sqllogictest

Check-in [6912f911d5]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update to the latest version of SQLite.
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 6912f911d530189686eacdb99c993fd2a0376d28
User & Date: drh 2009-09-11 13:57:35.000
Context
2009-09-11
14:37
Get the new SQLite build working with SQLITE_OMIT_ANALYZE. check-in: e7138a41d3 user: drh tags: trunk
13:57
Update to the latest version of SQLite. check-in: 6912f911d5 user: drh tags: trunk
2009-08-10
13:27
Update the SQLite build to version 3.6.17. check-in: 1ed1dab9f0 user: drh tags: trunk
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/sqlite3.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.6.17.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a one translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% are more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
** programs, you need this file and the "sqlite3.h" header file that defines
** the programming interface to the SQLite library.  (If you do not have 
** the "sqlite3.h" header file at hand, you will find a copy embedded within
** the text of this file.  Search for "Begin file sqlite3.h" to find the start
** of the embedded sqlite3.h header file.) Additional code files may be needed
** if you want a wrapper to interface SQLite with your choice of programming
** language. The code for the "sqlite3" command-line shell is also in a
** separate file. This file contains only code for the core SQLite library.
**
** This amalgamation was generated on 2009-08-10 12:55:17 UTC.
*/
#define SQLITE_CORE 1
#define SQLITE_AMALGAMATION 1
#ifndef SQLITE_PRIVATE
# define SQLITE_PRIVATE static
#endif
#ifndef SQLITE_API


|
















|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.6.18.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a one translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% are more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
** programs, you need this file and the "sqlite3.h" header file that defines
** the programming interface to the SQLite library.  (If you do not have 
** the "sqlite3.h" header file at hand, you will find a copy embedded within
** the text of this file.  Search for "Begin file sqlite3.h" to find the start
** of the embedded sqlite3.h header file.) Additional code files may be needed
** if you want a wrapper to interface SQLite with your choice of programming
** language. The code for the "sqlite3" command-line shell is also in a
** separate file. This file contains only code for the core SQLite library.
**
** This amalgamation was generated on 2009-09-11 13:56:20 UTC.
*/
#define SQLITE_CORE 1
#define SQLITE_AMALGAMATION 1
#ifndef SQLITE_PRIVATE
# define SQLITE_PRIVATE static
#endif
#ifndef SQLITE_API
37
38
39
40
41
42
43
44
45
46
47
48



























49
50
51
52
53
54
55
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.898 2009/08/10 03:57:58 shane Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_




























/*
** Include the configuration header output by 'configure' if we're using the
** autoconf-based build
*/
#ifdef _HAVE_SQLITE_CONFIG_H
#include "config.h"
#endif







<




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**

*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_

/*
** These #defines should enable >2GB file support on POSIX if the
** underlying operating system supports it.  If the OS lacks
** large file support, or if the OS is windows, these should be no-ops.
**
** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
** system #includes.  Hence, this block of code must be the very first
** code in all source files.
**
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
** on the compiler command line.  This is necessary if you are compiling
** on a recent machine (ex: Red Hat 7.2) but you want your code to work
** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
** without this option, LFS is enable.  But LFS does not exist in the kernel
** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
** portability you should omit LFS.
**
** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
*/
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE       1
# ifndef _FILE_OFFSET_BITS
#   define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif

/*
** Include the configuration header output by 'configure' if we're using the
** autoconf-based build
*/
#ifdef _HAVE_SQLITE_CONFIG_H
#include "config.h"
#endif
243
244
245
246
247
248
249











250
251
252
253
254
255
256
** Maximum length (in bytes) of the pattern in a LIKE or GLOB
** operator.
*/
#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
#endif












/************** End of sqliteLimit.h *****************************************/
/************** Continuing where we left off in sqliteInt.h ******************/

/* Disable nuisance warnings on Borland compilers */
#if defined(__BORLANDC__)
#pragma warn -rch /* unreachable code */
#pragma warn -ccc /* Condition is always true or false */







>
>
>
>
>
>
>
>
>
>
>







269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
** Maximum length (in bytes) of the pattern in a LIKE or GLOB
** operator.
*/
#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
#endif

/*
** Maximum depth of recursion for triggers.
*/
#ifndef SQLITE_MAX_TRIGGER_DEPTH
#if defined(SQLITE_SMALL_STACK)
# define SQLITE_MAX_TRIGGER_DEPTH 10
#else
# define SQLITE_MAX_TRIGGER_DEPTH 1000
#endif
#endif

/************** End of sqliteLimit.h *****************************************/
/************** Continuing where we left off in sqliteInt.h ******************/

/* Disable nuisance warnings on Borland compilers */
#if defined(__BORLANDC__)
#pragma warn -rch /* unreachable code */
#pragma warn -ccc /* Condition is always true or false */
269
270
271
272
273
274
275


276
277
278
279
280
281
282
*/
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#endif



/*
** This macro is used to "hide" some ugliness in casting an int
** value to a ptr value under the MSVC 64-bit compiler.   Casting
** non 64-bit values to ptr types results in a "hard" error with 
** the MSVC 64-bit compiler which this attempts to avoid.  
**







>
>







306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
*/
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#endif

#define SQLITE_INDEX_SAMPLES 10

/*
** This macro is used to "hide" some ugliness in casting an int
** value to a ptr value under the MSVC 64-bit compiler.   Casting
** non 64-bit values to ptr types results in a "hard" error with 
** the MSVC 64-bit compiler which this attempts to avoid.  
**
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#   define SQLITE_PTR_TO_INT(X)  ((int)(X))
# endif
#else
# define SQLITE_INT_TO_PTR(X)   ((void*)&((char*)0)[X])
# define SQLITE_PTR_TO_INT(X)   ((int)(((char*)X)-(char*)0))
#endif

/*
** These #defines should enable >2GB file support on POSIX if the
** underlying operating system supports it.  If the OS lacks
** large file support, or if the OS is windows, these should be no-ops.
**
** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
** system #includes.  Hence, this block of code must be the very first
** code in all source files.
**
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
** on the compiler command line.  This is necessary if you are compiling
** on a recent machine (ex: Red Hat 7.2) but you want your code to work
** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
** without this option, LFS is enable.  But LFS does not exist in the kernel
** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
** portability you should omit LFS.
**
** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
*/
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE       1
# ifndef _FILE_OFFSET_BITS
#   define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif


/*
** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
** Older versions of SQLite used an optional THREADSAFE macro.
** We support that for legacy
*/
#if !defined(SQLITE_THREADSAFE)







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







341
342
343
344
345
346
347



























348
349
350
351
352
353
354
#   define SQLITE_PTR_TO_INT(X)  ((int)(X))
# endif
#else
# define SQLITE_INT_TO_PTR(X)   ((void*)&((char*)0)[X])
# define SQLITE_PTR_TO_INT(X)   ((int)(((char*)X)-(char*)0))
#endif





























/*
** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
** Older versions of SQLite used an optional THREADSAFE macro.
** We support that for legacy
*/
#if !defined(SQLITE_THREADSAFE)
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568





569
570
571
572
573
574
575
576
577
578
579
580
** or constant definition does not appear in this file, then it is
** not a published API of SQLite, is subject to change without
** notice, and should not be referenced by programs that use SQLite.
**
** Some of the definitions that are in this file are marked as
** "experimental".  Experimental interfaces are normally new
** features recently added to SQLite.  We do not anticipate changes
** to experimental interfaces but reserve to make minor changes if
** experience from use "in the wild" suggest such changes are prudent.
**
** The official C-language API documentation for SQLite is derived
** from comments in this file.  This file is the authoritative source
** on how SQLite interfaces are suppose to operate.
**
** The name of this file under configuration management is "sqlite.h.in".
** The makefile makes some minor changes to this file (such as inserting
** the version number) and changes its name to "sqlite3.h" as
** part of the build process.
**
** @(#) $Id: sqlite.h.in,v 1.462 2009/08/06 17:40:46 drh Exp $
*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
#include <stdarg.h>     /* Needed for the definition of va_list */

/*
** Make sure we can call this stuff from C++.
*/
#if 0
extern "C" {
#endif


/*
** Add the ability to override 'extern'
*/
#ifndef SQLITE_EXTERN
# define SQLITE_EXTERN extern
#endif






/*
** These no-op macros are used in front of interfaces to mark those
** interfaces as either deprecated or experimental.  New applications
** should not use deprecated intrfaces - they are support for backwards
** compatibility only.  Application writers should be aware that
** experimental interfaces are subject to change in point releases.
**
** These macros used to resolve to various kinds of compiler magic that
** would generate warning messages when they were used.  But that
** compiler magic ended up generating such a flurry of bug reports
** that we have taken it all out and gone back to using simple







|
|









<
<



















>
>
>
>
>




|







542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559


560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
** or constant definition does not appear in this file, then it is
** not a published API of SQLite, is subject to change without
** notice, and should not be referenced by programs that use SQLite.
**
** Some of the definitions that are in this file are marked as
** "experimental".  Experimental interfaces are normally new
** features recently added to SQLite.  We do not anticipate changes
** to experimental interfaces but reserve the right to make minor changes
** if experience from use "in the wild" suggest such changes are prudent.
**
** The official C-language API documentation for SQLite is derived
** from comments in this file.  This file is the authoritative source
** on how SQLite interfaces are suppose to operate.
**
** The name of this file under configuration management is "sqlite.h.in".
** The makefile makes some minor changes to this file (such as inserting
** the version number) and changes its name to "sqlite3.h" as
** part of the build process.


*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
#include <stdarg.h>     /* Needed for the definition of va_list */

/*
** Make sure we can call this stuff from C++.
*/
#if 0
extern "C" {
#endif


/*
** Add the ability to override 'extern'
*/
#ifndef SQLITE_EXTERN
# define SQLITE_EXTERN extern
#endif

#ifndef SQLITE_API
# define SQLITE_API
#endif


/*
** These no-op macros are used in front of interfaces to mark those
** interfaces as either deprecated or experimental.  New applications
** should not use deprecated interfaces - they are support for backwards
** compatibility only.  Application writers should be aware that
** experimental interfaces are subject to change in point releases.
**
** These macros used to resolve to various kinds of compiler magic that
** would generate warning messages when they were used.  But that
** compiler magic ended up generating such a flurry of bug reports
** that we have taken it all out and gone back to using simple
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

613















614


615
616
617
618
619

620
621
622
623
624
625
626
627


628



629

630

631
632
633
634
635




636
637
638
639
640

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
/*
** CAPI3REF: Compile-Time Library Version Numbers {H10010} <S60100>
**
** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
** the sqlite3.h file specify the version of SQLite with which
** that header file is associated.
**
** The "version" of SQLite is a string of the form "X.Y.Z".
** The phrase "alpha" or "beta" might be appended after the Z.
** The X value is major version number always 3 in SQLite3.
** The X value only changes when backwards compatibility is
** broken and we intend to never break backwards compatibility.
** The Y value is the minor version number and only changes when
** there are major feature enhancements that are forwards compatible
** but not backwards compatible.
** The Z value is the release number and is incremented with
** each release but resets back to 0 whenever Y is incremented.

**















** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].


**
** Requirements: [H10011] [H10014]
*/
#define SQLITE_VERSION         "3.6.17"
#define SQLITE_VERSION_NUMBER  3006017


/*
** CAPI3REF: Run-Time Library Version Numbers {H10020} <S60100>
** KEYWORDS: sqlite3_version
**
** These features provide the same information as the [SQLITE_VERSION]
** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated
** with the library instead of the header file.  Cautious programmers might


** include a check in their application to verify that



** sqlite3_libversion_number() always returns the value

** [SQLITE_VERSION_NUMBER].

**
** The sqlite3_libversion() function returns the same information as is
** in the sqlite3_version[] string constant.  The function is provided
** for use in DLLs since DLL users usually do not have direct access to string
** constants within the DLL.




**
** Requirements: [H10021] [H10022] [H10023]
*/
SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
SQLITE_API const char *sqlite3_libversion(void);

SQLITE_API int sqlite3_libversion_number(void);

/*
** CAPI3REF: Test To See If The Library Is Threadsafe {H10100} <S60100>
**
** SQLite can be compiled with or without mutexes.  When
** the [SQLITE_THREADSAFE] C preprocessor macro 1 or 2, mutexes
** are enabled and SQLite is threadsafe.  When the
** [SQLITE_THREADSAFE] macro is 0, 
** the mutexes are omitted.  Without the mutexes, it is not safe
** to use SQLite concurrently from more than one thread.
**
** Enabling mutexes incurs a measurable performance penalty.
** So if speed is of utmost importance, it makes sense to disable
** the mutexes.  But for maximum safety, mutexes should be enabled.
** The default behavior is for mutexes to be enabled.
**
** This interface can be used by a program to make sure that the
** version of SQLite that it is linking against was compiled with
** the desired setting of the [SQLITE_THREADSAFE] macro.
**
** This interface only reports on the compile-time mutex setting
** of the [SQLITE_THREADSAFE] flag.  If SQLite is compiled with
** SQLITE_THREADSAFE=1 then mutexes are enabled by default but
** can be fully or partially disabled using a call to [sqlite3_config()]







|
<
|
|

|


|
|
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>



|
|
>





|
|
|
>
>
|
>
>
>
|
>
|
>




|
>
>
>
>





>






|










|







611
612
613
614
615
616
617
618

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
/*
** CAPI3REF: Compile-Time Library Version Numbers {H10010} <S60100>
**
** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
** the sqlite3.h file specify the version of SQLite with which
** that header file is associated.
**
** The "version" of SQLite is a string of the form "W.X.Y" or "W.X.Y.Z".

** The W value is major version number and is always 3 in SQLite3.
** The W value only changes when backwards compatibility is
** broken and we intend to never break backwards compatibility.
** The X value is the minor version number and only changes when
** there are major feature enhancements that are forwards compatible
** but not backwards compatible.
** The Y value is the release number and is incremented with
** each release but resets back to 0 whenever X is incremented.
** The Z value only appears on branch releases.
**
** The SQLITE_VERSION_NUMBER is an integer that is computed as
** follows:
**
** <blockquote><pre>
** SQLITE_VERSION_NUMBER = W*1000000 + X*1000 + Y
** </pre></blockquote>
**
** Since version 3.6.18, SQLite source code has been stored in the
** <a href="http://www.fossil-scm.org/">fossil configuration management
** system</a>.  The SQLITE_SOURCE_ID
** macro is a string which identifies a particular check-in of SQLite
** within its configuration management system.  The string contains the
** date and time of the check-in (UTC) and an SHA1 hash of the entire
** source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
**
** Requirements: [H10011] [H10014]
*/
#define SQLITE_VERSION        "3.6.18"
#define SQLITE_VERSION_NUMBER 3006018
#define SQLITE_SOURCE_ID      "2009-09-10 22:30:54 3ea10434434d27a1300ba2b58e2c47c54909f4ff"

/*
** CAPI3REF: Run-Time Library Version Numbers {H10020} <S60100>
** KEYWORDS: sqlite3_version
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] #defines in the header,
** but are associated with the library instead of the header file.  Cautious
** programmers might include assert() statements in their application to
** verify that values returned by these interfaces match the macros in
** the header, and thus insure that the application is
** compiled with matching library and header files.
**
** <blockquote><pre>
** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
** assert( strcmp(sqlite3_libversion,SQLITE_VERSION)==0 );
** </pre></blockquote>
**
** The sqlite3_libversion() function returns the same information as is
** in the sqlite3_version[] string constant.  The function is provided
** for use in DLLs since DLL users usually do not have direct access to string
** constants within the DLL.  Similarly, the sqlite3_sourceid() function
** returns the same information as is in the [SQLITE_SOURCE_ID] #define of
** the header file.
**
** See also: [sqlite_version()] and [sqlite_source_id()].
**
** Requirements: [H10021] [H10022] [H10023]
*/
SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
SQLITE_API const char *sqlite3_libversion(void);
SQLITE_API const char *sqlite3_sourceid(void);
SQLITE_API int sqlite3_libversion_number(void);

/*
** CAPI3REF: Test To See If The Library Is Threadsafe {H10100} <S60100>
**
** SQLite can be compiled with or without mutexes.  When
** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
** are enabled and SQLite is threadsafe.  When the
** [SQLITE_THREADSAFE] macro is 0, 
** the mutexes are omitted.  Without the mutexes, it is not safe
** to use SQLite concurrently from more than one thread.
**
** Enabling mutexes incurs a measurable performance penalty.
** So if speed is of utmost importance, it makes sense to disable
** the mutexes.  But for maximum safety, mutexes should be enabled.
** The default behavior is for mutexes to be enabled.
**
** This interface can be used by an application to make sure that the
** version of SQLite that it is linking against was compiled with
** the desired setting of the [SQLITE_THREADSAFE] macro.
**
** This interface only reports on the compile-time mutex setting
** of the [SQLITE_THREADSAFE] flag.  If SQLite is compiled with
** SQLITE_THREADSAFE=1 then mutexes are enabled by default but
** can be fully or partially disabled using a call to [sqlite3_config()]
918
919
920
921
922
923
924


925
926
927
928
929
930
931
#define SQLITE_OPEN_TRANSIENT_DB     0x00000400  /* VFS only */
#define SQLITE_OPEN_MAIN_JOURNAL     0x00000800  /* VFS only */
#define SQLITE_OPEN_TEMP_JOURNAL     0x00001000  /* VFS only */
#define SQLITE_OPEN_SUBJOURNAL       0x00002000  /* VFS only */
#define SQLITE_OPEN_MASTER_JOURNAL   0x00004000  /* VFS only */
#define SQLITE_OPEN_NOMUTEX          0x00008000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_FULLMUTEX        0x00010000  /* Ok for sqlite3_open_v2() */



/*
** CAPI3REF: Device Characteristics {H10240} <H11120>
**
** The xDeviceCapabilities method of the [sqlite3_io_methods]
** object returns an integer which is a vector of the these
** bit values expressing I/O characteristics of the mass storage







>
>







963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
#define SQLITE_OPEN_TRANSIENT_DB     0x00000400  /* VFS only */
#define SQLITE_OPEN_MAIN_JOURNAL     0x00000800  /* VFS only */
#define SQLITE_OPEN_TEMP_JOURNAL     0x00001000  /* VFS only */
#define SQLITE_OPEN_SUBJOURNAL       0x00002000  /* VFS only */
#define SQLITE_OPEN_MASTER_JOURNAL   0x00004000  /* VFS only */
#define SQLITE_OPEN_NOMUTEX          0x00008000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_FULLMUTEX        0x00010000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_SHAREDCACHE      0x00020000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_PRIVATECACHE     0x00040000  /* Ok for sqlite3_open_v2() */

/*
** CAPI3REF: Device Characteristics {H10240} <H11120>
**
** The xDeviceCapabilities method of the [sqlite3_io_methods]
** object returns an integer which is a vector of the these
** bit values expressing I/O characteristics of the mass storage
985
986
987
988
989
990
991
992

993
994
995
996
997
998
999
1000
#define SQLITE_SYNC_NORMAL        0x00002
#define SQLITE_SYNC_FULL          0x00003
#define SQLITE_SYNC_DATAONLY      0x00010

/*
** CAPI3REF: OS Interface Open File Handle {H11110} <S20110>
**
** An [sqlite3_file] object represents an open file in the OS

** interface layer.  Individual OS interface implementations will
** want to subclass this object by appending additional fields
** for their own use.  The pMethods entry is a pointer to an
** [sqlite3_io_methods] object that defines methods for performing
** I/O operations on the open file.
*/
typedef struct sqlite3_file sqlite3_file;
struct sqlite3_file {







|
>
|







1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
#define SQLITE_SYNC_NORMAL        0x00002
#define SQLITE_SYNC_FULL          0x00003
#define SQLITE_SYNC_DATAONLY      0x00010

/*
** CAPI3REF: OS Interface Open File Handle {H11110} <S20110>
**
** An [sqlite3_file] object represents an open file in the 
** [sqlite3_vfs | OS interface layer].  Individual OS interface
** implementations will
** want to subclass this object by appending additional fields
** for their own use.  The pMethods entry is a pointer to an
** [sqlite3_io_methods] object that defines methods for performing
** I/O operations on the open file.
*/
typedef struct sqlite3_file sqlite3_file;
struct sqlite3_file {
1362
1363
1364
1365
1366
1367
1368
1369

1370
1371
1372
1373
1374
1375
1376
1377
**
** The application should never invoke either sqlite3_os_init()
** or sqlite3_os_end() directly.  The application should only invoke
** sqlite3_initialize() and sqlite3_shutdown().  The sqlite3_os_init()
** interface is called automatically by sqlite3_initialize() and
** sqlite3_os_end() is called by sqlite3_shutdown().  Appropriate
** implementations for sqlite3_os_init() and sqlite3_os_end()
** are built into SQLite when it is compiled for unix, windows, or os/2.

** When built for other platforms (using the [SQLITE_OS_OTHER=1] compile-time
** option) the application must supply a suitable implementation for
** sqlite3_os_init() and sqlite3_os_end().  An application-supplied
** implementation of sqlite3_os_init() or sqlite3_os_end()
** must return [SQLITE_OK] on success and some other [error code] upon
** failure.
*/
SQLITE_API int sqlite3_initialize(void);







|
>
|







1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
**
** The application should never invoke either sqlite3_os_init()
** or sqlite3_os_end() directly.  The application should only invoke
** sqlite3_initialize() and sqlite3_shutdown().  The sqlite3_os_init()
** interface is called automatically by sqlite3_initialize() and
** sqlite3_os_end() is called by sqlite3_shutdown().  Appropriate
** implementations for sqlite3_os_init() and sqlite3_os_end()
** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
** When [custom builds | built for other platforms]
** (using the [SQLITE_OS_OTHER=1] compile-time
** option) the application must supply a suitable implementation for
** sqlite3_os_init() and sqlite3_os_end().  An application-supplied
** implementation of sqlite3_os_init() or sqlite3_os_end()
** must return [SQLITE_OK] on success and some other [error code] upon
** failure.
*/
SQLITE_API int sqlite3_initialize(void);
1444
1445
1446
1447
1448
1449
1450

1451
1452
1453

1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466








1467
1468
1469
1470
1471
1472
1473
1474
1475



1476
1477
1478
1479
1480
1481
1482














1483
1484
1485
1486
1487
1488
1489
**
** An instance of this object defines the interface between SQLite
** and low-level memory allocation routines.
**
** This object is used in only one place in the SQLite interface.
** A pointer to an instance of this object is the argument to
** [sqlite3_config()] when the configuration option is

** [SQLITE_CONFIG_MALLOC].  By creating an instance of this object
** and passing it to [sqlite3_config()] during configuration, an
** application can specify an alternative memory allocation subsystem

** for SQLite to use for all of its dynamic memory needs.
**
** Note that SQLite comes with a built-in memory allocator that is
** perfectly adequate for the overwhelming majority of applications
** and that this object is only useful to a tiny minority of applications
** with specialized memory allocation requirements.  This object is
** also used during testing of SQLite in order to specify an alternative
** memory allocator that simulates memory out-of-memory conditions in
** order to verify that SQLite recovers gracefully from such
** conditions.
**
** The xMalloc, xFree, and xRealloc methods must work like the
** malloc(), free(), and realloc() functions from the standard library.








**
** xSize should return the allocated size of a memory allocation
** previously obtained from xMalloc or xRealloc.  The allocated size
** is always at least as big as the requested size but may be larger.
**
** The xRoundup method returns what would be the allocated size of
** a memory allocation given a particular requested size.  Most memory
** allocators round up memory allocations at least to the next multiple
** of 8.  Some allocators round up to a larger multiple or to a power of 2.



**
** The xInit method initializes the memory allocator.  (For example,
** it might allocate any require mutexes or initialize internal data
** structures.  The xShutdown method is invoked (indirectly) by
** [sqlite3_shutdown()] and should deallocate any resources acquired
** by xInit.  The pAppData pointer is used as the only parameter to
** xInit and xShutdown.














*/
typedef struct sqlite3_mem_methods sqlite3_mem_methods;
struct sqlite3_mem_methods {
  void *(*xMalloc)(int);         /* Memory allocation function */
  void (*xFree)(void*);          /* Free a prior allocation */
  void *(*xRealloc)(void*,int);  /* Resize an allocation */
  int (*xSize)(void*);           /* Return the size of an allocation */







>
|
|
|
>
|

|
|







|
|
>
>
>
>
>
>
>
>









>
>
>







>
>
>
>
>
>
>
>
>
>
>
>
>
>







1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
**
** An instance of this object defines the interface between SQLite
** and low-level memory allocation routines.
**
** This object is used in only one place in the SQLite interface.
** A pointer to an instance of this object is the argument to
** [sqlite3_config()] when the configuration option is
** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].  
** By creating an instance of this object
** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
** during configuration, an application can specify an alternative
** memory allocation subsystem for SQLite to use for all of its
** dynamic memory needs.
**
** Note that SQLite comes with several [built-in memory allocators]
** that are perfectly adequate for the overwhelming majority of applications
** and that this object is only useful to a tiny minority of applications
** with specialized memory allocation requirements.  This object is
** also used during testing of SQLite in order to specify an alternative
** memory allocator that simulates memory out-of-memory conditions in
** order to verify that SQLite recovers gracefully from such
** conditions.
**
** The xMalloc and xFree methods must work like the
** malloc() and free() functions from the standard C library.
** The xRealloc method must work like realloc() from the standard C library
** with the exception that if the second argument to xRealloc is zero,
** xRealloc must be a no-op - it must not perform any allocation or
** deallocation.  SQLite guaranteeds that the second argument to
** xRealloc is always a value returned by a prior call to xRoundup.
** And so in cases where xRoundup always returns a positive number,
** xRealloc can perform exactly as the standard library realloc() and
** still be in compliance with this specification.
**
** xSize should return the allocated size of a memory allocation
** previously obtained from xMalloc or xRealloc.  The allocated size
** is always at least as big as the requested size but may be larger.
**
** The xRoundup method returns what would be the allocated size of
** a memory allocation given a particular requested size.  Most memory
** allocators round up memory allocations at least to the next multiple
** of 8.  Some allocators round up to a larger multiple or to a power of 2.
** Every memory allocation request coming in through [sqlite3_malloc()]
** or [sqlite3_realloc()] first calls xRoundup.  If xRoundup returns 0, 
** that causes the corresponding memory allocation to fail.
**
** The xInit method initializes the memory allocator.  (For example,
** it might allocate any require mutexes or initialize internal data
** structures.  The xShutdown method is invoked (indirectly) by
** [sqlite3_shutdown()] and should deallocate any resources acquired
** by xInit.  The pAppData pointer is used as the only parameter to
** xInit and xShutdown.
**
** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes
** the xInit method, so the xInit method need not be threadsafe.  The
** xShutdown method is only called from [sqlite3_shutdown()] so it does
** not need to be threadsafe either.  For all other methods, SQLite
** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
** it is by default) and so the methods are automatically serialized.
** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
** methods must be threadsafe or else make their own arrangements for
** serialization.
**
** SQLite will never invoke xInit() more than once without an intervening
** call to xShutdown().
*/
typedef struct sqlite3_mem_methods sqlite3_mem_methods;
struct sqlite3_mem_methods {
  void *(*xMalloc)(int);         /* Memory allocation function */
  void (*xFree)(void*);          /* Free a prior allocation */
  void *(*xRealloc)(void*,int);  /* Resize an allocation */
  int (*xSize)(void*);           /* Return the size of an allocation */
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638



1639
1640
1641
1642
1643
1644
1645
** structure is filled with the currently defined mutex routines.
** This option can be used to overload the default mutex allocation
** routines with a wrapper used to track mutex usage for performance
** profiling or testing, for example.</dd>
**
** <dt>SQLITE_CONFIG_LOOKASIDE</dt>
** <dd>This option takes two arguments that determine the default
** memory allcation lookaside optimization.  The first argument is the
** size of each lookaside buffer slot and the second is the number of
** slots allocated to each database connection.</dd>



**
** <dt>SQLITE_CONFIG_PCACHE</dt>
** <dd>This option takes a single argument which is a pointer to
** an [sqlite3_pcache_methods] object.  This object specifies the interface
** to a custom page cache implementation.  SQLite makes a copy of the
** object and uses it for page cache memory allocations.</dd>
**







|

|
>
>
>







1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
** structure is filled with the currently defined mutex routines.
** This option can be used to overload the default mutex allocation
** routines with a wrapper used to track mutex usage for performance
** profiling or testing, for example.</dd>
**
** <dt>SQLITE_CONFIG_LOOKASIDE</dt>
** <dd>This option takes two arguments that determine the default
** memory allocation lookaside optimization.  The first argument is the
** size of each lookaside buffer slot and the second is the number of
** slots allocated to each database connection.  This option sets the
** <i>default</i> lookaside size.  The [SQLITE_DBCONFIG_LOOKASIDE]
** verb to [sqlite3_db_config()] can be used to change the lookaside
** configuration on individual connections.</dd>
**
** <dt>SQLITE_CONFIG_PCACHE</dt>
** <dd>This option takes a single argument which is a pointer to
** an [sqlite3_pcache_methods] object.  This object specifies the interface
** to a custom page cache implementation.  SQLite makes a copy of the
** object and uses it for page cache memory allocations.</dd>
**
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693



1694
1695
1696
1697
1698
1699
1700
** is invoked.
**
** <dl>
** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
** <dd>This option takes three additional arguments that determine the 
** [lookaside memory allocator] configuration for the [database connection].
** The first argument (the third parameter to [sqlite3_db_config()] is a
** pointer to an 8-byte aligned memory buffer to use for lookaside memory.
** The first argument may be NULL in which case SQLite will allocate the
** lookaside buffer itself using [sqlite3_malloc()].  The second argument is the
** size of each lookaside buffer slot and the third argument is the number of
** slots.  The size of the buffer in the first argument must be greater than
** or equal to the product of the second and third arguments.</dd>



**
** </dl>
*/
#define SQLITE_DBCONFIG_LOOKASIDE    1001  /* void* int int */


/*







|




|
>
>
>







1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
** is invoked.
**
** <dl>
** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
** <dd>This option takes three additional arguments that determine the 
** [lookaside memory allocator] configuration for the [database connection].
** The first argument (the third parameter to [sqlite3_db_config()] is a
** pointer to an memory buffer to use for lookaside memory.
** The first argument may be NULL in which case SQLite will allocate the
** lookaside buffer itself using [sqlite3_malloc()].  The second argument is the
** size of each lookaside buffer slot and the third argument is the number of
** slots.  The size of the buffer in the first argument must be greater than
** or equal to the product of the second and third arguments.  The buffer
** must be aligned to an 8-byte boundary.  If the second argument is not
** a multiple of 8, it is internally rounded down to the next smaller
** multiple of 8.  See also: [SQLITE_CONFIG_LOOKASIDE]</dd>
**
** </dl>
*/
#define SQLITE_DBCONFIG_LOOKASIDE    1001  /* void* int int */


/*
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
  char **pzErrmsg       /* Error msg written here */
);
SQLITE_API void sqlite3_free_table(char **result);

/*
** CAPI3REF: Formatted String Printing Functions {H17400} <S70000><S20000>
**
** These routines are workalikes of the "printf()" family of functions
** from the standard C library.
**
** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
** released by [sqlite3_free()].  Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough







|







2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
  char **pzErrmsg       /* Error msg written here */
);
SQLITE_API void sqlite3_free_table(char **result);

/*
** CAPI3REF: Formatted String Printing Functions {H17400} <S70000><S20000>
**
** These routines are work-alikes of the "printf()" family of functions
** from the standard C library.
**
** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
** released by [sqlite3_free()].  Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
**
** The authorizer callback must not do anything that will modify
** the database connection that invoked the authorizer callback.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** When [sqlite3_prepare_v2()] is used to prepare a statement, the
** statement might be reprepared during [sqlite3_step()] due to a 
** schema change.  Hence, the application should ensure that the
** correct authorizer callback remains in place during the [sqlite3_step()].
**
** Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants.  Authorization is not
** performed during statement evaluation in [sqlite3_step()], unless
** as stated in the previous paragraph, sqlite3_step() invokes







|







2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
**
** The authorizer callback must not do anything that will modify
** the database connection that invoked the authorizer callback.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** When [sqlite3_prepare_v2()] is used to prepare a statement, the
** statement might be re-prepared during [sqlite3_step()] due to a 
** schema change.  Hence, the application should ensure that the
** correct authorizer callback remains in place during the [sqlite3_step()].
**
** Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants.  Authorization is not
** performed during statement evaluation in [sqlite3_step()], unless
** as stated in the previous paragraph, sqlite3_step() invokes
2544
2545
2546
2547
2548
2549
2550
2551

2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571

2572
2573
2574
2575
2576
2577
2578
2579





2580
2581
2582
2583
2584
2585
2586
** associated with the [database connection] handle should be released by
** passing it to [sqlite3_close()] when it is no longer required.
**
** The sqlite3_open_v2() interface works like sqlite3_open()
** except that it accepts two additional parameters for additional control
** over the new database connection.  The flags parameter can take one of
** the following three values, optionally combined with the 
** [SQLITE_OPEN_NOMUTEX] or [SQLITE_OPEN_FULLMUTEX] flags:

**
** <dl>
** <dt>[SQLITE_OPEN_READONLY]</dt>
** <dd>The database is opened in read-only mode.  If the database does not
** already exist, an error is returned.</dd>
**
** <dt>[SQLITE_OPEN_READWRITE]</dt>
** <dd>The database is opened for reading and writing if possible, or reading
** only if the file is write protected by the operating system.  In either
** case the database must already exist, otherwise an error is returned.</dd>
**
** <dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
** <dd>The database is opened for reading and writing, and is creates it if
** it does not already exist. This is the behavior that is always used for
** sqlite3_open() and sqlite3_open16().</dd>
** </dl>
**
** If the 3rd parameter to sqlite3_open_v2() is not one of the
** combinations shown above or one of the combinations shown above combined
** with the [SQLITE_OPEN_NOMUTEX] or [SQLITE_OPEN_FULLMUTEX] flags,

** then the behavior is undefined.
**
** If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
** opens in the multi-thread [threading mode] as long as the single-thread
** mode has not been set at compile-time or start-time.  If the
** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens
** in the serialized [threading mode] unless single-thread was
** previously selected at compile-time or start-time.





**
** If the filename is ":memory:", then a private, temporary in-memory database
** is created for the connection.  This in-memory database will vanish when
** the database connection is closed.  Future versions of SQLite might
** make use of additional special filenames that begin with the ":" character.
** It is recommended that when a database filename actually does begin with
** a ":" character you should prefix the filename with a pathname such as







|
>



















|
>








>
>
>
>
>







2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
** associated with the [database connection] handle should be released by
** passing it to [sqlite3_close()] when it is no longer required.
**
** The sqlite3_open_v2() interface works like sqlite3_open()
** except that it accepts two additional parameters for additional control
** over the new database connection.  The flags parameter can take one of
** the following three values, optionally combined with the 
** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE],
** and/or [SQLITE_OPEN_PRIVATECACHE] flags:
**
** <dl>
** <dt>[SQLITE_OPEN_READONLY]</dt>
** <dd>The database is opened in read-only mode.  If the database does not
** already exist, an error is returned.</dd>
**
** <dt>[SQLITE_OPEN_READWRITE]</dt>
** <dd>The database is opened for reading and writing if possible, or reading
** only if the file is write protected by the operating system.  In either
** case the database must already exist, otherwise an error is returned.</dd>
**
** <dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
** <dd>The database is opened for reading and writing, and is creates it if
** it does not already exist. This is the behavior that is always used for
** sqlite3_open() and sqlite3_open16().</dd>
** </dl>
**
** If the 3rd parameter to sqlite3_open_v2() is not one of the
** combinations shown above or one of the combinations shown above combined
** with the [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX],
** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_SHAREDCACHE] flags,
** then the behavior is undefined.
**
** If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
** opens in the multi-thread [threading mode] as long as the single-thread
** mode has not been set at compile-time or start-time.  If the
** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens
** in the serialized [threading mode] unless single-thread was
** previously selected at compile-time or start-time.
** The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be
** eligible to use [shared cache mode], regardless of whether or not shared
** cache is enabled using [sqlite3_enable_shared_cache()].  The
** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not
** participate in [shared cache mode] even if it is enabled.
**
** If the filename is ":memory:", then a private, temporary in-memory database
** is created for the connection.  This in-memory database will vanish when
** the database connection is closed.  Future versions of SQLite might
** make use of additional special filenames that begin with the ":" character.
** It is recommended that when a database filename actually does begin with
** a ":" character you should prefix the filename with a pathname such as
2766
2767
2768
2769
2770
2771
2772



2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784

2785
2786
2787
2788
2789
2790
2791
** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
** <dd>The maximum length of the pattern argument to the [LIKE] or
** [GLOB] operators.</dd>
**
** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
** <dd>The maximum number of variables in an SQL statement that can
** be bound.</dd>



** </dl>
*/
#define SQLITE_LIMIT_LENGTH                    0
#define SQLITE_LIMIT_SQL_LENGTH                1
#define SQLITE_LIMIT_COLUMN                    2
#define SQLITE_LIMIT_EXPR_DEPTH                3
#define SQLITE_LIMIT_COMPOUND_SELECT           4
#define SQLITE_LIMIT_VDBE_OP                   5
#define SQLITE_LIMIT_FUNCTION_ARG              6
#define SQLITE_LIMIT_ATTACHED                  7
#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH       8
#define SQLITE_LIMIT_VARIABLE_NUMBER           9


/*
** CAPI3REF: Compiling An SQL Statement {H13010} <S10000>
** KEYWORDS: {SQL statement compiler}
**
** To execute an SQL query, it must first be compiled into a byte-code
** program using one of these routines.







