/ Check-in [83ecec5d]
Login
SQLite training in Houston TX on 2019-11-05 (details)
Part of the 2019 Tcl Conference

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge experimental branch back into trunk.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 83ecec5d158c48e2fb93b0111ade62f039613540
User & Date: dan 2010-09-24 18:08:01
Context
2010-09-24
19:14
Modify some evidence tags to match updated gifs. check-in: f44de500 user: dan tags: trunk
18:08
Merge experimental branch back into trunk. check-in: 83ecec5d user: dan tags: trunk
18:04
Add new file e_vacuum.test. Move part of e_select.test into e_select2.test. Closed-Leaf check-in: 30801892 user: dan
08:00
Modify testable statement ids in a few test files to account for recent docsrc changes. check-in: 7893e525 user: dan tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/vacuum.c.

105
106
107
108
109
110
111




112
113
114
115
116
117
118
  int isMemDb;            /* True if vacuuming a :memory: database */
  int nRes;               /* Bytes of reserved space at the end of each page */
  int nDb;                /* Number of attached databases */

  if( !db->autoCommit ){
    sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
    return SQLITE_ERROR;




  }

  /* Save the current value of the database flags so that it can be 
  ** restored before returning. Then set the writable-schema flag, and
  ** disable CHECK and foreign key constraints.  */
  saved_flags = db->flags;
  saved_nChange = db->nChange;







>
>
>
>







105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
  int isMemDb;            /* True if vacuuming a :memory: database */
  int nRes;               /* Bytes of reserved space at the end of each page */
  int nDb;                /* Number of attached databases */

  if( !db->autoCommit ){
    sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
    return SQLITE_ERROR;
  }
  if( db->activeVdbeCnt>1 ){
    sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress");
    return SQLITE_ERROR;
  }

  /* Save the current value of the database flags so that it can be 
  ** restored before returning. Then set the writable-schema flag, and
  ** disable CHECK and foreign key constraints.  */
  saved_flags = db->flags;
  saved_nChange = db->nChange;

Changes to test/e_select.test.

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
....
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
  3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)}
} {
  do_catchsql_test e_select-1.12.$tn "
    $sql
  " {1 {a NATURAL join may not have an ON or USING clause}}
}

#-------------------------------------------------------------------------
# te_* commands:
#
#
#   te_read_sql DB SELECT-STATEMENT
#   te_read_tbl DB TABLENAME
#
# These two commands are used to read a dataset from the database. A dataset
# consists of N rows of M named columns of values each, where each value has a
# type (null, integer, real, text or blob) and a value within the types domain.
# The tcl format for a "dataset" is a list of two elements:
#
#   * A list of the column names.
#   * A list of data rows. Each row is itself a list, where each element is
#     the contents of a column of the row. Each of these is a list of two
#     elements, the type name and the actual value.
#
# For example, the contents of table [t1] as a dataset is:
#
#   CREATE TABLE t1(a, b);
#   INSERT INTO t1 VALUES('abc', NULL);
#   INSERT INTO t1 VALUES(43.1, 22);
#
#   {a b} {{{TEXT abc} {NULL {}}} {{REAL 43.1} {INTEGER 22}}}
#
# The [te_read_tbl] command returns a dataset read from a table. The
# [te_read_sql] returns the dataset that results from executing a SELECT
# command.
#
#
#   te_tbljoin ?SWITCHES? LHS-TABLE RHS-TABLE
#   te_join ?SWITCHES? LHS-DATASET RHS-DATASET
#
# This command joins the two datasets and returns the resulting dataset. If 
# there are no switches specified, then the results is the cartesian product
# of the two inputs.  The [te_tbljoin] command reads the left and right-hand
# datasets from the specified tables. The [te_join] command is passed the
# datasets directly.
#
# Optional switches are as follows:
#
#   -on SCRIPT
#   -using COLUMN-LIST
#   -left
#
# The -on option specifies a tcl script that is executed for each row in the
# cartesian product of the two datasets. The script has 4 arguments appended
# to it, in the following order:
#
#   * The list of column-names from the left-hand dataset.
#   * A single row from the left-hand dataset (one "data row" list as 
#     described above.
#   * The list of column-names from the right-hand dataset.
#   * A single row from the right-hand dataset.
#
# The script must return a boolean value - true if the combination of rows
# should be included in the output dataset, or false otherwise.
#
# The -using option specifies a list of the columns from the right-hand
# dataset that should be omitted from the output dataset.
#
# If the -left option is present, the join is done LEFT JOIN style. 
# Specifically, an extra row is inserted if after the -on script is run there
# exist rows in the left-hand dataset that have no corresponding rows in
# the output. See the implementation for more specific comments.
#
#
#   te_equals ?SWITCHES? COLNAME1 COLNAME2 <-on script args>
#
# The only supported switch is "-nocase". If it is present, then text values
# are compared in a case-independent fashion. Otherwise, they are compared
# as if using the SQLite BINARY collation sequence.
#
#
#   te_and ONSCRIPT1 ONSCRIPT2...
#
#


#
#   te_read_tbl DB TABLENAME
#   te_read_sql DB SELECT-STATEMENT
#
# These two procs are used to extract datasets from the database, either
# by reading the contents of a named table (te_read_tbl), or by executing
# a SELECT statement (t3_read_sql).  
#
# See the comment above, describing "te_* commands", for details of the
# return values.
#
proc te_read_tbl {db tbl} {
 te_read_sql $db "SELECT * FROM '$tbl'"
}
proc te_read_sql {db sql} {
  set S [sqlite3_prepare_v2 $db $sql -1 DUMMY]

  set cols [list]
  for {set i 0} {$i < [sqlite3_column_count $S]} {incr i} {
    lappend cols [sqlite3_column_name $S $i]
  }

  set rows [list]
  while {[sqlite3_step $S] == "SQLITE_ROW"} {
    set r [list]
    for {set i 0} {$i < [sqlite3_column_count $S]} {incr i} {
      lappend r [list [sqlite3_column_type $S $i] [sqlite3_column_text $S $i]]
    }
    lappend rows $r
  }
  sqlite3_finalize $S

  return [list $cols $rows]
}

#-------
# Usage:   te_join <table-data1> <table-data2> <join spec>...
#
# Where a join-spec is an optional list of arguments as follows:
#
#   ?-left?
#   ?-using colname-list?
#   ?-on on-expr-proc?
#
proc te_join {data1 data2 args} {

  set testproc ""
  set usinglist [list]
  set isleft 0
  for {set i 0} {$i < [llength $args]} {incr i} {
    set a [lindex $args $i]
    switch -- $a {
      -on     { set testproc [lindex $args [incr i]] }
      -using  { set usinglist [lindex $args [incr i]] }
      -left   { set isleft 1 }
      default {
        error "Unknown argument: $a"
      }
    }
  }

  set c1 [lindex $data1 0]
  set c2 [lindex $data2 0]
  set omitlist [list]
  set nullrowlist [list]
  set cret $c1

  set cidx 0
  foreach col $c2 {
    set idx [lsearch $usinglist $col]
    if {$idx>=0} {lappend omitlist $cidx}
    if {$idx<0} {
      lappend nullrowlist {NULL {}}
      lappend cret $col
    }
    incr cidx
  }
  set omitlist [lsort -integer -decreasing $omitlist]


  set rret [list]
  foreach r1 [lindex $data1 1] {
    set one 0
    foreach r2 [lindex $data2 1] {
      set ok 1
      if {$testproc != ""} {
        set ok [eval $testproc [list $c1 $r1 $c2 $r2]]
      }
      if {$ok} {
        set one 1
        foreach idx $omitlist {set r2 [lreplace $r2 $idx $idx]}
        lappend rret [concat $r1 $r2]
      }
    }

