/ Check-in [001771af]
Login
SQLite training in Houston TX on 2019-11-05 (details)
Part of the 2019 Tcl Conference

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge latest trunk changes into this branch.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | reuse-schema
Files: files | file ages | folders
SHA3-256: 001771afd0567c04736a778fc78fd7144492ae7c830e7f55de61869ce988f0ed
User & Date: dan 2019-02-22 17:44:58
Wiki:reuse-schema
Context
2019-02-25
17:54
Where possible, avoid loading all schemas into memory for PRAGMA statements. check-in: 64f97530 user: dan tags: reuse-schema
2019-02-22
17:44
Merge latest trunk changes into this branch. check-in: 001771af user: dan tags: reuse-schema
16:18
In sqlite3NestedParse() be sure to detect all SQLITE_NOMEM and SQLITE_TOOBIG errors and to distinguish between them. check-in: 73056b31 user: drh tags: trunk
2019-02-20
18:44
Further test cases and fixes for SQLITE_OPEN_SHARED_SCHEMA. check-in: ba0ab042 user: dan tags: reuse-schema
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to ext/fts3/fts3_write.c.

1344
1345
1346
1347
1348
1349
1350

1351

1352
1353
1354
1355
1356
1357
1358
      return SQLITE_OK;
    }

    fts3SegReaderSetEof(pReader);

    /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf 
    ** blocks have already been traversed.  */

    assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock );

    if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
      return SQLITE_OK;
    }

    rc = sqlite3Fts3ReadBlock(
        p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, 
        (bIncr ? &pReader->nPopulate : 0)







>
|
>







1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
      return SQLITE_OK;
    }

    fts3SegReaderSetEof(pReader);

    /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf 
    ** blocks have already been traversed.  */
#ifdef CORRUPT_DB
    assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock || CORRUPT_DB );
#endif
    if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
      return SQLITE_OK;
    }

    rc = sqlite3Fts3ReadBlock(
        p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, 
        (bIncr ? &pReader->nPopulate : 0)

Added ext/misc/fossildelta.c.





























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
/*
** 2019-02-19
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension implements the delta functions used by Fossil.
*/
#include <string.h>
#include <assert.h>
#include <stdlib.h>
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1

/*
** The "u32" type must be an unsigned 32-bit integer.  Adjust this
*/
typedef unsigned int u32;

/*
** Must be a 16-bit value
*/
typedef short int s16;
typedef unsigned short int u16;


/*
** The width of a hash window in bytes.  The algorithm only works if this
** is a power of 2.
*/
#define NHASH 16

/*
** The current state of the rolling hash.
**
** z[] holds the values that have been hashed.  z[] is a circular buffer.
** z[i] is the first entry and z[(i+NHASH-1)%NHASH] is the last entry of
** the window.
**
** Hash.a is the sum of all elements of hash.z[].  Hash.b is a weighted
** sum.  Hash.b is z[i]*NHASH + z[i+1]*(NHASH-1) + ... + z[i+NHASH-1]*1.
** (Each index for z[] should be module NHASH, of course.  The %NHASH operator
** is omitted in the prior expression for brevity.)
*/
typedef struct hash hash;
struct hash {
  u16 a, b;         /* Hash values */
  u16 i;            /* Start of the hash window */
  char z[NHASH];    /* The values that have been hashed */
};

/*
** Initialize the rolling hash using the first NHASH characters of z[]
*/
static void hash_init(hash *pHash, const char *z){
  u16 a, b, i;
  a = b = z[0];
  for(i=1; i<NHASH; i++){
    a += z[i];
    b += a;
  }
  memcpy(pHash->z, z, NHASH);
  pHash->a = a & 0xffff;
  pHash->b = b & 0xffff;
  pHash->i = 0;
}

/*
** Advance the rolling hash by a single character "c"
*/
static void hash_next(hash *pHash, int c){
  u16 old = pHash->z[pHash->i];
  pHash->z[pHash->i] = c;
  pHash->i = (pHash->i+1)&(NHASH-1);
  pHash->a = pHash->a - old + c;
  pHash->b = pHash->b - NHASH*old + pHash->a;
}

/*
** Return a 32-bit hash value
*/
static u32 hash_32bit(hash *pHash){
  return (pHash->a & 0xffff) | (((u32)(pHash->b & 0xffff))<<16);
}

/*
** Compute a hash on NHASH bytes.
**
** This routine is intended to be equivalent to:
**    hash h;
**    hash_init(&h, zInput);
**    return hash_32bit(&h);
*/
static u32 hash_once(const char *z){
  u16 a, b, i;
  a = b = z[0];
  for(i=1; i<NHASH; i++){
    a += z[i];
    b += a;
  }
  return a | (((u32)b)<<16);
}

/*
** Write an base-64 integer into the given buffer.
*/
static void putInt(unsigned int v, char **pz){
  static const char zDigits[] =
    "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~";
  /*  123456789 123456789 123456789 123456789 123456789 123456789 123 */
  int i, j;
  char zBuf[20];
  if( v==0 ){
    *(*pz)++ = '0';
    return;
  }
  for(i=0; v>0; i++, v>>=6){
    zBuf[i] = zDigits[v&0x3f];
  }
  for(j=i-1; j>=0; j--){
    *(*pz)++ = zBuf[j];
  }
}

/*
** Read bytes from *pz and convert them into a positive integer.  When
** finished, leave *pz pointing to the first character past the end of
** the integer.  The *pLen parameter holds the length of the string
** in *pz and is decremented once for each character in the integer.
*/
static unsigned int deltaGetInt(const char **pz, int *pLen){
  static const signed char zValue[] = {
    -1, -1, -1, -1, -1, -1, -1, -1,   -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1,   -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1,   -1, -1, -1, -1, -1, -1, -1, -1,
     0,  1,  2,  3,  4,  5,  6,  7,    8,  9, -1, -1, -1, -1, -1, -1,
    -1, 10, 11, 12, 13, 14, 15, 16,   17, 18, 19, 20, 21, 22, 23, 24,
    25, 26, 27, 28, 29, 30, 31, 32,   33, 34, 35, -1, -1, -1, -1, 36,
    -1, 37, 38, 39, 40, 41, 42, 43,   44, 45, 46, 47, 48, 49, 50, 51,
    52, 53, 54, 55, 56, 57, 58, 59,   60, 61, 62, -1, -1, -1, 63, -1,
  };
  unsigned int v = 0;
  int c;
  unsigned char *z = (unsigned char*)*pz;
  unsigned char *zStart = z;
  while( (c = zValue[0x7f&*(z++)])>=0 ){
     v = (v<<6) + c;
  }
  z--;
  *pLen -= z - zStart;
  *pz = (char*)z;
  return v;
}

/*
** Return the number digits in the base-64 representation of a positive integer
*/
static int digit_count(int v){
  unsigned int i, x;
  for(i=1, x=64; v>=x; i++, x <<= 6){}
  return i;
}

#ifdef __GNUC__
# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
#else
# define GCC_VERSION 0
#endif

/*
** Compute a 32-bit big-endian checksum on the N-byte buffer.  If the
** buffer is not a multiple of 4 bytes length, compute the sum that would
** have occurred if the buffer was padded with zeros to the next multiple
** of four bytes.
*/
static unsigned int checksum(const char *zIn, size_t N){
  static const int byteOrderTest = 1;
  const unsigned char *z = (const unsigned char *)zIn;
  const unsigned char *zEnd = (const unsigned char*)&zIn[N&~3];
  unsigned sum = 0;
  assert( (z - (const unsigned char*)0)%4==0 );  /* Four-byte alignment */
  if( 0==*(char*)&byteOrderTest ){
    /* This is a big-endian machine */
    while( z<zEnd ){
      sum += *(unsigned*)z;
      z += 4;
    }
  }else{
    /* A little-endian machine */
#if GCC_VERSION>=4003000
    while( z<zEnd ){
      sum += __builtin_bswap32(*(unsigned*)z);
      z += 4;
    }
#elif defined(_MSC_VER) && _MSC_VER>=1300
    while( z<zEnd ){
      sum += _byteswap_ulong(*(unsigned*)z);
      z += 4;
    }
#else
    unsigned sum0 = 0;
    unsigned sum1 = 0;
    unsigned sum2 = 0;
    while(N >= 16){
      sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]);
      sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]);
      sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]);
      sum  += ((unsigned)z[3] + z[7] + z[11]+ z[15]);
      z += 16;
      N -= 16;
    }
    while(N >= 4){
      sum0 += z[0];
      sum1 += z[1];
      sum2 += z[2];
      sum  += z[3];
      z += 4;
      N -= 4;
    }
    sum += (sum2 << 8) + (sum1 << 16) + (sum0 << 24);
#endif
  }
  switch(N&3){
    case 3:   sum += (z[2] << 8);
    case 2:   sum += (z[1] << 16);
    case 1:   sum += (z[0] << 24);
    default:  ;
  }
  return sum;
}