>
>
>












>







2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
** <dd>The maximum length of the pattern argument to the [LIKE] or
** [GLOB] operators.</dd>
**
** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
** <dd>The maximum number of variables in an SQL statement that can
** be bound.</dd>
**
** <dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
** <dd>The maximum depth of recursion for triggers.</dd>
** </dl>
*/
#define SQLITE_LIMIT_LENGTH                    0
#define SQLITE_LIMIT_SQL_LENGTH                1
#define SQLITE_LIMIT_COLUMN                    2
#define SQLITE_LIMIT_EXPR_DEPTH                3
#define SQLITE_LIMIT_COMPOUND_SELECT           4
#define SQLITE_LIMIT_VDBE_OP                   5
#define SQLITE_LIMIT_FUNCTION_ARG              6
#define SQLITE_LIMIT_ATTACHED                  7
#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH       8
#define SQLITE_LIMIT_VARIABLE_NUMBER           9
#define SQLITE_LIMIT_TRIGGER_DEPTH            10

/*
** CAPI3REF: Compiling An SQL Statement {H13010} <S10000>
** KEYWORDS: {SQL statement compiler}
**
** To execute an SQL query, it must first be compiled into a byte-code
** program using one of these routines.
2954
2955
2956
2957
2958
2959
2960
2961

2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979

/*
** CAPI3REF: Binding Values To Prepared Statements {H13500} <S70300>
** KEYWORDS: {host parameter} {host parameters} {host parameter name}
** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
**
** In the SQL strings input to [sqlite3_prepare_v2()] and its variants,
** literals may be replaced by a [parameter] in one of these forms:

**
** <ul>
** <li>  ?
** <li>  ?NNN
** <li>  :VVV
** <li>  @VVV
** <li>  $VVV
** </ul>
**
** In the parameter forms shown above NNN is an integer literal,
** and VVV is an alpha-numeric parameter name. The values of these
** parameters (also called "host parameter names" or "SQL parameters")
** can be set using the sqlite3_bind_*() routines defined here.
**
** The first argument to the sqlite3_bind_*() routines is always
** a pointer to the [sqlite3_stmt] object returned from
** [sqlite3_prepare_v2()] or its variants.
**







|
>









|
|







3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073

/*
** CAPI3REF: Binding Values To Prepared Statements {H13500} <S70300>
** KEYWORDS: {host parameter} {host parameters} {host parameter name}
** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
**
** In the SQL strings input to [sqlite3_prepare_v2()] and its variants,
** literals may be replaced by a [parameter] that matches one of following
** templates:
**
** <ul>
** <li>  ?
** <li>  ?NNN
** <li>  :VVV
** <li>  @VVV
** <li>  $VVV
** </ul>
**
** In the templates above, NNN represents an integer literal,
** and VVV represents an alphanumeric identifer.  The values of these
** parameters (also called "host parameter names" or "SQL parameters")
** can be set using the sqlite3_bind_*() routines defined here.
**
** The first argument to the sqlite3_bind_*() routines is always
** a pointer to the [sqlite3_stmt] object returned from
** [sqlite3_prepare_v2()] or its variants.
**
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
** parameter is less than -1 or greater than 127 then the behavior is
** undefined.
**
** The fourth parameter, eTextRep, specifies what
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
** its parameters.  Any SQL function implementation should be able to work
** work with UTF-8, UTF-16le, or UTF-16be.  But some implementations may be
** more efficient with one encoding than another.  It is allowed to
** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
** times with the same function but with different values of eTextRep.
** When multiple implementations of the same function are available, SQLite
** will pick the one that involves the least amount of data conversion.
** If there is only a single implementation which does not care what text
** encoding is used, then the fourth argument should be [SQLITE_ANY].
**







|







3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
** parameter is less than -1 or greater than 127 then the behavior is
** undefined.
**
** The fourth parameter, eTextRep, specifies what
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
** its parameters.  Any SQL function implementation should be able to work
** work with UTF-8, UTF-16le, or UTF-16be.  But some implementations may be
** more efficient with one encoding than another.  An application may
** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
** times with the same function but with different values of eTextRep.
** When multiple implementations of the same function are available, SQLite
** will pick the one that involves the least amount of data conversion.
** If there is only a single implementation which does not care what text
** encoding is used, then the fourth argument should be [SQLITE_ANY].
**
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
** parameters. An aggregate SQL function requires an implementation of xStep
** and xFinal and NULL should be passed for xFunc. To delete an existing
** SQL function or aggregate, pass NULL for all three function callbacks.
**
** It is permitted to register multiple implementations of the same
** functions with the same name but with either differing numbers of
** arguments or differing preferred text encodings.  SQLite will use
** the implementation most closely matches the way in which the
** SQL function is used.  A function implementation with a non-negative
** nArg parameter is a better match than a function implementation with
** a negative nArg.  A function where the preferred text encoding
** matches the database encoding is a better
** match than a function where the encoding is different.  
** A function where the encoding difference is between UTF16le and UTF16be
** is a closer match than a function where the encoding difference is







|







3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
** parameters. An aggregate SQL function requires an implementation of xStep
** and xFinal and NULL should be passed for xFunc. To delete an existing
** SQL function or aggregate, pass NULL for all three function callbacks.
**
** It is permitted to register multiple implementations of the same
** functions with the same name but with either differing numbers of
** arguments or differing preferred text encodings.  SQLite will use
** the implementation that most closely matches the way in which the
** SQL function is used.  A function implementation with a non-negative
** nArg parameter is a better match than a function implementation with
** a negative nArg.  A function where the preferred text encoding
** matches the database encoding is a better
** match than a function where the encoding is different.  
** A function where the encoding difference is between UTF16le and UTF16be
** is a closer match than a function where the encoding difference is
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996

3997
3998
3999
4000
4001
4002
4003
4004
** is non-negative, then as many bytes (not characters) of the text
** pointed to by the 2nd parameter are taken as the application-defined
** function result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
** function as the destructor on the text or BLOB result when it has
** finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces or
** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
** assumes that the text or BLOB result is in constant space and does not

** copy the it or call a destructor when it has finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
** then SQLite makes a copy of the result into space obtained from
** from [sqlite3_malloc()] before it returns.
**
** The sqlite3_result_value() interface sets the result of
** the application-defined function to be a copy the







|


>
|







4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
** is non-negative, then as many bytes (not characters) of the text
** pointed to by the 2nd parameter are taken as the application-defined
** function result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
** function as the destructor on the text or BLOB result when it has
** finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces or to
** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
** assumes that the text or BLOB result is in constant space and does not
** copy the content of the parameter nor call a destructor on the content
** when it has finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
** then SQLite makes a copy of the result into space obtained from
** from [sqlite3_malloc()] before it returns.
**
** The sqlite3_result_value() interface sets the result of
** the application-defined function to be a copy the
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
** a expired BLOB handle fail with an return code of [SQLITE_ABORT].
** Changes written into a BLOB prior to the BLOB expiring are not
** rollback by the expiration of the BLOB.  Such changes will eventually
** commit if the transaction continues to completion.
**
** Use the [sqlite3_blob_bytes()] interface to determine the size of
** the opened blob.  The size of a blob may not be changed by this
** underface.  Use the [UPDATE] SQL command to change the size of a
** blob.
**
** The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function can be used, if desired,
** to create an empty, zero-filled blob in which to read or write using
** this interface.
**







|







5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
** a expired BLOB handle fail with an return code of [SQLITE_ABORT].
** Changes written into a BLOB prior to the BLOB expiring are not
** rollback by the expiration of the BLOB.  Such changes will eventually
** commit if the transaction continues to completion.
**
** Use the [sqlite3_blob_bytes()] interface to determine the size of
** the opened blob.  The size of a blob may not be changed by this
** interface.  Use the [UPDATE] SQL command to change the size of a
** blob.
**
** The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function can be used, if desired,
** to create an empty, zero-filled blob in which to read or write using
** this interface.
**
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  {H17016} But SQLite will only request a recursive mutex in
** cases where it really needs one.  {END} If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex. {END}  Four static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** {H17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST







|







5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  {H17016} But SQLite will only request a recursive mutex in
** cases where it really needs one.  {END} If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex. {END}  Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** {H17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
5315
5316
5317
5318
5319
5320
5321















5322
5323
5324
5325
5326
5327
5328
** The only difference is that the public sqlite3_XXX functions enumerated
** above silently ignore any invocations that pass a NULL pointer instead
** of a valid mutex handle. The implementations of the methods defined
** by this structure are not required to handle this case, the results
** of passing a NULL pointer instead of a valid mutex handle are undefined
** (i.e. it is acceptable to provide an implementation that segfaults if
** it is passed a NULL pointer).















*/
typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
struct sqlite3_mutex_methods {
  int (*xMutexInit)(void);
  int (*xMutexEnd)(void);
  sqlite3_mutex *(*xMutexAlloc)(int);
  void (*xMutexFree)(sqlite3_mutex *);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
** The only difference is that the public sqlite3_XXX functions enumerated
** above silently ignore any invocations that pass a NULL pointer instead
** of a valid mutex handle. The implementations of the methods defined
** by this structure are not required to handle this case, the results
** of passing a NULL pointer instead of a valid mutex handle are undefined
** (i.e. it is acceptable to provide an implementation that segfaults if
** it is passed a NULL pointer).
**
** The xMutexInit() method must be threadsafe.  It must be harmless to
** invoke xMutexInit() mutiple times within the same process and without
** intervening calls to xMutexEnd().  Second and subsequent calls to
** xMutexInit() must be no-ops.
**
** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
** and its associates).  Similarly, xMutexAlloc() must not use SQLite memory
** allocation for a static mutex.  However xMutexAlloc() may use SQLite
** memory allocation for a fast or recursive mutex.
**
** SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
** called, but only if the prior call to xMutexInit returned SQLITE_OK.
** If xMutexInit fails in any way, it is expected to clean up after itself
** prior to returning.
*/
typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
struct sqlite3_mutex_methods {
  int (*xMutexInit)(void);
  int (*xMutexEnd)(void);
  sqlite3_mutex *(*xMutexAlloc)(int);
  void (*xMutexFree)(sqlite3_mutex *);
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
** nothing is written into *pHighwater and the resetFlag is ignored.
** Other parameters record only the highwater mark and not the current
** value.  For these latter parameters nothing is written into *pCurrent.
**
** This routine returns SQLITE_OK on success and a non-zero
** [error code] on failure.
**
** This routine is threadsafe but is not atomic.  This routine can
** called while other threads are running the same or different SQLite
** interfaces.  However the values returned in *pCurrent and
** *pHighwater reflect the status of SQLite at different points in time
** and it is possible that another thread might change the parameter
** in between the times when *pCurrent and *pHighwater are written.
**
** See also: [sqlite3_db_status()]







|







5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
** nothing is written into *pHighwater and the resetFlag is ignored.
** Other parameters record only the highwater mark and not the current
** value.  For these latter parameters nothing is written into *pCurrent.
**
** This routine returns SQLITE_OK on success and a non-zero
** [error code] on failure.
**
** This routine is threadsafe but is not atomic.  This routine can be
** called while other threads are running the same or different SQLite
** interfaces.  However the values returned in *pCurrent and
** *pHighwater reflect the status of SQLite at different points in time
** and it is possible that another thread might change the parameter
** in between the times when *pCurrent and *pHighwater are written.
**
** See also: [sqlite3_db_status()]
5603
5604
5605
5606
5607
5608
5609





5610


5611
5612
5613
5614
5615
5616
5617
*/
SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);

/*
** CAPI3REF: Status Parameters for database connections {H17520} <H17500>
** EXPERIMENTAL
**





** Status verbs for [sqlite3_db_status()].


**
** <dl>
** <dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
** <dd>This parameter returns the number of lookaside memory slots currently
** checked out.</dd>
** </dl>
*/







>
>
>
>
>
|
>
>







5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
*/
SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);

/*
** CAPI3REF: Status Parameters for database connections {H17520} <H17500>
** EXPERIMENTAL
**
** These constants are the available integer "verbs" that can be passed as
** the second argument to the [sqlite3_db_status()] interface.
**
** New verbs may be added in future releases of SQLite. Existing verbs
** might be discontinued. Applications should check the return code from
** [sqlite3_db_status()] to make sure that the call worked.
** The [sqlite3_db_status()] interface will return a non-zero error code
** if a discontinued or unsupported verb is invoked.
**
** <dl>
** <dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
** <dd>This parameter returns the number of lookaside memory slots currently
** checked out.</dd>
** </dl>
*/
5681
5682
5683
5684
5685
5686
5687

5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702


5703
5704
5705
5706
5707
5708


5709
5710
5711









5712


5713
5714






5715
5716
5717
5718
5719



5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765







5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
**
** See [sqlite3_pcache_methods] for additional information.
*/
typedef struct sqlite3_pcache sqlite3_pcache;

/*
** CAPI3REF: Application Defined Page Cache.

** EXPERIMENTAL
**
** The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can
** register an alternative page cache implementation by passing in an 
** instance of the sqlite3_pcache_methods structure. The majority of the 
** heap memory used by sqlite is used by the page cache to cache data read 
** from, or ready to be written to, the database file. By implementing a 
** custom page cache using this API, an application can control more 
** precisely the amount of memory consumed by sqlite, the way in which 
** said memory is allocated and released, and the policies used to 
** determine exactly which parts of a database file are cached and for 
** how long.
**
** The contents of the structure are copied to an internal buffer by sqlite
** within the call to [sqlite3_config].


**
** The xInit() method is called once for each call to [sqlite3_initialize()]
** (usually only once during the lifetime of the process). It is passed
** a copy of the sqlite3_pcache_methods.pArg value. It can be used to set
** up global structures and mutexes required by the custom page cache 
** implementation. The xShutdown() method is called from within 


** [sqlite3_shutdown()], if the application invokes this API. It can be used
** to clean up any outstanding resources before process shutdown, if required.
**









** The xCreate() method is used to construct a new cache instance. The


** first parameter, szPage, is the size in bytes of the pages that must
** be allocated by the cache. szPage will not be a power of two. The






** second argument, bPurgeable, is true if the cache being created will
** be used to cache database pages read from a file stored on disk, or
** false if it is used for an in-memory database. The cache implementation
** does not have to do anything special based on the value of bPurgeable,
** it is purely advisory. 



**
** The xCachesize() method may be called at any time by SQLite to set the
** suggested maximum cache-size (number of pages stored by) the cache
** instance passed as the first argument. This is the value configured using
** the SQLite "[PRAGMA cache_size]" command. As with the bPurgeable parameter,
** the implementation is not required to do anything special with this
** value, it is advisory only.
**
** The xPagecount() method should return the number of pages currently
** stored in the cache supplied as an argument.
** 
** The xFetch() method is used to fetch a page and return a pointer to it. 
** A 'page', in this context, is a buffer of szPage bytes aligned at an
** 8-byte boundary. The page to be fetched is determined by the key. The
** mimimum key value is 1. After it has been retrieved using xFetch, the page 
** is considered to be pinned.
**
** If the requested page is already in the page cache, then a pointer to
** the cached buffer should be returned with its contents intact. If the
** page is not already in the cache, then the expected behaviour of the
** cache is determined by the value of the createFlag parameter passed
** to xFetch, according to the following table:
**
** <table border=1 width=85% align=center>
**   <tr><th>createFlag<th>Expected Behaviour
**   <tr><td>0<td>NULL should be returned. No new cache entry is created.
**   <tr><td>1<td>If createFlag is set to 1, this indicates that 
**                SQLite is holding pinned pages that can be unpinned
**                by writing their contents to the database file (a
**                relatively expensive operation). In this situation the
**                cache implementation has two choices: it can return NULL,
**                in which case SQLite will attempt to unpin one or more 
**                pages before re-requesting the same page, or it can
**                allocate a new page and return a pointer to it. If a new
**                page is allocated, then the first sizeof(void*) bytes of
**                it (at least) must be zeroed before it is returned.
**   <tr><td>2<td>If createFlag is set to 2, then SQLite is not holding any
**                pinned pages associated with the specific cache passed
**                as the first argument to xFetch() that can be unpinned. The
**                cache implementation should attempt to allocate a new
**                cache entry and return a pointer to it. Again, the first
**                sizeof(void*) bytes of the page should be zeroed before 
**                it is returned. If the xFetch() method returns NULL when 
**                createFlag==2, SQLite assumes that a memory allocation 
**                failed and returns SQLITE_NOMEM to the user.
** </table>







**
** xUnpin() is called by SQLite with a pointer to a currently pinned page
** as its second argument. If the third parameter, discard, is non-zero,
** then the page should be evicted from the cache. In this case SQLite 
** assumes that the next time the page is retrieved from the cache using
** the xFetch() method, it will be zeroed. If the discard parameter is
** zero, then the page is considered to be unpinned. The cache implementation
** may choose to reclaim (free or recycle) unpinned pages at any time.
** SQLite assumes that next time the page is retrieved from the cache
** it will either be zeroed, or contain the same data that it did when it
** was unpinned.
**
** The cache is not required to perform any reference counting. A single 
** call to xUnpin() unpins the page regardless of the number of prior calls 
** to xFetch().
**
** The xRekey() method is used to change the key value associated with the
** page passed as the second argument from oldKey to newKey. If the cache







>





|


|
|



|
|
>
>





|
>
>
|
|

>
>
>
>
>
>
>
>
>
|
>
>

|
>
>
>
>
>
>
|
|

|
|
>
>
>





|
|


|





|

|
|
|
|
|


|
<
|
<
<
<
<
<
<
|
<
|
<
<
<
|
<
<
<
<
|

>
>
>
>
>
>
>







|
<
<
<







5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886

5887






5888

5889



5890




5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907



5908
5909
5910
5911
5912
5913
5914
**
** See [sqlite3_pcache_methods] for additional information.
*/
typedef struct sqlite3_pcache sqlite3_pcache;

/*
** CAPI3REF: Application Defined Page Cache.
** KEYWORDS: {page cache}
** EXPERIMENTAL
**
** The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can
** register an alternative page cache implementation by passing in an 
** instance of the sqlite3_pcache_methods structure. The majority of the 
** heap memory used by SQLite is used by the page cache to cache data read 
** from, or ready to be written to, the database file. By implementing a 
** custom page cache using this API, an application can control more 
** precisely the amount of memory consumed by SQLite, the way in which 
** that memory is allocated and released, and the policies used to 
** determine exactly which parts of a database file are cached and for 
** how long.
**
** The contents of the sqlite3_pcache_methods structure are copied to an
** internal buffer by SQLite within the call to [sqlite3_config].  Hence
** the application may discard the parameter after the call to
** [sqlite3_config()] returns.
**
** The xInit() method is called once for each call to [sqlite3_initialize()]
** (usually only once during the lifetime of the process). It is passed
** a copy of the sqlite3_pcache_methods.pArg value. It can be used to set
** up global structures and mutexes required by the custom page cache 
** implementation. 
**
** The xShutdown() method is called from within [sqlite3_shutdown()], 
** if the application invokes this API. It can be used to clean up 
** any outstanding resources before process shutdown, if required.
**
** SQLite holds a [SQLITE_MUTEX_RECURSIVE] mutex when it invokes
** the xInit method, so the xInit method need not be threadsafe.  The
** xShutdown method is only called from [sqlite3_shutdown()] so it does
** not need to be threadsafe either.  All other methods must be threadsafe
** in multithreaded applications.
**
** SQLite will never invoke xInit() more than once without an intervening
** call to xShutdown().
**
** The xCreate() method is used to construct a new cache instance.  SQLite
** will typically create one cache instance for each open database file,
** though this is not guaranteed. The
** first parameter, szPage, is the size in bytes of the pages that must
** be allocated by the cache.  szPage will not be a power of two.  szPage
** will the page size of the database file that is to be cached plus an
** increment (here called "R") of about 100 or 200.  SQLite will use the
** extra R bytes on each page to store metadata about the underlying
** database page on disk.  The value of R depends
** on the SQLite version, the target platform, and how SQLite was compiled.
** R is constant for a particular build of SQLite.  The second argument to
** xCreate(), bPurgeable, is true if the cache being created will
** be used to cache database pages of a file stored on disk, or
** false if it is used for an in-memory database. The cache implementation
** does not have to do anything special based with the value of bPurgeable;
** it is purely advisory.  On a cache where bPurgeable is false, SQLite will
** never invoke xUnpin() except to deliberately delete a page.
** In other words, a cache created with bPurgeable set to false will
** never contain any unpinned pages.
**
** The xCachesize() method may be called at any time by SQLite to set the
** suggested maximum cache-size (number of pages stored by) the cache
** instance passed as the first argument. This is the value configured using
** the SQLite "[PRAGMA cache_size]" command. As with the bPurgeable parameter,
** the implementation is not required to do anything with this
** value; it is advisory only.
**
** The xPagecount() method should return the number of pages currently
** stored in the cache.
** 
** The xFetch() method is used to fetch a page and return a pointer to it. 
** A 'page', in this context, is a buffer of szPage bytes aligned at an
** 8-byte boundary. The page to be fetched is determined by the key. The
** mimimum key value is 1. After it has been retrieved using xFetch, the page 
** is considered to be "pinned".
**
** If the requested page is already in the page cache, then the page cache
** implementation must return a pointer to the page buffer with its content
** intact.  If the requested page is not already in the cache, then the
** behavior of the cache implementation is determined by the value of the
** createFlag parameter passed to xFetch, according to the following table:
**
** <table border=1 width=85% align=center>
** <tr><th> createFlag <th> Behaviour when page is not already in cache

** <tr><td> 0 <td> Do not allocate a new page.  Return NULL.






** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.

**                 Otherwise return NULL.



** <tr><td> 2 <td> Make every effort to allocate a new page.  Only return




**                 NULL if allocating a new page is effectively impossible.
** </table>
**
** SQLite will normally invoke xFetch() with a createFlag of 0 or 1.  If
** a call to xFetch() with createFlag==1 returns NULL, then SQLite will
** attempt to unpin one or more cache pages by spilling the content of
** pinned pages to disk and synching the operating system disk cache. After
** attempting to unpin pages, the xFetch() method will be invoked again with
** a createFlag of 2.
**
** xUnpin() is called by SQLite with a pointer to a currently pinned page
** as its second argument. If the third parameter, discard, is non-zero,
** then the page should be evicted from the cache. In this case SQLite 
** assumes that the next time the page is retrieved from the cache using
** the xFetch() method, it will be zeroed. If the discard parameter is
** zero, then the page is considered to be unpinned. The cache implementation
** may choose to evict unpinned pages at any time.



**
** The cache is not required to perform any reference counting. A single 
** call to xUnpin() unpins the page regardless of the number of prior calls 
** to xFetch().
**
** The xRekey() method is used to change the key value associated with the
** page passed as the second argument from oldKey to newKey. If the cache
6149
6150
6151
6152
6153
6154
6155

6156
6157
6158
6159
6160
6161
6162
# undef double
#endif

#if 0
}  /* End of the 'extern "C"' block */
#endif
#endif


/************** End of sqlite3.h *********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include hash.h in the middle of sqliteInt.h ******************/
/************** Begin file hash.h ********************************************/
/*
** 2001 September 22







>







6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
# undef double
#endif

#if 0
}  /* End of the 'extern "C"' block */
#endif
#endif


/************** End of sqlite3.h *********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include hash.h in the middle of sqliteInt.h ******************/
/************** Begin file hash.h ********************************************/
/*
** 2001 September 22
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
** If compiling for a processor that lacks floating point support,
** substitute integer for floating-point
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite_int64
# define LONGDOUBLE_TYPE sqlite_int64
# ifndef SQLITE_BIG_DBL
#   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<60)
# endif
# define SQLITE_OMIT_DATETIME_FUNCS 1
# define SQLITE_OMIT_TRACE 1
# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
# undef SQLITE_HAVE_ISNAN
#endif
#ifndef SQLITE_BIG_DBL







|







6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
** If compiling for a processor that lacks floating point support,
** substitute integer for floating-point
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite_int64
# define LONGDOUBLE_TYPE sqlite_int64
# ifndef SQLITE_BIG_DBL
#   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
# endif
# define SQLITE_OMIT_DATETIME_FUNCS 1
# define SQLITE_OMIT_TRACE 1
# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
# undef SQLITE_HAVE_ISNAN
#endif
#ifndef SQLITE_BIG_DBL
6472
6473
6474
6475
6476
6477
6478




6479
6480
6481
6482
6483
6484
6485
** the default file format for new databases and the maximum file format
** that the library can read.
*/
#define SQLITE_MAX_FILE_FORMAT 4
#ifndef SQLITE_DEFAULT_FILE_FORMAT
# define SQLITE_DEFAULT_FILE_FORMAT 1
#endif





/*
** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
** on the command-line
*/
#ifndef SQLITE_TEMP_STORE
# define SQLITE_TEMP_STORE 1







>
>
>
>







6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
** the default file format for new databases and the maximum file format
** that the library can read.
*/
#define SQLITE_MAX_FILE_FORMAT 4
#ifndef SQLITE_DEFAULT_FILE_FORMAT
# define SQLITE_DEFAULT_FILE_FORMAT 1
#endif

#ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
# define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
#endif

/*
** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
** on the command-line
*/
#ifndef SQLITE_TEMP_STORE
# define SQLITE_TEMP_STORE 1
6716
6717
6718
6719
6720
6721
6722

6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
typedef struct ExprList ExprList;
typedef struct ExprSpan ExprSpan;
typedef struct FKey FKey;
typedef struct FuncDef FuncDef;
typedef struct FuncDefHash FuncDefHash;
typedef struct IdList IdList;
typedef struct Index Index;

typedef struct KeyClass KeyClass;
typedef struct KeyInfo KeyInfo;
typedef struct Lookaside Lookaside;
typedef struct LookasideSlot LookasideSlot;
typedef struct Module Module;
typedef struct NameContext NameContext;
typedef struct Parse Parse;
typedef struct Savepoint Savepoint;
typedef struct Select Select;
typedef struct SrcList SrcList;
typedef struct StrAccum StrAccum;
typedef struct Table Table;
typedef struct TableLock TableLock;
typedef struct Token Token;
typedef struct TriggerStack TriggerStack;
typedef struct TriggerStep TriggerStep;
typedef struct Trigger Trigger;
typedef struct UnpackedRecord UnpackedRecord;
typedef struct VTable VTable;
typedef struct Walker Walker;
typedef struct WherePlan WherePlan;
typedef struct WhereInfo WhereInfo;







>














|







6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
typedef struct ExprList ExprList;
typedef struct ExprSpan ExprSpan;
typedef struct FKey FKey;
typedef struct FuncDef FuncDef;
typedef struct FuncDefHash FuncDefHash;
typedef struct IdList IdList;
typedef struct Index Index;
typedef struct IndexSample IndexSample;
typedef struct KeyClass KeyClass;
typedef struct KeyInfo KeyInfo;
typedef struct Lookaside Lookaside;
typedef struct LookasideSlot LookasideSlot;
typedef struct Module Module;
typedef struct NameContext NameContext;
typedef struct Parse Parse;
typedef struct Savepoint Savepoint;
typedef struct Select Select;
typedef struct SrcList SrcList;
typedef struct StrAccum StrAccum;
typedef struct Table Table;
typedef struct TableLock TableLock;
typedef struct Token Token;
typedef struct TriggerPrg TriggerPrg;
typedef struct TriggerStep TriggerStep;
typedef struct Trigger Trigger;
typedef struct UnpackedRecord UnpackedRecord;
typedef struct VTable VTable;
typedef struct Walker Walker;
typedef struct WherePlan WherePlan;
typedef struct WhereInfo WhereInfo;
7029
7030
7031
7032
7033
7034
7035

7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062

7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073













7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103

7104
7105
7106
7107
7108
7109
7110

/*
** The names of the following types declared in vdbeInt.h are required
** for the VdbeOp definition.
*/
typedef struct VdbeFunc VdbeFunc;
typedef struct Mem Mem;


/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:
*/
struct VdbeOp {
  u8 opcode;          /* What operation to perform */
  signed char p4type; /* One of the P4_xxx constants for p4 */
  u8 opflags;         /* Not currently used */
  u8 p5;              /* Fifth parameter is an unsigned character */
  int p1;             /* First operand */
  int p2;             /* Second parameter (often the jump destination) */
  int p3;             /* The third parameter */
  union {             /* forth parameter */
    int i;                 /* Integer value if p4type==P4_INT32 */
    void *p;               /* Generic pointer */
    char *z;               /* Pointer to data for string (char array) types */
    i64 *pI64;             /* Used when p4type is P4_INT64 */
    double *pReal;         /* Used when p4type is P4_REAL */
    FuncDef *pFunc;        /* Used when p4type is P4_FUNCDEF */
    VdbeFunc *pVdbeFunc;   /* Used when p4type is P4_VDBEFUNC */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */

  } p4;
#ifdef SQLITE_DEBUG
  char *zComment;          /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
  int cnt;                 /* Number of times this instruction was executed */
  u64 cycles;              /* Total time spent executing this instruction */
#endif
};
typedef struct VdbeOp VdbeOp;














/*
** A smaller version of VdbeOp used for the VdbeAddOpList() function because
** it takes up less space.
*/
struct VdbeOpList {
  u8 opcode;          /* What operation to perform */
  signed char p1;     /* First operand */
  signed char p2;     /* Second parameter (often the jump destination) */
  signed char p3;     /* Third parameter */
};
typedef struct VdbeOpList VdbeOpList;

/*
** Allowed values of VdbeOp.p3type
*/
#define P4_NOTUSED    0   /* The P4 parameter is not used */
#define P4_DYNAMIC  (-1)  /* Pointer to a string obtained from sqliteMalloc() */
#define P4_STATIC   (-2)  /* Pointer to a static string */
#define P4_COLLSEQ  (-4)  /* P4 is a pointer to a CollSeq structure */
#define P4_FUNCDEF  (-5)  /* P4 is a pointer to a FuncDef structure */
#define P4_KEYINFO  (-6)  /* P4 is a pointer to a KeyInfo structure */
#define P4_VDBEFUNC (-7)  /* P4 is a pointer to a VdbeFunc structure */
#define P4_MEM      (-8)  /* P4 is a pointer to a Mem*    structure */
#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */
#define P4_VTAB     (-10) /* P4 is a pointer to an sqlite3_vtab structure */
#define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32    (-14) /* P4 is a 32-bit signed integer */
#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */


/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
** is made.  That copy is freed when the Vdbe is finalized.  But if the
** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used.  It still
** gets freed when the Vdbe is finalized so it still should be obtained
** from a single sqliteMalloc().  But no copy is made and the calling
** function should *not* try to free the KeyInfo.







>














|












>











>
>
>
>
>
>
>
>
>
>
>
>
>













|
















>







7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263

/*
** The names of the following types declared in vdbeInt.h are required
** for the VdbeOp definition.
*/
typedef struct VdbeFunc VdbeFunc;
typedef struct Mem Mem;
typedef struct SubProgram SubProgram;

/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:
*/
struct VdbeOp {
  u8 opcode;          /* What operation to perform */
  signed char p4type; /* One of the P4_xxx constants for p4 */
  u8 opflags;         /* Not currently used */
  u8 p5;              /* Fifth parameter is an unsigned character */
  int p1;             /* First operand */
  int p2;             /* Second parameter (often the jump destination) */
  int p3;             /* The third parameter */
  union {             /* fourth parameter */
    int i;                 /* Integer value if p4type==P4_INT32 */
    void *p;               /* Generic pointer */
    char *z;               /* Pointer to data for string (char array) types */
    i64 *pI64;             /* Used when p4type is P4_INT64 */
    double *pReal;         /* Used when p4type is P4_REAL */
    FuncDef *pFunc;        /* Used when p4type is P4_FUNCDEF */
    VdbeFunc *pVdbeFunc;   /* Used when p4type is P4_VDBEFUNC */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */
  } p4;
#ifdef SQLITE_DEBUG
  char *zComment;          /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
  int cnt;                 /* Number of times this instruction was executed */
  u64 cycles;              /* Total time spent executing this instruction */
#endif
};
typedef struct VdbeOp VdbeOp;


/*
** A sub-routine used to implement a trigger program.
*/
struct SubProgram {
  VdbeOp *aOp;                  /* Array of opcodes for sub-program */
  int nOp;                      /* Elements in aOp[] */
  int nMem;                     /* Number of memory cells required */
  int nCsr;                     /* Number of cursors required */
  int nRef;                     /* Number of pointers to this structure */
  void *token;                  /* id that may be used to recursive triggers */
};

/*
** A smaller version of VdbeOp used for the VdbeAddOpList() function because
** it takes up less space.
*/
struct VdbeOpList {
  u8 opcode;          /* What operation to perform */
  signed char p1;     /* First operand */
  signed char p2;     /* Second parameter (often the jump destination) */
  signed char p3;     /* Third parameter */
};
typedef struct VdbeOpList VdbeOpList;

/*
** Allowed values of VdbeOp.p4type
*/
#define P4_NOTUSED    0   /* The P4 parameter is not used */
#define P4_DYNAMIC  (-1)  /* Pointer to a string obtained from sqliteMalloc() */
#define P4_STATIC   (-2)  /* Pointer to a static string */
#define P4_COLLSEQ  (-4)  /* P4 is a pointer to a CollSeq structure */
#define P4_FUNCDEF  (-5)  /* P4 is a pointer to a FuncDef structure */
#define P4_KEYINFO  (-6)  /* P4 is a pointer to a KeyInfo structure */
#define P4_VDBEFUNC (-7)  /* P4 is a pointer to a VdbeFunc structure */
#define P4_MEM      (-8)  /* P4 is a pointer to a Mem*    structure */
#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */
#define P4_VTAB     (-10) /* P4 is a pointer to an sqlite3_vtab structure */
#define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32    (-14) /* P4 is a 32-bit signed integer */
#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
#define P4_SUBPROGRAM  (-18) /* P4 is a pointer to a SubProgram structure */

/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
** is made.  That copy is freed when the Vdbe is finalized.  But if the
** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used.  It still
** gets freed when the Vdbe is finalized so it still should be obtained
** from a single sqliteMalloc().  But no copy is made and the calling
** function should *not* try to free the KeyInfo.
7175
7176
7177
7178
7179
7180
7181

7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
#define OP_Copy                                20
#define OP_Trace                               21
#define OP_Function                            22
#define OP_IfNeg                               23
#define OP_And                                 67   /* same as TK_AND      */
#define OP_Subtract                            85   /* same as TK_MINUS    */
#define OP_Noop                                24

#define OP_Return                              25
#define OP_Remainder                           88   /* same as TK_REM      */
#define OP_NewRowid                            26
#define OP_Multiply                            86   /* same as TK_STAR     */
#define OP_Variable                            27
#define OP_String                              28
#define OP_RealAffinity                        29
#define OP_VRename                             30
#define OP_ParseSchema                         31
#define OP_VOpen                               32
#define OP_Close                               33
#define OP_CreateIndex                         34
#define OP_IsUnique                            35
#define OP_NotFound                            36
#define OP_Int64                               37
#define OP_MustBeInt                           38
#define OP_Halt                                39
#define OP_Rowid                               40
#define OP_IdxLT                               41
#define OP_AddImm                              42
#define OP_Statement                           43
#define OP_RowData                             44
#define OP_MemMax                              45
#define OP_Or                                  66   /* same as TK_OR       */
#define OP_NotExists                           46
#define OP_Gosub                               47
#define OP_Divide                              87   /* same as TK_SLASH    */
#define OP_Integer                             48







>
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<







7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355

7356
7357
7358
7359
7360
7361
7362
#define OP_Copy                                20
#define OP_Trace                               21
#define OP_Function                            22
#define OP_IfNeg                               23
#define OP_And                                 67   /* same as TK_AND      */
#define OP_Subtract                            85   /* same as TK_MINUS    */
#define OP_Noop                                24
#define OP_Program                             25
#define OP_Return                              26
#define OP_Remainder                           88   /* same as TK_REM      */
#define OP_NewRowid                            27
#define OP_Multiply                            86   /* same as TK_STAR     */
#define OP_Variable                            28
#define OP_String                              29
#define OP_RealAffinity                        30
#define OP_VRename                             31
#define OP_ParseSchema                         32
#define OP_VOpen                               33
#define OP_Close                               34
#define OP_CreateIndex                         35
#define OP_IsUnique                            36
#define OP_NotFound                            37
#define OP_Int64                               38
#define OP_MustBeInt                           39
#define OP_Halt                                40
#define OP_Rowid                               41
#define OP_IdxLT                               42
#define OP_AddImm                              43

#define OP_RowData                             44
#define OP_MemMax                              45
#define OP_Or                                  66   /* same as TK_OR       */
#define OP_NotExists                           46
#define OP_Gosub                               47
#define OP_Divide                              87   /* same as TK_SLASH    */
#define OP_Integer                             48
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228

7229
7230
7231
7232
7233
7234
7235
#define OP_Last                                54
#define OP_SeekLe                              55
#define OP_IsNull                              71   /* same as TK_ISNULL   */
#define OP_IncrVacuum                          56
#define OP_IdxRowid                            57
#define OP_ShiftRight                          83   /* same as TK_RSHIFT   */
#define OP_ResetCount                          58
#define OP_ContextPush                         59
#define OP_Yield                               60
#define OP_DropTrigger                         61
#define OP_DropIndex                           62

#define OP_IdxGE                               63
#define OP_IdxDelete                           64
#define OP_Vacuum                              65
#define OP_IfNot                               68
#define OP_DropTable                           69
#define OP_SeekLt                              70
#define OP_MakeRecord                          79







<
|
|
|
>







7371
7372
7373
7374
7375
7376
7377

7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
#define OP_Last                                54
#define OP_SeekLe                              55
#define OP_IsNull                              71   /* same as TK_ISNULL   */
#define OP_IncrVacuum                          56
#define OP_IdxRowid                            57
#define OP_ShiftRight                          83   /* same as TK_RSHIFT   */
#define OP_ResetCount                          58

#define OP_Yield                               59
#define OP_DropTrigger                         60
#define OP_DropIndex                           61
#define OP_Param                               62
#define OP_IdxGE                               63
#define OP_IdxDelete                           64
#define OP_Vacuum                              65
#define OP_IfNot                               68
#define OP_DropTable                           69
#define OP_SeekLt                              70
#define OP_MakeRecord                          79
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289


7290
7291
7292
7293
7294
7295
7296
#define OP_Clear                               98
#define OP_Le                                  76   /* same as TK_LE       */
#define OP_VerifyCookie                        99
#define OP_AggStep                            100
#define OP_ToText                             139   /* same as TK_TO_TEXT  */
#define OP_Not                                 19   /* same as TK_NOT      */
#define OP_ToReal                             143   /* same as TK_TO_REAL  */
#define OP_SetNumColumns                      101
#define OP_Transaction                        102
#define OP_VFilter                            103
#define OP_Ne                                  73   /* same as TK_NE       */
#define OP_VDestroy                           104
#define OP_ContextPop                         105
#define OP_BitOr                               81   /* same as TK_BITOR    */
#define OP_Next                               106
#define OP_Count                              107
#define OP_IdxInsert                          108
#define OP_Lt                                  77   /* same as TK_LT       */
#define OP_SeekGe                             109
#define OP_Insert                             110
#define OP_Destroy                            111
#define OP_ReadCookie                         112
#define OP_RowSetTest                         113
#define OP_LoadAnalysis                       114
#define OP_Explain                            115
#define OP_HaltIfNull                         116
#define OP_OpenPseudo                         117
#define OP_OpenEphemeral                      118
#define OP_Null                               119
#define OP_Move                               120
#define OP_Blob                               121
#define OP_Add                                 84   /* same as TK_PLUS     */
#define OP_Rewind                             122
#define OP_SeekGt                             123
#define OP_VBegin                             124
#define OP_VUpdate                            125
#define OP_IfZero                             126
#define OP_BitNot                              93   /* same as TK_BITNOT   */
#define OP_VCreate                            127
#define OP_Found                              128
#define OP_IfPos                              129
#define OP_NullRow                            131
#define OP_Jump                               132
#define OP_Permutation                        133

