/ Check-in [43c4ba26]
Login
SQLite training in Houston TX on 2019-11-05 (details)
Part of the 2019 Tcl Conference

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge all recent enhancements and bug fixes from trunk into the apple-osx branch.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | apple-osx
Files: files | file ages | folders
SHA1: 43c4ba26a20ca0230d898a6431ed9ae5cfdb63d3
User & Date: drh 2014-12-02 16:38:43
Context
2014-12-04
23:42
Import from trunk support for SQLITE_CHECKPOINT_TRUNCATE and fixes for a couple of obscure bugs. check-in: 463ad971 user: drh tags: apple-osx
2014-12-02
16:38
Merge all recent enhancements and bug fixes from trunk into the apple-osx branch. check-in: 43c4ba26 user: drh tags: apple-osx
16:16
Convert two unreachable branches into assert() statements. check-in: 61b31e77 user: drh tags: trunk
2014-11-18
21:27
Merge recent trunk enhancements. check-in: ccb601f6 user: drh tags: apple-osx
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/analyze.c.

1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463


1464
1465
1466
1467
1468


1469
1470
1471
1472
1473
1474
1475
1476

1477
1478
1479
1480
1481
1482
1483
    UNUSED_PARAMETER(aOut);
    assert( aLog!=0 );
    aLog[i] = sqlite3LogEst(v);
#endif
    if( *z==' ' ) z++;
  }
#ifndef SQLITE_ENABLE_STAT3_OR_STAT4
  assert( pIndex!=0 );
#else
  if( pIndex )
#endif


  while( z[0] ){
    if( sqlite3_strglob("unordered*", z)==0 ){
      pIndex->bUnordered = 1;
    }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
      pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3));


    }
#ifdef SQLITE_ENABLE_COSTMULT
    else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
      pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
    }
#endif
    while( z[0]!=0 && z[0]!=' ' ) z++;
    while( z[0]==' ' ) z++;

  }
}

/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.  
**







|

|

>
>
|
|
|
|
|
>
>
|

|
|
|

|
|
>







1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
    UNUSED_PARAMETER(aOut);
    assert( aLog!=0 );
    aLog[i] = sqlite3LogEst(v);
#endif
    if( *z==' ' ) z++;
  }
#ifndef SQLITE_ENABLE_STAT3_OR_STAT4
  assert( pIndex!=0 ); {
#else
  if( pIndex ){
#endif
    pIndex->bUnordered = 0;
    pIndex->noSkipScan = 0;
    while( z[0] ){
      if( sqlite3_strglob("unordered*", z)==0 ){
        pIndex->bUnordered = 1;
      }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
        pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3));
      }else if( sqlite3_strglob("noskipscan*", z)==0 ){
        pIndex->noSkipScan = 1;
      }
#ifdef SQLITE_ENABLE_COSTMULT
      else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
        pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
      }
#endif
      while( z[0]!=0 && z[0]!=' ' ) z++;
      while( z[0]==' ' ) z++;
    }
  }
}

/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.  
**

Changes to src/btree.c.

1141
1142
1143
1144
1145
1146
1147





1148
1149
1150
1151
1152
1153
1154
....
1249
1250
1251
1252
1253
1254
1255


1256
1257
1258
1259



1260
1261
1262
1263
1264
1265


1266
1267
1268
1269
1270
1271
1272
....
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
....
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
....
1489
1490
1491
1492
1493
1494
1495






1496
1497
1498
1499
1500
1501






1502
1503
1504
1505
1506
1507


1508
1509
1510
1511
1512
1513
1514
....
1540
1541
1542
1543
1544
1545
1546


1547
1548
1549
1550
1551
1552
1553
1554



1555


1556
1557
1558
1559
1560
1561





1562
1563
1564
1565
1566
1567
1568
....
1588
1589
1590
1591
1592
1593
1594
1595



1596
1597
1598
1599
1600



1601

1602
1603
1604
1605
1606
1607
1608
....
2000
2001
2002
2003
2004
2005
2006



2007
2008
2009
2010
2011
2012
2013
....
2018
2019
2020
2021
2022
2023
2024



2025
2026
2027
2028
2029
2030
2031
....
2527
2528
2529
2530
2531
2532
2533



2534
2535
2536
2537
2538
2539
2540
....
2588
2589
2590
2591
2592
2593
2594
2595
2596

2597
2598
2599
2600
2601
2602



2603


2604
2605
2606
2607
2608
2609
2610







2611
2612
2613
2614
2615
2616
2617
....
2624
2625
2626
2627
2628
2629
2630



2631
2632
2633
2634
2635
2636
2637
....
5201
5202
5203
5204
5205
5206
5207


5208
5209
5210
5211
5212
5213
5214
....
5247
5248
5249
5250
5251
5252
5253



5254
5255



5256
5257
5258
5259
5260
5261
5262
....
5263
5264
5265
5266
5267
5268
5269
5270
5271

5272
5273
5274
5275
5276
5277
5278
....
5582
5583
5584
5585
5586
5587
5588





5589
5590
5591
5592
5593
5594
5595
....
5933
5934
5935
5936
5937
5938
5939







5940
5941
5942

5943
5944
5945
5946
5947
5948
5949
....
6189
6190
6191
6192
6193
6194
6195








6196
6197
6198
6199
6200
6201
6202
....
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241

6242
6243
6244
6245
6246
6247
6248
....
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
....
8583
8584
8585
8586
8587
8588
8589


8590


8591


8592
8593
8594
8595
8596
8597
8598
....
8600
8601
8602
8603
8604
8605
8606



8607
8608
8609
8610
8611
8612
8613




8614


8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627





8628
8629
8630
8631
8632
8633
8634


/*
** Defragment the page given.  All Cells are moved to the
** end of the page and all free space is collected into one
** big FreeBlk that occurs in between the header and cell
** pointer array and the cell content area.





*/
static int defragmentPage(MemPage *pPage){
  int i;                     /* Loop counter */
  int pc;                    /* Address of the i-th cell */
  int hdr;                   /* Offset to the page header */
  int size;                  /* Size of a cell */
  int usableSize;            /* Number of usable bytes on a page */
................................................................................
  u8 * const aData = pPg->aData;
  int iAddr;
  int pc;
  int usableSize = pPg->pBt->usableSize;

  for(iAddr=hdr+1; (pc = get2byte(&aData[iAddr]))>0; iAddr=pc){
    int size;            /* Size of the free slot */


    if( pc>usableSize-4 || pc<iAddr+4 ){
      *pRc = SQLITE_CORRUPT_BKPT;
      return 0;
    }



    size = get2byte(&aData[pc+2]);
    if( size>=nByte ){
      int x = size - nByte;
      testcase( x==4 );
      testcase( x==3 );
      if( x<4 ){


        if( aData[hdr+7]>=60 ){
          if( pbDefrag ) *pbDefrag = 1;
          return 0;
        }
        /* Remove the slot from the free-list. Update the number of
        ** fragmented bytes within the page. */
        memcpy(&aData[iAddr], &aData[pc], 2);
................................................................................
  assert( pPage->nFree>=nByte );
  assert( pPage->nOverflow==0 );
  assert( nByte < (int)(pPage->pBt->usableSize-8) );

  assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
  gap = pPage->cellOffset + 2*pPage->nCell;
  assert( gap<=65536 );
  top = get2byte(&data[hdr+5]);
  if( gap>top ){
    if( top==0 ){
      top = 65536;
    }else{
      return SQLITE_CORRUPT_BKPT;
    }
  }

  /* If there is enough space between gap and top for one more cell pointer
  ** array entry offset, and if the freelist is not empty, then search the
  ** freelist looking for a free slot big enough to satisfy the request.
  */
  testcase( gap+2==top );
  testcase( gap+1==top );
................................................................................

  /* The request could not be fulfilled using a freelist slot.  Check
  ** to see if defragmentation is necessary.
  */
  testcase( gap+2+nByte==top );
  if( gap+2+nByte>top ){
 defragment_page:
    testcase( pPage->nCell==0 );
    rc = defragmentPage(pPage);
    if( rc ) return rc;
    top = get2byteNotZero(&data[hdr+5]);
    assert( gap+nByte<=top );
  }


................................................................................
  assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
  flagByte &= ~PTF_LEAF;
  pPage->childPtrSize = 4-4*pPage->leaf;
  pBt = pPage->pBt;
  if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){






    pPage->intKey = 1;
    pPage->intKeyLeaf = pPage->leaf;
    pPage->noPayload = !pPage->leaf;
    pPage->maxLocal = pBt->maxLeaf;
    pPage->minLocal = pBt->minLeaf;
  }else if( flagByte==PTF_ZERODATA ){






    pPage->intKey = 0;
    pPage->intKeyLeaf = 0;
    pPage->noPayload = 0;
    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }else{


    return SQLITE_CORRUPT_BKPT;
  }
  pPage->max1bytePayload = pBt->max1bytePayload;
  return SQLITE_OK;
}

/*
................................................................................
    int iCellFirst;    /* First allowable cell or freeblock offset */
    int iCellLast;     /* Last possible cell or freeblock offset */

    pBt = pPage->pBt;

    hdr = pPage->hdrOffset;
    data = pPage->aData;


    if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
    assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
    pPage->maskPage = (u16)(pBt->pageSize - 1);
    pPage->nOverflow = 0;
    usableSize = pBt->usableSize;
    pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
    pPage->aDataEnd = &data[usableSize];
    pPage->aCellIdx = &data[cellOffset];



    top = get2byteNotZero(&data[hdr+5]);


    pPage->nCell = get2byte(&data[hdr+3]);
    if( pPage->nCell>MX_CELL(pBt) ){
      /* To many cells for a single page.  The page must be corrupt */
      return SQLITE_CORRUPT_BKPT;
    }
    testcase( pPage->nCell==MX_CELL(pBt) );






    /* A malformed database page might cause us to read past the end
    ** of page when parsing a cell.  
    **
    ** The following block of code checks early to see if a cell extends
    ** past the end of a page boundary and causes SQLITE_CORRUPT to be 
    ** returned if it does.
................................................................................
          return SQLITE_CORRUPT_BKPT;
        }
      }
      if( !pPage->leaf ) iCellLast++;
    }  
#endif

    /* Compute the total free space on the page */



    pc = get2byte(&data[hdr+1]);
    nFree = data[hdr+7] + top;
    while( pc>0 ){
      u16 next, size;
      if( pc<iCellFirst || pc>iCellLast ){



        /* Start of free block is off the page */

        return SQLITE_CORRUPT_BKPT; 
      }
      next = get2byte(&data[pc]);
      size = get2byte(&data[pc+2]);
      if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
        /* Free blocks must be in ascending order. And the last byte of
        ** the free-block must lie on the database page.  */
................................................................................
  
    pBt->pCursor = 0;
    pBt->pPage1 = 0;
    if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
#ifdef SQLITE_SECURE_DELETE
    pBt->btsFlags |= BTS_SECURE_DELETE;
#endif



    pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
    if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
         || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
      pBt->pageSize = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
      /* If the magic name ":memory:" will create an in-memory database, then
      ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
................................................................................
      if( zFilename && !isMemdb ){
        pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
        pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
      }
#endif
      nReserve = 0;
    }else{



      nReserve = zDbHeader[20];
      pBt->btsFlags |= BTS_PAGESIZE_FIXED;
#ifndef SQLITE_OMIT_AUTOVACUUM
      pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
      pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
#endif
    }
................................................................................
    nPage = nPageFile;
  }
  if( nPage>0 ){
    u32 pageSize;
    u32 usableSize;
    u8 *page1 = pPage1->aData;
    rc = SQLITE_NOTADB;



    if( memcmp(page1, zMagicHeader, 16)!=0 ){
      goto page1_init_failed;
    }

#ifdef SQLITE_OMIT_WAL
    if( page1[18]>1 ){
      pBt->btsFlags |= BTS_READ_ONLY;
................................................................................
        releasePage(pPage1);
        return SQLITE_OK;
      }
      rc = SQLITE_NOTADB;
    }
#endif

    /* The maximum embedded fraction must be exactly 25%.  And the minimum
    ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.

    ** The original design allowed these amounts to vary, but as of
    ** version 3.6.0, we require them to be fixed.
    */
    if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
      goto page1_init_failed;
    }



    pageSize = (page1[16]<<8) | (page1[17]<<16);


    if( ((pageSize-1)&pageSize)!=0
     || pageSize>SQLITE_MAX_PAGE_SIZE 
     || pageSize<=256 
    ){
      goto page1_init_failed;
    }
    assert( (pageSize & 7)==0 );







    usableSize = pageSize - page1[20];
    if( (u32)pageSize!=pBt->pageSize ){
      /* After reading the first page of the database assuming a page size
      ** of BtShared.pageSize, we have discovered that the page-size is
      ** actually pageSize. Unlock the database, leave pBt->pPage1 at
      ** zero and return SQLITE_OK. The caller will call this function
      ** again with the correct page-size.
................................................................................
                                   pageSize-usableSize);
      return rc;
    }
    if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
      rc = SQLITE_CORRUPT_BKPT;
      goto page1_init_failed;
    }



    if( usableSize<480 ){
      goto page1_init_failed;
    }
    pBt->pageSize = pageSize;
    pBt->usableSize = usableSize;
#ifndef SQLITE_OMIT_AUTOVACUUM
    pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
................................................................................
  MemPage *pPrevTrunk = 0;
  Pgno mxPage;     /* Total size of the database file */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
  pPage1 = pBt->pPage1;
  mxPage = btreePagecount(pBt);


  n = get4byte(&pPage1->aData[36]);
  testcase( n==mxPage-1 );
  if( n>=mxPage ){
    return SQLITE_CORRUPT_BKPT;
  }
  if( n>0 ){
    /* There are pages on the freelist.  Reuse one of those pages. */
................................................................................
    ** is not true. Otherwise, it runs once for each trunk-page on the
    ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
    ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
    */
    do {
      pPrevTrunk = pTrunk;
      if( pPrevTrunk ){



        iTrunk = get4byte(&pPrevTrunk->aData[0]);
      }else{



        iTrunk = get4byte(&pPage1->aData[32]);
      }
      testcase( iTrunk==mxPage );
      if( iTrunk>mxPage ){
        rc = SQLITE_CORRUPT_BKPT;
      }else{
        rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
................................................................................
      }
      if( rc ){
        pTrunk = 0;
        goto end_allocate_page;
      }
      assert( pTrunk!=0 );
      assert( pTrunk->aData!=0 );

      k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */

      if( k==0 && !searchList ){
        /* The trunk has no leaves and the list is not being searched. 
        ** So extract the trunk page itself and use it as the newly 
        ** allocated page */
        assert( pPrevTrunk==0 );
        rc = sqlite3PagerWrite(pTrunk->pDbPage);
        if( rc ){
................................................................................
      ** 3.6.0, databases with freelist trunk pages holding more than
      ** usableSize/4 - 8 entries will be reported as corrupt.  In order
      ** to maintain backwards compatibility with older versions of SQLite,
      ** we will continue to restrict the number of entries to usableSize/4 - 8
      ** for now.  At some point in the future (once everyone has upgraded
      ** to 3.6.0 or later) we should consider fixing the conditional above
      ** to read "usableSize/4-2" instead of "usableSize/4-8".