    if {$isleft && $one==0} {
      lappend rret [concat $r1 $nullrowlist]
    }
  }
  
  list $cret $rret
}

proc te_tbljoin {db t1 t2 args} {
  te_join [te_read_tbl $db $t1] [te_read_tbl $db $t2] {*}$args
}

proc te_apply_affinity {affinity typevar valvar} {
  upvar $typevar type
  upvar $valvar val

  switch -- $affinity {
    integer {
      if {[string is double $val]} { set type REAL }
      if {[string is wideinteger $val]} { set type INTEGER }
      if {$type == "REAL" && int($val)==$val} { 
        set type INTEGER 
        set val [expr {int($val)}]
      }
    }
    text {
      set type TEXT
    }
    none { }

    default { error "invalid affinity: $affinity" }
  }
}

#----------
# te_equals ?SWITCHES? c1 c2 cols1 row1 cols2 row2
#
proc te_equals {args} {

  if {[llength $args]<6} {error "invalid arguments to te_equals"}
  foreach {c1 c2 cols1 row1 cols2 row2} [lrange $args end-5 end] break

  set nocase 0
  set affinity none

  for {set i 0} {$i < ([llength $args]-6)} {incr i} {
    set a [lindex $args $i]
    switch -- $a {
      -nocase {
        set nocase 1
      }
      -affinity {
        set affinity [string tolower [lindex $args [incr i]]]
      }
      default {
        error "invalid arguments to te_equals"
      }
    }
  }

  set idx2 [if {[string is integer $c2]} { set c2 } else { lsearch $cols2 $c2 }]
  set idx1 [if {[string is integer $c1]} { set c1 } else { lsearch $cols1 $c1 }]

  set t1 [lindex $row1 $idx1 0]
  set t2 [lindex $row2 $idx2 0]
  set v1 [lindex $row1 $idx1 1]
  set v2 [lindex $row2 $idx2 1]

  te_apply_affinity $affinity t1 v1
  te_apply_affinity $affinity t2 v2

  if {$t1 == "NULL" || $t2 == "NULL"} { return 0 }
  if {$nocase && $t1 == "TEXT"} { set v1 [string tolower $v1] }
  if {$nocase && $t2 == "TEXT"} { set v2 [string tolower $v2] }


  set res [expr {$t1 == $t2 && [string equal $v1 $v2]}]
  return $res
}

proc te_false {args} { return 0 }
proc te_true  {args} { return 1 }

proc te_and {args} {
  foreach a [lrange $args 0 end-4] {
    set res [eval $a [lrange $args end-3 end]]
    if {$res == 0} {return 0}
  }
  return 1
}


proc te_dataset_eq {testname got expected} {
  uplevel #0 [list do_test $testname [list set {} $got] $expected]
}
proc te_dataset_eq_unordered {testname got expected} {
  lset got      1 [lsort [lindex $got 1]]
  lset expected 1 [lsort [lindex $expected 1]]
  te_dataset_eq $testname $got $expected
}

proc te_dataset_ne {testname got unexpected} {
  uplevel #0 [list do_test $testname [list string equal $got $unexpected] 0]
}
proc te_dataset_ne_unordered {testname got unexpected} {
  lset got      1 [lsort [lindex $got 1]]
  lset unexpected 1 [lsort [lindex $unexpected 1]]
  te_dataset_ne $testname $got $unexpected
}


#-------------------------------------------------------------------------
#
proc test_join {tn sqljoin tbljoinargs} {
  set sql [te_read_sql db "SELECT * FROM $sqljoin"]
  set te  [te_tbljoin db {*}$tbljoinargs]
  te_dataset_eq_unordered $tn $sql $te
}

drop_all_tables
do_execsql_test e_select-2.0 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(a, b);
  CREATE TABLE t3(b COLLATE nocase);

  INSERT INTO t1 VALUES(2, 'B');
  INSERT INTO t1 VALUES(1, 'A');
  INSERT INTO t1 VALUES(4, 'D');
  INSERT INTO t1 VALUES(NULL, NULL);
  INSERT INTO t1 VALUES(3, NULL);

  INSERT INTO t2 VALUES(1, 'A');
  INSERT INTO t2 VALUES(2, NULL);
  INSERT INTO t2 VALUES(5, 'E');
  INSERT INTO t2 VALUES(NULL, NULL);
  INSERT INTO t2 VALUES(3, 'C');

  INSERT INTO t3 VALUES('a');
  INSERT INTO t3 VALUES('c');
  INSERT INTO t3 VALUES('b');
} {}

foreach {tn indexes} {
  e_select-2.1.1 { }
  e_select-2.1.2 { CREATE INDEX i1 ON t1(a) }
  e_select-2.1.3 { CREATE INDEX i1 ON t2(a) }
  e_select-2.1.4 { CREATE INDEX i1 ON t3(b) }
} {

  catchsql { DROP INDEX i1 }
  catchsql { DROP INDEX i2 }
  catchsql { DROP INDEX i3 }
  execsql $indexes

  # EVIDENCE-OF: R-46122-14930 If the join-op is "CROSS JOIN", "INNER
  # JOIN", "JOIN" or a comma (",") and there is no ON or USING clause,
  # then the result of the join is simply the cartesian product of the
  # left and right-hand datasets.
  #
  # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
  # JOIN", "JOIN" and "," join operators.
  #
  # EVIDENCE-OF: R-07544-24155 The "CROSS JOIN" join operator produces the
  # same data as the "INNER JOIN", "JOIN" and "," operators
  #
  test_join $tn.1.1  "t1, t2"                {t1 t2}
  test_join $tn.1.2  "t1 INNER JOIN t2"      {t1 t2}
  test_join $tn.1.3  "t1 CROSS JOIN t2"      {t1 t2}
  test_join $tn.1.4  "t1 JOIN t2"            {t1 t2}
  test_join $tn.1.5  "t2, t3"                {t2 t3}
  test_join $tn.1.6  "t2 INNER JOIN t3"      {t2 t3}
  test_join $tn.1.7  "t2 CROSS JOIN t3"      {t2 t3}
  test_join $tn.1.8  "t2 JOIN t3"            {t2 t3}
  test_join $tn.1.9  "t2, t2 AS x"           {t2 t2}
  test_join $tn.1.10 "t2 INNER JOIN t2 AS x" {t2 t2}
  test_join $tn.1.11 "t2 CROSS JOIN t2 AS x" {t2 t2}
  test_join $tn.1.12 "t2 JOIN t2 AS x"       {t2 t2}

  # EVIDENCE-OF: R-22775-56496 If there is an ON clause specified, then
  # the ON expression is evaluated for each row of the cartesian product
  # as a boolean expression. All rows for which the expression evaluates
  # to false are excluded from the dataset.
  #
  test_join $tn.2.1  "t1, t2 ON (t1.a=t2.a)"  {t1 t2 -on {te_equals a a}}
  test_join $tn.2.2  "t2, t1 ON (t1.a=t2.a)"  {t2 t1 -on {te_equals a a}}
  test_join $tn.2.3  "t2, t1 ON (1)"          {t2 t1 -on te_true}
  test_join $tn.2.4  "t2, t1 ON (NULL)"       {t2 t1 -on te_false}
  test_join $tn.2.5  "t2, t1 ON (1.1-1.1)"    {t2 t1 -on te_false}
  test_join $tn.2.6  "t1, t2 ON (1.1-1.0)"    {t1 t2 -on te_true}