/* The following opcode values are never used */


#define OP_NotUsed_134                        134
#define OP_NotUsed_135                        135
#define OP_NotUsed_136                        136
#define OP_NotUsed_137                        137
#define OP_NotUsed_138                        138









<
|
|

|
<

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|


>
>







7397
7398
7399
7400
7401
7402
7403

7404
7405
7406
7407

7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
#define OP_Clear                               98
#define OP_Le                                  76   /* same as TK_LE       */
#define OP_VerifyCookie                        99
#define OP_AggStep                            100
#define OP_ToText                             139   /* same as TK_TO_TEXT  */
#define OP_Not                                 19   /* same as TK_NOT      */
#define OP_ToReal                             143   /* same as TK_TO_REAL  */

#define OP_Transaction                        101
#define OP_VFilter                            102
#define OP_Ne                                  73   /* same as TK_NE       */
#define OP_VDestroy                           103

#define OP_BitOr                               81   /* same as TK_BITOR    */
#define OP_Next                               104
#define OP_Count                              105
#define OP_IdxInsert                          106
#define OP_Lt                                  77   /* same as TK_LT       */
#define OP_SeekGe                             107
#define OP_Insert                             108
#define OP_Destroy                            109
#define OP_ReadCookie                         110
#define OP_RowSetTest                         111
#define OP_LoadAnalysis                       112
#define OP_Explain                            113
#define OP_HaltIfNull                         114
#define OP_OpenPseudo                         115
#define OP_OpenEphemeral                      116
#define OP_Null                               117
#define OP_Move                               118
#define OP_Blob                               119
#define OP_Add                                 84   /* same as TK_PLUS     */
#define OP_Rewind                             120
#define OP_SeekGt                             121
#define OP_VBegin                             122
#define OP_VUpdate                            123
#define OP_IfZero                             124
#define OP_BitNot                              93   /* same as TK_BITNOT   */
#define OP_VCreate                            125
#define OP_Found                              126
#define OP_IfPos                              127
#define OP_NullRow                            128
#define OP_Jump                               129
#define OP_Permutation                        131

/* The following opcode values are never used */
#define OP_NotUsed_132                        132
#define OP_NotUsed_133                        133
#define OP_NotUsed_134                        134
#define OP_NotUsed_135                        135
#define OP_NotUsed_136                        136
#define OP_NotUsed_137                        137
#define OP_NotUsed_138                        138


7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
#define OPFLG_IN2             0x0008  /* in2:   P2 is an input */
#define OPFLG_IN3             0x0010  /* in3:   P3 is an input */
#define OPFLG_OUT3            0x0020  /* out3:  P3 is an output */
#define OPFLG_INITIALIZER {\
/*   0 */ 0x00, 0x01, 0x00, 0x00, 0x10, 0x08, 0x02, 0x00,\
/*   8 */ 0x00, 0x04, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00,\
/*  16 */ 0x02, 0x00, 0x01, 0x04, 0x04, 0x00, 0x00, 0x05,\
/*  24 */ 0x00, 0x04, 0x02, 0x00, 0x02, 0x04, 0x00, 0x00,\
/*  32 */ 0x00, 0x00, 0x02, 0x11, 0x11, 0x02, 0x05, 0x00,\
/*  40 */ 0x02, 0x11, 0x04, 0x00, 0x00, 0x0c, 0x11, 0x01,\
/*  48 */ 0x02, 0x01, 0x21, 0x08, 0x00, 0x02, 0x01, 0x11,\
/*  56 */ 0x01, 0x02, 0x00, 0x00, 0x04, 0x00, 0x00, 0x11,\
/*  64 */ 0x00, 0x00, 0x2c, 0x2c, 0x05, 0x00, 0x11, 0x05,\
/*  72 */ 0x05, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x00,\
/*  80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\
/*  88 */ 0x2c, 0x2c, 0x00, 0x00, 0x00, 0x04, 0x02, 0x00,\
/*  96 */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,\
/* 104 */ 0x00, 0x00, 0x01, 0x02, 0x08, 0x11, 0x00, 0x02,\
/* 112 */ 0x02, 0x15, 0x00, 0x00, 0x10, 0x00, 0x00, 0x02,\
/* 120 */ 0x00, 0x02, 0x01, 0x11, 0x00, 0x00, 0x05, 0x00,\
/* 128 */ 0x11, 0x05, 0x02, 0x00, 0x01, 0x00, 0x00, 0x00,\
/* 136 */ 0x00, 0x00, 0x00, 0x04, 0x04, 0x04, 0x04, 0x04,\
}

/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/

/*







|
|
|

|




|
|
|
|
|







7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
#define OPFLG_IN2             0x0008  /* in2:   P2 is an input */
#define OPFLG_IN3             0x0010  /* in3:   P3 is an input */
#define OPFLG_OUT3            0x0020  /* out3:  P3 is an output */
#define OPFLG_INITIALIZER {\
/*   0 */ 0x00, 0x01, 0x00, 0x00, 0x10, 0x08, 0x02, 0x00,\
/*   8 */ 0x00, 0x04, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00,\
/*  16 */ 0x02, 0x00, 0x01, 0x04, 0x04, 0x00, 0x00, 0x05,\
/*  24 */ 0x00, 0x01, 0x04, 0x02, 0x00, 0x02, 0x04, 0x00,\
/*  32 */ 0x00, 0x00, 0x00, 0x02, 0x11, 0x11, 0x02, 0x05,\
/*  40 */ 0x00, 0x02, 0x11, 0x04, 0x00, 0x08, 0x11, 0x01,\
/*  48 */ 0x02, 0x01, 0x21, 0x08, 0x00, 0x02, 0x01, 0x11,\
/*  56 */ 0x01, 0x02, 0x00, 0x04, 0x00, 0x00, 0x02, 0x11,\
/*  64 */ 0x00, 0x00, 0x2c, 0x2c, 0x05, 0x00, 0x11, 0x05,\
/*  72 */ 0x05, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x00,\
/*  80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\
/*  88 */ 0x2c, 0x2c, 0x00, 0x00, 0x00, 0x04, 0x02, 0x00,\
/*  96 */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,\
/* 104 */ 0x01, 0x02, 0x08, 0x11, 0x00, 0x02, 0x02, 0x15,\
/* 112 */ 0x00, 0x00, 0x10, 0x00, 0x00, 0x02, 0x00, 0x02,\
/* 120 */ 0x01, 0x11, 0x00, 0x00, 0x05, 0x00, 0x11, 0x05,\
/* 128 */ 0x00, 0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 136 */ 0x00, 0x00, 0x00, 0x04, 0x04, 0x04, 0x04, 0x04,\
}

/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/

/*
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357

7358
7359
7360
7361
7362
7363
7364
7365
7366
7367


7368
7369
7370
7371
7372
7373
7374
SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int);
SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int);
SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*);
#ifdef SQLITE_DEBUG

SQLITE_PRIVATE   void sqlite3VdbeTrace(Vdbe*,FILE*);
#endif
SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*);
SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int);
SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*);
SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*);



#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
SQLITE_PRIVATE int sqlite3VdbeReleaseMemory(int);
#endif
SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,char*,int);
SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*);
SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);







|




>










>
>







7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int,int,int);
SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int);
SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*);
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE   int sqlite3VdbeAssertMayAbort(Vdbe *, int);
SQLITE_PRIVATE   void sqlite3VdbeTrace(Vdbe*,FILE*);
#endif
SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*);
SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int);
SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*);
SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*);
SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*);
SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*);
SQLITE_PRIVATE void sqlite3VdbeProgramDelete(sqlite3 *, SubProgram *, int);

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
SQLITE_PRIVATE int sqlite3VdbeReleaseMemory(int);
#endif
SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,char*,int);
SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*);
SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
7947
7948
7949
7950
7951
7952
7953





7954
7955
7956
7957
7958
7959
7960
**
*/
#define PENDING_BYTE      sqlite3PendingByte
#define RESERVED_BYTE     (PENDING_BYTE+1)
#define SHARED_FIRST      (PENDING_BYTE+2)
#define SHARED_SIZE       510






/* 
** Functions for accessing sqlite3_file methods 
*/
SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*);
SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset);
SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset);
SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size);







>
>
>
>
>







8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
**
*/
#define PENDING_BYTE      sqlite3PendingByte
#define RESERVED_BYTE     (PENDING_BYTE+1)
#define SHARED_FIRST      (PENDING_BYTE+2)
#define SHARED_SIZE       510

/*
** Wrapper around OS specific sqlite3_os_init() function.
*/
SQLITE_PRIVATE int sqlite3OsInit(void);

/* 
** Functions for accessing sqlite3_file methods 
*/
SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*);
SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset);
SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset);
SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size);
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
#define DB_UnresetViews    0x0002  /* Some views have defined column names */
#define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */

/*
** The number of different kinds of things that can be limited
** using the sqlite3_limit() interface.
*/
#define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1)

/*
** Lookaside malloc is a set of fixed-size buffers that can be used
** to satisfy small transient memory allocation requests for objects
** associated with a particular database connection.  The use of
** lookaside malloc provides a significant performance enhancement
** (approx 10%) by avoiding numerous malloc/free requests while parsing







|







8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
#define DB_UnresetViews    0x0002  /* Some views have defined column names */
#define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */

/*
** The number of different kinds of things that can be limited
** using the sqlite3_limit() interface.
*/
#define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1)

/*
** Lookaside malloc is a set of fixed-size buffers that can be used
** to satisfy small transient memory allocation requests for objects
** associated with a particular database connection.  The use of
** lookaside malloc provides a significant performance enhancement
** (approx 10%) by avoiding numerous malloc/free requests while parsing
8348
8349
8350
8351
8352
8353
8354

8355
8356
8357
8358
8359
8360
8361
#define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */
#define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
#define SQLITE_FullFSync      0x00010000  /* Use full fsync on the backend */
#define SQLITE_LoadExtension  0x00020000  /* Enable load_extension */

#define SQLITE_RecoveryMode   0x00040000  /* Ignore schema errors */
#define SQLITE_ReverseOrder   0x00100000  /* Reverse unordered SELECTs */


/*
** Possible values for the sqlite.magic field.
** The numbers are obtained at random and have no special meaning, other
** than being distinct from one another.
*/
#define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */







>







8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
#define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */
#define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
#define SQLITE_FullFSync      0x00010000  /* Use full fsync on the backend */
#define SQLITE_LoadExtension  0x00020000  /* Enable load_extension */

#define SQLITE_RecoveryMode   0x00040000  /* Ignore schema errors */
#define SQLITE_ReverseOrder   0x00100000  /* Reverse unordered SELECTs */
#define SQLITE_RecTriggers    0x00200000  /* Enable recursive triggers */

/*
** Possible values for the sqlite.magic field.
** The numbers are obtained at random and have no special meaning, other
** than being distinct from one another.
*/
#define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
8849
8850
8851
8852
8853
8854
8855














8856
8857
8858
8859
8860
8861
8862
  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
  char *zColAff;   /* String defining the affinity of each column */
  Index *pNext;    /* The next index associated with the same table */
  Schema *pSchema; /* Schema containing this index */
  u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
  char **azColl;   /* Array of collation sequence names for index */














};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and







>
>
>
>
>
>
>
>
>
>
>
>
>
>







9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
  char *zColAff;   /* String defining the affinity of each column */
  Index *pNext;    /* The next index associated with the same table */
  Schema *pSchema; /* Schema containing this index */
  u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
  char **azColl;   /* Array of collation sequence names for index */
  IndexSample *aSample;    /* Array of SQLITE_INDEX_SAMPLES samples */
};

/*
** Each sample stored in the sqlite_stat2 table is represented in memory 
** using a structure of this type.
*/
struct IndexSample {
  union {
    char *z;        /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
    double r;       /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */
  } u;
  u8 eType;         /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
  u8 nByte;         /* Size in byte of text or blob. */
};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
8999
9000
9001
9002
9003
9004
9005
9006

9007
9008
9009
9010

9011
9012
9013
9014
9015
9016
9017

  /* If the EP_Reduced flag is set in the Expr.flags mask, then no
  ** space is allocated for the fields below this point. An attempt to
  ** access them will result in a segfault or malfunction.
  *********************************************************************/

  int iTable;            /* TK_COLUMN: cursor number of table holding column
                         ** TK_REGISTER: register number */

  i16 iColumn;           /* TK_COLUMN: column index.  -1 for rowid */
  i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  u16 flags2;            /* Second set of flags.  EP2_... */

  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  Table *pTab;           /* Table for TK_COLUMN expressions. */
#if SQLITE_MAX_EXPR_DEPTH>0
  int nHeight;           /* Height of the tree headed by this node */
#endif
};








|
>



|
>







9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195

  /* If the EP_Reduced flag is set in the Expr.flags mask, then no
  ** space is allocated for the fields below this point. An attempt to
  ** access them will result in a segfault or malfunction.
  *********************************************************************/

  int iTable;            /* TK_COLUMN: cursor number of table holding column
                         ** TK_REGISTER: register number
                         ** TK_TRIGGER: 1 -> new, 0 -> old */
  i16 iColumn;           /* TK_COLUMN: column index.  -1 for rowid */
  i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  u8 flags2;             /* Second set of flags.  EP2_... */
  u8 op2;                /* If a TK_REGISTER, the original value of Expr.op */
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  Table *pTab;           /* Table for TK_COLUMN expressions. */
#if SQLITE_MAX_EXPR_DEPTH>0
  int nHeight;           /* Height of the tree headed by this node */
#endif
};

9437
9438
9439
9440
9441
9442
9443

























9444
9445
9446
9447
9448
9449
9450
/*
** Size of the column cache
*/
#ifndef SQLITE_N_COLCACHE
# define SQLITE_N_COLCACHE 10
#endif


























/*
** An SQL parser context.  A copy of this structure is passed through
** the parser and down into all the parser action routine in order to
** carry around information that is global to the entire parse.
**
** The structure is divided into two parts.  When the parser and code
** generate call themselves recursively, the first part of the structure







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
/*
** Size of the column cache
*/
#ifndef SQLITE_N_COLCACHE
# define SQLITE_N_COLCACHE 10
#endif

/*
** At least one instance of the following structure is created for each 
** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
** statement. All such objects are stored in the linked list headed at
** Parse.pTriggerPrg and deleted once statement compilation has been
** completed.
**
** A Vdbe sub-program that implements the body and WHEN clause of trigger
** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
** The Parse.pTriggerPrg list never contains two entries with the same
** values for both pTrigger and orconf.
**
** The TriggerPrg.oldmask variable is set to a mask of old.* columns
** accessed (or set to 0 for triggers fired as a result of INSERT 
** statements).
*/
struct TriggerPrg {
  Trigger *pTrigger;      /* Trigger this program was coded from */
  int orconf;             /* Default ON CONFLICT policy */
  SubProgram *pProgram;   /* Program implementing pTrigger/orconf */
  u32 oldmask;            /* Mask of old.* columns accessed */
  TriggerPrg *pNext;      /* Next entry in Parse.pTriggerPrg list */
};

/*
** An SQL parser context.  A copy of this structure is passed through
** the parser and down into all the parser action routine in order to
** carry around information that is global to the entire parse.
**
** The structure is divided into two parts.  When the parser and code
** generate call themselves recursively, the first part of the structure
9488
9489
9490
9491
9492
9493
9494


9495
9496
9497
9498
9499
9500
9501
9502
9503








9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530

9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555

9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
    u8 tempReg;           /* iReg is a temp register that needs to be freed */
    int iLevel;           /* Nesting level */
    int iReg;             /* Reg with value of this column. 0 means none. */
    int lru;              /* Least recently used entry has the smallest value */
  } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
  u32 writeMask;       /* Start a write transaction on these databases */
  u32 cookieMask;      /* Bitmask of schema verified databases */


  int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */
  int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
#ifndef SQLITE_OMIT_SHARED_CACHE
  int nTableLock;        /* Number of locks in aTableLock */
  TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
  int regRowid;        /* Register holding rowid of CREATE TABLE entry */
  int regRoot;         /* Register holding root page number for new objects */
  AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */









  /* Above is constant between recursions.  Below is reset before and after
  ** each recursion */

  int nVar;            /* Number of '?' variables seen in the SQL so far */
  int nVarExpr;        /* Number of used slots in apVarExpr[] */
  int nVarExprAlloc;   /* Number of allocated slots in apVarExpr[] */
  Expr **apVarExpr;    /* Pointers to :aaa and $aaaa wildcard expressions */
  int nAlias;          /* Number of aliased result set columns */
  int nAliasAlloc;     /* Number of allocated slots for aAlias[] */
  int *aAlias;         /* Register used to hold aliased result */
  u8 explain;          /* True if the EXPLAIN flag is found on the query */
  Token sNameToken;    /* Token with unqualified schema object name */
  Token sLastToken;    /* The last token parsed */
  const char *zTail;   /* All SQL text past the last semicolon parsed */
  Table *pNewTable;    /* A table being constructed by CREATE TABLE */
  Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
  TriggerStack *trigStack;  /* Trigger actions being coded */
  const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  Token sArg;                /* Complete text of a module argument */
  u8 declareVtab;            /* True if inside sqlite3_declare_vtab() */
  int nVtabLock;             /* Number of virtual tables to lock */
  Table **apVtabLock;        /* Pointer to virtual tables needing locking */
#endif
  int nHeight;            /* Expression tree height of current sub-select */
  Table *pZombieTab;      /* List of Table objects to delete after code gen */

};

#ifdef SQLITE_OMIT_VIRTUALTABLE
  #define IN_DECLARE_VTAB 0
#else
  #define IN_DECLARE_VTAB (pParse->declareVtab)
#endif

/*
** An instance of the following structure can be declared on a stack and used
** to save the Parse.zAuthContext value so that it can be restored later.
*/
struct AuthContext {
  const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
  Parse *pParse;              /* The Parse structure */
};

/*
** Bitfield flags for P5 value in OP_Insert and OP_Delete
*/
#define OPFLAG_NCHANGE    1    /* Set to update db->nChange */
#define OPFLAG_LASTROWID  2    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE   4    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND     8    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 16    /* Try to avoid a seek in BtreeInsert() */


/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger. 
 *
 * Pointers to instances of struct Trigger are stored in two ways.
 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 
 *    database). This allows Trigger structures to be retrieved by name.
 * 2. All triggers associated with a single table form a linked list, using the
 *    pNext member of struct Trigger. A pointer to the first element of the
 *    linked list is stored as the "pTrigger" member of the associated
 *    struct Table.
 *
 * The "step_list" member points to the first element of a linked list
 * containing the SQL statements specified as the trigger program.
 */
struct Trigger {
  char *name;             /* The name of the trigger                        */
  char *table;            /* The table or view to which the trigger applies */
  u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
  u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
  Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
  IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
                             the <column-list> is stored here */
  Schema *pSchema;        /* Schema containing the trigger */







>
>









>
>
>
>
>
>
>
>

















<









>




















|
|
|
|
|
>

















|







9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733

9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
    u8 tempReg;           /* iReg is a temp register that needs to be freed */
    int iLevel;           /* Nesting level */
    int iReg;             /* Reg with value of this column. 0 means none. */
    int lru;              /* Least recently used entry has the smallest value */
  } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
  u32 writeMask;       /* Start a write transaction on these databases */
  u32 cookieMask;      /* Bitmask of schema verified databases */
  u8 isMultiWrite;     /* True if statement may affect/insert multiple rows */
  u8 mayAbort;         /* True if statement may throw an ABORT exception */
  int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */
  int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
#ifndef SQLITE_OMIT_SHARED_CACHE
  int nTableLock;        /* Number of locks in aTableLock */
  TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
  int regRowid;        /* Register holding rowid of CREATE TABLE entry */
  int regRoot;         /* Register holding root page number for new objects */
  AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
  int nMaxArg;         /* Max args passed to user function by sub-program */

  /* Information used while coding trigger programs. */
  Parse *pToplevel;    /* Parse structure for main program (or NULL) */
  Table *pTriggerTab;  /* Table triggers are being coded for */
  u32 oldmask;         /* Mask of old.* columns referenced */
  u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
  u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */

  /* Above is constant between recursions.  Below is reset before and after
  ** each recursion */

  int nVar;            /* Number of '?' variables seen in the SQL so far */
  int nVarExpr;        /* Number of used slots in apVarExpr[] */
  int nVarExprAlloc;   /* Number of allocated slots in apVarExpr[] */
  Expr **apVarExpr;    /* Pointers to :aaa and $aaaa wildcard expressions */
  int nAlias;          /* Number of aliased result set columns */
  int nAliasAlloc;     /* Number of allocated slots for aAlias[] */
  int *aAlias;         /* Register used to hold aliased result */
  u8 explain;          /* True if the EXPLAIN flag is found on the query */
  Token sNameToken;    /* Token with unqualified schema object name */
  Token sLastToken;    /* The last token parsed */
  const char *zTail;   /* All SQL text past the last semicolon parsed */
  Table *pNewTable;    /* A table being constructed by CREATE TABLE */
  Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */

  const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  Token sArg;                /* Complete text of a module argument */
  u8 declareVtab;            /* True if inside sqlite3_declare_vtab() */
  int nVtabLock;             /* Number of virtual tables to lock */
  Table **apVtabLock;        /* Pointer to virtual tables needing locking */
#endif
  int nHeight;            /* Expression tree height of current sub-select */
  Table *pZombieTab;      /* List of Table objects to delete after code gen */
  TriggerPrg *pTriggerPrg;    /* Linked list of coded triggers */
};

#ifdef SQLITE_OMIT_VIRTUALTABLE
  #define IN_DECLARE_VTAB 0
#else
  #define IN_DECLARE_VTAB (pParse->declareVtab)
#endif

/*
** An instance of the following structure can be declared on a stack and used
** to save the Parse.zAuthContext value so that it can be restored later.
*/
struct AuthContext {
  const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
  Parse *pParse;              /* The Parse structure */
};

/*
** Bitfield flags for P5 value in OP_Insert and OP_Delete
*/
#define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
#define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_CLEARCACHE    0x20    /* Clear pseudo-table cache in OP_Column */

/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger. 
 *
 * Pointers to instances of struct Trigger are stored in two ways.
 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 
 *    database). This allows Trigger structures to be retrieved by name.
 * 2. All triggers associated with a single table form a linked list, using the
 *    pNext member of struct Trigger. A pointer to the first element of the
 *    linked list is stored as the "pTrigger" member of the associated
 *    struct Table.
 *
 * The "step_list" member points to the first element of a linked list
 * containing the SQL statements specified as the trigger program.
 */
struct Trigger {
  char *zName;            /* The name of the trigger                        */
  char *table;            /* The table or view to which the trigger applies */
  u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
  u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
  Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
  IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
                             the <column-list> is stored here */
  Schema *pSchema;        /* Schema containing the trigger */
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
  Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
  ExprList *pExprList; /* SET clause for UPDATE.  VALUES clause for INSERT */
  IdList *pIdList;     /* Column names for INSERT */
  TriggerStep *pNext;  /* Next in the link-list */
  TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
};

/*
 * An instance of struct TriggerStack stores information required during code
 * generation of a single trigger program. While the trigger program is being
 * coded, its associated TriggerStack instance is pointed to by the
 * "pTriggerStack" member of the Parse structure.
 *
 * The pTab member points to the table that triggers are being coded on. The 
 * newIdx member contains the index of the vdbe cursor that points at the temp
 * table that stores the new.* references. If new.* references are not valid
 * for the trigger being coded (for example an ON DELETE trigger), then newIdx
 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
 *
 * The ON CONFLICT policy to be used for the trigger program steps is stored 
 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 
 * specified for individual triggers steps is used.
 *
 * struct TriggerStack has a "pNext" member, to allow linked lists to be
 * constructed. When coding nested triggers (triggers fired by other triggers)
 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 
 * pointer. Once the nested trigger has been coded, the pNext value is restored
 * to the pTriggerStack member of the Parse stucture and coding of the parent
 * trigger continues.
 *
 * Before a nested trigger is coded, the linked list pointed to by the 
 * pTriggerStack is scanned to ensure that the trigger is not about to be coded
 * recursively. If this condition is detected, the nested trigger is not coded.
 */
struct TriggerStack {
  Table *pTab;         /* Table that triggers are currently being coded on */
  int newIdx;          /* Index of vdbe cursor to "new" temp table */
  int oldIdx;          /* Index of vdbe cursor to "old" temp table */
  u32 newColMask;
  u32 oldColMask;
  int orconf;          /* Current orconf policy */
  int ignoreJump;      /* where to jump to for a RAISE(IGNORE) */
  Trigger *pTrigger;   /* The trigger currently being coded */
  TriggerStack *pNext; /* Next trigger down on the trigger stack */
};

/*
** The following structure contains information used by the sqliteFix...
** routines as they walk the parse tree to make database references
** explicit.  
*/
typedef struct DbFixer DbFixer;
struct DbFixer {







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







9854
9855
9856
9857
9858
9859
9860







































9861
9862
9863
9864
9865
9866
9867
  Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
  ExprList *pExprList; /* SET clause for UPDATE.  VALUES clause for INSERT */
  IdList *pIdList;     /* Column names for INSERT */
  TriggerStep *pNext;  /* Next in the link-list */
  TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
};








































/*
** The following structure contains information used by the sqliteFix...
** routines as they walk the parse tree to make database references
** explicit.  
*/
typedef struct DbFixer DbFixer;
struct DbFixer {
9749
9750
9751
9752
9753
9754
9755

9756

9757
9758
9759
9760
9761
9762
9763
  int nPage;                        /* Number of pages in pPage[] */
  int mxParserStack;                /* maximum depth of the parser stack */
  int sharedCacheEnabled;           /* true if shared-cache mode enabled */
  /* The above might be initialized to non-zero.  The following need to always
  ** initially be zero, however. */
  int isInit;                       /* True after initialization has finished */
  int inProgress;                   /* True while initialization in progress */

  int isMallocInit;                 /* True after malloc is initialized */

  sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
  int nRefInitMutex;                /* Number of users of pInitMutex */
};

/*
** Context pointer passed down through the tree-walk.
*/







>

>







9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
  int nPage;                        /* Number of pages in pPage[] */
  int mxParserStack;                /* maximum depth of the parser stack */
  int sharedCacheEnabled;           /* true if shared-cache mode enabled */
  /* The above might be initialized to non-zero.  The following need to always
  ** initially be zero, however. */
  int isInit;                       /* True after initialization has finished */
  int inProgress;                   /* True while initialization in progress */
  int isMutexInit;                  /* True after mutexes are initialized */
  int isMallocInit;                 /* True after malloc is initialized */
  int isPCacheInit;                 /* True after malloc is initialized */
  sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
  int nRefInitMutex;                /* Number of users of pInitMutex */
};

/*
** Context pointer passed down through the tree-walk.
*/
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080


10081
10082
10083
10084
10085
10086
10087
SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
SQLITE_PRIVATE int sqlite3IsRowid(const char*);
SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
                                     int*,int,int,int,int,int*);
SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int,int,int);
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);


SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int);
SQLITE_PRIVATE void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);







|




|


>
>







10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
SQLITE_PRIVATE int sqlite3IsRowid(const char*);
SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
                                     int*,int,int,int,int,int*);
SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
SQLITE_PRIVATE void sqlite3MayAbort(Parse *);
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, char*, int);
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int);
SQLITE_PRIVATE void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124


10125
10126
10127
10128
10129
10130
10131


10132
10133
10134
10135
10136
10137
10138
SQLITE_PRIVATE   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
                           Expr*,int, int);
SQLITE_PRIVATE   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
SQLITE_PRIVATE   void sqlite3DropTrigger(Parse*, SrcList*, int);
SQLITE_PRIVATE   void sqlite3DropTriggerPtr(Parse*, Trigger*);
SQLITE_PRIVATE   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
SQLITE_PRIVATE   Trigger *sqlite3TriggerList(Parse *, Table *);
SQLITE_PRIVATE   int sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
                            int, int, int, int, u32*, u32*);
  void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
SQLITE_PRIVATE   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
SQLITE_PRIVATE   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
SQLITE_PRIVATE   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
                                        ExprList*,Select*,u8);
SQLITE_PRIVATE   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
SQLITE_PRIVATE   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
SQLITE_PRIVATE   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
SQLITE_PRIVATE   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);


#else
# define sqlite3TriggersExist(B,C,D,E,F) 0
# define sqlite3DeleteTrigger(A,B)
# define sqlite3DropTriggerPtr(A,B)
# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K,L) 0
# define sqlite3TriggerList(X, Y) 0


#endif

SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*);
SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int);
#ifndef SQLITE_OMIT_AUTHORIZATION
SQLITE_PRIVATE   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);







|
|









>
>





|

>
>







10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
SQLITE_PRIVATE   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
                           Expr*,int, int);
SQLITE_PRIVATE   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
SQLITE_PRIVATE   void sqlite3DropTrigger(Parse*, SrcList*, int);
SQLITE_PRIVATE   void sqlite3DropTriggerPtr(Parse*, Trigger*);
SQLITE_PRIVATE   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
SQLITE_PRIVATE   Trigger *sqlite3TriggerList(Parse *, Table *);
SQLITE_PRIVATE   void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
                            int, int, int, int);
  void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
SQLITE_PRIVATE   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
SQLITE_PRIVATE   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
SQLITE_PRIVATE   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
                                        ExprList*,Select*,u8);
SQLITE_PRIVATE   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
SQLITE_PRIVATE   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
SQLITE_PRIVATE   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
SQLITE_PRIVATE   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
SQLITE_PRIVATE   u32 sqlite3TriggerOldmask(Parse*,Trigger*,int,ExprList*,Table*,int);
# define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
#else
# define sqlite3TriggersExist(B,C,D,E,F) 0
# define sqlite3DeleteTrigger(A,B)
# define sqlite3DropTriggerPtr(A,B)
# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J)
# define sqlite3TriggerList(X, Y) 0
# define sqlite3ParseToplevel(p) p
# define sqlite3TriggerOldmask(A,B,C,D,E,F) 0
#endif

SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*);
SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int);
#ifndef SQLITE_OMIT_AUTHORIZATION
SQLITE_PRIVATE   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
*/
#define getVarint32(A,B)  (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B)))
#define putVarint32(A,B)  (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
#define getVarint    sqlite3GetVarint
#define putVarint    sqlite3PutVarint


SQLITE_PRIVATE void sqlite3IndexAffinityStr(Vdbe *, Index *);
SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *, Table *);
SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2);
SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr);
SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*);
SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...);
SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n);







|







10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
*/
#define getVarint32(A,B)  (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B)))
#define putVarint32(A,B)  (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
#define getVarint    sqlite3GetVarint
#define putVarint    sqlite3PutVarint


SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *, Table *);
SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2);
SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr);
SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*);
SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...);
SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
10220
10221
10222
10223
10224
10225
10226



10227
10228
10229
10230
10231
10232
10233
SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8);
SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8);
SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
                        void(*)(void*));
SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*);
SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int);



SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[];
SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config;
SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;







>
>
>







10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8);
SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8);
SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
                        void(*)(void*));
SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*);
SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int);
#ifdef SQLITE_ENABLE_STAT2
SQLITE_PRIVATE char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *);
#endif
SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[];
SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config;
SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257

10258
10259
10260
10261
10262
10263
10264
SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*);
SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*);
SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char*);
SQLITE_PRIVATE char sqlite3AffinityType(const char*);
SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*);
SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*);
SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *);
SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);

SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int);
SQLITE_PRIVATE void sqlite3SchemaFree(void *);
SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *);







|






>







10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*);
SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*);
SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*);
SQLITE_PRIVATE char sqlite3AffinityType(const char*);
SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*);
SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*);
SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *);
SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);
SQLITE_PRIVATE void sqlite3DeleteIndexSamples(Index*);
SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int);
SQLITE_PRIVATE void sqlite3SchemaFree(void *);
SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains definitions of global variables and contants.
**
** $Id: global.c,v 1.12 2009/02/05 16:31:46 drh Exp $
*/


/* An array to map all upper-case characters into their corresponding
** lower-case character. 
**
** SQLite only considers US-ASCII (or EBCDIC) characters.  We do not







<
<







10621
10622
10623
10624
10625
10626
10627


10628
10629
10630
10631
10632
10633
10634
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains definitions of global variables and contants.


*/


/* An array to map all upper-case characters into their corresponding
** lower-case character. 
**
** SQLite only considers US-ASCII (or EBCDIC) characters.  We do not
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584

10585

10586
10587
10588
10589
10590
10591
10592
   0,                         /* szScratch */
   0,                         /* nScratch */
   (void*)0,                  /* pPage */
   0,                         /* szPage */
   0,                         /* nPage */
   0,                         /* mxParserStack */
   0,                         /* sharedCacheEnabled */
   /* All the rest need to always be zero */
   0,                         /* isInit */
   0,                         /* inProgress */

   0,                         /* isMallocInit */

   0,                         /* pInitMutex */
   0,                         /* nRefInitMutex */
};


/*
** Hash table for global functions - functions common to all







|


>

>







10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
   0,                         /* szScratch */
   0,                         /* nScratch */
   (void*)0,                  /* pPage */
   0,                         /* szPage */
   0,                         /* nPage */
   0,                         /* mxParserStack */
   0,                         /* sharedCacheEnabled */
   /* All the rest should always be initialized to zero */
   0,                         /* isInit */
   0,                         /* inProgress */
   0,                         /* isMutexInit */
   0,                         /* isMallocInit */
   0,                         /* isPCacheInit */
   0,                         /* pInitMutex */
   0,                         /* nRefInitMutex */
};


/*
** Hash table for global functions - functions common to all
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
  } else {
    int s = (int)(x.s + 0.5);
    x.s = s;
  }
  x.tz = 0;
  x.validJD = 0;
  computeJD(&x);
  t = x.iJD/1000 - 21086676*(i64)10000;
#ifdef HAVE_LOCALTIME_R
  {
    struct tm sLocal;
    localtime_r(&t, &sLocal);
    y.Y = sLocal.tm_year + 1900;
    y.M = sLocal.tm_mon + 1;
    y.D = sLocal.tm_mday;







|







11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
  } else {
    int s = (int)(x.s + 0.5);
    x.s = s;
  }
  x.tz = 0;
  x.validJD = 0;
  computeJD(&x);
  t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
#ifdef HAVE_LOCALTIME_R
  {
    struct tm sLocal;
    localtime_r(&t, &sLocal);
    y.Y = sLocal.tm_year + 1900;
    y.M = sLocal.tm_mon + 1;
    y.D = sLocal.tm_mday;
11960
11961
11962
11963
11964
11965
11966




11967
11968
11969
11970
11971
11972
11973
11974
  const char *zPath, 
  sqlite3_file *pFile, 
  int flags, 
  int *pFlagsOut
){
  int rc;
  DO_OS_MALLOC_TEST(0);




  rc = pVfs->xOpen(pVfs, zPath, pFile, flags, pFlagsOut);
  assert( rc==SQLITE_OK || pFile->pMethods==0 );
  return rc;
}
SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
  return pVfs->xDelete(pVfs, zPath, dirSync);
}
SQLITE_PRIVATE int sqlite3OsAccess(







>
>
>
>
|







12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
  const char *zPath, 
  sqlite3_file *pFile, 
  int flags, 
  int *pFlagsOut
){
  int rc;
  DO_OS_MALLOC_TEST(0);
  /* 0x7f1f is a mask of SQLITE_OPEN_ flags that are valid to be passed
  ** down into the VFS layer.  Some SQLITE_OPEN_ flags (for example,
  ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before
  ** reaching the VFS. */
  rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x7f1f, pFlagsOut);
  assert( rc==SQLITE_OK || pFile->pMethods==0 );
  return rc;
}
SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
  return pVfs->xDelete(pVfs, zPath, dirSync);
}
SQLITE_PRIVATE int sqlite3OsAccess(
12035
12036
12037
12038
12039
12040
12041













12042
12043
12044
12045
12046
12047
12048
SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *pFile){
  int rc = SQLITE_OK;
  assert( pFile );
  rc = sqlite3OsClose(pFile);
  sqlite3_free(pFile);
  return rc;
}














/*
** The list of all registered VFS implementations.
*/
static sqlite3_vfs * SQLITE_WSD vfsList = 0;
#define vfsList GLOBAL(sqlite3_vfs *, vfsList)








>
>
>
>
>
>
>
>
>
>
>
>
>







12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *pFile){
  int rc = SQLITE_OK;
  assert( pFile );
  rc = sqlite3OsClose(pFile);
  sqlite3_free(pFile);
  return rc;
}

/*
** This function is a wrapper around the OS specific implementation of
** sqlite3_os_init(). The purpose of the wrapper is to provide the
** ability to simulate a malloc failure, so that the handling of an
** error in sqlite3_os_init() by the upper layers can be tested.
*/
SQLITE_PRIVATE int sqlite3OsInit(void){
  void *p = sqlite3_malloc(10);
  if( p==0 ) return SQLITE_NOMEM;
  sqlite3_free(p);
  return sqlite3_os_init();
}

/*
** The list of all registered VFS implementations.
*/
static sqlite3_vfs * SQLITE_WSD vfsList = 0;
#define vfsList GLOBAL(sqlite3_vfs *, vfsList)

13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598























13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610



13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663


13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674



13675
13676




13677
13678
13679
13680
13681
13682
13683
13684
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite. 
**
** This version of the memory allocation subsystem omits all
** use of malloc(). The SQLite user supplies a block of memory
** before calling sqlite3_initialize() from which allocations
** are made and returned by the xMalloc() and xRealloc() 
** implementations. Once sqlite3_initialize() has been called,
** the amount of memory available to SQLite is fixed and cannot
** be changed.
**
** This version of the memory allocation subsystem is included
** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
**
** $Id: mem5.c,v 1.19 2008/11/19 16:52:44 danielk1977 Exp $























*/

/*
** This version of the memory allocator is used only when 
** SQLITE_ENABLE_MEMSYS5 is defined.
*/
#ifdef SQLITE_ENABLE_MEMSYS5

/*
** A minimum allocation is an instance of the following structure.
** Larger allocations are an array of these structures where the
** size of the array is a power of 2.