      */
      rc = sqlite3PagerWrite(pTrunk->pDbPage);
      if( rc==SQLITE_OK ){
        put4byte(&pTrunk->aData[4], nLeaf+1);
        put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
        if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
          sqlite3PagerDontWrite(pPage->pDbPage);
................................................................................
  }
  rc = freeSpace(pPage, pc, sz);
  if( rc ){
    *pRC = rc;
    return;
  }
  pPage->nCell--;







  memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
  put2byte(&data[hdr+3], pPage->nCell);
  pPage->nFree += 2;

}

/*
** Insert a new cell on pPage at cell index "i".  pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there.  If it
................................................................................
    assert( pFree>aData && (pFree - aData)<65536 );
    freeSpace(pPg, (u16)(pFree - aData), szFree);
  }
  return nRet;
}

/*








** The pPg->nFree field is invalid when this function returns. It is the
** responsibility of the caller to set it correctly.
*/
static void editPage(
  MemPage *pPg,                   /* Edit this page */
  int iOld,                       /* Index of first cell currently on page */
  int iNew,                       /* Index of new first cell on page */
................................................................................
  }
  if( iNewEnd < iOldEnd ){
    nCell -= pageFreeArray(
        pPg, iOldEnd-iNewEnd, &apCell[iNewEnd], &szCell[iNewEnd]
    );
  }

  pData = &aData[get2byte(&aData[hdr+5])];
  if( pData<pBegin ) goto editpage_fail;

  /* Add cells to the start of the page */
  if( iNew<iOld ){
    int nAdd = iOld-iNew;

    pCellptr = pPg->aCellIdx;
    memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
    if( pageInsertArray(
          pPg, pBegin, &pData, pCellptr,
          nAdd, &apCell[iNew], &szCell[iNew]
    ) ) goto editpage_fail;
    nCell += nAdd;
................................................................................
  Pgno pgnoNew;                        /* Page number of pNew */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  assert( pPage->nOverflow==1 );

  /* This error condition is now caught prior to reaching this function */
  if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;

  /* Allocate a new page. This page will become the right-sibling of 
  ** pPage. Make the parent page writable, so that the new divider cell
  ** may be inserted. If both these operations are successful, proceed.
  */
  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);

................................................................................
  if( hit==0 ){
    pCheck->mallocFailed = 1;
  }else{
    int contentOffset = get2byteNotZero(&data[hdr+5]);
    assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
    memset(hit+contentOffset, 0, usableSize-contentOffset);
    memset(hit, 1, contentOffset);


    nCell = get2byte(&data[hdr+3]);


    cellStart = hdr + 12 - 4*pPage->leaf;


    for(i=0; i<nCell; i++){
      int pc = get2byte(&data[cellStart+i*2]);
      u32 size = 65536;
      int j;
      if( pc<=usableSize-4 ){
        size = cellSizePtr(pPage, &data[pc]);
      }
................................................................................
        pCheck->zPfx = 0;
        checkAppendMsg(pCheck,
            "Corruption detected in cell %d on page %d",i,iPage);
      }else{
        for(j=pc+size-1; j>=pc; j--) hit[j]++;
      }
    }



    i = get2byte(&data[hdr+1]);
    while( i>0 ){
      int size, j;
      assert( i<=usableSize-4 );     /* Enforced by btreeInitPage() */
      size = get2byte(&data[i+2]);
      assert( i+size<=usableSize );  /* Enforced by btreeInitPage() */
      for(j=i+size-1; j>=i; j--) hit[j]++;




      j = get2byte(&data[i]);


      assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
      assert( j<=usableSize-4 );   /* Enforced by btreeInitPage() */
      i = j;
    }
    for(i=cnt=0; i<usableSize; i++){
      if( hit[i]==0 ){
        cnt++;
      }else if( hit[i]>1 ){
        checkAppendMsg(pCheck,
          "Multiple uses for byte %d of page %d", i, iPage);
        break;
      }
    }





    if( cnt!=data[hdr+7] ){
      checkAppendMsg(pCheck,
          "Fragmentation of %d bytes reported as %d on page %d",
          cnt, data[hdr+7], iPage);
    }
  }
  sqlite3PageFree(hit);







>
>
>
>
>







 







>
>




>
>
>






>
>







 







|
|
|
|
|
|
|
<







 







|







 







>
>
>
>
>
>






>
>
>
>
>
>






>
>







 







>
>





|


>
>
>

>
>






>
>
>
>
>







 







|
>
>
>

|



>
>
>
|
>







 







>
>
>







 







>
>
>







 







>
>
>







 







|
|
>






>
>
>

>
>







>
>
>
>
>
>
>







 







>
>
>







 







>
>







 







>
>
>


>
>
>







 







|
|
>







 







>
>
>
>
>







 







>
>
>
>
>
>
>
|
|
|
>







 







>
>
>
>
>
>
>
>







 







|




|
>







 







|







 







>
>

>
>

>
>







 







>
>
>







>
>
>
>

>
>













>
>
>
>
>







1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
....
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
....
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338

1339
1340
1341
1342
1343
1344
1345
....
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
....
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
....
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
....
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
....
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
....
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
....
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
....
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
....
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
....
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
....
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
....
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
....
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
....
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
....
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
....
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
....
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
....
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
....
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754


/*
** Defragment the page given.  All Cells are moved to the
** end of the page and all free space is collected into one
** big FreeBlk that occurs in between the header and cell
** pointer array and the cell content area.
**
** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
** b-tree page so that there are no freeblocks or fragment bytes, all
** unused bytes are contained in the unallocated space region, and all
** cells are packed tightly at the end of the page.
*/
static int defragmentPage(MemPage *pPage){
  int i;                     /* Loop counter */
  int pc;                    /* Address of the i-th cell */
  int hdr;                   /* Offset to the page header */
  int size;                  /* Size of a cell */
  int usableSize;            /* Number of usable bytes on a page */
................................................................................
  u8 * const aData = pPg->aData;
  int iAddr;
  int pc;
  int usableSize = pPg->pBt->usableSize;

  for(iAddr=hdr+1; (pc = get2byte(&aData[iAddr]))>0; iAddr=pc){
    int size;            /* Size of the free slot */
    /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
    ** increasing offset. */
    if( pc>usableSize-4 || pc<iAddr+4 ){
      *pRc = SQLITE_CORRUPT_BKPT;
      return 0;
    }
    /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
    ** freeblock form a big-endian integer which is the size of the freeblock
    ** in bytes, including the 4-byte header. */
    size = get2byte(&aData[pc+2]);
    if( size>=nByte ){
      int x = size - nByte;
      testcase( x==4 );
      testcase( x==3 );
      if( x<4 ){
        /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
        ** number of bytes in fragments may not exceed 60. */
        if( aData[hdr+7]>=60 ){
          if( pbDefrag ) *pbDefrag = 1;
          return 0;
        }
        /* Remove the slot from the free-list. Update the number of
        ** fragmented bytes within the page. */
        memcpy(&aData[iAddr], &aData[pc], 2);
................................................................................
  assert( pPage->nFree>=nByte );
  assert( pPage->nOverflow==0 );
  assert( nByte < (int)(pPage->pBt->usableSize-8) );

  assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
  gap = pPage->cellOffset + 2*pPage->nCell;
  assert( gap<=65536 );
  /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
  ** and the reserved space is zero (the usual value for reserved space)
  ** then the cell content offset of an empty page wants to be 65536.
  ** However, that integer is too large to be stored in a 2-byte unsigned
  ** integer, so a value of 0 is used in its place. */
  top = get2byteNotZero(&data[hdr+5]);
  if( gap>top ) return SQLITE_CORRUPT_BKPT;


  /* If there is enough space between gap and top for one more cell pointer
  ** array entry offset, and if the freelist is not empty, then search the
  ** freelist looking for a free slot big enough to satisfy the request.
  */
  testcase( gap+2==top );
  testcase( gap+1==top );
................................................................................

  /* The request could not be fulfilled using a freelist slot.  Check
  ** to see if defragmentation is necessary.
  */
  testcase( gap+2+nByte==top );
  if( gap+2+nByte>top ){
 defragment_page:
    assert( pPage->nCell>0 || CORRUPT_DB );
    rc = defragmentPage(pPage);
    if( rc ) return rc;
    top = get2byteNotZero(&data[hdr+5]);
    assert( gap+nByte<=top );
  }


................................................................................
  assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
  flagByte &= ~PTF_LEAF;
  pPage->childPtrSize = 4-4*pPage->leaf;
  pBt = pPage->pBt;
  if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
    /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
    ** table b-tree page. */
    assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
    /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
    ** table b-tree page. */
    assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
    pPage->intKey = 1;
    pPage->intKeyLeaf = pPage->leaf;
    pPage->noPayload = !pPage->leaf;
    pPage->maxLocal = pBt->maxLeaf;
    pPage->minLocal = pBt->minLeaf;
  }else if( flagByte==PTF_ZERODATA ){
    /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
    ** index b-tree page. */
    assert( (PTF_ZERODATA)==2 );
    /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
    ** index b-tree page. */
    assert( (PTF_ZERODATA|PTF_LEAF)==10 );
    pPage->intKey = 0;
    pPage->intKeyLeaf = 0;
    pPage->noPayload = 0;
    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }else{
    /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
    ** an error. */
    return SQLITE_CORRUPT_BKPT;
  }
  pPage->max1bytePayload = pBt->max1bytePayload;
  return SQLITE_OK;
}

/*
................................................................................
    int iCellFirst;    /* First allowable cell or freeblock offset */
    int iCellLast;     /* Last possible cell or freeblock offset */

    pBt = pPage->pBt;

    hdr = pPage->hdrOffset;
    data = pPage->aData;
    /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
    ** the b-tree page type. */
    if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
    assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
    pPage->maskPage = (u16)(pBt->pageSize - 1);
    pPage->nOverflow = 0;
    usableSize = pBt->usableSize;
    pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
    pPage->aDataEnd = &data[usableSize];
    pPage->aCellIdx = &data[cellOffset];
    /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
    ** the start of the cell content area. A zero value for this integer is
    ** interpreted as 65536. */
    top = get2byteNotZero(&data[hdr+5]);
    /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
    ** number of cells on the page. */
    pPage->nCell = get2byte(&data[hdr+3]);
    if( pPage->nCell>MX_CELL(pBt) ){
      /* To many cells for a single page.  The page must be corrupt */
      return SQLITE_CORRUPT_BKPT;
    }
    testcase( pPage->nCell==MX_CELL(pBt) );
    /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
    ** possible for a root page of a table that contains no rows) then the
    ** offset to the cell content area will equal the page size minus the
    ** bytes of reserved space. */
    assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );

    /* A malformed database page might cause us to read past the end
    ** of page when parsing a cell.  
    **
    ** The following block of code checks early to see if a cell extends
    ** past the end of a page boundary and causes SQLITE_CORRUPT to be 
    ** returned if it does.
................................................................................
          return SQLITE_CORRUPT_BKPT;
        }
      }
      if( !pPage->leaf ) iCellLast++;
    }  
#endif

    /* Compute the total free space on the page
    ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
    ** start of the first freeblock on the page, or is zero if there are no
    ** freeblocks. */
    pc = get2byte(&data[hdr+1]);
    nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
    while( pc>0 ){
      u16 next, size;
      if( pc<iCellFirst || pc>iCellLast ){
        /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
        ** always be at least one cell before the first freeblock.
        **
        ** Or, the freeblock is off the end of the page
        */
        return SQLITE_CORRUPT_BKPT; 
      }
      next = get2byte(&data[pc]);
      size = get2byte(&data[pc+2]);
      if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
        /* Free blocks must be in ascending order. And the last byte of
        ** the free-block must lie on the database page.  */
................................................................................
  
    pBt->pCursor = 0;
    pBt->pPage1 = 0;
    if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
#ifdef SQLITE_SECURE_DELETE
    pBt->btsFlags |= BTS_SECURE_DELETE;
#endif
    /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
    ** determined by the 2-byte integer located at an offset of 16 bytes from
    ** the beginning of the database file. */
    pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
    if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
         || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
      pBt->pageSize = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
      /* If the magic name ":memory:" will create an in-memory database, then
      ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
................................................................................
      if( zFilename && !isMemdb ){
        pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
        pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
      }
#endif
      nReserve = 0;
    }else{
      /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
      ** determined by the one-byte unsigned integer found at an offset of 20
      ** into the database file header. */
      nReserve = zDbHeader[20];
      pBt->btsFlags |= BTS_PAGESIZE_FIXED;
#ifndef SQLITE_OMIT_AUTOVACUUM
      pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
      pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
#endif
    }
................................................................................
    nPage = nPageFile;
  }
  if( nPage>0 ){
    u32 pageSize;
    u32 usableSize;
    u8 *page1 = pPage1->aData;
    rc = SQLITE_NOTADB;
    /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
    ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
    ** 61 74 20 33 00. */
    if( memcmp(page1, zMagicHeader, 16)!=0 ){
      goto page1_init_failed;
    }

#ifdef SQLITE_OMIT_WAL
    if( page1[18]>1 ){
      pBt->btsFlags |= BTS_READ_ONLY;
................................................................................
        releasePage(pPage1);
        return SQLITE_OK;
      }
      rc = SQLITE_NOTADB;
    }
#endif