/*
** Create a new delta.
**
** The delta is written into a preallocated buffer, zDelta, which
** should be at least 60 bytes longer than the target file, zOut.
** The delta string will be NUL-terminated, but it might also contain
** embedded NUL characters if either the zSrc or zOut files are
** binary.  This function returns the length of the delta string
** in bytes, excluding the final NUL terminator character.
**
** Output Format:
**
** The delta begins with a base64 number followed by a newline.  This
** number is the number of bytes in the TARGET file.  Thus, given a
** delta file z, a program can compute the size of the output file
** simply by reading the first line and decoding the base-64 number
** found there.  The delta_output_size() routine does exactly this.
**
** After the initial size number, the delta consists of a series of
** literal text segments and commands to copy from the SOURCE file.
** A copy command looks like this:
**
**     NNN@MMM,
**
** where NNN is the number of bytes to be copied and MMM is the offset
** into the source file of the first byte (both base-64).   If NNN is 0
** it means copy the rest of the input file.  Literal text is like this:
**
**     NNN:TTTTT
**
** where NNN is the number of bytes of text (base-64) and TTTTT is the text.
**
** The last term is of the form
**
**     NNN;
**
** In this case, NNN is a 32-bit bigendian checksum of the output file
** that can be used to verify that the delta applied correctly.  All
** numbers are in base-64.
**
** Pure text files generate a pure text delta.  Binary files generate a
** delta that may contain some binary data.
**
** Algorithm:
**
** The encoder first builds a hash table to help it find matching
** patterns in the source file.  16-byte chunks of the source file
** sampled at evenly spaced intervals are used to populate the hash
** table.
**
** Next we begin scanning the target file using a sliding 16-byte
** window.  The hash of the 16-byte window in the target is used to
** search for a matching section in the source file.  When a match
** is found, a copy command is added to the delta.  An effort is
** made to extend the matching section to regions that come before
** and after the 16-byte hash window.  A copy command is only issued
** if the result would use less space that just quoting the text
** literally. Literal text is added to the delta for sections that
** do not match or which can not be encoded efficiently using copy
** commands.
*/
static int delta_create(
  const char *zSrc,      /* The source or pattern file */
  unsigned int lenSrc,   /* Length of the source file */
  const char *zOut,      /* The target file */
  unsigned int lenOut,   /* Length of the target file */
  char *zDelta           /* Write the delta into this buffer */
){
  int i, base;
  char *zOrigDelta = zDelta;
  hash h;
  int nHash;                 /* Number of hash table entries */
  int *landmark;             /* Primary hash table */
  int *collide;              /* Collision chain */
  int lastRead = -1;         /* Last byte of zSrc read by a COPY command */

  /* Add the target file size to the beginning of the delta
  */
  putInt(lenOut, &zDelta);
  *(zDelta++) = '\n';

  /* If the source file is very small, it means that we have no
  ** chance of ever doing a copy command.  Just output a single
  ** literal segment for the entire target and exit.
  */
  if( lenSrc<=NHASH ){
    putInt(lenOut, &zDelta);
    *(zDelta++) = ':';
    memcpy(zDelta, zOut, lenOut);
    zDelta += lenOut;
    putInt(checksum(zOut, lenOut), &zDelta);
    *(zDelta++) = ';';
    return zDelta - zOrigDelta;
  }

  /* Compute the hash table used to locate matching sections in the
  ** source file.
  */
  nHash = lenSrc/NHASH;
  collide = sqlite3_malloc64( (sqlite3_int64)nHash*2*sizeof(int) );
  memset(collide, -1, nHash*2*sizeof(int));
  landmark = &collide[nHash];
  for(i=0; i<lenSrc-NHASH; i+=NHASH){
    int hv = hash_once(&zSrc[i]) % nHash;
    collide[i/NHASH] = landmark[hv];
    landmark[hv] = i/NHASH;
  }

  /* Begin scanning the target file and generating copy commands and
  ** literal sections of the delta.
  */
  base = 0;    /* We have already generated everything before zOut[base] */
  while( base+NHASH<lenOut ){
    int iSrc, iBlock;
    unsigned int bestCnt, bestOfst=0, bestLitsz=0;
    hash_init(&h, &zOut[base]);
    i = 0;     /* Trying to match a landmark against zOut[base+i] */
    bestCnt = 0;
    while( 1 ){
      int hv;
      int limit = 250;

      hv = hash_32bit(&h) % nHash;
      iBlock = landmark[hv];
      while( iBlock>=0 && (limit--)>0 ){
        /*
        ** The hash window has identified a potential match against
        ** landmark block iBlock.  But we need to investigate further.
        **
        ** Look for a region in zOut that matches zSrc. Anchor the search
        ** at zSrc[iSrc] and zOut[base+i].  Do not include anything prior to
        ** zOut[base] or after zOut[outLen] nor anything after zSrc[srcLen].
        **
        ** Set cnt equal to the length of the match and set ofst so that
        ** zSrc[ofst] is the first element of the match.  litsz is the number
        ** of characters between zOut[base] and the beginning of the match.
        ** sz will be the overhead (in bytes) needed to encode the copy
        ** command.  Only generate copy command if the overhead of the
        ** copy command is less than the amount of literal text to be copied.
        */
        int cnt, ofst, litsz;
        int j, k, x, y;
        int sz;
        int limitX;

        /* Beginning at iSrc, match forwards as far as we can.  j counts
        ** the number of characters that match */
        iSrc = iBlock*NHASH;
        y = base+i;
        limitX = ( lenSrc-iSrc <= lenOut-y ) ? lenSrc : iSrc + lenOut - y;
        for(x=iSrc; x<limitX; x++, y++){
          if( zSrc[x]!=zOut[y] ) break;
        }
        j = x - iSrc - 1;

        /* Beginning at iSrc-1, match backwards as far as we can.  k counts
        ** the number of characters that match */
        for(k=1; k<iSrc && k<=i; k++){
          if( zSrc[iSrc-k]!=zOut[base+i-k] ) break;
        }
        k--;

        /* Compute the offset and size of the matching region */
        ofst = iSrc-k;
        cnt = j+k+1;
        litsz = i-k;  /* Number of bytes of literal text before the copy */
        /* sz will hold the number of bytes needed to encode the "insert"
        ** command and the copy command, not counting the "insert" text */
        sz = digit_count(i-k)+digit_count(cnt)+digit_count(ofst)+3;
        if( cnt>=sz && cnt>bestCnt ){
          /* Remember this match only if it is the best so far and it
          ** does not increase the file size */
          bestCnt = cnt;
          bestOfst = iSrc-k;
          bestLitsz = litsz;
        }

        /* Check the next matching block */
        iBlock = collide[iBlock];
      }

      /* We have a copy command that does not cause the delta to be larger
      ** than a literal insert.  So add the copy command to the delta.
      */
      if( bestCnt>0 ){
        if( bestLitsz>0 ){
          /* Add an insert command before the copy */
          putInt(bestLitsz,&zDelta);
          *(zDelta++) = ':';
          memcpy(zDelta, &zOut[base], bestLitsz);
          zDelta += bestLitsz;
          base += bestLitsz;
        }
        base += bestCnt;
        putInt(bestCnt, &zDelta);
        *(zDelta++) = '@';
        putInt(bestOfst, &zDelta);
        *(zDelta++) = ',';
        if( bestOfst + bestCnt -1 > lastRead ){
          lastRead = bestOfst + bestCnt - 1;
        }
        bestCnt = 0;
        break;
      }

      /* If we reach this point, it means no match is found so far */
      if( base+i+NHASH>=lenOut ){
        /* We have reached the end of the file and have not found any
        ** matches.  Do an "insert" for everything that does not match */
        putInt(lenOut-base, &zDelta);
        *(zDelta++) = ':';
        memcpy(zDelta, &zOut[base], lenOut-base);
        zDelta += lenOut-base;
        base = lenOut;
        break;
      }

      /* Advance the hash by one character.  Keep looking for a match */
      hash_next(&h, zOut[base+i+NHASH]);
      i++;
    }
  }
  /* Output a final "insert" record to get all the text at the end of
  ** the file that does not match anything in the source file.
  */
  if( base<lenOut ){
    putInt(lenOut-base, &zDelta);
    *(zDelta++) = ':';
    memcpy(zDelta, &zOut[base], lenOut-base);
    zDelta += lenOut-base;
  }
  /* Output the final checksum record. */
  putInt(checksum(zOut, lenOut), &zDelta);
  *(zDelta++) = ';';
  sqlite3_free(collide);
  return zDelta - zOrigDelta;
}

