/ Artifact Content
Login

Artifact 503e2e2b6abe14c5c10222e72d08ef84c1bf1ffb:


# 2005 July 28
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the use of indices in WHERE clauses
# based on recent changes to the optimizer.
#
# $Id: where2.test,v 1.5 2005/08/13 16:13:06 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Build some test data
#
do_test where2-1.0 {
  execsql {
    BEGIN;
    CREATE TABLE t1(w int, x int, y int, z int);
  }
  for {set i 1} {$i<=100} {incr i} {
    set w $i
    set x [expr {int(log($i)/log(2))}]
    set y [expr {$i*$i + 2*$i + 1}]
    set z [expr {$x+$y}]
    execsql {INSERT INTO t1 VALUES($::w,$::x,$::y,$::z)}
  }
  execsql {
    CREATE UNIQUE INDEX i1w ON t1(w);
    CREATE INDEX i1xy ON t1(x,y);
    CREATE INDEX i1zyx ON t1(z,y,x);
    COMMIT;
  }
} {}

# Do an SQL statement.  Append the search count to the end of the result.
#
proc count sql {
  set ::sqlite_search_count 0
  return [concat [execsql $sql] $::sqlite_search_count]
}

# This procedure executes the SQL.  Then it checks to see if the OP_Sort
# opcode was executed.  If an OP_Sort did occur, then "sort" is appended
# to the result.  If no OP_Sort happened, then "nosort" is appended.
#
# This procedure is used to check to make sure sorting is or is not
# occurring as expected.
#
proc cksort {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x
  return $data
}

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword (as in the cksort procedure above) then
# it appends the ::sqlite_query_plan variable.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x
  return [concat $data $::sqlite_query_plan]
}


# Prefer a UNIQUE index over another index.
#
do_test where2-1.1 {
  queryplan {
    SELECT * FROM t1 WHERE w=85 AND x=6 AND y=7396
  }
} {85 6 7396 7402 nosort t1 i1w}

# Always prefer a rowid== constraint over any other index.
#
do_test where2-1.3 {
  queryplan {
    SELECT * FROM t1 WHERE w=85 AND x=6 AND y=7396 AND rowid=85
  }
} {85 6 7396 7402 nosort t1 *}

# When constrained by a UNIQUE index, the ORDER BY clause is always ignored.
#
do_test where2-2.1 {
  queryplan {
    SELECT * FROM t1 WHERE w=85 ORDER BY random(5);
  }
} {85 6 7396 7402 nosort t1 i1w}
do_test where2-2.2 {
  queryplan {
    SELECT * FROM t1 WHERE x=6 AND y=7396 ORDER BY random(5);
  }
} {85 6 7396 7402 sort t1 i1xy}
do_test where2-2.3 {
  queryplan {
    SELECT * FROM t1 WHERE rowid=85 AND x=6 AND y=7396 ORDER BY random(5);
  }
} {85 6 7396 7402 nosort t1 *}


# Efficient handling of forward and reverse table scans.
#
do_test where2-3.1 {
  queryplan {
    SELECT * FROM t1 ORDER BY rowid LIMIT 2
  }
} {1 0 4 4 2 1 9 10 nosort t1 *}
do_test where2-3.2 {
  queryplan {
    SELECT * FROM t1 ORDER BY rowid DESC LIMIT 2
  }
} {100 6 10201 10207 99 6 10000 10006 nosort t1 *}