    /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
    ** fractions and the leaf payload fraction values must be 64, 32, and 32.
    **
    ** The original design allowed these amounts to vary, but as of
    ** version 3.6.0, we require them to be fixed.
    */
    if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
      goto page1_init_failed;
    }
    /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
    ** determined by the 2-byte integer located at an offset of 16 bytes from
    ** the beginning of the database file. */
    pageSize = (page1[16]<<8) | (page1[17]<<16);
    /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
    ** between 512 and 65536 inclusive. */
    if( ((pageSize-1)&pageSize)!=0
     || pageSize>SQLITE_MAX_PAGE_SIZE 
     || pageSize<=256 
    ){
      goto page1_init_failed;
    }
    assert( (pageSize & 7)==0 );
    /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
    ** integer at offset 20 is the number of bytes of space at the end of
    ** each page to reserve for extensions. 
    **
    ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
    ** determined by the one-byte unsigned integer found at an offset of 20
    ** into the database file header. */
    usableSize = pageSize - page1[20];
    if( (u32)pageSize!=pBt->pageSize ){
      /* After reading the first page of the database assuming a page size
      ** of BtShared.pageSize, we have discovered that the page-size is
      ** actually pageSize. Unlock the database, leave pBt->pPage1 at
      ** zero and return SQLITE_OK. The caller will call this function
      ** again with the correct page-size.
................................................................................
                                   pageSize-usableSize);
      return rc;
    }
    if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
      rc = SQLITE_CORRUPT_BKPT;
      goto page1_init_failed;
    }
    /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
    ** be less than 480. In other words, if the page size is 512, then the
    ** reserved space size cannot exceed 32. */
    if( usableSize<480 ){
      goto page1_init_failed;
    }
    pBt->pageSize = pageSize;
    pBt->usableSize = usableSize;
#ifndef SQLITE_OMIT_AUTOVACUUM
    pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
................................................................................
  MemPage *pPrevTrunk = 0;
  Pgno mxPage;     /* Total size of the database file */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
  pPage1 = pBt->pPage1;
  mxPage = btreePagecount(pBt);
  /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
  ** stores stores the total number of pages on the freelist. */
  n = get4byte(&pPage1->aData[36]);
  testcase( n==mxPage-1 );
  if( n>=mxPage ){
    return SQLITE_CORRUPT_BKPT;
  }
  if( n>0 ){
    /* There are pages on the freelist.  Reuse one of those pages. */
................................................................................
    ** is not true. Otherwise, it runs once for each trunk-page on the
    ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
    ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
    */
    do {
      pPrevTrunk = pTrunk;
      if( pPrevTrunk ){
        /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
        ** is the page number of the next freelist trunk page in the list or
        ** zero if this is the last freelist trunk page. */
        iTrunk = get4byte(&pPrevTrunk->aData[0]);
      }else{
        /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
        ** stores the page number of the first page of the freelist, or zero if
        ** the freelist is empty. */
        iTrunk = get4byte(&pPage1->aData[32]);
      }
      testcase( iTrunk==mxPage );
      if( iTrunk>mxPage ){
        rc = SQLITE_CORRUPT_BKPT;
      }else{
        rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
................................................................................
      }
      if( rc ){
        pTrunk = 0;
        goto end_allocate_page;
      }
      assert( pTrunk!=0 );
      assert( pTrunk->aData!=0 );
      /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
      ** is the number of leaf page pointers to follow. */
      k = get4byte(&pTrunk->aData[4]);
      if( k==0 && !searchList ){
        /* The trunk has no leaves and the list is not being searched. 
        ** So extract the trunk page itself and use it as the newly 
        ** allocated page */
        assert( pPrevTrunk==0 );
        rc = sqlite3PagerWrite(pTrunk->pDbPage);
        if( rc ){
................................................................................
      ** 3.6.0, databases with freelist trunk pages holding more than
      ** usableSize/4 - 8 entries will be reported as corrupt.  In order
      ** to maintain backwards compatibility with older versions of SQLite,
      ** we will continue to restrict the number of entries to usableSize/4 - 8
      ** for now.  At some point in the future (once everyone has upgraded
      ** to 3.6.0 or later) we should consider fixing the conditional above
      ** to read "usableSize/4-2" instead of "usableSize/4-8".
      **
      ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
      ** avoid using the last six entries in the freelist trunk page array in
      ** order that database files created by newer versions of SQLite can be
      ** read by older versions of SQLite.
      */
      rc = sqlite3PagerWrite(pTrunk->pDbPage);
      if( rc==SQLITE_OK ){
        put4byte(&pTrunk->aData[4], nLeaf+1);
        put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
        if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
          sqlite3PagerDontWrite(pPage->pDbPage);
................................................................................
  }
  rc = freeSpace(pPage, pc, sz);
  if( rc ){
    *pRC = rc;
    return;
  }
  pPage->nCell--;
  if( pPage->nCell==0 ){
    memset(&data[hdr+1], 0, 4);
    data[hdr+7] = 0;
    put2byte(&data[hdr+5], pPage->pBt->usableSize);
    pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
                       - pPage->childPtrSize - 8;
  }else{
    memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
    put2byte(&data[hdr+3], pPage->nCell);
    pPage->nFree += 2;
  }
}

/*
** Insert a new cell on pPage at cell index "i".  pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there.  If it
................................................................................
    assert( pFree>aData && (pFree - aData)<65536 );
    freeSpace(pPg, (u16)(pFree - aData), szFree);
  }
  return nRet;
}

/*
** apCell[] and szCell[] contains pointers to and sizes of all cells in the
** pages being balanced.  The current page, pPg, has pPg->nCell cells starting
** with apCell[iOld].  After balancing, this page should hold nNew cells
** starting at apCell[iNew].
**
** This routine makes the necessary adjustments to pPg so that it contains
** the correct cells after being balanced.
**
** The pPg->nFree field is invalid when this function returns. It is the
** responsibility of the caller to set it correctly.
*/
static void editPage(
  MemPage *pPg,                   /* Edit this page */
  int iOld,                       /* Index of first cell currently on page */
  int iNew,                       /* Index of new first cell on page */
................................................................................
  }
  if( iNewEnd < iOldEnd ){
    nCell -= pageFreeArray(
        pPg, iOldEnd-iNewEnd, &apCell[iNewEnd], &szCell[iNewEnd]
    );
  }

  pData = &aData[get2byteNotZero(&aData[hdr+5])];
  if( pData<pBegin ) goto editpage_fail;

  /* Add cells to the start of the page */
  if( iNew<iOld ){
    int nAdd = MIN(nNew,iOld-iNew);
    assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
    pCellptr = pPg->aCellIdx;
    memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
    if( pageInsertArray(
          pPg, pBegin, &pData, pCellptr,
          nAdd, &apCell[iNew], &szCell[iNew]
    ) ) goto editpage_fail;
    nCell += nAdd;
................................................................................
  Pgno pgnoNew;                        /* Page number of pNew */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  assert( pPage->nOverflow==1 );

  /* This error condition is now caught prior to reaching this function */
  if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;

  /* Allocate a new page. This page will become the right-sibling of 
  ** pPage. Make the parent page writable, so that the new divider cell
  ** may be inserted. If both these operations are successful, proceed.
  */
  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);

................................................................................
  if( hit==0 ){
    pCheck->mallocFailed = 1;
  }else{
    int contentOffset = get2byteNotZero(&data[hdr+5]);
    assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
    memset(hit+contentOffset, 0, usableSize-contentOffset);
    memset(hit, 1, contentOffset);
    /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
    ** number of cells on the page. */
    nCell = get2byte(&data[hdr+3]);
    /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
    ** immediately follows the b-tree page header. */
    cellStart = hdr + 12 - 4*pPage->leaf;
    /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
    ** integer offsets to the cell contents. */
    for(i=0; i<nCell; i++){
      int pc = get2byte(&data[cellStart+i*2]);
      u32 size = 65536;
      int j;
      if( pc<=usableSize-4 ){
        size = cellSizePtr(pPage, &data[pc]);
      }
................................................................................
        pCheck->zPfx = 0;
        checkAppendMsg(pCheck,
            "Corruption detected in cell %d on page %d",i,iPage);
      }else{
        for(j=pc+size-1; j>=pc; j--) hit[j]++;
      }
    }
    /* EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
    ** is the offset of the first freeblock, or zero if there are no
    ** freeblocks on the page. */
    i = get2byte(&data[hdr+1]);
    while( i>0 ){
      int size, j;
      assert( i<=usableSize-4 );     /* Enforced by btreeInitPage() */
      size = get2byte(&data[i+2]);
      assert( i+size<=usableSize );  /* Enforced by btreeInitPage() */
      for(j=i+size-1; j>=i; j--) hit[j]++;
      /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
      ** big-endian integer which is the offset in the b-tree page of the next
      ** freeblock in the chain, or zero if the freeblock is the last on the
      ** chain. */
      j = get2byte(&data[i]);
      /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
      ** increasing offset. */
      assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
      assert( j<=usableSize-4 );   /* Enforced by btreeInitPage() */
      i = j;
    }
    for(i=cnt=0; i<usableSize; i++){
      if( hit[i]==0 ){
        cnt++;
      }else if( hit[i]>1 ){
        checkAppendMsg(pCheck,
          "Multiple uses for byte %d of page %d", i, iPage);
        break;
      }
    }
    /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
    ** is stored in the fifth field of the b-tree page header.
    ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
    ** number of fragmented free bytes within the cell content area.
    */
    if( cnt!=data[hdr+7] ){
      checkAppendMsg(pCheck,
          "Fragmentation of %d bytes reported as %d on page %d",
          cnt, data[hdr+7], iPage);
    }
  }
  sqlite3PageFree(hit);

Changes to src/expr.c.

2999
3000
3001
3002
3003
3004
3005
3006



3007
3008
3009
3010
3011
3012
3013
        (pExpr->iTable ? "new" : "old"),
        (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
        target
      ));

#ifndef SQLITE_OMIT_FLOATING_POINT
      /* If the column has REAL affinity, it may currently be stored as an
      ** integer. Use OP_RealAffinity to make sure it is really real.  */



      if( pExpr->iColumn>=0 
       && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
      ){
        sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
      }
#endif
      break;







|
>
>
>







2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
        (pExpr->iTable ? "new" : "old"),
        (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
        target
      ));

#ifndef SQLITE_OMIT_FLOATING_POINT
      /* If the column has REAL affinity, it may currently be stored as an
      ** integer. Use OP_RealAffinity to make sure it is really real.
      **
      ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
      ** floating point when extracting it from the record.  */
      if( pExpr->iColumn>=0 
       && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
      ){
        sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
      }
#endif
      break;

Changes to src/func.c.

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
      /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
      sqlite3_result_null(context);
      break;
    }
    default: {
      /* Because sqlite3_value_double() returns 0.0 if the argument is not
      ** something that can be converted into a number, we have:
      ** IMP: R-57326-31541 Abs(X) return 0.0 if X is a string or blob that
      ** cannot be converted to a numeric value. 
      */
      double rVal = sqlite3_value_double(argv[0]);
      if( rVal<0 ) rVal = -rVal;
      sqlite3_result_double(context, rVal);
      break;
    }
  }







|
|







153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
      /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
      sqlite3_result_null(context);
      break;
    }
    default: {
      /* Because sqlite3_value_double() returns 0.0 if the argument is not
      ** something that can be converted into a number, we have:
      ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
      ** that cannot be converted to a numeric value.
      */
      double rVal = sqlite3_value_double(argv[0]);
      if( rVal<0 ) rVal = -rVal;
      sqlite3_result_double(context, rVal);
      break;
    }
  }

Changes to src/main.c.

772
773
774
775
776
777
778



779
780
781
782
783
784
785




786
787
788
789
790
791
792
....
2825
2826
2827
2828
2829
2830
2831



2832
2833
2834
2835

2836
2837
2838
2839



2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
static int binCollFunc(
  void *padFlag,
  int nKey1, const void *pKey1,
  int nKey2, const void *pKey2
){
  int rc, n;
  n = nKey1<nKey2 ? nKey1 : nKey2;



  rc = memcmp(pKey1, pKey2, n);
  if( rc==0 ){
    if( padFlag
     && allSpaces(((char*)pKey1)+n, nKey1-n)
     && allSpaces(((char*)pKey2)+n, nKey2-n)
    ){
      /* Leave rc unchanged at 0 */




    }else{
      rc = nKey1 - nKey2;
    }
  }
  return rc;
}

................................................................................
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3HashInit(&db->aModule);
#endif

  /* Add the default collation sequence BINARY. BINARY works for both UTF-8
  ** and UTF-16, so add a version for each to avoid any unnecessary
  ** conversions. The only error that can occur here is a malloc() failure.



  */
  createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
  createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
  createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);

  createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
  if( db->mallocFailed ){
    goto opendb_out;
  }



  db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
  assert( db->pDfltColl!=0 );

  /* Also add a UTF-8 case-insensitive collation sequence. */
  createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);

  /* Parse the filename/URI argument. */
  db->openFlags = flags;
  rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
    sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
    sqlite3_free(zErrMsg);







>
>
>






|
>
>
>
>







 







>
>
>




>




>
>
>



<
<
<







772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
....
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856



2857
2858
2859
2860
2861
2862
2863
static int binCollFunc(
  void *padFlag,
  int nKey1, const void *pKey1,
  int nKey2, const void *pKey2
){
  int rc, n;
  n = nKey1<nKey2 ? nKey1 : nKey2;
  /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares
  ** strings byte by byte using the memcmp() function from the standard C
  ** library. */
  rc = memcmp(pKey1, pKey2, n);
  if( rc==0 ){
    if( padFlag
     && allSpaces(((char*)pKey1)+n, nKey1-n)
     && allSpaces(((char*)pKey2)+n, nKey2-n)
    ){
      /* EVIDENCE-OF: R-31624-24737 RTRIM is like BINARY except that extra
      ** spaces at the end of either string do not change the result. In other
      ** words, strings will compare equal to one another as long as they
      ** differ only in the number of spaces at the end.
      */
    }else{
      rc = nKey1 - nKey2;
    }
  }
  return rc;
}

................................................................................
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3HashInit(&db->aModule);
#endif

  /* Add the default collation sequence BINARY. BINARY works for both UTF-8
  ** and UTF-16, so add a version for each to avoid any unnecessary
  ** conversions. The only error that can occur here is a malloc() failure.
  **
  ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating
  ** functions:
  */
  createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
  createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
  createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);
  createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
  createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
  if( db->mallocFailed ){
    goto opendb_out;
  }
  /* EVIDENCE-OF: R-08308-17224 The default collating function for all
  ** strings is BINARY. 
  */
  db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
  assert( db->pDfltColl!=0 );




  /* Parse the filename/URI argument. */
  db->openFlags = flags;
  rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
    sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
    sqlite3_free(zErrMsg);

Changes to src/pager.c.