  test_join $tn.3 "t1 LEFT JOIN t2 ON (t1.a=t2.a)" {t1 t2 -left -on {te_equals a a}}
  test_join $tn.4 "t1 LEFT JOIN t2 USING (a)" {
    t1 t2 -left -using a -on {te_equals a a}
  }
  test_join $tn.5 "t1 CROSS JOIN t2 USING(b, a)" {
    t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.6 "t1 NATURAL JOIN t2" {
    t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.7 "t1 NATURAL INNER JOIN t2" {
    t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.8 "t1 NATURAL CROSS JOIN t2" {
    t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.9 "t1 NATURAL INNER JOIN t2" {
    t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.10 "t1 NATURAL LEFT JOIN t2" {
    t1 t2 -left -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.11 "t1 NATURAL LEFT OUTER JOIN t2" {
    t1 t2 -left -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.12 "t2 NATURAL JOIN t1" {
    t2 t1 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.13 "t2 NATURAL INNER JOIN t1" {
    t2 t1 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.14 "t2 NATURAL CROSS JOIN t1" {
    t2 t1 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.15 "t2 NATURAL INNER JOIN t1" {
    t2 t1 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.16 "t2 NATURAL LEFT JOIN t1" {
    t2 t1 -left -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.17 "t2 NATURAL LEFT OUTER JOIN t1" {
    t2 t1 -left -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.18 "t1 LEFT JOIN t2 USING (b)" {
    t1 t2 -left -using b -on {te_equals b b}
  }
  test_join $tn.19 "t1 JOIN t3 USING(b)" {t1 t3 -using b -on {te_equals b b}}
  test_join $tn.20 "t3 JOIN t1 USING(b)" {
    t3 t1 -using b -on {te_equals -nocase b b}
  }
  test_join $tn.21 "t1 NATURAL JOIN t3"  {
    t1 t3 -using b -on {te_equals b b}
  }
  test_join $tn.22 "t3 NATURAL JOIN t1"  {
    t3 t1 -using b -on {te_equals -nocase b b}
  }
  test_join $tn.23 "t1 NATURAL LEFT JOIN t3" {
    t1 t3 -left -using b -on {te_equals b b}
  }
  test_join $tn.24 "t3 NATURAL LEFT JOIN t1" {
    t3 t1 -left -using b -on {te_equals -nocase b b}
  }
  test_join $tn.25 "t1 LEFT JOIN t3 ON (t3.b=t1.b)" {
    t1 t3 -left -on {te_equals -nocase b b}
  }
  test_join $tn.26 "t1 LEFT JOIN t3 ON (t1.b=t3.b)" {
    t1 t3 -left -on {te_equals b b}
  }
  test_join $tn.27 "t1 JOIN t3 ON (t1.b=t3.b)" { t1 t3 -on {te_equals b b} }

  # EVIDENCE-OF: R-28760-53843 When more than two tables are joined
  # together as part of a FROM clause, the join operations are processed
  # in order from left to right. In other words, the FROM clause (A
  # join-op-1 B join-op-2 C) is computed as ((A join-op-1 B) join-op-2 C).
  #
  #   Tests 28a and 28b show that the statement above is true for this case.
  #   Test 28c shows that if the parenthesis force a different order of
  #   evaluation the result is different. Test 28d verifies that the result
  #   of the query with the parenthesis forcing a different order of evaluation
  #   is as calculated by the [te_*] procs.
  #
  set t3_natural_left_join_t2 [
    te_tbljoin db t3 t2 -left -using {b} -on {te_equals -nocase b b}
  ]
  set t1 [te_read_tbl db t1]
  te_dataset_eq_unordered $tn.28a [
    te_read_sql db "SELECT * FROM t3 NATURAL LEFT JOIN t2 NATURAL JOIN t1"
  ] [te_join $t3_natural_left_join_t2 $t1                                \
      -using {a b} -on {te_and {te_equals a a} {te_equals -nocase b b}}  \
  ]

  te_dataset_eq_unordered $tn.28b [
    te_read_sql db "SELECT * FROM (t3 NATURAL LEFT JOIN t2) NATURAL JOIN t1"
  ] [te_join $t3_natural_left_join_t2 $t1                                \
      -using {a b} -on {te_and {te_equals a a} {te_equals -nocase b b}}  \
  ]

  te_dataset_ne_unordered $tn.28c [
    te_read_sql db "SELECT * FROM (t3 NATURAL LEFT JOIN t2) NATURAL JOIN t1"
  ] [
    te_read_sql db "SELECT * FROM t3 NATURAL LEFT JOIN (t2 NATURAL JOIN t1)"
  ]

  set t2_natural_join_t1 [te_tbljoin db t2 t1 -using {a b}                 \
        -using {a b} -on {te_and {te_equals a a} {te_equals -nocase b b}}  \
  ]
  set t3 [te_read_tbl db t3]
  te_dataset_eq_unordered $tn.28d [
    te_read_sql db "SELECT * FROM t3 NATURAL LEFT JOIN (t2 NATURAL JOIN t1)"
  ] [te_join $t3 $t2_natural_join_t1                                       \
      -left -using {b} -on {te_equals -nocase b b}                         \
  ]
}

do_execsql_test e_select-2.2.0 {
  CREATE TABLE t4(x TEXT COLLATE nocase);
  CREATE TABLE t5(y INTEGER, z TEXT COLLATE binary);

  INSERT INTO t4 VALUES('2.0');
  INSERT INTO t4 VALUES('TWO');
  INSERT INTO t5 VALUES(2, 'two');
} {}

# EVIDENCE-OF: R-55824-40976 A sub-select specified in the join-source
# following the FROM clause in a simple SELECT statement is handled as
# if it was a table containing the data returned by executing the
# sub-select statement.
#
# EVIDENCE-OF: R-42612-06757 Each column of the sub-select dataset
# inherits the collation sequence and affinity of the corresponding
# expression in the sub-select statement.
#
foreach {tn subselect select spec} {
  1   "SELECT * FROM t2"   "SELECT * FROM t1 JOIN %ss%" 
      {t1 %ss%}

  2   "SELECT * FROM t2"   "SELECT * FROM t1 JOIN %ss% AS x ON (t1.a=x.a)" 
      {t1 %ss% -on {te_equals 0 0}}

  3   "SELECT * FROM t2"   "SELECT * FROM %ss% AS x JOIN t1 ON (t1.a=x.a)" 
      {%ss% t1 -on {te_equals 0 0}}

  4   "SELECT * FROM t1, t2" "SELECT * FROM %ss% AS x JOIN t3"
      {%ss% t3}

  5   "SELECT * FROM t1, t2" "SELECT * FROM %ss% NATURAL JOIN t3"
      {%ss% t3 -using b -on {te_equals 1 0}}

  6   "SELECT * FROM t1, t2" "SELECT * FROM t3 NATURAL JOIN %ss%"
      {t3 %ss% -using b -on {te_equals -nocase 0 1}}

  7   "SELECT * FROM t1, t2" "SELECT * FROM t3 NATURAL LEFT JOIN %ss%"
      {t3 %ss% -left -using b -on {te_equals -nocase 0 1}}

  8   "SELECT count(*) AS y FROM t4"   "SELECT * FROM t5, %ss% USING (y)"
      {t5 %ss% -using y -on {te_equals -affinity text 0 0}}

  9   "SELECT count(*) AS y FROM t4"   "SELECT * FROM %ss%, t5 USING (y)"
      {%ss% t5 -using y -on {te_equals -affinity text 0 0}}

  10  "SELECT x AS y FROM t4"   "SELECT * FROM %ss% JOIN t5 USING (y)"
      {%ss% t5 -using y -on {te_equals -nocase -affinity integer 0 0}}

  11  "SELECT x AS y FROM t4"   "SELECT * FROM t5 JOIN %ss% USING (y)"
      {t5 %ss% -using y -on {te_equals -nocase -affinity integer 0 0}}

  12  "SELECT y AS x FROM t5"   "SELECT * FROM %ss% JOIN t4 USING (x)"
      {%ss% t4 -using x -on {te_equals -nocase -affinity integer 0 0}}

  13  "SELECT y AS x FROM t5"   "SELECT * FROM t4 JOIN %ss% USING (x)"
      {t4 %ss% -using x -on {te_equals -nocase -affinity integer 0 0}}