/*
** Return the size (in bytes) of the output from applying
** a delta.
**
** This routine is provided so that an procedure that is able
** to call delta_apply() can learn how much space is required
** for the output and hence allocate nor more space that is really
** needed.
*/
static int delta_output_size(const char *zDelta, int lenDelta){
  int size;
  size = deltaGetInt(&zDelta, &lenDelta);
  if( *zDelta!='\n' ){
    /* ERROR: size integer not terminated by "\n" */
    return -1;
  }
  return size;
}


/*
** Apply a delta.
**
** The output buffer should be big enough to hold the whole output
** file and a NUL terminator at the end.  The delta_output_size()
** routine will determine this size for you.
**
** The delta string should be null-terminated.  But the delta string
** may contain embedded NUL characters (if the input and output are
** binary files) so we also have to pass in the length of the delta in
** the lenDelta parameter.
**
** This function returns the size of the output file in bytes (excluding
** the final NUL terminator character).  Except, if the delta string is
** malformed or intended for use with a source file other than zSrc,
** then this routine returns -1.
**
** Refer to the delta_create() documentation above for a description
** of the delta file format.
*/
static int delta_apply(
  const char *zSrc,      /* The source or pattern file */
  int lenSrc,            /* Length of the source file */
  const char *zDelta,    /* Delta to apply to the pattern */
  int lenDelta,          /* Length of the delta */
  char *zOut             /* Write the output into this preallocated buffer */
){
  unsigned int limit;
  unsigned int total = 0;
#ifdef FOSSIL_ENABLE_DELTA_CKSUM_TEST
  char *zOrigOut = zOut;
#endif

  limit = deltaGetInt(&zDelta, &lenDelta);
  if( *zDelta!='\n' ){
    /* ERROR: size integer not terminated by "\n" */
    return -1;
  }
  zDelta++; lenDelta--;
  while( *zDelta && lenDelta>0 ){
    unsigned int cnt, ofst;
    cnt = deltaGetInt(&zDelta, &lenDelta);
    switch( zDelta[0] ){
      case '@': {
        zDelta++; lenDelta--;
        ofst = deltaGetInt(&zDelta, &lenDelta);
        if( lenDelta>0 && zDelta[0]!=',' ){
          /* ERROR: copy command not terminated by ',' */
          return -1;
        }
        zDelta++; lenDelta--;
        total += cnt;
        if( total>limit ){
          /* ERROR: copy exceeds output file size */
          return -1;
        }
        if( ofst+cnt > lenSrc ){
          /* ERROR: copy extends past end of input */
          return -1;
        }
        memcpy(zOut, &zSrc[ofst], cnt);
        zOut += cnt;
        break;
      }
      case ':': {
        zDelta++; lenDelta--;
        total += cnt;
        if( total>limit ){
          /* ERROR:  insert command gives an output larger than predicted */
          return -1;
        }
        if( cnt>lenDelta ){
          /* ERROR: insert count exceeds size of delta */
          return -1;
        }
        memcpy(zOut, zDelta, cnt);
        zOut += cnt;
        zDelta += cnt;
        lenDelta -= cnt;
        break;
      }
      case ';': {
        zDelta++; lenDelta--;
        zOut[0] = 0;
#ifdef FOSSIL_ENABLE_DELTA_CKSUM_TEST
        if( cnt!=checksum(zOrigOut, total) ){
          /* ERROR:  bad checksum */
          return -1;
        }
#endif
        if( total!=limit ){
          /* ERROR: generated size does not match predicted size */
          return -1;
        }
        return total;
      }
      default: {
        /* ERROR: unknown delta operator */
        return -1;
      }
    }
  }
  /* ERROR: unterminated delta */
  return -1;
}

/*
** SQL functions:  fossildelta_create(X,Y)
**
** Return a delta for carrying X into Y.
*/
static void deltaCreateFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const char *aOrig; int nOrig;  /* old blob */
  const char *aNew;  int nNew;   /* new blob */
  char *aOut;        int nOut;   /* output delta */

  assert( argc==2 );
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
  if( sqlite3_value_type(argv[1])==SQLITE_NULL ) return;
  nOrig = sqlite3_value_bytes(argv[0]);
  aOrig = (const char*)sqlite3_value_blob(argv[0]);
  nNew = sqlite3_value_bytes(argv[1]);
  aNew = (const char*)sqlite3_value_blob(argv[1]);
  aOut = sqlite3_malloc64(nNew+70);
  if( aOut==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    nOut = delta_create(aOrig, nOrig, aNew, nNew, aOut);
    if( nOut<0 ){
      sqlite3_free(aOut);
      sqlite3_result_error(context, "cannot create fossil delta", -1);
    }else{
      sqlite3_result_blob(context, aOut, nOut, sqlite3_free);
    }
  }
}

/*
** SQL functions:  fossildelta_apply(X,D)
**
** Return the result of applying delta D to input X.
*/
static void deltaApplyFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const char *aOrig;   int nOrig;        /* The X input */
  const char *aDelta;  int nDelta;       /* The input delta (D) */
  char *aOut;          int nOut, nOut2;  /* The output */

  assert( argc==2 );
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
  if( sqlite3_value_type(argv[1])==SQLITE_NULL ) return;
  nOrig = sqlite3_value_bytes(argv[0]);
  aOrig = (const char*)sqlite3_value_blob(argv[0]);
  nDelta = sqlite3_value_bytes(argv[1]);
  aDelta = (const char*)sqlite3_value_blob(argv[1]);

  /* Figure out the size of the output */
  nOut = delta_output_size(aDelta, nDelta);
  if( nOut<0 ){
    sqlite3_result_error(context, "corrupt fossil delta", -1);
    return;
  }
  aOut = sqlite3_malloc64((sqlite3_int64)nOut+1);
  if( aOut==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    nOut2 = delta_apply(aOrig, nOrig, aDelta, nDelta, aOut);
    if( nOut2!=nOut ){
      sqlite3_free(aOut);
      sqlite3_result_error(context, "corrupt fossil delta", -1);
    }else{
      sqlite3_result_blob(context, aOut, nOut, sqlite3_free);
    }
  }
}


/*
** SQL functions:  fossildelta_output_size(D)
**
** Return the size of the output that results from applying delta D.
*/
static void deltaOutputSizeFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const char *aDelta;  int nDelta;       /* The input delta (D) */
  int nOut;                              /* Size of output */
  assert( argc==1 );
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
  nDelta = sqlite3_value_bytes(argv[0]);
  aDelta = (const char*)sqlite3_value_blob(argv[0]);

  /* Figure out the size of the output */
  nOut = delta_output_size(aDelta, nDelta);
  if( nOut<0 ){
    sqlite3_result_error(context, "corrupt fossil delta", -1);
    return;
  }else{
    sqlite3_result_int(context, nOut);
  }
}

/* The deltaparse(DELTA) table-valued function parses the DELTA in
** its input and returns a table that describes that delta.
*/
typedef struct deltaparsevtab_vtab deltaparsevtab_vtab;
typedef struct deltaparsevtab_cursor deltaparsevtab_cursor;
struct deltaparsevtab_vtab {
  sqlite3_vtab base;  /* Base class - must be first */
  /* No additional information needed */
};
struct deltaparsevtab_cursor {
  sqlite3_vtab_cursor base;  /* Base class - must be first */
  char *aDelta;              /* The delta being parsed */
  int nDelta;                /* Number of bytes in the delta */
  int iCursor;               /* Current cursor location */
  int eOp;                   /* Name of current operator */
  unsigned int a1, a2;       /* Arguments to current operator */
  int iNext;                 /* Next cursor value */
};

/* Operator names:
*/
static const char *azOp[] = {
  "SIZE", "COPY", "INSERT", "CHECKSUM", "ERROR", "EOF"
};
#define DELTAPARSE_OP_SIZE         0
#define DELTAPARSE_OP_COPY         1
#define DELTAPARSE_OP_INSERT       2
#define DELTAPARSE_OP_CHECKSUM     3
#define DELTAPARSE_OP_ERROR        4
#define DELTAPARSE_OP_EOF          5

/*
** The deltaparsevtabConnect() method is invoked to create a new
** deltaparse virtual table.
**
** Think of this routine as the constructor for deltaparsevtab_vtab objects.
**
** All this routine needs to do is:
**
**    (1) Allocate the deltaparsevtab_vtab object and initialize all fields.
**
**    (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the
**        result set of queries against the virtual table will look like.
*/
static int deltaparsevtabConnect(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  deltaparsevtab_vtab *pNew;
  int rc;

  rc = sqlite3_declare_vtab(db,
           "CREATE TABLE x(op,a1,a2,delta HIDDEN)"
       );
  /* For convenience, define symbolic names for the index to each column. */
#define DELTAPARSEVTAB_OP     0
#define DELTAPARSEVTAB_A1     1
#define DELTAPARSEVTAB_A2     2
#define DELTAPARSEVTAB_DELTA  3
  if( rc==SQLITE_OK ){
    pNew = sqlite3_malloc64( sizeof(*pNew) );
    *ppVtab = (sqlite3_vtab*)pNew;
    if( pNew==0 ) return SQLITE_NOMEM;
    memset(pNew, 0, sizeof(*pNew));
  }
  return rc;
}