2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
      ** of bytes 24..39 of the database.  Bytes 28..31 should always be
      ** zero or the size of the database in page. Bytes 32..35 and 35..39
      ** should be page numbers which are never 0xffffffff.  So filling
      ** pPager->dbFileVers[] with all 0xff bytes should suffice.
      **
      ** For an encrypted database, the situation is more complex:  bytes
      ** 24..39 of the database are white noise.  But the probability of
      ** white noising equaling 16 bytes of 0xff is vanishingly small so
      ** we should still be ok.
      */
      memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers));
    }else{
      u8 *dbFileVers = &((u8*)pPg->pData)[24];
      memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers));
    }







|







2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
      ** of bytes 24..39 of the database.  Bytes 28..31 should always be
      ** zero or the size of the database in page. Bytes 32..35 and 35..39
      ** should be page numbers which are never 0xffffffff.  So filling
      ** pPager->dbFileVers[] with all 0xff bytes should suffice.
      **
      ** For an encrypted database, the situation is more complex:  bytes
      ** 24..39 of the database are white noise.  But the probability of
      ** white noise equaling 16 bytes of 0xff is vanishingly small so
      ** we should still be ok.
      */
      memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers));
    }else{
      u8 *dbFileVers = &((u8*)pPg->pData)[24];
      memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers));
    }

Changes to src/shell.c.

4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044



4045
4046
4047
4048
4049
4050
4051
....
4056
4057
4058
4059
4060
4061
4062












4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075








4076
4077
4078
4079

4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
....
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
....
4268
4269
4270
4271
4272
4273
4274




4275
4276
4277
4278
4279
4280
4281
....
4291
4292
4293
4294
4295
4296
4297
4298
4299


4300

4301
4302
4303

4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314


4315
4316
4317
4318
4319
4320
4321
  return argv[i];
}

int main(int argc, char **argv){
  char *zErrMsg = 0;
  ShellState data;
  const char *zInitFile = 0;
  char *zFirstCmd = 0;
  int i;
  int rc = 0;
  int warnInmemoryDb = 0;




#if USE_SYSTEM_SQLITE+0!=1
  if( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)!=0 ){
    fprintf(stderr, "SQLite header and source version mismatch\n%s\n%s\n",
            sqlite3_sourceid(), SQLITE_SOURCE_ID);
    exit(1);
  }
................................................................................

  /* Make sure we have a valid signal handler early, before anything
  ** else is done.
  */
#ifdef SIGINT
  signal(SIGINT, interrupt_handler);
#endif













  /* Do an initial pass through the command-line argument to locate
  ** the name of the database file, the name of the initialization file,
  ** the size of the alternative malloc heap,
  ** and the first command to execute.
  */
  for(i=1; i<argc; i++){
    char *z;
    z = argv[i];
    if( z[0]!='-' ){
      if( data.zDbFilename==0 ){
        data.zDbFilename = z;
        continue;








      }
      if( zFirstCmd==0 ){
        zFirstCmd = z;
        continue;

      }
      fprintf(stderr,"%s: Error: too many options: \"%s\"\n", Argv0, argv[i]);
      fprintf(stderr,"Use -help for a list of options.\n");
      return 1;
    }
    if( z[1]=='-' ) z++;
    if( strcmp(z,"-separator")==0
     || strcmp(z,"-nullvalue")==0
     || strcmp(z,"-newline")==0
     || strcmp(z,"-cmd")==0
    ){
................................................................................
#ifndef SQLITE_OMIT_MEMORYDB
    data.zDbFilename = ":memory:";
    warnInmemoryDb = argc==1;
#else
    fprintf(stderr,"%s: Error: no database filename specified\n", Argv0);
    return 1;
#endif
#ifdef SQLITE_SHELL_DBNAME_PROC
    { extern void SQLITE_SHELL_DBNAME_PROC(const char**);
      SQLITE_SHELL_DBNAME_PROC(&data.zDbFilename);
      warnInmemoryDb = 0; }
#endif
  }
  data.out = stdout;

  /* Go ahead and open the database file if it already exists.  If the
  ** file does not exist, delay opening it.  This prevents empty database
  ** files from being created if a user mistypes the database name argument
  ** to the sqlite command-line tool.
................................................................................
#ifdef SQLITE_ENABLE_MULTIPLEX
    }else if( strcmp(z,"-multiplex")==0 ){
      i++;
#endif
    }else if( strcmp(z,"-help")==0 ){
      usage(1);
    }else if( strcmp(z,"-cmd")==0 ){




      if( i==argc-1 ) break;
      z = cmdline_option_value(argc,argv,++i);
      if( z[0]=='.' ){
        rc = do_meta_command(z, &data);
        if( rc && bail_on_error ) return rc==2 ? 0 : rc;
      }else{
        open_db(&data, 0);
................................................................................
    }else{
      fprintf(stderr,"%s: Error: unknown option: %s\n", Argv0, z);
      fprintf(stderr,"Use -help for a list of options.\n");
      return 1;
    }
  }

  if( zFirstCmd ){
    /* Run just the command that follows the database name


    */

    if( zFirstCmd[0]=='.' ){
      rc = do_meta_command(zFirstCmd, &data);
      if( rc==2 ) rc = 0;

    }else{
      open_db(&data, 0);
      rc = shell_exec(data.db, zFirstCmd, shell_callback, &data, &zErrMsg);
      if( zErrMsg!=0 ){
        fprintf(stderr,"Error: %s\n", zErrMsg);
        return rc!=0 ? rc : 1;
      }else if( rc!=0 ){
        fprintf(stderr,"Error: unable to process SQL \"%s\"\n", zFirstCmd);
        return rc;
      }
    }


  }else{
    /* Run commands received from standard input
    */
    if( stdin_is_interactive ){
      char *zHome;
      char *zHistory = 0;
      int nHistory;







<



>
>
>







 







>
>
>
>
>
>
>
>
>
>
>
>












|
>
>
>
>
>
>
>
>
|
<
<
<
>

<
<
<







 







<
<
<
<
<







 







>
>
>
>







 







|
|
>
>

>
|
|
<
>
|
|
|
|
|
|
|
|
|
|
|
>
>







4034
4035
4036
4037
4038
4039
4040

4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
....
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098



4099
4100



4101
4102
4103
4104
4105
4106
4107
....
4184
4185
4186
4187
4188
4189
4190





4191
4192
4193
4194
4195
4196
4197
....
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
....
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321

4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
  return argv[i];
}

int main(int argc, char **argv){
  char *zErrMsg = 0;
  ShellState data;
  const char *zInitFile = 0;

  int i;
  int rc = 0;
  int warnInmemoryDb = 0;
  int readStdin = 1;
  int nCmd = 0;
  char **azCmd = 0;

#if USE_SYSTEM_SQLITE+0!=1
  if( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)!=0 ){
    fprintf(stderr, "SQLite header and source version mismatch\n%s\n%s\n",
            sqlite3_sourceid(), SQLITE_SOURCE_ID);
    exit(1);
  }
................................................................................

  /* Make sure we have a valid signal handler early, before anything
  ** else is done.
  */
#ifdef SIGINT
  signal(SIGINT, interrupt_handler);
#endif

#ifdef SQLITE_SHELL_DBNAME_PROC
  {
    /* If the SQLITE_SHELL_DBNAME_PROC macro is defined, then it is the name
    ** of a C-function that will provide the name of the database file.  Use
    ** this compile-time option to embed this shell program in larger
    ** applications. */
    extern void SQLITE_SHELL_DBNAME_PROC(const char**);
    SQLITE_SHELL_DBNAME_PROC(&data.zDbFilename);
    warnInmemoryDb = 0;
  }
#endif

  /* Do an initial pass through the command-line argument to locate
  ** the name of the database file, the name of the initialization file,
  ** the size of the alternative malloc heap,
  ** and the first command to execute.
  */
  for(i=1; i<argc; i++){
    char *z;
    z = argv[i];
    if( z[0]!='-' ){
      if( data.zDbFilename==0 ){
        data.zDbFilename = z;
      }else{
        /* Excesss arguments are interpreted as SQL (or dot-commands) and
        ** mean that nothing is read from stdin */
        readStdin = 0;
        nCmd++;
        azCmd = realloc(azCmd, sizeof(azCmd[0])*nCmd);
        if( azCmd==0 ){
          fprintf(stderr, "out of memory\n");
          exit(1);
        }



        azCmd[nCmd-1] = z;
      }



    }
    if( z[1]=='-' ) z++;
    if( strcmp(z,"-separator")==0
     || strcmp(z,"-nullvalue")==0
     || strcmp(z,"-newline")==0
     || strcmp(z,"-cmd")==0
    ){
................................................................................
#ifndef SQLITE_OMIT_MEMORYDB
    data.zDbFilename = ":memory:";
    warnInmemoryDb = argc==1;
#else
    fprintf(stderr,"%s: Error: no database filename specified\n", Argv0);
    return 1;
#endif





  }
  data.out = stdout;

  /* Go ahead and open the database file if it already exists.  If the
  ** file does not exist, delay opening it.  This prevents empty database
  ** files from being created if a user mistypes the database name argument
  ** to the sqlite command-line tool.
................................................................................
#ifdef SQLITE_ENABLE_MULTIPLEX
    }else if( strcmp(z,"-multiplex")==0 ){
      i++;
#endif
    }else if( strcmp(z,"-help")==0 ){
      usage(1);
    }else if( strcmp(z,"-cmd")==0 ){
      /* Run commands that follow -cmd first and separately from commands
      ** that simply appear on the command-line.  This seems goofy.  It would
      ** be better if all commands ran in the order that they appear.  But
      ** we retain the goofy behavior for historical compatibility. */
      if( i==argc-1 ) break;
      z = cmdline_option_value(argc,argv,++i);
      if( z[0]=='.' ){
        rc = do_meta_command(z, &data);
        if( rc && bail_on_error ) return rc==2 ? 0 : rc;
      }else{
        open_db(&data, 0);
................................................................................
    }else{
      fprintf(stderr,"%s: Error: unknown option: %s\n", Argv0, z);
      fprintf(stderr,"Use -help for a list of options.\n");
      return 1;
    }
  }

  if( !readStdin ){
    /* Run all arguments that do not begin with '-' as if they were separate
    ** command-line inputs, except for the argToSkip argument which contains
    ** the database filename.
    */
    for(i=0; i<nCmd; i++){
      if( azCmd[i][0]=='.' ){
        rc = do_meta_command(azCmd[i], &data);

        if( rc ) return rc==2 ? 0 : rc;
      }else{
        open_db(&data, 0);
        rc = shell_exec(data.db, azCmd[i], shell_callback, &data, &zErrMsg);
        if( zErrMsg!=0 ){
          fprintf(stderr,"Error: %s\n", zErrMsg);
          return rc!=0 ? rc : 1;
        }else if( rc!=0 ){
          fprintf(stderr,"Error: unable to process SQL: %s\n", azCmd[i]);
          return rc;
        }
      }
    }
    free(azCmd);
  }else{
    /* Run commands received from standard input
    */
    if( stdin_is_interactive ){
      char *zHome;
      char *zHistory = 0;
      int nHistory;

Changes to src/sqlite.h.in.

4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
....
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952

5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004

6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
....
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
....
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
....
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135

/*
** CAPI3REF: Text Encodings
**
** These constant define integer codes that represent the various
** text encodings supported by SQLite.
*/
#define SQLITE_UTF8           1
#define SQLITE_UTF16LE        2
#define SQLITE_UTF16BE        3
#define SQLITE_UTF16          4    /* Use native byte order */
#define SQLITE_ANY            5    /* Deprecated */
#define SQLITE_UTF16_ALIGNED  8    /* sqlite3_create_collation only */

/*
** CAPI3REF: Function Flags
**
................................................................................
** The SQLite core uses these routines for thread
** synchronization. Though they are intended for internal
** use by SQLite, code that links against SQLite is
** permitted to use any of these routines.
**
** The SQLite source code contains multiple implementations
** of these mutex routines.  An appropriate implementation
** is selected automatically at compile-time.  ^(The following
** implementations are available in the SQLite core:
**
** <ul>
** <li>   SQLITE_MUTEX_PTHREADS
** <li>   SQLITE_MUTEX_W32
** <li>   SQLITE_MUTEX_NOOP
** </ul>)^
**
** ^The SQLITE_MUTEX_NOOP implementation is a set of routines
** that does no real locking and is appropriate for use in
** a single-threaded application.  ^The SQLITE_MUTEX_PTHREADS and
** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
** and Windows.
**
** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
** implementation is included with the library. In this case the
** application must supply a custom mutex implementation using the
** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
** before calling sqlite3_initialize() or any other public sqlite3_
** function that calls sqlite3_initialize().)^
**
** ^The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. ^If it returns NULL
** that means that a mutex could not be allocated.  ^SQLite
** will unwind its stack and return an error.  ^(The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_OPEN
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM
** <li>  SQLITE_MUTEX_STATIC_APP1
** <li>  SQLITE_MUTEX_STATIC_APP2

** </ul>)^
**
** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
** cause sqlite3_mutex_alloc() to create
** a new mutex.  ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  ^SQLite will only request a recursive mutex in
** cases where it really needs one.  ^If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
** a pointer to a static preexisting mutex.  ^Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  ^But for the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
**
** ^The sqlite3_mutex_free() routine deallocates a previously
** allocated dynamic mutex.  ^SQLite is careful to deallocate every
** dynamic mutex that it allocates.  The dynamic mutexes must not be in
** use when they are deallocated.  Attempting to deallocate a static
** mutex results in undefined behavior.  ^SQLite never deallocates
** a static mutex.
**
** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  ^If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
** upon successful entry.  ^(Mutexes created using
** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
** In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter.)^  ^(If the same thread tries to enter any other
** kind of mutex more than once, the behavior is undefined.
** SQLite will never exhibit
** such behavior in its own use of mutexes.)^
**
** ^(Some systems (for example, Windows 95) do not support the operation
** implemented by sqlite3_mutex_try().  On those systems, sqlite3_mutex_try()
** will always return SQLITE_BUSY.  The SQLite core only ever uses
** sqlite3_mutex_try() as an optimization so this is acceptable behavior.)^

**
** ^The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread.   ^(The behavior
** is undefined if the mutex is not currently entered by the
** calling thread or is not currently allocated.  SQLite will
** never do either.)^
**
** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
** sqlite3_mutex_leave() is a NULL pointer, then all three routines
** behave as no-ops.
**
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
*/
................................................................................
/*
** CAPI3REF: Mutex Methods Object
**
** An instance of this structure defines the low-level routines
** used to allocate and use mutexes.
**
** Usually, the default mutex implementations provided by SQLite are
** sufficient, however the user has the option of substituting a custom
** implementation for specialized deployments or systems for which SQLite
** does not provide a suitable implementation. In this case, the user
** creates and populates an instance of this structure to pass
** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
** Additionally, an instance of this structure can be used as an
** output variable when querying the system for the current mutex
** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
**
** ^The xMutexInit method defined by this structure is invoked as
................................................................................
** above silently ignore any invocations that pass a NULL pointer instead
** of a valid mutex handle. The implementations of the methods defined
** by this structure are not required to handle this case, the results
** of passing a NULL pointer instead of a valid mutex handle are undefined
** (i.e. it is acceptable to provide an implementation that segfaults if
** it is passed a NULL pointer).
**
** The xMutexInit() method must be threadsafe.  ^It must be harmless to
** invoke xMutexInit() multiple times within the same process and without
** intervening calls to xMutexEnd().  Second and subsequent calls to
** xMutexInit() must be no-ops.
**
** ^xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
** and its associates).  ^Similarly, xMutexAlloc() must not use SQLite memory
** allocation for a static mutex.  ^However xMutexAlloc() may use SQLite
** memory allocation for a fast or recursive mutex.
**
** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
** called, but only if the prior call to xMutexInit returned SQLITE_OK.
** If xMutexInit fails in any way, it is expected to clean up after itself
** prior to returning.
................................................................................
  int (*xMutexNotheld)(sqlite3_mutex *);
};

