move in forward order, ** from the beginning toward the end. In other words, the cursor is ** configured to use Next, not Prev. ** ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe */ /* Opcode: SeekLT P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as a key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the largest entry that ** is less than the key value. If there are no records less than ** the key and P2 is not zero, then jump to P2. ** ** This opcode leaves the cursor configured to move in reverse order, ** from the end toward the beginning. In other words, the cursor is ** configured to use Prev, not Next. ** ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe */ /* Opcode: SeekLE P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as a key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the largest entry that ** is less than or equal to the key value. If there are no records ** less than or equal to the key and P2 is not zero, then jump to P2. ** ** This opcode leaves the cursor configured to move in reverse order, ** from the end toward the beginning. In other words, the cursor is ** configured to use Prev, not Next. ** ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this ** opcode will always land on a record that equally equals the key, or ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this ** opcode must be followed by an IdxGE opcode with the same arguments. ** The IdxGE opcode will be skipped if this opcode succeeds, but the ** IdxGE opcode will be used on subsequent loop iterations. ** ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt */ case OP_SeekLT: /* jump, in3 */ case OP_SeekLE: /* jump, in3 */ case OP_SeekGE: /* jump, in3 */ case OP_SeekGT: { /* jump, in3 */ int res; /* Comparison result */ int oc; /* Opcode */ VdbeCursor *pC; /* The cursor to seek */ UnpackedRecord r; /* The key to seek for */ int nField; /* Number of columns or fields in the key */ i64 iKey; /* The rowid we are to seek to */ int eqOnly; /* Only interested in == results */ assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p2!=0 ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( OP_SeekLE == OP_SeekLT+1 ); assert( OP_SeekGE == OP_SeekLT+2 ); assert( OP_SeekGT == OP_SeekLT+3 ); assert( pC->isOrdered ); assert( pC->uc.pCursor!=0 ); oc = pOp->opcode; eqOnly = 0; pC->nullRow = 0; #ifdef SQLITE_DEBUG pC->seekOp = pOp->opcode; #endif if( pC->isTable ){ /* The BTREE_SEEK_EQ flag is only set on index cursors */ assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 || CORRUPT_DB ); /* The input value in P3 might be of any type: integer, real, string, ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so convert it. */ pIn3 = &aMem[pOp->p3]; if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn3, 0); } iKey = sqlite3VdbeIntValue(pIn3); /* If the P3 value could not be converted into an integer without ** loss of information, then special processing is required... */ if( (pIn3->flags & MEM_Int)==0 ){ if( (pIn3->flags & MEM_Real)==0 ){ /* If the P3 value cannot be converted into any kind of a number, ** then the seek is not possible, so jump to P2 */ VdbeBranchTaken(1,2); goto jump_to_p2; break; } /* If the approximation iKey is larger than the actual real search ** term, substitute >= for > and < for <=. e.g. if the search term ** is 4.9 and the integer approximation 5: ** ** (x > 4.9) -> (x >= 5) ** (x <= 4.9) -> (x < 5) */ if( pIn3->u.r<(double)iKey ){ assert( OP_SeekGE==(OP_SeekGT-1) ); assert( OP_SeekLT==(OP_SeekLE-1) ); assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; } /* If the approximation iKey is smaller than the actual real search ** term, substitute <= for < and > for >=. */ else if( pIn3->u.r>(double)iKey ){ assert( OP_SeekLE==(OP_SeekLT+1) ); assert( OP_SeekGT==(OP_SeekGE+1) ); assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; } } rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); pC->movetoTarget = iKey; /* Used by OP_Delete */ if( rc!=SQLITE_OK ){ goto abort_due_to_error; } }else{ /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and ** OP_SeekLE opcodes are allowed, and these must be immediately followed ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key. */ if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ eqOnly = 1; assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); assert( pOp[1].p1==pOp[0].p1 ); assert( pOp[1].p2==pOp[0].p2 ); assert( pOp[1].p3==pOp[0].p3 ); assert( pOp[1].p4.i==pOp[0].p4.i ); } nField = pOp->p4.i; assert( pOp->p4type==P4_INT32 ); assert( nField>0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)nField; /* The next line of code computes as follows, only faster: ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ ** r.default_rc = -1; ** }else{ ** r.default_rc = +1; ** } */ r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); assert( oc!=OP_SeekGT || r.default_rc==-1 ); assert( oc!=OP_SeekLE || r.default_rc==-1 ); assert( oc!=OP_SeekGE || r.default_rc==+1 ); assert( oc!=OP_SeekLT || r.default_rc==+1 ); r.aMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; iuc.pCursor, &r, 0, 0, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( eqOnly && r.eqSeen==0 ){ assert( res!=0 ); goto seek_not_found; } } pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; #ifdef SQLITE_TEST sqlite3_search_count++; #endif if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); if( res<0 || (res==0 && oc==OP_SeekGT) ){ res = 0; rc = sqlite3BtreeNext(pC->uc.pCursor, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; }else{ res = 0; } }else{ assert( oc==OP_SeekLT || oc==OP_SeekLE ); if( res>0 || (res==0 && oc==OP_SeekLT) ){ res = 0; rc = sqlite3BtreePrevious(pC->uc.pCursor, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; }else{ /* res might be negative because the table is empty. Check to ** see if this is the case. */ res = sqlite3BtreeEof(pC->uc.pCursor); } } seek_not_found: assert( pOp->p2>0 ); VdbeBranchTaken(res!=0,2); if( res ){ goto jump_to_p2; }else if( eqOnly ){ assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ } break; } /* Opcode: Found P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** is a prefix of any entry in P1 then a jump is made to P2 and ** P1 is left pointing at the matching entry. ** ** This operation leaves the cursor in a state where it can be ** advanced in the forward direction. The Next instruction will work, ** but not the Prev instruction. ** ** See also: NotFound, NoConflict, NotExists. SeekGe */ /* Opcode: NotFound P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 ** does contain an entry whose prefix matches the P3/P4 record then control ** falls through to the next instruction and P1 is left pointing at the ** matching entry. ** ** This operation leaves the cursor in a state where it cannot be ** advanced in either direction. In other words, the Next and Prev ** opcodes do not work after this operation. ** ** See also: Found, NotExists, NoConflict */ /* Opcode: NoConflict P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** contains any NULL value, jump immediately to P2. If all terms of the ** record are not-NULL then a check is done to determine if any row in the ** P1 index btree has a matching key prefix. If there are no matches, jump ** immediately to P2. If there is a match, fall through and leave the P1 ** cursor pointing to the matching row. ** ** This opcode is similar to OP_NotFound with the exceptions that the ** branch is always taken if any part of the search key input is NULL. ** ** This operation leaves the cursor in a state where it cannot be ** advanced in either direction. In other words, the Next and Prev ** opcodes do not work after this operation. ** ** See also: NotFound, Found, NotExists */ case OP_NoConflict: /* jump, in3 */ case OP_NotFound: /* jump, in3 */ case OP_Found: { /* jump, in3 */ int alreadyExists; int takeJump; int ii; VdbeCursor *pC; int res; UnpackedRecord *pFree; UnpackedRecord *pIdxKey; UnpackedRecord r; #ifdef SQLITE_TEST if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; #endif assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p4type==P4_INT32 ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); #ifdef SQLITE_DEBUG pC->seekOp = pOp->opcode; #endif pIn3 = &aMem[pOp->p3]; assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); assert( pC->isTable==0 ); if( pOp->p4.i>0 ){ r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p4.i; r.aMem = pIn3; #ifdef SQLITE_DEBUG for(ii=0; iip3+ii, &r.aMem[ii]); } #endif pIdxKey = &r; pFree = 0; }else{ pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); if( pIdxKey==0 ) goto no_mem; assert( pIn3->flags & MEM_Blob ); (void)ExpandBlob(pIn3); sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); } pIdxKey->default_rc = 0; takeJump = 0; if( pOp->opcode==OP_NoConflict ){ /* For the OP_NoConflict opcode, take the jump if any of the ** input fields are NULL, since any key with a NULL will not ** conflict */ for(ii=0; iinField; ii++){ if( pIdxKey->aMem[ii].flags & MEM_Null ){ takeJump = 1; break; } } } rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); if( pFree ) sqlite3DbFree(db, pFree); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } pC->seekResult = res; alreadyExists = (res==0); pC->nullRow = 1-alreadyExists; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; if( pOp->opcode==OP_Found ){ VdbeBranchTaken(alreadyExists!=0,2); if( alreadyExists ) goto jump_to_p2; }else{ VdbeBranchTaken(takeJump||alreadyExists==0,2); if( takeJump || !alreadyExists ) goto jump_to_p2; } break; } /* Opcode: SeekRowid P1 P2 P3 * * ** Synopsis: intkey=r[P3] ** ** P1 is the index of a cursor open on an SQL table btree (with integer ** keys). If register P3 does not contain an integer or if P1 does not ** contain a record with rowid P3 then jump immediately to P2. ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain ** a record with rowid P3 then ** leave the cursor pointing at that record and fall through to the next ** instruction. ** ** The OP_NotExists opcode performs the same operation, but with OP_NotExists ** the P3 register must be guaranteed to contain an integer value. With this ** opcode, register P3 might not contain an integer. ** ** The OP_NotFound opcode performs the same operation on index btrees ** (with arbitrary multi-value keys). ** ** This opcode leaves the cursor in a state where it cannot be advanced ** in either direction. In other words, the Next and Prev opcodes will ** not work following this opcode. ** ** See also: Found, NotFound, NoConflict, SeekRowid */ /* Opcode: NotExists P1 P2 P3 * * ** Synopsis: intkey=r[P3] ** ** P1 is the index of a cursor open on an SQL table btree (with integer ** keys). P3 is an integer rowid. If P1 does not contain a record with ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then ** leave the cursor pointing at that record and fall through to the next ** instruction. ** ** The OP_SeekRowid opcode performs the same operation but also allows the ** P3 register to contain a non-integer value, in which case the jump is ** always taken. This opcode requires that P3 always contain an integer. ** ** The OP_NotFound opcode performs the same operation on index btrees ** (with arbitrary multi-value keys). ** ** This opcode leaves the cursor in a state where it cannot be advanced ** in either direction. In other words, the Next and Prev opcodes will ** not work following this opcode. ** ** See also: Found, NotFound, NoConflict, SeekRowid */ case OP_SeekRowid: { /* jump, in3 */ VdbeCursor *pC; BtCursor *pCrsr; int res; u64 iKey; pIn3 = &aMem[pOp->p3]; if( (pIn3->flags & MEM_Int)==0 ){ applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding); if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2; } /* Fall through into OP_NotExists */ case OP_NotExists: /* jump, in3 */ pIn3 = &aMem[pOp->p3]; assert( pIn3->flags & MEM_Int ); assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); #ifdef SQLITE_DEBUG pC->seekOp = 0; #endif assert( pC->isTable ); assert( pC->eCurType==CURTYPE_BTREE ); pCrsr = pC->uc.pCursor; assert( pCrsr!