/*
** This method is the destructor for deltaparsevtab_vtab objects.
*/
static int deltaparsevtabDisconnect(sqlite3_vtab *pVtab){
  deltaparsevtab_vtab *p = (deltaparsevtab_vtab*)pVtab;
  sqlite3_free(p);
  return SQLITE_OK;
}

/*
** Constructor for a new deltaparsevtab_cursor object.
*/
static int deltaparsevtabOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
  deltaparsevtab_cursor *pCur;
  pCur = sqlite3_malloc( sizeof(*pCur) );
  if( pCur==0 ) return SQLITE_NOMEM;
  memset(pCur, 0, sizeof(*pCur));
  *ppCursor = &pCur->base;
  return SQLITE_OK;
}

/*
** Destructor for a deltaparsevtab_cursor.
*/
static int deltaparsevtabClose(sqlite3_vtab_cursor *cur){
  deltaparsevtab_cursor *pCur = (deltaparsevtab_cursor*)cur;
  sqlite3_free(pCur);
  return SQLITE_OK;
}


/*
** Advance a deltaparsevtab_cursor to its next row of output.
*/
static int deltaparsevtabNext(sqlite3_vtab_cursor *cur){
  deltaparsevtab_cursor *pCur = (deltaparsevtab_cursor*)cur;
  const char *z;
  int i = 0;

  pCur->iCursor = pCur->iNext;
  z = pCur->aDelta + pCur->iCursor;
  pCur->a1 = deltaGetInt(&z, &i);
  switch( z[0] ){
    case '@': {
      z++;
      pCur->a2 = deltaGetInt(&z, &i);
      pCur->eOp = DELTAPARSE_OP_COPY;
      pCur->iNext = (int)(&z[1] - pCur->aDelta);
      break;
    }
    case ':': {
      z++;
      pCur->a2 = (unsigned int)(z - pCur->aDelta);
      pCur->eOp = DELTAPARSE_OP_INSERT;
      pCur->iNext = (int)(&z[pCur->a1] - pCur->aDelta);
      break;
    }
    case ';': {
      pCur->eOp = DELTAPARSE_OP_CHECKSUM;
      pCur->iNext = pCur->nDelta;
      break;
    }
    default: {
      if( pCur->iNext==pCur->nDelta ){
        pCur->eOp = DELTAPARSE_OP_EOF;
      }else{
        pCur->eOp = DELTAPARSE_OP_ERROR;
        pCur->iNext = pCur->nDelta;
      }
      break;
    }
  }
  return SQLITE_OK;
}

/*
** Return values of columns for the row at which the deltaparsevtab_cursor
** is currently pointing.
*/
static int deltaparsevtabColumn(
  sqlite3_vtab_cursor *cur,   /* The cursor */
  sqlite3_context *ctx,       /* First argument to sqlite3_result_...() */
  int i                       /* Which column to return */
){
  deltaparsevtab_cursor *pCur = (deltaparsevtab_cursor*)cur;
  switch( i ){
    case DELTAPARSEVTAB_OP: {
      sqlite3_result_text(ctx, azOp[pCur->eOp], -1, SQLITE_STATIC);
      break;
    }
    case DELTAPARSEVTAB_A1: {
      sqlite3_result_int(ctx, pCur->a1);
      break;
    }
    case DELTAPARSEVTAB_A2: {
      if( pCur->eOp==DELTAPARSE_OP_COPY ){
        sqlite3_result_int(ctx, pCur->a2);
      }else if( pCur->eOp==DELTAPARSE_OP_INSERT ){
        sqlite3_result_blob(ctx, pCur->aDelta+pCur->a2, pCur->a1,
                            SQLITE_TRANSIENT);
      }
      break;
    }
    case DELTAPARSEVTAB_DELTA: {
      sqlite3_result_blob(ctx, pCur->aDelta, pCur->nDelta, SQLITE_TRANSIENT);
      break;
    }
  }
  return SQLITE_OK;
}

/*
** Return the rowid for the current row.  In this implementation, the
** rowid is the same as the output value.
*/
static int deltaparsevtabRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
  deltaparsevtab_cursor *pCur = (deltaparsevtab_cursor*)cur;
  *pRowid = pCur->iCursor;
  return SQLITE_OK;
}

/*
** Return TRUE if the cursor has been moved off of the last
** row of output.
*/
static int deltaparsevtabEof(sqlite3_vtab_cursor *cur){
  deltaparsevtab_cursor *pCur = (deltaparsevtab_cursor*)cur;
  return pCur->eOp==DELTAPARSE_OP_EOF;
}

/*
** This method is called to "rewind" the deltaparsevtab_cursor object back
** to the first row of output.  This method is always called at least
** once prior to any call to deltaparsevtabColumn() or deltaparsevtabRowid() or 
** deltaparsevtabEof().
*/
static int deltaparsevtabFilter(
  sqlite3_vtab_cursor *pVtabCursor, 
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  deltaparsevtab_cursor *pCur = (deltaparsevtab_cursor *)pVtabCursor;
  const char *a;
  int i = 0;
  pCur->eOp = DELTAPARSE_OP_ERROR;
  if( idxNum!=1 ){
    return SQLITE_OK;
  }
  pCur->nDelta = sqlite3_value_bytes(argv[0]);
  a = (const char*)sqlite3_value_blob(argv[0]);
  if( pCur->nDelta==0 || a==0 ){
    return SQLITE_OK;
  }
  pCur->aDelta = sqlite3_malloc64( pCur->nDelta+1 );
  if( pCur->aDelta==0 ){
    pCur->nDelta = 0;
    return SQLITE_NOMEM;
  }
  memcpy(pCur->aDelta, a, pCur->nDelta);
  pCur->aDelta[pCur->nDelta] = 0;
  a = pCur->aDelta;
  pCur->eOp = DELTAPARSE_OP_SIZE;
  pCur->a1 = deltaGetInt(&a, &i);
  if( a[0]!='\n' ){
    pCur->eOp = DELTAPARSE_OP_ERROR;
    pCur->a1 = pCur->a2 = 0;
    pCur->iNext = pCur->nDelta;
    return SQLITE_OK;
  }
  a++;
  pCur->iNext = (unsigned int)(a - pCur->aDelta);
  return SQLITE_OK;
}

/*
** SQLite will invoke this method one or more times while planning a query
** that uses the virtual table.  This routine needs to create
** a query plan for each invocation and compute an estimated cost for that
** plan.
*/
static int deltaparsevtabBestIndex(
  sqlite3_vtab *tab,
  sqlite3_index_info *pIdxInfo
){
  int i;
  for(i=0; i<pIdxInfo->nConstraint; i++){
    if( pIdxInfo->aConstraint[i].iColumn != DELTAPARSEVTAB_DELTA ) continue;
    if( pIdxInfo->aConstraint[i].usable==0 ) continue;
    if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
    pIdxInfo->aConstraintUsage[i].argvIndex = 1;
    pIdxInfo->aConstraintUsage[i].omit = 1;
    pIdxInfo->estimatedCost = (double)1;
    pIdxInfo->estimatedRows = 10;
    pIdxInfo->idxNum = 1;
    return SQLITE_OK;
  }
  pIdxInfo->idxNum = 0;
  pIdxInfo->estimatedCost = (double)0x7fffffff;
  pIdxInfo->estimatedRows = 0x7fffffff;
  return SQLITE_CONSTRAINT;
}

/*
** This following structure defines all the methods for the 
** virtual table.
*/
static sqlite3_module deltaparsevtabModule = {
  /* iVersion    */ 0,
  /* xCreate     */ 0,
  /* xConnect    */ deltaparsevtabConnect,
  /* xBestIndex  */ deltaparsevtabBestIndex,
  /* xDisconnect */ deltaparsevtabDisconnect,
  /* xDestroy    */ 0,
  /* xOpen       */ deltaparsevtabOpen,
  /* xClose      */ deltaparsevtabClose,
  /* xFilter     */ deltaparsevtabFilter,
  /* xNext       */ deltaparsevtabNext,
  /* xEof        */ deltaparsevtabEof,
  /* xColumn     */ deltaparsevtabColumn,
  /* xRowid      */ deltaparsevtabRowid,
  /* xUpdate     */ 0,
  /* xBegin      */ 0,
  /* xSync       */ 0,
  /* xCommit     */ 0,
  /* xRollback   */ 0,
  /* xFindMethod */ 0,
  /* xRename     */ 0,
  /* xSavepoint  */ 0,
  /* xRelease    */ 0,
  /* xRollbackTo */ 0,
  /* xShadowName */ 0
};



#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_fossildelta_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  int rc = SQLITE_OK;
  SQLITE_EXTENSION_INIT2(pApi);
  (void)pzErrMsg;  /* Unused parameter */
  rc = sqlite3_create_function(db, "delta_create", 2, SQLITE_UTF8, 0,
                               deltaCreateFunc, 0, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "delta_apply", 2, SQLITE_UTF8, 0,
                                 deltaApplyFunc, 0, 0);
  }
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "delta_output_size", 1, SQLITE_UTF8, 0,
                                 deltaOutputSizeFunc, 0, 0);
  }
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_module(db, "delta_parse", &deltaparsevtabModule, 0);
  }
  return rc;
}

Changes to ext/rbu/sqlite3rbu.c.

