/* ** Copyright (c) 1999, 2000 D. Richard Hipp ** ** This program is free software; you can redistribute it and/or ** modify it under the terms of the GNU General Public ** License as published by the Free Software Foundation; either ** version 2 of the License, or (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ** General Public License for more details. ** ** You should have received a copy of the GNU General Public ** License along with this library; if not, write to the ** Free Software Foundation, Inc., 59 Temple Place - Suite 330, ** Boston, MA 02111-1307, USA. ** ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** when syntax rules are reduced. The routines in this file handle ** the following kinds of syntax: ** ** CREATE TABLE ** DROP TABLE ** CREATE INDEX ** DROP INDEX ** creating expressions and ID lists ** COPY ** VACUUM ** ** $Id: build.c,v 1.25 2001/01/15 22:51:09 drh Exp $ */ #include "sqliteInt.h" /* ** This routine is called after a single SQL statement has been ** parsed and we want to execute the VDBE code to implement ** that statement. Prior action routines should have already ** constructed VDBE code to do the work of the SQL statement. ** This routine just has to execute the VDBE code. ** ** Note that if an error occurred, it might be the case that ** no VDBE code was generated. */ void sqliteExec(Parse *pParse){ int rc = SQLITE_OK; if( pParse->pVdbe ){ if( pParse->explain ){ rc = sqliteVdbeList(pParse->pVdbe, pParse->xCallback, pParse->pArg, &pParse->zErrMsg); }else{ FILE *trace = (pParse->db->flags & SQLITE_VdbeTrace)!=0 ? stderr : 0; sqliteVdbeTrace(pParse->pVdbe, trace); rc = sqliteVdbeExec(pParse->pVdbe, pParse->xCallback, pParse->pArg, &pParse->zErrMsg, pParse->db->pBusyArg, pParse->db->xBusyCallback); } sqliteVdbeDelete(pParse->pVdbe); pParse->pVdbe = 0; pParse->colNamesSet = 0; pParse->rc = rc; } } /* ** Construct a new expression node and return a pointer to it. */ Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){ Expr *pNew; pNew = sqliteMalloc( sizeof(Expr) ); if( pNew==0 ) return 0; pNew->op = op; pNew->pLeft = pLeft; pNew->pRight = pRight; if( pToken ){ pNew->token = *pToken; }else{ pNew->token.z = ""; pNew->token.n = 0; } if( pLeft && pRight ){ sqliteExprSpan(pNew, &pLeft->span, &pRight->span); }else{ pNew->span = pNew->token; } return pNew; } /* ** Set the Expr.token field of the given expression to span all ** text between the two given tokens. */ void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ pExpr->span.z = pLeft->z; pExpr->span.n = pRight->n + (int)pRight->z - (int)pLeft->z; } /* ** Construct a new expression node for a function with multiple ** arguments. */ Expr *sqliteExprFunction(ExprList *pList, Token *pToken){ Expr *pNew; pNew = sqliteMalloc( sizeof(Expr) ); if( pNew==0 ) return 0; pNew->op = TK_FUNCTION; pNew->pList = pList; if( pToken ){ pNew->token = *pToken; }else{ pNew->token.z = ""; pNew->token.n = 0; } return pNew; } /* ** Recursively delete an expression tree. */ void sqliteExprDelete(Expr *p){ if( p==0 ) return; if( p->pLeft ) sqliteExprDelete(p->pLeft); if( p->pRight ) sqliteExprDelete(p->pRight); if( p->pList ) sqliteExprListDelete(p->pList); if( p->pSelect ) sqliteSelectDelete(p->pSelect); sqliteFree(p); } /* ** Locate the in-memory structure that describes the ** format of a particular database table given the name ** of that table. Return NULL if not found. */ Table *sqliteFindTable(sqlite *db, char *zName){ Table *pTable; int h; h = sqliteHashNoCase(zName, 0) % N_HASH; for(pTable=db->apTblHash[h]; pTable; pTable=pTable->pHash){ if( sqliteStrICmp(pTable->zName, zName)==0 ) return pTable; } return 0; } /* ** Locate the in-memory structure that describes the ** format of a particular index given the name ** of that index. Return NULL if not found. */ Index *sqliteFindIndex(sqlite *db, char *zName){ Index *p; int h; h = sqliteHashNoCase(zName, 0) % N_HASH; for(p=db->apIdxHash[h]; p; p=p->pHash){ if( sqliteStrICmp(p->zName, zName)==0 ) return p; } return 0; } /* ** Remove the given index from the index hash table, and free ** its memory structures. ** ** The index is removed from the database hash table, but it is ** not unlinked from the Table that is being indexed. Unlinking ** from the Table must be done by the calling function. */ static void sqliteDeleteIndex(sqlite *db, Index *pIndex){ int h; if( pIndex->zName ){ h = sqliteHashNoCase(pIndex->zName, 0) % N_HASH; if( db->apIdxHash[h]==pIndex ){ db->apIdxHash[h] = pIndex->pHash; }else{ Index *p; for(p=db->apIdxHash[h]; p && p->pHash!=pIndex; p=p->pHash){} if( p && p->pHash==pIndex ){ p->pHash = pIndex->pHash; } } } sqliteFree(pIndex); } /* ** Remove the memory data structures associated with the given ** Table. No changes are made to disk by this routine. ** ** This routine just deletes the data structure. It does not unlink ** the table data structure from the hash table. But does it destroy ** memory structures of the indices associated with the table. */ void sqliteDeleteTable(sqlite *db, Table *pTable){ int i; Index *pIndex, *pNext; if( pTable==0 ) return; for(i=0; inCol; i++){ sqliteFree(pTable->aCol[i].zName); sqliteFree(pTable->aCol[i].zDflt); } for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ pNext = pIndex->pNext; sqliteDeleteIndex(db, pIndex); } sqliteFree(pTable->zName); sqliteFree(pTable->aCol); sqliteFree(pTable); } /* ** Construct the name of a user table or index from a token. ** ** Space to hold the name is obtained from sqliteMalloc() and must ** be freed by the calling function. */ char *sqliteTableNameFromToken(Token *pName){ char *zName = sqliteStrNDup(pName->z, pName->n); sqliteDequote(zName); return zName; } /* ** Begin constructing a new table representation in memory. This is ** the first of several action routines that get called in response ** to a CREATE TABLE statement. */ void sqliteStartTable(Parse *pParse, Token *pStart, Token *pName){ Table *pTable; char *zName; pParse->sFirstToken = *pStart; zName = sqliteTableNameFromToken(pName); pTable = sqliteFindTable(pParse->db, zName); if( pTable!=0 ){ sqliteSetNString(&pParse->zErrMsg, "table ", 0, pName->z, pName->n, " already exists", 0, 0); sqliteFree(zName); pParse->nErr++; return; } if( sqliteFindIndex(pParse->db, zName) ){ sqliteSetString(&pParse->zErrMsg, "there is already an index named ", zName, 0); sqliteFree(zName); pParse->nErr++; return; } pTable = sqliteMalloc( sizeof(Table) ); if( pTable==0 ){ sqliteSetString(&pParse->zErrMsg, "out of memory", 0); pParse->nErr++; return; } pTable->zName = zName; pTable->pHash = 0; pTable->nCol = 0; pTable->aCol = 0; pTable->pIndex = 0; if( pParse->pNewTable ) sqliteDeleteTable(pParse->db, pParse->pNewTable); pParse->pNewTable = pTable; } /* ** Add a new column to the table currently being constructed. */ void sqliteAddColumn(Parse *pParse, Token *pName){ Table *p; char **pz; if( (p = pParse->pNewTable)==0 ) return; if( (p->nCol & 0x7)==0 ){ p->aCol = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0])); } if( p->aCol==0 ){ p->nCol = 0; return; } memset(&p->aCol[p->nCol], 0, sizeof(p->aCol[0])); pz = &p->aCol[p->nCol++].zName; sqliteSetNString(pz, pName->z, pName->n, 0); sqliteDequote(*pz); } /* ** The given token is the default value for the last column added to ** the table currently under construction. If "minusFlag" is true, it ** means the value token was preceded by a minus sign. */ void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){ Table *p; int i; char **pz; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; pz = &p->aCol[i].zDflt; if( minusFlag ){ sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0); }else{ sqliteSetNString(pz, pVal->z, pVal->n, 0); } sqliteDequote(*pz); } /* ** This routine is called to report the final ")" that terminates ** a CREATE TABLE statement. ** ** The table structure is added to the internal hash tables. ** ** An entry for the table is made in the master table on disk, ** unless initFlag==1. When initFlag==1, it means we are reading ** the master table because we just connected to the database, so ** the entry for this table already exists in the master table. ** We do not want to create it again. */ void sqliteEndTable(Parse *pParse, Token *pEnd){ Table *p; int h; int addMeta; /* True to insert a meta records into the file */ if( pParse->nErr ) return; p = pParse->pNewTable; addMeta = p!=0 && pParse->db->nTable==1; /* Add the table to the in-memory representation of the database */ if( p!=0 && pParse->explain==0 ){ h = sqliteHashNoCase(p->zName, 0) % N_HASH; p->pHash = pParse->db->apTblHash[h]; pParse->db->apTblHash[h] = p; pParse->pNewTable = 0; pParse->db->nTable++; } /* If not initializing, then create the table on disk. */ if( !pParse->initFlag ){ static VdbeOp addTable[] = { { OP_OpenTbl, 0, 1, MASTER_NAME }, { OP_New, 0, 0, 0}, { OP_String, 0, 0, "table" }, { OP_String, 0, 0, 0}, /* 3 */ { OP_String, 0, 0, 0}, /* 4 */ { OP_String, 0, 0, 0}, /* 5 */ { OP_MakeRecord, 4, 0, 0}, { OP_Put, 0, 0, 0}, }; static VdbeOp addVersion[] = { { OP_New, 0, 0, 0}, { OP_String, 0, 0, "meta" }, { OP_String, 0, 0, "" }, { OP_String, 0, 0, "" }, { OP_String, 0, 0, "file format 2" }, { OP_MakeRecord, 4, 0, 0}, { OP_Put, 0, 0, 0}, }; int n, base; Vdbe *v; v = sqliteGetVdbe(pParse); if( v==0 ) return; n = (int)pEnd->z - (int)pParse->sFirstToken.z + 1; base = sqliteVdbeAddOpList(v, ArraySize(addTable), addTable); sqliteVdbeChangeP3(v, base+3, p->zName, 0); sqliteVdbeChangeP3(v, base+4, p->zName, 0); sqliteVdbeChangeP3(v, base+5, pParse->sFirstToken.z, n); if( addMeta ){ sqliteVdbeAddOpList(v, ArraySize(addVersion), addVersion); } sqliteVdbeAddOp(v, OP_Close, 0, 0, 0, 0); } } /* ** Given a token, look up a table with that name. If not found, leave ** an error for the parser to find and return NULL. */ Table *sqliteTableFromToken(Parse *pParse, Token *pTok){ char *zName = sqliteTableNameFromToken(pTok); Table *pTab = sqliteFindTable(pParse->db, zName); sqliteFree(zName); if( pTab==0 ){ sqliteSetNString(&pParse->zErrMsg, "no such table: ", 0, pTok->z, pTok->n, 0); pParse->nErr++; } return pTab; } /* ** This routine is called to do the work of a DROP TABLE statement. */ void sqliteDropTable(Parse *pParse, Token *pName){ Table *pTable; int h; Vdbe *v; int base; pTable = sqliteTableFromToken(pParse, pName); if( pTable==0 ) return; if( pTable->readOnly ){ sqliteSetString(&pParse->zErrMsg, "table ", pTable->zName, " may not be dropped", 0); pParse->nErr++; return; } /* Generate code to remove the table from the master table ** on disk. */ v = sqliteGetVdbe(pParse); if( v ){ static VdbeOp dropTable[] = { { OP_OpenTbl, 0, 1, MASTER_NAME }, { OP_ListOpen, 0, 0, 0}, { OP_String, 0, 0, 0}, /* 2 */ { OP_Next, 0, ADDR(10), 0}, /* 3 */ { OP_Dup, 0, 0, 0}, { OP_Field, 0, 2, 0}, { OP_Ne, 0, ADDR(3), 0}, { OP_Key, 0, 0, 0}, { OP_ListWrite, 0, 0, 0}, { OP_Goto, 0, ADDR(3), 0}, { OP_ListRewind, 0, 0, 0}, /* 10 */ { OP_ListRead, 0, ADDR(14), 0}, /* 11 */ { OP_Delete, 0, 0, 0}, { OP_Goto, 0, ADDR(11), 0}, { OP_Destroy, 0, 0, 0}, /* 14 */ { OP_Close, 0, 0, 0}, }; Index *pIdx; base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable); sqliteVdbeChangeP3(v, base+2, pTable->zName, 0); sqliteVdbeChangeP3(v, base+14, pTable->zName, 0); for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){ sqliteVdbeAddOp(v, OP_Destroy, 0, 0, pIdx->zName, 0); } } /* Remove the in-memory table structure and free its memory. ** ** Exception: if the SQL statement began with the EXPLAIN keyword, ** then no changes are made. */ if( !pParse->explain ){ h = sqliteHashNoCase(pTable->zName, 0) % N_HASH; if( pParse->db->apTblHash[h]==pTable ){ pParse->db->apTblHash[h] = pTable->pHash; }else{ Table *p; for(p=pParse->db->apTblHash[h]; p && p->pHash!=pTable; p=p->pHash){} if( p && p->pHash==pTable ){ p->pHash = pTable->pHash; } } pParse->db->nTable--; sqliteDeleteTable(pParse->db, pTable); } } /* ** Create a new index for an SQL table. pIndex is the name of the index ** and pTable is the name of the table that is to be indexed. Both will ** be NULL for a primary key. In that case, use pParse->pNewTable as the ** table to be indexed. ** ** pList is a list of columns to be indexed. pList will be NULL if the ** most recently added column of the table is labeled as the primary key. */ void sqliteCreateIndex( Parse *pParse, /* All information about this parse */ Token *pName, /* Name of the index. May be NULL */ Token *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */ IdList *pList, /* A list of columns to be indexed */ Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */ Token *pEnd /* The ")" that closes the CREATE INDEX statement */ ){ Table *pTab; /* Table to be indexed */ Index *pIndex; /* The index to be created */ char *zName = 0; int i, j, h; Token nullId; /* Fake token for an empty ID list */ /* ** Find the table that is to be indexed. Return early if not found. */ if( pTable!=0 ){ pTab = sqliteTableFromToken(pParse, pTable); }else{ pTab = pParse->pNewTable; } if( pTab==0 || pParse->nErr ) goto exit_create_index; if( pTab->readOnly ){ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " may not have new indices added", 0); pParse->nErr++; goto exit_create_index; } /* ** Find the name of the index. Make sure there is not already another ** index or table with the same name. */ if( pName ){ zName = sqliteTableNameFromToken(pName); }else{ zName = 0; sqliteSetString(&zName, pTab->zName, "__primary_key", 0); } if( sqliteFindIndex(pParse->db, zName) ){ sqliteSetString(&pParse->zErrMsg, "index ", zName, " already exists", 0); pParse->nErr++; goto exit_create_index; } if( sqliteFindTable(pParse->db, zName) ){ sqliteSetString(&pParse->zErrMsg, "there is already a table named ", zName, 0); pParse->nErr++; goto exit_create_index; } /* If pList==0, it means this routine