/*
** CAPI3REF: Mutex Verification Routines
**
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
** are intended for use inside assert() statements.  ^The SQLite core
** never uses these routines except inside an assert() and applications
** are advised to follow the lead of the core.  ^The SQLite core only
** provides implementations for these routines when it is compiled
** with the SQLITE_DEBUG flag.  ^External mutex implementations
** are only required to provide these routines if SQLITE_DEBUG is
** defined and if NDEBUG is not defined.
**
** ^These routines should return true if the mutex in their argument
** is held or not held, respectively, by the calling thread.
**
** ^The implementation is not required to provide versions of these
** routines that actually work. If the implementation does not provide working
** versions of these routines, it should at least provide stubs that always
** return true so that one does not get spurious assertion failures.
**
** ^If the argument to sqlite3_mutex_held() is a NULL pointer then
** the routine should return 1.   This seems counter-intuitive since
** clearly the mutex cannot be held if it does not exist.  But
** the reason the mutex does not exist is because the build is not
** using mutexes.  And we do not want the assert() containing the
** call to sqlite3_mutex_held() to fail, so a non-zero return is
** the appropriate thing to do.  ^The sqlite3_mutex_notheld()
** interface should also return 1 when given a NULL pointer.
*/
#ifndef NDEBUG
int sqlite3_mutex_held(sqlite3_mutex*);
int sqlite3_mutex_notheld(sqlite3_mutex*);
#endif








|
|
|







 







|






|

|

|



|





|


|
|
|
|












>
|







|
|





|








|




<
<
|
|
<







|

|
|
<
<



|
|
>


|

|
<







 







|

|







 







|




|
|







 







|

|

|



|


|




|





|







4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
....
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982


5983
5984

5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995


5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006

6007
6008
6009
6010
6011
6012
6013
....
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
....
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
....
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131

/*
** CAPI3REF: Text Encodings
**
** These constant define integer codes that represent the various
** text encodings supported by SQLite.
*/
#define SQLITE_UTF8           1    /* IMP: R-37514-35566 */
#define SQLITE_UTF16LE        2    /* IMP: R-03371-37637 */
#define SQLITE_UTF16BE        3    /* IMP: R-51971-34154 */
#define SQLITE_UTF16          4    /* Use native byte order */
#define SQLITE_ANY            5    /* Deprecated */
#define SQLITE_UTF16_ALIGNED  8    /* sqlite3_create_collation only */

/*
** CAPI3REF: Function Flags
**
................................................................................
** The SQLite core uses these routines for thread
** synchronization. Though they are intended for internal
** use by SQLite, code that links against SQLite is
** permitted to use any of these routines.
**
** The SQLite source code contains multiple implementations
** of these mutex routines.  An appropriate implementation
** is selected automatically at compile-time.  The following
** implementations are available in the SQLite core:
**
** <ul>
** <li>   SQLITE_MUTEX_PTHREADS
** <li>   SQLITE_MUTEX_W32
** <li>   SQLITE_MUTEX_NOOP
** </ul>
**
** The SQLITE_MUTEX_NOOP implementation is a set of routines
** that does no real locking and is appropriate for use in
** a single-threaded application.  The SQLITE_MUTEX_PTHREADS and
** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
** and Windows.
**
** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
** implementation is included with the library. In this case the
** application must supply a custom mutex implementation using the
** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
** before calling sqlite3_initialize() or any other public sqlite3_
** function that calls sqlite3_initialize().
**
** ^The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. ^The sqlite3_mutex_alloc()
** routine returns NULL if it is unable to allocate the requested
** mutex.  The argument to sqlite3_mutex_alloc() must one of these
** integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_OPEN
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM
** <li>  SQLITE_MUTEX_STATIC_APP1
** <li>  SQLITE_MUTEX_STATIC_APP2
** <li>  SQLITE_MUTEX_STATIC_APP3
** </ul>
**
** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
** cause sqlite3_mutex_alloc() to create
** a new mutex.  ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
** a pointer to a static preexisting mutex.  ^Nine static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  ^For the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
**
** ^The sqlite3_mutex_free() routine deallocates a previously


** allocated dynamic mutex.  Attempting to deallocate a static
** mutex results in undefined behavior.

**
** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  ^If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
** upon successful entry.  ^(Mutexes created using
** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
** In such cases, the
** mutex must be exited an equal number of times before another thread
** can enter.)^  If the same thread tries to enter any mutex other
** than an SQLITE_MUTEX_RECURSIVE more than once, the behavior is undefined.


**
** ^(Some systems (for example, Windows 95) do not support the operation
** implemented by sqlite3_mutex_try().  On those systems, sqlite3_mutex_try()
** will always return SQLITE_BUSY. The SQLite core only ever uses
** sqlite3_mutex_try() as an optimization so this is acceptable 
** behavior.)^
**
** ^The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread.   The behavior
** is undefined if the mutex is not currently entered by the
** calling thread or is not currently allocated.

**
** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
** sqlite3_mutex_leave() is a NULL pointer, then all three routines
** behave as no-ops.
**
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
*/
................................................................................
/*
** CAPI3REF: Mutex Methods Object
**
** An instance of this structure defines the low-level routines
** used to allocate and use mutexes.
**
** Usually, the default mutex implementations provided by SQLite are
** sufficient, however the application has the option of substituting a custom
** implementation for specialized deployments or systems for which SQLite
** does not provide a suitable implementation. In this case, the application
** creates and populates an instance of this structure to pass
** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
** Additionally, an instance of this structure can be used as an
** output variable when querying the system for the current mutex
** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
**
** ^The xMutexInit method defined by this structure is invoked as
................................................................................
** above silently ignore any invocations that pass a NULL pointer instead
** of a valid mutex handle. The implementations of the methods defined
** by this structure are not required to handle this case, the results
** of passing a NULL pointer instead of a valid mutex handle are undefined
** (i.e. it is acceptable to provide an implementation that segfaults if
** it is passed a NULL pointer).
**
** The xMutexInit() method must be threadsafe.  It must be harmless to
** invoke xMutexInit() multiple times within the same process and without
** intervening calls to xMutexEnd().  Second and subsequent calls to
** xMutexInit() must be no-ops.
**
** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
** and its associates).  Similarly, xMutexAlloc() must not use SQLite memory
** allocation for a static mutex.  ^However xMutexAlloc() may use SQLite
** memory allocation for a fast or recursive mutex.
**
** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
** called, but only if the prior call to xMutexInit returned SQLITE_OK.
** If xMutexInit fails in any way, it is expected to clean up after itself
** prior to returning.
................................................................................
  int (*xMutexNotheld)(sqlite3_mutex *);
};

/*
** CAPI3REF: Mutex Verification Routines
**
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
** are intended for use inside assert() statements.  The SQLite core
** never uses these routines except inside an assert() and applications
** are advised to follow the lead of the core.  The SQLite core only
** provides implementations for these routines when it is compiled
** with the SQLITE_DEBUG flag.  External mutex implementations
** are only required to provide these routines if SQLITE_DEBUG is
** defined and if NDEBUG is not defined.
**
** These routines should return true if the mutex in their argument
** is held or not held, respectively, by the calling thread.
**
** The implementation is not required to provide versions of these
** routines that actually work. If the implementation does not provide working
** versions of these routines, it should at least provide stubs that always
** return true so that one does not get spurious assertion failures.
**
** If the argument to sqlite3_mutex_held() is a NULL pointer then
** the routine should return 1.   This seems counter-intuitive since
** clearly the mutex cannot be held if it does not exist.  But
** the reason the mutex does not exist is because the build is not
** using mutexes.  And we do not want the assert() containing the
** call to sqlite3_mutex_held() to fail, so a non-zero return is
** the appropriate thing to do.  The sqlite3_mutex_notheld()
** interface should also return 1 when given a NULL pointer.
*/
#ifndef NDEBUG
int sqlite3_mutex_held(sqlite3_mutex*);
int sqlite3_mutex_notheld(sqlite3_mutex*);
#endif

Changes to src/sqliteInt.h.

1801
1802
1803
1804
1805
1806
1807

1808
1809
1810
1811
1812
1813
1814
  u16 nColumn;             /* Number of columns stored in the index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned idxType:2;      /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */
  unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
  unsigned isResized:1;    /* True if resizeIndexObject() has been called */
  unsigned isCovering:1;   /* True if this is a covering index */

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  int nSample;             /* Number of elements in aSample[] */
  int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
  tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
  tRowcnt *aiRowEst;       /* Non-logarithmic stat1 data for this index */
  tRowcnt nRowEst0;        /* Non-logarithmic number of rows in the index */







>







1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
  u16 nColumn;             /* Number of columns stored in the index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned idxType:2;      /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */
  unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
  unsigned isResized:1;    /* True if resizeIndexObject() has been called */
  unsigned isCovering:1;   /* True if this is a covering index */
  unsigned noSkipScan:1;   /* Do not try to use skip-scan if true */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  int nSample;             /* Number of elements in aSample[] */
  int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
  tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
  tRowcnt *aiRowEst;       /* Non-logarithmic stat1 data for this index */
  tRowcnt nRowEst0;        /* Non-logarithmic number of rows in the index */

Changes to src/test1.c.

3652
3653
3654
3655
3656
3657
3658

3659
3660
3661
3662
3663
3664
3665
....
3667
3668
3669
3670
3671
3672
3673











3674



3675
3676
3677
3678
3679
3680
3681
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite3 *db;
  const char *zSql;

  int bytes;
  const char *zTail = 0;
  sqlite3_stmt *pStmt = 0;
  char zBuf[50];
  int rc;

  if( objc!=5 && objc!=4 ){
................................................................................
       Tcl_GetString(objv[0]), " DB sql bytes tailvar", 0);
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  zSql = Tcl_GetString(objv[2]);
  if( Tcl_GetIntFromObj(interp, objv[3], &bytes) ) return TCL_ERROR;












  rc = sqlite3_prepare_v2(db, zSql, bytes, &pStmt, objc>=5 ? &zTail : 0);



  assert(rc==SQLITE_OK || pStmt==0);
  Tcl_ResetResult(interp);
  if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR;
  if( zTail && objc>=5 ){
    if( bytes>=0 ){
      bytes = bytes - (int)(zTail-zSql);
    }







>







 







>
>
>
>
>
>
>
>
>
>
>
|
>
>
>







3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
....
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite3 *db;
  const char *zSql;
  char *zCopy = 0;                /* malloc() copy of zSql */
  int bytes;
  const char *zTail = 0;
  sqlite3_stmt *pStmt = 0;
  char zBuf[50];
  int rc;

  if( objc!=5 && objc!=4 ){
................................................................................
       Tcl_GetString(objv[0]), " DB sql bytes tailvar", 0);
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  zSql = Tcl_GetString(objv[2]);
  if( Tcl_GetIntFromObj(interp, objv[3], &bytes) ) return TCL_ERROR;

  /* Instead of using zSql directly, make a copy into a buffer obtained
  ** directly from malloc(). The idea is to make it easier for valgrind
  ** to spot buffer overreads.  */
  if( bytes>=0 ){
    zCopy = malloc(bytes);
    memcpy(zCopy, zSql, bytes);
  }else{
    int n = strlen(zSql) + 1;
    zCopy = malloc(n);
    memcpy(zCopy, zSql, n);
  }
  rc = sqlite3_prepare_v2(db, zCopy, bytes, &pStmt, objc>=5 ? &zTail : 0);
  free(zCopy);
  zTail = &zSql[(zTail - zCopy)];

  assert(rc==SQLITE_OK || pStmt==0);
  Tcl_ResetResult(interp);
  if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR;
  if( zTail && objc>=5 ){
    if( bytes>=0 ){
      bytes = bytes - (int)(zTail-zSql);
    }

Changes to src/vdbe.c.

2632
2633
2634
2635
2636
2637
2638
2639



2640
2641
2642
2643
2644
2645
2646
....
2666
2667
2668
2669
2670
2671
2672


2673


2674
2675
2676
2677
2678
2679
2680
....
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
    }
    nData += len;
    testcase( serial_type==127 );
    testcase( serial_type==128 );
    nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
  }while( (--pRec)>=pData0 );

  /* Add the initial header varint and total the size */



  testcase( nHdr==126 );
  testcase( nHdr==127 );
  if( nHdr<=126 ){
    /* The common case */
    nHdr += 1;
  }else{
    /* Rare case of a really large header */
................................................................................
  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  j = nHdr;
  assert( pData0<=pLast );
  pRec = pData0;
  do{
    serial_type = pRec->uTemp;


    i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */


    j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
  }while( (++pRec)<=pLast );
  assert( i==nHdr );
  assert( j==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut->n = (int)nByte;
................................................................................
    pIdxKey = &r;
  }else{
    pIdxKey = sqlite3VdbeAllocUnpackedRecord(
        pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
    );
    if( pIdxKey==0 ) goto no_mem;
    assert( pIn3->flags & MEM_Blob );
    /* assert( (pIn3->flags & MEM_Zero)==0 ); // zeroblobs already expanded */
    ExpandBlob(pIn3);
    sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
  }
  pIdxKey->default_rc = 0;
  if( pOp->opcode==OP_NoConflict ){
    /* For the OP_NoConflict opcode, take the jump if any of the
    ** input fields are NULL, since any key with a NULL will not







|
>
>
>







 







>
>

>
>







 







<







2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
....
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
....
3811
3812
3813
3814
3815
3816
3817

3818
3819
3820
3821
3822
3823
3824
    }
    nData += len;
    testcase( serial_type==127 );
    testcase( serial_type==128 );
    nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
  }while( (--pRec)>=pData0 );

  /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
  ** which determines the total number of bytes in the header. The varint
  ** value is the size of the header in bytes including the size varint
  ** itself. */
  testcase( nHdr==126 );
  testcase( nHdr==127 );
  if( nHdr<=126 ){
    /* The common case */
    nHdr += 1;
  }else{
    /* Rare case of a really large header */
................................................................................
  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  j = nHdr;
  assert( pData0<=pLast );
  pRec = pData0;
  do{
    serial_type = pRec->uTemp;
    /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
    ** additional varints, one per column. */
    i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
    /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
    ** immediately follow the header. */
    j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
  }while( (++pRec)<=pLast );
  assert( i==nHdr );
  assert( j==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut->n = (int)nByte;
................................................................................
    pIdxKey = &r;
  }else{
    pIdxKey = sqlite3VdbeAllocUnpackedRecord(
        pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
    );
    if( pIdxKey==0 ) goto no_mem;
    assert( pIn3->flags & MEM_Blob );

    ExpandBlob(pIn3);
    sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
  }
  pIdxKey->default_rc = 0;
  if( pOp->opcode==OP_NoConflict ){
    /* For the OP_NoConflict opcode, take the jump if any of the
    ** input fields are NULL, since any key with a NULL will not

Changes to src/vdbeaux.c.