*/
typedef struct Mem5Link Mem5Link;
struct Mem5Link {
  int next;       /* Index of next free chunk */
  int prev;       /* Index of previous free chunk */
};

/*
** Maximum size of any allocation is ((1<<LOGMAX)*mem5.nAtom). Since
** mem5.nAtom is always at least 8, this is not really a practical
** limitation.
*/
#define LOGMAX 30

/*
** Masks used for mem5.aCtrl[] elements.
*/
#define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block relative to POW2_MIN */
#define CTRL_FREE     0x20    /* True if not checked out */

/*
** All of the static variables used by this module are collected
** into a single structure named "mem5".  This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static SQLITE_WSD struct Mem5Global {
  /*
  ** Memory available for allocation
  */
  int nAtom;       /* Smallest possible allocation in bytes */
  int nBlock;      /* Number of nAtom sized blocks in zPool */
  u8 *zPool;
  
  /*
  ** Mutex to control access to the memory allocation subsystem.
  */
  sqlite3_mutex *mutex;

  /*
  ** Performance statistics
  */
  u64 nAlloc;         /* Total number of calls to malloc */
  u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
  u64 totalExcess;    /* Total internal fragmentation */
  u32 currentOut;     /* Current checkout, including internal fragmentation */
  u32 currentCount;   /* Current number of distinct checkouts */
  u32 maxOut;         /* Maximum instantaneous currentOut */
  u32 maxCount;       /* Maximum instantaneous currentCount */
  u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
  
  /*
  ** Lists of free blocks of various sizes.


  */
  int aiFreelist[LOGMAX+1];

  /*
  ** Space for tracking which blocks are checked out and the size
  ** of each block.  One byte per block.
  */
  u8 *aCtrl;

} mem5 = { 19804167 };




#define mem5 GLOBAL(struct Mem5Global, mem5)





#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.nAtom]))

/*
** Unlink the chunk at mem5.aPool[i] from list it is currently
** on.  It should be found on mem5.aiFreelist[iLogsize].
*/
static void memsys5Unlink(int i, int iLogsize){
  int next, prev;







|









|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>












>
>
>








|
|
|






|












|
|
|



















|
>
>









|

>
>
>


>
>
>
>
|







13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite. 
**
** This version of the memory allocation subsystem omits all
** use of malloc(). The application gives SQLite a block of memory
** before calling sqlite3_initialize() from which allocations
** are made and returned by the xMalloc() and xRealloc() 
** implementations. Once sqlite3_initialize() has been called,
** the amount of memory available to SQLite is fixed and cannot
** be changed.
**
** This version of the memory allocation subsystem is included
** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
**
** This memory allocator uses the following algorithm:
**
**   1.  All memory allocations sizes are rounded up to a power of 2.
**
**   2.  If two adjacent free blocks are the halves of a larger block,
**       then the two blocks are coalesed into the single larger block.
**
**   3.  New memory is allocated from the first available free block.
**
** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
** Concerning Dynamic Storage Allocation". Journal of the Association for
** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
** 
** Let n be the size of the largest allocation divided by the minimum
** allocation size (after rounding all sizes up to a power of 2.)  Let M
** be the maximum amount of memory ever outstanding at one time.  Let
** N be the total amount of memory available for allocation.  Robson
** proved that this memory allocator will never breakdown due to 
** fragmentation as long as the following constraint holds:
**
**      N >=  M*(1 + log2(n)/2) - n + 1
**
** The sqlite3_status() logic tracks the maximum values of n and M so
** that an application can, at any time, verify this constraint.
*/

/*
** This version of the memory allocator is used only when 
** SQLITE_ENABLE_MEMSYS5 is defined.
*/
#ifdef SQLITE_ENABLE_MEMSYS5

/*
** A minimum allocation is an instance of the following structure.
** Larger allocations are an array of these structures where the
** size of the array is a power of 2.
**
** The size of this object must be a power of two.  That fact is
** verified in memsys5Init().
*/
typedef struct Mem5Link Mem5Link;
struct Mem5Link {
  int next;       /* Index of next free chunk */
  int prev;       /* Index of previous free chunk */
};

/*
** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
** mem5.szAtom is always at least 8 and 32-bit integers are used,
** it is not actually possible to reach this limit.
*/
#define LOGMAX 30

/*
** Masks used for mem5.aCtrl[] elements.
*/
#define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block */
#define CTRL_FREE     0x20    /* True if not checked out */

/*
** All of the static variables used by this module are collected
** into a single structure named "mem5".  This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static SQLITE_WSD struct Mem5Global {
  /*
  ** Memory available for allocation
  */
  int szAtom;      /* Smallest possible allocation in bytes */
  int nBlock;      /* Number of szAtom sized blocks in zPool */
  u8 *zPool;       /* Memory available to be allocated */
  
  /*
  ** Mutex to control access to the memory allocation subsystem.
  */
  sqlite3_mutex *mutex;

  /*
  ** Performance statistics
  */
  u64 nAlloc;         /* Total number of calls to malloc */
  u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
  u64 totalExcess;    /* Total internal fragmentation */
  u32 currentOut;     /* Current checkout, including internal fragmentation */
  u32 currentCount;   /* Current number of distinct checkouts */
  u32 maxOut;         /* Maximum instantaneous currentOut */
  u32 maxCount;       /* Maximum instantaneous currentCount */
  u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
  
  /*
  ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
  ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
  ** and so forth.
  */
  int aiFreelist[LOGMAX+1];

  /*
  ** Space for tracking which blocks are checked out and the size
  ** of each block.  One byte per block.
  */
  u8 *aCtrl;

} mem5 = { 0 };

/*
** Access the static variable through a macro for SQLITE_OMIT_WSD
*/
#define mem5 GLOBAL(struct Mem5Global, mem5)

/*
** Assuming mem5.zPool is divided up into an array of Mem5Link
** structures, return a pointer to the idx-th such lik.
*/
#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))

/*
** Unlink the chunk at mem5.aPool[i] from list it is currently
** on.  It should be found on mem5.aiFreelist[iLogsize].
*/
static void memsys5Unlink(int i, int iLogsize){
  int next, prev;
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753

/*
** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
** will already be held (obtained by code in malloc.c) if
** sqlite3GlobalConfig.bMemStat is true.
*/
static void memsys5Enter(void){
  if( sqlite3GlobalConfig.bMemstat==0 && mem5.mutex==0 ){
    mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
  }
  sqlite3_mutex_enter(mem5.mutex);
}
static void memsys5Leave(void){
  sqlite3_mutex_leave(mem5.mutex);
}

/*
** Return the size of an outstanding allocation, in bytes.  The
** size returned omits the 8-byte header overhead.  This only
** works for chunks that are currently checked out.
*/
static int memsys5Size(void *p){
  int iSize = 0;
  if( p ){
    int i = ((u8 *)p-mem5.zPool)/mem5.nAtom;
    assert( i>=0 && i<mem5.nBlock );
    iSize = mem5.nAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
  }
  return iSize;
}

/*
** Find the first entry on the freelist iLogsize.  Unlink that
** entry and return its index. 







<
<
<














|

|







13959
13960
13961
13962
13963
13964
13965



13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989

/*
** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
** will already be held (obtained by code in malloc.c) if
** sqlite3GlobalConfig.bMemStat is true.
*/
static void memsys5Enter(void){



  sqlite3_mutex_enter(mem5.mutex);
}
static void memsys5Leave(void){
  sqlite3_mutex_leave(mem5.mutex);
}

/*
** Return the size of an outstanding allocation, in bytes.  The
** size returned omits the 8-byte header overhead.  This only
** works for chunks that are currently checked out.
*/
static int memsys5Size(void *p){
  int iSize = 0;
  if( p ){
    int i = ((u8 *)p-mem5.zPool)/mem5.szAtom;
    assert( i>=0 && i<mem5.nBlock );
    iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
  }
  return iSize;
}

/*
** Find the first entry on the freelist iLogsize.  Unlink that
** entry and return its index. 
13765
13766
13767
13768
13769
13770
13771
13772






13773
13774
13775
13776
13777
13778



13779
13780
13781
13782
13783
13784
13785







13786
13787
13788
13789
13790
13791
13792
13793
13794
  }
  memsys5Unlink(iFirst, iLogsize);
  return iFirst;
}

/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.






*/
static void *memsys5MallocUnsafe(int nByte){
  int i;           /* Index of a mem5.aPool[] slot */
  int iBin;        /* Index into mem5.aiFreelist[] */
  int iFullSz;     /* Size of allocation rounded up to power of 2 */
  int iLogsize;    /* Log2 of iFullSz/POW2_MIN */




  /* Keep track of the maximum allocation request.  Even unfulfilled
  ** requests are counted */
  if( (u32)nByte>mem5.maxRequest ){
    mem5.maxRequest = nByte;
  }








  /* Round nByte up to the next valid power of two */
  for(iFullSz=mem5.nAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}

  /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
  ** block.  If not, then split a block of the next larger power of
  ** two in order to create a new free block of size iLogsize.
  */
  for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
  if( iBin>LOGMAX ) return 0;







|
>
>
>
>
>
>






>
>
>







>
>
>
>
>
>
>

|







14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
  }
  memsys5Unlink(iFirst, iLogsize);
  return iFirst;
}

/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.  Return NULL if nBytes==0.
**
** The caller guarantees that nByte positive.
**
** The caller has obtained a mutex prior to invoking this
** routine so there is never any chance that two or more
** threads can be in this routine at the same time.
*/
static void *memsys5MallocUnsafe(int nByte){
  int i;           /* Index of a mem5.aPool[] slot */
  int iBin;        /* Index into mem5.aiFreelist[] */
  int iFullSz;     /* Size of allocation rounded up to power of 2 */
  int iLogsize;    /* Log2 of iFullSz/POW2_MIN */

  /* nByte must be a positive */
  assert( nByte>0 );

  /* Keep track of the maximum allocation request.  Even unfulfilled
  ** requests are counted */
  if( (u32)nByte>mem5.maxRequest ){
    mem5.maxRequest = nByte;
  }

  /* Abort if the requested allocation size is larger than the largest
  ** power of two that we can represent using 32-bit signed integers.
  */
  if( nByte > 0x40000000 ){
    return 0;
  }

  /* Round nByte up to the next valid power of two */
  for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}

  /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
  ** block.  If not, then split a block of the next larger power of
  ** two in order to create a new free block of size iLogsize.
  */
  for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
  if( iBin>LOGMAX ) return 0;
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
  mem5.totalExcess += iFullSz - nByte;
  mem5.currentCount++;
  mem5.currentOut += iFullSz;
  if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
  if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;

  /* Return a pointer to the allocated memory. */
  return (void*)&mem5.zPool[i*mem5.nAtom];
}

/*
** Free an outstanding memory allocation.
*/
static void memsys5FreeUnsafe(void *pOld){
  u32 size, iLogsize;
  int iBlock;             

  /* Set iBlock to the index of the block pointed to by pOld in 
  ** the array of mem5.nAtom byte blocks pointed to by mem5.zPool.
  */
  iBlock = ((u8 *)pOld-mem5.zPool)/mem5.nAtom;

  /* Check that the pointer pOld points to a valid, non-free block. */
  assert( iBlock>=0 && iBlock<mem5.nBlock );
  assert( ((u8 *)pOld-mem5.zPool)%mem5.nAtom==0 );
  assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );

  iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
  size = 1<<iLogsize;
  assert( iBlock+size-1<(u32)mem5.nBlock );

  mem5.aCtrl[iBlock] |= CTRL_FREE;
  mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
  assert( mem5.currentCount>0 );
  assert( mem5.currentOut>=(size*mem5.nAtom) );
  mem5.currentCount--;
  mem5.currentOut -= size*mem5.nAtom;
  assert( mem5.currentOut>0 || mem5.currentCount==0 );
  assert( mem5.currentCount>0 || mem5.currentOut==0 );

  mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
  while( iLogsize<LOGMAX ){
    int iBuddy;
    if( (iBlock>>iLogsize) & 1 ){
      iBuddy = iBlock - size;
    }else{
      iBuddy = iBlock + size;
    }
    assert( iBuddy>=0 );







|







|


|

|



|









|

|




|







14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
  mem5.totalExcess += iFullSz - nByte;
  mem5.currentCount++;
  mem5.currentOut += iFullSz;
  if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
  if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;

  /* Return a pointer to the allocated memory. */
  return (void*)&mem5.zPool[i*mem5.szAtom];
}

/*
** Free an outstanding memory allocation.
*/
static void memsys5FreeUnsafe(void *pOld){
  u32 size, iLogsize;
  int iBlock;

  /* Set iBlock to the index of the block pointed to by pOld in 
  ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
  */
  iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom;

  /* Check that the pointer pOld points to a valid, non-free block. */
  assert( iBlock>=0 && iBlock<mem5.nBlock );
  assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
  assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );

  iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
  size = 1<<iLogsize;
  assert( iBlock+size-1<(u32)mem5.nBlock );

  mem5.aCtrl[iBlock] |= CTRL_FREE;
  mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
  assert( mem5.currentCount>0 );
  assert( mem5.currentOut>=(size*mem5.szAtom) );
  mem5.currentCount--;
  mem5.currentOut -= size*mem5.szAtom;
  assert( mem5.currentOut>0 || mem5.currentCount==0 );
  assert( mem5.currentCount>0 || mem5.currentOut==0 );

  mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
  while( ALWAYS(iLogsize<LOGMAX) ){
    int iBuddy;
    if( (iBlock>>iLogsize) & 1 ){
      iBuddy = iBlock - size;
    }else{
      iBuddy = iBlock + size;
    }
    assert( iBuddy>=0 );
13883
13884
13885
13886
13887
13888
13889



13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902









13903
13904
13905
13906
13907

13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929






13930
13931
13932

13933
13934
13935
13936










13937
13938
13939
13940
13941
13942
13943
13944



13945
13946
13947
13948
13949
13950
13951
13952
13953
13954

13955
13956




13957



13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982





13983
13984
13985
13986
13987
13988
13989
13990
13991

13992
13993
13994

13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038

14039
14040
14041
14042
14043
14044
14045
    memsys5Leave();
  }
  return (void*)p; 
}

/*
** Free memory.



*/
static void memsys5Free(void *pPrior){
  if( pPrior==0 ){
assert(0);
    return;
  }
  memsys5Enter();
  memsys5FreeUnsafe(pPrior);
  memsys5Leave();  
}

/*
** Change the size of an existing memory allocation









*/
static void *memsys5Realloc(void *pPrior, int nBytes){
  int nOld;
  void *p;
  if( pPrior==0 ){

    return memsys5Malloc(nBytes);
  }
  if( nBytes<=0 ){
    memsys5Free(pPrior);
    return 0;
  }
  nOld = memsys5Size(pPrior);
  if( nBytes<=nOld ){
    return pPrior;
  }
  memsys5Enter();
  p = memsys5MallocUnsafe(nBytes);
  if( p ){
    memcpy(p, pPrior, nOld);
    memsys5FreeUnsafe(pPrior);
  }
  memsys5Leave();
  return p;
}

/*
** Round up a request size to the next valid allocation size.






*/
static int memsys5Roundup(int n){
  int iFullSz;

  for(iFullSz=mem5.nAtom; iFullSz<n; iFullSz *= 2);
  return iFullSz;
}











static int memsys5Log(int iValue){
  int iLog;
  for(iLog=0; (1<<iLog)<iValue; iLog++);
  return iLog;
}

/*
** Initialize this module.



*/
static int memsys5Init(void *NotUsed){
  int ii;
  int nByte = sqlite3GlobalConfig.nHeap;
  u8 *zByte = (u8 *)sqlite3GlobalConfig.pHeap;
  int nMinLog;                 /* Log of minimum allocation size in bytes*/
  int iOffset;

  UNUSED_PARAMETER(NotUsed);


  if( !zByte ){
    return SQLITE_ERROR;




  }




  nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
  mem5.nAtom = (1<<nMinLog);
  while( (int)sizeof(Mem5Link)>mem5.nAtom ){
    mem5.nAtom = mem5.nAtom << 1;
  }

  mem5.nBlock = (nByte / (mem5.nAtom+sizeof(u8)));
  mem5.zPool = zByte;
  mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.nAtom];

  for(ii=0; ii<=LOGMAX; ii++){
    mem5.aiFreelist[ii] = -1;
  }

  iOffset = 0;
  for(ii=LOGMAX; ii>=0; ii--){
    int nAlloc = (1<<ii);
    if( (iOffset+nAlloc)<=mem5.nBlock ){
      mem5.aCtrl[iOffset] = ii | CTRL_FREE;
      memsys5Link(iOffset, ii);
      iOffset += nAlloc;
    }
    assert((iOffset+nAlloc)>mem5.nBlock);
  }






  return SQLITE_OK;
}

/*
** Deinitialize this module.
*/
static void memsys5Shutdown(void *NotUsed){
  UNUSED_PARAMETER(NotUsed);

  return;
}


/*
** Open the file indicated and write a log of all unfreed memory 
** allocations into that log.
*/
SQLITE_PRIVATE void sqlite3Memsys5Dump(const char *zFilename){
#ifdef SQLITE_DEBUG
  FILE *out;
  int i, j, n;
  int nMinLog;

  if( zFilename==0 || zFilename[0]==0 ){
    out = stdout;
  }else{
    out = fopen(zFilename, "w");
    if( out==0 ){
      fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
                      zFilename);
      return;
    }
  }
  memsys5Enter();
  nMinLog = memsys5Log(mem5.nAtom);
  for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
    for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
    fprintf(out, "freelist items of size %d: %d\n", mem5.nAtom << i, n);
  }
  fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
  fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
  fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
  fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
  fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
  fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
  fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
  fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
  memsys5Leave();
  if( out==stdout ){
    fflush(stdout);
  }else{
    fclose(out);
  }
#else
  UNUSED_PARAMETER(zFilename);
#endif
}


/*
** This routine is the only routine in this file with external 
** linkage. It returns a pointer to a static sqlite3_mem_methods
** struct populated with the memsys5 methods.
*/
SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){







>
>
>


<
|
<
<






|
>
>
>
>
>
>
>
>
>




|
>
|
<
|
<

















|
>
>
>
>
>
>



>
|



>
>
>
>
>
>
>
>
>
>







|
>
>
>


|
|
|
|
|



>
|
|
>
>
>
>
|
>
>
>


|
|
|


|

|















>
>
>
>
>









>



>





<















|


|















<
<
<

>







14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146

14147


14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170

14171

14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294

14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328



14329
14330
14331
14332
14333
14334
14335
14336
14337
    memsys5Leave();
  }
  return (void*)p; 
}

/*
** Free memory.
**
** The outer layer memory allocator prevents this routine from
** being called with pPrior==0.
*/
static void memsys5Free(void *pPrior){

  assert( pPrior!=0 );


  memsys5Enter();
  memsys5FreeUnsafe(pPrior);
  memsys5Leave();  
}

/*
** Change the size of an existing memory allocation.
**
** The outer layer memory allocator prevents this routine from
** being called with pPrior==0.  
**
** nBytes is always a value obtained from a prior call to
** memsys5Round().  Hence nBytes is always a non-negative power
** of two.  If nBytes==0 that means that an oversize allocation
** (an allocation larger than 0x40000000) was requested and this
** routine should return 0 without freeing pPrior.
*/
static void *memsys5Realloc(void *pPrior, int nBytes){
  int nOld;
  void *p;
  assert( pPrior!=0 );
  assert( (nBytes&(nBytes-1))==0 );
  assert( nBytes>=0 );

  if( nBytes==0 ){

    return 0;
  }
  nOld = memsys5Size(pPrior);
  if( nBytes<=nOld ){
    return pPrior;
  }
  memsys5Enter();
  p = memsys5MallocUnsafe(nBytes);
  if( p ){
    memcpy(p, pPrior, nOld);
    memsys5FreeUnsafe(pPrior);
  }
  memsys5Leave();
  return p;
}

/*
** Round up a request size to the next valid allocation size.  If
** the allocation is too large to be handled by this allocation system,
** return 0.
**
** All allocations must be a power of two and must be expressed by a
** 32-bit signed integer.  Hence the largest allocation is 0x40000000
** or 1073741824 bytes.
*/
static int memsys5Roundup(int n){
  int iFullSz;
  if( n > 0x40000000 ) return 0;
  for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
  return iFullSz;
}

/*
** Return the ceiling of the logarithm base 2 of iValue.
**
** Examples:   memsys5Log(1) -> 0
**             memsys5Log(2) -> 1
**             memsys5Log(4) -> 2
**             memsys5Log(5) -> 3
**             memsys5Log(8) -> 3
**             memsys5Log(9) -> 4
*/
static int memsys5Log(int iValue){
  int iLog;
  for(iLog=0; (1<<iLog)<iValue; iLog++);
  return iLog;
}

/*
** Initialize the memory allocator.
**
** This routine is not threadsafe.  The caller must be holding a mutex
** to prevent multiple threads from entering at the same time.
*/
static int memsys5Init(void *NotUsed){
  int ii;            /* Loop counter */
  int nByte;         /* Number of bytes of memory available to this allocator */
  u8 *zByte;         /* Memory usable by this allocator */
  int nMinLog;       /* Log base 2 of minimum allocation size in bytes */
  int iOffset;       /* An offset into mem5.aCtrl[] */

  UNUSED_PARAMETER(NotUsed);

  /* For the purposes of this routine, disable the mutex */
  mem5.mutex = 0;

  /* The size of a Mem5Link object must be a power of two.  Verify that
  ** this is case.
  */
  assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );

  nByte = sqlite3GlobalConfig.nHeap;
  zByte = (u8*)sqlite3GlobalConfig.pHeap;
  assert( zByte!=0 );  /* sqlite3_config() does not allow otherwise */

  nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
  mem5.szAtom = (1<<nMinLog);
  while( (int)sizeof(Mem5Link)>mem5.szAtom ){
    mem5.szAtom = mem5.szAtom << 1;
  }

  mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
  mem5.zPool = zByte;
  mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];

  for(ii=0; ii<=LOGMAX; ii++){
    mem5.aiFreelist[ii] = -1;
  }

  iOffset = 0;
  for(ii=LOGMAX; ii>=0; ii--){
    int nAlloc = (1<<ii);
    if( (iOffset+nAlloc)<=mem5.nBlock ){
      mem5.aCtrl[iOffset] = ii | CTRL_FREE;
      memsys5Link(iOffset, ii);
      iOffset += nAlloc;
    }
    assert((iOffset+nAlloc)>mem5.nBlock);
  }

  /* If a mutex is required for normal operation, allocate one */
  if( sqlite3GlobalConfig.bMemstat==0 ){
    mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
  }

  return SQLITE_OK;
}

/*
** Deinitialize this module.
*/
static void memsys5Shutdown(void *NotUsed){
  UNUSED_PARAMETER(NotUsed);
  mem5.mutex = 0;
  return;
}

#ifdef SQLITE_TEST
/*
** Open the file indicated and write a log of all unfreed memory 
** allocations into that log.
*/
SQLITE_PRIVATE void sqlite3Memsys5Dump(const char *zFilename){

  FILE *out;
  int i, j, n;
  int nMinLog;

  if( zFilename==0 || zFilename[0]==0 ){
    out = stdout;
  }else{
    out = fopen(zFilename, "w");
    if( out==0 ){
      fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
                      zFilename);
      return;
    }
  }
  memsys5Enter();
  nMinLog = memsys5Log(mem5.szAtom);
  for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
    for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
    fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
  }
  fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
  fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
  fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
  fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
  fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
  fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
  fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
  fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
  memsys5Leave();
  if( out==stdout ){
    fflush(stdout);
  }else{
    fclose(out);
  }



}
#endif

/*
** This routine is the only routine in this file with external 
** linkage. It returns a pointer to a static sqlite3_mem_methods
** struct populated with the memsys5 methods.
*/
SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
14074
14075
14076
14077
14078
14079
14080










14081
14082
14083
14084
14085
14086
14087
** This file contains the C functions that implement mutexes.
**
** This file contains code that is common across all mutex implementations.

**
** $Id: mutex.c,v 1.31 2009/07/16 18:21:18 drh Exp $
*/











#ifndef SQLITE_MUTEX_OMIT
/*
** Initialize the mutex system.
*/
SQLITE_PRIVATE int sqlite3MutexInit(void){ 
  int rc = SQLITE_OK;







>
>
>
>
>
>
>
>
>
>







14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
** This file contains the C functions that implement mutexes.
**
** This file contains code that is common across all mutex implementations.

**
** $Id: mutex.c,v 1.31 2009/07/16 18:21:18 drh Exp $
*/

#if defined(SQLITE_DEBUG) && !defined(SQLITE_MUTEX_OMIT)
/*
** For debugging purposes, record when the mutex subsystem is initialized
** and uninitialized so that we can assert() if there is an attempt to
** allocate a mutex while the system is uninitialized.
*/
static SQLITE_WSD int mutexIsInit = 0;
#endif /* SQLITE_DEBUG */


#ifndef SQLITE_MUTEX_OMIT
/*
** Initialize the mutex system.
*/
SQLITE_PRIVATE int sqlite3MutexInit(void){ 
  int rc = SQLITE_OK;
14098
14099
14100
14101
14102
14103
14104




14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117





14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134

14135
14136
14137
14138
14139
14140
14141
      memcpy(pTo, pFrom, offsetof(sqlite3_mutex_methods, xMutexAlloc));
      memcpy(&pTo->xMutexFree, &pFrom->xMutexFree,
             sizeof(*pTo) - offsetof(sqlite3_mutex_methods, xMutexFree));
      pTo->xMutexAlloc = pFrom->xMutexAlloc;
    }
    rc = sqlite3GlobalConfig.mutex.xMutexInit();
  }





  return rc;
}

/*
** Shutdown the mutex system. This call frees resources allocated by
** sqlite3MutexInit().
*/
SQLITE_PRIVATE int sqlite3MutexEnd(void){
  int rc = SQLITE_OK;
  if( sqlite3GlobalConfig.mutex.xMutexEnd ){
    rc = sqlite3GlobalConfig.mutex.xMutexEnd();
  }





  return rc;
}

/*
** Retrieve a pointer to a static mutex or allocate a new dynamic one.
*/
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){
  if( !sqlite3GlobalConfig.bCoreMutex ){
    return 0;
  }

  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

/*
** Free a dynamic mutex.
*/
SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){







>
>
>
>













>
>
>
>
>

















>







14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
      memcpy(pTo, pFrom, offsetof(sqlite3_mutex_methods, xMutexAlloc));
      memcpy(&pTo->xMutexFree, &pFrom->xMutexFree,
             sizeof(*pTo) - offsetof(sqlite3_mutex_methods, xMutexFree));
      pTo->xMutexAlloc = pFrom->xMutexAlloc;
    }
    rc = sqlite3GlobalConfig.mutex.xMutexInit();
  }

#ifdef SQLITE_DEBUG
  GLOBAL(int, mutexIsInit) = 1;
#endif

  return rc;
}

/*
** Shutdown the mutex system. This call frees resources allocated by
** sqlite3MutexInit().
*/
SQLITE_PRIVATE int sqlite3MutexEnd(void){
  int rc = SQLITE_OK;
  if( sqlite3GlobalConfig.mutex.xMutexEnd ){
    rc = sqlite3GlobalConfig.mutex.xMutexEnd();
  }

#ifdef SQLITE_DEBUG
  GLOBAL(int, mutexIsInit) = 0;
#endif

  return rc;
}

/*
** Retrieve a pointer to a static mutex or allocate a new dynamic one.
*/
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){
  if( !sqlite3GlobalConfig.bCoreMutex ){
    return 0;
  }
  assert( GLOBAL(int, mutexIsInit) );
  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

/*
** Free a dynamic mutex.
*/
SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
14746
14747
14748
14749
14750
14751
14752

14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU

** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Three static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST







>













|







15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_LRU2
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127



15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
*/
static long winMutex_lock = 0;

static int winMutexInit(void){ 
  /* The first to increment to 1 does actual initialization */
  if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
    int i;
    for(i=0; i<sizeof(winMutex_staticMutexes)/sizeof(winMutex_staticMutexes[0]); i++){
      InitializeCriticalSection(&winMutex_staticMutexes[i].mutex);
    }
    winMutex_isInit = 1;
  }else{
    /* Someone else is in the process of initing the static mutexes */
    while( !winMutex_isInit ){
      Sleep(1);
    }
  }
  return SQLITE_OK; 
}

static int winMutexEnd(void){ 
  /* The first to decrement to 0 does actual shutdown 
  ** (which should be the last to shutdown.) */
  if( InterlockedCompareExchange(&winMutex_lock, 0, 1)==1 ){
    if( winMutex_isInit==1 ){
      int i;
      for(i=0; i<sizeof(winMutex_staticMutexes)/sizeof(winMutex_staticMutexes[0]); i++){
        DeleteCriticalSection(&winMutex_staticMutexes[i].mutex);
      }
      winMutex_isInit = 0;
    }
  }
  return SQLITE_OK; 
}

/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST               0
** <li>  SQLITE_MUTEX_RECURSIVE          1
** <li>  SQLITE_MUTEX_STATIC_MASTER      2
** <li>  SQLITE_MUTEX_STATIC_MEM         3
** <li>  SQLITE_MUTEX_STATIC_PRNG        4



** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Three static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST







|


















|
















|
|
|
|
|
>
>
>













|







15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
*/
static long winMutex_lock = 0;

static int winMutexInit(void){ 
  /* The first to increment to 1 does actual initialization */
  if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
    int i;
    for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
      InitializeCriticalSection(&winMutex_staticMutexes[i].mutex);
    }
    winMutex_isInit = 1;
  }else{
    /* Someone else is in the process of initing the static mutexes */
    while( !winMutex_isInit ){
      Sleep(1);
    }
  }
  return SQLITE_OK; 
}

static int winMutexEnd(void){ 
  /* The first to decrement to 0 does actual shutdown 
  ** (which should be the last to shutdown.) */
  if( InterlockedCompareExchange(&winMutex_lock, 0, 1)==1 ){
    if( winMutex_isInit==1 ){
      int i;
      for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
        DeleteCriticalSection(&winMutex_staticMutexes[i].mutex);
      }
      winMutex_isInit = 0;
    }
  }
  return SQLITE_OK; 
}

/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_LRU2
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
        InitializeCriticalSection(&p->mutex);
      }
      break;
    }
    default: {
      assert( winMutex_isInit==1 );
      assert( iType-2 >= 0 );
      assert( iType-2 < sizeof(winMutex_staticMutexes)/sizeof(winMutex_staticMutexes[0]) );
      p = &winMutex_staticMutexes[iType-2];
      p->id = iType;
      break;
    }
  }
  return p;
}







|







15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
        InitializeCriticalSection(&p->mutex);
      }
      break;
    }
    default: {
      assert( winMutex_isInit==1 );
      assert( iType-2 >= 0 );
      assert( iType-2 < ArraySize(winMutex_staticMutexes) );
      p = &winMutex_staticMutexes[iType-2];
      p->id = iType;
      break;
    }
  }
  return p;
}
15310
15311
15312
15313
15314
15315
15316

15317

15318
15319
15320
15321
15322
15323
15324
  sqlite3_uint64 iLimit;
  int overage;
  if( n<0 ){
    iLimit = 0;
  }else{
    iLimit = n;
  }

  sqlite3_initialize();

  if( iLimit>0 ){
    sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit);
  }else{
    sqlite3MemoryAlarm(0, 0, 0);
  }
  overage = (int)(sqlite3_memory_used() - (i64)n);
  if( overage>0 ){







>

>







15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
  sqlite3_uint64 iLimit;
  int overage;
  if( n<0 ){
    iLimit = 0;
  }else{
    iLimit = n;
  }
#ifndef SQLITE_OMIT_AUTOINIT
  sqlite3_initialize();
#endif
  if( iLimit>0 ){
    sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit);
  }else{
    sqlite3MemoryAlarm(0, 0, 0);
  }
  overage = (int)(sqlite3_memory_used() - (i64)n);
  if( overage>0 ){
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759


15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
    return 0;
  }
  if( nBytes>=0x7fffff00 ){
    /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
    return 0;
  }
  nOld = sqlite3MallocSize(pOld);
  if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
    nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
    if( nOld==nNew ){
      pNew = pOld;
    }else{


      if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= 
            mem0.alarmThreshold ){
        sqlite3MallocAlarm(nNew-nOld);
      }
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
      if( pNew==0 && mem0.alarmCallback ){
        sqlite3MallocAlarm(nBytes);
        pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
      }
      if( pNew ){
        nNew = sqlite3MallocSize(pNew);
        sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
      }
    }
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nBytes);
  }
  return pNew;
}

/*
** The public interface to sqlite3Realloc.  Make sure that the memory
** subsystem is initialized prior to invoking sqliteRealloc.







<
<
<
|
|
|
|
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
<


|







16064
16065
16066
16067
16068
16069
16070



16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089

16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
    return 0;
  }
  if( nBytes>=0x7fffff00 ){
    /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
    return 0;
  }
  nOld = sqlite3MallocSize(pOld);



  nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
  if( nOld==nNew ){
    pNew = pOld;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
    if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= 
          mem0.alarmThreshold ){
      sqlite3MallocAlarm(nNew-nOld);
    }
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmCallback ){
      sqlite3MallocAlarm(nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }

    sqlite3_mutex_leave(mem0.mutex);
  }else{
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
  }
  return pNew;
}

/*
** The public interface to sqlite3Realloc.  Make sure that the memory
** subsystem is initialized prior to invoking sqliteRealloc.
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217




17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228

































17229
17230
17231
17232
17233
17234
17235
  int iDb;              /* Index of cursor database in db->aDb[] (or -1) */
  i64 lastRowid;        /* Last rowid from a Next or NextIdx operation */
  Bool zeroed;          /* True if zeroed out and ready for reuse */
  Bool rowidIsValid;    /* True if lastRowid is valid */
  Bool atFirst;         /* True if pointing to first entry */
  Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
  Bool nullRow;         /* True if pointing to a row with no data */
  Bool pseudoTable;     /* This is a NEW or OLD pseudo-tables of a trigger */
  Bool ephemPseudoTable;
  Bool deferredMoveto;  /* A call to sqlite3BtreeMoveto() is needed */
  Bool isTable;         /* True if a table requiring integer keys */
  Bool isIndex;         /* True if an index containing keys only - no data */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  Btree *pBt;           /* Separate file holding temporary table */
  int nData;            /* Number of bytes in pData */
  char *pData;          /* Data for a NEW or OLD pseudo-table */
  i64 iKey;             /* Key for the NEW or OLD pseudo-table row */
  KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
  int nField;           /* Number of fields in the header */
  i64 seqCount;         /* Sequence counter */
  sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  const sqlite3_module *pModule;     /* Module for cursor pVtabCursor */

  /* Result of last sqlite3BtreeMoveto() done by an OP_NotExists or 
  ** OP_IsUnique opcode on this cursor. */
  int seekResult;

  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to.  Only valid if cacheValid is true.