680
681
682
683
684
685
686

687
688
689
690
691
692
693

  aOut = sqlite3_malloc(nOut+1);
  if( aOut==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    nOut2 = rbuDeltaApply(aOrig, nOrig, aDelta, nDelta, aOut);
    if( nOut2!=nOut ){

      sqlite3_result_error(context, "corrupt fossil delta", -1);
    }else{
      sqlite3_result_blob(context, aOut, nOut, sqlite3_free);
    }
  }
}








>







680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

  aOut = sqlite3_malloc(nOut+1);
  if( aOut==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    nOut2 = rbuDeltaApply(aOrig, nOrig, aDelta, nDelta, aOut);
    if( nOut2!=nOut ){
      sqlite3_free(aOut);
      sqlite3_result_error(context, "corrupt fossil delta", -1);
    }else{
      sqlite3_result_blob(context, aOut, nOut, sqlite3_free);
    }
  }
}

Changes to src/btree.c.

6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
....
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
    }
    pIns = pPage->aCellIdx + i*2;
    memmove(pIns+2, pIns, 2*(pPage->nCell - i));
    put2byte(pIns, idx);
    pPage->nCell++;
    /* increment the cell count */
    if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
    assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pPage->pBt->autoVacuum ){
      /* The cell may contain a pointer to an overflow page. If so, write
      ** the entry for the overflow page into the pointer map.
      */
      ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
    }
................................................................................
  if( rc ){
    *ppChild = 0;
    releasePage(pChild);
    return rc;
  }
  assert( sqlite3PagerIswriteable(pChild->pDbPage) );
  assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
  assert( pChild->nCell==pRoot->nCell );

  TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));

  /* Copy the overflow cells from pRoot to pChild */
  memcpy(pChild->aiOvfl, pRoot->aiOvfl,
         pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
  memcpy(pChild->apOvfl, pRoot->apOvfl,







|







 







|







6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
....
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
    }
    pIns = pPage->aCellIdx + i*2;
    memmove(pIns+2, pIns, 2*(pPage->nCell - i));
    put2byte(pIns, idx);
    pPage->nCell++;
    /* increment the cell count */
    if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
    assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pPage->pBt->autoVacuum ){
      /* The cell may contain a pointer to an overflow page. If so, write
      ** the entry for the overflow page into the pointer map.
      */
      ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
    }
................................................................................
  if( rc ){
    *ppChild = 0;
    releasePage(pChild);
    return rc;
  }
  assert( sqlite3PagerIswriteable(pChild->pDbPage) );
  assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
  assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );

  TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));

  /* Copy the overflow cells from pRoot to pChild */
  memcpy(pChild->aiOvfl, pRoot->aiOvfl,
         pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
  memcpy(pChild->apOvfl, pRoot->apOvfl,

Changes to src/build.c.

256
257
258
259
260
261
262
263




264
265
266
267
268
269
270
....
2036
2037
2038
2039
2040
2041
2042





2043
2044
2045
2046
2047
2048
2049

  if( pParse->nErr ) return;
  assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
  va_start(ap, zFormat);
  zSql = sqlite3VMPrintf(db, zFormat, ap);
  va_end(ap);
  if( zSql==0 ){
    return;   /* A malloc must have failed */




  }
  pParse->nested++;
  memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
  memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
  sqlite3RunParser(pParse, zSql, &zErrMsg);
  sqlite3DbFree(db, zErrMsg);
  sqlite3DbFree(db, zSql);
................................................................................
      sqlite3ErrorMsg(pParse, "");
      return;
    }
    p->tnum = db->init.newTnum;
    if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
  }






  /* Special processing for WITHOUT ROWID Tables */
  if( tabOpts & TF_WithoutRowid ){
    if( (p->tabFlags & TF_Autoincrement) ){
      sqlite3ErrorMsg(pParse,
          "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
      return;
    }







|
>
>
>
>







 







>
>
>
>
>







256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
....
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058

  if( pParse->nErr ) return;
  assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
  va_start(ap, zFormat);
  zSql = sqlite3VMPrintf(db, zFormat, ap);
  va_end(ap);
  if( zSql==0 ){
    /* This can result either from an OOM or because the formatted string
    ** exceeds SQLITE_LIMIT_LENGTH.  In the latter case, we need to set
    ** an error */
    if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
    return;
  }
  pParse->nested++;
  memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
  memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
  sqlite3RunParser(pParse, zSql, &zErrMsg);
  sqlite3DbFree(db, zErrMsg);
  sqlite3DbFree(db, zSql);
................................................................................
      sqlite3ErrorMsg(pParse, "");
      return;
    }
    p->tnum = db->init.newTnum;
    if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
  }

  assert( (p->tabFlags & TF_HasPrimaryKey)==0
       || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
  assert( (p->tabFlags & TF_HasPrimaryKey)!=0
       || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );

  /* Special processing for WITHOUT ROWID Tables */
  if( tabOpts & TF_WithoutRowid ){
    if( (p->tabFlags & TF_Autoincrement) ){
      sqlite3ErrorMsg(pParse,
          "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
      return;
    }

Changes to src/insert.c.

1665
1666
1667
1668
1669
1670
1671

1672

1673
1674
1675
1676
1677
1678
1679
....
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
        sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i);
        VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
      }
    }
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
    VdbeComment((v, "for %s", pIdx->zName));
#ifdef SQLITE_ENABLE_NULL_TRIM

    if( pIdx->idxType==2 ) sqlite3SetMakeRecordP5(v, pIdx->pTable);

#endif

    /* In an UPDATE operation, if this index is the PRIMARY KEY index 
    ** of a WITHOUT ROWID table and there has been no change the
    ** primary key, then no collision is possible.  The collision detection
    ** logic below can all be skipped. */
    if( isUpdate && pPk==pIdx && pkChng==0 ){
................................................................................
        if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
      }
      if( i==pSrcIdx->nColumn ){
        idxInsFlags = OPFLAG_USESEEKRESULT;
        sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
      }
    }
    if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){
      idxInsFlags |= OPFLAG_NCHANGE;
    }
    sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
    sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
    sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
    sqlite3VdbeJumpHere(v, addr1);
    sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);







>
|
>







 







|







1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
....
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
        sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i);
        VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
      }
    }
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
    VdbeComment((v, "for %s", pIdx->zName));
#ifdef SQLITE_ENABLE_NULL_TRIM
    if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
      sqlite3SetMakeRecordP5(v, pIdx->pTable);
    }
#endif

    /* In an UPDATE operation, if this index is the PRIMARY KEY index 
    ** of a WITHOUT ROWID table and there has been no change the
    ** primary key, then no collision is possible.  The collision detection
    ** logic below can all be skipped. */
    if( isUpdate && pPk==pIdx && pkChng==0 ){
................................................................................
        if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
      }
      if( i==pSrcIdx->nColumn ){
        idxInsFlags = OPFLAG_USESEEKRESULT;
        sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
      }
    }
    if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
      idxInsFlags |= OPFLAG_NCHANGE;
    }
    sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
    sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
    sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
    sqlite3VdbeJumpHere(v, addr1);
    sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);

Changes to src/os_unix.c.