=0 ); res = 0; iKey = pIn3->u.i; rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); assert( rc==SQLITE_OK || res==0 ); pC->movetoTarget = iKey; /* Used by OP_Delete */ pC->nullRow = 0; pC->cacheStatus = CACHE_STALE; pC->deferredMoveto = 0; VdbeBranchTaken(res!=0,2); pC->seekResult = res; if( res!=0 ){ assert( rc==SQLITE_OK ); if( pOp->p2==0 ){ rc = SQLITE_CORRUPT_BKPT; }else{ goto jump_to_p2; } } if( rc ) goto abort_due_to_error; break; } /* Opcode: Sequence P1 P2 * * * ** Synopsis: r[P2]=cursor[P1].ctr++ ** ** Find the next available sequence number for cursor P1. ** Write the sequence number into register P2. ** The sequence number on the cursor is incremented after this ** instruction. */ case OP_Sequence: { /* out2 */ assert( pOp->p1>=0 && pOp->p1nCursor ); assert( p->apCsr[pOp->p1]!=0 ); assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); pOut = out2Prerelease(p, pOp); pOut->u.i = p->apCsr[pOp->p1]->seqCount++; break; } /* Opcode: NewRowid P1 P2 P3 * * ** Synopsis: r[P2]=rowid ** ** Get a new integer record number (a.k.a "rowid") used as the key to a table. ** The record number is not previously used as a key in the database ** table that cursor P1 points to. The new record number is written ** written to register P2. ** ** If P3>0 then P3 is a register in the root frame of this VDBE that holds ** the largest previously generated record number. No new record numbers are ** allowed to be less than this value. When this value reaches its maximum, ** an SQLITE_FULL error is generated. The P3 register is updated with the ' ** generated record number. This P3 mechanism is used to help implement the ** AUTOINCREMENT feature. */ case OP_NewRowid: { /* out2 */ i64 v; /* The new rowid */ VdbeCursor *pC; /* Cursor of table to get the new rowid */ int res; /* Result of an sqlite3BtreeLast() */ int cnt; /* Counter to limit the number of searches */ Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ VdbeFrame *pFrame; /* Root frame of VDBE */ v = 0; res = 0; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); { /* The next rowid or record number (different terms for the same ** thing) is obtained in a two-step algorithm. ** ** First we attempt to find the largest existing rowid and add one ** to that. But if the largest existing rowid is already the maximum ** positive integer, we have to fall through to the second ** probabilistic algorithm ** ** The second algorithm is to select a rowid at random and see if ** it already exists in the table. If it does not exist, we have ** succeeded. If the random rowid does exist, we select a new one ** and try again, up to 100 times. */ assert( pC->isTable ); #ifdef SQLITE_32BIT_ROWID # define MAX_ROWID 0x7fffffff #else /* Some compilers complain about constants of the form 0x7fffffffffffffff. ** Others complain about 0x7ffffffffffffffffLL. The following macro seems ** to provide the constant while making all compilers happy. */ # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) #endif if( !pC->useRandomRowid ){ rc = sqlite3BtreeLast(pC->uc.pCursor, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( res ){ v = 1; /* IMP: R-61914-48074 */ }else{ assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); v = sqlite3BtreeIntegerKey(pC->uc.pCursor); if( v>=MAX_ROWID ){ pC->useRandomRowid = 1; }else{ v++; /* IMP: R-29538-34987 */ } } } #ifndef SQLITE_OMIT_AUTOINCREMENT if( pOp->p3 ){ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3>0 ); if( p->pFrame ){ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=pFrame->nMem ); pMem = &pFrame->aMem[pOp->p3]; }else{ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); pMem = &aMem[pOp->p3]; memAboutToChange(p, pMem); } assert( memIsValid(pMem) ); REGISTER_TRACE(pOp->p3, pMem); sqlite3VdbeMemIntegerify(pMem); assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ rc = SQLITE_FULL; /* IMP: R-17817-00630 */ goto abort_due_to_error; } if( vu.i+1 ){ v = pMem->u.i + 1; } pMem->u.i = v; } #endif if( pC->useRandomRowid ){ /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the ** largest possible integer (9223372036854775807) then the database ** engine starts picking positive candidate ROWIDs at random until ** it finds one that is not previously used. */ assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is ** an AUTOINCREMENT table. */ cnt = 0; do{ sqlite3_randomness(sizeof(v), &v); v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 0, &res))==SQLITE_OK) && (res==0) && (++cnt<100)); if( rc ) goto abort_due_to_error; if( res==0 ){ rc = SQLITE_FULL; /* IMP: R-38219-53002 */ goto abort_due_to_error; } assert( v>0 ); /* EV: R-40812-03570 */ } pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } pOut->u.i = v; break; } /* Opcode: Insert P1 P2 P3 P4 P5 ** Synopsis: intkey=r[P3] data=r[P2] ** ** Write an entry into the table of cursor P1. A new entry is ** created if it doesn't already exist or the data for an existing ** entry is overwritten. The data is the value MEM_Blob stored in register ** number P2. The key is stored in register P3. The key must ** be a MEM_Int. ** ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, ** then rowid is stored for subsequent return by the ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). ** ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might ** run faster by avoiding an unnecessary seek on cursor P1. However, ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior ** seeks on the cursor or if the most recent seek used a key equal to P3. ** ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an ** UPDATE operation. Otherwise (if the flag is clear) then this opcode ** is part of an INSERT operation. The difference is only important to ** the update hook. ** ** Parameter P4 may point to a Table structure, or may be NULL. If it is ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked ** following a successful insert. ** ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically ** allocated, then ownership of P2 is transferred to the pseudo-cursor ** and register P2 becomes ephemeral. If the cursor is changed, the ** value of register P2 will then change. Make sure this does not ** cause any problems.) ** ** This instruction only works on tables. The equivalent instruction ** for indices is OP_IdxInsert. */ /* Opcode: InsertInt P1 P2 P3 P4 P5 ** Synopsis: intkey=P3 data=r[P2] ** ** This works exactly like OP_Insert except that the key is the ** integer value P3, not the value of the integer stored in register P3. */ case OP_Insert: case OP_InsertInt: { Mem *pData; /* MEM cell holding data for the record to be inserted */ Mem *pKey; /* MEM cell holding key for the record */ VdbeCursor *pC; /* Cursor to table into which insert is written */ int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ const char *zDb; /* database name - used by the update hook */ Table *pTab; /* Table structure - used by update and pre-update hooks */ int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ BtreePayload x; /* Payload to be inserted */ op = 0; pData = &aMem[pOp->p2]; assert( pOp->p1>=0 && pOp->p1nCursor ); assert( memIsValid(pData) ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); assert( pC->isTable ); assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); REGISTER_TRACE(pOp->p2, pData); if( pOp->opcode==OP_Insert ){ pKey = &aMem[pOp->p3]; assert( pKey->flags & MEM_Int ); assert( memIsValid(pKey) ); REGISTER_TRACE(pOp->p3, pKey); x.nKey = pKey->u.i; }else{ assert( pOp->opcode==OP_InsertInt ); x.nKey = pOp->p3; } if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ assert( pC->isTable ); assert( pC->iDb>=0 ); zDb = db->aDb[pC->iDb].zDbSName; pTab = pOp->p4.pTab; assert( HasRowid(pTab) ); op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); }else{ pTab = 0; /* Not needed. Silence a comiler warning. */ zDb = 0; /* Not needed. Silence a compiler warning. */ } #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* Invoke the pre-update hook, if any */ if( db->xPreUpdateCallback && pOp->p4type==P4_TABLE && !(pOp->p5 & OPFLAG_ISUPDATE) ){ sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2); } #endif if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = x.nKey; if( pData->flags & MEM_Null ){ x.pData = 0; x.nData = 0; }else{ assert( pData->flags & (MEM_Blob|MEM_Str) ); x.pData = pData->z; x.nData = pData->n; } seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); if( pData->flags & MEM_Zero ){ x.nZero = pData->u.nZero; }else{ x.nZero = 0; } x.pKey = 0; rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, (pOp->p5 & OPFLAG_APPEND)!=0, seekResult ); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; /* Invoke the update-hook if required. */ if( rc ) goto abort_due_to_error; if( db->xUpdateCallback && op ){ db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, x.nKey); } break; } /* Opcode: Delete P1 P2 P3 P4 P5 ** ** Delete the record at which the P1 cursor is currently pointing. ** ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then ** the cursor will be left pointing at either the next or the previous ** record in the table. If it is left pointing at the next record, then ** the next Next instruction will be a no-op. As a result, in this case ** it is ok to delete a record from within a Next loop. If ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be ** left in an undefined state. ** ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this ** delete one of several associated with deleting a table row and all its ** associated index entries. Exactly one of those deletes is the "primary" ** delete. The others are all on OPFLAG_FORDELETE cursors or else are ** marked with the AUXDELETE flag. ** ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row ** change count is incremented (otherwise not). ** ** P1 must not be pseudo-table. It has to be a real table with ** multiple rows. ** ** If P4 is not NULL then it points to a Table object. In this case either ** the update or pre-update hook, or both, may be invoked. The P1 cursor must ** have been positioned using OP_NotFound prior to invoking this opcode in ** this case. Specifically, if one is configured, the pre-update hook is ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. ** ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address ** of the memory cell that contains the value that the rowid of the row will ** be set to by the update. */ case OP_Delete: { VdbeCursor *pC; const char *zDb; Table *pTab; int opflags; opflags = pOp->p2; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); assert( pC->deferredMoveto==0 ); #ifdef SQLITE_DEBUG if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){ /* If p5 is zero, the seek operation that positioned the cursor prior to ** OP_Delete will have also set the pC->movetoTarget field to the rowid of ** the row that is being deleted */ i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); assert( pC->movetoTarget==iKey ); } #endif /* If the update-hook or pre-update-hook will be invoked, set zDb to ** the name of the db to pass as to it. Also set local pTab to a copy ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set ** VdbeCursor.movetoTarget to the current rowid. */ if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ assert( pC->iDb>=0 ); assert( pOp->p4.pTab!=0 ); zDb = db->aDb[pC->iDb].zDbSName; pTab = pOp->p4.pTab; if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); } }else{ zDb = 0; /* Not needed. Silence a compiler warning. */ pTab = 0; /* Not needed. Silence a compiler warning. */ } #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* Invoke the pre-update-hook if required. */ if( db->xPreUpdateCallback && pOp->p4.pTab && HasRowid(pTab) ){ assert( !