  14  "SELECT +y AS x FROM t5"   "SELECT * FROM %ss% JOIN t4 USING (x)"
      {%ss% t4 -using x -on {te_equals -nocase -affinity text 0 0}}

  15  "SELECT +y AS x FROM t5"   "SELECT * FROM t4 JOIN %ss% USING (x)"
      {t4 %ss% -using x -on {te_equals -nocase -affinity text 0 0}}
} {

  # Create a temporary table named %ss% containing the data returned by
  # the sub-select. Then have the [te_tbljoin] proc use this table to
  # compute the expected results of the $select query. Drop the temporary
  # table before continuing.
  #
  execsql "CREATE TEMP TABLE '%ss%' AS $subselect"
  set te [eval te_tbljoin db $spec]
  execsql "DROP TABLE '%ss%'"

  # Check that the actual data returned by the $select query is the same
  # as the expected data calculated using [te_tbljoin] above.
  #
  te_dataset_eq_unordered e_select-2.2.1.$tn [
    te_read_sql db [string map [list %ss% "($subselect)"] $select]
  ] $te
}

#-------------------------------------------------------------------------
# The next block of tests - e_select-3.* - concentrate on verifying 
# statements made regarding WHERE clause processing.
#
drop_all_tables
do_execsql_test e_select-3.0 {
  CREATE TABLE x1(k, x, y, z);
................................................................................
  8  { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z}
  9  { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1}

  10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e}
  11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e}
  12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e}
}


finish_test







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 








<

702
703
704
705
706
707
708

















































































































































































































































































































































































































































































































































































709
710
711
712
713
714
715
....
2152
2153
2154
2155
2156
2157
2158
2159

2160
  3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)}
} {
  do_catchsql_test e_select-1.12.$tn "
    $sql
  " {1 {a NATURAL join may not have an ON or USING clause}}
}


















































































































































































































































































































































































































































































































































































#-------------------------------------------------------------------------
# The next block of tests - e_select-3.* - concentrate on verifying 
# statements made regarding WHERE clause processing.
#
drop_all_tables
do_execsql_test e_select-3.0 {
  CREATE TABLE x1(k, x, y, z);
................................................................................
  8  { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z}
  9  { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1}

  10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e}
  11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e}
  12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e}
}


finish_test

Added test/e_select2.test.









































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
# 2010 September 24
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements tests to verify that the "testable statements" in 
# the lang_select.html document are correct.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

#-------------------------------------------------------------------------
# te_* commands:
#
#
#   te_read_sql DB SELECT-STATEMENT
#   te_read_tbl DB TABLENAME
#
# These two commands are used to read a dataset from the database. A dataset
# consists of N rows of M named columns of values each, where each value has a
# type (null, integer, real, text or blob) and a value within the types domain.
# The tcl format for a "dataset" is a list of two elements:
#
#   * A list of the column names.
#   * A list of data rows. Each row is itself a list, where each element is
#     the contents of a column of the row. Each of these is a list of two
#     elements, the type name and the actual value.
#
# For example, the contents of table [t1] as a dataset is:
#
#   CREATE TABLE t1(a, b);
#   INSERT INTO t1 VALUES('abc', NULL);
#   INSERT INTO t1 VALUES(43.1, 22);
#
#   {a b} {{{TEXT abc} {NULL {}}} {{REAL 43.1} {INTEGER 22}}}
#
# The [te_read_tbl] command returns a dataset read from a table. The
# [te_read_sql] returns the dataset that results from executing a SELECT
# command.
#
#
#   te_tbljoin ?SWITCHES? LHS-TABLE RHS-TABLE
#   te_join ?SWITCHES? LHS-DATASET RHS-DATASET
#
# This command joins the two datasets and returns the resulting dataset. If 
# there are no switches specified, then the results is the cartesian product
# of the two inputs.  The [te_tbljoin] command reads the left and right-hand
# datasets from the specified tables. The [te_join] command is passed the
# datasets directly.
#
# Optional switches are as follows:
#
#   -on SCRIPT
#   -using COLUMN-LIST
#   -left
#
# The -on option specifies a tcl script that is executed for each row in the
# cartesian product of the two datasets. The script has 4 arguments appended
# to it, in the following order:
#
#   * The list of column-names from the left-hand dataset.
#   * A single row from the left-hand dataset (one "data row" list as 
#     described above.
#   * The list of column-names from the right-hand dataset.
#   * A single row from the right-hand dataset.
#
# The script must return a boolean value - true if the combination of rows
# should be included in the output dataset, or false otherwise.
#
# The -using option specifies a list of the columns from the right-hand
# dataset that should be omitted from the output dataset.
#
# If the -left option is present, the join is done LEFT JOIN style. 
# Specifically, an extra row is inserted if after the -on script is run there
# exist rows in the left-hand dataset that have no corresponding rows in
# the output. See the implementation for more specific comments.
#
#
#   te_equals ?SWITCHES? COLNAME1 COLNAME2 <-on script args>
#
# The only supported switch is "-nocase". If it is present, then text values
# are compared in a case-independent fashion. Otherwise, they are compared
# as if using the SQLite BINARY collation sequence.
#
#
#   te_and ONSCRIPT1 ONSCRIPT2...
#
#


#
#   te_read_tbl DB TABLENAME
#   te_read_sql DB SELECT-STATEMENT
#
# These two procs are used to extract datasets from the database, either
# by reading the contents of a named table (te_read_tbl), or by executing
# a SELECT statement (t3_read_sql).  
#
# See the comment above, describing "te_* commands", for details of the
# return values.
#
proc te_read_tbl {db tbl} {
 te_read_sql $db "SELECT * FROM '$tbl'"
}
proc te_read_sql {db sql} {
  set S [sqlite3_prepare_v2 $db $sql -1 DUMMY]

  set cols [list]
  for {set i 0} {$i < [sqlite3_column_count $S]} {incr i} {
    lappend cols [sqlite3_column_name $S $i]
  }

  set rows [list]
  while {[sqlite3_step $S] == "SQLITE_ROW"} {
    set r [list]
    for {set i 0} {$i < [sqlite3_column_count $S]} {incr i} {
      lappend r [list [sqlite3_column_type $S $i] [sqlite3_column_text $S $i]]
    }
    lappend rows $r
  }
  sqlite3_finalize $S

  return [list $cols $rows]
}

#-------
# Usage:   te_join <table-data1> <table-data2> <join spec>...
#
# Where a join-spec is an optional list of arguments as follows:
#
#   ?-left?
#   ?-using colname-list?
#   ?-on on-expr-proc?
#
proc te_join {data1 data2 args} {

  set testproc ""
  set usinglist [list]
  set isleft 0
  for {set i 0} {$i < [llength $args]} {incr i} {
    set a [lindex $args $i]
    switch -- $a {
      -on     { set testproc [lindex $args [incr i]] }
      -using  { set usinglist [lindex $args [incr i]] }
      -left   { set isleft 1 }
      default {
        error "Unknown argument: $a"
      }
    }
  }

  set c1 [lindex $data1 0]
  set c2 [lindex $data2 0]
  set omitlist [list]
  set nullrowlist [list]
  set cret $c1

  set cidx 0
  foreach col $c2 {
    set idx [lsearch $usinglist $col]
    if {$idx>=0} {lappend omitlist $cidx}
    if {$idx<0} {
      lappend nullrowlist {NULL {}}
      lappend cret $col
    }
    incr cidx
  }
  set omitlist [lsort -integer -decreasing $omitlist]


  set rret [list]
  foreach r1 [lindex $data1 1] {
    set one 0
    foreach r2 [lindex $data2 1] {
      set ok 1
      if {$testproc != ""} {
        set ok [eval $testproc [list $c1 $r1 $c2 $r2]]
      }
      if {$ok} {
        set one 1
        foreach idx $omitlist {set r2 [lreplace $r2 $idx $idx]}
        lappend rret [concat $r1 $r2]
      }
    }

