/* ** 2011 July 9 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code for the VdbeSorter object, used in concert with ** a VdbeCursor to sort large numbers of keys (as may be required, for ** example, by CREATE INDEX statements on tables too large to fit in main ** memory). */ #include "sqliteInt.h" #include "vdbeInt.h" typedef struct VdbeSorterIter VdbeSorterIter; typedef struct SorterRecord SorterRecord; typedef struct FileWriter FileWriter; /* ** NOTES ON DATA STRUCTURE USED FOR N-WAY MERGES: ** ** As keys are added to the sorter, they are written to disk in a series ** of sorted packed-memory-arrays (PMAs). The size of each PMA is roughly ** the same as the cache-size allowed for temporary databases. In order ** to allow the caller to extract keys from the sorter in sorted order, ** all PMAs currently stored on disk must be merged together. This comment ** describes the data structure used to do so. The structure supports ** merging any number of arrays in a single pass with no redundant comparison ** operations. ** ** The aIter[] array contains an iterator for each of the PMAs being merged. ** An aIter[] iterator either points to a valid key or else is at EOF. For ** the purposes of the paragraphs below, we assume that the array is actually ** N elements in size, where N is the smallest power of 2 greater to or equal ** to the number of iterators being merged. The extra aIter[] elements are ** treated as if they are empty (always at EOF). ** ** The aTree[] array is also N elements in size. The value of N is stored in ** the VdbeSorter.nTree variable. ** ** The final (N/2) elements of aTree[] contain the results of comparing ** pairs of iterator keys together. Element i contains the result of ** comparing aIter[2*i-N] and aIter[2*i-N+1]. Whichever key is smaller, the ** aTree element is set to the index of it. ** ** For the purposes of this comparison, EOF is considered greater than any ** other key value. If the keys are equal (only possible with two EOF ** values), it doesn't matter which index is stored. ** ** The (N/4) elements of aTree[] that precede the final (N/2) described ** above contains the index of the smallest of each block of 4 iterators. ** And so on. So that aTree[1] contains the index of the iterator that ** currently points to the smallest key value. aTree[0] is unused. ** ** Example: ** ** aIter[0] -> Banana ** aIter[1] -> Feijoa ** aIter[2] -> Elderberry ** aIter[3] -> Currant ** aIter[4] -> Grapefruit ** aIter[5] -> Apple ** aIter[6] -> Durian ** aIter[7] -> EOF ** ** aTree[] = { X, 5 0, 5 0, 3, 5, 6 } ** ** The current element is "Apple" (the value of the key indicated by ** iterator 5). When the Next() operation is invoked, iterator 5 will ** be advanced to the next key in its segment. Say the next key is ** "Eggplant": ** ** aIter[5] -> Eggplant ** ** The contents of aTree[] are updated first by comparing the new iterator ** 5 key to the current key of iterator 4 (still "Grapefruit"). The iterator ** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree. ** The value of iterator 6 - "Durian" - is now smaller than that of iterator ** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (BananaaAlloc); sqlite3DbFree(db, pIter->aBuffer); memset(pIter, 0, sizeof(VdbeSorterIter)); } /* ** Read nByte bytes of data from the stream of