(opflags & OPFLAG_ISUPDATE) || (aMem[pOp->p3].flags & MEM_Int) ); sqlite3VdbePreUpdateHook(p, pC, (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, zDb, pTab, pC->movetoTarget, pOp->p3 ); } if( opflags & OPFLAG_ISNOOP ) break; #endif /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); #ifdef SQLITE_DEBUG if( p->pFrame==0 ){ if( pC->isEphemeral==0 && (pOp->p5 & OPFLAG_AUXDELETE)==0 && (pC->wrFlag & OPFLAG_FORDELETE)==0 ){ nExtraDelete++; } if( pOp->p2 & OPFLAG_NCHANGE ){ nExtraDelete--; } } #endif rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); pC->cacheStatus = CACHE_STALE; pC->seekResult = 0; if( rc ) goto abort_due_to_error; /* Invoke the update-hook if required. */ if( opflags & OPFLAG_NCHANGE ){ p->nChange++; if( db->xUpdateCallback && HasRowid(pTab) ){ db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, pC->movetoTarget); assert( pC->iDb>=0 ); } } break; } /* Opcode: ResetCount * * * * * ** ** The value of the change counter is copied to the database handle ** change counter (returned by subsequent calls to sqlite3_changes()). ** Then the VMs internal change counter resets to 0. ** This is used by trigger programs. */ case OP_ResetCount: { sqlite3VdbeSetChanges(db, p->nChange); p->nChange = 0; break; } /* Opcode: SorterCompare P1 P2 P3 P4 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 ** ** P1 is a sorter cursor. This instruction compares a prefix of the ** record blob in register P3 against a prefix of the entry that ** the sorter cursor currently points to. Only the first P4 fields ** of r[P3] and the sorter record are compared. ** ** If either P3 or the sorter contains a NULL in one of their significant ** fields (not counting the P4 fields at the end which are ignored) then ** the comparison is assumed to be equal. ** ** Fall through to next instruction if the two records compare equal to ** each other. Jump to P2 if they are different. */ case OP_SorterCompare: { VdbeCursor *pC; int res; int nKeyCol; pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); assert( pOp->p4type==P4_INT32 ); pIn3 = &aMem[pOp->p3]; nKeyCol = pOp->p4.i; res = 0; rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); VdbeBranchTaken(res!=0,2); if( rc ) goto abort_due_to_error; if( res ) goto jump_to_p2; break; }; /* Opcode: SorterData P1 P2 P3 * * ** Synopsis: r[P2]=data ** ** Write into register P2 the current sorter data for sorter cursor P1. ** Then clear the column header cache on cursor P3. ** ** This opcode is normally use to move a record out of the sorter and into ** a register that is the source for a pseudo-table cursor created using ** OpenPseudo. That pseudo-table cursor is the one that is identified by ** parameter P3. Clearing the P3 column cache as part of this opcode saves ** us from having to issue a separate NullRow instruction to clear that cache. */ case OP_SorterData: { VdbeCursor *pC; pOut = &aMem[pOp->p2]; pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); rc = sqlite3VdbeSorterRowkey(pC, pOut); assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); assert( pOp->p1>=0 && pOp->p1nCursor ); if( rc ) goto abort_due_to_error; p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; break; } /* Opcode: RowData P1 P2 * * * ** Synopsis: r[P2]=data ** ** Write into register P2 the complete row content for the row at ** which cursor P1 is currently pointing. ** There is no interpretation of the data. ** It is just copied onto the P2 register exactly as ** it is found in the database file. ** ** If cursor P1 is an index, then the content is the key of the row. ** If cursor P2 is a table, then the content extracted is the data. ** ** If the P1 cursor must be pointing to a valid row (not a NULL row) ** of a real table, not a pseudo-table. */ case OP_RowData: { VdbeCursor *pC; BtCursor *pCrsr; u32 n; pOut = &aMem[pOp->p2]; memAboutToChange(p, pOut); assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( isSorter(pC)==0 ); assert( pC->nullRow==0 ); assert( pC->uc.pCursor!=0 ); pCrsr = pC->uc.pCursor; /* The OP_RowData opcodes always follow OP_NotExists or ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions ** that might invalidate the cursor. ** If this where not the case, on of the following assert()s ** would fail. Should this ever change (because of changes in the code ** generator) then the fix would be to insert a call to ** sqlite3VdbeCursorMoveto(). */ assert( pC->deferredMoveto==0 ); assert( sqlite3BtreeCursorIsValid(pCrsr) ); #if 0 /* Not required due to the previous to assert() statements */ rc = sqlite3VdbeCursorMoveto(pC); if( rc!=SQLITE_OK ) goto abort_due_to_error; #endif n = sqlite3BtreePayloadSize(pCrsr); if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } testcase( n==0 ); if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){ goto no_mem; } pOut->n = n; MemSetTypeFlag(pOut, MEM_Blob); rc = sqlite3BtreePayload(pCrsr, 0, n, pOut->z); if( rc ) goto abort_due_to_error; pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ UPDATE_MAX_BLOBSIZE(pOut); REGISTER_TRACE(pOp->p2, pOut); break; } /* Opcode: Rowid P1 P2 * * * ** Synopsis: r[P2]=rowid ** ** Store in register P2 an integer which is the key of the table entry that ** P1 is currently point to. ** ** P1 can be either an ordinary table or a virtual table. There used to ** be a separate OP_VRowid opcode for use with virtual tables, but this ** one opcode now works for both table types. */ case OP_Rowid: { /* out2 */ VdbeCursor *pC; i64 v; sqlite3_vtab *pVtab; const sqlite3_module *pModule; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); if( pC->nullRow ){ pOut->flags = MEM_Null; break; }else if( pC->deferredMoveto ){ v = pC->movetoTarget; #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( pC->eCurType==CURTYPE_VTAB ){ assert( pC->uc.pVCur!=0 ); pVtab = pC->uc.pVCur->pVtab; pModule = pVtab->pModule; assert( pModule->xRowid ); rc = pModule->xRowid(pC->uc.pVCur, &v); sqlite3VtabImportErrmsg(p, pVtab); if( rc ) goto abort_due_to_error; #endif /* SQLITE_OMIT_VIRTUALTABLE */ }else{ assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); rc = sqlite3VdbeCursorRestore(pC); if( rc ) goto abort_due_to_error; if( pC->nullRow ){ pOut->flags = MEM_Null; break; } v = sqlite3BtreeIntegerKey(pC->uc.pCursor); } pOut->u.i = v; break; } /* Opcode: NullRow P1 * * * * ** ** Move the cursor P1 to a null row. Any OP_Column operations ** that occur while the cursor is on the null row will always ** write a NULL. */ case OP_NullRow: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pC->nullRow = 1; pC->cacheStatus = CACHE_STALE; if( pC->eCurType==CURTYPE_BTREE ){ assert( pC->uc.pCursor!=0 ); sqlite3BtreeClearCursor(pC->uc.pCursor); } break; } /* Opcode: Last P1 P2 P3 * * ** ** The next use of the Rowid or Column or Prev instruction for P1 ** will refer to the last entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. ** ** This opcode leaves the cursor configured to move in reverse order, ** from the end toward the beginning. In other words, the cursor is ** configured to use Prev, not Next. ** ** If P3 is -1, then the cursor is positioned at the end of the btree ** for the purpose of appending a new entry onto the btree. In that ** case P2 must be 0. It is assumed that the cursor is used only for ** appending and so if the cursor is valid, then the cursor must already ** be pointing at the end of the btree and so no changes are made to ** the cursor. */ case OP_Last: { /* jump */ VdbeCursor *pC; BtCursor *pCrsr; int res; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); pCrsr = pC->uc.pCursor; res = 0; assert( pCrsr!=0 ); pC->seekResult = pOp->p3; #ifdef SQLITE_DEBUG pC->seekOp = OP_Last; #endif if( pOp->p3==0 || !sqlite3BtreeCursorIsValidNN(pCrsr) ){ rc = sqlite3BtreeLast(pCrsr, &res); pC->nullRow = (u8)res; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; if( rc ) goto abort_due_to_error; if( pOp->p2>0 ){ VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; } }else{ assert( pOp->p2==0 ); } break; } /* Opcode: SorterSort P1 P2 * * * ** ** After all records have been inserted into the Sorter object ** identified by P1, invoke this opcode to actually do the sorting. ** Jump to P2 if there are no records to be sorted. ** ** This opcode is an alias for OP_Sort and OP_Rewind that is used ** for Sorter objects. */ /* Opcode: Sort P1 P2 * * * ** ** This opcode does exactly the same thing as OP_Rewind except that ** it increments an undocumented global variable used for testing. ** ** Sorting is accomplished by writing records into a sorting index, ** then rewinding that index and playing it back from beginning to ** end. We use the OP_Sort opcode instead of OP_Rewind to do the ** rewinding so that the global variable will be incremented and ** regression tests can determine whether or not the optimizer is ** correctly optimizing out sorts. */ case OP_SorterSort: /* jump */ case OP_Sort: { /* jump */ #ifdef SQLITE_TEST sqlite3_sort_count++; sqlite3_search_count--; #endif p->aCounter[SQLITE_STMTSTATUS_SORT]++; /* Fall through into OP_Rewind */ } /* Opcode: Rewind P1 P2 * * * ** ** The next use of the Rowid or Column or Next instruction for P1 ** will refer to the first entry in the database table or index. ** If the table or index is empty, jump immediately to P2. ** If the table or index is not empty, fall through to the following ** instruction. ** ** This opcode leaves the cursor configured to move in forward order, ** from the beginning toward the end. In other words, the cursor is ** configured to use Next, not Prev. */ case OP_Rewind: { /* jump */ VdbeCursor *pC; BtCursor *pCrsr; int res; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); res = 1; #ifdef SQLITE_DEBUG pC->seekOp = OP_Rewind; #endif if( isSorter(pC) ){ rc = sqlite3VdbeSorterRewind(pC, &res); }else{ assert( pC->eCurType==CURTYPE_BTREE ); pCrsr = pC->uc.pCursor; assert( pCrsr ); rc = sqlite3BtreeFirst(pCrsr, &res); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } if( rc ) goto abort_due_to_error; pC->nullRow = (u8)res; assert( pOp->p2>0 && pOp->p2nOp ); VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; break; } /* Opcode: Next P1 P2 P3 P4 P5 ** ** Advance cursor P1 so that it points to the next key/data pair in its ** table or index. If there are no more key/value pairs then fall through ** to the following instruction. But if the cursor advance was successful, ** jump immediately to P2. ** ** The Next opcode is only valid following an SeekGT, SeekGE, or ** OP_Rewind opcode used to position the cursor. Next is not allowed ** to follow SeekLT, SeekLE, or OP_Last. ** ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have ** been opened prior to this opcode or the program will segfault. ** ** The P3 value is a hint to the btree implementation. If P3==1, that ** means P1 is an SQL index and that this instruction could have been ** omitted if that index had been unique. P3 is usually 0. P3 is ** always either 0 or 1. ** ** P4 is always of type P4_ADVANCE. The function pointer points to ** sqlite3BtreeNext(). ** ** If P5 is positive and the jump is taken, then event counter ** number P5-1 in the prepared statement is incremented. ** ** See also: Prev, NextIfOpen */ /* Opcode: NextIfOpen P1 P2 P3 P4 P5 ** ** This opcode works just like Next except that if cursor P1 is not ** open it behaves a no-op. */ /* Opcode: Prev P1 P2 P3 P4 P5 ** ** Back up cursor P1 so that it points to the previous key/data pair in its ** table or index. If there is no previous key/value pairs then fall through ** to the following instruction. But if the cursor backup was successful, ** jump immediately to P2. ** ** ** The Prev opcode is only valid following an SeekLT, SeekLE, or ** OP_Last opcode used to position the cursor. Prev is not allowed ** to follow SeekGT, SeekGE, or OP_Rewind. ** ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is ** not open then the behavior is undefined. ** ** The P3 value is a hint to the btree implementation. If P3==1, that ** means P1 is an SQL index and that this instruction could have been ** omitted if that index had been unique. P3 is usually 0. P3 is ** always either 0 or 1. ** ** P4 is always of type P4_ADVANCE. The function pointer points to ** sqlite3BtreePrevious(). ** ** If P5 is positive and the jump is taken, then event counter ** number P5-1 in the prepared statement is incremented. */ /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 ** ** This opcode works just like Prev except that if cursor P1 is not ** open it behaves a no-op. */ /* Opcode: SorterNext P1 P2 * * P5 ** ** This opcode works just like OP_Next except that P1 must be a ** sorter object for which the OP_SorterSort opcode has been ** invoked. This opcode advances the cursor to the next sorted ** record, or jumps to P2 if there are no more sorted records. */ case OP_SorterNext: { /* jump */ VdbeCursor *pC; int res; pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); res = 0; rc = sqlite3VdbeSorterNext(db, pC, &res); goto next_tail; case OP_PrevIfOpen: /* jump */ case OP_NextIfOpen: /* jump */ if( p->apCsr[pOp->p1]==0 ) break; /* Fall through */ case OP_Prev: /* jump */ case OP_Next: /* jump */ assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p5aCounter) ); pC = p->apCsr[pOp->p1]; res = pOp->p3; assert( pC!