1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
....
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
....
3049
3050
3051
3052
3053
3054
3055


3056
3057
3058
3059


3060
3061
3062
3063
3064
3065
3066
....
3080
3081
3082
3083
3084
3085
3086
3087

3088
3089
3090
3091


3092
3093
3094
3095
3096
3097


3098
3099
3100
3101
3102
3103


3104
3105
3106
3107
3108
3109


3110
3111
3112
3113
3114
3115


3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128


3129
3130
3131
3132
3133




3134
3135
3136
3137
3138
3139
3140
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){
      p->aVar[n].flags = MEM_Null;
      p->aVar[n].db = db;
    }
  }
  if( p->azVar ){
    p->nzVar = pParse->nzVar;
    memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
    memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
  }
  if( p->aMem ){
    p->aMem--;                      /* aMem[] goes from 1..nMem */
    p->nMem = nMem;                 /*       not from 0..nMem-1 */
................................................................................
  }
  if( flags&MEM_Int ){
    /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
#   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
    i64 i = pMem->u.i;
    u64 u;
    if( i<0 ){
      if( i<(-MAX_6BYTE) ) return 6;
      /* Previous test prevents:  u = -(-9223372036854775808) */
      u = -i;
    }else{
      u = i;
    }
    if( u<=127 ){
      return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
    }
    if( u<=32767 ) return 2;
................................................................................
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
){
  u64 x = FOUR_BYTE_UINT(buf);
  u32 y = FOUR_BYTE_UINT(buf+4);
  x = (x<<32) + y;
  if( serial_type==6 ){


    pMem->u.i = *(i64*)&x;
    pMem->flags = MEM_Int;
    testcase( pMem->u.i<0 );
  }else{


#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
    /* Verify that integers and floating point values use the same
    ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
    ** defined that 64-bit floating point values really are mixed
    ** endian.
    */
    static const u64 t1 = ((u64)0x3ff00000)<<32;
................................................................................
  const unsigned char *buf,     /* Buffer to deserialize from */
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
){
  switch( serial_type ){
    case 10:   /* Reserved for future use */
    case 11:   /* Reserved for future use */
    case 0: {  /* NULL */

      pMem->flags = MEM_Null;
      break;
    }
    case 1: { /* 1-byte signed integer */


      pMem->u.i = ONE_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 1;
    }
    case 2: { /* 2-byte signed integer */


      pMem->u.i = TWO_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 2;
    }
    case 3: { /* 3-byte signed integer */


      pMem->u.i = THREE_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 3;
    }
    case 4: { /* 4-byte signed integer */


      pMem->u.i = FOUR_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 4;
    }
    case 5: { /* 6-byte signed integer */


      pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 6;
    }
    case 6:   /* 8-byte signed integer */
    case 7: { /* IEEE floating point */
      /* These use local variables, so do them in a separate routine
      ** to avoid having to move the frame pointer in the common case */
      return serialGet(buf,serial_type,pMem);
    }
    case 8:    /* Integer 0 */
    case 9: {  /* Integer 1 */


      pMem->u.i = serial_type-8;
      pMem->flags = MEM_Int;
      return 0;
    }
    default: {




      static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
      pMem->z = (char *)buf;
      pMem->n = (serial_type-12)/2;
      pMem->flags = aFlag[serial_type&1];
      return pMem->n;
    }
  }







|







 







<
<
|







 







>
>




>
>







 







|
>



|
>
>






>
>






>
>






>
>






>
>













>
>





>
>
>
>







1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
....
2881
2882
2883
2884
2885
2886
2887


2888
2889
2890
2891
2892
2893
2894
2895
....
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
....
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){
      p->aVar[n].flags = MEM_Null;
      p->aVar[n].db = db;
    }
  }
  if( p->azVar && pParse->nzVar>0 ){
    p->nzVar = pParse->nzVar;
    memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
    memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
  }
  if( p->aMem ){
    p->aMem--;                      /* aMem[] goes from 1..nMem */
    p->nMem = nMem;                 /*       not from 0..nMem-1 */
................................................................................
  }
  if( flags&MEM_Int ){
    /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
#   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
    i64 i = pMem->u.i;
    u64 u;
    if( i<0 ){


      u = ~i;
    }else{
      u = i;
    }
    if( u<=127 ){
      return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
    }
    if( u<=32767 ) return 2;
................................................................................
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
){
  u64 x = FOUR_BYTE_UINT(buf);
  u32 y = FOUR_BYTE_UINT(buf+4);
  x = (x<<32) + y;
  if( serial_type==6 ){
    /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
    ** twos-complement integer. */
    pMem->u.i = *(i64*)&x;
    pMem->flags = MEM_Int;
    testcase( pMem->u.i<0 );
  }else{
    /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
    ** floating point number. */
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
    /* Verify that integers and floating point values use the same
    ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
    ** defined that 64-bit floating point values really are mixed
    ** endian.
    */
    static const u64 t1 = ((u64)0x3ff00000)<<32;
................................................................................
  const unsigned char *buf,     /* Buffer to deserialize from */
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
){
  switch( serial_type ){
    case 10:   /* Reserved for future use */
    case 11:   /* Reserved for future use */
    case 0: {  /* Null */
      /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
      pMem->flags = MEM_Null;
      break;
    }
    case 1: {
      /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
      ** integer. */
      pMem->u.i = ONE_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 1;
    }
    case 2: { /* 2-byte signed integer */
      /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
      ** twos-complement integer. */
      pMem->u.i = TWO_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 2;
    }
    case 3: { /* 3-byte signed integer */
      /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
      ** twos-complement integer. */
      pMem->u.i = THREE_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 3;
    }
    case 4: { /* 4-byte signed integer */
      /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
      ** twos-complement integer. */
      pMem->u.i = FOUR_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 4;
    }
    case 5: { /* 6-byte signed integer */
      /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
      ** twos-complement integer. */
      pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 6;
    }
    case 6:   /* 8-byte signed integer */
    case 7: { /* IEEE floating point */
      /* These use local variables, so do them in a separate routine
      ** to avoid having to move the frame pointer in the common case */
      return serialGet(buf,serial_type,pMem);
    }
    case 8:    /* Integer 0 */
    case 9: {  /* Integer 1 */
      /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
      /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
      pMem->u.i = serial_type-8;
      pMem->flags = MEM_Int;
      return 0;
    }
    default: {
      /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
      ** length.
      ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
      ** (N-13)/2 bytes in length. */
      static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
      pMem->z = (char *)buf;
      pMem->n = (serial_type-12)/2;
      pMem->flags = aFlag[serial_type&1];
      return pMem->n;
    }
  }

Changes to src/vdbesort.c.

143
144
145
146
147
148
149







150
151
152
153
154
155
156
...
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
** messages to stderr that may be helpful in understanding the performance
** characteristics of the sorter in multi-threaded mode.
*/
#if 0
# define SQLITE_DEBUG_SORTER_THREADS 1
#endif








/*
** Private objects used by the sorter
*/
typedef struct MergeEngine MergeEngine;     /* Merge PMAs together */
typedef struct PmaReader PmaReader;         /* Incrementally read one PMA */
typedef struct PmaWriter PmaWriter;         /* Incrementally write one PMA */
typedef struct SorterRecord SorterRecord;   /* A record being sorted */
................................................................................
      pTask->pSorter = pSorter;
    }

    if( !sqlite3TempInMemory(db) ){
      pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz;
      mxCache = db->aDb[0].pSchema->cache_size;
      if( mxCache<SORTER_MIN_WORKING ) mxCache = SORTER_MIN_WORKING;
      pSorter->mxPmaSize = mxCache * pgsz;

      /* EVIDENCE-OF: R-26747-61719 When the application provides any amount of
      ** scratch memory using SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary
      ** large heap allocations.
      */
      if( sqlite3GlobalConfig.pScratch==0 ){
        assert( pSorter->iMemory==0 );







>
>
>
>
>
>
>







 







|







143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
...
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
** messages to stderr that may be helpful in understanding the performance
** characteristics of the sorter in multi-threaded mode.
*/
#if 0
# define SQLITE_DEBUG_SORTER_THREADS 1
#endif

/*
** Hard-coded maximum amount of data to accumulate in memory before flushing
** to a level 0 PMA. The purpose of this limit is to prevent various integer
** overflows. 512MiB.
*/
#define SQLITE_MAX_MXPMASIZE    (1<<29)

/*
** Private objects used by the sorter
*/
typedef struct MergeEngine MergeEngine;     /* Merge PMAs together */
typedef struct PmaReader PmaReader;         /* Incrementally read one PMA */
typedef struct PmaWriter PmaWriter;         /* Incrementally write one PMA */
typedef struct SorterRecord SorterRecord;   /* A record being sorted */
................................................................................
      pTask->pSorter = pSorter;
    }

    if( !sqlite3TempInMemory(db) ){
      pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz;
      mxCache = db->aDb[0].pSchema->cache_size;
      if( mxCache<SORTER_MIN_WORKING ) mxCache = SORTER_MIN_WORKING;
      pSorter->mxPmaSize = MIN((i64)mxCache*pgsz, SQLITE_MAX_MXPMASIZE);

      /* EVIDENCE-OF: R-26747-61719 When the application provides any amount of
      ** scratch memory using SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary
      ** large heap allocations.
      */
      if( sqlite3GlobalConfig.pScratch==0 ){
        assert( pSorter->iMemory==0 );

Changes to src/vtab.c.

328
329
330
331
332
333
334



335


336
337
338
339
340
341
342
  assert( iDb>=0 );

  pTable->tabFlags |= TF_Virtual;
  pTable->nModuleArg = 0;
  addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
  addModuleArgument(db, pTable, 0);
  addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));



  pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z);



#ifndef SQLITE_OMIT_AUTHORIZATION
  /* Creating a virtual table invokes the authorization callback twice.
  ** The first invocation, to obtain permission to INSERT a row into the
  ** sqlite_master table, has already been made by sqlite3StartTable().
  ** The second call, to obtain permission to create the table, is made now.
  */







>
>
>
|
>
>







328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
  assert( iDb>=0 );

  pTable->tabFlags |= TF_Virtual;
  pTable->nModuleArg = 0;
  addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
  addModuleArgument(db, pTable, 0);
  addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
  assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0)
       || (pParse->sNameToken.z==pName1->z && pName2->z==0)
  );
  pParse->sNameToken.n = (int)(
      &pModuleName->z[pModuleName->n] - pParse->sNameToken.z
  );

#ifndef SQLITE_OMIT_AUTHORIZATION
  /* Creating a virtual table invokes the authorization callback twice.
  ** The first invocation, to obtain permission to INSERT a row into the
  ** sqlite_master table, has already been made by sqlite3StartTable().
  ** The second call, to obtain permission to create the table, is made now.
  */

Changes to src/wal.c.

2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
  
    /* Restore the clients cache of the wal-index header to the state it
    ** was in before the client began writing to the database. 
    */
    memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));

    for(iFrame=pWal->hdr.mxFrame+1; 
        rc==SQLITE_OK && iFrame<=iMax; 
        iFrame++
    ){
      /* This call cannot fail. Unless the page for which the page number
      ** is passed as the second argument is (a) in the cache and 
      ** (b) has an outstanding reference, then xUndo is either a no-op
      ** (if (a) is false) or simply expels the page from the cache (if (b)
      ** is false).







|







2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
  
    /* Restore the clients cache of the wal-index header to the state it
    ** was in before the client began writing to the database. 
    */
    memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));

    for(iFrame=pWal->hdr.mxFrame+1; 
        ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 
        iFrame++
    ){
      /* This call cannot fail. Unless the page for which the page number
      ** is passed as the second argument is (a) in the cache and 
      ** (b) has an outstanding reference, then xUndo is either a no-op
      ** (if (a) is false) or simply expels the page from the cache (if (b)
      ** is false).

Changes to src/where.c.

4126
4127
4128
4129
4130
4131
4132
4133
4134

4135
4136
4137
4138
4139
4140
4141
....
4286
4287
4288
4289
4290
4291
4292





4293
4294
4295
4296


















4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307

4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319


4320
4321


4322
4323








4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
....
4583
4584
4585
4586
4587
4588
4589

4590
4591
4592
4593
4594
4595
4596
    /* whereLoopAddBtree() always generates and inserts the automatic index
    ** case first.  Hence compatible candidate WhereLoops never have a larger
    ** rSetup. Call this SETUP-INVARIANT */
    assert( p->rSetup>=pTemplate->rSetup );

    /* Any loop using an appliation-defined index (or PRIMARY KEY or
    ** UNIQUE constraint) with one or more == constraints is better
    ** than an automatic index. */
    if( (p->wsFlags & WHERE_AUTO_INDEX)!=0

     && (pTemplate->wsFlags & WHERE_INDEXED)!=0
     && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
     && (p->prereq & pTemplate->prereq)==pTemplate->prereq
    ){
      break;
    }

................................................................................
  return SQLITE_OK;
}

/*
** Adjust the WhereLoop.nOut value downward to account for terms of the
** WHERE clause that reference the loop but which are not used by an
** index.





**
** In the current implementation, the first extra WHERE clause term reduces
** the number of output rows by a factor of 10 and each additional term
** reduces the number of output rows by sqrt(2).


