was called to make a primary ** key out of the last column added to the table under construction. ** So create a fake list to simulate this. */ if( pList==0 ){ nullId.z = pTab->aCol[pTab->nCol-1].zName; nullId.n = strlen(nullId.z); pList = sqliteIdListAppend(0, &nullId); if( pList==0 ) goto exit_create_index; } /* ** Allocate the index structure. */ pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 + sizeof(int)*pList->nId ); if( pIndex==0 ){ sqliteSetString(&pParse->zErrMsg, "out of memory", 0); pParse->nErr++; goto exit_create_index; } pIndex->aiColumn = (int*)&pIndex[1]; pIndex->zName = (char*)&pIndex->aiColumn[pList->nId]; strcpy(pIndex->zName, zName); pIndex->pTable = pTab; pIndex->nColumn = pList->nId; /* Scan the names of the columns of the table to be indexed and ** load the column indices into the Index structure. Report an error ** if any column is not found. */ for(i=0; inId; i++){ for(j=0; jnCol; j++){ if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break; } if( j>=pTab->nCol ){ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " has no column named ", pList->a[i].zName, 0); pParse->nErr++; sqliteFree(pIndex); goto exit_create_index; } pIndex->aiColumn[i] = j; } /* Link the new Index structure to its table and to the other ** in-memory database structures. */ if( pParse->explain==0 ){ h = sqliteHashNoCase(pIndex->zName, 0) % N_HASH; pIndex->pHash = pParse->db->apIdxHash[h]; pParse->db->apIdxHash[h] = pIndex; pIndex->pNext = pTab->pIndex; pTab->pIndex = pIndex; } /* If the initFlag is 0 then create the index on disk. This ** involves writing the index into the master table and filling in the ** index with the current table contents. ** ** The initFlag is 0 when the user first enters a CREATE INDEX ** command. The initFlag is 1 when a database is opened and ** CREATE INDEX statements are read out of the master table. In ** the latter case the index already exists on disk, which is why ** we don't want to recreate it. */ if( pParse->initFlag==0 ){ static VdbeOp addTable[] = { { OP_OpenTbl, 2, 1, MASTER_NAME}, { OP_New, 2, 0, 0}, { OP_String, 0, 0, "index"}, { OP_String, 0, 0, 0}, /* 3 */ { OP_String, 0, 0, 0}, /* 4 */ { OP_String, 0, 0, 0}, /* 5 */ { OP_MakeRecord, 4, 0, 0}, { OP_Put, 2, 0, 0}, { OP_Close, 2, 0, 0}, }; int n; Vdbe *v = pParse->pVdbe; int lbl1, lbl2; int i; v = sqliteGetVdbe(pParse); if( v==0 ) goto exit_create_index; sqliteVdbeAddOp(v, OP_OpenTbl, 0, 0, pTab->zName, 0); sqliteVdbeAddOp(v, OP_OpenIdx, 1, 1, pIndex->zName, 0); if( pStart && pEnd ){ int base; n = (int)pEnd->z - (int)pStart->z + 1; base = sqliteVdbeAddOpList(v, ArraySize(addTable), addTable); sqliteVdbeChangeP3(v, base+3, pIndex->zName, 0); sqliteVdbeChangeP3(v, base+4, pTab->zName, 0); sqliteVdbeChangeP3(v, base+5, pStart->z, n); } lbl1 = sqliteVdbeMakeLabel(v); lbl2 = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_Next, 0, lbl2, 0, lbl1); sqliteVdbeAddOp(v, OP_Key, 0, 0, 0, 0); for(i=0; inColumn; i++){ sqliteVdbeAddOp(v, OP_Field, 0, pIndex->aiColumn[i], 0, 0); } sqliteVdbeAddOp(v, OP_MakeKey, pIndex->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_PutIdx, 1, 0, 0, 0); sqliteVdbeAddOp(v, OP_Goto, 0, lbl1, 0, 0); sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, lbl2); sqliteVdbeAddOp(v, OP_Close, 1, 0, 0, 0); sqliteVdbeAddOp(v, OP_Close, 0, 0, 0, 0); } /* Reclaim memory on an EXPLAIN call. */ if( pParse->explain ){ sqliteFree(pIndex); } /* Clean up before exiting */ exit_create_index: sqliteIdListDelete(pList); sqliteFree(zName); return; } /* ** This routine will drop an existing named index. */ void sqliteDropIndex(Parse *pParse, Token *pName){ Index *pIndex; char *zName; Vdbe *v; zName = sqliteTableNameFromToken(pName); pIndex = sqliteFindIndex(pParse->db, zName); sqliteFree(zName); if( pIndex==0 ){ sqliteSetNString(&pParse->zErrMsg, "no such index: ", 0, pName->z, pName->n, 0); pParse->nErr++; return; } /* Generate code to remove the index and from the master table */ v = sqliteGetVdbe(pParse); if( v ){ static VdbeOp dropIndex[] = { { OP_OpenTbl, 0, 1, MASTER_NAME}, { OP_ListOpen, 0, 0, 0}, { OP_String, 0, 0, 0}, /* 2 */ { OP_Next, 0, ADDR(9), 0}, /* 3 */ { OP_Dup, 0, 0, 0}, { OP_Field, 0, 1, 0}, { OP_Ne, 0, ADDR(3), 0}, { OP_Key, 0, 0, 0}, { OP_Delete, 0, 0, 0}, { OP_Destroy, 0, 0, 0}, /* 9 */ { OP_Close, 0, 0, 0}, }; int base; base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex); sqliteVdbeChangeP3(v, base+2, pIndex->zName, 0); sqliteVdbeChangeP3(v, base+9, pIndex->zName, 0); } /* Remove the index structure and free its memory. Except if the ** EXPLAIN keyword is present, no changes are made. */ if( !pParse->explain ){ if( pIndex->pTable->pIndex==pIndex ){ pIndex->pTable->pIndex = pIndex->pNext; }else{ Index *p; for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} if( p && p->pNext==pIndex ){ p->pNext = pIndex->pNext; } } sqliteDeleteIndex(pParse->db, pIndex); } } /* ** Add a new element to the end of an expression list. If pList is ** initially NULL, then create a new expression list. */ ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ int i; if( pList==0 ){ pList = sqliteMalloc( sizeof(ExprList) ); } if( pList==0 ) return 0; if( (pList->nExpr & 7)==0 ){ int n = pList->nExpr + 8; pList->a = sqliteRealloc(pList->a, n*sizeof(pList->a[0])); if( pList->a==0 ){ pList->nExpr = 0; return pList; } } i = pList->nExpr++; pList->a[i].pExpr = pExpr; pList->a[i].zName = 0; if( pName ){ sqliteSetNString(&pList->a[i].zName, pName->z, pName->n, 0); sqliteDequote(pList->a[i].zName); } return pList; } /* ** Delete an entire expression list. */ void sqliteExprListDelete(ExprList *pList){ int i; if( pList==0 ) return; for(i=0; inExpr; i++){ sqliteExprDelete(pList->a[i].pExpr); sqliteFree(pList->a[i].zName); } sqliteFree(pList->a); sqliteFree(pList); } /* ** Append a new element to the given IdList. Create a new IdList if ** need be. */ IdList *sqliteIdListAppend(IdList *pList, Token *pToken){ if( pList==0 ){ pList = sqliteMalloc( sizeof(IdList) ); if( pList==0 ) return 0; } if( (pList->nId & 7)==0 ){ pList->a = sqliteRealloc(pList->a, (pList->nId+8)*sizeof(pList->a[0]) ); if( pList->a==0 ){ pList->nId = 0; return pList; } } memset(&pList->a[pList->nId], 0, sizeof(pList->a[0])); if( pToken ){ sqliteSetNString(&pList->a[pList->nId].zName, pToken->z, pToken->n, 0); sqliteDequote(pList->a[pList->nId].zName); } pList->nId++; return pList; } /* ** Add an alias to the last identifier on the given identifier list. */ void sqliteIdListAddAlias(IdList *pList, Token *pToken){ if( pList && pList->nId>0 ){ int i = pList->nId - 1; sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0); sqliteDequote(pList->a[i].zAlias); } } /* ** Delete an entire IdList */ void sqliteIdListDelete(IdList *pList){ int i; if( pList==0 ) return; for(i=0; inId; i++){ sqliteFree(pList->a[i].zName); sqliteFree(pList->a[i].zAlias); } sqliteFree(pList->a); sqliteFree(pList); } /* ** The