data iterated by object p. ** If successful, set *ppOut to point to a buffer containing the data ** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite ** error code. ** ** The buffer indicated by *ppOut may only be considered valid until the ** next call to this function. */ static int vdbeSorterIterRead( sqlite3 *db, /* Database handle (for malloc) */ VdbeSorterIter *p, /* Iterator */ int nByte, /* Bytes of data to read */ u8 **ppOut /* OUT: Pointer to buffer containing data */ ){ int iBuf; /* Offset within buffer to read from */ int nAvail; /* Bytes of data available in buffer */ assert( p->aBuffer ); /* If there is no more data to be read from the buffer, read the next ** p->nBuffer bytes of data from the file into it. Or, if there are less ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */ iBuf = p->iReadOff % p->nBuffer; if( iBuf==0 ){ int nRead; /* Bytes to read from disk */ int rc; /* sqlite3OsRead() return code */ /* Determine how many bytes of data to read. */ if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){ nRead = p->nBuffer; }else{ nRead = (int)(p->iEof - p->iReadOff); } assert( nRead>0 ); /* Read data from the file. Return early if an error occurs. */ rc = sqlite3OsRead(p->pFile, p->aBuffer, nRead, p->iReadOff); assert( rc!=SQLITE_IOERR_SHORT_READ ); if( rc!=SQLITE_OK ) return rc; } nAvail = p->nBuffer - iBuf; if( nByte<=nAvail ){ /* The requested data is available in the in-memory buffer. In this ** case there is no need to make a copy of the data, just return a ** pointer into the buffer to the caller. */ *ppOut = &p->aBuffer[iBuf]; p->iReadOff += nByte; }else{ /* The requested data is not all available in the in-memory buffer. ** In this case, allocate space at p->aAlloc[] to copy the requested ** range into. Then return a copy of pointer p->aAlloc to the caller. */ int nRem; /* Bytes remaining to copy */ /* Extend the p->aAlloc[] allocation if required. */ if( p->nAllocnAlloc*2; while( nByte>nNew ) nNew = nNew*2; p->aAlloc = sqlite3DbReallocOrFree(db, p->aAlloc, nNew); if( !p->aAlloc ) return SQLITE_NOMEM; p->nAlloc = nNew; } /* Copy as much data as is available in the buffer into the start of ** p->aAlloc[]. */ memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail); p->iReadOff += nAvail; nRem = nByte - nAvail; /* The following loop copies up to p->nBuffer bytes per iteration into ** the p->aAlloc[] buffer. */ while( nRem>0 ){ int rc; /* vdbeSorterIterRead() return code */ int nCopy; /* Number of bytes to copy */ u8 *aNext; /* Pointer to buffer to copy data from */ nCopy = nRem; if( nRem>p->nBuffer ) nCopy = p->nBuffer; rc = vdbeSorterIterRead(db, p, nCopy, &aNext); if( rc!=SQLITE_OK ) return rc; assert( aNext!=p->aAlloc ); memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy); nRem -= nCopy; } *ppOut = p->aAlloc; } return SQLITE_OK; } /* ** Read a varint from the stream of data accessed by p. Set *pnOut to ** the value read. */ static int vdbeSorterIterVarint(sqlite3 *db, VdbeSorterIter *p, u64 *pnOut){ int iBuf; iBuf = p->iReadOff % p->nBuffer; if( iBuf && (p->nBuffer-iBuf)>=9 ){ p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut); }else{ u8 aVarint[16], *a; int i = 0, rc; do{ rc = vdbeSorterIterRead(db, p, 1, &a); if( rc ) return rc; aVarint[(i++)&0xf] = a[0]; }while( (a[0]&0x80)!