*/
static void whereLoopOutputAdjust(
  WhereClause *pWC,      /* The WHERE clause */
  WhereLoop *pLoop,      /* The loop to adjust downward */
  LogEst nRow            /* Number of rows in the entire table */
){
  WhereTerm *pTerm, *pX;
  Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
  int i, j;
  int nEq = 0;    /* Number of = constraints not within likely()/unlikely() */


  for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
    if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
    if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
    if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
    for(j=pLoop->nLTerm-1; j>=0; j--){
      pX = pLoop->aLTerm[j];
      if( pX==0 ) continue;
      if( pX==pTerm ) break;
      if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
    }
    if( j<0 ){
      if( pTerm->truthProb<=0 ){


        pLoop->nOut += pTerm->truthProb;
      }else{


        pLoop->nOut--;
        if( pTerm->eOperator&WO_EQ ) nEq++;








      }
    }
  }
  /* TUNING:  If there is at least one equality constraint in the WHERE
  ** clause that does not have a likelihood() explicitly assigned to it
  ** then do not let the estimated number of output rows exceed half 
  ** the number of rows in the table. */
  if( nEq && pLoop->nOut>nRow-10 ){
    pLoop->nOut = nRow - 10;
  }
}

/*
** Adjust the cost C by the costMult facter T.  This only occurs if
** compiled with -DSQLITE_ENABLE_COSTMULT
*/
#ifdef SQLITE_ENABLE_COSTMULT
................................................................................
  ** contains fewer than 2^17 rows we assume otherwise in other parts of
  ** the code). And, even if it is not, it should not be too much slower. 
  ** On the other hand, the extra seeks could end up being significantly
  ** more expensive.  */
  assert( 42==sqlite3LogEst(18) );
  if( saved_nEq==saved_nSkip
   && saved_nEq+1<pProbe->nKeyCol

   && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
   && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
  ){
    LogEst nIter;
    pNew->u.btree.nEq++;
    pNew->nSkip++;
    pNew->aLTerm[pNew->nLTerm++] = 0;







|

>







 







>
>
>
>
>

<
<
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>








|
|

>












>
>


>
>

|
>
>
>
>
>
>
>
>



|
<
<
<
<
<
<







 







>







4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
....
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299



4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361






4362
4363
4364
4365
4366
4367
4368
....
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
    /* whereLoopAddBtree() always generates and inserts the automatic index
    ** case first.  Hence compatible candidate WhereLoops never have a larger
    ** rSetup. Call this SETUP-INVARIANT */
    assert( p->rSetup>=pTemplate->rSetup );

    /* Any loop using an appliation-defined index (or PRIMARY KEY or
    ** UNIQUE constraint) with one or more == constraints is better
    ** than an automatic index. Unless it is a skip-scan. */
    if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
     && (pTemplate->nSkip)==0
     && (pTemplate->wsFlags & WHERE_INDEXED)!=0
     && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
     && (p->prereq & pTemplate->prereq)==pTemplate->prereq
    ){
      break;
    }

................................................................................
  return SQLITE_OK;
}

/*
** Adjust the WhereLoop.nOut value downward to account for terms of the
** WHERE clause that reference the loop but which are not used by an
** index.
*
** For every WHERE clause term that is not used by the index
** and which has a truth probability assigned by one of the likelihood(),
** likely(), or unlikely() SQL functions, reduce the estimated number
** of output rows by the probability specified.
**



** TUNING:  For every WHERE clause term that is not used by the index
** and which does not have an assigned truth probability, heuristics
** described below are used to try to estimate the truth probability.
** TODO --> Perhaps this is something that could be improved by better
** table statistics.
**
** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
** value corresponds to -1 in LogEst notation, so this means decrement
** the WhereLoop.nOut field for every such WHERE clause term.
**
** Heuristic 2:  If there exists one or more WHERE clause terms of the
** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
** final output row estimate is no greater than 1/4 of the total number
** of rows in the table.  In other words, assume that x==EXPR will filter
** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
** "x" column is boolean or else -1 or 0 or 1 is a common default value
** on the "x" column and so in that case only cap the output row estimate
** at 1/2 instead of 1/4.
*/
static void whereLoopOutputAdjust(
  WhereClause *pWC,      /* The WHERE clause */
  WhereLoop *pLoop,      /* The loop to adjust downward */
  LogEst nRow            /* Number of rows in the entire table */
){
  WhereTerm *pTerm, *pX;
  Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
  int i, j, k;
  LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */

  assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
  for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
    if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
    if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
    if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
    for(j=pLoop->nLTerm-1; j>=0; j--){
      pX = pLoop->aLTerm[j];
      if( pX==0 ) continue;
      if( pX==pTerm ) break;
      if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
    }
    if( j<0 ){
      if( pTerm->truthProb<=0 ){
        /* If a truth probability is specified using the likelihood() hints,
        ** then use the probability provided by the application. */
        pLoop->nOut += pTerm->truthProb;
      }else{
        /* In the absence of explicit truth probabilities, use heuristics to
        ** guess a reasonable truth probability. */
        pLoop->nOut--;
        if( pTerm->eOperator&WO_EQ ){
          Expr *pRight = pTerm->pExpr->pRight;
          if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
            k = 10;
          }else{
            k = 20;
          }
          if( iReduce<k ) iReduce = k;
        }
      }
    }
  }
  if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;






}

/*
** Adjust the cost C by the costMult facter T.  This only occurs if
** compiled with -DSQLITE_ENABLE_COSTMULT
*/
#ifdef SQLITE_ENABLE_COSTMULT
................................................................................
  ** contains fewer than 2^17 rows we assume otherwise in other parts of
  ** the code). And, even if it is not, it should not be too much slower. 
  ** On the other hand, the extra seeks could end up being significantly
  ** more expensive.  */
  assert( 42==sqlite3LogEst(18) );
  if( saved_nEq==saved_nSkip
   && saved_nEq+1<pProbe->nKeyCol
   && pProbe->noSkipScan==0
   && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
   && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
  ){
    LogEst nIter;
    pNew->u.btree.nEq++;
    pNew->nSkip++;
    pNew->aLTerm[pNew->nLTerm++] = 0;

Changes to test/autoindex2.test.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
  ORDER BY t1.ptime desc LIMIT 500;
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1x1 (ptime>?)} 0 1 1 {SEARCH TABLE t2 USING INDEX t2x0 (did=?)} 0 2 2 {SEARCH TABLE t3 USING INDEX t3x0 (uid=?)}}
#
# ^^^--- Before being fixed, the above was using an automatic covering
# on t3 and reordering the tables so that t3 was in the outer loop and
# implementing the ORDER BY clause using a B-Tree.

do_execsql_test autoindex2-120 {
  EXPLAIN QUERY PLAN
  SELECT
     t1_id,
     t1.did,
     param2,
     param3,
     t1.ptime,
     t1.trange,
     t1.exmass,
     t1.mass,
     t1.vstatus,
     type,
     subtype,
     t1.deviation,
     t1.formula,
     dparam1,
     reserve1,
     reserve2,
     param4,
     t1.last_operation,
     t1.admin_uuid,
     t1.previous_value,
     t1.job_id,
     client_did, 
     t1.last_t1,
     t1.data_t1,
     t1.previous_date,
     param5,
     param6,
     mgr_uuid
  FROM
     t3,
     t2,
     t1
  WHERE
     t1.ptime > 1393520400
     AND param3<>9001
     AND t3.flg7 = 1
     AND t1.did = t2.did
     AND t2.uid = t3.uid
  ORDER BY t1.ptime desc LIMIT 500;
} {0 0 2 {SEARCH TABLE t1 USING INDEX t1x1 (ptime>?)} 0 1 1 {SEARCH TABLE t2 USING INDEX t2x0 (did=?)} 0 2 0 {SEARCH TABLE t3 USING INDEX t3x0 (uid=?)}}

finish_test







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

220
221
222
223
224
225
226












































227
  ORDER BY t1.ptime desc LIMIT 500;
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1x1 (ptime>?)} 0 1 1 {SEARCH TABLE t2 USING INDEX t2x0 (did=?)} 0 2 2 {SEARCH TABLE t3 USING INDEX t3x0 (uid=?)}}
#
# ^^^--- Before being fixed, the above was using an automatic covering
# on t3 and reordering the tables so that t3 was in the outer loop and
# implementing the ORDER BY clause using a B-Tree.













































finish_test

Changes to test/autoindex3.test.

13
14
15
16
17
18
19

20
21
22
23
24
25
26
..
49
50
51
52
53
54
55
56








57

























58
# focus of this script is testing automatic index creation logic,
# and specifically that an automatic index will not be created that
# shadows a declared index.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl


# The t1b and t2d indexes are not very selective.  It used to be that
# the autoindex mechanism would create automatic indexes on t1(b) or
# t2(d), make assumptions that they were reasonably selective, and use
# them instead of t1b or t2d.  But that would be cheating, because the
# automatic index cannot be any more selective than the real index.
#
................................................................................
} {/AUTO/}
do_execsql_test autoindex3-130 {
  EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE d IS NULL AND x=y;
} {/AUTO/}
do_execsql_test autoindex3-140 {
  EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE d IN (5,b) AND x=y;
} {/AUTO/}



































finish_test







>







 








>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
..
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# focus of this script is testing automatic index creation logic,
# and specifically that an automatic index will not be created that
# shadows a declared index.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix autoindex3

# The t1b and t2d indexes are not very selective.  It used to be that
# the autoindex mechanism would create automatic indexes on t1(b) or
# t2(d), make assumptions that they were reasonably selective, and use
# them instead of t1b or t2d.  But that would be cheating, because the
# automatic index cannot be any more selective than the real index.
#
................................................................................
} {/AUTO/}
do_execsql_test autoindex3-130 {
  EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE d IS NULL AND x=y;
} {/AUTO/}
do_execsql_test autoindex3-140 {
  EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE d IN (5,b) AND x=y;
} {/AUTO/}

reset_db
do_execsql_test 210 {
  CREATE TABLE v(b, d, e);
  CREATE TABLE u(a, b, c);
  ANALYZE sqlite_master;
  INSERT INTO "sqlite_stat1" VALUES('u','uab','40000 400 1');
  INSERT INTO "sqlite_stat1" VALUES('v','vbde','40000 400 1 1');
  INSERT INTO "sqlite_stat1" VALUES('v','ve','40000 21');

  CREATE INDEX uab on u(a, b);
  CREATE INDEX ve on v(e);
  CREATE INDEX vbde on v(b,d,e);

  DROP TABLE IF EXISTS sqlite_stat4;
  ANALYZE sqlite_master;
}

# At one point, SQLite was using the inferior plan:
#
#   0|0|1|SEARCH TABLE v USING INDEX ve (e>?)
#   0|1|0|SEARCH TABLE u USING COVERING INDEX uab (ANY(a) AND b=?)
#
# on the basis that the real index "uab" must be better than the automatic
# index. This is not right - a skip-scan is not necessarily better than an
# automatic index scan.
#
do_eqp_test 220 {
  select count(*) from u, v where u.b = v.b and v.e > 34;
} {
  0 0 1 {SEARCH TABLE v USING INDEX ve (e>?)} 
  0 1 0 {SEARCH TABLE u USING AUTOMATIC COVERING INDEX (b=?)}
}


finish_test

Added test/bigsort.test.























































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# 2014 November 26
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix bigsort

#--------------------------------------------------------------------
# At one point there was an overflow problem if the product of the 
# cache-size and page-size was larger than 2^31. Causing an infinite 
# loop if the product was also an integer multiple of 2^32, or 
# inefficiency otherwise.
#
do_execsql_test 1.0 {
  PRAGMA page_size = 1024;
  CREATE TABLE t1(a, b);
  BEGIN;
  WITH data(x,y) AS (
    SELECT 1, zeroblob(10000)
    UNION ALL
    SELECT x+1, y FROM data WHERE x < 300000
  )
  INSERT INTO t1 SELECT * FROM data;
  COMMIT;
}
do_execsql_test 1.1 {
  PRAGMA cache_size = 4194304;
  CREATE INDEX i1 ON t1(a, b);
}


finish_test


Added test/btree01.test.









































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# 2014-11-27
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains test cases for b-tree logic.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix btree01

# The refactoring on the b-tree balance() routine in check-in
# http://www.sqlite.org/src/info/face33bea1ba3a (2014-10-27)
# caused the integrity_check on the following SQL to fail.
#
do_execsql_test btree01-1.1 {
  PRAGMA page_size=65536;
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b BLOB);
  WITH RECURSIVE
     c(i) AS (VALUES(1) UNION ALL SELECT i+1 FROM c WHERE i<30)
  INSERT INTO t1(a,b) SELECT i, zeroblob(6500) FROM c;
  UPDATE t1 SET b=zeroblob(3000);
  UPDATE t1 SET b=zeroblob(64000) WHERE a=2;
  PRAGMA integrity_check;
} {ok}

# The previous test is sufficient to prevent a regression.  But we
# add a number of additional tests to stress the balancer in similar
# ways, looking for related problems.
#
for {set i 1} {$i<=30} {incr i} {
  do_test btree01-1.2.$i {
    db eval {
      DELETE FROM t1;
      WITH RECURSIVE
        c(i) AS (VALUES(1) UNION ALL SELECT i+1 FROM c WHERE i<30)
      INSERT INTO t1(a,b) SELECT i, zeroblob(6500) FROM c;
      UPDATE t1 SET b=zeroblob(3000);
      UPDATE t1 SET b=zeroblob(64000) WHERE a=$::i;
      PRAGMA integrity_check;
    }
  } {ok}
}
for {set i 1} {$i<=30} {incr i} {
  do_test btree01-1.3.$i {
    db eval {
      DELETE FROM t1;
      WITH RECURSIVE
        c(i) AS (VALUES(1) UNION ALL SELECT i+1 FROM c WHERE i<30)
      INSERT INTO t1(a,b) SELECT i, zeroblob(6500) FROM c;
      UPDATE t1 SET b=zeroblob(2000);
      UPDATE t1 SET b=zeroblob(64000) WHERE a=$::i;
      PRAGMA integrity_check;
    }
  } {ok}
}
for {set i 1} {$i<=30} {incr i} {
  do_test btree01-1.4.$i {
    db eval {
      DELETE FROM t1;
      WITH RECURSIVE
        c(i) AS (VALUES(1) UNION ALL SELECT i+1 FROM c WHERE i<30)
      INSERT INTO t1(a,b) SELECT i, zeroblob(6500) FROM c;
      UPDATE t1 SET b=zeroblob(6499) WHERE (a%3)==0;
      UPDATE t1 SET b=zeroblob(6499) WHERE (a%3)==1;
      UPDATE t1 SET b=zeroblob(6499) WHERE (a%3)==2;
      UPDATE t1 SET b=zeroblob(64000) WHERE a=$::i;
      PRAGMA integrity_check;
    }
  } {ok}
}
for {set i 1} {$i<=30} {incr i} {
  do_test btree01-1.5.$i {
    db eval {
      DELETE FROM t1;
      WITH RECURSIVE
        c(i) AS (VALUES(1) UNION ALL SELECT i+1 FROM c WHERE i<30)
      INSERT INTO t1(a,b) SELECT i, zeroblob(6542) FROM c;
      UPDATE t1 SET b=zeroblob(2331);
      UPDATE t1 SET b=zeroblob(65496) WHERE a=$::i;
      PRAGMA integrity_check;
    }
  } {ok}
}
for {set i 1} {$i<=30} {incr i} {
  do_test btree01-1.6.$i {
    db eval {
      DELETE FROM t1;
      WITH RECURSIVE
        c(i) AS (VALUES(1) UNION ALL SELECT i+1 FROM c WHERE i<30)
      INSERT INTO t1(a,b) SELECT i, zeroblob(6542) FROM c;
      UPDATE t1 SET b=zeroblob(2332);
      UPDATE t1 SET b=zeroblob(65496) WHERE a=$::i;
      PRAGMA integrity_check;
    }
  } {ok}
}
for {set i 1} {$i<=30} {incr i} {
  do_test btree01-1.7.$i {
    db eval {
      DELETE FROM t1;
      WITH RECURSIVE
        c(i) AS (VALUES(1) UNION ALL SELECT i+1 FROM c WHERE i<30)
      INSERT INTO t1(a,b) SELECT i, zeroblob(6500) FROM c;
      UPDATE t1 SET b=zeroblob(1);
      UPDATE t1 SET b=zeroblob(65000) WHERE a=$::i;
      PRAGMA integrity_check;
    }
  } {ok}
}
for {set i 1} {$i<=31} {incr i} {
  do_test btree01-1.8.$i {
    db eval {
      DELETE FROM t1;
      WITH RECURSIVE
        c(i) AS (VALUES(1) UNION ALL SELECT i+1 FROM c WHERE i<31)
      INSERT INTO t1(a,b) SELECT i, zeroblob(6500) FROM c;
      UPDATE t1 SET b=zeroblob(4000);
      UPDATE t1 SET b=zeroblob(65000) WHERE a=$::i;
      PRAGMA integrity_check;
    }
  } {ok}
}

finish_test

Changes to test/permutations.test.