COPY command is for compatibility with PostgreSQL and specificially ** for the ability to read the output of pg_dump. The format is as ** follows: ** ** COPY table FROM file [USING DELIMITERS string] ** ** "table" is an existing table name. We will read lines of code from ** file to fill this table with data. File might be "stdin". The optional ** delimiter string identifies the field separators. The default is a tab. */ void sqliteCopy( Parse *pParse, /* The parser context */ Token *pTableName, /* The name of the table into which we will insert */ Token *pFilename, /* The file from which to obtain information */ Token *pDelimiter /* Use this as the field delimiter */ ){ Table *pTab; char *zTab; int i, j; Vdbe *v; int addr, end; Index *pIdx; zTab = sqliteTableNameFromToken(pTableName); pTab = sqliteFindTable(pParse->db, zTab); sqliteFree(zTab); if( pTab==0 ){ sqliteSetNString(&pParse->zErrMsg, "no such table: ", 0, pTableName->z, pTableName->n, 0); pParse->nErr++; goto copy_cleanup; } if( pTab->readOnly ){ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " may not be modified", 0); pParse->nErr++; goto copy_cleanup; } v = sqliteGetVdbe(pParse); if( v ){ addr = sqliteVdbeAddOp(v, OP_FileOpen, 0, 0, 0, 0); sqliteVdbeChangeP3(v, addr, pFilename->z, pFilename->n); sqliteVdbeDequoteP3(v, addr); sqliteVdbeAddOp(v, OP_OpenTbl, 0, 1, pTab->zName, 0); for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ sqliteVdbeAddOp(v, OP_OpenIdx, i, 1, pIdx->zName, 0); } end = sqliteVdbeMakeLabel(v); addr = sqliteVdbeAddOp(v, OP_FileRead, pTab->nCol, end, 0, 0); if( pDelimiter ){ sqliteVdbeChangeP3(v, addr, pDelimiter->z, pDelimiter->n); sqliteVdbeDequoteP3(v, addr); }else{ sqliteVdbeChangeP3(v, addr, "\t", 1); } sqliteVdbeAddOp(v, OP_New, 0, 0, 0, 0); if( pTab->pIndex ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); } for(i=0; inCol; i++){ sqliteVdbeAddOp(v, OP_FileField, i, 0, 0, 0); } sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0, 0, 0); sqliteVdbeAddOp(v, OP_Put, 0, 0, 0, 0); for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( pIdx->pNext ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); } for(j=0; jnColumn; j++){ sqliteVdbeAddOp(v, OP_FileField, pIdx->aiColumn[j], 0, 0, 0); } sqliteVdbeAddOp(v, OP_MakeKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_PutIdx, i, 0, 0, 0); } sqliteVdbeAddOp(v, OP_Goto, 0, addr, 0, 0); sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, end); } copy_cleanup: return; } /* ** The non-standard VACUUM command is used to clean up the database, ** collapse free space, etc. It is modelled after the VACUUM command ** in PostgreSQL. */ void sqliteVacuum(Parse *pParse, Token *pTableName){ char *zName; Vdbe *v; if( pTableName ){ zName = sqliteTableNameFromToken(pTableName); }else{ zName = 0; } if( zName && sqliteFindIndex(pParse->db, zName)==0 && sqliteFindTable(pParse->db, zName)==0 ){ sqliteSetString(&pParse->zErrMsg, "no such table or index: ", zName, 0); pParse->nErr++; goto vacuum_cleanup; } v = sqliteGetVdbe(pParse); if( v==0 ) goto vacuum_cleanup; if( zName ){ sqliteVdbeAddOp(v, OP_Reorganize, 0, 0, zName, 0); }else{ int h; Table *pTab; Index *pIdx; for(h=0; hdb->apTblHash[h]; pTab; pTab=pTab->pHash){ sqliteVdbeAddOp(v, OP_Reorganize, 0, 0, pTab->zName, 0); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sqliteVdbeAddOp(v, OP_Reorganize, 0, 0, pIdx->zName, 0); } } } } vacuum_cleanup: sqliteFree(zName); return; }