  ** aRow might point to (ephemeral) data for the current row, or it might
  ** be NULL.
  */
  int cacheStatus;      /* Cache is valid if this matches Vdbe.cacheCtr */
  int payloadSize;      /* Total number of bytes in the record */
  u32 *aType;           /* Type values for all entries in the record */
  u32 *aOffset;         /* Cached offsets to the start of each columns data */
  u8 *aRow;             /* Data for the current row, if all on one page */
};
typedef struct VdbeCursor VdbeCursor;


































/*
** A value for VdbeCursor.cacheValid that means the cache is always invalid.
*/
#define CACHE_STALE 0

/*
** Internally, the vdbe manipulates nearly all SQL values as Mem







<
<





<
|
<











|
>
>
>
>



|







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







17505
17506
17507
17508
17509
17510
17511


17512
17513
17514
17515
17516

17517

17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
  int iDb;              /* Index of cursor database in db->aDb[] (or -1) */
  i64 lastRowid;        /* Last rowid from a Next or NextIdx operation */
  Bool zeroed;          /* True if zeroed out and ready for reuse */
  Bool rowidIsValid;    /* True if lastRowid is valid */
  Bool atFirst;         /* True if pointing to first entry */
  Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
  Bool nullRow;         /* True if pointing to a row with no data */


  Bool deferredMoveto;  /* A call to sqlite3BtreeMoveto() is needed */
  Bool isTable;         /* True if a table requiring integer keys */
  Bool isIndex;         /* True if an index containing keys only - no data */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  Btree *pBt;           /* Separate file holding temporary table */

  int pseudoTableReg;   /* Register holding pseudotable content. */

  KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
  int nField;           /* Number of fields in the header */
  i64 seqCount;         /* Sequence counter */
  sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  const sqlite3_module *pModule;     /* Module for cursor pVtabCursor */

  /* Result of last sqlite3BtreeMoveto() done by an OP_NotExists or 
  ** OP_IsUnique opcode on this cursor. */
  int seekResult;

  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to.  Only valid if cacheStatus matches
  ** Vdbe.cacheCtr.  Vdbe.cacheCtr will never take on the value of
  ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that
  ** the cache is out of date.
  **
  ** aRow might point to (ephemeral) data for the current row, or it might
  ** be NULL.
  */
  u32 cacheStatus;      /* Cache is valid if this matches Vdbe.cacheCtr */
  int payloadSize;      /* Total number of bytes in the record */
  u32 *aType;           /* Type values for all entries in the record */
  u32 *aOffset;         /* Cached offsets to the start of each columns data */
  u8 *aRow;             /* Data for the current row, if all on one page */
};
typedef struct VdbeCursor VdbeCursor;

/*
** When a sub-program is executed (OP_Program), a structure of this type
** is allocated to store the current value of the program counter, as
** well as the current memory cell array and various other frame specific
** values stored in the Vdbe struct. When the sub-program is finished, 
** these values are copied back to the Vdbe from the VdbeFrame structure,
** restoring the state of the VM to as it was before the sub-program
** began executing.
**
** Frames are stored in a linked list headed at Vdbe.pParent. Vdbe.pParent
** is the parent of the current frame, or zero if the current frame
** is the main Vdbe program.
*/
typedef struct VdbeFrame VdbeFrame;
struct VdbeFrame {
  Vdbe *v;                /* VM this frame belongs to */
  int pc;                 /* Program Counter */
  Op *aOp;                /* Program instructions */
  int nOp;                /* Size of aOp array */
  Mem *aMem;              /* Array of memory cells */
  int nMem;               /* Number of entries in aMem */
  VdbeCursor **apCsr;     /* Element of Vdbe cursors */
  u16 nCursor;            /* Number of entries in apCsr */
  void *token;            /* Copy of SubProgram.token */
  int nChildMem;          /* Number of memory cells for child frame */
  int nChildCsr;          /* Number of cursors for child frame */
  i64 lastRowid;          /* Last insert rowid (sqlite3.lastRowid) */
  int nChange;            /* Statement changes (Vdbe.nChanges)     */
  VdbeFrame *pParent;     /* Parent of this frame */
};

#define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])

/*
** A value for VdbeCursor.cacheValid that means the cache is always invalid.
*/
#define CACHE_STALE 0

/*
** Internally, the vdbe manipulates nearly all SQL values as Mem
17244
17245
17246
17247
17248
17249
17250

17251
17252
17253
17254
17255
17256
17257
*/
struct Mem {
  union {
    i64 i;              /* Integer value. */
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */

  } u;
  double r;           /* Real value */
  sqlite3 *db;        /* The associated database connection */
  char *z;            /* String or BLOB value */
  int n;              /* Number of characters in string value, excluding '\0' */
  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  type;           /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */







>







17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
*/
struct Mem {
  union {
    i64 i;              /* Integer value. */
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
  } u;
  double r;           /* Real value */
  sqlite3 *db;        /* The associated database connection */
  char *z;            /* String or BLOB value */
  int n;              /* Number of characters in string value, excluding '\0' */
  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  type;           /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
17277
17278
17279
17280
17281
17282
17283

17284
17285
17286
17287
17288
17289
17290
*/
#define MEM_Null      0x0001   /* Value is NULL */
#define MEM_Str       0x0002   /* Value is a string */
#define MEM_Int       0x0004   /* Value is an integer */
#define MEM_Real      0x0008   /* Value is a real number */
#define MEM_Blob      0x0010   /* Value is a BLOB */
#define MEM_RowSet    0x0020   /* Value is a RowSet object */

#define MEM_TypeMask  0x00ff   /* Mask of type bits */

/* Whenever Mem contains a valid string or blob representation, one of
** the following flags must be set to determine the memory management
** policy for Mem.z.  The MEM_Term flag tells us whether or not the
** string is \000 or \u0000 terminated
*/







>







17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
*/
#define MEM_Null      0x0001   /* Value is NULL */
#define MEM_Str       0x0002   /* Value is a string */
#define MEM_Int       0x0004   /* Value is an integer */
#define MEM_Real      0x0008   /* Value is a real number */
#define MEM_Blob      0x0010   /* Value is a BLOB */
#define MEM_RowSet    0x0020   /* Value is a RowSet object */
#define MEM_Frame     0x0040   /* Value is a VdbeFrame object */
#define MEM_TypeMask  0x00ff   /* Mask of type bits */

/* Whenever Mem contains a valid string or blob representation, one of
** the following flags must be set to determine the memory management
** policy for Mem.z.  The MEM_Term flag tells us whether or not the
** string is \000 or \u0000 terminated
*/
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
*/
typedef struct Set Set;
struct Set {
  Hash hash;             /* A set is just a hash table */
  HashElem *prev;        /* Previously accessed hash elemen */
};

/*
** A Context stores the last insert rowid, the last statement change count,
** and the current statement change count (i.e. changes since last statement).
** The current keylist is also stored in the context.
** Elements of Context structure type make up the ContextStack, which is
** updated by the ContextPush and ContextPop opcodes (used by triggers).
** The context is pushed before executing a trigger a popped when the
** trigger finishes.
*/
typedef struct Context Context;
struct Context {
  i64 lastRowid;    /* Last insert rowid (sqlite3.lastRowid) */
  int nChange;      /* Statement changes (Vdbe.nChanges)     */
};

/*
** An instance of the virtual machine.  This structure contains the complete
** state of the virtual machine.
**
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
** is really a pointer to an instance of this structure.
**







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







17707
17708
17709
17710
17711
17712
17713















17714
17715
17716
17717
17718
17719
17720
*/
typedef struct Set Set;
struct Set {
  Hash hash;             /* A set is just a hash table */
  HashElem *prev;        /* Previously accessed hash elemen */
};
















/*
** An instance of the virtual machine.  This structure contains the complete
** state of the virtual machine.
**
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
** is really a pointer to an instance of this structure.
**
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
  u8 okVar;               /* True if azVar[] has been initialized */
  u16 nVar;               /* Number of entries in aVar[] */
  Mem *aVar;              /* Values for the OP_Variable opcode. */
  char **azVar;           /* Name of variables */
  u32 magic;              /* Magic number for sanity checking */
  int nMem;               /* Number of memory locations currently allocated */
  Mem *aMem;              /* The memory locations */
  int cacheCtr;           /* VdbeCursor row cache generation counter */
  int contextStackTop;    /* Index of top element in the context stack */
  int contextStackDepth;  /* The size of the "context" stack */
  Context *contextStack;  /* Stack used by opcodes ContextPush & ContextPop*/
  int pc;                 /* The program counter */
  int rc;                 /* Value to return */
  char *zErrMsg;          /* Error message written here */
  u8 explain;             /* True if EXPLAIN present on SQL command */
  u8 changeCntOn;         /* True to update the change-counter */
  u8 expired;             /* True if the VM needs to be recompiled */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */







|
<
<
<







17745
17746
17747
17748
17749
17750
17751
17752



17753
17754
17755
17756
17757
17758
17759
  u8 okVar;               /* True if azVar[] has been initialized */
  u16 nVar;               /* Number of entries in aVar[] */
  Mem *aVar;              /* Values for the OP_Variable opcode. */
  char **azVar;           /* Name of variables */
  u32 magic;              /* Magic number for sanity checking */
  int nMem;               /* Number of memory locations currently allocated */
  Mem *aMem;              /* The memory locations */
  u32 cacheCtr;           /* VdbeCursor row cache generation counter */



  int pc;                 /* The program counter */
  int rc;                 /* Value to return */
  char *zErrMsg;          /* Error message written here */
  u8 explain;             /* True if EXPLAIN present on SQL command */
  u8 changeCntOn;         /* True to update the change-counter */
  u8 expired;             /* True if the VM needs to be recompiled */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
17435
17436
17437
17438
17439
17440
17441


17442
17443
17444
17445
17446
17447
17448
  int aCounter[2];        /* Counters used by sqlite3_stmt_status() */
  char *zSql;             /* Text of the SQL statement that generated this */
  void *pFree;            /* Free this when deleting the vdbe */
  int iStatement;         /* Statement number (or 0 if has not opened stmt) */
#ifdef SQLITE_DEBUG
  FILE *trace;            /* Write an execution trace here, if not NULL */
#endif


};

/*
** The following are allowed values for Vdbe.magic
*/
#define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
#define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */







>
>







17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
  int aCounter[2];        /* Counters used by sqlite3_stmt_status() */
  char *zSql;             /* Text of the SQL statement that generated this */
  void *pFree;            /* Free this when deleting the vdbe */
  int iStatement;         /* Statement number (or 0 if has not opened stmt) */
#ifdef SQLITE_DEBUG
  FILE *trace;            /* Write an execution trace here, if not NULL */
#endif
  VdbeFrame *pFrame;      /* Parent frame */
  int nFrame;             /* Number of frames in pFrame list */
};

/*
** The following are allowed values for Vdbe.magic
*/
#define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
#define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */
17495
17496
17497
17498
17499
17500
17501


17502
17503
17504
17505
17506
17507
17508
SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p);
SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int, int);
SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);


#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p);
#endif

#ifndef SQLITE_OMIT_SHARED_CACHE
SQLITE_PRIVATE void sqlite3VdbeMutexArrayEnter(Vdbe *p);
#else







>
>







17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p);
SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int, int);
SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);
SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*);
SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p);
#endif

#ifndef SQLITE_OMIT_SHARED_CACHE
SQLITE_PRIVATE void sqlite3VdbeMutexArrayEnter(Vdbe *p);
#else
17938
17939
17940
17941
17942
17943
17944


























17945
17946
17947
17948
17949
17950
17951
    m.z = 0;
  }
  assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
  return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
}



























/*
** pZ is a UTF-16 encoded unicode string at least nChar characters long.
** Return the number of bytes in the first nChar unicode characters
** in pZ.  nChar must be non-negative.
*/
SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){
  int c;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
    m.z = 0;
  }
  assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
  return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
}

/*
** Convert a UTF-8 string to the UTF-16 encoding specified by parameter
** enc. A pointer to the new string is returned, and the value of *pnOut
** is set to the length of the returned string in bytes. The call should
** arrange to call sqlite3DbFree() on the returned pointer when it is
** no longer required.
** 
** If a malloc failure occurs, NULL is returned and the db.mallocFailed
** flag set.
*/
#ifdef SQLITE_ENABLE_STAT2
SQLITE_PRIVATE char *sqlite3Utf8to16(sqlite3 *db, u8 enc, char *z, int n, int *pnOut){
  Mem m;
  memset(&m, 0, sizeof(m));
  m.db = db;
  sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC);
  if( sqlite3VdbeMemTranslate(&m, enc) ){
    assert( db->mallocFailed );
    return 0;
  }
  assert( m.z==m.zMalloc );
  *pnOut = m.n;
  return m.z;
}
#endif

/*
** pZ is a UTF-16 encoded unicode string at least nChar characters long.
** Return the number of bytes in the first nChar unicode characters
** in pZ.  nChar must be non-negative.
*/
SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){
  int c;
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
** $Id: util.c,v 1.262 2009/07/28 16:44:26 danielk1977 Exp $
*/
#ifdef SQLITE_HAVE_ISNAN
# include <math.h>
#endif

/*
** Routine needed to support the testcase() macro.







<







18406
18407
18408
18409
18410
18411
18412

18413
18414
18415
18416
18417
18418
18419
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**

*/
#ifdef SQLITE_HAVE_ISNAN
# include <math.h>
#endif

/*
** Routine needed to support the testcase() macro.
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321







18322
18323

18324

18325
18326
18327
18328
18329
18330

18331
18332
18333

18334
18335
18336

18337


18338

18339
18340
18341
18342
18343
18344
18345
18346
18347

18348
18349
18350
18351
18352
18353

18354
18355
18356
18357

18358
18359
18360
18361
18362

18363
18364
18365
18366
18367
18368

18369
18370
18371
18372

18373








18374






















18375










18376

18377
18378
18379
18380
18381
18382






18383


18384
18385
18386
18387
18388
18389
18390
    while( sqlite3Isdigit(*z) ){ z += incr; }
    *realnum = 1;
  }
  return *z==0;
}

/*
** The string z[] is an ascii representation of a real number.
** Convert this string to a double.
**
** This routine assumes that z[] really is a valid number.  If it
** is not, the result is undefined.
**
** This routine is used instead of the library atof() function because
** the library atof() might want to use "," as the decimal point instead
** of "." depending on how locale is set.  But that would cause problems
** for SQL.  So this routine always uses "." regardless of locale.
*/
SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult){
#ifndef SQLITE_OMIT_FLOATING_POINT
  int sign = 1;
  const char *zBegin = z;







  LONGDOUBLE_TYPE v1 = 0.0;
  int nSignificant = 0;

  while( sqlite3Isspace(*z) ) z++;

  if( *z=='-' ){
    sign = -1;
    z++;
  }else if( *z=='+' ){
    z++;
  }

  while( z[0]=='0' ){
    z++;
  }

  while( sqlite3Isdigit(*z) ){
    v1 = v1*10.0 + (*z - '0');
    z++;

    nSignificant++;


  }

  if( *z=='.' ){
    LONGDOUBLE_TYPE divisor = 1.0;
    z++;
    if( nSignificant==0 ){
      while( z[0]=='0' ){
        divisor *= 10.0;
        z++;
      }
    }

    while( sqlite3Isdigit(*z) ){
      if( nSignificant<18 ){
        v1 = v1*10.0 + (*z - '0');
        divisor *= 10.0;
        nSignificant++;
      }

      z++;
    }
    v1 /= divisor;
  }

  if( *z=='e' || *z=='E' ){
    int esign = 1;
    int eval = 0;
    LONGDOUBLE_TYPE scale = 1.0;
    z++;

    if( *z=='-' ){
      esign = -1;
      z++;
    }else if( *z=='+' ){
      z++;
    }

    while( sqlite3Isdigit(*z) ){
      eval = eval*10 + *z - '0';
      z++;
    }

    while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }








    while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }






















    while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }










    while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }

    if( esign<0 ){
      v1 /= scale;
    }else{
      v1 *= scale;
    }
  }






  *pResult = (double)(sign<0 ? -v1 : v1);


  return (int)(z - zBegin);
#else
  return sqlite3Atoi64(z, pResult);
#endif /* SQLITE_OMIT_FLOATING_POINT */
}

/*







|












<

>
>
>
>
>
>
>
|
|
>

>






>
|
<
|
>
|
|
|
>
|
>
>
|
>

<

|
<
<
<
<
<
>
|
<
|
<
|
|
>
|
|
<
|
>

<
<
<

>






>

|


>
|
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
|
>
|
|
|
|
|
|
>
>
>
>
>
>
|
>
>







18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681

18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702

18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714

18715
18716





18717
18718

18719

18720
18721
18722
18723
18724

18725
18726
18727



18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
    while( sqlite3Isdigit(*z) ){ z += incr; }
    *realnum = 1;
  }
  return *z==0;
}

/*
** The string z[] is an ASCII representation of a real number.
** Convert this string to a double.
**
** This routine assumes that z[] really is a valid number.  If it
** is not, the result is undefined.
**
** This routine is used instead of the library atof() function because
** the library atof() might want to use "," as the decimal point instead
** of "." depending on how locale is set.  But that would cause problems
** for SQL.  So this routine always uses "." regardless of locale.
*/
SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult){
#ifndef SQLITE_OMIT_FLOATING_POINT

  const char *zBegin = z;
  /* sign * significand * (10 ^ (esign * exponent)) */
  int sign = 1;   /* sign of significand */
  i64 s = 0;      /* significand */
  int d = 0;      /* adjust exponent for shifting decimal point */
  int esign = 1;  /* sign of exponent */
  int e = 0;      /* exponent */
  double result;
  int nDigits = 0;

  /* skip leading spaces */
  while( sqlite3Isspace(*z) ) z++;
  /* get sign of significand */
  if( *z=='-' ){
    sign = -1;
    z++;
  }else if( *z=='+' ){
    z++;
  }
  /* skip leading zeroes */
  while( z[0]=='0' ) z++, nDigits++;


  /* copy max significant digits to significand */
  while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
    s = s*10 + (*z - '0');
    z++, nDigits++;
  }
  /* skip non-significant significand digits
  ** (increase exponent by d to shift decimal left) */
  while( sqlite3Isdigit(*z) ) z++, nDigits++, d++;

  /* if decimal point is present */
  if( *z=='.' ){

    z++;
    /* copy digits from after decimal to significand





    ** (decrease exponent by d to shift decimal right) */
    while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){

      s = s*10 + (*z - '0');

      z++, nDigits++, d--;
    }
    /* skip non-significant digits */
    while( sqlite3Isdigit(*z) ) z++, nDigits++;
  }


  /* if exponent is present */
  if( *z=='e' || *z=='E' ){



    z++;
    /* get sign of exponent */
    if( *z=='-' ){
      esign = -1;
      z++;
    }else if( *z=='+' ){
      z++;
    }
    /* copy digits to exponent */
    while( sqlite3Isdigit(*z) ){
      e = e*10 + (*z - '0');
      z++;
    }
  }

  /* adjust exponent by d, and update sign */
  e = (e*esign) + d;
  if( e<0 ) {
    esign = -1;
    e *= -1;
  } else {
    esign = 1;
  }

  /* if 0 significand */
  if( !s ) {
    /* In the IEEE 754 standard, zero is signed.
    ** Add the sign if we've seen at least one digit */
    result = (sign<0 && nDigits) ? -(double)0 : (double)0;
  } else {
    /* attempt to reduce exponent */
    if( esign>0 ){
      while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
    }else{
      while( !(s%10) && e>0 ) e--,s/=10;
    }

    /* adjust the sign of significand */
    s = sign<0 ? -s : s;

    /* if exponent, scale significand as appropriate
    ** and store in result. */
    if( e ){
      double scale = 1.0;
      /* attempt to handle extremely small/large numbers better */
      if( e>307 && e<342 ){
        while( e%308 ) { scale *= 1.0e+1; e -= 1; }
        if( esign<0 ){
          result = s / scale;
          result /= 1.0e+308;
        }else{
          result = s * scale;
          result *= 1.0e+308;
        }
      }else{
        /* 1.0e+22 is the largest power of 10 than can be 
        ** represented exactly. */
        while( e%22 ) { scale *= 1.0e+1; e -= 1; }
        while( e>0 ) { scale *= 1.0e+22; e -= 22; }
        if( esign<0 ){
          result = s / scale;
        }else{
          result = s * scale;
        }
      }
    } else {
      result = (double)s;
    }
  }

  /* store the result */
  *pResult = result;

  /* return number of characters used */
  return (int)(z - zBegin);
#else
  return sqlite3Atoi64(z, pResult);
#endif /* SQLITE_OMIT_FLOATING_POINT */
}

/*
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
}



#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
/*
** Translate a single byte of Hex into an integer.
** This routinen only works if h really is a valid hexadecimal
** character:  0..9a..fA..F
*/
static u8 hexToInt(int h){
  assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
#ifdef SQLITE_ASCII
  h += 9*(1&(h>>6));
#endif







|







19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
}



#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
/*
** Translate a single byte of Hex into an integer.
** This routine only works if h really is a valid hexadecimal
** character:  0..9a..fA..F
*/
static u8 hexToInt(int h){
  assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
#ifdef SQLITE_ASCII
  h += 9*(1&(h>>6));
#endif
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
     /*  18 */ "Sort",
     /*  19 */ "Not",
     /*  20 */ "Copy",
     /*  21 */ "Trace",
     /*  22 */ "Function",
     /*  23 */ "IfNeg",
     /*  24 */ "Noop",
     /*  25 */ "Return",
     /*  26 */ "NewRowid",
     /*  27 */ "Variable",
     /*  28 */ "String",
     /*  29 */ "RealAffinity",
     /*  30 */ "VRename",
     /*  31 */ "ParseSchema",
     /*  32 */ "VOpen",
     /*  33 */ "Close",
     /*  34 */ "CreateIndex",
     /*  35 */ "IsUnique",
     /*  36 */ "NotFound",
     /*  37 */ "Int64",
     /*  38 */ "MustBeInt",
     /*  39 */ "Halt",
     /*  40 */ "Rowid",
     /*  41 */ "IdxLT",
     /*  42 */ "AddImm",
     /*  43 */ "Statement",
     /*  44 */ "RowData",
     /*  45 */ "MemMax",
     /*  46 */ "NotExists",
     /*  47 */ "Gosub",
     /*  48 */ "Integer",
     /*  49 */ "Prev",
     /*  50 */ "RowSetRead",
     /*  51 */ "RowSetAdd",
     /*  52 */ "VColumn",
     /*  53 */ "CreateTable",
     /*  54 */ "Last",
     /*  55 */ "SeekLe",
     /*  56 */ "IncrVacuum",
     /*  57 */ "IdxRowid",
     /*  58 */ "ResetCount",
     /*  59 */ "ContextPush",
     /*  60 */ "Yield",
     /*  61 */ "DropTrigger",
     /*  62 */ "DropIndex",
     /*  63 */ "IdxGE",
     /*  64 */ "IdxDelete",
     /*  65 */ "Vacuum",
     /*  66 */ "Or",
     /*  67 */ "And",
     /*  68 */ "IfNot",
     /*  69 */ "DropTable",







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|















|
|
|
|







19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
     /*  18 */ "Sort",
     /*  19 */ "Not",
     /*  20 */ "Copy",
     /*  21 */ "Trace",
     /*  22 */ "Function",
     /*  23 */ "IfNeg",
     /*  24 */ "Noop",
     /*  25 */ "Program",
     /*  26 */ "Return",
     /*  27 */ "NewRowid",
     /*  28 */ "Variable",
     /*  29 */ "String",
     /*  30 */ "RealAffinity",
     /*  31 */ "VRename",
     /*  32 */ "ParseSchema",
     /*  33 */ "VOpen",
     /*  34 */ "Close",
     /*  35 */ "CreateIndex",
     /*  36 */ "IsUnique",
     /*  37 */ "NotFound",
     /*  38 */ "Int64",
     /*  39 */ "MustBeInt",
     /*  40 */ "Halt",
     /*  41 */ "Rowid",
     /*  42 */ "IdxLT",
     /*  43 */ "AddImm",
     /*  44 */ "RowData",
     /*  45 */ "MemMax",
     /*  46 */ "NotExists",
     /*  47 */ "Gosub",
     /*  48 */ "Integer",
     /*  49 */ "Prev",
     /*  50 */ "RowSetRead",
     /*  51 */ "RowSetAdd",
     /*  52 */ "VColumn",
     /*  53 */ "CreateTable",
     /*  54 */ "Last",
     /*  55 */ "SeekLe",
     /*  56 */ "IncrVacuum",
     /*  57 */ "IdxRowid",
     /*  58 */ "ResetCount",
     /*  59 */ "Yield",
     /*  60 */ "DropTrigger",
     /*  61 */ "DropIndex",
     /*  62 */ "Param",
     /*  63 */ "IdxGE",
     /*  64 */ "IdxDelete",
     /*  65 */ "Vacuum",
     /*  66 */ "Or",
     /*  67 */ "And",
     /*  68 */ "IfNot",
     /*  69 */ "DropTable",
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
     /*  94 */ "String8",
     /*  95 */ "Compare",
     /*  96 */ "Goto",
     /*  97 */ "TableLock",
     /*  98 */ "Clear",
     /*  99 */ "VerifyCookie",
     /* 100 */ "AggStep",
     /* 101 */ "SetNumColumns",
     /* 102 */ "Transaction",
     /* 103 */ "VFilter",
     /* 104 */ "VDestroy",
     /* 105 */ "ContextPop",
     /* 106 */ "Next",
     /* 107 */ "Count",
     /* 108 */ "IdxInsert",
     /* 109 */ "SeekGe",
     /* 110 */ "Insert",
     /* 111 */ "Destroy",
     /* 112 */ "ReadCookie",
     /* 113 */ "RowSetTest",
     /* 114 */ "LoadAnalysis",
     /* 115 */ "Explain",
     /* 116 */ "HaltIfNull",
     /* 117 */ "OpenPseudo",
     /* 118 */ "OpenEphemeral",
     /* 119 */ "Null",
     /* 120 */ "Move",
     /* 121 */ "Blob",
     /* 122 */ "Rewind",
     /* 123 */ "SeekGt",
     /* 124 */ "VBegin",
     /* 125 */ "VUpdate",
     /* 126 */ "IfZero",
     /* 127 */ "VCreate",
     /* 128 */ "Found",
     /* 129 */ "IfPos",
     /* 130 */ "Real",
     /* 131 */ "NullRow",
     /* 132 */ "Jump",
     /* 133 */ "Permutation",
     /* 134 */ "NotUsed_134",
     /* 135 */ "NotUsed_135",
     /* 136 */ "NotUsed_136",
     /* 137 */ "NotUsed_137",
     /* 138 */ "NotUsed_138",
     /* 139 */ "ToText",
     /* 140 */ "ToBlob",







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|







19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
     /*  94 */ "String8",
     /*  95 */ "Compare",
     /*  96 */ "Goto",
     /*  97 */ "TableLock",
     /*  98 */ "Clear",
     /*  99 */ "VerifyCookie",
     /* 100 */ "AggStep",
     /* 101 */ "Transaction",
     /* 102 */ "VFilter",
     /* 103 */ "VDestroy",
     /* 104 */ "Next",
     /* 105 */ "Count",
     /* 106 */ "IdxInsert",
     /* 107 */ "SeekGe",
     /* 108 */ "Insert",
     /* 109 */ "Destroy",
     /* 110 */ "ReadCookie",
     /* 111 */ "RowSetTest",
     /* 112 */ "LoadAnalysis",
     /* 113 */ "Explain",
     /* 114 */ "HaltIfNull",
     /* 115 */ "OpenPseudo",
     /* 116 */ "OpenEphemeral",
     /* 117 */ "Null",
     /* 118 */ "Move",
     /* 119 */ "Blob",
     /* 120 */ "Rewind",
     /* 121 */ "SeekGt",
     /* 122 */ "VBegin",
     /* 123 */ "VUpdate",
     /* 124 */ "IfZero",
     /* 125 */ "VCreate",
     /* 126 */ "Found",
     /* 127 */ "IfPos",
     /* 128 */ "NullRow",
     /* 129 */ "Jump",
     /* 130 */ "Real",
     /* 131 */ "Permutation",
     /* 132 */ "NotUsed_132",
     /* 133 */ "NotUsed_133",
     /* 134 */ "NotUsed_134",
     /* 135 */ "NotUsed_135",
     /* 136 */ "NotUsed_136",
     /* 137 */ "NotUsed_137",
     /* 138 */ "NotUsed_138",
     /* 139 */ "ToText",
     /* 140 */ "ToBlob",
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
**   *  sqlite3_file methods not associated with locking.
**   *  Definitions of sqlite3_io_methods objects for all locking
**      methods plus "finder" functions for each locking method.
**   *  sqlite3_vfs method implementations.
**   *  Locking primitives for the proxy uber-locking-method. (MacOSX only)
**   *  Definitions of sqlite3_vfs objects for all locking methods
**      plus implementations of sqlite3_os_init() and sqlite3_os_end().
**
** $Id: os_unix.c,v 1.254 2009/07/03 12:57:58 drh Exp $
*/
#if SQLITE_OS_UNIX              /* This file is used on unix only */

/*
** There are various methods for file locking used for concurrency
** control:
**







<
<







21316
21317
21318
21319
21320
21321
21322


21323
21324
21325
21326
21327
21328
21329
**   *  sqlite3_file methods not associated with locking.
**   *  Definitions of sqlite3_io_methods objects for all locking
**      methods plus "finder" functions for each locking method.
**   *  sqlite3_vfs method implementations.
**   *  Locking primitives for the proxy uber-locking-method. (MacOSX only)
**   *  Definitions of sqlite3_vfs objects for all locking methods
**      plus implementations of sqlite3_os_init() and sqlite3_os_end().


*/
#if SQLITE_OS_UNIX              /* This file is used on unix only */

/*
** There are various methods for file locking used for concurrency
** control:
**
21022
21023
21024
21025
21026
21027
21028













21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042


21043
21044
21045
21046
21047
21048
21049
/*
** Only set the lastErrno if the error code is a real error and not 
** a normal expected return code of SQLITE_BUSY or SQLITE_OK
*/
#define IS_LOCK_ERROR(x)  ((x != SQLITE_OK) && (x != SQLITE_BUSY))















/*
** The unixFile structure is subclass of sqlite3_file specific to the unix
** VFS implementations.
*/
typedef struct unixFile unixFile;
struct unixFile {
  sqlite3_io_methods const *pMethod;  /* Always the first entry */
  struct unixOpenCnt *pOpen;       /* Info about all open fd's on this inode */
  struct unixLockInfo *pLock;      /* Info about locks on this inode */
  int h;                           /* The file descriptor */
  int dirfd;                       /* File descriptor for the directory */
  unsigned char locktype;          /* The type of lock held on this fd */
  int lastErrno;                   /* The unix errno from the last I/O error */
  void *lockingContext;            /* Locking style specific state */


#if SQLITE_ENABLE_LOCKING_STYLE
  int openFlags;                   /* The flags specified at open() */
#endif
#if SQLITE_THREADSAFE && defined(__linux__)
  pthread_t tid;                   /* The thread that "owns" this unixFile */
#endif
#if OS_VXWORKS







>
>
>
>
>
>
>
>
>
>
>
>
>














>
>







21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
/*
** Only set the lastErrno if the error code is a real error and not 
** a normal expected return code of SQLITE_BUSY or SQLITE_OK
*/
#define IS_LOCK_ERROR(x)  ((x != SQLITE_OK) && (x != SQLITE_BUSY))


/*
** Sometimes, after a file handle is closed by SQLite, the file descriptor
** cannot be closed immediately. In these cases, instances of the following
** structure are used to store the file descriptor while waiting for an
** opportunity to either close or reuse it.
*/
typedef struct UnixUnusedFd UnixUnusedFd;
struct UnixUnusedFd {
  int fd;                   /* File descriptor to close */
  int flags;                /* Flags this file descriptor was opened with */
  UnixUnusedFd *pNext;      /* Next unused file descriptor on same file */
};

/*
** The unixFile structure is subclass of sqlite3_file specific to the unix
** VFS implementations.
*/
typedef struct unixFile unixFile;
struct unixFile {
  sqlite3_io_methods const *pMethod;  /* Always the first entry */
  struct unixOpenCnt *pOpen;       /* Info about all open fd's on this inode */
  struct unixLockInfo *pLock;      /* Info about locks on this inode */
  int h;                           /* The file descriptor */
  int dirfd;                       /* File descriptor for the directory */
  unsigned char locktype;          /* The type of lock held on this fd */
  int lastErrno;                   /* The unix errno from the last I/O error */
  void *lockingContext;            /* Locking style specific state */
  UnixUnusedFd *pUnused;           /* Pre-allocated UnixUnusedFd */
  int fileFlags;                   /* Miscellanous flags */
#if SQLITE_ENABLE_LOCKING_STYLE
  int openFlags;                   /* The flags specified at open() */
#endif
#if SQLITE_THREADSAFE && defined(__linux__)
  pthread_t tid;                   /* The thread that "owns" this unixFile */
#endif
#if OS_VXWORKS
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077





21078
21079
21080
21081
21082
21083
21084
  ** occur if a file is updated without also updating the transaction
  ** counter.  This test is made to avoid new problems similar to the
  ** one described by ticket #3584. 
  */
  unsigned char transCntrChng;   /* True if the transaction counter changed */
  unsigned char dbUpdate;        /* True if any part of database file changed */
  unsigned char inNormalWrite;   /* True if in a normal write operation */

  /* If true, that means we are dealing with a database file that has
  ** a range of locking bytes from PENDING_BYTE through PENDING_BYTE+511
  ** which should never be read or written.  Asserts() will verify this */
  unsigned char isLockable;      /* True if file might be locked */
#endif
#ifdef SQLITE_TEST
  /* In test mode, increase the size of this structure a bit so that 
  ** it is larger than the struct CrashFile defined in test6.c.
  */
  char aPadding[32];
#endif
};






/*
** Include code that is common to all os_*.c files
*/
/************** Include os_common.h in the middle of os_unix.c ***************/
/************** Begin file os_common.h ***************************************/
/*
** 2004 May 22







<
<
<
<
<









>
>
>
>
>







21488
21489
21490
21491
21492
21493
21494





21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
  ** occur if a file is updated without also updating the transaction
  ** counter.  This test is made to avoid new problems similar to the
  ** one described by ticket #3584. 
  */
  unsigned char transCntrChng;   /* True if the transaction counter changed */
  unsigned char dbUpdate;        /* True if any part of database file changed */
  unsigned char inNormalWrite;   /* True if in a normal write operation */





#endif
#ifdef SQLITE_TEST
  /* In test mode, increase the size of this structure a bit so that 
  ** it is larger than the struct CrashFile defined in test6.c.
  */
  char aPadding[32];
#endif
};

/*
** The following macros define bits in unixFile.fileFlags
*/
#define SQLITE_WHOLE_FILE_LOCKING  0x0001   /* Use whole-file locking */

/*
** Include code that is common to all os_*.c files
*/
/************** Include os_common.h in the middle of os_unix.c ***************/
/************** Begin file os_common.h ***************************************/
/*
** 2004 May 22
21338
21339
21340
21341
21342
21343
21344
21345











21346
21347
21348
21349
21350
21351
21352





21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
#define threadid pthread_self()
#else
#define threadid 0
#endif


/*
** Helper functions to obtain and relinquish the global mutex.











*/
static void unixEnterMutex(void){
  sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
static void unixLeaveMutex(void){
  sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}







#ifdef SQLITE_DEBUG
/*
** Helper function for printing out trace information from debugging
** binaries. This returns the string represetation of the supplied
** integer lock-type.
*/
static const char *locktypeName(int locktype){
  switch( locktype ){
  case NO_LOCK: return "NONE";
  case SHARED_LOCK: return "SHARED";
  case RESERVED_LOCK: return "RESERVED";
  case PENDING_LOCK: return "PENDING";
  case EXCLUSIVE_LOCK: return "EXCLUSIVE";
  }
  return "ERROR";
}
#endif

#ifdef SQLITE_LOCK_TRACE
/*







|
>
>
>
>
>
>
>
>
>
>
>







>
>
>
>
>










|
|
|
|
|







21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
#define threadid pthread_self()
#else
#define threadid 0
#endif


/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect the unixOpenCnt, unixLockInfo and
** vxworksFileId objects used by this file, all of which may be 
** shared by multiple threads.
**
** Function unixMutexHeld() is used to assert() that the global mutex 
** is held when required. This function is only used as part of assert() 
** statements. e.g.
**
**   unixEnterMutex()
**     assert( unixMutexHeld() );
**   unixEnterLeave()
*/
static void unixEnterMutex(void){
  sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
static void unixLeaveMutex(void){
  sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
#ifdef SQLITE_DEBUG
static int unixMutexHeld(void) {
  return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
#endif


#ifdef SQLITE_DEBUG
/*
** Helper function for printing out trace information from debugging
** binaries. This returns the string represetation of the supplied
** integer lock-type.
*/
static const char *locktypeName(int locktype){
  switch( locktype ){
    case NO_LOCK: return "NONE";
    case SHARED_LOCK: return "SHARED";
    case RESERVED_LOCK: return "RESERVED";
    case PENDING_LOCK: return "PENDING";
    case EXCLUSIVE_LOCK: return "EXCLUSIVE";
  }
  return "ERROR";
}
#endif

#ifdef SQLITE_LOCK_TRACE
/*
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
** The close() system call would only occur when the last database
** using the file closes.
*/
struct unixOpenCnt {
  struct unixFileId fileId;   /* The lookup key */
  int nRef;                   /* Number of pointers to this structure */
  int nLock;                  /* Number of outstanding locks */
  int nPending;               /* Number of pending close() operations */
  int *aPending;            /* Malloced space holding fd's awaiting a close() */
#if OS_VXWORKS
  sem_t *pSem;                     /* Named POSIX semaphore */
  char aSemName[MAX_PATHNAME+1];   /* Name of that semaphore */
#endif
  struct unixOpenCnt *pNext, *pPrev;   /* List of all unixOpenCnt objects */
};

/*
** Lists of all unixLockInfo and unixOpenCnt objects.  These used to be hash
** tables.  But the number of objects is rarely more than a dozen and







|
<


|







22261
22262
22263
22264
22265
22266
22267
22268

22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
** The close() system call would only occur when the last database
** using the file closes.
*/
struct unixOpenCnt {
  struct unixFileId fileId;   /* The lookup key */
  int nRef;                   /* Number of pointers to this structure */
  int nLock;                  /* Number of outstanding locks */
  UnixUnusedFd *pUnused;      /* Unused file descriptors to close */

#if OS_VXWORKS
  sem_t *pSem;                     /* Named POSIX semaphore */
  char aSemName[MAX_PATHNAME+2];   /* Name of that semaphore */
#endif
  struct unixOpenCnt *pNext, *pPrev;   /* List of all unixOpenCnt objects */
};

/*
** Lists of all unixLockInfo and unixOpenCnt objects.  These used to be hash
** tables.  But the number of objects is rarely more than a dozen and
21926
21927
21928
21929
21930
21931
21932



21933
21934

21935
21936
21937
21938
21939
21940
21941
  if( d.result!=0 ) return;
  threadsOverrideEachOthersLocks = (d.lock.l_type==F_UNLCK);
}
#endif /* SQLITE_THREADSAFE && defined(__linux__) */

/*
** Release a unixLockInfo structure previously allocated by findLockInfo().



*/
static void releaseLockInfo(struct unixLockInfo *pLock){

  if( pLock ){
    pLock->nRef--;
    if( pLock->nRef==0 ){
      if( pLock->pPrev ){
        assert( pLock->pPrev->pNext==pLock );
        pLock->pPrev->pNext = pLock->pNext;
      }else{







>
>
>


>







22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
  if( d.result!=0 ) return;
  threadsOverrideEachOthersLocks = (d.lock.l_type==F_UNLCK);
}
#endif /* SQLITE_THREADSAFE && defined(__linux__) */

/*
** Release a unixLockInfo structure previously allocated by findLockInfo().
**
** The mutex entered using the unixEnterMutex() function must be held
** when this function is called.
*/
static void releaseLockInfo(struct unixLockInfo *pLock){
  assert( unixMutexHeld() );
  if( pLock ){
    pLock->nRef--;
    if( pLock->nRef==0 ){
      if( pLock->pPrev ){
        assert( pLock->pPrev->pNext==pLock );
        pLock->pPrev->pNext = pLock->pNext;
      }else{
21949
21950
21951
21952
21953
21954
21955



21956
21957

21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971



21972







21973
21974
21975
21976
21977
21978
21979
21980
21981



21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996


21997
21998
21999
22000
22001
22002
22003
      sqlite3_free(pLock);
    }
  }
}

/*
** Release a unixOpenCnt structure previously allocated by findLockInfo().



*/
static void releaseOpenCnt(struct unixOpenCnt *pOpen){

  if( pOpen ){
    pOpen->nRef--;
    if( pOpen->nRef==0 ){
      if( pOpen->pPrev ){
        assert( pOpen->pPrev->pNext==pOpen );
        pOpen->pPrev->pNext = pOpen->pNext;
      }else{
        assert( openList==pOpen );
        openList = pOpen->pNext;
      }
      if( pOpen->pNext ){
        assert( pOpen->pNext->pPrev==pOpen );
        pOpen->pNext->pPrev = pOpen->pPrev;
      }



      sqlite3_free(pOpen->aPending);







      sqlite3_free(pOpen);
    }
  }
}

/*
** Given a file descriptor, locate unixLockInfo and unixOpenCnt structures that
** describes that file descriptor.  Create new ones if necessary.  The
** return values might be uninitialized if an error occurs.