=0 ); assert( pC->deferredMoveto==0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( res==0 || (res==1 && pC->isTable==0) ); testcase( res==1 ); assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE || pC->seekOp==OP_Last ); rc = pOp->p4.xAdvance(pC->uc.pCursor, &res); next_tail: pC->cacheStatus = CACHE_STALE; VdbeBranchTaken(res==0,2); if( rc ) goto abort_due_to_error; if( res==0 ){ pC->nullRow = 0; p->aCounter[pOp->p5]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif goto jump_to_p2_and_check_for_interrupt; }else{ pC->nullRow = 1; } goto check_for_interrupt; } /* Opcode: IdxInsert P1 P2 P3 P4 P5 ** Synopsis: key=r[P2] ** ** Register P2 holds an SQL index key made using the ** MakeRecord instructions. This opcode writes that key ** into the index P1. Data for the entry is nil. ** ** If P4 is not zero, then it is the number of values in the unpacked ** key of reg(P2). In that case, P3 is the index of the first register ** for the unpacked key. The availability of the unpacked key can sometimes ** be an optimization. ** ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer ** that this insert is likely to be an append. ** ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, ** then the change counter is unchanged. ** ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might ** run faster by avoiding an unnecessary seek on cursor P1. However, ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior ** seeks on the cursor or if the most recent seek used a key equivalent ** to P2. ** ** This instruction only works for indices. The equivalent instruction ** for tables is OP_Insert. */ /* Opcode: SorterInsert P1 P2 * * * ** Synopsis: key=r[P2] ** ** Register P2 holds an SQL index key made using the ** MakeRecord instructions. This opcode writes that key ** into the sorter P1. Data for the entry is nil. */ case OP_SorterInsert: /* in2 */ case OP_IdxInsert: { /* in2 */ VdbeCursor *pC; BtreePayload x; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); pIn2 = &aMem[pOp->p2]; assert( pIn2->flags & MEM_Blob ); if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); assert( pC->isTable==0 ); rc = ExpandBlob(pIn2); if( rc ) goto abort_due_to_error; if( pOp->opcode==OP_SorterInsert ){ rc = sqlite3VdbeSorterWrite(pC, pIn2); }else{ x.nKey = pIn2->n; x.pKey = pIn2->z; x.aMem = aMem + pOp->p3; x.nMem = (u16)pOp->p4.i; rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, (pOp->p5 & OPFLAG_APPEND)!=0, ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) ); assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; } if( rc) goto abort_due_to_error; break; } /* Opcode: IdxDelete P1 P2 P3 * * ** Synopsis: key=r[P2@P3] ** ** The content of P3 registers starting at register P2 form ** an unpacked index key. This opcode removes that entry from the ** index opened by cursor P1. */ case OP_IdxDelete: { VdbeCursor *pC; BtCursor *pCrsr; int res; UnpackedRecord r; assert( pOp->p3>0 ); assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); pCrsr = pC->uc.pCursor; assert( pCrsr!=0 ); assert( pOp->p5==0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p3; r.default_rc = 0; r.aMem = &aMem[pOp->p2]; rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); if( rc ) goto abort_due_to_error; if( res==0 ){ rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); if( rc ) goto abort_due_to_error; } assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; pC->seekResult = 0; break; } /* Opcode: Seek P1 * P3 P4 * ** Synopsis: Move P3 to P1.rowid ** ** P1 is an open index cursor and P3 is a cursor on the corresponding ** table. This opcode does a deferred seek of the P3 table cursor ** to the row that corresponds to the current row of P1. ** ** This is a deferred seek. Nothing actually happens until ** the cursor is used to read a record. That way, if no reads ** occur, no unnecessary I/O happens. ** ** P4 may be an array of integers (type P4_INTARRAY) containing ** one entry for each column in the P3 table. If array entry a(i) ** is non-zero, then reading column a(i)-1 from cursor P3 is ** equivalent to performing the deferred seek and then reading column i ** from P1. This information is stored in P3 and used to redirect ** reads against P3 over to P1, thus possibly avoiding the need to ** seek and read cursor P3. */ /* Opcode: IdxRowid P1 P2 * * * ** Synopsis: r[P2]=rowid ** ** Write into register P2 an integer which is the last entry in the record at ** the end of the index key pointed to by cursor P1. This integer should be ** the rowid of the table entry to which this index entry points. ** ** See also: Rowid, MakeRecord. */ case OP_Seek: case OP_IdxRowid: { /* out2 */ VdbeCursor *pC; /* The P1 index cursor */ VdbeCursor *pTabCur; /* The P2 table cursor (OP_Seek only) */ i64 rowid; /* Rowid that P1 current points to */ assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); assert( pC->isTable==0 ); assert( pC->deferredMoveto==0 ); assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); /* The IdxRowid and Seek opcodes are combined because of the commonality ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ rc = sqlite3VdbeCursorRestore(pC); /* sqlite3VbeCursorRestore() can only fail if the record has been deleted ** out from under the cursor. That will never happens for an IdxRowid ** or Seek opcode */ if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; if( !pC->nullRow ){ rowid = 0; /* Not needed. Only used to silence a warning. */ rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( pOp->opcode==OP_Seek ){ assert( pOp->p3>=0 && pOp->p3nCursor ); pTabCur = p->apCsr[pOp->p3]; assert( pTabCur!=0 ); assert( pTabCur->eCurType==CURTYPE_BTREE ); assert( pTabCur->uc.pCursor!=0 ); assert( pTabCur->isTable ); pTabCur->nullRow = 0; pTabCur->movetoTarget = rowid; pTabCur->deferredMoveto = 1; assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); pTabCur->aAltMap = pOp->p4.ai; pTabCur->pAltCursor = pC; }else{ pOut = out2Prerelease(p, pOp); pOut->u.i = rowid; pOut->flags = MEM_Int; } }else{ assert( pOp->opcode==OP_IdxRowid ); sqlite3VdbeMemSetNull(&aMem[pOp->p2]); } break; } /* Opcode: IdxGE P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY. Compare this key value against the index ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID ** fields at the end. ** ** If the P1 index entry is greater than or equal to the key value ** then jump to P2. Otherwise fall through to the next instruction. */ /* Opcode: IdxGT P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY. Compare this key value against the index ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID ** fields at the end. ** ** If the P1 index entry is greater than the key value ** then jump to P2. Otherwise fall through to the next instruction. */ /* Opcode: IdxLT P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY or ROWID. Compare this key value against ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or ** ROWID on the P1 index. ** ** If the P1 index entry is less than the key value then jump to P2. ** Otherwise fall through to the next instruction. */ /* Opcode: IdxLE P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY or ROWID. Compare this key value against ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or ** ROWID on the P1 index. ** ** If the P1 index entry is less than or equal to the key value then jump ** to P2. Otherwise fall through to the next instruction. */ case OP_IdxLE: /* jump */ case OP_IdxGT: /* jump */ case OP_IdxLT: /* jump */ case OP_IdxGE: { /* jump */ VdbeCursor *pC; int res; UnpackedRecord r; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->isOrdered ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0); assert( pC->deferredMoveto==0 ); assert( pOp->p5==0 || pOp->p5==1 ); assert( pOp->p4type==P4_INT32 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p4.i; if( pOp->opcodeopcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); r.default_rc = -1; }else{ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); r.default_rc = 0; } r.aMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; iopcode&1)==(OP_IdxLT&1) ){ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); res = -res; }else{ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); res++; } VdbeBranchTaken(res>0,2); if( rc ) goto abort_due_to_error; if( res>0 ) goto jump_to_p2; break; } /* Opcode: Destroy P1 P2 P3 * * ** ** Delete an entire database table or index whose root page in the database ** file is given by P1. ** ** The table being destroyed is in the main database file if P3==0. If ** P3==1 then the table to be clear is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** If AUTOVACUUM is enabled then it is possible that another root page ** might be moved into the newly deleted root page in order to keep all ** root pages contiguous at the beginning of the database. The former ** value of the root page that moved - its value before the move occurred - ** is stored in register P2. If no page ** movement was required (because the table being dropped was already ** the last one in the database) then a zero is stored in register P2. ** If AUTOVACUUM is disabled then a zero is stored in register P2. ** ** See also: Clear */ case OP_Destroy: { /* out2 */ int iMoved; int iDb; assert( p->readOnly==0 ); assert( pOp->p1>1 ); pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Null; if( db->nVdbeRead > db->nVDestroy+1 ){ rc = SQLITE_LOCKED; p->errorAction = OE_Abort; goto abort_due_to_error; }else{ iDb = pOp->p3; assert( DbMaskTest(p->btreeMask, iDb) ); iMoved = 0; /* Not needed. Only to silence a warning. */ rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); pOut->flags = MEM_Int; pOut->u.i = iMoved; if( rc ) goto abort_due_to_error; #ifndef SQLITE_OMIT_AUTOVACUUM if( iMoved!