    if {$isleft && $one==0} {
      lappend rret [concat $r1 $nullrowlist]
    }
  }
  
  list $cret $rret
}

proc te_tbljoin {db t1 t2 args} {
  te_join [te_read_tbl $db $t1] [te_read_tbl $db $t2] {*}$args
}

proc te_apply_affinity {affinity typevar valvar} {
  upvar $typevar type
  upvar $valvar val

  switch -- $affinity {
    integer {
      if {[string is double $val]} { set type REAL }
      if {[string is wideinteger $val]} { set type INTEGER }
      if {$type == "REAL" && int($val)==$val} { 
        set type INTEGER 
        set val [expr {int($val)}]
      }
    }
    text {
      set type TEXT
    }
    none { }

    default { error "invalid affinity: $affinity" }
  }
}

#----------
# te_equals ?SWITCHES? c1 c2 cols1 row1 cols2 row2
#
proc te_equals {args} {

  if {[llength $args]<6} {error "invalid arguments to te_equals"}
  foreach {c1 c2 cols1 row1 cols2 row2} [lrange $args end-5 end] break

  set nocase 0
  set affinity none

  for {set i 0} {$i < ([llength $args]-6)} {incr i} {
    set a [lindex $args $i]
    switch -- $a {
      -nocase {
        set nocase 1
      }
      -affinity {
        set affinity [string tolower [lindex $args [incr i]]]
      }
      default {
        error "invalid arguments to te_equals"
      }
    }
  }

  set idx2 [if {[string is integer $c2]} { set c2 } else { lsearch $cols2 $c2 }]
  set idx1 [if {[string is integer $c1]} { set c1 } else { lsearch $cols1 $c1 }]

  set t1 [lindex $row1 $idx1 0]
  set t2 [lindex $row2 $idx2 0]
  set v1 [lindex $row1 $idx1 1]
  set v2 [lindex $row2 $idx2 1]

  te_apply_affinity $affinity t1 v1
  te_apply_affinity $affinity t2 v2

  if {$t1 == "NULL" || $t2 == "NULL"} { return 0 }
  if {$nocase && $t1 == "TEXT"} { set v1 [string tolower $v1] }
  if {$nocase && $t2 == "TEXT"} { set v2 [string tolower $v2] }


  set res [expr {$t1 == $t2 && [string equal $v1 $v2]}]
  return $res
}

proc te_false {args} { return 0 }
proc te_true  {args} { return 1 }

proc te_and {args} {
  foreach a [lrange $args 0 end-4] {
    set res [eval $a [lrange $args end-3 end]]
    if {$res == 0} {return 0}
  }
  return 1
}


proc te_dataset_eq {testname got expected} {
  uplevel #0 [list do_test $testname [list set {} $got] $expected]
}
proc te_dataset_eq_unordered {testname got expected} {
  lset got      1 [lsort [lindex $got 1]]
  lset expected 1 [lsort [lindex $expected 1]]
  te_dataset_eq $testname $got $expected
}

proc te_dataset_ne {testname got unexpected} {
  uplevel #0 [list do_test $testname [list string equal $got $unexpected] 0]
}
proc te_dataset_ne_unordered {testname got unexpected} {
  lset got      1 [lsort [lindex $got 1]]
  lset unexpected 1 [lsort [lindex $unexpected 1]]
  te_dataset_ne $testname $got $unexpected
}


#-------------------------------------------------------------------------
#
proc test_join {tn sqljoin tbljoinargs} {
  set sql [te_read_sql db "SELECT * FROM $sqljoin"]
  set te  [te_tbljoin db {*}$tbljoinargs]
  te_dataset_eq_unordered $tn $sql $te
}

drop_all_tables
do_execsql_test e_select-2.0 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(a, b);
  CREATE TABLE t3(b COLLATE nocase);

  INSERT INTO t1 VALUES(2, 'B');
  INSERT INTO t1 VALUES(1, 'A');
  INSERT INTO t1 VALUES(4, 'D');
  INSERT INTO t1 VALUES(NULL, NULL);
  INSERT INTO t1 VALUES(3, NULL);

  INSERT INTO t2 VALUES(1, 'A');
  INSERT INTO t2 VALUES(2, NULL);
  INSERT INTO t2 VALUES(5, 'E');
  INSERT INTO t2 VALUES(NULL, NULL);
  INSERT INTO t2 VALUES(3, 'C');

  INSERT INTO t3 VALUES('a');
  INSERT INTO t3 VALUES('c');
  INSERT INTO t3 VALUES('b');
} {}

foreach {tn indexes} {
  e_select-2.1.1 { }
  e_select-2.1.2 { CREATE INDEX i1 ON t1(a) }
  e_select-2.1.3 { CREATE INDEX i1 ON t2(a) }
  e_select-2.1.4 { CREATE INDEX i1 ON t3(b) }
} {

  catchsql { DROP INDEX i1 }
  catchsql { DROP INDEX i2 }
  catchsql { DROP INDEX i3 }
  execsql $indexes

  # EVIDENCE-OF: R-46122-14930 If the join-op is "CROSS JOIN", "INNER
  # JOIN", "JOIN" or a comma (",") and there is no ON or USING clause,
  # then the result of the join is simply the cartesian product of the
  # left and right-hand datasets.
  #
  # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
  # JOIN", "JOIN" and "," join operators.
  #
  # EVIDENCE-OF: R-07544-24155 The "CROSS JOIN" join operator produces the
  # same data as the "INNER JOIN", "JOIN" and "," operators
  #
  test_join $tn.1.1  "t1, t2"                {t1 t2}
  test_join $tn.1.2  "t1 INNER JOIN t2"      {t1 t2}
  test_join $tn.1.3  "t1 CROSS JOIN t2"      {t1 t2}
  test_join $tn.1.4  "t1 JOIN t2"            {t1 t2}
  test_join $tn.1.5  "t2, t3"                {t2 t3}
  test_join $tn.1.6  "t2 INNER JOIN t3"      {t2 t3}
  test_join $tn.1.7  "t2 CROSS JOIN t3"      {t2 t3}
  test_join $tn.1.8  "t2 JOIN t3"            {t2 t3}
  test_join $tn.1.9  "t2, t2 AS x"           {t2 t2}
  test_join $tn.1.10 "t2 INNER JOIN t2 AS x" {t2 t2}
  test_join $tn.1.11 "t2 CROSS JOIN t2 AS x" {t2 t2}
  test_join $tn.1.12 "t2 JOIN t2 AS x"       {t2 t2}

  # EVIDENCE-OF: R-22775-56496 If there is an ON clause specified, then
  # the ON expression is evaluated for each row of the cartesian product
  # as a boolean expression. All rows for which the expression evaluates
  # to false are excluded from the dataset.
  #
  test_join $tn.2.1  "t1, t2 ON (t1.a=t2.a)"  {t1 t2 -on {te_equals a a}}
  test_join $tn.2.2  "t2, t1 ON (t1.a=t2.a)"  {t2 t1 -on {te_equals a a}}
  test_join $tn.2.3  "t2, t1 ON (1)"          {t2 t1 -on te_true}
  test_join $tn.2.4  "t2, t1 ON (NULL)"       {t2 t1 -on te_false}
  test_join $tn.2.5  "t2, t1 ON (1.1-1.1)"    {t2 t1 -on te_false}
  test_join $tn.2.6  "t1, t2 ON (1.1-1.0)"    {t1 t2 -on te_true}