7818
7819
7820
7821
7822
7823
7824



7825
7826
7827
7828
7829
7830
7831
  ** array cannot be const.
  */
  static sqlite3_vfs aVfs[] = {
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
    UNIXVFS("unix",          autolockIoFinder ),
#elif OS_VXWORKS
    UNIXVFS("unix",          vxworksIoFinder ),



#else
    UNIXVFS("unix",          posixIoFinder ),
#endif
    UNIXVFS("unix-none",     nolockIoFinder ),
    UNIXVFS("unix-dotfile",  dotlockIoFinder ),
    UNIXVFS("unix-excl",     posixIoFinder ),
#if OS_VXWORKS







>
>
>







7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
  ** array cannot be const.
  */
  static sqlite3_vfs aVfs[] = {
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
    UNIXVFS("unix",          autolockIoFinder ),
#elif OS_VXWORKS
    UNIXVFS("unix",          vxworksIoFinder ),
#elif __Fuchsia__
    /* We are told that Fuchsia only supports dot-file locking */
    UNIXVFS("unix",          dotlockIoFinder ),
#else
    UNIXVFS("unix",          posixIoFinder ),
#endif
    UNIXVFS("unix-none",     nolockIoFinder ),
    UNIXVFS("unix-dotfile",  dotlockIoFinder ),
    UNIXVFS("unix-excl",     posixIoFinder ),
#if OS_VXWORKS

Changes to src/printf.c.

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
...
162
163
164
165
166
167
168

169
170
171
172
173
174
175
...
881
882
883
884
885
886
887
888
889
890

891
892
893
894
895
896
897
...
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

/*
** Set the StrAccum object to an error mode.
*/
static void setStrAccumError(StrAccum *p, u8 eError){
  assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG );
  p->accError = eError;
  p->nAlloc = 0;
}

/*
** Extra argument values from a PrintfArguments object
*/
static sqlite3_int64 getIntArg(PrintfArguments *p){
  if( p->nArg<=p->nUsed ) return 0;
................................................................................
** of the output buffer in pAccum, then cause an SQLITE_TOOBIG error.
** Do the size check before the memory allocation to prevent rogue
** SQL from requesting large allocations using the precision or width
** field of the printf() function.
*/
static char *printfTempBuf(sqlite3_str *pAccum, sqlite3_int64 n){
  char *z;

  if( n>pAccum->nAlloc && n>pAccum->mxAlloc ){
    setStrAccumError(pAccum, SQLITE_TOOBIG);
    return 0;
  }
  z = sqlite3DbMallocRaw(pAccum->db, n);
  if( z==0 ){
    setStrAccumError(pAccum, SQLITE_NOMEM);
................................................................................
  assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */
  if( p->accError ){
    testcase(p->accError==SQLITE_TOOBIG);
    testcase(p->accError==SQLITE_NOMEM);
    return 0;
  }
  if( p->mxAlloc==0 ){
    N = p->nAlloc - p->nChar - 1;
    setStrAccumError(p, SQLITE_TOOBIG);
    return N;

  }else{
    char *zOld = isMalloced(p) ? p->zText : 0;
    i64 szNew = p->nChar;
    szNew += N + 1;
    if( szNew+p->nChar<=p->mxAlloc ){
      /* Force exponential buffer size growth as long as it does not overflow,
      ** to avoid having to call this routine too often */
................................................................................
** Append N bytes of text from z to the StrAccum object.  Increase the
** size of the memory allocation for StrAccum if necessary.
*/
void sqlite3_str_append(sqlite3_str *p, const char *z, int N){
  assert( z!=0 || N==0 );
  assert( p->zText!=0 || p->nChar==0 || p->accError );
  assert( N>=0 );
  assert( p->accError==0 || p->nAlloc==0 );
  if( p->nChar+N >= p->nAlloc ){
    enlargeAndAppend(p,z,N);
  }else if( N ){
    assert( p->zText );
    p->nChar += N;
    memcpy(&p->zText[p->nChar-N], z, N);
  }







|







 







>







 







<

<
>







 







|







132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
...
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
...
882
883
884
885
886
887
888

889

890
891
892
893
894
895
896
897
...
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

/*
** Set the StrAccum object to an error mode.
*/
static void setStrAccumError(StrAccum *p, u8 eError){
  assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG );
  p->accError = eError;
  if( p->mxAlloc ) sqlite3_str_reset(p);
}

/*
** Extra argument values from a PrintfArguments object
*/
static sqlite3_int64 getIntArg(PrintfArguments *p){
  if( p->nArg<=p->nUsed ) return 0;
................................................................................
** of the output buffer in pAccum, then cause an SQLITE_TOOBIG error.
** Do the size check before the memory allocation to prevent rogue
** SQL from requesting large allocations using the precision or width
** field of the printf() function.
*/
static char *printfTempBuf(sqlite3_str *pAccum, sqlite3_int64 n){
  char *z;
  if( pAccum->accError ) return 0;
  if( n>pAccum->nAlloc && n>pAccum->mxAlloc ){
    setStrAccumError(pAccum, SQLITE_TOOBIG);
    return 0;
  }
  z = sqlite3DbMallocRaw(pAccum->db, n);
  if( z==0 ){
    setStrAccumError(pAccum, SQLITE_NOMEM);
................................................................................
  assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */
  if( p->accError ){
    testcase(p->accError==SQLITE_TOOBIG);
    testcase(p->accError==SQLITE_NOMEM);
    return 0;
  }
  if( p->mxAlloc==0 ){

    setStrAccumError(p, SQLITE_TOOBIG);

    return p->nAlloc - p->nChar - 1;
  }else{
    char *zOld = isMalloced(p) ? p->zText : 0;
    i64 szNew = p->nChar;
    szNew += N + 1;
    if( szNew+p->nChar<=p->mxAlloc ){
      /* Force exponential buffer size growth as long as it does not overflow,
      ** to avoid having to call this routine too often */
................................................................................
** Append N bytes of text from z to the StrAccum object.  Increase the
** size of the memory allocation for StrAccum if necessary.
*/
void sqlite3_str_append(sqlite3_str *p, const char *z, int N){
  assert( z!=0 || N==0 );
  assert( p->zText!=0 || p->nChar==0 || p->accError );
  assert( N>=0 );
  assert( p->accError==0 || p->nAlloc==0 || p->mxAlloc==0 );
  if( p->nChar+N >= p->nAlloc ){
    enlargeAndAppend(p,z,N);
  }else if( N ){
    assert( p->zText );
    p->nChar += N;
    memcpy(&p->zText[p->nChar-N], z, N);
  }

Changes to src/vdbe.c.

815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
....
1098
1099
1100
1101
1102
1103
1104

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
....
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
....
7581
7582
7583
7584
7585
7586
7587
7588

7589
7590
7591
7592
7593
7594
7595
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  /* Call the progress callback if it is configured and the required number
  ** of VDBE ops have been executed (either since this invocation of
  ** sqlite3VdbeExec() or since last time the progress callback was called).
  ** If the progress callback returns non-zero, exit the virtual machine with
  ** a return code SQLITE_ABORT.
  */
  if( nVmStep>=nProgressLimit && db->xProgress!=0 ){
    assert( db->nProgressOps!=0 );
    nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
    if( db->xProgress(db->pProgressArg) ){
      nProgressLimit = 0xffffffff;
      rc = SQLITE_INTERRUPT;
      goto abort_due_to_error;
    }
  }
#endif
................................................................................
  pOp->opcode = OP_String;
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );

    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
    assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
    assert( VdbeMemDynamic(pOut)==0 );
    pOut->szMalloc = 0;
    pOut->flags |= MEM_Static;
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3DbFree(db, pOp->p4.z);
    }
    pOp->p4type = P4_DYNAMIC;
    pOp->p4.z = pOut->z;
    pOp->p1 = pOut->n;
  }
  testcase( rc==SQLITE_TOOBIG );
#endif
  if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }
  assert( rc==SQLITE_OK );
  /* Fall through to the next case, OP_String */
}
................................................................................
    for(i=0; i<p->nMem; i++){
      aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
      aMem[i].flags |= MEM_Undefined; /* Cause a fault if this reg is reused */
    }
  }
#endif
  pOp = &aOp[-1];

  break;
}

/* Opcode: Param P1 P2 * * *
**
** This opcode is only ever present in sub-programs called via the 
** OP_Program instruction. Copy a value currently stored in a memory 
** cell of the calling (parent) frame to cell P2 in the current frames 
................................................................................
  }

  /* This is the only way out of this procedure.  We have to
  ** release the mutexes on btrees that were acquired at the
  ** top. */
vdbe_return:
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  if( nVmStep>=nProgressLimit && db->xProgress!=0 ){

    if( db->xProgress(db->pProgressArg) ){
      nProgressLimit = 0xffffffff;
      rc = SQLITE_INTERRUPT;
      goto abort_due_to_error;
    }
  }
#endif







|

|







 







>












<







 







|
<







 







|
>







815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
....
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117