=0 ){ sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); /* All OP_Destroy operations occur on the same btree */ assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); resetSchemaOnFault = iDb+1; } #endif } break; } /* Opcode: Clear P1 P2 P3 ** ** Delete all contents of the database table or index whose root page ** in the database file is given by P1. But, unlike Destroy, do not ** remove the table or index from the database file. ** ** The table being clear is in the main database file if P2==0. If ** P2==1 then the table to be clear is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** If the P3 value is non-zero, then the table referred to must be an ** intkey table (an SQL table, not an index). In this case the row change ** count is incremented by the number of rows in the table being cleared. ** If P3 is greater than zero, then the value stored in register P3 is ** also incremented by the number of rows in the table being cleared. ** ** See also: Destroy */ case OP_Clear: { int nChange; nChange = 0; assert( p->readOnly==0 ); assert( DbMaskTest(p->btreeMask, pOp->p2) ); rc = sqlite3BtreeClearTable( db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) ); if( pOp->p3 ){ p->nChange += nChange; if( pOp->p3>0 ){ assert( memIsValid(&aMem[pOp->p3]) ); memAboutToChange(p, &aMem[pOp->p3]); aMem[pOp->p3].u.i += nChange; } } if( rc ) goto abort_due_to_error; break; } /* Opcode: ResetSorter P1 * * * * ** ** Delete all contents from the ephemeral table or sorter ** that is open on cursor P1. ** ** This opcode only works for cursors used for sorting and ** opened with OP_OpenEphemeral or OP_SorterOpen. */ case OP_ResetSorter: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); if( isSorter(pC) ){ sqlite3VdbeSorterReset(db, pC->uc.pSorter); }else{ assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->isEphemeral ); rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); if( rc ) goto abort_due_to_error; } break; } /* Opcode: CreateTable P1 P2 * * * ** Synopsis: r[P2]=root iDb=P1 ** ** Allocate a new table in the main database file if P1==0 or in the ** auxiliary database file if P1==1 or in an attached database if ** P1>1. Write the root page number of the new table into ** register P2 ** ** The difference between a table and an index is this: A table must ** have a 4-byte integer key and can have arbitrary data. An index ** has an arbitrary key but no data. ** ** See also: CreateIndex */ /* Opcode: CreateIndex P1 P2 * * * ** Synopsis: r[P2]=root iDb=P1 ** ** Allocate a new index in the main database file if P1==0 or in the ** auxiliary database file if P1==1 or in an attached database if ** P1>1. Write the root page number of the new table into ** register P2. ** ** See documentation on OP_CreateTable for additional information. */ case OP_CreateIndex: /* out2 */ case OP_CreateTable: { /* out2 */ int pgno; int flags; Db *pDb; pOut = out2Prerelease(p, pOp); pgno = 0; assert( pOp->p1>=0 && pOp->p1nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pDb = &db->aDb[pOp->p1]; assert( pDb->pBt!=0 ); if( pOp->opcode==OP_CreateTable ){ /* flags = BTREE_INTKEY; */ flags = BTREE_INTKEY; }else{ flags = BTREE_BLOBKEY; } rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); if( rc ) goto abort_due_to_error; pOut->u.i = pgno; break; } /* Opcode: ParseSchema P1 * * P4 * ** ** Read and parse all entries from the SQLITE_MASTER table of database P1 ** that match the WHERE clause P4. ** ** This opcode invokes the parser to create a new virtual machine, ** then runs the new virtual machine. It is thus a re-entrant opcode. */ case OP_ParseSchema: { int iDb; const char *zMaster; char *zSql; InitData initData; /* Any prepared statement that invokes this opcode will hold mutexes ** on every btree. This is a prerequisite for invoking ** sqlite3InitCallback(). */ #ifdef SQLITE_DEBUG for(iDb=0; iDbnDb; iDb++){ assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); } #endif iDb = pOp->p1; assert( iDb>=0 && iDbnDb ); assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); /* Used to be a conditional */ { zMaster = MASTER_NAME; initData.db = db; initData.iDb = pOp->p1; initData.pzErrMsg = &p->zErrMsg; zSql = sqlite3MPrintf(db, "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", db->aDb[iDb].zDbSName, zMaster, pOp->p4.z); if( zSql==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ assert( db->init.busy==0 ); db->init.busy = 1; initData.rc = SQLITE_OK; assert( !db->mallocFailed ); rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); if( rc==SQLITE_OK ) rc = initData.rc; sqlite3DbFree(db, zSql); db->init.busy = 0; } } if( rc ){ sqlite3ResetAllSchemasOfConnection(db); if( rc==SQLITE_NOMEM ){ goto no_mem; } goto abort_due_to_error; } break; } #if !defined(SQLITE_OMIT_ANALYZE) /* Opcode: LoadAnalysis P1 * * * * ** ** Read the sqlite_stat1 table for database P1 and load the content ** of that table into the internal index hash table. This will cause ** the analysis to be used when preparing all subsequent queries. */ case OP_LoadAnalysis: { assert( pOp->p1>=0 && pOp->p1nDb ); rc = sqlite3AnalysisLoad(db, pOp->p1); if( rc ) goto abort_due_to_error; break; } #endif /* !defined(SQLITE_OMIT_ANALYZE) */ /* Opcode: DropTable P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the table named P4 in database P1. This is called after a table ** is dropped from disk (using the Destroy opcode) in order to keep ** the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTable: { sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropIndex P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the index named P4 in database P1. This is called after an index ** is dropped from disk (using the Destroy opcode) ** in order to keep the internal representation of the ** schema consistent with what is on disk. */ case OP_DropIndex: { sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropTrigger P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the trigger named P4 in database P1. This is called after a trigger ** is dropped from disk (using the Destroy opcode) in order to keep ** the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTrigger: { sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); break; } #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* Opcode: IntegrityCk P1 P2 P3 P4 P5 ** ** Do an analysis of the currently open database. Store in ** register P1 the text of an error message describing any problems. ** If no problems are found, store a NULL in register P1. ** ** The register P3 contains the maximum number of allowed errors. ** At most reg(P3) errors will be reported. ** In other words, the analysis stops as soon as reg(P1) errors are ** seen. Reg(P1) is updated with the number of errors remaining. ** ** The root page numbers of all tables in the database are integers ** stored in P4_INTARRAY argument. ** ** If P5 is not zero, the check is done on the auxiliary database ** file, not the main database file. ** ** This opcode is used to implement the integrity_check pragma. */ case OP_IntegrityCk: { int nRoot; /* Number of tables to check. (Number of root pages.) */ int *aRoot; /* Array of rootpage numbers for tables to be checked */ int nErr; /* Number of errors reported */ char *z; /* Text of the error report */ Mem *pnErr; /* Register keeping track of errors remaining */ assert( p->bIsReader ); nRoot = pOp->p2; aRoot = pOp->p4.ai; assert( nRoot>0 ); assert( aRoot[nRoot]==0 ); assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); pnErr = &aMem[pOp->p3]; assert( (pnErr->flags & MEM_Int)!=0 ); assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); pIn1 = &aMem[pOp->p1]; assert( pOp->p5nDb ); assert( DbMaskTest(p->btreeMask, pOp->p5) ); z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, (int)pnErr->u.i, &nErr); pnErr->u.i -= nErr; sqlite3VdbeMemSetNull(pIn1); if( nErr==0 ){ assert( z==0 ); }else if( z==0 ){ goto no_mem; }else{ sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); } UPDATE_MAX_BLOBSIZE(pIn1); sqlite3VdbeChangeEncoding(pIn1, encoding); break; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* Opcode: RowSetAdd P1 P2 * * * ** Synopsis: rowset(P1)=r[P2] ** ** Insert the integer value held by register P2 into a boolean index ** held in register P1. ** ** An assertion fails if P2 is not an integer. */ case OP_RowSetAdd: { /* in1, in2 */ pIn1 = &aMem[pOp->p1]; pIn2 = &aMem[pOp->p2]; assert( (pIn2->flags & MEM_Int)!=0 ); if( (pIn1->flags & MEM_RowSet)==0 ){ sqlite3VdbeMemSetRowSet(pIn1); if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; } sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); break; } /* Opcode: RowSetRead P1 P2 P3 * * ** Synopsis: r[P3]=rowset(P1) ** ** Extract the smallest value from boolean index P1 and put that value into ** register P3. Or, if boolean index P1 is initially empty, leave P3 ** unchanged and jump to instruction P2. */ case OP_RowSetRead: { /* jump, in1, out3 */ i64 val; pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_RowSet)==0 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 ){ /* The boolean index is empty */ sqlite3VdbeMemSetNull(pIn1); VdbeBranchTaken(1,2); goto jump_to_p2_and_check_for_interrupt; }else{ /* A value was pulled from the index */ VdbeBranchTaken(0,2); sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); } goto check_for_interrupt; } /* Opcode: RowSetTest P1 P2 P3 P4 ** Synopsis: if r[P3] in rowset(P1) goto P2 ** ** Register P3 is assumed to hold a 64-bit integer value. If register P1 ** contains a RowSet object and that RowSet object contains ** the value held in P3, jump to register P2. Otherwise, insert the ** integer in P3 into the RowSet and continue on to the ** next opcode. ** ** The RowSet object is optimized for the case where successive sets ** of integers, where each set contains no duplicates. Each set ** of values is identified by a unique P4 value. The first set ** must have P4==0, the final set P4=-1. P4 must be either -1 or ** non-negative. For non-negative values of P4 only the lower 4 ** bits are significant. ** ** This allows optimizations: (a) when P4==0 there is no need to test ** the rowset object for P3, as it is guaranteed not to contain it, ** (b) when P4==-1 there is no need to insert the value, as it will ** never be tested for, and (c) when a value that is part of set X is ** inserted, there is no need to search to see if the same value was ** previously inserted as part of set X (only if it was previously ** inserted as part of some other set). */ case OP_RowSetTest: { /* jump, in1, in3 */ int iSet; int exists; pIn1 = &aMem[pOp->p1]; pIn3 = &aMem[pOp->p3]; iSet = pOp->p4.i; assert( pIn3->flags&MEM_Int ); /* If there is anything other than a rowset object in memory cell P1, ** delete it now and initialize P1 with an empty rowset */ if( (pIn1->flags & MEM_RowSet)==0 ){ sqlite3VdbeMemSetRowSet(pIn1); if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; } assert( pOp->p4type==P4_INT32 ); assert( iSet==-1 || iSet>=0 ); if( iSet ){ exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); VdbeBranchTaken(exists!