  test_join $tn.3 "t1 LEFT JOIN t2 ON (t1.a=t2.a)" {t1 t2 -left -on {te_equals a a}}
  test_join $tn.4 "t1 LEFT JOIN t2 USING (a)" {
    t1 t2 -left -using a -on {te_equals a a}
  }
  test_join $tn.5 "t1 CROSS JOIN t2 USING(b, a)" {
    t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.6 "t1 NATURAL JOIN t2" {
    t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.7 "t1 NATURAL INNER JOIN t2" {
    t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.8 "t1 NATURAL CROSS JOIN t2" {
    t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.9 "t1 NATURAL INNER JOIN t2" {
    t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.10 "t1 NATURAL LEFT JOIN t2" {
    t1 t2 -left -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.11 "t1 NATURAL LEFT OUTER JOIN t2" {
    t1 t2 -left -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.12 "t2 NATURAL JOIN t1" {
    t2 t1 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.13 "t2 NATURAL INNER JOIN t1" {
    t2 t1 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.14 "t2 NATURAL CROSS JOIN t1" {
    t2 t1 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.15 "t2 NATURAL INNER JOIN t1" {
    t2 t1 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.16 "t2 NATURAL LEFT JOIN t1" {
    t2 t1 -left -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.17 "t2 NATURAL LEFT OUTER JOIN t1" {
    t2 t1 -left -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
  }
  test_join $tn.18 "t1 LEFT JOIN t2 USING (b)" {
    t1 t2 -left -using b -on {te_equals b b}
  }
  test_join $tn.19 "t1 JOIN t3 USING(b)" {t1 t3 -using b -on {te_equals b b}}
  test_join $tn.20 "t3 JOIN t1 USING(b)" {
    t3 t1 -using b -on {te_equals -nocase b b}
  }
  test_join $tn.21 "t1 NATURAL JOIN t3"  {
    t1 t3 -using b -on {te_equals b b}
  }
  test_join $tn.22 "t3 NATURAL JOIN t1"  {
    t3 t1 -using b -on {te_equals -nocase b b}
  }
  test_join $tn.23 "t1 NATURAL LEFT JOIN t3" {
    t1 t3 -left -using b -on {te_equals b b}
  }
  test_join $tn.24 "t3 NATURAL LEFT JOIN t1" {
    t3 t1 -left -using b -on {te_equals -nocase b b}
  }
  test_join $tn.25 "t1 LEFT JOIN t3 ON (t3.b=t1.b)" {
    t1 t3 -left -on {te_equals -nocase b b}
  }
  test_join $tn.26 "t1 LEFT JOIN t3 ON (t1.b=t3.b)" {
    t1 t3 -left -on {te_equals b b}
  }
  test_join $tn.27 "t1 JOIN t3 ON (t1.b=t3.b)" { t1 t3 -on {te_equals b b} }

  # EVIDENCE-OF: R-28760-53843 When more than two tables are joined
  # together as part of a FROM clause, the join operations are processed
  # in order from left to right. In other words, the FROM clause (A
  # join-op-1 B join-op-2 C) is computed as ((A join-op-1 B) join-op-2 C).
  #
  #   Tests 28a and 28b show that the statement above is true for this case.
  #   Test 28c shows that if the parenthesis force a different order of
  #   evaluation the result is different. Test 28d verifies that the result
  #   of the query with the parenthesis forcing a different order of evaluation
  #   is as calculated by the [te_*] procs.
  #
  set t3_natural_left_join_t2 [
    te_tbljoin db t3 t2 -left -using {b} -on {te_equals -nocase b b}
  ]
  set t1 [te_read_tbl db t1]
  te_dataset_eq_unordered $tn.28a [
    te_read_sql db "SELECT * FROM t3 NATURAL LEFT JOIN t2 NATURAL JOIN t1"
  ] [te_join $t3_natural_left_join_t2 $t1                                \
      -using {a b} -on {te_and {te_equals a a} {te_equals -nocase b b}}  \
  ]

  te_dataset_eq_unordered $tn.28b [
    te_read_sql db "SELECT * FROM (t3 NATURAL LEFT JOIN t2) NATURAL JOIN t1"
  ] [te_join $t3_natural_left_join_t2 $t1                                \
      -using {a b} -on {te_and {te_equals a a} {te_equals -nocase b b}}  \
  ]

  te_dataset_ne_unordered $tn.28c [
    te_read_sql db "SELECT * FROM (t3 NATURAL LEFT JOIN t2) NATURAL JOIN t1"
  ] [
    te_read_sql db "SELECT * FROM t3 NATURAL LEFT JOIN (t2 NATURAL JOIN t1)"
  ]

  set t2_natural_join_t1 [te_tbljoin db t2 t1 -using {a b}                 \
        -using {a b} -on {te_and {te_equals a a} {te_equals -nocase b b}}  \
  ]
  set t3 [te_read_tbl db t3]
  te_dataset_eq_unordered $tn.28d [
    te_read_sql db "SELECT * FROM t3 NATURAL LEFT JOIN (t2 NATURAL JOIN t1)"
  ] [te_join $t3 $t2_natural_join_t1                                       \
      -left -using {b} -on {te_equals -nocase b b}                         \
  ]
}

do_execsql_test e_select-2.2.0 {
  CREATE TABLE t4(x TEXT COLLATE nocase);
  CREATE TABLE t5(y INTEGER, z TEXT COLLATE binary);

  INSERT INTO t4 VALUES('2.0');
  INSERT INTO t4 VALUES('TWO');
  INSERT INTO t5 VALUES(2, 'two');
} {}

# EVIDENCE-OF: R-55824-40976 A sub-select specified in the join-source
# following the FROM clause in a simple SELECT statement is handled as
# if it was a table containing the data returned by executing the
# sub-select statement.
#
# EVIDENCE-OF: R-42612-06757 Each column of the sub-select dataset
# inherits the collation sequence and affinity of the corresponding
# expression in the sub-select statement.
#
foreach {tn subselect select spec} {
  1   "SELECT * FROM t2"   "SELECT * FROM t1 JOIN %ss%" 
      {t1 %ss%}

  2   "SELECT * FROM t2"   "SELECT * FROM t1 JOIN %ss% AS x ON (t1.a=x.a)" 
      {t1 %ss% -on {te_equals 0 0}}

  3   "SELECT * FROM t2"   "SELECT * FROM %ss% AS x JOIN t1 ON (t1.a=x.a)" 
      {%ss% t1 -on {te_equals 0 0}}

  4   "SELECT * FROM t1, t2" "SELECT * FROM %ss% AS x JOIN t3"
      {%ss% t3}

  5   "SELECT * FROM t1, t2" "SELECT * FROM %ss% NATURAL JOIN t3"
      {%ss% t3 -using b -on {te_equals 1 0}}

  6   "SELECT * FROM t1, t2" "SELECT * FROM t3 NATURAL JOIN %ss%"
      {t3 %ss% -using b -on {te_equals -nocase 0 1}}

  7   "SELECT * FROM t1, t2" "SELECT * FROM t3 NATURAL LEFT JOIN %ss%"
      {t3 %ss% -left -using b -on {te_equals -nocase 0 1}}

  8   "SELECT count(*) AS y FROM t4"   "SELECT * FROM t5, %ss% USING (y)"
      {t5 %ss% -using y -on {te_equals -affinity text 0 0}}

  9   "SELECT count(*) AS y FROM t4"   "SELECT * FROM %ss%, t5 USING (y)"
      {%ss% t5 -using y -on {te_equals -affinity text 0 0}}

  10  "SELECT x AS y FROM t4"   "SELECT * FROM %ss% JOIN t5 USING (y)"
      {%ss% t5 -using y -on {te_equals -nocase -affinity integer 0 0}}

  11  "SELECT x AS y FROM t4"   "SELECT * FROM t5 JOIN %ss% USING (y)"
      {t5 %ss% -using y -on {te_equals -nocase -affinity integer 0 0}}

  12  "SELECT y AS x FROM t5"   "SELECT * FROM %ss% JOIN t4 USING (x)"
      {%ss% t4 -using x -on {te_equals -nocase -affinity integer 0 0}}