109
110
111
112
113
114
115

116
117
118
119
120
121
122
  speed1.test speed1p.test speed2.test speed3.test speed4.test 
  speed4p.test sqllimits1.test tkt2686.test thread001.test thread002.test
  thread003.test thread004.test thread005.test trans2.test vacuum3.test 
  incrvacuum_ioerr.test autovacuum_crash.test btree8.test shared_err.test
  vtab_err.test walslow.test walcrash.test walcrash3.test
  walthread.test rtree3.test indexfault.test securedel2.test
  sort3.test sort4.test fts4growth.test fts4growth2.test

}]
if {[info exists ::env(QUICKTEST_INCLUDE)]} {
  set allquicktests [concat $allquicktests $::env(QUICKTEST_INCLUDE)]
}

#############################################################################
# Start of tests







>







109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
  speed1.test speed1p.test speed2.test speed3.test speed4.test 
  speed4p.test sqllimits1.test tkt2686.test thread001.test thread002.test
  thread003.test thread004.test thread005.test trans2.test vacuum3.test 
  incrvacuum_ioerr.test autovacuum_crash.test btree8.test shared_err.test
  vtab_err.test walslow.test walcrash.test walcrash3.test
  walthread.test rtree3.test indexfault.test securedel2.test
  sort3.test sort4.test fts4growth.test fts4growth2.test
  bigsort.test
}]
if {[info exists ::env(QUICKTEST_INCLUDE)]} {
  set allquicktests [concat $allquicktests $::env(QUICKTEST_INCLUDE)]
}

#############################################################################
# Start of tests

Changes to test/pragma.test.

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
} ;# ifcapable trigger

ifcapable schema_pragmas {
  do_test pragma-11.1 {
    execsql2 {
      pragma collation_list;
    }
  } {seq 0 name NOCASE seq 1 name RTRIM seq 2 name BINARY}
  do_test pragma-11.2 {
    db collate New_Collation blah...
    execsql {
      pragma collation_list;
    }
  } {0 New_Collation 1 NOCASE 2 RTRIM 3 BINARY}
}

ifcapable schema_pragmas&&tempdb {
  do_test pragma-12.1 {
    sqlite3 db2 test.db
    execsql {
      PRAGMA temp.table_info('abc');







|





|







1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
} ;# ifcapable trigger

ifcapable schema_pragmas {
  do_test pragma-11.1 {
    execsql2 {
      pragma collation_list;
    }
  } {seq 0 name RTRIM seq 1 name NOCASE seq 2 name BINARY}
  do_test pragma-11.2 {
    db collate New_Collation blah...
    execsql {
      pragma collation_list;
    }
  } {0 New_Collation 1 RTRIM 2 NOCASE 3 BINARY}
}

ifcapable schema_pragmas&&tempdb {
  do_test pragma-12.1 {
    sqlite3 db2 test.db
    execsql {
      PRAGMA temp.table_info('abc');

Changes to test/scanstatus.test.

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
  PRAGMA foreign_keys=on;
}
do_execsql_test    4.2.1 { DELETE FROM p1 WHERE x=4 }
do_scanstatus_test 4.2.2 { 
  nLoop 1 nVisit 1 nEst 1.0 zName sqlite_autoindex_p1_1 
  zExplain {SEARCH TABLE p1 USING INDEX sqlite_autoindex_p1_1 (x=?)}

  nLoop 1 nVisit 3 nEst 524288.0 zName c1 zExplain {SCAN TABLE c1}
}

#-------------------------------------------------------------------------
# Further tests of different scan types.
#
reset_db
proc tochar {i} {







|







264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
  PRAGMA foreign_keys=on;
}
do_execsql_test    4.2.1 { DELETE FROM p1 WHERE x=4 }
do_scanstatus_test 4.2.2 { 
  nLoop 1 nVisit 1 nEst 1.0 zName sqlite_autoindex_p1_1 
  zExplain {SEARCH TABLE p1 USING INDEX sqlite_autoindex_p1_1 (x=?)}

  nLoop 1 nVisit 3 nEst 262144.0 zName c1 zExplain {SCAN TABLE c1}
}

#-------------------------------------------------------------------------
# Further tests of different scan types.
#
reset_db
proc tochar {i} {

Changes to test/shell1.test.

41
42
43
44
45
46
47
48
49
50
51
52
53

54
55





56
57
58
59
60
61

62
63
64
65
66
67
68
..
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# invalid option
do_test shell1-1.1.1 {
  set res [catchcmd "-bad test.db" ""]
  set rc [lindex $res 0]
  list $rc \
       [regexp {Error: unknown option: -bad} $res]
} {1 1}
# error on extra options
do_test shell1-1.1.2 {
  set res [catchcmd "-bad test.db \"select 3\" \"select 4\"" ""]
  set rc [lindex $res 0]
  list $rc \
       [regexp {Error: too many options: "select 4"} $res]

} {1 1}
# error on extra options





do_test shell1-1.1.3 {
  set res [catchcmd "-bad FOO test.db BAD" ".quit"]
  set rc [lindex $res 0]
  list $rc \
       [regexp {Error: too many options: "BAD"} $res]
} {1 1}


# -help
do_test shell1-1.2.1 {
  set res [catchcmd "-help test.db" ""]
  set rc [lindex $res 0]
  list $rc \
       [regexp {Usage} $res] \
................................................................................
} {1 1 1 1}

# -init filename       read/process named file
do_test shell1-1.3.1 {
  catchcmd "-init FOO test.db" ""
} {0 {}}
do_test shell1-1.3.2 {
  set res [catchcmd "-init FOO test.db .quit BAD" ""]
  set rc [lindex $res 0]
  list $rc \
       [regexp {Error: too many options: "BAD"} $res]
} {1 1}

# -echo                print commands before execution
do_test shell1-1.4.1 {
  catchcmd "-echo test.db" "" 
} {0 {}}

# -[no]header          turn headers on or off







<
|
|


<
>


>
>
>
>
>

|
<
<
<
<
>







 







|
|
|
|
|







41
42
43
44
45
46
47

48
49
50
51

52
53
54
55
56
57
58
59
60
61




62
63
64
65
66
67
68
69
..
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# invalid option
do_test shell1-1.1.1 {
  set res [catchcmd "-bad test.db" ""]
  set rc [lindex $res 0]
  list $rc \
       [regexp {Error: unknown option: -bad} $res]
} {1 1}

do_test shell1-1.1.1b {
  set res [catchcmd "test.db -bad" ""]
  set rc [lindex $res 0]
  list $rc \

       [regexp {Error: unknown option: -bad} $res]
} {1 1}
# error on extra options
do_test shell1-1.1.2 {
  catchcmd "test.db \"select 3\" \"select 4\"" ""
} {0 {3
4}}
# error on extra options
do_test shell1-1.1.3 {
  catchcmd "test.db FOO test.db BAD" ".quit"




} {1 {Error: near "FOO": syntax error}}

# -help
do_test shell1-1.2.1 {
  set res [catchcmd "-help test.db" ""]
  set rc [lindex $res 0]
  list $rc \
       [regexp {Usage} $res] \
................................................................................
} {1 1 1 1}

# -init filename       read/process named file
do_test shell1-1.3.1 {
  catchcmd "-init FOO test.db" ""
} {0 {}}
do_test shell1-1.3.2 {
  catchcmd "-init FOO test.db .quit BAD" ""
} {0 {}}
do_test shell1-1.3.3 {
  catchcmd "-init FOO test.db BAD .quit" ""
} {1 {Error: near "BAD": syntax error}}

# -echo                print commands before execution
do_test shell1-1.4.1 {
  catchcmd "-echo test.db" "" 
} {0 {}}

# -[no]header          turn headers on or off

Changes to test/shell2.test.

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
  list $rc $fexist
} {{0 {}} 1}

# Shell silently ignores extra parameters.
# Ticket [f5cb008a65].
do_test shell2-1.2.1 {
  set rc [catch { eval exec $CLI \":memory:\" \"select 3\" \"select 4\" } msg]
  list $rc \
       [regexp {Error: too many options: "select 4"} $msg]
} {1 1}

# Test a problem reported on the mailing list. The shell was at one point
# returning the generic SQLITE_ERROR message ("SQL error or missing database")
# instead of the "too many levels..." message in the test below.
#
do_test shell2-1.3 {
  catchcmd "-batch test.db" {







|
|
|







48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
  list $rc $fexist
} {{0 {}} 1}

# Shell silently ignores extra parameters.
# Ticket [f5cb008a65].
do_test shell2-1.2.1 {
  set rc [catch { eval exec $CLI \":memory:\" \"select 3\" \"select 4\" } msg]
  list $rc $msg
} {0 {3
4}}

# Test a problem reported on the mailing list. The shell was at one point
# returning the generic SQLITE_ERROR message ("SQL error or missing database")
# instead of the "too many levels..." message in the test below.
#
do_test shell2-1.3 {
  catchcmd "-batch test.db" {

Changes to test/skipscan1.test.

268
269
270
271
272
273
274
275



















276
} {/ANY.a. AND b=/}
do_execsql_test skipscan1-6.3 {
  -- Two distinct values for the skip-scan column again.  Skip-scan is not used.
  UPDATE sqlite_stat1 SET stat='500000 125000 62500';
  ANALYZE sqlite_master;
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=1;
} {~/ANY/}




















finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
} {/ANY.a. AND b=/}
do_execsql_test skipscan1-6.3 {
  -- Two distinct values for the skip-scan column again.  Skip-scan is not used.
  UPDATE sqlite_stat1 SET stat='500000 125000 62500';
  ANALYZE sqlite_master;
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=1;
} {~/ANY/}

# If the sqlite_stat1 entry includes the "noskipscan" token, then never use
# skipscan with that index.
#
do_execsql_test skipscan1-7.1 {
  UPDATE sqlite_stat1 SET stat='500000 125000 1 sz=100';
  ANALYZE sqlite_master;
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=1;
} {/ANY/}
do_execsql_test skipscan1-7.2 {
  UPDATE sqlite_stat1 SET stat='500000 125000 1 noskipscan sz=100';
  ANALYZE sqlite_master;
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=1;
} {~/ANY/}
do_execsql_test skipscan1-7.3 {
  UPDATE sqlite_stat1 SET stat='500000 125000 1 sz=100 noskipscan';
  ANALYZE sqlite_master;
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=1;
} {~/ANY/}

finish_test

Changes to test/vtab1.test.

1390
1391
1392
1393
1394
1395
1396
1397










































1398
do_execsql_test 21.2 {
  SELECT * FROM t9v WHERE a<b;
} {1 2 3}

do_execsql_test 21.3 {
  SELECT * FROM t9v WHERE a=b;
} {2 2 2}











































finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
do_execsql_test 21.2 {
  SELECT * FROM t9v WHERE a<b;
} {1 2 3}

do_execsql_test 21.3 {
  SELECT * FROM t9v WHERE a=b;
} {2 2 2}

#-------------------------------------------------------------------------
# At one point executing a CREATE VIRTUAL TABLE statement that specified 
# a database name but no virtual table arguments was causing an internal
# buffer overread. Valgrind would report errors while running the following 
# tests. Specifically:
#
#   CREATE VIRTUAL TABLE t1 USING fts4;          -- Ok - no db name.
#   CREATE VIRTUAL TABLE main.t1 USING fts4(x);  -- Ok - has vtab arguments.
#   CREATE VIRTUAL TABLE main.t1 USING fts4;     -- Had the problem. 
#
ifcapable fts3 {
  forcedelete test.db2
  set nm [string repeat abcdefghij 100]
  do_execsql_test 22.1 {
    ATTACH 'test.db2' AS $nm
  }
  
  execsql "SELECT * FROM sqlite_master"
  do_execsql_test 22.2 "CREATE VIRTUAL TABLE ${nm}.t1 USING fts4"
  
  do_test 22.3.1 {
    set sql "CREATE VIRTUAL TABLE ${nm}.t2 USING fts4"
    set stmt [sqlite3_prepare_v2 db $sql -1 dummy]
    sqlite3_step $stmt
  } {SQLITE_DONE}
  
  do_test 22.3.2 {
    sqlite3_finalize $stmt
  } {SQLITE_OK}
  
  do_test 22.4.1 {
    set sql "CREATE VIRTUAL TABLE ${nm}.t3 USING fts4"
    set n [string length $sql]
    set stmt [sqlite3_prepare db "${sql}xyz" $n dummy]
    sqlite3_step $stmt
  } {SQLITE_DONE}
  
  do_test 22.4.2 {
    sqlite3_finalize $stmt
  } {SQLITE_OK}
}

finish_test