=0,2); if( exists ) goto jump_to_p2; } if( iSet>=0 ){ sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); } break; } #ifndef SQLITE_OMIT_TRIGGER /* Opcode: Program P1 P2 P3 P4 P5 ** ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). ** ** P1 contains the address of the memory cell that contains the first memory ** cell in an array of values used as arguments to the sub-program. P2 ** contains the address to jump to if the sub-program throws an IGNORE ** exception using the RAISE() function. Register P3 contains the address ** of a memory cell in this (the parent) VM that is used to allocate the ** memory required by the sub-vdbe at runtime. ** ** P4 is a pointer to the VM containing the trigger program. ** ** If P5 is non-zero, then recursive program invocation is enabled. */ case OP_Program: { /* jump */ int nMem; /* Number of memory registers for sub-program */ int nByte; /* Bytes of runtime space required for sub-program */ Mem *pRt; /* Register to allocate runtime space */ Mem *pMem; /* Used to iterate through memory cells */ Mem *pEnd; /* Last memory cell in new array */ VdbeFrame *pFrame; /* New vdbe frame to execute in */ SubProgram *pProgram; /* Sub-program to execute */ void *t; /* Token identifying trigger */ pProgram = pOp->p4.pProgram; pRt = &aMem[pOp->p3]; assert( pProgram->nOp>0 ); /* If the p5 flag is clear, then recursive invocation of triggers is ** disabled for backwards compatibility (p5 is set if this sub-program ** is really a trigger, not a foreign key action, and the flag set ** and cleared by the "PRAGMA recursive_triggers" command is clear). ** ** It is recursive invocation of triggers, at the SQL level, that is ** disabled. In some cases a single trigger may generate more than one ** SubProgram (if the trigger may be executed with more than one different ** ON CONFLICT algorithm). SubProgram structures associated with a ** single trigger all have the same value for the SubProgram.token ** variable. */ if( pOp->p5 ){ t = pProgram->token; for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); if( pFrame ) break; } if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ rc = SQLITE_ERROR; sqlite3VdbeError(p, "too many levels of trigger recursion"); goto abort_due_to_error; } /* Register pRt is used to store the memory required to save the state ** of the current program, and the memory required at runtime to execute ** the trigger program. If this trigger has been fired before, then pRt ** is already allocated. Otherwise, it must be initialized. */ if( (pRt->flags&MEM_Frame)==0 ){ /* SubProgram.nMem is set to the number of memory cells used by the ** program stored in SubProgram.aOp. As well as these, one memory ** cell is required for each cursor used by the program. Set local ** variable nMem (and later, VdbeFrame.nChildMem) to this value. */ nMem = pProgram->nMem + pProgram->nCsr; assert( nMem>0 ); if( pProgram->nCsr==0 ) nMem++; nByte = ROUND8(sizeof(VdbeFrame)) + nMem * sizeof(Mem) + pProgram->nCsr * sizeof(VdbeCursor *); pFrame = sqlite3DbMallocZero(db, nByte); if( !pFrame ){ goto no_mem; } sqlite3VdbeMemRelease(pRt); pRt->flags = MEM_Frame; pRt->u.pFrame = pFrame; pFrame->v = p; pFrame->nChildMem = nMem; pFrame->nChildCsr = pProgram->nCsr; pFrame->pc = (int)(pOp - aOp); pFrame->aMem = p->aMem; pFrame->nMem = p->nMem; pFrame->apCsr = p->apCsr; pFrame->nCursor = p->nCursor; pFrame->aOp = p->aOp; pFrame->nOp = p->nOp; pFrame->token = pProgram->token; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pFrame->anExec = p->anExec; #endif pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ pMem->flags = MEM_Undefined; pMem->db = db; } }else{ pFrame = pRt->u.pFrame; assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); assert( pProgram->nCsr==pFrame->nChildCsr ); assert( (int)(pOp - aOp)==pFrame->pc ); } p->nFrame++; pFrame->pParent = p->pFrame; pFrame->lastRowid = lastRowid; pFrame->nChange = p->nChange; pFrame->nDbChange = p->db->nChange; assert( pFrame->pAuxData==0 ); pFrame->pAuxData = p->pAuxData; p->pAuxData = 0; p->nChange = 0; p->pFrame = pFrame; p->aMem = aMem = VdbeFrameMem(pFrame); p->nMem = pFrame->nChildMem; p->nCursor = (u16)pFrame->nChildCsr; p->apCsr = (VdbeCursor **)&aMem[p->nMem]; p->aOp = aOp = pProgram->aOp; p->nOp = pProgram->nOp; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS p->anExec = 0; #endif pOp = &aOp[-1]; break; } /* Opcode: Param P1 P2 * * * ** ** This opcode is only ever present in sub-programs called via the ** OP_Program instruction. Copy a value currently stored in a memory ** cell of the calling (parent) frame to cell P2 in the current frames ** address space. This is used by trigger programs to access the new.* ** and old.* values. ** ** The address of the cell in the parent frame is determined by adding ** the value of the P1 argument to the value of the P1 argument to the ** calling OP_Program instruction. */ case OP_Param: { /* out2 */ VdbeFrame *pFrame; Mem *pIn; pOut = out2Prerelease(p, pOp); pFrame = p->pFrame; pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); break; } #endif /* #ifndef SQLITE_OMIT_TRIGGER */ #ifndef SQLITE_OMIT_FOREIGN_KEY /* Opcode: FkCounter P1 P2 * * * ** Synopsis: fkctr[P1]+=P2 ** ** Increment a "constraint counter" by P2 (P2 may be negative or positive). ** If P1 is non-zero, the database constraint counter is incremented ** (deferred foreign key constraints). Otherwise, if P1 is zero, the ** statement counter is incremented (immediate foreign key constraints). */ case OP_FkCounter: { if( db->flags & SQLITE_DeferFKs ){ db->nDeferredImmCons += pOp->p2; }else if( pOp->p1 ){ db->nDeferredCons += pOp->p2; }else{ p->nFkConstraint += pOp->p2; } break; } /* Opcode: FkIfZero P1 P2 * * * ** Synopsis: if fkctr[P1]==0 goto P2 ** ** This opcode tests if a foreign key constraint-counter is currently zero. ** If so, jump to instruction P2. Otherwise, fall through to the next ** instruction. ** ** If P1 is non-zero, then the jump is taken if the database constraint-counter ** is zero (the one that counts deferred constraint violations). If P1 is ** zero, the jump is taken if the statement constraint-counter is zero ** (immediate foreign key constraint violations). */ case OP_FkIfZero: { /* jump */ if( pOp->p1 ){ VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; }else{ VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; } break; } #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ #ifndef SQLITE_OMIT_AUTOINCREMENT /* Opcode: MemMax P1 P2 * * * ** Synopsis: r[P1]=max(r[P1],r[P2]) ** ** P1 is a register in the root frame of this VM (the root frame is ** different from the current frame if this instruction is being executed ** within a sub-program). Set the value of register P1 to the maximum of ** its current value and the value in register P2. ** ** This instruction throws an error if the memory cell is not initially ** an integer. */ case OP_MemMax: { /* in2 */ VdbeFrame *pFrame; if( p->pFrame ){ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); pIn1 = &pFrame->aMem[pOp->p1]; }else{ pIn1 = &aMem[pOp->p1]; } assert( memIsValid(pIn1) ); sqlite3VdbeMemIntegerify(pIn1); pIn2 = &aMem[pOp->p2]; sqlite3VdbeMemIntegerify(pIn2); if( pIn1->u.iu.i){ pIn1->u.i = pIn2->u.i; } break; } #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Opcode: IfPos P1 P2 P3 * * ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 ** ** Register P1 must contain an integer. ** If the value of register P1 is 1 or greater, subtract P3 from the ** value in P1 and jump to P2. ** ** If the initial value of register P1 is less than 1, then the ** value is unchanged and control passes through to the next instruction. */ case OP_IfPos: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken( pIn1->u.i>0, 2); if( pIn1->u.i>0 ){ pIn1->u.i -= pOp->p3; goto jump_to_p2; } break; } /* Opcode: OffsetLimit P1 P2 P3 * * ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) ** ** This opcode performs a commonly used computation associated with ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] ** holds the offset counter. The opcode computes the combined value ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] ** value computed is the total number of rows that will need to be ** visited in order to complete the query. ** ** If r[P3] is zero or negative, that means there is no OFFSET ** and r[P2] is set to be the value of the LIMIT, r[P1]. ** ** if r[P1] is zero or negative, that means there is no LIMIT ** and r[P2] is set to -1. ** ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. */ case OP_OffsetLimit: { /* in1, out2, in3 */ i64 x; pIn1 = &aMem[pOp->p1]; pIn3 = &aMem[pOp->p3]; pOut = out2Prerelease(p, pOp); assert( pIn1->flags & MEM_Int ); assert( pIn3->flags & MEM_Int ); x = pIn1->u.i; if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ /* If the LIMIT is less than or equal to zero, loop forever. This ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then ** also loop forever. This is undocumented. In fact, one could argue ** that the loop should terminate. But assuming 1 billion iterations ** per second (far exceeding the capabilities of any current hardware) ** it would take nearly 300 years to actually reach the limit. So ** looping forever is a reasonable approximation. */ pOut->u.i = -1; }else{ pOut->u.i = x; } break; } /* Opcode: IfNotZero P1 P2 * * * ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 ** ** Register P1 must contain an integer. If the content of register P1 is ** initially greater than zero, then decrement the value in register P1. ** If it is non-zero (negative or positive) and then also jump to P2. ** If register P1 is initially zero, leave it unchanged and fall through. */ case OP_IfNotZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i<0, 2); if( pIn1->u.i ){ if( pIn1->u.i>0 ) pIn1->u.i--; goto jump_to_p2; } break; } /* Opcode: DecrJumpZero P1 P2 * * * ** Synopsis: if (--r[P1])==0 goto P2 ** ** Register P1 must hold an integer. Decrement the value in P1 ** and jump to P2 if the new value is exactly zero. */ case OP_DecrJumpZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; VdbeBranchTaken(pIn1->u.i==0, 2); if( pIn1->u.i==0 ) goto jump_to_p2; break; } /* Opcode: AggStep0 * P2 P3 P4 P5 ** Synopsis: accum=r[P3] step(r[P2@P5]) ** ** Execute the step function for an aggregate. The ** function has P5 arguments. P4 is a pointer to the FuncDef ** structure that specifies the function. Register P3 is the ** accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. */ /* Opcode: AggStep * P2 P3 P4 P5 ** Synopsis: accum=r[P3] step(r[P2@P5]) ** ** Execute the step function for an aggregate. The ** function has P5 arguments. P4 is a pointer to an sqlite3_context ** object that is used to run the function. Register P3 is ** as the accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. ** ** This opcode is initially coded as OP_AggStep0. On first evaluation, ** the FuncDef stored in P4 is converted into an sqlite3_context and ** the opcode is changed. In this way, the initialization of the ** sqlite3_context only happens once, instead of on each call to the ** step function. */ case OP_AggStep0: { int n; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCDEF ); n = pOp->p5; assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); assert( pOp->p3p2 || pOp->p3>=pOp->p2+n ); pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); if( pCtx==0 ) goto no_mem; pCtx->pMem = 0; pCtx->pFunc = pOp->p4.pFunc; pCtx->iOp = (int)(pOp - aOp); pCtx->pVdbe = p; pCtx->argc = n; pOp->p4type = P4_FUNCCTX; pOp->p4.pCtx = pCtx; pOp->opcode = OP_AggStep; /* Fall through into OP_AggStep */ } case OP_AggStep: { int i; sqlite3_context *pCtx; Mem *pMem; Mem t; assert( pOp->p4type==P4_FUNCCTX ); pCtx = pOp->p4.pCtx; pMem = &aMem[pOp->p3]; /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relavant parts of the sqlite3_context object */ if( pCtx->pMem != pMem ){ pCtx->pMem = pMem; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } #ifdef SQLITE_DEBUG for(i=0; iargc; i++){ assert( memIsValid(pCtx->argv[i]) ); REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); } #endif pMem->n++; sqlite3VdbeMemInit(&t, db, MEM_Null); pCtx->pOut = &t; pCtx->fErrorOrAux = 0; pCtx->skipFlag = 0; (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ if( pCtx->fErrorOrAux ){ if( pCtx->isError ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(&t)); rc = pCtx->isError; } sqlite3VdbeMemRelease(&t); if( rc ) goto abort_due_to_error; }else{ assert( t.flags==MEM_Null ); } if( pCtx->skipFlag ){ assert( pOp[-1].opcode==OP_CollSeq ); i = pOp[-1].p1; if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); } break; } /* Opcode: AggFinal P1 P2 * P4 * ** Synopsis: accum=r[P1] N=P2 ** ** Execute the finalizer function for an aggregate. P1 is ** the memory location that is the accumulator for the aggregate. ** ** P2 is the number of arguments that the step function takes and ** P4 is a pointer to the FuncDef for this function. The P2 ** argument is not used by this opcode. It is only there to disambiguate ** functions that can take varying numbers of arguments. The ** P4 argument is only needed for the degenerate case where ** the step function was not previously called. */ case OP_AggFinal: { Mem *pMem; assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); pMem = &aMem[pOp->p1]; assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); if( rc ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); goto abort_due_to_error; } sqlite3VdbeChangeEncoding(pMem, encoding); UPDATE_MAX_BLOBSIZE(pMem); if( sqlite3VdbeMemTooBig(pMem) ){ goto too_big; } break; } #ifndef SQLITE_OMIT_WAL /* Opcode: Checkpoint P1 P2 P3 * * ** ** Checkpoint database P1. This is a no-op if P1 is not currently in ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns ** SQLITE_BUSY or not, respectively. Write the number of pages in the ** WAL after the checkpoint into mem[P3+1] and the number of pages ** in the WAL that have been checkpointed after the checkpoint ** completes into mem[P3+2]. However on an error, mem[P3+1] and ** mem[P3+2] are initialized to -1. */ case OP_Checkpoint: { int i; /* Loop counter */ int aRes[3]; /* Results */ Mem *pMem; /* Write results here */ assert( p->readOnly==0 ); aRes[0] = 0; aRes[1] = aRes[2] = -1; assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE || pOp->p2==SQLITE_CHECKPOINT_FULL || pOp->p2==SQLITE_CHECKPOINT_RESTART || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE ); rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); if( rc ){ if( rc!