**
** Return an appropriate error code.
*/
static int findLockInfo(
  unixFile *pFile,               /* Unix file with file desc used in the key */
  struct unixLockInfo **ppLock,  /* Return the unixLockInfo structure here */
  struct unixOpenCnt **ppOpen    /* Return the unixOpenCnt structure here */
){
  int rc;                        /* System call return code */
  int fd;                        /* The file descriptor for pFile */
  struct unixLockKey lockKey;    /* Lookup key for the unixLockInfo structure */
  struct unixFileId fileId;      /* Lookup key for the unixOpenCnt struct */
  struct stat statbuf;           /* Low-level file information */
  struct unixLockInfo *pLock = 0;/* Candidate unixLockInfo object */
  struct unixOpenCnt *pOpen;     /* Candidate unixOpenCnt object */



  /* Get low-level information about the file that we can used to
  ** create a unique name for the file.
  */
  fd = pFile->h;
  rc = fstat(fd, &statbuf);
  if( rc!=0 ){







>
>
>


>














>
>
>
|
>
>
>
>
>
>
>









>
>
>















>
>







22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
      sqlite3_free(pLock);
    }
  }
}

/*
** Release a unixOpenCnt structure previously allocated by findLockInfo().
**
** The mutex entered using the unixEnterMutex() function must be held
** when this function is called.
*/
static void releaseOpenCnt(struct unixOpenCnt *pOpen){
  assert( unixMutexHeld() );
  if( pOpen ){
    pOpen->nRef--;
    if( pOpen->nRef==0 ){
      if( pOpen->pPrev ){
        assert( pOpen->pPrev->pNext==pOpen );
        pOpen->pPrev->pNext = pOpen->pNext;
      }else{
        assert( openList==pOpen );
        openList = pOpen->pNext;
      }
      if( pOpen->pNext ){
        assert( pOpen->pNext->pPrev==pOpen );
        pOpen->pNext->pPrev = pOpen->pPrev;
      }
#if SQLITE_THREADSAFE && defined(__linux__)
      assert( !pOpen->pUnused || threadsOverrideEachOthersLocks==0 );
#endif

      /* If pOpen->pUnused is not null, then memory and file-descriptors
      ** are leaked.
      **
      ** This will only happen if, under Linuxthreads, the user has opened
      ** a transaction in one thread, then attempts to close the database
      ** handle from another thread (without first unlocking the db file).
      ** This is a misuse.  */
      sqlite3_free(pOpen);
    }
  }
}

/*
** Given a file descriptor, locate unixLockInfo and unixOpenCnt structures that
** describes that file descriptor.  Create new ones if necessary.  The
** return values might be uninitialized if an error occurs.
**
** The mutex entered using the unixEnterMutex() function must be held
** when this function is called.
**
** Return an appropriate error code.
*/
static int findLockInfo(
  unixFile *pFile,               /* Unix file with file desc used in the key */
  struct unixLockInfo **ppLock,  /* Return the unixLockInfo structure here */
  struct unixOpenCnt **ppOpen    /* Return the unixOpenCnt structure here */
){
  int rc;                        /* System call return code */
  int fd;                        /* The file descriptor for pFile */
  struct unixLockKey lockKey;    /* Lookup key for the unixLockInfo structure */
  struct unixFileId fileId;      /* Lookup key for the unixOpenCnt struct */
  struct stat statbuf;           /* Low-level file information */
  struct unixLockInfo *pLock = 0;/* Candidate unixLockInfo object */
  struct unixOpenCnt *pOpen;     /* Candidate unixOpenCnt object */

  assert( unixMutexHeld() );

  /* Get low-level information about the file that we can used to
  ** create a unique name for the file.
  */
  fd = pFile->h;
  rc = fstat(fd, &statbuf);
  if( rc!=0 ){
22078
22079
22080
22081
22082
22083
22084

22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
    if( pOpen==0 ){
      pOpen = sqlite3_malloc( sizeof(*pOpen) );
      if( pOpen==0 ){
        releaseLockInfo(pLock);
        rc = SQLITE_NOMEM;
        goto exit_findlockinfo;
      }

      pOpen->fileId = fileId;
      pOpen->nRef = 1;
      pOpen->nLock = 0;
      pOpen->nPending = 0;
      pOpen->aPending = 0;
      pOpen->pNext = openList;
      pOpen->pPrev = 0;
      if( openList ) openList->pPrev = pOpen;
      openList = pOpen;
#if OS_VXWORKS
      pOpen->pSem = NULL;
      pOpen->aSemName[0] = '\0';
#endif
    }else{
      pOpen->nRef++;
    }
    *ppOpen = pOpen;
  }

exit_findlockinfo:







>


<
<
<

<


<
<
<
<







22547
22548
22549
22550
22551
22552
22553
22554
22555
22556



22557

22558
22559




22560
22561
22562
22563
22564
22565
22566
    if( pOpen==0 ){
      pOpen = sqlite3_malloc( sizeof(*pOpen) );
      if( pOpen==0 ){
        releaseLockInfo(pLock);
        rc = SQLITE_NOMEM;
        goto exit_findlockinfo;
      }
      memset(pOpen, 0, sizeof(*pOpen));
      pOpen->fileId = fileId;
      pOpen->nRef = 1;



      pOpen->pNext = openList;

      if( openList ) openList->pPrev = pOpen;
      openList = pOpen;




    }else{
      pOpen->nRef++;
    }
    *ppOpen = pOpen;
  }

exit_findlockinfo:
22196
22197
22198
22199
22200
22201
22202
























































22203
22204
22205
22206
22207
22208
22209
  
  unixLeaveMutex();
  OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);

  *pResOut = reserved;
  return rc;
}

























































/*
** Lock the file with the lock specified by parameter locktype - one
** of the following:
**
**     (1) SHARED_LOCK
**     (2) RESERVED_LOCK







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
  
  unixLeaveMutex();
  OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);

  *pResOut = reserved;
  return rc;
}

/*
** Perform a file locking operation on a range of bytes in a file.
** The "op" parameter should be one of F_RDLCK, F_WRLCK, or F_UNLCK.
** Return 0 on success or -1 for failure.  On failure, write the error
** code into *pErrcode.
**
** If the SQLITE_WHOLE_FILE_LOCKING bit is clear, then only lock
** the range of bytes on the locking page between SHARED_FIRST and
** SHARED_SIZE.  If SQLITE_WHOLE_FILE_LOCKING is set, then lock all
** bytes from 0 up to but not including PENDING_BYTE, and all bytes
** that follow SHARED_FIRST.
**
** In other words, of SQLITE_WHOLE_FILE_LOCKING if false (the historical
** default case) then only lock a small range of bytes from SHARED_FIRST
** through SHARED_FIRST+SHARED_SIZE-1.  But if SQLITE_WHOLE_FILE_LOCKING is
** true then lock every byte in the file except for PENDING_BYTE and
** RESERVED_BYTE.
**
** SQLITE_WHOLE_FILE_LOCKING=true overlaps SQLITE_WHOLE_FILE_LOCKING=false
** and so the locking schemes are compatible.  One type of lock will
** effectively exclude the other type.  The reason for using the
** SQLITE_WHOLE_FILE_LOCKING=true is that by indicating the full range
** of bytes to be read or written, we give hints to NFS to help it
** maintain cache coherency.  On the other hand, whole file locking
** is slower, so we don't want to use it except for NFS.
*/
static int rangeLock(unixFile *pFile, int op, int *pErrcode){
  struct flock lock;
  int rc;
  lock.l_type = op;
  lock.l_start = SHARED_FIRST;
  lock.l_whence = SEEK_SET;
  if( (pFile->fileFlags & SQLITE_WHOLE_FILE_LOCKING)==0 ){
    lock.l_len = SHARED_SIZE;
    rc = fcntl(pFile->h, F_SETLK, &lock);
    *pErrcode = errno;
  }else{
    lock.l_len = 0;
    rc = fcntl(pFile->h, F_SETLK, &lock);
    *pErrcode = errno;
    if( NEVER(op==F_UNLCK) || rc!=(-1) ){
      lock.l_start = 0;
      lock.l_len = PENDING_BYTE;
      rc = fcntl(pFile->h, F_SETLK, &lock);
      if( ALWAYS(op!=F_UNLCK) && rc==(-1) ){
        *pErrcode = errno;
        lock.l_type = F_UNLCK;
        lock.l_start = SHARED_FIRST;
        lock.l_len = 0;
        fcntl(pFile->h, F_SETLK, &lock);
      }
    }
  }
  return rc;
}

/*
** Lock the file with the lock specified by parameter locktype - one
** of the following:
**
**     (1) SHARED_LOCK
**     (2) RESERVED_LOCK
22264
22265
22266
22267
22268
22269
22270
22271

22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288



22289
22290
22291
22292
22293
22294
22295
  ** locking a random byte from a range, concurrent SHARED locks may exist
  ** even if the locking primitive used is always a write-lock.
  */
  int rc = SQLITE_OK;
  unixFile *pFile = (unixFile*)id;
  struct unixLockInfo *pLock = pFile->pLock;
  struct flock lock;
  int s;


  assert( pFile );
  OSTRACE7("LOCK    %d %s was %s(%s,%d) pid=%d\n", pFile->h,
      locktypeName(locktype), locktypeName(pFile->locktype),
      locktypeName(pLock->locktype), pLock->cnt , getpid());

  /* If there is already a lock of this type or more restrictive on the
  ** unixFile, do nothing. Don't use the end_lock: exit path, as
  ** unixEnterMutex() hasn't been called yet.
  */
  if( pFile->locktype>=locktype ){
    OSTRACE3("LOCK    %d %s ok (already held)\n", pFile->h,
            locktypeName(locktype));
    return SQLITE_OK;
  }

  /* Make sure the locking sequence is correct



  */
  assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
  assert( locktype!=PENDING_LOCK );
  assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );

  /* This mutex is needed because pFile->pLock is shared across threads
  */







|
>
















|
>
>
>







22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
  ** locking a random byte from a range, concurrent SHARED locks may exist
  ** even if the locking primitive used is always a write-lock.
  */
  int rc = SQLITE_OK;
  unixFile *pFile = (unixFile*)id;
  struct unixLockInfo *pLock = pFile->pLock;
  struct flock lock;
  int s = 0;
  int tErrno;

  assert( pFile );
  OSTRACE7("LOCK    %d %s was %s(%s,%d) pid=%d\n", pFile->h,
      locktypeName(locktype), locktypeName(pFile->locktype),
      locktypeName(pLock->locktype), pLock->cnt , getpid());

  /* If there is already a lock of this type or more restrictive on the
  ** unixFile, do nothing. Don't use the end_lock: exit path, as
  ** unixEnterMutex() hasn't been called yet.
  */
  if( pFile->locktype>=locktype ){
    OSTRACE3("LOCK    %d %s ok (already held)\n", pFile->h,
            locktypeName(locktype));
    return SQLITE_OK;
  }

  /* Make sure the locking sequence is correct.
  **  (1) We never move from unlocked to anything higher than shared lock.
  **  (2) SQLite never explicitly requests a pendig lock.
  **  (3) A shared lock is always held when a reserve lock is requested.
  */
  assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
  assert( locktype!=PENDING_LOCK );
  assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );

  /* This mutex is needed because pFile->pLock is shared across threads
  */
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339


22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
    assert( pLock->cnt>0 );
    pFile->locktype = SHARED_LOCK;
    pLock->cnt++;
    pFile->pOpen->nLock++;
    goto end_lock;
  }

  lock.l_len = 1L;

  lock.l_whence = SEEK_SET;

  /* A PENDING lock is needed before acquiring a SHARED lock and before
  ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
  ** be released.
  */


  if( locktype==SHARED_LOCK 
      || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
  ){
    lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
    lock.l_start = PENDING_BYTE;
    s = fcntl(pFile->h, F_SETLK, &lock);
    if( s==(-1) ){
      int tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( IS_LOCK_ERROR(rc) ){
        pFile->lastErrno = tErrno;
      }
      goto end_lock;
    }
  }


  /* If control gets to this point, then actually go ahead and make
  ** operating system calls for the specified lock.
  */
  if( locktype==SHARED_LOCK ){
    int tErrno = 0;
    assert( pLock->cnt==0 );
    assert( pLock->locktype==0 );

    /* Now get the read-lock */
    lock.l_start = SHARED_FIRST;
    lock.l_len = SHARED_SIZE;
    if( (s = fcntl(pFile->h, F_SETLK, &lock))==(-1) ){
      tErrno = errno;
    }
    /* Drop the temporary PENDING lock */
    lock.l_start = PENDING_BYTE;
    lock.l_len = 1L;
    lock.l_type = F_UNLCK;
    if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
      if( s != -1 ){
        /* This could happen with a network mount */







<
<
<





>
>







|













<




<
<
<
|
|







22847
22848
22849
22850
22851
22852
22853



22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881

22882
22883
22884
22885



22886
22887
22888
22889
22890
22891
22892
22893
22894
    assert( pLock->cnt>0 );
    pFile->locktype = SHARED_LOCK;
    pLock->cnt++;
    pFile->pOpen->nLock++;
    goto end_lock;
  }





  /* A PENDING lock is needed before acquiring a SHARED lock and before
  ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
  ** be released.
  */
  lock.l_len = 1L;
  lock.l_whence = SEEK_SET;
  if( locktype==SHARED_LOCK 
      || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
  ){
    lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
    lock.l_start = PENDING_BYTE;
    s = fcntl(pFile->h, F_SETLK, &lock);
    if( s==(-1) ){
      tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( IS_LOCK_ERROR(rc) ){
        pFile->lastErrno = tErrno;
      }
      goto end_lock;
    }
  }


  /* If control gets to this point, then actually go ahead and make
  ** operating system calls for the specified lock.
  */
  if( locktype==SHARED_LOCK ){

    assert( pLock->cnt==0 );
    assert( pLock->locktype==0 );

    /* Now get the read-lock */



    s = rangeLock(pFile, F_RDLCK, &tErrno);

    /* Drop the temporary PENDING lock */
    lock.l_start = PENDING_BYTE;
    lock.l_len = 1L;
    lock.l_type = F_UNLCK;
    if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
      if( s != -1 ){
        /* This could happen with a network mount */
22403
22404
22405
22406
22407
22408
22409


22410
22411
22412
22413

22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
    ** already.
    */
    assert( 0!=pFile->locktype );
    lock.l_type = F_WRLCK;
    switch( locktype ){
      case RESERVED_LOCK:
        lock.l_start = RESERVED_BYTE;


        break;
      case EXCLUSIVE_LOCK:
        lock.l_start = SHARED_FIRST;
        lock.l_len = SHARED_SIZE;

        break;
      default:
        assert(0);
    }
    s = fcntl(pFile->h, F_SETLK, &lock);
    if( s==(-1) ){
      int tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( IS_LOCK_ERROR(rc) ){
        pFile->lastErrno = tErrno;
      }
    }
  }
  







>
>


<
<
>




<

<







22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930


22931
22932
22933
22934
22935

22936

22937
22938
22939
22940
22941
22942
22943
    ** already.
    */
    assert( 0!=pFile->locktype );
    lock.l_type = F_WRLCK;
    switch( locktype ){
      case RESERVED_LOCK:
        lock.l_start = RESERVED_BYTE;
        s = fcntl(pFile->h, F_SETLK, &lock);
        tErrno = errno;
        break;
      case EXCLUSIVE_LOCK:


        s = rangeLock(pFile, F_WRLCK, &tErrno);
        break;
      default:
        assert(0);
    }

    if( s==(-1) ){

      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( IS_LOCK_ERROR(rc) ){
        pFile->lastErrno = tErrno;
      }
    }
  }
  
22453
22454
22455
22456
22457
22458
22459











































22460
22461
22462
22463
22464
22465
22466
22467
22468

22469
22470
22471
22472
22473

22474
22475
22476
22477
22478
22479
22480

end_lock:
  unixLeaveMutex();
  OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
      rc==SQLITE_OK ? "ok" : "failed");
  return rc;
}












































/*
** Lower the locking level on file descriptor pFile to locktype.  locktype
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
static int unixUnlock(sqlite3_file *id, int locktype){

  struct unixLockInfo *pLock;
  struct flock lock;
  int rc = SQLITE_OK;
  unixFile *pFile = (unixFile*)id;
  int h;


  assert( pFile );
  OSTRACE7("UNLOCK  %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
      pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());

  assert( locktype<=SHARED_LOCK );
  if( pFile->locktype<=locktype ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









>
|
|
|
<
|
>







22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031

23032
23033
23034
23035
23036
23037
23038
23039
23040

end_lock:
  unixLeaveMutex();
  OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
      rc==SQLITE_OK ? "ok" : "failed");
  return rc;
}

/*
** Close all file descriptors accumuated in the unixOpenCnt->pUnused list.
** If all such file descriptors are closed without error, the list is
** cleared and SQLITE_OK returned.
**
** Otherwise, if an error occurs, then successfully closed file descriptor
** entries are removed from the list, and SQLITE_IOERR_CLOSE returned. 
** not deleted and SQLITE_IOERR_CLOSE returned.
*/ 
static int closePendingFds(unixFile *pFile){
  int rc = SQLITE_OK;
  struct unixOpenCnt *pOpen = pFile->pOpen;
  UnixUnusedFd *pError = 0;
  UnixUnusedFd *p;
  UnixUnusedFd *pNext;
  for(p=pOpen->pUnused; p; p=pNext){
    pNext = p->pNext;
    if( close(p->fd) ){
      pFile->lastErrno = errno;
      rc = SQLITE_IOERR_CLOSE;
      p->pNext = pError;
      pError = p;
    }else{
      sqlite3_free(p);
    }
  }
  pOpen->pUnused = pError;
  return rc;
}

/*
** Add the file descriptor used by file handle pFile to the corresponding
** pUnused list.
*/
static void setPendingFd(unixFile *pFile){
  struct unixOpenCnt *pOpen = pFile->pOpen;
  UnixUnusedFd *p = pFile->pUnused;
  p->pNext = pOpen->pUnused;
  pOpen->pUnused = p;
  pFile->h = -1;
  pFile->pUnused = 0;
}

/*
** Lower the locking level on file descriptor pFile to locktype.  locktype
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
static int unixUnlock(sqlite3_file *id, int locktype){
  unixFile *pFile = (unixFile*)id; /* The open file */
  struct unixLockInfo *pLock;      /* Structure describing current lock state */
  struct flock lock;               /* Information passed into fcntl() */
  int rc = SQLITE_OK;              /* Return code from this interface */

  int h;                           /* The underlying file descriptor */
  int tErrno;                      /* Error code from system call errors */

  assert( pFile );
  OSTRACE7("UNLOCK  %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
      pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());

  assert( locktype<=SHARED_LOCK );
  if( pFile->locktype<=locktype ){
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598

22599
22600
22601
22602
22603
22604
22605
         || pFile->dbUpdate==0
         || pFile->transCntrChng==1 );
    pFile->inNormalWrite = 0;
#endif


    if( locktype==SHARED_LOCK ){
      lock.l_type = F_RDLCK;
      lock.l_whence = SEEK_SET;
      lock.l_start = SHARED_FIRST;
      lock.l_len = SHARED_SIZE;
      if( fcntl(h, F_SETLK, &lock)==(-1) ){
        int tErrno = errno;
        rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
        if( IS_LOCK_ERROR(rc) ){
          pFile->lastErrno = tErrno;
        }
        goto end_unlock;
      }
    }
    lock.l_type = F_UNLCK;
    lock.l_whence = SEEK_SET;
    lock.l_start = PENDING_BYTE;
    lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
    if( fcntl(h, F_SETLK, &lock)!=(-1) ){
      pLock->locktype = SHARED_LOCK;
    }else{
      int tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
      if( IS_LOCK_ERROR(rc) ){
        pFile->lastErrno = tErrno;
      }
      goto end_unlock;
    }
  }
  if( locktype==NO_LOCK ){
    struct unixOpenCnt *pOpen;
    int rc2 = SQLITE_OK;

    /* Decrement the shared lock counter.  Release the lock using an
    ** OS call only when all threads in this same process have released
    ** the lock.
    */
    pLock->cnt--;
    if( pLock->cnt==0 ){
      lock.l_type = F_UNLCK;
      lock.l_whence = SEEK_SET;
      lock.l_start = lock.l_len = 0L;
      SimulateIOErrorBenign(1);
      SimulateIOError( h=(-1) )
      SimulateIOErrorBenign(0);
      if( fcntl(h, F_SETLK, &lock)!=(-1) ){
        pLock->locktype = NO_LOCK;
      }else{
        int tErrno = errno;
        rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
        if( IS_LOCK_ERROR(rc) ){
          pFile->lastErrno = tErrno;
        }
        pLock->locktype = NO_LOCK;
        pFile->locktype = NO_LOCK;
      }
    }

    /* Decrement the count of locks against this same file.  When the
    ** count reaches zero, close any other file descriptors whose close
    ** was deferred because of outstanding locks.
    */
    pOpen = pFile->pOpen;
    pOpen->nLock--;
    assert( pOpen->nLock>=0 );
    if( pOpen->nLock==0 && pOpen->nPending>0 ){
      int i;
      for(i=0; i<pOpen->nPending; i++){
        /* close pending fds, but if closing fails don't free the array
        ** assign -1 to the successfully closed descriptors and record the
        ** error.  The next attempt to unlock will try again. */
        if( pOpen->aPending[i] < 0 ) continue;
        if( close(pOpen->aPending[i]) ){
          pFile->lastErrno = errno;
          rc2 = SQLITE_IOERR_CLOSE;
        }else{
          pOpen->aPending[i] = -1;
        }
      }
      if( rc2==SQLITE_OK ){
        sqlite3_free(pOpen->aPending);
        pOpen->nPending = 0;
        pOpen->aPending = 0;
      }
    }
    if( rc==SQLITE_OK ){
      rc = rc2;

    }
  }
	
end_unlock:
  unixLeaveMutex();
  if( rc==SQLITE_OK ) pFile->locktype = locktype;
  return rc;







<
<
<
<
|
<














|









<
















|
















|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
|
|
>







23066
23067
23068
23069
23070
23071
23072




23073

23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097

23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131















23132



23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
         || pFile->dbUpdate==0
         || pFile->transCntrChng==1 );
    pFile->inNormalWrite = 0;
#endif


    if( locktype==SHARED_LOCK ){




      if( rangeLock(pFile, F_RDLCK, &tErrno)==(-1) ){

        rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
        if( IS_LOCK_ERROR(rc) ){
          pFile->lastErrno = tErrno;
        }
        goto end_unlock;
      }
    }
    lock.l_type = F_UNLCK;
    lock.l_whence = SEEK_SET;
    lock.l_start = PENDING_BYTE;
    lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
    if( fcntl(h, F_SETLK, &lock)!=(-1) ){
      pLock->locktype = SHARED_LOCK;
    }else{
      tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
      if( IS_LOCK_ERROR(rc) ){
        pFile->lastErrno = tErrno;
      }
      goto end_unlock;
    }
  }
  if( locktype==NO_LOCK ){
    struct unixOpenCnt *pOpen;


    /* Decrement the shared lock counter.  Release the lock using an
    ** OS call only when all threads in this same process have released
    ** the lock.
    */
    pLock->cnt--;
    if( pLock->cnt==0 ){
      lock.l_type = F_UNLCK;
      lock.l_whence = SEEK_SET;
      lock.l_start = lock.l_len = 0L;
      SimulateIOErrorBenign(1);
      SimulateIOError( h=(-1) )
      SimulateIOErrorBenign(0);
      if( fcntl(h, F_SETLK, &lock)!=(-1) ){
        pLock->locktype = NO_LOCK;
      }else{
        tErrno = errno;
        rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
        if( IS_LOCK_ERROR(rc) ){
          pFile->lastErrno = tErrno;
        }
        pLock->locktype = NO_LOCK;
        pFile->locktype = NO_LOCK;
      }
    }

    /* Decrement the count of locks against this same file.  When the
    ** count reaches zero, close any other file descriptors whose close
    ** was deferred because of outstanding locks.
    */
    pOpen = pFile->pOpen;
    pOpen->nLock--;
    assert( pOpen->nLock>=0 );
    if( pOpen->nLock==0 ){















      int rc2 = closePendingFds(pFile);



      if( rc==SQLITE_OK ){
        rc = rc2;
      }
    }
  }
	
end_unlock:
  unixLeaveMutex();
  if( rc==SQLITE_OK ) pFile->locktype = locktype;
  return rc;
22641
22642
22643
22644
22645
22646
22647

22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
      }
      vxworksReleaseFileId(pFile->pId);
      pFile->pId = 0;
    }
#endif
    OSTRACE2("CLOSE   %-3d\n", pFile->h);
    OpenCounter(-1);

    memset(pFile, 0, sizeof(unixFile));
  }
  return SQLITE_OK;
}

/*
** Close a file.
*/
static int unixClose(sqlite3_file *id){
  int rc = SQLITE_OK;
  if( id ){
    unixFile *pFile = (unixFile *)id;
    unixUnlock(id, NO_LOCK);
    unixEnterMutex();
    if( pFile->pOpen && pFile->pOpen->nLock ){
      /* If there are outstanding locks, do not actually close the file just
      ** yet because that would clear those locks.  Instead, add the file
      ** descriptor to pOpen->aPending.  It will be automatically closed when
      ** the last lock is cleared.
      */
      int *aNew;
      struct unixOpenCnt *pOpen = pFile->pOpen;
      aNew = sqlite3_realloc(pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
      if( aNew==0 ){
        /* If a malloc fails, just leak the file descriptor */
      }else{
        pOpen->aPending = aNew;
        pOpen->aPending[pOpen->nPending] = pFile->h;
        pOpen->nPending++;
        pFile->h = -1;
      }
    }
    releaseLockInfo(pFile->pLock);
    releaseOpenCnt(pFile->pOpen);
    rc = closeUnixFile(id);
    unixLeaveMutex();
  }
  return rc;







>

















|
|

<
<
<
<
<
<
<
<
|
<
<







23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205








23206


23207
23208
23209
23210
23211
23212
23213
      }
      vxworksReleaseFileId(pFile->pId);
      pFile->pId = 0;
    }
#endif
    OSTRACE2("CLOSE   %-3d\n", pFile->h);
    OpenCounter(-1);
    sqlite3_free(pFile->pUnused);
    memset(pFile, 0, sizeof(unixFile));
  }
  return SQLITE_OK;
}

/*
** Close a file.
*/
static int unixClose(sqlite3_file *id){
  int rc = SQLITE_OK;
  if( id ){
    unixFile *pFile = (unixFile *)id;
    unixUnlock(id, NO_LOCK);
    unixEnterMutex();
    if( pFile->pOpen && pFile->pOpen->nLock ){
      /* If there are outstanding locks, do not actually close the file just
      ** yet because that would clear those locks.  Instead, add the file
      ** descriptor to pOpen->pUnused list.  It will be automatically closed 
      ** when the last lock is cleared.
      */








      setPendingFd(pFile);


    }
    releaseLockInfo(pFile->pLock);
    releaseOpenCnt(pFile->pOpen);
    rc = closeUnixFile(id);
    unixLeaveMutex();
  }
  return rc;
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742

/******************* End of the no-op lock implementation *********************
******************************************************************************/

/******************************************************************************
************************* Begin dot-file Locking ******************************
**
** The dotfile locking implementation uses the existing of separate lock
** files in order to control access to the database.  This works on just
** about every filesystem imaginable.  But there are serious downsides:
**
**    (1)  There is zero concurrency.  A single reader blocks all other
**         connections from reading or writing the database.
**
**    (2)  An application crash or power loss can leave stale lock files







|







23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270

/******************* End of the no-op lock implementation *********************
******************************************************************************/

/******************************************************************************
************************* Begin dot-file Locking ******************************
**
** The dotfile locking implementation uses the existance of separate lock
** files in order to control access to the database.  This works on just
** about every filesystem imaginable.  But there are serious downsides:
**
**    (1)  There is zero concurrency.  A single reader blocks all other
**         connections from reading or writing the database.
**
**    (2)  An application crash or power loss can leave stale lock files
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667


23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
  }

  if( rc==SQLITE_OK ){
    if( locktype==NO_LOCK ){
      struct unixOpenCnt *pOpen = pFile->pOpen;
      pOpen->nLock--;
      assert( pOpen->nLock>=0 );
      if( pOpen->nLock==0 && pOpen->nPending>0 ){
        int i;
        for(i=0; i<pOpen->nPending; i++){
          if( pOpen->aPending[i] < 0 ) continue;
          if( close(pOpen->aPending[i]) ){
            pFile->lastErrno = errno;
            rc = SQLITE_IOERR_CLOSE;
          }else{
            pOpen->aPending[i] = -1;
          }
        }
        if( rc==SQLITE_OK ){
          sqlite3_free(pOpen->aPending);
          pOpen->nPending = 0;
          pOpen->aPending = 0;
        }
      }
    }
  }
  unixLeaveMutex();
  if( rc==SQLITE_OK ) pFile->locktype = locktype;


  return rc;
}

/*
** Close a file & cleanup AFP specific locking context 
*/
static int afpClose(sqlite3_file *id) {
  if( id ){
    unixFile *pFile = (unixFile*)id;
    afpUnlock(id, NO_LOCK);
    unixEnterMutex();
    if( pFile->pOpen && pFile->pOpen->nLock ){
      /* If there are outstanding locks, do not actually close the file just
      ** yet because that would clear those locks.  Instead, add the file
      ** descriptor to pOpen->aPending.  It will be automatically closed when
      ** the last lock is cleared.
      */
      int *aNew;
      struct unixOpenCnt *pOpen = pFile->pOpen;
      aNew = sqlite3_realloc(pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
      if( aNew==0 ){
        /* If a malloc fails, just leak the file descriptor */
      }else{
        pOpen->aPending = aNew;
        pOpen->aPending[pOpen->nPending] = pFile->h;
        pOpen->nPending++;
        pFile->h = -1;
      }
    }
    releaseOpenCnt(pFile->pOpen);
    sqlite3_free(pFile->lockingContext);
    closeUnixFile(id);
    unixLeaveMutex();
  }
  return SQLITE_OK;







|
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<




|
>
>

















<
<
<
<
<
<
<
<
|
<
<







24168
24169
24170
24171
24172
24173
24174
24175












24176


24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200








24201


24202
24203
24204
24205
24206
24207
24208
  }

  if( rc==SQLITE_OK ){
    if( locktype==NO_LOCK ){
      struct unixOpenCnt *pOpen = pFile->pOpen;
      pOpen->nLock--;
      assert( pOpen->nLock>=0 );
      if( pOpen->nLock==0 ){












        rc = closePendingFds(pFile);


      }
    }
  }
  unixLeaveMutex();
  if( rc==SQLITE_OK ){
    pFile->locktype = locktype;
  }
  return rc;
}

/*
** Close a file & cleanup AFP specific locking context 
*/
static int afpClose(sqlite3_file *id) {
  if( id ){
    unixFile *pFile = (unixFile*)id;
    afpUnlock(id, NO_LOCK);
    unixEnterMutex();
    if( pFile->pOpen && pFile->pOpen->nLock ){
      /* If there are outstanding locks, do not actually close the file just
      ** yet because that would clear those locks.  Instead, add the file
      ** descriptor to pOpen->aPending.  It will be automatically closed when
      ** the last lock is cleared.
      */








      setPendingFd(pFile);


    }
    releaseOpenCnt(pFile->pOpen);
    sqlite3_free(pFile->lockingContext);
    closeUnixFile(id);
    unixLeaveMutex();
  }
  return SQLITE_OK;
23774
23775
23776
23777
23778
23779
23780

23781
23782
23783

23784
23785
23786
23787

23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
*/
static int unixRead(
  sqlite3_file *id, 
  void *pBuf, 
  int amt,
  sqlite3_int64 offset
){

  int got;
  assert( id );


  /* Never read or write any of the bytes in the locking range */
  assert( ((unixFile*)id)->isLockable==0
          || offset>=PENDING_BYTE+512
          || offset+amt<=PENDING_BYTE );


  got = seekAndRead((unixFile*)id, offset, pBuf, amt);
  if( got==amt ){
    return SQLITE_OK;
  }else if( got<0 ){
    /* lastErrno set by seekAndRead */
    return SQLITE_IOERR_READ;
  }else{
    ((unixFile*)id)->lastErrno = 0; /* not a system error */
    /* Unread parts of the buffer must be zero-filled */
    memset(&((char*)pBuf)[got], 0, amt-got);
    return SQLITE_IOERR_SHORT_READ;
  }
}

/*







>



>
|
|
|
|
>

|






|







24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
*/
static int unixRead(
  sqlite3_file *id, 
  void *pBuf, 
  int amt,
  sqlite3_int64 offset
){
  unixFile *pFile = (unixFile *)id;
  int got;
  assert( id );

  /* If this is a database file (not a journal, master-journal or temp
  ** file), the bytes in the locking range should never be read or written. */
  assert( pFile->pUnused==0
       || offset>=PENDING_BYTE+512
       || offset+amt<=PENDING_BYTE 
  );

  got = seekAndRead(pFile, offset, pBuf, amt);
  if( got==amt ){
    return SQLITE_OK;
  }else if( got<0 ){
    /* lastErrno set by seekAndRead */
    return SQLITE_IOERR_READ;
  }else{
    pFile->lastErrno = 0; /* not a system error */
    /* Unread parts of the buffer must be zero-filled */
    memset(&((char*)pBuf)[got], 0, amt-got);
    return SQLITE_IOERR_SHORT_READ;
  }
}

/*
23843
23844
23845
23846
23847
23848
23849

23850
23851
23852
23853

23854
23855
23856
23857

23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
*/
static int unixWrite(
  sqlite3_file *id, 
  const void *pBuf, 
  int amt,
  sqlite3_int64 offset 
){

  int wrote = 0;
  assert( id );
  assert( amt>0 );


  /* Never read or write any of the bytes in the locking range */
  assert( ((unixFile*)id)->isLockable==0
          || offset>=PENDING_BYTE+512
          || offset+amt<=PENDING_BYTE );


#ifndef NDEBUG
  /* If we are doing a normal write to a database file (as opposed to
  ** doing a hot-journal rollback or a write to some file other than a
  ** normal database file) then record the fact that the database
  ** has changed.  If the transaction counter is modified, record that
  ** fact too.
  */
  if( ((unixFile*)id)->inNormalWrite ){
    unixFile *pFile = (unixFile*)id;
    pFile->dbUpdate = 1;  /* The database has been modified */
    if( offset<=24 && offset+amt>=27 ){
      int rc;
      char oldCntr[4];
      SimulateIOErrorBenign(1);
      rc = seekAndRead(pFile, 24, oldCntr, 4);
      SimulateIOErrorBenign(0);
      if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
        pFile->transCntrChng = 1;  /* The transaction counter has changed */
      }
    }
  }
#endif

  while( amt>0 && (wrote = seekAndWrite((unixFile*)id, offset, pBuf, amt))>0 ){
    amt -= wrote;
    offset += wrote;
    pBuf = &((char*)pBuf)[wrote];
  }
  SimulateIOError(( wrote=(-1), amt=1 ));
  SimulateDiskfullError(( wrote=0, amt=1 ));
  if( amt>0 ){
    if( wrote<0 ){
      /* lastErrno set by seekAndWrite */
      return SQLITE_IOERR_WRITE;
    }else{
      ((unixFile*)id)->lastErrno = 0; /* not a system error */
      return SQLITE_FULL;
    }
  }
  return SQLITE_OK;
}

#ifdef SQLITE_TEST







>




>
|
|
|
|
>








|
<














|











|







24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378

24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
*/
static int unixWrite(
  sqlite3_file *id, 
  const void *pBuf, 
  int amt,
  sqlite3_int64 offset 
){
  unixFile *pFile = (unixFile*)id;
  int wrote = 0;
  assert( id );
  assert( amt>0 );

  /* If this is a database file (not a journal, master-journal or temp
  ** file), the bytes in the locking range should never be read or written. */
  assert( pFile->pUnused==0
       || offset>=PENDING_BYTE+512
       || offset+amt<=PENDING_BYTE 
  );

#ifndef NDEBUG
  /* If we are doing a normal write to a database file (as opposed to
  ** doing a hot-journal rollback or a write to some file other than a
  ** normal database file) then record the fact that the database
  ** has changed.  If the transaction counter is modified, record that
  ** fact too.
  */
  if( pFile->inNormalWrite ){

    pFile->dbUpdate = 1;  /* The database has been modified */
    if( offset<=24 && offset+amt>=27 ){
      int rc;
      char oldCntr[4];
      SimulateIOErrorBenign(1);
      rc = seekAndRead(pFile, 24, oldCntr, 4);
      SimulateIOErrorBenign(0);
      if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
        pFile->transCntrChng = 1;  /* The transaction counter has changed */
      }
    }
  }
#endif

  while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){
    amt -= wrote;
    offset += wrote;
    pBuf = &((char*)pBuf)[wrote];
  }
  SimulateIOError(( wrote=(-1), amt=1 ));
  SimulateDiskfullError(( wrote=0, amt=1 ));
  if( amt>0 ){
    if( wrote<0 ){
      /* lastErrno set by seekAndWrite */
      return SQLITE_IOERR_WRITE;
    }else{
      pFile->lastErrno = 0; /* not a system error */
      return SQLITE_FULL;
    }
  }
  return SQLITE_OK;
}

#ifdef SQLITE_TEST
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
** looks at the filesystem type and tries to guess the best locking
** strategy from that.
**
** For finder-funtion F, two objects are created:
**
**    (1) The real finder-function named "FImpt()".
**
**    (2) A constant pointer to this functio named just "F".
**
**
** A pointer to the F pointer is used as the pAppData value for VFS
** objects.  We have to do this instead of letting pAppData point
** directly at the finder-function since C90 rules prevent a void*
** from be cast into a function pointer.
**







|







24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
** looks at the filesystem type and tries to guess the best locking
** strategy from that.
**
** For finder-funtion F, two objects are created:
**
**    (1) The real finder-function named "FImpt()".
**
**    (2) A constant pointer to this function named just "F".
**
**
** A pointer to the F pointer is used as the pAppData value for VFS
** objects.  We have to do this instead of letting pAppData point
** directly at the finder-function since C90 rules prevent a void*
** from be cast into a function pointer.
**
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
   LOCK,                       /* xLock */                                   \
   UNLOCK,                     /* xUnlock */                                 \
   CKLOCK,                     /* xCheckReservedLock */                      \
   unixFileControl,            /* xFileControl */                            \
   unixSectorSize,             /* xSectorSize */                             \
   unixDeviceCharacteristics   /* xDeviceCapabilities */                     \
};                                                                           \
static const sqlite3_io_methods *FINDER##Impl(const char *z, int h){         \
  UNUSED_PARAMETER(z); UNUSED_PARAMETER(h);                                  \
  return &METHOD;                                                            \
}                                                                            \
static const sqlite3_io_methods *(*const FINDER)(const char*,int)            \
    = FINDER##Impl;