1118
1119
1120
1121
1122
1123
1124
....
6170
6171
6172
6173
6174
6175
6176
6177

6178
6179
6180
6181
6182
6183
6184
....
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  /* Call the progress callback if it is configured and the required number
  ** of VDBE ops have been executed (either since this invocation of
  ** sqlite3VdbeExec() or since last time the progress callback was called).
  ** If the progress callback returns non-zero, exit the virtual machine with
  ** a return code SQLITE_ABORT.
  */
  while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
    assert( db->nProgressOps!=0 );
    nProgressLimit += db->nProgressOps;
    if( db->xProgress(db->pProgressArg) ){
      nProgressLimit = 0xffffffff;
      rc = SQLITE_INTERRUPT;
      goto abort_due_to_error;
    }
  }
#endif
................................................................................
  pOp->opcode = OP_String;
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
    if( rc ) goto too_big;
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
    assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
    assert( VdbeMemDynamic(pOut)==0 );
    pOut->szMalloc = 0;
    pOut->flags |= MEM_Static;
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3DbFree(db, pOp->p4.z);
    }
    pOp->p4type = P4_DYNAMIC;
    pOp->p4.z = pOut->z;
    pOp->p1 = pOut->n;
  }

#endif
  if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }
  assert( rc==SQLITE_OK );
  /* Fall through to the next case, OP_String */
}
................................................................................
    for(i=0; i<p->nMem; i++){
      aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
      aMem[i].flags |= MEM_Undefined; /* Cause a fault if this reg is reused */
    }
  }
#endif
  pOp = &aOp[-1];
  goto check_for_interrupt;

}

/* Opcode: Param P1 P2 * * *
**
** This opcode is only ever present in sub-programs called via the 
** OP_Program instruction. Copy a value currently stored in a memory 
** cell of the calling (parent) frame to cell P2 in the current frames 
................................................................................
  }

  /* This is the only way out of this procedure.  We have to
  ** release the mutexes on btrees that were acquired at the
  ** top. */
vdbe_return:
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
    nProgressLimit += db->nProgressOps;
    if( db->xProgress(db->pProgressArg) ){
      nProgressLimit = 0xffffffff;
      rc = SQLITE_INTERRUPT;
      goto abort_due_to_error;
    }
  }
#endif

Changes to src/vdbeapi.c.

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
....
1140
1141
1142
1143
1144
1145
1146



1147

1148
1149
1150
1151
1152
1153
1154
1155
....
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
....
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
**    3      The name of the table that the column derives from
**    4      The name of the table column that the result column derives from
**
** If the result is not a simple column reference (if it is an expression
** or a constant) then useTypes 2, 3, and 4 return NULL.
*/
static const void *columnName(
  sqlite3_stmt *pStmt,
  int N,
  const void *(*xFunc)(Mem*),
  int useType
){
  const void *ret;
  Vdbe *p;
  int n;
  sqlite3 *db;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pStmt==0 ){
................................................................................
  db = p->db;
  assert( db!=0 );
  n = sqlite3_column_count(pStmt);
  if( N<n && N>=0 ){
    N += useType*n;
    sqlite3_mutex_enter(db->mutex);
    assert( db->mallocFailed==0 );



    ret = xFunc(&p->aColName[N]);

     /* A malloc may have failed inside of the xFunc() call. If this
    ** is the case, clear the mallocFailed flag and return NULL.
    */
    if( db->mallocFailed ){
      sqlite3OomClear(db);
      ret = 0;
    }
    sqlite3_mutex_leave(db->mutex);
................................................................................
}

/*
** Return the name of the Nth column of the result set returned by SQL
** statement pStmt.
*/
const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
}
#endif

/*
** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
** not define OMIT_DECLTYPE.
*/
................................................................................

#ifndef SQLITE_OMIT_DECLTYPE
/*
** Return the column declaration type (if applicable) of the 'i'th column
** of the result set of SQL statement pStmt.
*/
const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_OMIT_DECLTYPE */

#ifdef SQLITE_ENABLE_COLUMN_METADATA
/*
** Return the name of the database from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the name of the table from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the name of the table column from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_ENABLE_COLUMN_METADATA */


/******************************* sqlite3_bind_  ***************************
** 







|
|
|
|







 







>
>
>
|
>
|







 







|
<



|
<







 







|
<



|
<











|
<



|
<









|
<



|
<









|
<



|
<







1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
....
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
....
1162
1163
1164
1165
1166
1167
1168
1169

1170
1171
1172
1173

1174
1175
1176
1177
1178
1179
1180
....
1185
1186
1187
1188
1189
1190
1191
1192

1193
1194
1195
1196

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

1209
1210
1211
1212

1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

1223
1224
1225
1226

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236

1237
1238
1239
1240

1241
1242
1243
1244
1245
1246
1247
**    3      The name of the table that the column derives from
**    4      The name of the table column that the result column derives from
**
** If the result is not a simple column reference (if it is an expression
** or a constant) then useTypes 2, 3, and 4 return NULL.
*/
static const void *columnName(
  sqlite3_stmt *pStmt,     /* The statement */
  int N,                   /* Which column to get the name for */
  int useUtf16,            /* True to return the name as UTF16 */
  int useType              /* What type of name */
){
  const void *ret;
  Vdbe *p;
  int n;
  sqlite3 *db;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pStmt==0 ){
................................................................................
  db = p->db;
  assert( db!=0 );
  n = sqlite3_column_count(pStmt);
  if( N<n && N>=0 ){
    N += useType*n;
    sqlite3_mutex_enter(db->mutex);
    assert( db->mallocFailed==0 );
    if( useUtf16 ){
      ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
    }else{
      ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
    }
    /* A malloc may have failed inside of the _text() call. If this
    ** is the case, clear the mallocFailed flag and return NULL.
    */
    if( db->mallocFailed ){
      sqlite3OomClear(db);
      ret = 0;
    }
    sqlite3_mutex_leave(db->mutex);
................................................................................
}

/*
** Return the name of the Nth column of the result set returned by SQL
** statement pStmt.
*/
const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
  return columnName(pStmt, N, 0, COLNAME_NAME);

}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
  return columnName(pStmt, N, 1, COLNAME_NAME);

}
#endif

/*
** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
** not define OMIT_DECLTYPE.
*/
................................................................................

#ifndef SQLITE_OMIT_DECLTYPE
/*
** Return the column declaration type (if applicable) of the 'i'th column
** of the result set of SQL statement pStmt.
*/
const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
  return columnName(pStmt, N, 0, COLNAME_DECLTYPE);

}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
  return columnName(pStmt, N, 1, COLNAME_DECLTYPE);

}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_OMIT_DECLTYPE */

#ifdef SQLITE_ENABLE_COLUMN_METADATA
/*
** Return the name of the database from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
  return columnName(pStmt, N, 0, COLNAME_DATABASE);

}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
  return columnName(pStmt, N, 1, COLNAME_DATABASE);

}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the name of the table from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
  return columnName(pStmt, N, 0, COLNAME_TABLE);

}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
  return columnName(pStmt, N, 1, COLNAME_TABLE);

}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the name of the table column from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
  return columnName(pStmt, N, 0, COLNAME_COLUMN);

}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
  return columnName(pStmt, N, 1, COLNAME_COLUMN);

}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_ENABLE_COLUMN_METADATA */


/******************************* sqlite3_bind_  ***************************
** 

Changes to src/wherecode.c.

1340
1341
1342
1343
1344
1345
1346

1347
1348
1349
1350
1351
1352
1353
    iReleaseReg = ++pParse->nMem;
    iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
    if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
    addrNxt = pLevel->addrNxt;
    sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
    VdbeCoverage(v);
    pLevel->op = OP_Noop;

  }else if( (pLoop->wsFlags & WHERE_IPK)!=0
         && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
  ){
    /* Case 3:  We have an inequality comparison against the ROWID field.
    */
    int testOp = OP_Noop;
    int start;







>







1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
    iReleaseReg = ++pParse->nMem;
    iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
    if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
    addrNxt = pLevel->addrNxt;
    sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
    VdbeCoverage(v);
    pLevel->op = OP_Noop;
    pTerm->wtFlags |= TERM_CODED;
  }else if( (pLoop->wsFlags & WHERE_IPK)!=0
         && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
  ){
    /* Case 3:  We have an inequality comparison against the ROWID field.
    */
    int testOp = OP_Noop;
    int start;

Changes to test/dbfuzz2.c.