  13  "SELECT y AS x FROM t5"   "SELECT * FROM t4 JOIN %ss% USING (x)"
      {t4 %ss% -using x -on {te_equals -nocase -affinity integer 0 0}}

  14  "SELECT +y AS x FROM t5"   "SELECT * FROM %ss% JOIN t4 USING (x)"
      {%ss% t4 -using x -on {te_equals -nocase -affinity text 0 0}}

  15  "SELECT +y AS x FROM t5"   "SELECT * FROM t4 JOIN %ss% USING (x)"
      {t4 %ss% -using x -on {te_equals -nocase -affinity text 0 0}}
} {

  # Create a temporary table named %ss% containing the data returned by
  # the sub-select. Then have the [te_tbljoin] proc use this table to
  # compute the expected results of the $select query. Drop the temporary
  # table before continuing.
  #
  execsql "CREATE TEMP TABLE '%ss%' AS $subselect"
  set te [eval te_tbljoin db $spec]
  execsql "DROP TABLE '%ss%'"

  # Check that the actual data returned by the $select query is the same
  # as the expected data calculated using [te_tbljoin] above.
  #
  te_dataset_eq_unordered e_select-2.2.1.$tn [
    te_read_sql db [string map [list %ss% "($subselect)"] $select]
  ] $te
}

finish_test

Added test/e_vacuum.test.























































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# 2010 September 24
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements tests to verify that the "testable statements" in 
# the lang_vacuum.html document are correct.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

sqlite3_test_control_pending_byte 0x1000000

proc create_db {{sql ""}} {
  catch { db close }
  forcedelete test.db
  sqlite3 db test.db

  db transaction {
    execsql { PRAGMA page_size = 1024; }
    execsql $sql
    execsql {
      CREATE TABLE t1(a PRIMARY KEY, b UNIQUE);
      INSERT INTO t1 VALUES(1, randomblob(400));
      INSERT INTO t1 SELECT a+1,  randomblob(400) FROM t1;
      INSERT INTO t1 SELECT a+2,  randomblob(400) FROM t1;
      INSERT INTO t1 SELECT a+4,  randomblob(400) FROM t1;
      INSERT INTO t1 SELECT a+8,  randomblob(400) FROM t1;
      INSERT INTO t1 SELECT a+16, randomblob(400) FROM t1;
      INSERT INTO t1 SELECT a+32, randomblob(400) FROM t1;
      INSERT INTO t1 SELECT a+64, randomblob(400) FROM t1;

      CREATE TABLE t2(a PRIMARY KEY, b UNIQUE);
      INSERT INTO t2 SELECT * FROM t1;
    }
  }

  return [expr {[file size test.db] / 1024}]
}

# This proc returns the number of contiguous blocks of pages that make up
# the table or index named by the only argument. For example, if the table
# occupies database pages 3, 4, 8 and 9, then this command returns 2 (there
# are 2 fragments - one consisting of pages 3 and 4, the other of fragments
# 8 and 9).
#
proc fragment_count {name} {
  execsql { CREATE VIRTUAL TABLE temp.stat USING dbstat }
  set nFrag 1
  db eval {SELECT pageno FROM stat WHERE name = 't1' ORDER BY pageno} {
    if {[info exists prevpageno] && $prevpageno != $pageno-1} {
      incr nFrag
    }
    set prevpageno $pageno
  }
  execsql { DROP TABLE temp.stat }
  set nFrag
}


# EVIDENCE-OF: R-63707-33375 -- syntax diagram vacuum-stmt
#
do_execsql_test e_vacuum-0.1 { VACUUM } {}

# EVIDENCE-OF: R-51469-36013 Unless SQLite is running in
# "auto_vacuum=FULL" mode, when a large amount of data is deleted from
# the database file it leaves behind empty space, or "free" database
# pages.
#
# EVIDENCE-OF: R-60541-63059 Running VACUUM to rebuild the database
# reclaims this space and reduces the size of the database file.
#
foreach {tn avmode sz} {
  1 none        7 
  2 full        8 
  3 incremental 8
} {
  set nPage [create_db "PRAGMA auto_vacuum = $avmode"]

  do_execsql_test e_vacuum-1.1.$tn.1 {
    DELETE FROM t1;
    DELETE FROM t2;
  } {}

  if {$avmode == "full"} {
    # This branch tests the "unless ... auto_vacuum=FULL" in the requirement
    # above. If auto_vacuum is set to FULL, then no empty space is left in
    # the database file.
    do_execsql_test e_vacuum-1.1.$tn.2 {PRAGMA freelist_count} 0
  } else {
    set freelist [expr {$nPage - $sz}]
    if {$avmode == "incremental"} { 
      # The page size is 1024 bytes. Therefore, assuming the database contains
      # somewhere between 207 and 411 pages (it does), there are 2 pointer-map
      # pages.
      incr freelist -2
    }
    do_execsql_test e_vacuum-1.1.$tn.3 {PRAGMA freelist_count} $freelist
    do_execsql_test e_vacuum-1.1.$tn.4 {VACUUM} {}
  }

  do_test e_vacuum-1.1.$tn.5 { expr {[file size test.db] / 1024} } $sz
}

# EVIDENCE-OF: R-50943-18433 Frequent inserts, updates, and deletes can
# cause the database file to become fragmented - where data for a single
# table or index is scattered around the database file.
#
# EVIDENCE-OF: R-05791-54928 Running VACUUM ensures that each table and
# index is largely stored contiguously within the database file.
#
#   e_vacuum-1.2.1 - Perform many INSERT, UPDATE and DELETE ops on table t1.
#   e_vacuum-1.2.2 - Verify that t1 and its indexes are now quite fragmented.
#   e_vacuum-1.2.3 - Run VACUUM.
#   e_vacuum-1.2.4 - Verify that t1 and its indexes are now much 
#                    less fragmented.
#
create_db 
register_dbstat_vtab db
do_execsql_test e_vacuum-1.2.1 {
  DELETE FROM t1 WHERE a%2;
  INSERT INTO t1 SELECT b, a FROM t2 WHERE a%2;
  UPDATE t1 SET b=randomblob(600) WHERE (a%2)==0;
} {}

do_test e_vacuum-1.2.2.1 { expr [fragment_count t1]>100 } 1
do_test e_vacuum-1.2.2.2 { expr [fragment_count sqlite_autoindex_t1_1]>100 } 1
do_test e_vacuum-1.2.2.3 { expr [fragment_count sqlite_autoindex_t1_2]>100 } 1

do_execsql_test e_vacuum-1.2.3 { VACUUM } {}

# In practice, the tables and indexes each end up stored as two fragments -
# one containing the root page and another containing all other pages.
#
do_test e_vacuum-1.2.4.1 { fragment_count t1 }                    2
do_test e_vacuum-1.2.4.2 { fragment_count sqlite_autoindex_t1_1 } 2
do_test e_vacuum-1.2.4.3 { fragment_count sqlite_autoindex_t1_2 } 2

# EVIDENCE-OF: R-20474-44465 Normally, the database page_size and
# whether or not the database supports auto_vacuum must be configured
# before the database file is actually created.
#
do_test e_vacuum-1.3.1.1 {
  create_db "PRAGMA page_size = 1024 ; PRAGMA auto_vacuum = FULL"
  execsql { PRAGMA page_size ; PRAGMA auto_vacuum }
} {1024 1}
do_test e_vacuum-1.3.1.2 {
  execsql { PRAGMA page_size = 2048 }
  execsql { PRAGMA auto_vacuum = NONE }
  execsql { PRAGMA page_size ; PRAGMA auto_vacuum }
} {1024 1}