/*
** Here are all of the sqlite3_io_methods objects for each of the
** locking strategies.  Functions that return pointers to these methods
** are also created.
*/







|
|


|







24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
   LOCK,                       /* xLock */                                   \
   UNLOCK,                     /* xUnlock */                                 \
   CKLOCK,                     /* xCheckReservedLock */                      \
   unixFileControl,            /* xFileControl */                            \
   unixSectorSize,             /* xSectorSize */                             \
   unixDeviceCharacteristics   /* xDeviceCapabilities */                     \
};                                                                           \
static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){   \
  UNUSED_PARAMETER(z); UNUSED_PARAMETER(p);                                  \
  return &METHOD;                                                            \
}                                                                            \
static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p)    \
    = FINDER##Impl;

/*
** Here are all of the sqlite3_io_methods objects for each of the
** locking strategies.  Functions that return pointers to these methods
** are also created.
*/
24318
24319
24320
24321
24322
24323
24324

















24325
24326
24327
24328
24329
24330
24331
  afpClose,                 /* xClose method */
  afpLock,                  /* xLock method */
  afpUnlock,                /* xUnlock method */
  afpCheckReservedLock      /* xCheckReservedLock method */
)
#endif


















/*
** The proxy locking method is a "super-method" in the sense that it
** opens secondary file descriptors for the conch and lock files and
** it uses proxy, dot-file, AFP, and flock() locking methods on those
** secondary files.  For this reason, the division that implements
** proxy locking is located much further down in the file.  But we need
** to go ahead and define the sqlite3_io_methods and finder function







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
  afpClose,                 /* xClose method */
  afpLock,                  /* xLock method */
  afpUnlock,                /* xUnlock method */
  afpCheckReservedLock      /* xCheckReservedLock method */
)
#endif

/*
** The "Whole File Locking" finder returns the same set of methods as
** the posix locking finder.  But it also sets the SQLITE_WHOLE_FILE_LOCKING
** flag to force the posix advisory locks to cover the whole file instead
** of just a small span of bytes near the 1GiB boundary.  Whole File Locking
** is useful on NFS-mounted files since it helps NFS to maintain cache
** coherency.  But it is a detriment to other filesystems since it runs
** slower.
*/
static const sqlite3_io_methods *posixWflIoFinderImpl(const char*z, unixFile*p){
  UNUSED_PARAMETER(z);
  p->fileFlags = SQLITE_WHOLE_FILE_LOCKING;
  return &posixIoMethods;
}
static const sqlite3_io_methods 
  *(*const posixWflIoFinder)(const char*,unixFile *p) = posixWflIoFinderImpl;

/*
** The proxy locking method is a "super-method" in the sense that it
** opens secondary file descriptors for the conch and lock files and
** it uses proxy, dot-file, AFP, and flock() locking methods on those
** secondary files.  For this reason, the division that implements
** proxy locking is located much further down in the file.  But we need
** to go ahead and define the sqlite3_io_methods and finder function
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
** for the database file "filePath".  It then returns the sqlite3_io_methods
** object that implements that strategy.
**
** This is for MacOSX only.
*/
static const sqlite3_io_methods *autolockIoFinderImpl(
  const char *filePath,    /* name of the database file */
  int fd                   /* file descriptor open on the database file */
){
  static const struct Mapping {
    const char *zFilesystem;              /* Filesystem type name */
    const sqlite3_io_methods *pMethods;   /* Appropriate locking method */
  } aMap[] = {
    { "hfs",    &posixIoMethods },
    { "ufs",    &posixIoMethods },







|







24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
** for the database file "filePath".  It then returns the sqlite3_io_methods
** object that implements that strategy.
**
** This is for MacOSX only.
*/
static const sqlite3_io_methods *autolockIoFinderImpl(
  const char *filePath,    /* name of the database file */
  unixFile *pNew           /* open file object for the database file */
){
  static const struct Mapping {
    const char *zFilesystem;              /* Filesystem type name */
    const sqlite3_io_methods *pMethods;   /* Appropriate locking method */
  } aMap[] = {
    { "hfs",    &posixIoMethods },
    { "ufs",    &posixIoMethods },
24398
24399
24400
24401
24402
24403
24404
24405

24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
  ** Test byte-range lock using fcntl(). If the call succeeds, 
  ** assume that the file-system supports POSIX style locks. 
  */
  lockInfo.l_len = 1;
  lockInfo.l_start = 0;
  lockInfo.l_whence = SEEK_SET;
  lockInfo.l_type = F_RDLCK;
  if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) {

    return &posixIoMethods;
  }else{
    return &dotlockIoMethods;
  }
}
static const sqlite3_io_methods *(*const autolockIoFinder)(const char*,int)
        = autolockIoFinderImpl;

#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */

#if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
/* 
** This "finder" function attempts to determine the best locking strategy 
** for the database file "filePath".  It then returns the sqlite3_io_methods
** object that implements that strategy.
**
** This is for VXWorks only.
*/
static const sqlite3_io_methods *autolockIoFinderImpl(
  const char *filePath,    /* name of the database file */
  int fd                   /* file descriptor open on the database file */
){
  struct flock lockInfo;

  if( !filePath ){
    /* If filePath==NULL that means we are dealing with a transient file
    ** that does not need to be locked. */
    return &nolockIoMethods;
  }

  /* Test if fcntl() is supported and use POSIX style locks.
  ** Otherwise fall back to the named semaphore method.
  */
  lockInfo.l_len = 1;
  lockInfo.l_start = 0;
  lockInfo.l_whence = SEEK_SET;
  lockInfo.l_type = F_RDLCK;
  if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) {
    return &posixIoMethods;
  }else{
    return &semIoMethods;
  }
}
static const sqlite3_io_methods *(*const autolockIoFinder)(const char*,int)
        = autolockIoFinderImpl;

#endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */

/*
** An abstract type for a pointer to a IO method finder function:
*/
typedef const sqlite3_io_methods *(*finder_type)(const char*,int);


/****************************************************************************
**************************** sqlite3_vfs methods ****************************
**
** This division contains the implementation of methods on the
** sqlite3_vfs object.







|
>





|
|













|
















|





|
|






|







24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
  ** Test byte-range lock using fcntl(). If the call succeeds, 
  ** assume that the file-system supports POSIX style locks. 
  */
  lockInfo.l_len = 1;
  lockInfo.l_start = 0;
  lockInfo.l_whence = SEEK_SET;
  lockInfo.l_type = F_RDLCK;
  if( fcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
    pNew->fileFlags = SQLITE_WHOLE_FILE_LOCKING;
    return &posixIoMethods;
  }else{
    return &dotlockIoMethods;
  }
}
static const sqlite3_io_methods 
  *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;

#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */

#if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
/* 
** This "finder" function attempts to determine the best locking strategy 
** for the database file "filePath".  It then returns the sqlite3_io_methods
** object that implements that strategy.
**
** This is for VXWorks only.
*/
static const sqlite3_io_methods *autolockIoFinderImpl(
  const char *filePath,    /* name of the database file */
  unixFile *pNew           /* the open file object */
){
  struct flock lockInfo;

  if( !filePath ){
    /* If filePath==NULL that means we are dealing with a transient file
    ** that does not need to be locked. */
    return &nolockIoMethods;
  }

  /* Test if fcntl() is supported and use POSIX style locks.
  ** Otherwise fall back to the named semaphore method.
  */
  lockInfo.l_len = 1;
  lockInfo.l_start = 0;
  lockInfo.l_whence = SEEK_SET;
  lockInfo.l_type = F_RDLCK;
  if( fcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
    return &posixIoMethods;
  }else{
    return &semIoMethods;
  }
}
static const sqlite3_io_methods 
  *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;

#endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */

/*
** An abstract type for a pointer to a IO method finder function:
*/
typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);


/****************************************************************************
**************************** sqlite3_vfs methods ****************************
**
** This division contains the implementation of methods on the
** sqlite3_vfs object.
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497

24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521






















24522
24523
24524
24525
24526
24527
24528
  const sqlite3_io_methods *pLockingStyle;
  unixFile *pNew = (unixFile *)pId;
  int rc = SQLITE_OK;

  assert( pNew->pLock==NULL );
  assert( pNew->pOpen==NULL );

  /* Parameter isDelete is only used on vxworks.
  ** Express this explicitly here to prevent compiler warnings
  ** about unused parameters.
  */
#if !OS_VXWORKS
  UNUSED_PARAMETER(isDelete);
#endif

  OSTRACE3("OPEN    %-3d %s\n", h, zFilename);    
  pNew->h = h;
  pNew->dirfd = dirfd;
  SET_THREADID(pNew);


#if OS_VXWORKS
  pNew->pId = vxworksFindFileId(zFilename);
  if( pNew->pId==0 ){
    noLock = 1;
    rc = SQLITE_NOMEM;
  }
#endif

  if( noLock ){
    pLockingStyle = &nolockIoMethods;
  }else{
    pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, h);
#if SQLITE_ENABLE_LOCKING_STYLE
    /* Cache zFilename in the locking context (AFP and dotlock override) for
    ** proxyLock activation is possible (remote proxy is based on db name)
    ** zFilename remains valid until file is closed, to support */
    pNew->lockingContext = (void*)zFilename;
#endif
  }

  if( pLockingStyle == &posixIoMethods ){
    unixEnterMutex();
    rc = findLockInfo(pNew, &pNew->pLock, &pNew->pOpen);






















    unixLeaveMutex();
  }

#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
  else if( pLockingStyle == &afpIoMethods ){
    /* AFP locking uses the file path so it needs to be included in
    ** the afpLockingContext.







|
|
<

<

<





>












|











>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







25008
25009
25010
25011
25012
25013
25014
25015
25016

25017

25018

25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
  const sqlite3_io_methods *pLockingStyle;
  unixFile *pNew = (unixFile *)pId;
  int rc = SQLITE_OK;

  assert( pNew->pLock==NULL );
  assert( pNew->pOpen==NULL );

  /* Parameter isDelete is only used on vxworks. Express this explicitly 
  ** here to prevent compiler warnings about unused parameters.

  */

  UNUSED_PARAMETER(isDelete);


  OSTRACE3("OPEN    %-3d %s\n", h, zFilename);    
  pNew->h = h;
  pNew->dirfd = dirfd;
  SET_THREADID(pNew);
  pNew->fileFlags = 0;

#if OS_VXWORKS
  pNew->pId = vxworksFindFileId(zFilename);
  if( pNew->pId==0 ){
    noLock = 1;
    rc = SQLITE_NOMEM;
  }
#endif

  if( noLock ){
    pLockingStyle = &nolockIoMethods;
  }else{
    pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
#if SQLITE_ENABLE_LOCKING_STYLE
    /* Cache zFilename in the locking context (AFP and dotlock override) for
    ** proxyLock activation is possible (remote proxy is based on db name)
    ** zFilename remains valid until file is closed, to support */
    pNew->lockingContext = (void*)zFilename;
#endif
  }

  if( pLockingStyle == &posixIoMethods ){
    unixEnterMutex();
    rc = findLockInfo(pNew, &pNew->pLock, &pNew->pOpen);
    if( rc!=SQLITE_OK ){
      /* If an error occured in findLockInfo(), close the file descriptor
      ** immediately, before releasing the mutex. findLockInfo() may fail
      ** in two scenarios:
      **
      **   (a) A call to fstat() failed.
      **   (b) A malloc failed.
      **
      ** Scenario (b) may only occur if the process is holding no other
      ** file descriptors open on the same file. If there were other file
      ** descriptors on this file, then no malloc would be required by
      ** findLockInfo(). If this is the case, it is quite safe to close
      ** handle h - as it is guaranteed that no posix locks will be released
      ** by doing so.
      **
      ** If scenario (a) caused the error then things are not so safe. The
      ** implicit assumption here is that if fstat() fails, things are in
      ** such bad shape that dropping a lock or two doesn't matter much.
      */
      close(h);
      h = -1;
    }
    unixLeaveMutex();
  }

#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
  else if( pLockingStyle == &afpIoMethods ){
    /* AFP locking uses the file path so it needs to be included in
    ** the afpLockingContext.
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
    ** included in the semLockingContext
    */
    unixEnterMutex();
    rc = findLockInfo(pNew, &pNew->pLock, &pNew->pOpen);
    if( (rc==SQLITE_OK) && (pNew->pOpen->pSem==NULL) ){
      char *zSemName = pNew->pOpen->aSemName;
      int n;
      sqlite3_snprintf(MAX_PATHNAME, zSemName, "%s.sem",
                       pNew->pId->zCanonicalName);
      for( n=0; zSemName[n]; n++ )
        if( zSemName[n]=='/' ) zSemName[n] = '_';
      pNew->pOpen->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
      if( pNew->pOpen->pSem == SEM_FAILED ){
        rc = SQLITE_NOMEM;
        pNew->pOpen->aSemName[0] = '\0';
      }
    }







|

|







25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
    ** included in the semLockingContext
    */
    unixEnterMutex();
    rc = findLockInfo(pNew, &pNew->pLock, &pNew->pOpen);
    if( (rc==SQLITE_OK) && (pNew->pOpen->pSem==NULL) ){
      char *zSemName = pNew->pOpen->aSemName;
      int n;
      sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
                       pNew->pId->zCanonicalName);
      for( n=1; zSemName[n]; n++ )
        if( zSemName[n]=='/' ) zSemName[n] = '_';
      pNew->pOpen->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
      if( pNew->pOpen->pSem == SEM_FAILED ){
        rc = SQLITE_NOMEM;
        pNew->pOpen->aSemName[0] = '\0';
      }
    }
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
    unlink(zFilename);
    isDelete = 0;
  }
  pNew->isDelete = isDelete;
#endif
  if( rc!=SQLITE_OK ){
    if( dirfd>=0 ) close(dirfd); /* silent leak if fail, already in error */
    close(h);
  }else{
    pNew->pMethod = pLockingStyle;
    OpenCounter(+1);
  }
  return rc;
}








|







25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
    unlink(zFilename);
    isDelete = 0;
  }
  pNew->isDelete = isDelete;
#endif
  if( rc!=SQLITE_OK ){
    if( dirfd>=0 ) close(dirfd); /* silent leak if fail, already in error */
    if( h>=0 ) close(h);
  }else{
    pNew->pMethod = pLockingStyle;
    OpenCounter(+1);
  }
  return rc;
}

24699
24700
24701
24702
24703
24704
24705
























































24706
24707
24708
24709
24710
24711
24712
** Routine to transform a unixFile into a proxy-locking unixFile.
** Implementation in the proxy-lock division, but used by unixOpen()
** if SQLITE_PREFER_PROXY_LOCKING is defined.
*/
static int proxyTransformUnixFile(unixFile*, const char*);
#endif


























































/*
** Open the file zPath.
** 
** Previously, the SQLite OS layer used three functions in place of this
** one:
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
** Routine to transform a unixFile into a proxy-locking unixFile.
** Implementation in the proxy-lock division, but used by unixOpen()
** if SQLITE_PREFER_PROXY_LOCKING is defined.
*/
static int proxyTransformUnixFile(unixFile*, const char*);
#endif

/*
** Search for an unused file descriptor that was opened on the database 
** file (not a journal or master-journal file) identified by pathname
** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
** argument to this function.
**
** Such a file descriptor may exist if a database connection was closed
** but the associated file descriptor could not be closed because some
** other file descriptor open on the same file is holding a file-lock.
** Refer to comments in the unixClose() function and the lengthy comment
** describing "Posix Advisory Locking" at the start of this file for 
** further details. Also, ticket #4018.
**
** If a suitable file descriptor is found, then it is returned. If no
** such file descriptor is located, -1 is returned.
*/
static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
  UnixUnusedFd *pUnused = 0;

  /* Do not search for an unused file descriptor on vxworks. Not because
  ** vxworks would not benefit from the change (it might, we're not sure),
  ** but because no way to test it is currently available. It is better 
  ** not to risk breaking vxworks support for the sake of such an obscure 
  ** feature.  */
#if !OS_VXWORKS
  struct stat sStat;                   /* Results of stat() call */

  /* A stat() call may fail for various reasons. If this happens, it is
  ** almost certain that an open() call on the same path will also fail.
  ** For this reason, if an error occurs in the stat() call here, it is
  ** ignored and -1 is returned. The caller will try to open a new file
  ** descriptor on the same path, fail, and return an error to SQLite.
  **
  ** Even if a subsequent open() call does succeed, the consequences of
  ** not searching for a resusable file descriptor are not dire.  */
  if( 0==stat(zPath, &sStat) ){
    struct unixOpenCnt *pO;
    struct unixFileId id;
    id.dev = sStat.st_dev;
    id.ino = sStat.st_ino;

    unixEnterMutex();
    for(pO=openList; pO && memcmp(&id, &pO->fileId, sizeof(id)); pO=pO->pNext);
    if( pO ){
      UnixUnusedFd **pp;
      for(pp=&pO->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
      pUnused = *pp;
      if( pUnused ){
        *pp = pUnused->pNext;
      }
    }
    unixLeaveMutex();
  }
#endif    /* if !OS_VXWORKS */
  return pUnused;
}

/*
** Open the file zPath.
** 
** Previously, the SQLite OS layer used three functions in place of this
** one:
**
24729
24730
24731
24732
24733
24734
24735

24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
static int unixOpen(
  sqlite3_vfs *pVfs,           /* The VFS for which this is the xOpen method */
  const char *zPath,           /* Pathname of file to be opened */
  sqlite3_file *pFile,         /* The file descriptor to be filled in */
  int flags,                   /* Input flags to control the opening */
  int *pOutFlags               /* Output flags returned to SQLite core */
){

  int fd = -1;                    /* File descriptor returned by open() */
  int dirfd = -1;                /* Directory file descriptor */
  int openFlags = 0;             /* Flags to pass to open() */
  int eType = flags&0xFFFFFF00;  /* Type of file to open */
  int noLock;                    /* True to omit locking primitives */
  int rc = SQLITE_OK;

  int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
  int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
  int isCreate     = (flags & SQLITE_OPEN_CREATE);
  int isReadonly   = (flags & SQLITE_OPEN_READONLY);
  int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);








>
|




|







25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
static int unixOpen(
  sqlite3_vfs *pVfs,           /* The VFS for which this is the xOpen method */
  const char *zPath,           /* Pathname of file to be opened */
  sqlite3_file *pFile,         /* The file descriptor to be filled in */
  int flags,                   /* Input flags to control the opening */
  int *pOutFlags               /* Output flags returned to SQLite core */
){
  unixFile *p = (unixFile *)pFile;
  int fd = -1;                   /* File descriptor returned by open() */
  int dirfd = -1;                /* Directory file descriptor */
  int openFlags = 0;             /* Flags to pass to open() */
  int eType = flags&0xFFFFFF00;  /* Type of file to open */
  int noLock;                    /* True to omit locking primitives */
  int rc = SQLITE_OK;            /* Function Return Code */

  int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
  int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
  int isCreate     = (flags & SQLITE_OPEN_CREATE);
  int isReadonly   = (flags & SQLITE_OPEN_READONLY);
  int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);

24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790












24791

24792
24793
24794
24795
24796
24797
24798
24799




24800
24801
24802
24803
24804
24805


24806
24807
24808
24809
24810

24811
24812

24813
24814
24815

24816











24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842





24843
24844

24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867







24868

24869

24870
24871

24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885



24886



24887
24888
24889
24890
24891
24892
24893
  */
  assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
  assert(isCreate==0 || isReadWrite);
  assert(isExclusive==0 || isCreate);
  assert(isDelete==0 || isCreate);

  /* The main DB, main journal, and master journal are never automatically
  ** deleted
  */
  assert( eType!=SQLITE_OPEN_MAIN_DB || !isDelete );
  assert( eType!=SQLITE_OPEN_MAIN_JOURNAL || !isDelete );
  assert( eType!=SQLITE_OPEN_MASTER_JOURNAL || !isDelete );

  /* Assert that the upper layer has set one of the "file-type" flags. */
  assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
       || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
       || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
       || eType==SQLITE_OPEN_TRANSIENT_DB
  );

  memset(pFile, 0, sizeof(unixFile));













  if( !zName ){

    assert(isDelete && !isOpenDirectory);
    rc = getTempname(MAX_PATHNAME+1, zTmpname);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    zName = zTmpname;
  }





  if( isReadonly )  openFlags |= O_RDONLY;
  if( isReadWrite ) openFlags |= O_RDWR;
  if( isCreate )    openFlags |= O_CREAT;
  if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
  openFlags |= (O_LARGEFILE|O_BINARY);



  fd = open(zName, openFlags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
  OSTRACE4("OPENX   %-3d %s 0%o\n", fd, zName, openFlags);
  if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
    /* Failed to open the file for read/write access. Try read-only. */
    flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);

    flags |= SQLITE_OPEN_READONLY;
    return unixOpen(pVfs, zPath, pFile, flags, pOutFlags);

  }
  if( fd<0 ){
    return SQLITE_CANTOPEN;

  }











  if( isDelete ){
#if OS_VXWORKS
    zPath = zName;
#else
    unlink(zName);
#endif
  }
#if SQLITE_ENABLE_LOCKING_STYLE
  else{
    ((unixFile*)pFile)->openFlags = openFlags;
  }
#endif
  if( pOutFlags ){
    *pOutFlags = flags;
  }

#ifndef NDEBUG
  if( (flags & SQLITE_OPEN_MAIN_DB)!=0 ){
    ((unixFile*)pFile)->isLockable = 1;
  }
#endif

  assert( fd>=0 );
  if( isOpenDirectory ){
    rc = openDirectory(zPath, &dirfd);
    if( rc!=SQLITE_OK ){





      close(fd); /* silently leak if fail, already in error */
      return rc;

    }
  }

#ifdef FD_CLOEXEC
  fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif

  noLock = eType!=SQLITE_OPEN_MAIN_DB;

#if SQLITE_PREFER_PROXY_LOCKING
  if( zPath!=NULL && !noLock ){
    char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
    int useProxy = 0;

    /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 
    ** 0 means never use proxy, NULL means use proxy for non-local files only
    */
    if( envforce!=NULL ){
      useProxy = atoi(envforce)>0;
    }else{
      struct statfs fsInfo;

      if( statfs(zPath, &fsInfo) == -1 ){







				((unixFile*)pFile)->lastErrno = errno;

        if( dirfd>=0 ) close(dirfd); /* silently leak if fail, in error */

        close(fd); /* silently leak if fail, in error */
        return SQLITE_IOERR_ACCESS;

      }
      useProxy = !(fsInfo.f_flags&MNT_LOCAL);
    }
    if( useProxy ){
      rc = fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete);
      if( rc==SQLITE_OK ){
        rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
      }
      return rc;
    }
  }
#endif
  
  return fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete);



}




/*
** Delete the file at zPath. If the dirSync argument is true, fsync()
** the directory after deleting the file.
*/
static int unixDelete(
  sqlite3_vfs *NotUsed,     /* VFS containing this as the xDelete method */







|
<
|
|
|








|

>
>
>
>
>
>
>
>
>
>
>
>
|
>








>
>
>
>






>
>
|
|
|
|
|
>
|
|
>
|
|
|
>
|
>
>
>
>
>
>
>
>
>
>
>









|
<
<
<
<
<
<
<
<
<



<



>
>
>
>
>
|
<
>










|



|
|
<




<

>
>
>
>
>
>
>
|
>
|
>

|
>








|




|
>
>
>
|
>
>
>







25375
25376
25377
25378
25379
25380
25381
25382

25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464









25465
25466
25467

25468
25469
25470
25471
25472
25473
25474
25475
25476

25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493

25494
25495
25496
25497

25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
  */
  assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
  assert(isCreate==0 || isReadWrite);
  assert(isExclusive==0 || isCreate);
  assert(isDelete==0 || isCreate);

  /* The main DB, main journal, and master journal are never automatically
  ** deleted. Nor are they ever temporary files.  */

  assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
  assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
  assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );

  /* Assert that the upper layer has set one of the "file-type" flags. */
  assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
       || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
       || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
       || eType==SQLITE_OPEN_TRANSIENT_DB
  );

  memset(p, 0, sizeof(unixFile));

  if( eType==SQLITE_OPEN_MAIN_DB ){
    UnixUnusedFd *pUnused;
    pUnused = findReusableFd(zName, flags);
    if( pUnused ){
      fd = pUnused->fd;
    }else{
      pUnused = sqlite3_malloc(sizeof(*pUnused));
      if( !pUnused ){
        return SQLITE_NOMEM;
      }
    }
    p->pUnused = pUnused;
  }else if( !zName ){
    /* If zName is NULL, the upper layer is requesting a temp file. */
    assert(isDelete && !isOpenDirectory);
    rc = getTempname(MAX_PATHNAME+1, zTmpname);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    zName = zTmpname;
  }

  /* Determine the value of the flags parameter passed to POSIX function
  ** open(). These must be calculated even if open() is not called, as
  ** they may be stored as part of the file handle and used by the 
  ** 'conch file' locking functions later on.  */
  if( isReadonly )  openFlags |= O_RDONLY;
  if( isReadWrite ) openFlags |= O_RDWR;
  if( isCreate )    openFlags |= O_CREAT;
  if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
  openFlags |= (O_LARGEFILE|O_BINARY);

  if( fd<0 ){
    mode_t openMode = (isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
    fd = open(zName, openFlags, openMode);
    OSTRACE4("OPENX   %-3d %s 0%o\n", fd, zName, openFlags);
    if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
      /* Failed to open the file for read/write access. Try read-only. */
      flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
      openFlags &= ~(O_RDWR|O_CREAT);
      flags |= SQLITE_OPEN_READONLY;
      openFlags |= O_RDONLY;
      fd = open(zName, openFlags, openMode);
    }
    if( fd<0 ){
      rc = SQLITE_CANTOPEN;
      goto open_finished;
    }
  }
  assert( fd>=0 );
  if( pOutFlags ){
    *pOutFlags = flags;
  }

  if( p->pUnused ){
    p->pUnused->fd = fd;
    p->pUnused->flags = flags;
  }

  if( isDelete ){
#if OS_VXWORKS
    zPath = zName;
#else
    unlink(zName);
#endif
  }
#if SQLITE_ENABLE_LOCKING_STYLE
  else{
    p->openFlags = openFlags;









  }
#endif


  if( isOpenDirectory ){
    rc = openDirectory(zPath, &dirfd);
    if( rc!=SQLITE_OK ){
      /* It is safe to close fd at this point, because it is guaranteed not
      ** to be open on a database file. If it were open on a database file,
      ** it would not be safe to close as this would release any locks held
      ** on the file by this process.  */
      assert( eType!=SQLITE_OPEN_MAIN_DB );
      close(fd);             /* silently leak if fail, already in error */

      goto open_finished;
    }
  }

#ifdef FD_CLOEXEC
  fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif

  noLock = eType!=SQLITE_OPEN_MAIN_DB;

#if SQLITE_PREFER_PROXY_LOCKING
  if( zPath!=NULL && !noLock && pVfs->xOpen ){
    char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
    int useProxy = 0;

    /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means 
    ** never use proxy, NULL means use proxy for non-local files only.  */

    if( envforce!=NULL ){
      useProxy = atoi(envforce)>0;
    }else{
      struct statfs fsInfo;

      if( statfs(zPath, &fsInfo) == -1 ){
        /* In theory, the close(fd) call is sub-optimal. If the file opened
        ** with fd is a database file, and there are other connections open
        ** on that file that are currently holding advisory locks on it,
        ** then the call to close() will cancel those locks. In practice,
        ** we're assuming that statfs() doesn't fail very often. At least
        ** not while other file descriptors opened by the same process on
        ** the same file are working.  */
        p->lastErrno = errno;
        if( dirfd>=0 ){
          close(dirfd); /* silently leak if fail, in error */
        }
        close(fd); /* silently leak if fail, in error */
        rc = SQLITE_IOERR_ACCESS;
        goto open_finished;
      }
      useProxy = !(fsInfo.f_flags&MNT_LOCAL);
    }
    if( useProxy ){
      rc = fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete);
      if( rc==SQLITE_OK ){
        rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
      }
      goto open_finished;
    }
  }
#endif
  
  rc = fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete);
open_finished:
  if( rc!=SQLITE_OK ){
    sqlite3_free(p->pUnused);
  }
  return rc;
}


/*
** Delete the file at zPath. If the dirSync argument is true, fsync()
** the directory after deleting the file.
*/
static int unixDelete(
  sqlite3_vfs *NotUsed,     /* VFS containing this as the xDelete method */
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558

25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573












25574
25575

25576
25577
25578
25579
25580
25581

25582




25583
25584
25585
25586
25587
25588
25589
** Create a new VFS file descriptor (stored in memory obtained from
** sqlite3_malloc) and open the file named "path" in the file descriptor.
**
** The caller is responsible not only for closing the file descriptor
** but also for freeing the memory associated with the file descriptor.
*/
static int proxyCreateUnixFile(const char *path, unixFile **ppFile) {
  int fd;
  int dirfd = -1;
  unixFile *pNew;

  int rc = SQLITE_OK;
  sqlite3_vfs dummyVfs;

  fd = open(path, O_RDWR | O_CREAT, SQLITE_DEFAULT_FILE_PERMISSIONS);
  if( fd<0 ){
    return SQLITE_CANTOPEN;
  }
  
  pNew = (unixFile *)sqlite3_malloc(sizeof(unixFile));
  if( pNew==NULL ){
    rc = SQLITE_NOMEM;
    goto end_create_proxy;
  }
  memset(pNew, 0, sizeof(unixFile));













  dummyVfs.pAppData = (void*)&autolockIoFinder;
  rc = fillInUnixFile(&dummyVfs, fd, dirfd, (sqlite3_file*)pNew, path, 0, 0);

  if( rc==SQLITE_OK ){
    *ppFile = pNew;
    return SQLITE_OK;
  }
end_create_proxy:    
  close(fd); /* silently leak fd if error, we're already in error */

  sqlite3_free(pNew);




  return rc;
}

/* takes the conch by taking a shared lock and read the contents conch, if 
** lockPath is non-NULL, the host ID and lock file path must match.  A NULL 
** lockPath means that the lockPath in the conch file will be used if the 
** host IDs match, or a new lock path will be generated automatically 







<
<

>



<
<
<
<
<

|
|
<



>
>
>
>
>
>
>
>
>
>
>
>

|
>
|
|
|

|
<
>
|
>
>
>
>







26196
26197
26198
26199
26200
26201
26202


26203
26204
26205
26206
26207





26208
26209
26210

26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233

26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
** Create a new VFS file descriptor (stored in memory obtained from
** sqlite3_malloc) and open the file named "path" in the file descriptor.
**
** The caller is responsible not only for closing the file descriptor
** but also for freeing the memory associated with the file descriptor.
*/
static int proxyCreateUnixFile(const char *path, unixFile **ppFile) {


  unixFile *pNew;
  int flags = SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE;
  int rc = SQLITE_OK;
  sqlite3_vfs dummyVfs;






  pNew = (unixFile *)sqlite3_malloc(sizeof(unixFile));
  if( !pNew ){
    return SQLITE_NOMEM;

  }
  memset(pNew, 0, sizeof(unixFile));

  /* Call unixOpen() to open the proxy file. The flags passed to unixOpen()
  ** suggest that the file being opened is a "main database". This is
  ** necessary as other file types do not necessarily support locking. It
  ** is better to use unixOpen() instead of opening the file directly with
  ** open(), as unixOpen() sets up the various mechanisms required to
  ** make sure a call to close() does not cause the system to discard
  ** POSIX locks prematurely.
  **
  ** It is important that the xOpen member of the VFS object passed to 
  ** unixOpen() is NULL. This tells unixOpen() may try to open a proxy-file 
  ** for the proxy-file (creating a potential infinite loop).
  */
  dummyVfs.pAppData = (void*)&autolockIoFinder;
  dummyVfs.xOpen = 0;
  rc = unixOpen(&dummyVfs, path, (sqlite3_file *)pNew, flags, &flags);
  if( rc==SQLITE_OK && (flags&SQLITE_OPEN_READONLY) ){
    pNew->pMethod->xClose((sqlite3_file *)pNew);
    rc = SQLITE_CANTOPEN;
  }


  if( rc!=SQLITE_OK ){
    sqlite3_free(pNew);
    pNew = 0;
  }

  *ppFile = pNew;
  return rc;
}

/* takes the conch by taking a shared lock and read the contents conch, if 
** lockPath is non-NULL, the host ID and lock file path must match.  A NULL 
** lockPath means that the lockPath in the conch file will be used if the 
** host IDs match, or a new lock path will be generated automatically 
26188
26189
26190
26191
26192
26193
26194

26195
26196
26197
26198
26199
26200
26201
#if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
    UNIXVFS("unix",          autolockIoFinder ),
#else
    UNIXVFS("unix",          posixIoFinder ),
#endif
    UNIXVFS("unix-none",     nolockIoFinder ),
    UNIXVFS("unix-dotfile",  dotlockIoFinder ),

#if OS_VXWORKS
    UNIXVFS("unix-namedsem", semIoFinder ),
#endif
#if SQLITE_ENABLE_LOCKING_STYLE
    UNIXVFS("unix-posix",    posixIoFinder ),
#if !OS_VXWORKS
    UNIXVFS("unix-flock",    flockIoFinder ),







>







26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
#if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
    UNIXVFS("unix",          autolockIoFinder ),
#else
    UNIXVFS("unix",          posixIoFinder ),
#endif
    UNIXVFS("unix-none",     nolockIoFinder ),
    UNIXVFS("unix-dotfile",  dotlockIoFinder ),
    UNIXVFS("unix-wfl",      posixWflIoFinder ),
#if OS_VXWORKS
    UNIXVFS("unix-namedsem", semIoFinder ),
#endif
#if SQLITE_ENABLE_LOCKING_STYLE
    UNIXVFS("unix-posix",    posixIoFinder ),
#if !OS_VXWORKS
    UNIXVFS("unix-flock",    flockIoFinder ),
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code that is specific to windows.
**
** $Id: os_win.c,v 1.157 2009/08/05 04:08:30 shane Exp $
*/
#if SQLITE_OS_WIN               /* This file is used for windows only */


/*
** A Note About Memory Allocation:
**







<
<







26897
26898
26899
26900
26901
26902
26903


26904
26905
26906
26907
26908
26909
26910
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code that is specific to windows.