# The IN operator can be used by indices at multiple layers
#
do_test where2-4.1 {
  queryplan {
    SELECT * FROM t1 WHERE z IN (10207,10006) AND y IN (10000,10201)
                     AND x>0 AND x<10
    ORDER BY w
  }
} {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}
do_test where2-4.2 {
  queryplan {
    SELECT * FROM t1 WHERE z IN (10207,10006) AND y=10000
                     AND x>0 AND x<10
    ORDER BY w
  }
} {99 6 10000 10006 sort t1 i1zyx}
do_test where2-4.3 {
  queryplan {
    SELECT * FROM t1 WHERE z=10006 AND y IN (10000,10201)
                     AND x>0 AND x<10
    ORDER BY w
  }
} {99 6 10000 10006 sort t1 i1zyx}
do_test where2-4.4 {
  queryplan {
    SELECT * FROM t1 WHERE z IN (SELECT 10207 UNION SELECT 10006)
                     AND y IN (10000,10201)
                     AND x>0 AND x<10
    ORDER BY w
  }
} {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}
do_test where2-4.5 {
  queryplan {
    SELECT * FROM t1 WHERE z IN (SELECT 10207 UNION SELECT 10006)
                     AND y IN (SELECT 10000 UNION SELECT 10201)
                     AND x>0 AND x<10
    ORDER BY w
  }
} {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}
do_test where2-4.6 {
  queryplan {
    SELECT * FROM t1
     WHERE x IN (1,2,3,4,5,6,7,8)
       AND y IN (10000,10001,10002,10003,10004,10005)
     ORDER BY 2
  }
} {99 6 10000 10006 sort t1 i1xy}

# Duplicate entires on the RHS of an IN operator do not cause duplicate
# output rows.
#
do_test where2-4.6 {
  queryplan {
    SELECT * FROM t1 WHERE z IN (10207,10006,10006,10207)
    ORDER BY w
  }
} {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}
do_test where2-4.7 {
  queryplan {
    SELECT * FROM t1 WHERE z IN (
       SELECT 10207 UNION ALL SELECT 10006
       UNION ALL SELECT 10006 UNION ALL SELECT 10207)
    ORDER BY w
  }
} {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}

# The use of an IN operator disables the index as a sorter.
#
do_test where2-5.1 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 ORDER BY w
  }
} {99 6 10000 10006 nosort t1 i1w}
do_test where2-5.2 {
  queryplan {
    SELECT * FROM t1 WHERE w IN (99) ORDER BY w
  }
} {99 6 10000 10006 sort t1 i1w}

# Verify that OR clauses get translated into IN operators.
#
do_test where2-6.1 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 OR w=100 ORDER BY +w
  }
} {99 6 10000 10006 100 6 10201 10207 sort t1 i1w}
do_test where2-6.2 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 OR w=100 OR 6=w ORDER BY +w
  }
} {6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 i1w}
do_test where2-6.3 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 OR w=100 OR 6=+w ORDER BY +w
  }
} {6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 {}}
do_test where2-6.4 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 OR +w=100 OR 6=w ORDER BY +w
  }
} {6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 {}}
do_test where2-6.5 {
  queryplan {
    SELECT b.* FROM t1 a, t1 b
     WHERE a.w=1 AND (a.y=b.z OR b.z=10)
     ORDER BY +b.w
  }
} {1 0 4 4 2 1 9 10 sort a i1w b i1zyx}
do_test where2-6.6 {
  queryplan {
    SELECT b.* FROM t1 a, t1 b
     WHERE a.w=1 AND (b.z=10 OR a.y=b.z OR b.z=10)
     ORDER BY +b.w
  }
} {1 0 4 4 2 1 9 10 sort a i1w b i1zyx}

# Unique queries (queries that are guaranteed to return only a single
# row of result) do not call the sorter.  But all tables must give
# a unique result.  If any one table in the join does not give a unique
# result then sorting is necessary.
#
do_test where2-7.1 {
  cksort {
    create table t8(a unique, b, c);
    insert into t8 values(1,2,3);
    insert into t8 values(2,3,4);
    create table t9(x,y);
    insert into t9 values(2,4);
    insert into t9 values(2,3);
    select y from t8, t9 where a=1 order by a, y;
  }
} {3 4 sort}
do_test where2-7.2 {
  cksort {
    select * from t8 where a=1 order by b, c
  }
} {1 2 3 nosort}
do_test where2-7.3 {
  cksort {
    select * from t8, t9 where a=1 and y=3 order by b, x
  }
} {1 2 3 2 3 sort}
do_test where2-7.4 {
  cksort {
    create unique index i9y on t9(y);
    select * from t8, t9 where a=1 and y=3 order by b, x
  }
} {1 2 3 2 3 nosort}

finish_test