=0 ); sqlite3GetVarint(aVarint, pnOut); } return SQLITE_OK; } /* ** Advance iterator pIter to the next key in its PMA. Return SQLITE_OK if ** no error occurs, or an SQLite error code if one does. */ static int vdbeSorterIterNext( sqlite3 *db, /* Database handle (for sqlite3DbMalloc() ) */ VdbeSorterIter *pIter /* Iterator to advance */ ){ int rc; /* Return Code */ u64 nRec = 0; /* Size of record in bytes */ if( pIter->iReadOff>=pIter->iEof ){ /* This is an EOF condition */ vdbeSorterIterZero(db, pIter); return SQLITE_OK; } rc = vdbeSorterIterVarint(db, pIter, &nRec); if( rc==SQLITE_OK ){ pIter->nKey = (int)nRec; rc = vdbeSorterIterRead(db, pIter, (int)nRec, &pIter->aKey); } return rc; } /* ** Initialize iterator pIter to scan through the PMA stored in file pFile ** starting at offset iStart and ending at offset iEof-1. This function ** leaves the iterator pointing to the first key in the PMA (or EOF if the ** PMA is empty). */ static int vdbeSorterIterInit( sqlite3 *db, /* Database handle */ const VdbeSorter *pSorter, /* Sorter object */ i64 iStart, /* Start offset in pFile */ VdbeSorterIter *pIter, /* Iterator to populate */ i64 *pnByte /* IN/OUT: Increment this value by PMA size */ ){ int rc = SQLITE_OK; int nBuf; nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt); assert( pSorter->iWriteOff>iStart ); assert( pIter->aAlloc==0 ); assert( pIter->aBuffer==0 ); pIter->pFile = pSorter->pTemp1; pIter->iReadOff = iStart; pIter->nAlloc = 128; pIter->aAlloc = (u8 *)sqlite3DbMallocRaw(db, pIter->nAlloc); pIter->nBuffer = nBuf; pIter->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf); if( !pIter->aBuffer ){ rc = SQLITE_NOMEM; }else{ int iBuf; iBuf = iStart % nBuf; if( iBuf ){ int nRead = nBuf - iBuf; if( (iStart + nRead) > pSorter->iWriteOff ){ nRead = (int)(pSorter->iWriteOff - iStart); } rc = sqlite3OsRead( pSorter->pTemp1, &pIter->aBuffer[iBuf], nRead, iStart ); assert( rc!=SQLITE_IOERR_SHORT_READ ); } if( rc==SQLITE_OK ){ u64 nByte; /* Size of PMA in bytes */ pIter->iEof = pSorter->iWriteOff; rc = vdbeSorterIterVarint(db, pIter, &nByte); pIter->iEof = pIter->iReadOff + nByte; *pnByte += nByte; } } if( rc==SQLITE_OK ){ rc = vdbeSorterIterNext(db, pIter); } return rc; } /* ** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2, ** size nKey2 bytes). Argument pKeyInfo supplies the collation functions ** used by the comparison. If an error occurs, return an SQLite error code. ** Otherwise, return SQLITE_OK and set *pRes to a negative, zero or positive ** value, depending on whether key1 is smaller, equal to or larger than key2. ** ** If the bOmitRowid argument is non-zero, assume both keys end in a rowid ** field. For the purposes of the comparison, ignore it. Also, if bOmitRowid ** is true and key1 contains even a single NULL value, it is considered to ** be less than key2. Even if key2 also contains NULL values. ** ** If pKey2 is passed a NULL pointer, then it is assumed that the pCsr->aSpace ** has been allocated and contains an unpacked record that is used as key2. */ static void vdbeSorterCompare( const VdbeCursor *pCsr, /* Cursor object (for pKeyInfo) */ int nIgnore, /* Ignore the last nIgnore fields */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2, /* Right side of comparison */ int *pRes /* OUT: Result of comparison */ ){ KeyInfo *pKeyInfo = pCsr->pKeyInfo; VdbeSorter *pSorter = pCsr->pSorter; UnpackedRecord *r2 = pSorter->pUnpacked; int i; if( pKey2 ){ sqlite3VdbeRecordUnpack(pKeyInfo, nKey2, pKey2, r2); } if( nIgnore ){ r2->nField = pKeyInfo->nField - nIgnore; assert( r2->nField>0 ); for(i=0; inField; i++){ if( r2->aMem[i].flags & MEM_Null ){ *pRes = -1; return; } } assert( r2->default_rc==0 ); } *pRes = sqlite3VdbeRecordCompare(nKey1, pKey1, r2, 0); } /* ** This function is called to compare two iterator keys when merging ** multiple b-tree segments. Parameter iOut is the index of the aTree[] ** value to recalculate. */ static int vdbeSorterDoCompare(const VdbeCursor *pCsr, int iOut){ VdbeSorter *pSorter = pCsr->pSorter; int i1; int i2; int iRes; VdbeSorterIter *p1; VdbeSorterIter *p2; assert( iOutnTree && iOut>0 ); if( iOut>=(pSorter->nTree/2) ){ i1 = (iOut - pSorter->nTree/2) * 2; i2 = i1 + 1; }else{ i1 = pSorter->aTree[iOut*2]; i2 = pSorter->aTree[iOut*2+1]; } p1 = &pSorter->aIter[i1]; p2 = &pSorter->aIter[i2]; if( p1->pFile==0 ){ iRes = i2; }else if( p2->pFile==0 ){ iRes = i1; }else{ int res; assert( pCsr->pSorter->pUnpacked!=0 ); /* allocated in vdbeSorterMerge() */ vdbeSorterCompare( pCsr, 0, p1->aKey, p1->nKey, p2->aKey, p2->nKey, &res ); if( res<=0 ){ iRes = i1; }else{ iRes = i2; } } pSorter->aTree[iOut] = iRes; return SQLITE_OK; } /* ** Initialize the temporary index cursor just opened as a sorter cursor. */ int sqlite3VdbeSorterInit(sqlite3 *db, VdbeCursor *pCsr){ int pgsz; /* Page size of main database */ int mxCache; /* Cache size */ VdbeSorter *pSorter; /* The new sorter */ char *d; /* Dummy */ assert( pCsr->pKeyInfo && pCsr->pBt==0 ); pCsr->pSorter = pSorter = sqlite3DbMallocZero(db, sizeof(VdbeSorter)); if( pSorter==0 ){ return SQLITE_NOMEM; } pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pCsr->pKeyInfo, 0, 0, &d); if( pSorter->pUnpacked==0 ) return SQLITE_NOMEM; assert( pSorter->pUnpacked==(UnpackedRecord *)d ); if( !sqlite3TempInMemory(db) ){ pgsz = sqlite3BtreeGetPageSize(db->aDb[0].pBt); pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz; mxCache = db->aDb[0].pSchema->cache_size; if( mxCachemxPmaSize = mxCache * pgsz; } return SQLITE_OK; } /* ** Free the list of sorted records starting at pRecord. */ static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){ SorterRecord *p; SorterRecord *pNext; for(p=pRecord; p; p=pNext){ pNext = p->pNext; sqlite3DbFree(db, p); } } /* ** Free any cursor components allocated by sqlite3VdbeSorterXXX routines. */ void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){ VdbeSorter *pSorter = pCsr->pSorter; if( pSorter ){ if( pSorter->aIter ){ int i; for(i=0; inTree; i++){ vdbeSorterIterZero(db, &pSorter->aIter[i]); } sqlite3DbFree(db, pSorter->aIter); } if( pSorter->pTemp1 ){ sqlite3OsCloseFree(pSorter->pTemp1); } vdbeSorterRecordFree(db, pSorter->pRecord); sqlite3DbFree(db, pSorter->pUnpacked); sqlite3DbFree(db, pSorter); pCsr->pSorter = 0; } } /* ** Allocate space for a file-handle and open a temporary file. If successful, ** set *ppFile to point to the malloc'd file-handle and return SQLITE_OK. ** Otherwise, set *ppFile to 0 and return an SQLite error code. */ static int vdbeSorterOpenTempFile(sqlite3 *db, sqlite3_file **ppFile){ int dummy; return sqlite3OsOpenMalloc(db->pVfs, 0, ppFile, SQLITE_OPEN_TEMP_JOURNAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &dummy ); } /* ** Merge the two sorted lists p1 and p2 into a single list. ** Set *ppOut to the head of the new list. */ static void vdbeSorterMerge( const VdbeCursor *pCsr, /* For pKeyInfo */ SorterRecord *p1, /* First list to merge */ SorterRecord *p2, /* Second list to merge */ SorterRecord **ppOut /* OUT: Head of merged list */ ){ SorterRecord *pFinal = 0; SorterRecord **pp = &pFinal; void *pVal2 = p2 ? p2->pVal : 0; while( p1 && p2 ){ int res; vdbeSorterCompare(pCsr, 0, p1->pVal, p1->nVal, pVal2, p2->nVal, &res); if( res<=0 ){ *pp = p1; pp = &p1->pNext; p1 = p1->pNext; pVal2 = 0; }else{ *pp = p2; pp = &p2->pNext; p2 = p2->pNext; if( p2==0 ) break; pVal2 = p2->pVal; } } *pp = p1 ? p1 : p2; *ppOut = pFinal; } /* ** Sort the linked list of records headed at pCsr->pRecord. Return SQLITE_OK ** if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if an error ** occurs. */ static int vdbeSorterSort(const VdbeCursor *pCsr){ int i; SorterRecord **aSlot; SorterRecord *p; VdbeSorter *pSorter = pCsr->pSorter; aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *)); if( !aSlot ){ return SQLITE_NOMEM; } p = pSorter->pRecord; while( p ){ SorterRecord *pNext = p->pNext; p->pNext = 0; for(i=0; aSlot[i]; i++){ vdbeSorterMerge(pCsr, p, aSlot[i], &p); aSlot[i] = 0; } aSlot[i] = p; p = pNext; } p = 0; for(i=0; i<64; i++){ vdbeSorterMerge(pCsr, p, aSlot[i], &p); } pSorter->pRecord = p; sqlite3_free(aSlot); return SQLITE_OK; } /* ** Initialize a file-writer object. */ static void fileWriterInit( sqlite3 *db, /* Database (for malloc) */ sqlite3_file *pFile, /* File to write to */ FileWriter *p, /* Object to populate */ i64 iStart /* Offset of pFile to begin writing at */ ){ int nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt); memset(p, 0, sizeof(FileWriter)); p->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf); if( !p->aBuffer ){ p->eFWErr = SQLITE_NOMEM; }else{ p->iBufEnd = p->iBufStart = (iStart % nBuf); p->iWriteOff = iStart - p->iBufStart; p->nBuffer = nBuf; p->pFile = pFile; } } /* ** Write nData bytes of data to the file-write object. Return SQLITE_OK ** if successful, or an SQLite error code if an error occurs. */ static void fileWriterWrite(FileWriter *p, u8 *pData, int nData){ int nRem = nData; while( nRem>0 && p->eFWErr==0 ){ int nCopy = nRem; if( nCopy>(p->nBuffer - p->iBufEnd) ){ nCopy = p->nBuffer - p->iBufEnd; } memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy); p->iBufEnd += nCopy; if( p->iBufEnd==p->nBuffer ){ p->eFWErr = sqlite3OsWrite(p->pFile, &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, p->iWriteOff + p->iBufStart ); p->iBufStart = p->iBufEnd = 0; p->iWriteOff += p->nBuffer; } assert( p->iBufEndnBuffer ); nRem -= nCopy; } } /* ** Flush any buffered data to disk and clean up the file-writer object. ** The results of using the file-writer after this call are undefined. ** Return SQLITE_OK if flushing the buffered data succeeds or is not ** required. Otherwise, return an SQLite error code. ** ** Before returning, set *piEof to the offset immediately following the ** last byte written to the file. */ static int fileWriterFinish(sqlite3 *db, FileWriter *p, i64 *piEof){ int rc; if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){ p->eFWErr = sqlite3OsWrite(p->pFile, &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, p->iWriteOff + p->iBufStart ); } *piEof = (p->iWriteOff + p->iBufEnd); sqlite3DbFree(db, p->aBuffer); rc = p->eFWErr; memset(p, 0, sizeof(FileWriter)); return rc; } /* ** Write value iVal encoded as a varint to the file-write object. Return ** SQLITE_OK if successful, or an SQLite error code if an error occurs. */ static void fileWriterWriteVarint(FileWriter *p, u64 iVal){ int nByte; u8 aByte[10]; nByte = sqlite3PutVarint(aByte, iVal); fileWriterWrite(p, aByte, nByte); } /* ** Write the current contents of the in-memory linked-list to a PMA. Return ** SQLITE_OK if successful, or an SQLite error code otherwise. ** ** The format of a PMA is: ** ** * A varint. This varint contains the total number of bytes of content ** in the PMA (not including the varint itself). ** ** * One or more records packed end-to-end in order of ascending keys. ** Each record consists of a varint followed by a blob of data (the ** key). The varint is the number of bytes in the blob of data. */ static int vdbeSorterListToPMA(sqlite3 *db, const VdbeCursor *pCsr){ int rc = SQLITE_OK; /* Return code */ VdbeSorter *pSorter = pCsr->pSorter; FileWriter writer; memset(&writer, 0, sizeof(FileWriter)); if( pSorter->nInMemory==0 ){ assert( pSorter->pRecord==0 ); return rc; } rc = vdbeSorterSort(pCsr); /* If the first temporary PMA file has not been opened, open it now. */ if( rc==SQLITE_OK && pSorter->pTemp1==0 ){ rc = vdbeSorterOpenTempFile(db, &pSorter->pTemp1); assert( rc!=SQLITE_OK || pSorter->pTemp1 ); assert( pSorter->iWriteOff==0 ); assert( pSorter->nPMA==0 ); } if( rc==SQLITE_OK ){ SorterRecord *p; SorterRecord *pNext = 0; fileWriterInit(db, pSorter->pTemp1, &writer, pSorter->iWriteOff); pSorter->nPMA++; fileWriterWriteVarint(&writer, pSorter->nInMemory); for(p=pSorter->pRecord; p; p=pNext){ pNext = p->pNext; fileWriterWriteVarint(&writer, p->nVal); fileWriterWrite(&writer, p->pVal, p->nVal); sqlite3DbFree(db, p); } pSorter->pRecord = p; rc = fileWriterFinish(db, &writer, &pSorter->iWriteOff); } return rc; } /* ** Add a record to the sorter. */ int sqlite3VdbeSorterWrite( sqlite3 *db, /* Database handle */ const VdbeCursor *pCsr, /* Sorter cursor */ Mem *pVal /* Memory cell containing record */ ){ VdbeSorter *pSorter = pCsr->pSorter; int rc = SQLITE_OK; /* Return Code */ SorterRecord *pNew; /* New list element */ assert( pSorter ); pSorter->nInMemory += sqlite3VarintLen(pVal->n) + pVal->n; pNew = (SorterRecord *)sqlite3DbMallocRaw(db, pVal->n + sizeof(SorterRecord)); if( pNew==0 ){ rc = SQLITE_NOMEM; }else{ pNew->pVal = (void *)&pNew[1]; memcpy(pNew->pVal, pVal->z, pVal->n); pNew->nVal = pVal->n; pNew->pNext = pSorter->pRecord; pSorter->pRecord = pNew; } /* See if the contents of the sorter should now be written out. They ** are written out when either of the following are true: ** ** * The total memory allocated for the in-memory list is greater ** than (page-size * cache-size), or ** ** * The total memory allocated for the in-memory list is greater ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true. */ if( rc==SQLITE_OK && pSorter->mxPmaSize>0 && ( (pSorter->nInMemory>pSorter->mxPmaSize) || (pSorter->nInMemory>pSorter->mnPmaSize && sqlite3HeapNearlyFull()) )){ #ifdef SQLITE_DEBUG i64 nExpect = pSorter->iWriteOff + sqlite3VarintLen(pSorter->nInMemory) + pSorter->nInMemory; #endif rc = vdbeSorterListToPMA(db, pCsr); pSorter->nInMemory = 0; assert( rc!