# EVIDENCE-OF: R-08570-19916 However, when not in write-ahead log mode,
# the page_size and/or auto_vacuum properties of an existing database
# may be changed by using the page_size and/or pragma auto_vacuum
# pragmas and then immediately VACUUMing the database.
#
do_test e_vacuum-1.3.2.1 {
  execsql { PRAGMA journal_mode = delete }
  execsql { PRAGMA page_size = 2048 }
  execsql { PRAGMA auto_vacuum = NONE }
  execsql VACUUM
  execsql { PRAGMA page_size ; PRAGMA auto_vacuum }
} {2048 0}

# EVIDENCE-OF: R-48521-51450 When in write-ahead log mode, only the
# auto_vacuum support property can be changed using VACUUM.
#
do_test e_vacuum-1.3.3.1 {
  execsql { PRAGMA journal_mode = wal }
  execsql { PRAGMA page_size ; PRAGMA auto_vacuum }
} {2048 0}
do_test e_vacuum-1.3.3.2 {
  execsql { PRAGMA page_size = 1024 }
  execsql { PRAGMA auto_vacuum = FULL }
  execsql VACUUM
  execsql { PRAGMA page_size ; PRAGMA auto_vacuum }
} {2048 1}

# EVIDENCE-OF: R-38001-03952 VACUUM only works on the main database. It
# is not possible to VACUUM an attached database file.
forcedelete test.db2
create_db
do_execsql_test e_vacuum-2.1.1 {
  ATTACH 'test.db2' AS aux;
  PRAGMA aux.page_size = 1024;
  CREATE TABLE aux.t3 AS SELECT * FROM t1;
  DELETE FROM t3;
} {}
do_test e_vacuum-2.1.2 { expr { ([file size test.db2] / 1024)>50 } } 1

# Try everything we can think of to get the aux database vacuumed:
do_execsql_test e_vacuum-2.1.3 { VACUUM } {}
do_execsql_test e_vacuum-2.1.4 { VACUUM aux } {}
do_execsql_test e_vacuum-2.1.5 { VACUUM 'test.db2' } {}

# Despite our efforts, space in the aux database has not been reclaimed:
do_test e_vacuum-2.1.6 { expr { ([file size test.db2] / 1024)>50 } } 1

# EVIDENCE-OF: R-17495-17419 The VACUUM command may change the ROWIDs of
# entries in any tables that do not have an explicit INTEGER PRIMARY
# KEY.
#
#   Tests e_vacuum-3.1.1 - 3.1.2 demonstrate that rowids can change when
#   a database is VACUUMed. Tests e_vacuum-3.1.3 - 3.1.4 show that adding
#   an INTEGER PRIMARY KEY column to a table stops this from happening.
#
do_execsql_test e_vacuum-3.1.1 {
  CREATE TABLE t4(x);
  INSERT INTO t4(x) VALUES('x');
  INSERT INTO t4(x) VALUES('y');
  INSERT INTO t4(x) VALUES('z');
  DELETE FROM t4 WHERE x = 'y';
  SELECT rowid, x FROM t4;
} {1 x 3 z}
do_execsql_test e_vacuum-3.1.2 {
  VACUUM;
  SELECT rowid, x FROM t4;
} {1 x 2 z}

do_execsql_test e_vacuum-3.1.3 {
  CREATE TABLE t5(x, y INTEGER PRIMARY KEY);
  INSERT INTO t5(x) VALUES('x');
  INSERT INTO t5(x) VALUES('y');
  INSERT INTO t5(x) VALUES('z');
  DELETE FROM t5 WHERE x = 'y';
  SELECT rowid, x FROM t5;
} {1 x 3 z}
do_execsql_test e_vacuum-3.1.4 {
  VACUUM;
  SELECT rowid, x FROM t5;
} {1 x 3 z}

# EVIDENCE-OF: R-49563-33883 A VACUUM will fail if there is an open
# transaction, or if there are one or more active SQL statements when it
# is run.
#
do_execsql_test  e_vacuum-3.2.1.1 { BEGIN } {}
do_catchsql_test e_vacuum-3.2.1.2 { 
  VACUUM 
} {1 {cannot VACUUM from within a transaction}}
do_execsql_test  e_vacuum-3.2.1.3 { COMMIT } {}
do_execsql_test  e_vacuum-3.2.1.4 { VACUUM } {}
do_execsql_test  e_vacuum-3.2.1.5 { SAVEPOINT x } {}
do_catchsql_test e_vacuum-3.2.1.6 { 
  VACUUM 
} {1 {cannot VACUUM from within a transaction}}
do_execsql_test  e_vacuum-3.2.1.7 { COMMIT } {}
do_execsql_test  e_vacuum-3.2.1.8 { VACUUM } {}

create_db
do_test e_vacuum-3.2.2.1 {
  set res ""
  db eval { SELECT a FROM t1 } {
    if {$a == 10} { set res [catchsql VACUUM] }
  }
  set res
} {1 {cannot VACUUM - SQL statements in progress}}


# EVIDENCE-OF: R-38735-12540 As of SQLite version 3.1, an alternative to
# using the VACUUM command to reclaim space after data has been deleted
# is auto-vacuum mode, enabled using the auto_vacuum pragma.
#
do_test e_vacuum-3.3.1 {
  create_db { PRAGMA auto_vacuum = FULL }
  execsql { PRAGMA auto_vacuum }
} {1}

# EVIDENCE-OF: R-64844-34873 When auto_vacuum is enabled for a database
# free pages may be reclaimed after deleting data, causing the file to
# shrink, without rebuilding the entire database using VACUUM.
#
do_test e_vacuum-3.3.2.1 {
  create_db { PRAGMA auto_vacuum = FULL }
  execsql {
    DELETE FROM t1;
    DELETE FROM t2;
  }
  expr {[file size test.db] / 1024}
} {8}
do_test e_vacuum-3.3.2.2 {
  create_db { PRAGMA auto_vacuum = INCREMENTAL }
  execsql {
    DELETE FROM t1;
    DELETE FROM t2;
    PRAGMA incremental_vacuum;
  }
  expr {[file size test.db] / 1024}
} {8}

finish_test

Changes to test/vacuum2.test.

177
178
179
180
181
182
183
184









































185
    db close
    sqlite3 db test.db
    execsql {
      pragma auto_vacuum;
    }
  } {2}
}










































finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    db close
    sqlite3 db test.db
    execsql {
      pragma auto_vacuum;
    }
  } {2}
}


#-------------------------------------------------------------------------
# The following block of tests verify the behaviour of the library when
# a database is VACUUMed when there are one or more unfinalized SQL 
# statements reading the same database using the same db handle.
#
db close
forcedelete test.db
sqlite3 db test.db
do_execsql_test vacuum2-5.1 {
  CREATE TABLE t1(a PRIMARY KEY, b UNIQUE);
  INSERT INTO t1 VALUES(1, randomblob(500));
  INSERT INTO t1 SELECT a+1, randomblob(500) FROM t1;      -- 2
  INSERT INTO t1 SELECT a+2, randomblob(500) FROM t1;      -- 4 
  INSERT INTO t1 SELECT a+4, randomblob(500) FROM t1;      -- 8 
  INSERT INTO t1 SELECT a+8, randomblob(500) FROM t1;      -- 16 
} {}

do_test vacuum2-5.2 {
  list [catch {
    db eval {SELECT a, b FROM t1} { if {$a == 8} { execsql VACUUM } }
  } msg] $msg
} {1 {cannot VACUUM - SQL statements in progress}}

do_test vacuum2-5.3 {
  list [catch {
    db eval {SELECT 1, 2, 3} { execsql VACUUM }
  } msg] $msg
} {1 {cannot VACUUM - SQL statements in progress}}

do_test vacuum2-5.4 {
  set res ""
  set res2 ""
  db eval {SELECT a, b FROM t1 WHERE a<=10} {
    if {$a==6} { set res [catchsql VACUUM] }
    lappend res2 $a
  }
  lappend res2 $res
} {1 2 3 4 5 6 7 8 9 10 {1 {cannot VACUUM - SQL statements in progress}}}


finish_test