39
40
41
42
43
44
45

46
47

48
49
50
51
52
53
54
...
257
258
259
260
261
262
263

264
265
266
267
268
269
270
...
287
288
289
290
291
292
293

294
295
296
297
298
299
300
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <ctype.h>
#include <stdint.h>

#include <sys/time.h>
#include <sys/resource.h>

#include "sqlite3.h"

/*
** This is the is the SQL that is run against the database.
*/
static const char *azSql[] = {
  "PRAGMA integrity_check;",
................................................................................
        if( i+1==argc ){
          fprintf(stderr, "missing argument to %s\n", argv[i]);
          exit(1);
        }
        szMax = strtol(argv[++i], 0, 0);
        continue;
      }

      if( strcmp(z,"max-stack")==0
       || strcmp(z,"max-data")==0
       || strcmp(z,"max-as")==0
      ){
        struct rlimit x,y;
        int resource = RLIMIT_STACK;
        char *zType = "RLIMIT_STACK";
................................................................................
        setrlimit(resource, &y);
        memset(&y,0,sizeof(y));
        getrlimit(resource, &y);
        printf("%s changed from %d to %d\n", 
               zType, (int)x.rlim_cur, (int)y.rlim_cur);
        continue;
      }

    }
    argv[j++] = argv[i];
  }
  argv[j] = 0;
  *pArgc = j;
  return 0;
}







>


>







 







>







 







>







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
...
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
...
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <ctype.h>
#include <stdint.h>
#ifndef _WIN32
#include <sys/time.h>
#include <sys/resource.h>
#endif
#include "sqlite3.h"

/*
** This is the is the SQL that is run against the database.
*/
static const char *azSql[] = {
  "PRAGMA integrity_check;",
................................................................................
        if( i+1==argc ){
          fprintf(stderr, "missing argument to %s\n", argv[i]);
          exit(1);
        }
        szMax = strtol(argv[++i], 0, 0);
        continue;
      }
#ifndef _WIN32
      if( strcmp(z,"max-stack")==0
       || strcmp(z,"max-data")==0
       || strcmp(z,"max-as")==0
      ){
        struct rlimit x,y;
        int resource = RLIMIT_STACK;
        char *zType = "RLIMIT_STACK";
................................................................................
        setrlimit(resource, &y);
        memset(&y,0,sizeof(y));
        getrlimit(resource, &y);
        printf("%s changed from %d to %d\n", 
               zType, (int)x.rlim_cur, (int)y.rlim_cur);
        continue;
      }
#endif /* _WIN32 */
    }
    argv[j++] = argv[i];
  }
  argv[j] = 0;
  *pArgc = j;
  return 0;
}

Changes to test/fuzzdata8.db.

cannot compute difference between binary files

Changes to test/in.test.

646
647
648
649
650
651
652
653
































































654
do_execsql_test in-14.0 {
  CREATE TABLE c1(a);
  INSERT INTO c1 VALUES(1), (2), (4), (3);
}
do_execsql_test in-14.1 {
  SELECT * FROM c1 WHERE a IN (SELECT a FROM c1) ORDER BY 1
} {1 2 3 4}

































































finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
do_execsql_test in-14.0 {
  CREATE TABLE c1(a);
  INSERT INTO c1 VALUES(1), (2), (4), (3);
}
do_execsql_test in-14.1 {
  SELECT * FROM c1 WHERE a IN (SELECT a FROM c1) ORDER BY 1
} {1 2 3 4}

# 2019-02-20 Ticket https://www.sqlite.org/src/tktview/df46dfb631f75694fbb97033b69
#
do_execsql_test in-15.0 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE IF NOT EXISTS t1(id INTEGER PRIMARY KEY);
  INSERT INTO t1 VALUES(1);
  SELECT a.id FROM t1 AS a JOIN t1 AS b ON a.id=b.id WHERE a.id IN (1,2,3);
} {1}
do_execsql_test in-15.1 {
  DROP TABLE IF EXISTS t2;
  CREATE TABLE t2(a INTEGER PRIMARY KEY,b);
  INSERT INTO t2 VALUES(1,11);
  INSERT INTO t2 VALUES(2,22);
  INSERT INTO t2 VALUES(3,33);
  SELECT b, a IN (3,4,5) FROM t2 ORDER BY b;
} {11 0 22 0 33 1}
do_execsql_test in-15.2 {
  DROP TABLE IF EXISTS t3;
  CREATE TABLE t3(x INTEGER PRIMARY KEY);
  INSERT INTO t3 VALUES(8);
  SELECT CASE WHEN x NOT IN (5,6,7) THEN 'yes' ELSE 'no' END FROM t3;
  SELECT CASE WHEN x NOT IN (NULL,6,7) THEN 'yes' ELSE 'no' END FROM t3;
} {yes no}
do_execsql_test in-15.3 {
  SELECT CASE WHEN x NOT IN (5,6,7) OR x=0 THEN 'yes' ELSE 'no' END FROM t3;
  SELECT CASE WHEN x NOT IN (NULL,6,7) OR x=0 THEN 'yes' ELSE 'no' END FROM t3;
} {yes no}
do_execsql_test in-15.4 {
  DROP TABLE IF EXISTS t4;
  CREATE TABLE t4(a INTEGER PRIMARY KEY, b INT);
  WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20)
    INSERT INTO t4(a,b) SELECT x, x+100 FROM c;
  SELECT b FROM t4 WHERE a IN (3,null,8) ORDER BY +b;
} {103 108}
do_execsql_test in-15.5 {
  SELECT b FROM t4 WHERE a NOT IN (3,null,8);
} {}
do_execsql_test in-15.6 {
  DROP TABLE IF EXISTS t5;
  DROP TABLE IF EXISTS t6;
  CREATE TABLE t5(id INTEGER PRIMARY KEY, name TEXT);
  CREATE TABLE t6(id INTEGER PRIMARY KEY, name TEXT, t5_id INT);
  INSERT INTO t5 VALUES(1,'Alice'),(2,'Emma');
  INSERT INTO t6 VALUES(1,'Bob',1),(2,'Cindy',1),(3,'Dave',2);
  SELECT a.*
    FROM t5 AS 'a' JOIN t5 AS 'b' ON b.id=a.id
   WHERE b.id IN (
          SELECT t6.t5_id
            FROM t6
           WHERE name='Bob'
             AND t6.t5_id IS NOT NULL
             AND t6.id IN (
                  SELECT id
                    FROM (SELECT t6.id, count(*) AS x
                            FROM t6
                           WHERE name='Bob'
                         ) AS 't'
                   WHERE x=1
                 )
             AND t6.id IN (1,id)
         );
} {1 Alice}


finish_test

Changes to test/indexfault.test.

332
333
334
335
336
337
338










339
340
341
342
  faultsim_restore_and_reopen
  set ::nReadCall 0
  sqlite3_soft_heap_limit 0
} -body {
  execsql { CREATE INDEX i1 ON t1(x) }
  faultsim_test_result {0 {}} 
}











uninstall_custom_faultsim

finish_test







>
>
>
>
>
>
>
>
>
>




332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
  faultsim_restore_and_reopen
  set ::nReadCall 0
  sqlite3_soft_heap_limit 0
} -body {
  execsql { CREATE INDEX i1 ON t1(x) }
  faultsim_test_result {0 {}} 
}

do_faultsim_test 5 -prep {
  reset_db
} -body {
  execsql { 
 CREATE TABLE reallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallyreallylongname(a PRIMARY KEY) WITHOUT ROWID;
  }
} -test {
  faultsim_test_result {0 {}} 
}

uninstall_custom_faultsim

finish_test

Changes to test/printf.test.

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
  sqlite3_mprintf_double {abc: %d %d (%1.1e) :xyz} 1 1 1.0e-20
} {abc: 1 1 (1.0e-20) :xyz}
do_test printf-2.1.2.9 {
  sqlite3_mprintf_double {abc: %d %d (%1.1g) :xyz} 1 1 1.0e-20
} {abc: 1 1 (1e-20) :xyz}
do_test printf-2.1.2.10 {
  sqlite3_mprintf_double {abc: %*.*f}  2000000000 1000000000 1.0e-20
} {abc: }
do_test printf-2.1.3.1 {
  sqlite3_mprintf_double {abc: (%*.*f) :xyz} 1 1 1.0
} {abc: (1.0) :xyz}
do_test printf-2.1.3.2 {
  sqlite3_mprintf_double {abc: (%*.*e) :xyz} 1 1 1.0
} {abc: (1.0e+00) :xyz}
do_test printf-2.1.3.3 {







|







536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
  sqlite3_mprintf_double {abc: %d %d (%1.1e) :xyz} 1 1 1.0e-20
} {abc: 1 1 (1.0e-20) :xyz}
do_test printf-2.1.2.9 {
  sqlite3_mprintf_double {abc: %d %d (%1.1g) :xyz} 1 1 1.0e-20
} {abc: 1 1 (1e-20) :xyz}
do_test printf-2.1.2.10 {
  sqlite3_mprintf_double {abc: %*.*f}  2000000000 1000000000 1.0e-20
} {}
do_test printf-2.1.3.1 {
  sqlite3_mprintf_double {abc: (%*.*f) :xyz} 1 1 1.0
} {abc: (1.0) :xyz}
do_test printf-2.1.3.2 {
  sqlite3_mprintf_double {abc: (%*.*e) :xyz} 1 1 1.0
} {abc: (1.0e+00) :xyz}
do_test printf-2.1.3.3 {