=SQLITE_OK || (nExpect==pSorter->iWriteOff) ); } return rc; } /* ** Helper function for sqlite3VdbeSorterRewind(). */ static int vdbeSorterInitMerge( sqlite3 *db, /* Database handle */ const VdbeCursor *pCsr, /* Cursor handle for this sorter */ i64 *pnByte /* Sum of bytes in all opened PMAs */ ){ VdbeSorter *pSorter = pCsr->pSorter; int rc = SQLITE_OK; /* Return code */ int i; /* Used to iterator through aIter[] */ i64 nByte = 0; /* Total bytes in all opened PMAs */ /* Initialize the iterators. */ for(i=0; iaIter[i]; rc = vdbeSorterIterInit(db, pSorter, pSorter->iReadOff, pIter, &nByte); pSorter->iReadOff = pIter->iEof; assert( rc!=SQLITE_OK || pSorter->iReadOff<=pSorter->iWriteOff ); if( rc!=SQLITE_OK || pSorter->iReadOff>=pSorter->iWriteOff ) break; } /* Initialize the aTree[] array. */ for(i=pSorter->nTree-1; rc==SQLITE_OK && i>0; i--){ rc = vdbeSorterDoCompare(pCsr, i); } *pnByte = nByte; return rc; } /* ** Once the sorter has been populated, this function is called to prepare ** for iterating through its contents in sorted order. */ int sqlite3VdbeSorterRewind(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){ VdbeSorter *pSorter = pCsr->pSorter; int rc; /* Return code */ sqlite3_file *pTemp2 = 0; /* Second temp file to use */ i64 iWrite2 = 0; /* Write offset for pTemp2 */ int nIter; /* Number of iterators used */ int nByte; /* Bytes of space required for aIter/aTree */ int N = 2; /* Power of 2 >= nIter */ assert( pSorter ); /* If no data has been written to disk, then do not do so now. Instead, ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly ** from the in-memory list. */ if( pSorter->nPMA==0 ){ *pbEof = !pSorter->pRecord; assert( pSorter->aTree==0 ); return vdbeSorterSort(pCsr); } /* Write the current in-memory list to a PMA. */ rc = vdbeSorterListToPMA(db, pCsr); if( rc!=SQLITE_OK ) return rc; /* Allocate space for aIter[] and aTree[]. */ nIter = pSorter->nPMA; if( nIter>SORTER_MAX_MERGE_COUNT ) nIter = SORTER_MAX_MERGE_COUNT; assert( nIter>0 ); while( NaIter = (VdbeSorterIter *)sqlite3DbMallocZero(db, nByte); if( !pSorter->aIter ) return SQLITE_NOMEM; pSorter->aTree = (int *)&pSorter->aIter[N]; pSorter->nTree = N; do { int iNew; /* Index of new, merged, PMA */ for(iNew=0; rc==SQLITE_OK && iNew*SORTER_MAX_MERGE_COUNTnPMA; iNew++ ){ int rc2; /* Return code from fileWriterFinish() */ FileWriter writer; /* Object used to write to disk */ i64 nWrite; /* Number of bytes in new PMA */ memset(&writer, 0, sizeof(FileWriter)); /* If there are SORTER_MAX_MERGE_COUNT or less PMAs in file pTemp1, ** initialize an iterator for each of them and break out of the loop. ** These iterators will be incrementally merged as the VDBE layer calls ** sqlite3VdbeSorterNext(). ** ** Otherwise, if pTemp1 contains more than SORTER_MAX_MERGE_COUNT PMAs, ** initialize interators for SORTER_MAX_MERGE_COUNT of them. These PMAs ** are merged into a single PMA that is written to file pTemp2. */ rc = vdbeSorterInitMerge(db, pCsr, &nWrite); assert( rc!=SQLITE_OK || pSorter->aIter[ pSorter->aTree[1] ].pFile ); if( rc!