=SQLITE_BUSY ) goto abort_due_to_error; rc = SQLITE_OK; aRes[0] = 1; } for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); } break; }; #endif #ifndef SQLITE_OMIT_PRAGMA /* Opcode: JournalMode P1 P2 P3 * * ** ** Change the journal mode of database P1 to P3. P3 must be one of the ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback ** modes (delete, truncate, persist, off and memory), this is a simple ** operation. No IO is required. ** ** If changing into or out of WAL mode the procedure is more complicated. ** ** Write a string containing the final journal-mode to register P2. */ case OP_JournalMode: { /* out2 */ Btree *pBt; /* Btree to change journal mode of */ Pager *pPager; /* Pager associated with pBt */ int eNew; /* New journal mode */ int eOld; /* The old journal mode */ #ifndef SQLITE_OMIT_WAL const char *zFilename; /* Name of database file for pPager */ #endif pOut = out2Prerelease(p, pOp); eNew = pOp->p3; assert( eNew==PAGER_JOURNALMODE_DELETE || eNew==PAGER_JOURNALMODE_TRUNCATE || eNew==PAGER_JOURNALMODE_PERSIST || eNew==PAGER_JOURNALMODE_OFF || eNew==PAGER_JOURNALMODE_MEMORY || eNew==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_QUERY ); assert( pOp->p1>=0 && pOp->p1nDb ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; pPager = sqlite3BtreePager(pBt); eOld = sqlite3PagerGetJournalMode(pPager); if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; #ifndef SQLITE_OMIT_WAL zFilename = sqlite3PagerFilename(pPager, 1); /* Do not allow a transition to journal_mode=WAL for a database ** in temporary storage or if the VFS does not support shared memory */ if( eNew==PAGER_JOURNALMODE_WAL && (sqlite3Strlen30(zFilename)==0 /* Temp file */ || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ ){ eNew = eOld; } if( (eNew!=eOld) && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) ){ if( !db->autoCommit || db->nVdbeRead>1 ){ rc = SQLITE_ERROR; sqlite3VdbeError(p, "cannot change %s wal mode from within a transaction", (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") ); goto abort_due_to_error; }else{ if( eOld==PAGER_JOURNALMODE_WAL ){ /* If leaving WAL mode, close the log file. If successful, the call ** to PagerCloseWal() checkpoints and deletes the write-ahead-log ** file. An EXCLUSIVE lock may still be held on the database file ** after a successful return. */ rc = sqlite3PagerCloseWal(pPager, db); if( rc==SQLITE_OK ){ sqlite3PagerSetJournalMode(pPager, eNew); } }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ /* Cannot transition directly from MEMORY to WAL. Use mode OFF ** as an intermediate */ sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); } /* Open a transaction on the database file. Regardless of the journal ** mode, this transaction always uses a rollback journal. */ assert( sqlite3BtreeIsInTrans(pBt)==0 ); if( rc==SQLITE_OK ){ rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); } } } #endif /* ifndef SQLITE_OMIT_WAL */ if( rc ) eNew = eOld; eNew = sqlite3PagerSetJournalMode(pPager, eNew); pOut->flags = MEM_Str|MEM_Static|MEM_Term; pOut->z = (char *)sqlite3JournalModename(eNew); pOut->n = sqlite3Strlen30(pOut->z); pOut->enc = SQLITE_UTF8; sqlite3VdbeChangeEncoding(pOut, encoding); if( rc ) goto abort_due_to_error; break; }; #endif /* SQLITE_OMIT_PRAGMA */ #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) /* Opcode: Vacuum P1 * * * * ** ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more ** for an attached database. The "temp" database may not be vacuumed. */ case OP_Vacuum: { assert( p->readOnly==0 ); rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1); if( rc ) goto abort_due_to_error; break; } #endif #if !defined(SQLITE_OMIT_AUTOVACUUM) /* Opcode: IncrVacuum P1 P2 * * * ** ** Perform a single step of the incremental vacuum procedure on ** the P1 database. If the vacuum has finished, jump to instruction ** P2. Otherwise, fall through to the next instruction. */ case OP_IncrVacuum: { /* jump */ Btree *pBt; assert( pOp->p1>=0 && pOp->p1nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; rc = sqlite3BtreeIncrVacuum(pBt); VdbeBranchTaken(rc==SQLITE_DONE,2); if( rc ){ if( rc!=SQLITE_DONE ) goto abort_due_to_error; rc = SQLITE_OK; goto jump_to_p2; } break; } #endif /* Opcode: Expire P1 * * * * ** ** Cause precompiled statements to expire. When an expired statement ** is executed using sqlite3_step() it will either automatically ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) ** or it will fail with SQLITE_SCHEMA. ** ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, ** then only the currently executing statement is expired. */ case OP_Expire: { if( !pOp->p1 ){ sqlite3ExpirePreparedStatements(db); }else{ p->expired = 1; } break; } #ifndef SQLITE_OMIT_SHARED_CACHE /* Opcode: TableLock P1 P2 P3 P4 * ** Synopsis: iDb=P1 root=P2 write=P3 ** ** Obtain a lock on a particular table. This instruction is only used when ** the shared-cache feature is enabled. ** ** P1 is the index of the database in sqlite3.aDb[] of the database ** on which the lock is acquired. A readlock is obtained if P3==0 or ** a write lock if P3==1. ** ** P2 contains the root-page of the table to lock. ** ** P4 contains a pointer to the name of the table being locked. This is only ** used to generate an error message if the lock cannot be obtained. */ case OP_TableLock: { u8 isWriteLock = (u8)pOp->p3; if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ int p1 = pOp->p1; assert( p1>=0 && p1nDb ); assert( DbMaskTest(p->btreeMask, p1) ); assert( isWriteLock==0 || isWriteLock==1 ); rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); if( rc ){ if( (rc&0xFF)==SQLITE_LOCKED ){ const char *z = pOp->p4.z; sqlite3VdbeError(p, "database table is locked: %s", z); } goto abort_due_to_error; } } break; } #endif /* SQLITE_OMIT_SHARED_CACHE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VBegin * * * P4 * ** ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the ** xBegin method for that table. ** ** Also, whether or not P4 is set, check that this is not being called from ** within a callback to a virtual table xSync() method. If it is, the error ** code will be set to SQLITE_LOCKED. */ case OP_VBegin: { VTable *pVTab; pVTab = pOp->p4.pVtab; rc = sqlite3VtabBegin(db, pVTab); if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); if( rc ) goto abort_due_to_error; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VCreate P1 P2 * * * ** ** P2 is a register that holds the name of a virtual table in database ** P1. Call the xCreate method for that table. */ case OP_VCreate: { Mem sMem; /* For storing the record being decoded */ const char *zTab; /* Name of the virtual table */ memset(&sMem, 0, sizeof(sMem)); sMem.db = db; /* Because P2 is always a static string, it is impossible for the ** sqlite3VdbeMemCopy() to fail */ assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); assert( rc==SQLITE_OK ); zTab = (const char*)sqlite3_value_text(&sMem); assert( zTab || db->mallocFailed ); if( zTab ){ rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); } sqlite3VdbeMemRelease(&sMem); if( rc ) goto abort_due_to_error; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VDestroy P1 * * P4 * ** ** P4 is the name of a virtual table in database P1. Call the xDestroy method ** of that table. */ case OP_VDestroy: { db->nVDestroy++; rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); db->nVDestroy--; if( rc ) goto abort_due_to_error; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VOpen P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** P1 is a cursor number. This opcode opens a cursor to the virtual ** table and stores that cursor in P1. */ case OP_VOpen: { VdbeCursor *pCur; sqlite3_vtab_cursor *pVCur; sqlite3_vtab *pVtab; const sqlite3_module *pModule; assert( p->bIsReader ); pCur = 0; pVCur = 0; pVtab = pOp->p4.pVtab->pVtab; if( pVtab==0 || NEVER(pVtab->pModule==0) ){ rc = SQLITE_LOCKED; goto abort_due_to_error; } pModule = pVtab->pModule; rc = pModule->xOpen(pVtab, &pVCur); sqlite3VtabImportErrmsg(p, pVtab); if( rc ) goto abort_due_to_error; /* Initialize sqlite3_vtab_cursor base class */ pVCur->pVtab = pVtab; /* Initialize vdbe cursor object */ pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); if( pCur ){ pCur->uc.pVCur = pVCur; pVtab->nRef++; }else{ assert( db->mallocFailed ); pModule->xClose(pVCur); goto no_mem; } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VFilter P1 P2 P3 P4 * ** Synopsis: iplan=r[P3] zplan='P4' ** ** P1 is a cursor opened using VOpen. P2 is an address to jump to if ** the filtered result set is empty. ** ** P4 is either NULL or a string that was generated by the xBestIndex ** method of the module. The interpretation of the P4 string is left ** to the module implementation. ** ** This opcode invokes the xFilter method on the virtual table specified ** by P1. The integer query plan parameter to xFilter is stored in register ** P3. Register P3+1 stores the argc parameter to be passed to the ** xFilter method. Registers P3+2..P3+1+argc are the argc ** additional parameters which are passed to ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. ** ** A jump is made to P2 if the result set after filtering would be empty. */ case OP_VFilter: { /* jump */ int nArg; int iQuery; const sqlite3_module *pModule; Mem *pQuery; Mem *pArgc; sqlite3_vtab_cursor *pVCur; sqlite3_vtab *pVtab; VdbeCursor *pCur; int res; int i; Mem **apArg; pQuery = &aMem[pOp->p3]; pArgc = &pQuery[1]; pCur = p->apCsr[pOp->p1]; assert( memIsValid(pQuery) ); REGISTER_TRACE(pOp->p3, pQuery); assert( pCur->eCurType==CURTYPE_VTAB ); pVCur = pCur->uc.pVCur; pVtab = pVCur->pVtab; pModule = pVtab->pModule; /* Grab the index number and argc parameters */ assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); nArg = (int)pArgc->u.i; iQuery = (int)pQuery->u.i; /* Invoke the xFilter method */ res = 0; apArg = p->apArg; for(i = 0; ixFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); sqlite3VtabImportErrmsg(p, pVtab); if( rc ) goto abort_due_to_error; res = pModule->xEof(pVCur); pCur->nullRow = 0; VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VColumn P1 P2 P3 * * ** Synopsis: r[P3]=vcolumn(P2) ** ** Store the value of the P2-th column of ** the row of the virtual-table that the ** P1 cursor is pointing to into register P3. */ case OP_VColumn: { sqlite3_vtab *pVtab; const sqlite3_module *pModule; Mem *pDest; sqlite3_context sContext; VdbeCursor *pCur = p->apCsr[pOp->p1]; assert( pCur->eCurType==CURTYPE_VTAB ); assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); if( pCur->nullRow ){ sqlite3VdbeMemSetNull(pDest); break; } pVtab = pCur->uc.pVCur->pVtab; pModule = pVtab->pModule; assert( pModule->xColumn ); memset(&sContext, 0, sizeof(sContext)); sContext.pOut = pDest; MemSetTypeFlag(pDest, MEM_Null); rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); sqlite3VtabImportErrmsg(p, pVtab); if( sContext.isError ){ rc = sContext.isError; } sqlite3VdbeChangeEncoding(pDest, encoding); REGISTER_TRACE(pOp->p3, pDest); UPDATE_MAX_BLOBSIZE(pDest); if( sqlite3VdbeMemTooBig(pDest) ){ goto too_big; } if( rc ) goto abort_due_to_error; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VNext P1 P2 * * * ** ** Advance virtual table P1 to the next row in its result set and ** jump to instruction P2. Or, if the virtual table has reached ** the end of its result set, then fall through to the next instruction. */ case OP_VNext: { /* jump */ sqlite3_vtab *pVtab; const sqlite3_module *pModule; int res; VdbeCursor *pCur; res = 0; pCur = p->apCsr[pOp->p1]; assert( pCur->eCurType==CURTYPE_VTAB ); if( pCur->nullRow ){ break; } pVtab = pCur->uc.pVCur->pVtab; pModule = pVtab->pModule; assert( pModule->xNext ); /* Invoke the xNext() method of the module. There is no way for the ** underlying implementation to return an error if one occurs during ** xNext(). Instead, if an error occurs, true is returned (indicating that ** data is available) and the error code returned when xColumn or ** some other method is next invoked on the save virtual table cursor. */ rc = pModule->xNext(pCur->uc.pVCur); sqlite3VtabImportErrmsg(p, pVtab); if( rc ) goto abort_due_to_error; res = pModule->xEof(pCur->uc.pVCur); VdbeBranchTaken(!res,2); if( !res ){ /* If there is data, jump to P2 */ goto jump_to_p2_and_check_for_interrupt; } goto check_for_interrupt; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VRename P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xRename method. The value ** in register P1 is passed as the zName argument to the xRename method. */ case OP_VRename: { sqlite3_vtab *pVtab; Mem *pName; pVtab = pOp->p4.pVtab->pVtab; pName = &aMem[pOp->p1]; assert( pVtab->pModule->xRename ); assert( memIsValid(pName) ); assert( p->readOnly==0 ); REGISTER_TRACE(pOp->p1, pName); assert( pName->flags & MEM_Str ); testcase( pName->enc==SQLITE_UTF8 ); testcase( pName->enc==SQLITE_UTF16BE ); testcase( pName->enc==SQLITE_UTF16LE ); rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); if( rc ) goto abort_due_to_error; rc = pVtab->pModule->xRename(pVtab, pName->z); sqlite3VtabImportErrmsg(p, pVtab); p->expired = 0; if( rc ) goto abort_due_to_error; break; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VUpdate P1 P2 P3 P4 P5 ** Synopsis: data=r[P3@P2] ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xUpdate method. P2 values ** are contiguous memory cells starting at P3 to pass to the xUpdate ** invocation. The value in register (P3+P2-1) corresponds to the ** p2th element of the argv array passed to xUpdate. ** ** The xUpdate method will do a DELETE or an INSERT or both. ** The argv[0] element (which corresponds to memory cell P3) ** is the rowid of a row to delete. If argv[0] is NULL then no ** deletion occurs. The argv[1] element is the rowid of the new ** row. This can be NULL to have the virtual table select the new ** rowid for itself. The subsequent elements in the array are ** the values of columns in the new row. ** ** If P2==1 then no insert is performed. argv[0] is the rowid of ** a row to delete. ** ** P1 is a boolean flag. If it is set to true and the xUpdate call ** is successful, then the value returned by sqlite3_last_insert_rowid() ** is set to the value of the rowid for the row just inserted. ** ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to ** apply in the case of a constraint failure on an insert or update. */ case OP_VUpdate: { sqlite3_vtab *pVtab; const sqlite3_module *pModule; int nArg; int i; sqlite_int64 rowid; Mem **apArg; Mem *pX; assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace ); assert( p->readOnly==0 ); pVtab = pOp->p4.pVtab->pVtab; if( pVtab==0 || NEVER(pVtab->pModule==0) ){ rc = SQLITE_LOCKED; goto abort_due_to_error; } pModule = pVtab->pModule; nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( ALWAYS(pModule->xUpdate) ){ u8 vtabOnConflict = db->vtabOnConflict; apArg = p->apArg; pX = &aMem[pOp->p3]; for(i=0; ivtabOnConflict = pOp->p5; rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); db->vtabOnConflict = vtabOnConflict; sqlite3VtabImportErrmsg(p, pVtab); if( rc==SQLITE_OK && pOp->p1 ){ assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); db->lastRowid = lastRowid = rowid; } if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ if( pOp->p5==OE_Ignore ){ rc = SQLITE_OK; }else{ p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); } }else{ p->nChange++; } if( rc ) goto abort_due_to_error; } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* Opcode: Pagecount P1 P2 * * * ** ** Write the current number of pages in database P1 to memory cell P2. */ case OP_Pagecount: { /* out2 */ pOut = out2Prerelease(p, pOp); pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); break; } #endif #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* Opcode: MaxPgcnt P1 P2 P3 * * ** ** Try to set the maximum page count for database P1 to the value in P3. ** Do not let the maximum page count fall below the current page count and ** do not change the maximum page count value if P3==0. ** ** Store the maximum page count after the change in register P2. */ case OP_MaxPgcnt: { /* out2 */ unsigned int newMax; Btree *pBt; pOut = out2Prerelease(p, pOp); pBt = db->aDb[pOp->p1].pBt; newMax = 0; if( pOp->p3 ){ newMax = sqlite3BtreeLastPage(pBt); if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; } pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); break; } #endif /* Opcode: Init P1 P2 * P4 * ** Synopsis: Start at P2 ** ** Programs contain a single instance of this opcode as the very first ** opcode. ** ** If tracing is enabled (by the sqlite3_trace()) interface, then ** the UTF-8 string contained in P4 is emitted on the trace callback. ** Or if P4 is blank, use the string returned by sqlite3_sql(). ** ** If P2 is not zero, jump to instruction P2. ** ** Increment the value of P1 so that OP_Once opcodes will jump the ** first time they are evaluated for this run. */ case OP_Init: { /* jump */ char *zTrace; int i; /* If the P4 argument is not NULL, then it must be an SQL comment string. ** The "--" string is broken up to prevent false-positives with srcck1.c. ** ** This assert() provides evidence for: ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that ** would have been returned by the legacy sqlite3_trace() interface by ** using the X argument when X begins with "--" and invoking ** sqlite3_expanded_sql(P) otherwise. */ assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); assert( pOp==p->aOp ); /* Always instruction 0 */ #ifndef SQLITE_OMIT_TRACE if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 && !p->doingRerun && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){ #ifndef SQLITE_OMIT_DEPRECATED if( db->mTrace & SQLITE_TRACE_LEGACY ){ void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace; char *z = sqlite3VdbeExpandSql(p, zTrace); x(db->pTraceArg, z); sqlite3_free(z); }else #endif { (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); } } #ifdef SQLITE_USE_FCNTL_TRACE zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); if( zTrace ){ int j; for(j=0; jnDb; j++){ if( DbMaskTest(p->btreeMask, j)==0 ) continue; sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); } } #endif /* SQLITE_USE_FCNTL_TRACE */ #ifdef SQLITE_DEBUG if( (db->flags & SQLITE_SqlTrace)!=0 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){ sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); } #endif /* SQLITE_DEBUG */ #endif /* SQLITE_OMIT_TRACE */ assert( pOp->p2>0 ); if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ for(i=1; inOp; i++){ if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; } pOp->p1 = 0; } pOp->p1++; goto jump_to_p2; } #ifdef SQLITE_ENABLE_CURSOR_HINTS /* Opcode: CursorHint P1 * * P4 * ** ** Provide a hint to cursor P1 that it only needs to return rows that ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer ** to values currently held in registers. TK_COLUMN terms in the P4 ** expression refer to columns in the b-tree to which cursor P1 is pointing. */ case OP_CursorHint: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p4type==P4_EXPR ); pC = p->apCsr[pOp->p1]; if( pC ){ assert( pC->eCurType==CURTYPE_BTREE ); sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, pOp->p4.pExpr, aMem); } break; } #endif /* SQLITE_ENABLE_CURSOR_HINTS */ /* Opcode: Noop * * * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. */ /* ** The magic Explain opcode are only inserted when explain==2 (which ** is to say when the EXPLAIN QUERY PLAN syntax is used.) ** This opcode records information from the optimizer. It is the ** the same as a no-op. This opcodesnever appears in a real VM program. */ default: { /* This is really OP_Noop and OP_Explain */ assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); break; } /***************************************************************************** ** The cases of the switch statement above this line should all be indented ** by 6 spaces. But the left-most 6 spaces have been removed to improve the ** readability. From this point on down, the normal indentation rules are ** restored. *****************************************************************************/ } #ifdef VDBE_PROFILE { u64 endTime = sqlite3Hwtime(); if( endTime>start ) pOrigOp->cycles += endTime - start; pOrigOp->cnt++; } #endif /* The following code adds nothing to the actual functionality ** of the program. It is only here for testing and debugging. ** On the other hand, it does burn CPU cycles every time through ** the evaluator loop. So we can leave it out when NDEBUG is defined. */ #ifndef NDEBUG assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeTrace ){ u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; if( rc!=0 ) printf("rc=%d\n",rc); if( opProperty & (OPFLG_OUT2) ){ registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); } if( opProperty & OPFLG_OUT3 ){ registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); } } #endif /* SQLITE_DEBUG */ #endif /* NDEBUG */ } /* The end of the for(;;) loop the loops through opcodes */ /* If we reach this point, it means that execution is finished with ** an error of some kind. */ abort_due_to_error: if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT; assert( rc ); if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); } p->rc = rc; sqlite3SystemError(db, rc); testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(rc, "statement aborts at %d: [%s] %s", (int)(pOp - aOp), p->zSql, p->zErrMsg); sqlite3VdbeHalt(p); if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); rc = SQLITE_ERROR; if( resetSchemaOnFault>0 ){ sqlite3ResetOneSchema(db, resetSchemaOnFault-1); } /* This is the only way out of this procedure. We have to ** release the mutexes on btrees that were acquired at the ** top. */ vdbe_return: db->lastRowid = lastRowid; testcase( nVmStep>0 ); p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; sqlite3VdbeLeave(p); assert( rc!=SQLITE_OK || nExtraDelete==0 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 ); return rc; /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH ** is encountered. */ too_big: sqlite3VdbeError(p, "string or blob too big"); rc = SQLITE_TOOBIG; goto abort_due_to_error; /* Jump to here if a malloc() fails. */ no_mem: sqlite3OomFault(db); sqlite3VdbeError(p, "out of memory"); rc = SQLITE_NOMEM_BKPT; goto abort_due_to_error; /* Jump to here if the sqlite3_interrupt() API sets the interrupt ** flag. */ abort_due_to_interrupt: assert( db->u1.isInterrupted ); rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; p->rc = rc; sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); goto abort_due_to_error; }