=SQLITE_OK || pSorter->nPMA<=SORTER_MAX_MERGE_COUNT ){ break; } /* Open the second temp file, if it is not already open. */ if( pTemp2==0 ){ assert( iWrite2==0 ); rc = vdbeSorterOpenTempFile(db, &pTemp2); } if( rc==SQLITE_OK ){ int bEof = 0; fileWriterInit(db, pTemp2, &writer, iWrite2); fileWriterWriteVarint(&writer, nWrite); while( rc==SQLITE_OK && bEof==0 ){ VdbeSorterIter *pIter = &pSorter->aIter[ pSorter->aTree[1] ]; assert( pIter->pFile ); fileWriterWriteVarint(&writer, pIter->nKey); fileWriterWrite(&writer, pIter->aKey, pIter->nKey); rc = sqlite3VdbeSorterNext(db, pCsr, &bEof); } rc2 = fileWriterFinish(db, &writer, &iWrite2); if( rc==SQLITE_OK ) rc = rc2; } } if( pSorter->nPMA<=SORTER_MAX_MERGE_COUNT ){ break; }else{ sqlite3_file *pTmp = pSorter->pTemp1; pSorter->nPMA = iNew; pSorter->pTemp1 = pTemp2; pTemp2 = pTmp; pSorter->iWriteOff = iWrite2; pSorter->iReadOff = 0; iWrite2 = 0; } }while( rc==SQLITE_OK ); if( pTemp2 ){ sqlite3OsCloseFree(pTemp2); } *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0); return rc; } /* ** Advance to the next element in the sorter. */ int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){ VdbeSorter *pSorter = pCsr->pSorter; int rc; /* Return code */ if( pSorter->aTree ){ int iPrev = pSorter->aTree[1];/* Index of iterator to advance */ int i; /* Index of aTree[] to recalculate */ rc = vdbeSorterIterNext(db, &pSorter->aIter[iPrev]); for(i=(pSorter->nTree+iPrev)/2; rc==SQLITE_OK && i>0; i=i/2){ rc = vdbeSorterDoCompare(pCsr, i); } *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0); }else{ SorterRecord *pFree = pSorter->pRecord; pSorter->pRecord = pFree->pNext; pFree->pNext = 0; vdbeSorterRecordFree(db, pFree); *pbEof = !pSorter->pRecord; rc = SQLITE_OK; } return rc; } /* ** Return a pointer to a buffer owned by the sorter that contains the ** current key. */ static void *vdbeSorterRowkey( const VdbeSorter *pSorter, /* Sorter object */ int *pnKey /* OUT: Size of current key in bytes */ ){ void *pKey; if( pSorter->aTree ){ VdbeSorterIter *pIter; pIter = &pSorter->aIter[ pSorter->aTree[1] ]; *pnKey = pIter->nKey; pKey = pIter->aKey; }else{ *pnKey = pSorter->pRecord->nVal; pKey = pSorter->pRecord->pVal; } return pKey; } /* ** Copy the current sorter key into the memory cell pOut. */ int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){ VdbeSorter *pSorter = pCsr->pSorter; void *pKey; int nKey; /* Sorter key to copy into pOut */ pKey = vdbeSorterRowkey(pSorter, &nKey); if( sqlite3VdbeMemGrow(pOut, nKey, 0) ){ return SQLITE_NOMEM; } pOut->n = nKey; MemSetTypeFlag(pOut, MEM_Blob); memcpy(pOut->z, pKey, nKey); return SQLITE_OK; } /* ** Compare the key in memory cell pVal with the key that the sorter cursor ** passed as the first argument currently points to. For the purposes of ** the comparison, ignore the rowid field at the end of each record. ** ** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM). ** Otherwise, set *pRes to a negative, zero or positive value if the ** key in pVal is smaller than, equal to or larger than the current sorter ** key. */ int sqlite3VdbeSorterCompare( const VdbeCursor *pCsr, /* Sorter cursor */ Mem *pVal, /* Value to compare to current sorter key */ int nIgnore, /* Ignore this many fields at the end */ int *pRes /* OUT: Result of comparison */ ){ VdbeSorter *pSorter = pCsr->pSorter; void *pKey; int nKey; /* Sorter key to compare pVal with */ pKey = vdbeSorterRowkey(pSorter, &nKey); vdbeSorterCompare(pCsr, nIgnore, pVal->z, pVal->n, pKey, nKey, pRes); return SQLITE_OK; }