*/
#if SQLITE_OS_WIN               /* This file is used for windows only */


/*
** A Note About Memory Allocation:
**
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
{
  static struct tm y;
  FILETIME uTm, lTm;
  SYSTEMTIME pTm;
  sqlite3_int64 t64;
  t64 = *t;
  t64 = (t64 + 11644473600)*10000000;
  uTm.dwLowDateTime = t64 & 0xFFFFFFFF;
  uTm.dwHighDateTime= t64 >> 32;
  FileTimeToLocalFileTime(&uTm,&lTm);
  FileTimeToSystemTime(&lTm,&pTm);
  y.tm_year = pTm.wYear - 1900;
  y.tm_mon = pTm.wMonth - 1;
  y.tm_wday = pTm.wDayOfWeek;
  y.tm_mday = pTm.wDay;
  y.tm_hour = pTm.wHour;
  y.tm_min = pTm.wMinute;
  y.tm_sec = pTm.wSecond;
  return &y;
}

/* This will never be called, but defined to make the code compile */
#define GetTempPathA(a,b)

#define LockFile(a,b,c,d,e)       winceLockFile(&a, b, c, d, e)
#define UnlockFile(a,b,c,d,e)     winceUnlockFile(&a, b, c, d, e)
#define LockFileEx(a,b,c,d,e,f)   winceLockFileEx(&a, b, c, d, e, f)

#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-offsetof(winFile,h)]

/*
** Acquire a lock on the handle h
*/
static void winceMutexAcquire(HANDLE h){
   DWORD dwErr;
   do {







|
|



















|







27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
{
  static struct tm y;
  FILETIME uTm, lTm;
  SYSTEMTIME pTm;
  sqlite3_int64 t64;
  t64 = *t;
  t64 = (t64 + 11644473600)*10000000;
  uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF);
  uTm.dwHighDateTime= (DWORD)(t64 >> 32);
  FileTimeToLocalFileTime(&uTm,&lTm);
  FileTimeToSystemTime(&lTm,&pTm);
  y.tm_year = pTm.wYear - 1900;
  y.tm_mon = pTm.wMonth - 1;
  y.tm_wday = pTm.wDayOfWeek;
  y.tm_mday = pTm.wDay;
  y.tm_hour = pTm.wHour;
  y.tm_min = pTm.wMinute;
  y.tm_sec = pTm.wSecond;
  return &y;
}

/* This will never be called, but defined to make the code compile */
#define GetTempPathA(a,b)

#define LockFile(a,b,c,d,e)       winceLockFile(&a, b, c, d, e)
#define UnlockFile(a,b,c,d,e)     winceUnlockFile(&a, b, c, d, e)
#define LockFileEx(a,b,c,d,e,f)   winceLockFileEx(&a, b, c, d, e, f)

#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)]

/*
** Acquire a lock on the handle h
*/
static void winceMutexAcquire(HANDLE h){
   DWORD dwErr;
   do {
26918
26919
26920
26921
26922
26923
26924



26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
  DWORD dwFileOffsetHigh,
  DWORD nNumberOfBytesToLockLow,
  DWORD nNumberOfBytesToLockHigh
){
  winFile *pFile = HANDLE_TO_WINFILE(phFile);
  BOOL bReturn = FALSE;




  if (!pFile->hMutex) return TRUE;
  winceMutexAcquire(pFile->hMutex);

  /* Wanting an exclusive lock? */
  if (dwFileOffsetLow == SHARED_FIRST
       && nNumberOfBytesToLockLow == SHARED_SIZE){
    if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
       pFile->shared->bExclusive = TRUE;
       pFile->local.bExclusive = TRUE;
       bReturn = TRUE;
    }
  }

  /* Want a read-only lock? */
  else if (dwFileOffsetLow == SHARED_FIRST &&
           nNumberOfBytesToLockLow == 1){
    if (pFile->shared->bExclusive == 0){
      pFile->local.nReaders ++;
      if (pFile->local.nReaders == 1){
        pFile->shared->nReaders ++;
      }
      bReturn = TRUE;
    }
  }

  /* Want a pending lock? */
  else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToLockLow == 1){
    /* If no pending lock has been acquired, then acquire it */
    if (pFile->shared->bPending == 0) {
      pFile->shared->bPending = TRUE;
      pFile->local.bPending = TRUE;
      bReturn = TRUE;
    }
  }

  /* Want a reserved lock? */
  else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToLockLow == 1){
    if (pFile->shared->bReserved == 0) {
      pFile->shared->bReserved = TRUE;
      pFile->local.bReserved = TRUE;
      bReturn = TRUE;
    }
  }








>
>
>




|
|








|











|









|







27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
  DWORD dwFileOffsetHigh,
  DWORD nNumberOfBytesToLockLow,
  DWORD nNumberOfBytesToLockHigh
){
  winFile *pFile = HANDLE_TO_WINFILE(phFile);
  BOOL bReturn = FALSE;

  UNUSED_PARAMETER(dwFileOffsetHigh);
  UNUSED_PARAMETER(nNumberOfBytesToLockHigh);

  if (!pFile->hMutex) return TRUE;
  winceMutexAcquire(pFile->hMutex);

  /* Wanting an exclusive lock? */
  if (dwFileOffsetLow == (DWORD)SHARED_FIRST
       && nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
    if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
       pFile->shared->bExclusive = TRUE;
       pFile->local.bExclusive = TRUE;
       bReturn = TRUE;
    }
  }

  /* Want a read-only lock? */
  else if (dwFileOffsetLow == (DWORD)SHARED_FIRST &&
           nNumberOfBytesToLockLow == 1){
    if (pFile->shared->bExclusive == 0){
      pFile->local.nReaders ++;
      if (pFile->local.nReaders == 1){
        pFile->shared->nReaders ++;
      }
      bReturn = TRUE;
    }
  }

  /* Want a pending lock? */
  else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToLockLow == 1){
    /* If no pending lock has been acquired, then acquire it */
    if (pFile->shared->bPending == 0) {
      pFile->shared->bPending = TRUE;
      pFile->local.bPending = TRUE;
      bReturn = TRUE;
    }
  }

  /* Want a reserved lock? */
  else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToLockLow == 1){
    if (pFile->shared->bReserved == 0) {
      pFile->shared->bReserved = TRUE;
      pFile->local.bReserved = TRUE;
      bReturn = TRUE;
    }
  }

26979
26980
26981
26982
26983
26984
26985



26986
26987
26988
26989
26990
26991
26992
26993

26994
26995
26996
26997
26998
26999
27000

27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
  DWORD dwFileOffsetHigh,
  DWORD nNumberOfBytesToUnlockLow,
  DWORD nNumberOfBytesToUnlockHigh
){
  winFile *pFile = HANDLE_TO_WINFILE(phFile);
  BOOL bReturn = FALSE;




  if (!pFile->hMutex) return TRUE;
  winceMutexAcquire(pFile->hMutex);

  /* Releasing a reader lock or an exclusive lock */
  if (dwFileOffsetLow >= SHARED_FIRST &&
       dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE){
    /* Did we have an exclusive lock? */
    if (pFile->local.bExclusive){

      pFile->local.bExclusive = FALSE;
      pFile->shared->bExclusive = FALSE;
      bReturn = TRUE;
    }

    /* Did we just have a reader lock? */
    else if (pFile->local.nReaders){

      pFile->local.nReaders --;
      if (pFile->local.nReaders == 0)
      {
        pFile->shared->nReaders --;
      }
      bReturn = TRUE;
    }
  }

  /* Releasing a pending lock */
  else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){
    if (pFile->local.bPending){
      pFile->local.bPending = FALSE;
      pFile->shared->bPending = FALSE;
      bReturn = TRUE;
    }
  }
  /* Releasing a reserved lock */
  else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){
    if (pFile->local.bReserved) {
      pFile->local.bReserved = FALSE;
      pFile->shared->bReserved = FALSE;
      bReturn = TRUE;
    }
  }








>
>
>




|
<


>







>










|







|







27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652

27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
  DWORD dwFileOffsetHigh,
  DWORD nNumberOfBytesToUnlockLow,
  DWORD nNumberOfBytesToUnlockHigh
){
  winFile *pFile = HANDLE_TO_WINFILE(phFile);
  BOOL bReturn = FALSE;

  UNUSED_PARAMETER(dwFileOffsetHigh);
  UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh);

  if (!pFile->hMutex) return TRUE;
  winceMutexAcquire(pFile->hMutex);

  /* Releasing a reader lock or an exclusive lock */
  if (dwFileOffsetLow == (DWORD)SHARED_FIRST){

    /* Did we have an exclusive lock? */
    if (pFile->local.bExclusive){
      assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE);
      pFile->local.bExclusive = FALSE;
      pFile->shared->bExclusive = FALSE;
      bReturn = TRUE;
    }

    /* Did we just have a reader lock? */
    else if (pFile->local.nReaders){
      assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE || nNumberOfBytesToUnlockLow == 1);
      pFile->local.nReaders --;
      if (pFile->local.nReaders == 0)
      {
        pFile->shared->nReaders --;
      }
      bReturn = TRUE;
    }
  }

  /* Releasing a pending lock */
  else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){
    if (pFile->local.bPending){
      pFile->local.bPending = FALSE;
      pFile->shared->bPending = FALSE;
      bReturn = TRUE;
    }
  }
  /* Releasing a reserved lock */
  else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){
    if (pFile->local.bReserved) {
      pFile->local.bReserved = FALSE;
      pFile->shared->bReserved = FALSE;
      bReturn = TRUE;
    }
  }

27035
27036
27037
27038
27039
27040
27041



27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
  HANDLE *phFile,
  DWORD dwFlags,
  DWORD dwReserved,
  DWORD nNumberOfBytesToLockLow,
  DWORD nNumberOfBytesToLockHigh,
  LPOVERLAPPED lpOverlapped
){



  /* If the caller wants a shared read lock, forward this call
  ** to winceLockFile */
  if (lpOverlapped->Offset == SHARED_FIRST &&
      dwFlags == 1 &&
      nNumberOfBytesToLockLow == SHARED_SIZE){
    return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0);
  }
  return FALSE;
}
/*
** End of the special code for wince
*****************************************************************************/







>
>
>


|

|







27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
  HANDLE *phFile,
  DWORD dwFlags,
  DWORD dwReserved,
  DWORD nNumberOfBytesToLockLow,
  DWORD nNumberOfBytesToLockHigh,
  LPOVERLAPPED lpOverlapped
){
  UNUSED_PARAMETER(dwReserved);
  UNUSED_PARAMETER(nNumberOfBytesToLockHigh);

  /* If the caller wants a shared read lock, forward this call
  ** to winceLockFile */
  if (lpOverlapped->Offset == (DWORD)SHARED_FIRST &&
      dwFlags == 1 &&
      nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
    return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0);
  }
  return FALSE;
}
/*
** End of the special code for wince
*****************************************************************************/
28041
28042
28043
28044
28045
28046
28047





28048
28049
28050

28051
28052
28053
28054
28055
28056
28057
** file.
*/
static int getSectorSize(
    sqlite3_vfs *pVfs,
    const char *zRelative     /* UTF-8 file name */
){
  DWORD bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE;





  char zFullpath[MAX_PATH+1];
  int rc;
  DWORD dwRet = 0, dwDummy;


  /*
  ** We need to get the full path name of the file
  ** to get the drive letter to look up the sector
  ** size.
  */
  rc = winFullPathname(pVfs, zRelative, MAX_PATH, zFullpath);







>
>
>
>
>


|
>







28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
** file.
*/
static int getSectorSize(
    sqlite3_vfs *pVfs,
    const char *zRelative     /* UTF-8 file name */
){
  DWORD bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE;
  /* GetDiskFreeSpace is not supported under WINCE */
#if SQLITE_OS_WINCE
  UNUSED_PARAMETER(pVfs);
  UNUSED_PARAMETER(zRelative);
#else
  char zFullpath[MAX_PATH+1];
  int rc;
  DWORD dwRet = 0;
  DWORD dwDummy;

  /*
  ** We need to get the full path name of the file
  ** to get the drive letter to look up the sector
  ** size.
  */
  rc = winFullPathname(pVfs, zRelative, MAX_PATH, zFullpath);
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098

28099
28100
28101
28102
28103
28104
28105
          }
        }
        dwRet = GetDiskFreeSpaceW((WCHAR*)zConverted,
                                  &dwDummy,
                                  &bytesPerSector,
                                  &dwDummy,
                                  &dwDummy);
#if SQLITE_OS_WINCE==0
      }else{
        /* trim path to just drive reference */
        CHAR *p = (CHAR *)zConverted;
        for(;*p;p++){
          if( *p == '\\' ){
            *p = '\0';
            break;
          }
        }
        dwRet = GetDiskFreeSpaceA((CHAR*)zConverted,
                                  &dwDummy,
                                  &bytesPerSector,
                                  &dwDummy,
                                  &dwDummy);
#endif
      }
      free(zConverted);
    }
    if( !dwRet ){
      bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE;
    }
  }

  return (int) bytesPerSector; 
}

#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.







<














<







>







28741
28742
28743
28744
28745
28746
28747

28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761

28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
          }
        }
        dwRet = GetDiskFreeSpaceW((WCHAR*)zConverted,
                                  &dwDummy,
                                  &bytesPerSector,
                                  &dwDummy,
                                  &dwDummy);

      }else{
        /* trim path to just drive reference */
        CHAR *p = (CHAR *)zConverted;
        for(;*p;p++){
          if( *p == '\\' ){
            *p = '\0';
            break;
          }
        }
        dwRet = GetDiskFreeSpaceA((CHAR*)zConverted,
                                  &dwDummy,
                                  &bytesPerSector,
                                  &dwDummy,
                                  &dwDummy);

      }
      free(zConverted);
    }
    if( !dwRet ){
      bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE;
    }
  }
#endif
  return (int) bytesPerSector; 
}

#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
28318
28319
28320
28321
28322
28323
28324

28325
28326
28327
28328
28329
28330
28331
    winDlSym,          /* xDlSym */
    winDlClose,        /* xDlClose */
    winRandomness,     /* xRandomness */
    winSleep,          /* xSleep */
    winCurrentTime,    /* xCurrentTime */
    winGetLastError    /* xGetLastError */
  };

  sqlite3_vfs_register(&winVfs, 1);
  return SQLITE_OK; 
}
SQLITE_API int sqlite3_os_end(void){ 
  return SQLITE_OK;
}








>







28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
    winDlSym,          /* xDlSym */
    winDlClose,        /* xDlClose */
    winRandomness,     /* xRandomness */
    winSleep,          /* xSleep */
    winCurrentTime,    /* xCurrentTime */
    winGetLastError    /* xGetLastError */
  };

  sqlite3_vfs_register(&winVfs, 1);
  return SQLITE_OK; 
}
SQLITE_API int sqlite3_os_end(void){ 
  return SQLITE_OK;
}

28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
** start of a transaction, and is thus usually less than a few thousand,
** but can be as large as 2 billion for a really big database.
**
** @(#) $Id: bitvec.c,v 1.17 2009/07/25 17:33:26 drh Exp $
*/

/* Size of the Bitvec structure in bytes. */
#define BITVEC_SZ        512

/* Round the union size down to the nearest pointer boundary, since that's how 
** it will be aligned within the Bitvec struct. */
#define BITVEC_USIZE     (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))

/* Type of the array "element" for the bitmap representation. 
** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. 







|







29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
** start of a transaction, and is thus usually less than a few thousand,
** but can be as large as 2 billion for a really big database.
**
** @(#) $Id: bitvec.c,v 1.17 2009/07/25 17:33:26 drh Exp $
*/

/* Size of the Bitvec structure in bytes. */
#define BITVEC_SZ        (sizeof(void*)*128)  /* 512 on 32bit.  1024 on 64bit */

/* Round the union size down to the nearest pointer boundary, since that's how 
** it will be aligned within the Bitvec struct. */
#define BITVEC_USIZE     (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))

/* Type of the array "element" for the bitmap representation. 
** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. 
29732
29733
29734
29735
29736
29737
29738


29739
29740
29741
29742
29743
29744
29745
  }
  pcache1.isInit = 1;
  return SQLITE_OK;
}

/*
** Implementation of the sqlite3_pcache.xShutdown method.


*/
static void pcache1Shutdown(void *NotUsed){
  UNUSED_PARAMETER(NotUsed);
  assert( pcache1.isInit!=0 );
  memset(&pcache1, 0, sizeof(pcache1));
}








>
>







30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
  }
  pcache1.isInit = 1;
  return SQLITE_OK;
}

/*
** Implementation of the sqlite3_pcache.xShutdown method.
** Note that the static mutex allocated in xInit does 
** not need to be freed.
*/
static void pcache1Shutdown(void *NotUsed){
  UNUSED_PARAMETER(NotUsed);
  assert( pcache1.isInit!=0 );
  memset(&pcache1, 0, sizeof(pcache1));
}

30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
** The pager is used to access a database disk file.  It implements
** atomic commit and rollback through the use of a journal file that
** is separate from the database file.  The pager also implements file
** locking to prevent two processes from writing the same database
** file simultaneously, or one process from reading the database while
** another is writing.
**
** @(#) $Id: pager.c,v 1.628 2009/07/27 14:15:44 danielk1977 Exp $
*/
#ifndef SQLITE_OMIT_DISKIO

/*
** Macros for troubleshooting.  Normally turned off
*/
#if 0







|







31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
** The pager is used to access a database disk file.  It implements
** atomic commit and rollback through the use of a journal file that
** is separate from the database file.  The pager also implements file
** locking to prevent two processes from writing the same database
** file simultaneously, or one process from reading the database while
** another is writing.
**
** @(#) $Id: pager.c,v 1.629 2009/08/10 17:48:57 drh Exp $
*/
#ifndef SQLITE_OMIT_DISKIO

/*
** Macros for troubleshooting.  Normally turned off
*/
#if 0
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
    if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; }
#else
# define CODEC1(P,D,N,X,E)   /* NO-OP */
# define CODEC2(P,D,N,X,E,O) O=(char*)D
#endif

/*
** The maximum allowed sector size. 16MB. If the xSectorsize() method 
** returns a value larger than this, then MAX_SECTOR_SIZE is used instead.
** This could conceivably cause corruption following a power failure on
** such a system. This is currently an undocumented limit.
*/
#define MAX_SECTOR_SIZE 0x0100000

/*
** An instance of the following structure is allocated for each active
** savepoint and statement transaction in the system. All such structures
** are stored in the Pager.aSavepoint[] array, which is allocated and
** resized using sqlite3Realloc().
**







|




|







31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
    if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; }
#else
# define CODEC1(P,D,N,X,E)   /* NO-OP */
# define CODEC2(P,D,N,X,E,O) O=(char*)D
#endif

/*
** The maximum allowed sector size. 64KiB. If the xSectorsize() method 
** returns a value larger than this, then MAX_SECTOR_SIZE is used instead.
** This could conceivably cause corruption following a power failure on
** such a system. This is currently an undocumented limit.
*/
#define MAX_SECTOR_SIZE 0x10000

/*
** An instance of the following structure is allocated for each active
** savepoint and statement transaction in the system. All such structures
** are stored in the Pager.aSavepoint[] array, which is allocated and
** resized using sqlite3Realloc().
**
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
  assert( isOpen(pPager->fd) || pPager->noSync );
  if( (pPager->noSync) || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY)
   || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 
  ){
    memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
    put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
  }else{
    zHeader[0] = '\0';
    put32bits(&zHeader[sizeof(aJournalMagic)], 0);
  }

  /* The random check-hash initialiser */ 
  sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
  put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
  /* The initial database size */
  put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize);







<
|







31994
31995
31996
31997
31998
31999
32000

32001
32002
32003
32004
32005
32006
32007
32008
  assert( isOpen(pPager->fd) || pPager->noSync );
  if( (pPager->noSync) || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY)
   || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 
  ){
    memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
    put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
  }else{

    memset(zHeader, 0, sizeof(aJournalMagic)+4);
  }

  /* The random check-hash initialiser */ 
  sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
  put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
  /* The initial database size */
  put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize);
38281
38282
38283
38284
38285
38286
38287
38288
38289
38290
38291
38292
38293
38294

38295
38296
38297
38298
38299
38300
38301

    /* Compute the total free space on the page */
    pc = get2byte(&data[hdr+1]);
    nFree = data[hdr+7] + top;
    while( pc>0 ){
      u16 next, size;
      if( pc<iCellFirst || pc>iCellLast ){
        /* Free block is off the page */
        return SQLITE_CORRUPT_BKPT; 
      }
      next = get2byte(&data[pc]);
      size = get2byte(&data[pc+2]);
      if( next>0 && next<=pc+size+3 ){
        /* Free blocks must be in ascending order */

        return SQLITE_CORRUPT_BKPT; 
      }
      nFree = nFree + size;
      pc = next;
    }

    /* At this point, nFree contains the sum of the offset to the start







|




|
|
>







38954
38955
38956
38957
38958
38959
38960
38961
38962
38963
38964
38965
38966
38967
38968
38969
38970
38971
38972
38973
38974
38975

    /* Compute the total free space on the page */
    pc = get2byte(&data[hdr+1]);
    nFree = data[hdr+7] + top;
    while( pc>0 ){
      u16 next, size;
      if( pc<iCellFirst || pc>iCellLast ){
        /* Start of free block is off the page */
        return SQLITE_CORRUPT_BKPT; 
      }
      next = get2byte(&data[pc]);
      size = get2byte(&data[pc+2]);
      if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
        /* Free blocks must be in ascending order. And the last byte of
	** the free-block must lie on the database page.  */
        return SQLITE_CORRUPT_BKPT; 
      }
      nFree = nFree + size;
      pc = next;
    }

    /* At this point, nFree contains the sum of the offset to the start
38565
38566
38567
38568
38569
38570
38571
38572
38573
38574
38575
38576
38577
38578
38579

#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /*
  ** If this Btree is a candidate for shared cache, try to find an
  ** existing BtShared object that we can share with
  */
  if( isMemdb==0 && zFilename && zFilename[0] ){
    if( sqlite3GlobalConfig.sharedCacheEnabled ){
      int nFullPathname = pVfs->mxPathname+1;
      char *zFullPathname = sqlite3Malloc(nFullPathname);
      sqlite3_mutex *mutexShared;
      p->sharable = 1;
      if( !zFullPathname ){
        sqlite3_free(p);
        return SQLITE_NOMEM;







|







39239
39240
39241
39242
39243
39244
39245
39246
39247
39248
39249
39250
39251
39252
39253

#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /*
  ** If this Btree is a candidate for shared cache, try to find an
  ** existing BtShared object that we can share with
  */
  if( isMemdb==0 && zFilename && zFilename[0] ){
    if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
      int nFullPathname = pVfs->mxPathname+1;
      char *zFullPathname = sqlite3Malloc(nFullPathname);
      sqlite3_mutex *mutexShared;
      p->sharable = 1;
      if( !zFullPathname ){
        sqlite3_free(p);
        return SQLITE_NOMEM;
41217
41218
41219
41220
41221
41222
41223




41224
41225
41226
41227
41228
41229
41230
41231
41232
41233
          nCell = (int)pCur->info.nKey;
          pCellKey = sqlite3Malloc( nCell );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM;
            goto moveto_finish;
          }
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);




          c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
          sqlite3_free(pCellKey);
          if( rc ) goto moveto_finish;
        }
      }
      if( c==0 ){
        if( pPage->intKey && !pPage->leaf ){
          lwr = idx;
          upr = lwr - 1;
          break;







>
>
>
>


<







41891
41892
41893
41894
41895
41896
41897
41898
41899
41900
41901
41902
41903

41904
41905
41906
41907
41908
41909
41910
          nCell = (int)pCur->info.nKey;
          pCellKey = sqlite3Malloc( nCell );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM;
            goto moveto_finish;
          }
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
          sqlite3_free(pCellKey);

        }
      }
      if( c==0 ){
        if( pPage->intKey && !pPage->leaf ){
          lwr = idx;
          upr = lwr - 1;
          break;
43288
43289
43290
43291
43292
43293
43294


43295
43296
43297
43298
43299
43300
43301
43302
43303
43304
43305
43306
43307
43308
43309
43310
43311
43312
43313
43314
43315
** If the seekResult parameter is non-zero, then a successful call to
** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
** been performed. seekResult is the search result returned (a negative
** number if pCur points at an entry that is smaller than (pKey, nKey), or
** a positive value if pCur points at an etry that is larger than 
** (pKey, nKey)). 
**


** If the seekResult parameter is 0, then cursor pCur may point to any 
** entry or to no entry at all. In this case this function has to seek
** the cursor before the new key can be inserted.
*/
SQLITE_PRIVATE int sqlite3BtreeInsert(
  BtCursor *pCur,                /* Insert data into the table of this cursor */
  const void *pKey, i64 nKey,    /* The key of the new record */
  const void *pData, int nData,  /* The data of the new record */
  int nZero,                     /* Number of extra 0 bytes to append to data */
  int appendBias,                /* True if this is likely an append */
  int seekResult                 /* Result of prior MovetoUnpacked() call */
){
  int rc;
  int loc = seekResult;
  int szNew;
  int idx;
  MemPage *pPage;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;
  unsigned char *oldCell;
  unsigned char *newCell = 0;







>
>
|
|











|







43965
43966
43967
43968
43969
43970
43971
43972
43973
43974
43975
43976
43977
43978
43979
43980
43981
43982
43983
43984
43985
43986
43987
43988
43989
43990
43991
43992
43993
43994
** If the seekResult parameter is non-zero, then a successful call to
** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
** been performed. seekResult is the search result returned (a negative
** number if pCur points at an entry that is smaller than (pKey, nKey), or
** a positive value if pCur points at an etry that is larger than 
** (pKey, nKey)). 
**
** If the seekResult parameter is non-zero, then the caller guarantees that
** cursor pCur is pointing at the existing copy of a row that is to be
** overwritten.  If the seekResult parameter is 0, then cursor pCur may
** point to any entry or to no entry at all and so this function has to seek
** the cursor before the new key can be inserted.
*/
SQLITE_PRIVATE int sqlite3BtreeInsert(
  BtCursor *pCur,                /* Insert data into the table of this cursor */
  const void *pKey, i64 nKey,    /* The key of the new record */
  const void *pData, int nData,  /* The data of the new record */
  int nZero,                     /* Number of extra 0 bytes to append to data */
  int appendBias,                /* True if this is likely an append */
  int seekResult                 /* Result of prior MovetoUnpacked() call */
){
  int rc;
  int loc = seekResult;          /* -1: before desired location  +1: after */
  int szNew;
  int idx;
  MemPage *pPage;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;
  unsigned char *oldCell;
  unsigned char *newCell = 0;
45575
45576
45577
45578
45579
45580
45581




45582
45583
45584
45585
45586
45587
45588
45589
45590
45591
45592


45593
45594
45595
45596
45597
45598
45599
/*
** If the memory cell contains a string value that must be freed by
** invoking an external callback, free it now. Calling this function
** does not free any Mem.zMalloc buffer.
*/
SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){
  assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );




  if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet) ){
    if( p->flags&MEM_Agg ){
      sqlite3VdbeMemFinalize(p, p->u.pDef);
      assert( (p->flags & MEM_Agg)==0 );
      sqlite3VdbeMemRelease(p);
    }else if( p->flags&MEM_Dyn && p->xDel ){
      assert( (p->flags&MEM_RowSet)==0 );
      p->xDel((void *)p->z);
      p->xDel = 0;
    }else if( p->flags&MEM_RowSet ){
      sqlite3RowSetClear(p->u.pRowSet);


    }
  }
}

/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and







>
>
>
>
|










>
>







46254
46255
46256
46257
46258
46259
46260
46261
46262
46263
46264
46265
46266
46267
46268
46269
46270
46271
46272
46273
46274
46275
46276
46277
46278
46279
46280
46281
46282
46283
46284
/*
** If the memory cell contains a string value that must be freed by
** invoking an external callback, free it now. Calling this function
** does not free any Mem.zMalloc buffer.
*/
SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){
  assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
  testcase( p->flags & MEM_Agg );
  testcase( p->flags & MEM_Dyn );
  testcase( p->flags & MEM_RowSet );
  testcase( p->flags & MEM_Frame );
  if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){
    if( p->flags&MEM_Agg ){
      sqlite3VdbeMemFinalize(p, p->u.pDef);
      assert( (p->flags & MEM_Agg)==0 );
      sqlite3VdbeMemRelease(p);
    }else if( p->flags&MEM_Dyn && p->xDel ){
      assert( (p->flags&MEM_RowSet)==0 );
      p->xDel((void *)p->z);
      p->xDel = 0;
    }else if( p->flags&MEM_RowSet ){
      sqlite3RowSetClear(p->u.pRowSet);
    }else if( p->flags&MEM_Frame ){
      sqlite3VdbeMemSetNull(p);
    }
  }
}

/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
45723
45724
45725
45726
45727
45728
45729
45730
45731
45732


45733
45734

45735
45736
45737
45738
45739
45740
45741

  /* Only mark the value as an integer if
  **
  **    (1) the round-trip conversion real->int->real is a no-op, and
  **    (2) The integer is neither the largest nor the smallest
  **        possible integer (ticket #3922)
  **
  ** The second term in the following conditional enforces the second
  ** condition under the assumption that additional overflow causes
  ** values to wrap around.


  */
  if( pMem->r==(double)pMem->u.i && (pMem->u.i-1) < (pMem->u.i+1) ){

    pMem->flags |= MEM_Int;
  }
}

/*
** Convert pMem to type integer.  Invalidate any prior representations.
*/







|
|
|
>
>

|
>







46408
46409
46410
46411
46412
46413
46414
46415
46416
46417
46418
46419
46420
46421
46422
46423
46424
46425
46426
46427
46428
46429

  /* Only mark the value as an integer if
  **
  **    (1) the round-trip conversion real->int->real is a no-op, and
  **    (2) The integer is neither the largest nor the smallest
  **        possible integer (ticket #3922)
  **
  ** The second and third terms in the following conditional enforces
  ** the second condition under the assumption that addition overflow causes
  ** values to wrap around.  On x86 hardware, the third term is always
  ** true and could be omitted.  But we leave it in because other
  ** architectures might behave differently.
  */
  if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64
      && ALWAYS(pMem->u.i<LARGEST_INT64) ){
    pMem->flags |= MEM_Int;
  }
}

/*
** Convert pMem to type integer.  Invalidate any prior representations.
*/
45784
45785
45786
45787
45788
45789
45790



45791
45792
45793
45794
45795
45796
45797
  return SQLITE_OK;
}

/*
** Delete any previous value and set the value stored in *pMem to NULL.
*/
SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){



  if( pMem->flags & MEM_RowSet ){
    sqlite3RowSetClear(pMem->u.pRowSet);
  }
  MemSetTypeFlag(pMem, MEM_Null);
  pMem->type = SQLITE_NULL;
}








>
>
>







46472
46473
46474
46475
46476
46477
46478
46479
46480
46481
46482
46483
46484
46485
46486
46487
46488
  return SQLITE_OK;
}

/*
** Delete any previous value and set the value stored in *pMem to NULL.
*/
SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){
  if( pMem->flags & MEM_Frame ){
    sqlite3VdbeFrameDelete(pMem->u.pFrame);
  }
  if( pMem->flags & MEM_RowSet ){
    sqlite3RowSetClear(pMem->u.pRowSet);
  }
  MemSetTypeFlag(pMem, MEM_Null);
  pMem->type = SQLITE_NULL;
}

46301
46302
46303
46304
46305
46306
46307



46308
46309
46310
46311
46312
46313
46314
46315
46316
46317

46318
46319
46320
46321
46322
46323
46324
  sqlite3_value *pVal = 0;

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;




  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = sqlite3ValueNew(db);
    if( pVal==0 ) goto no_mem;
    if( ExprHasProperty(pExpr, EP_IntValue) ){
      sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue);
    }else{
      zVal = sqlite3DbStrDup(db, pExpr->u.zToken);
      if( zVal==0 ) goto no_mem;
      sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);

    }
    if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
    }
    if( enc!=SQLITE_UTF8 ){







>
>
>










>







46992
46993
46994
46995
46996
46997
46998
46999
47000
47001
47002
47003
47004
47005
47006
47007
47008
47009
47010
47011
47012
47013
47014
47015
47016
47017
47018
47019
  sqlite3_value *pVal = 0;

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;
  if( op==TK_REGISTER ){
    op = pExpr->op2;
  }

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = sqlite3ValueNew(db);
    if( pVal==0 ) goto no_mem;
    if( ExprHasProperty(pExpr, EP_IntValue) ){
      sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue);
    }else{
      zVal = sqlite3DbStrDup(db, pExpr->u.zToken);
      if( zVal==0 ) goto no_mem;
      sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
      if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
    }
    if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
    }
    if( enc!=SQLITE_UTF8 ){
46633
46634
46635
46636
46637
46638
46639





















































































































46640
46641
46642
46643
46644
46645
46646
46647
46648
46649
46650
46651
46652
46653
46654
46655
46656
46657
46658
46659
46660
46661
46662
46663
46664
46665
46666
46667
46668
46669
46670
46671
46672
46673
46674
46675
46676
46677
46678
46679
46680
46681
46682
46683
46684
46685
46686
46687
46688
46689
46690
46691
46692
46693
46694
46695
46696
46697
46698
46699
46700
46701
46702
46703
46704
46705
46706
46707
46708
46709
46710
46711
46712
46713
46714
46715
46716
46717
46718
46719
46720
46721
46722
46723
46724
46725
46726
46727
46728
46729
46730
46731
46732
46733
46734
46735
46736
46737
























46738
46739
46740
46741
46742
46743
46744
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( j>=0 && j<p->nLabel );
  if( p->aLabel ){
    p->aLabel[j] = p->nOp;
  }
}






















































































































/*
** Loop through the program looking for P2 values that are negative
** on jump instructions.  Each such value is a label.  Resolve the
** label by setting the P2 value to its correct non-zero value.
**
** This routine is called once after all opcodes have been inserted.
**
** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
**
** This routine also does the following optimization:  It scans for
** instructions that might cause a statement rollback.  Such instructions
** are:
**
**   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
**   *  OP_Destroy
**   *  OP_VUpdate
**   *  OP_VRename
**
** If no such instruction is found, then every Statement instruction 
** is changed to a Noop.  In this way, we avoid creating the statement 
** journal file unnecessarily.
*/
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
  int i;
  int nMaxArgs = 0;
  Op *pOp;
  int *aLabel = p->aLabel;
  int doesStatementRollback = 0;
  int hasStatementBegin = 0;
  p->readOnly = 1;
  p->usesStmtJournal = 0;
  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;

    if( opcode==OP_Function || opcode==OP_AggStep ){
      if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
#ifndef SQLITE_OMIT_VIRTUALTABLE
    }else if( opcode==OP_VUpdate ){
      if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
#endif
    }
    if( opcode==OP_Halt ){
      if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
        doesStatementRollback = 1;
      }
    }else if( opcode==OP_Statement ){
      hasStatementBegin = 1;
      p->usesStmtJournal = 1;
    }else if( opcode==OP_Destroy ){
      doesStatementRollback = 1;
    }else if( opcode==OP_Transaction && pOp->p2!=0 ){
      p->readOnly = 0;
#ifndef SQLITE_OMIT_VIRTUALTABLE
    }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
      doesStatementRollback = 1;
    }else if( opcode==OP_VFilter ){
      int n;
      assert( p->nOp - i >= 3 );
      assert( pOp[-1].opcode==OP_Integer );
      n = pOp[-1].p1;
      if( n>nMaxArgs ) nMaxArgs = n;
#endif
    }

    if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
      assert( -1-pOp->p2<p->nLabel );
      pOp->p2 = aLabel[-1-pOp->p2];
    }
  }
  sqlite3DbFree(p->db, p->aLabel);
  p->aLabel = 0;

  *pMaxFuncArgs = nMaxArgs;

  /* If we never rollback a statement transaction, then statement
  ** transactions are not needed.  So change every OP_Statement
  ** opcode into an OP_Noop.  This avoid a call to sqlite3OsOpenExclusive()
  ** which can be expensive on some platforms.
  */
  if( hasStatementBegin && !doesStatementRollback ){
    p->usesStmtJournal = 0;
    for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
      if( pOp->opcode==OP_Statement ){
        pOp->opcode = OP_Noop;
      }
    }
  }
}

/*
** Return the address of the next instruction to be inserted.
*/
SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){
  assert( p->magic==VDBE_MAGIC_INIT );
  return p->nOp;
}

























/*
** Add a whole list of operations to the operation stack.  Return the
** address of the first operation added.
*/
SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
  int addr;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>










<
<
<
<
<
<
<
<
<
<
<
<
<



|


<
<

<









<
<
<
<
<
<
<
<
<
<



<
<


















<
<
<
<
<
<
<
<
<
<
<
<
<
<









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







47328
47329
47330
47331
47332
47333
47334
47335
47336
47337
47338
47339
47340
47341
47342
47343
47344
47345
47346
47347
47348
47349
47350
47351
47352
47353
47354
47355
47356
47357
47358
47359
47360
47361
47362
47363
47364
47365
47366
47367
47368
47369
47370
47371
47372
47373
47374
47375
47376
47377
47378
47379
47380
47381
47382
47383
47384
47385
47386
47387
47388
47389
47390
47391
47392
47393
47394
47395
47396
47397
47398
47399
47400
47401
47402
47403
47404
47405
47406
47407
47408
47409
47410
47411
47412
47413
47414
47415
47416
47417
47418
47419
47420
47421
47422
47423
47424
47425
47426
47427
47428
47429
47430
47431
47432
47433
47434
47435
47436
47437
47438
47439
47440
47441
47442
47443
47444
47445
47446
47447
47448
47449
47450
47451
47452
47453
47454
47455
47456
47457
47458
47459
47460
47461













47462
47463
47464
47465
47466
47467


47468

47469
47470
47471
47472
47473
47474
47475
47476
47477










47478
47479
47480


47481
47482
47483
47484
47485
47486
47487
47488
47489
47490
47491
47492
47493
47494
47495
47496
47497
47498














47499
47500
47501
47502
47503
47504
47505
47506
47507
47508
47509
47510
47511
47512
47513
47514
47515
47516
47517
47518
47519
47520
47521
47522
47523
47524
47525
47526
47527
47528
47529
47530
47531
47532
47533
47534
47535
47536
47537
47538
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( j>=0 && j<p->nLabel );
  if( p->aLabel ){
    p->aLabel[j] = p->nOp;
  }
}

#ifdef SQLITE_DEBUG

/*
** The following type and function are used to iterate through all opcodes
** in a Vdbe main program and each of the sub-programs (triggers) it may 
** invoke directly or indirectly. It should be used as follows:
**
**   Op *pOp;
**   VdbeOpIter sIter;
**
**   memset(&sIter, 0, sizeof(sIter));
**   sIter.v = v;                            // v is of type Vdbe* 
**   while( (pOp = opIterNext(&sIter)) ){
**     // Do something with pOp
**   }
**   sqlite3DbFree(v->db, sIter.apSub);
** 
*/
typedef struct VdbeOpIter VdbeOpIter;
struct VdbeOpIter {
  Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
  SubProgram **apSub;        /* Array of subprograms */
  int nSub;                  /* Number of entries in apSub */
  int iAddr;                 /* Address of next instruction to return */
  int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
};
static Op *opIterNext(VdbeOpIter *p){
  Vdbe *v = p->v;
  Op *pRet = 0;
  Op *aOp;
  int nOp;

  if( p->iSub<=p->nSub ){

    if( p->iSub==0 ){
      aOp = v->aOp;
      nOp = v->nOp;
    }else{
      aOp = p->apSub[p->iSub-1]->aOp;
      nOp = p->apSub[p->iSub-1]->nOp;
    }
    assert( p->iAddr<nOp );

    pRet = &aOp[p->iAddr];
    p->iAddr++;
    if( p->iAddr==nOp ){
      p->iSub++;
      p->iAddr = 0;
    }
  
    if( pRet->p4type==P4_SUBPROGRAM ){
      int nByte = (p->nSub+1)*sizeof(SubProgram*);
      int j;
      for(j=0; j<p->nSub; j++){
        if( p->apSub[j]==pRet->p4.pProgram ) break;
      }
      if( j==p->nSub ){
        p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
        if( !p->apSub ){
          pRet = 0;
        }else{
          p->apSub[p->nSub++] = pRet->p4.pProgram;
        }
      }
    }
  }

  return pRet;
}

/*
** Check if the program stored in the VM associated with pParse may
** throw an ABORT exception (causing the statement, but not transaction
** to be rolled back). This condition is true if the main program or any
** sub-programs contains any of the following:
**
**   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
**   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
**   *  OP_Destroy
**   *  OP_VUpdate
**   *  OP_VRename
**
** Then check that the value of Parse.mayAbort is true if an
** ABORT may be thrown, or false otherwise. Return true if it does
** match, or false otherwise. This function is intended to be used as
** part of an assert statement in the compiler. Similar to:
**
**   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
*/
SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
  int hasAbort = 0;
  Op *pOp;
  VdbeOpIter sIter;
  memset(&sIter, 0, sizeof(sIter));
  sIter.v = v;

  while( (pOp = opIterNext(&sIter))!=0 ){
    int opcode = pOp->opcode;
    if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 
     || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 
      && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
    ){
      hasAbort = 1;
      break;
    }
  }
  sqlite3DbFree(v->db, sIter.apSub);

  /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
  ** If malloc failed, then the while() loop above may not have iterated
  ** through all opcodes and hasAbort may be set incorrectly. Return
  ** true for this case to prevent the assert() in the callers frame
  ** from failing.  */
  return ( v->db->mallocFailed || hasAbort==mayAbort );
}
#endif

/*
** Loop through the program looking for P2 values that are negative
** on jump instructions.  Each such value is a label.  Resolve the
** label by setting the P2 value to its correct non-zero value.
**
** This routine is called once after all opcodes have been inserted.
**
** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.













*/
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
  int i;
  int nMaxArgs = *pMaxFuncArgs;
  Op *pOp;
  int *aLabel = p->aLabel;


  p->readOnly = 1;

  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;

    if( opcode==OP_Function || opcode==OP_AggStep ){
      if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
#ifndef SQLITE_OMIT_VIRTUALTABLE
    }else if( opcode==OP_VUpdate ){
      if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
#endif










    }else if( opcode==OP_Transaction && pOp->p2!=0 ){
      p->readOnly = 0;
#ifndef SQLITE_OMIT_VIRTUALTABLE


    }else if( opcode==OP_VFilter ){
      int n;
      assert( p->nOp - i >= 3 );
      assert( pOp[-1].opcode==OP_Integer );
      n = pOp[-1].p1;
      if( n>nMaxArgs ) nMaxArgs = n;
#endif
    }

    if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
      assert( -1-pOp->p2<p->nLabel );
      pOp->p2 = aLabel[-1-pOp->p2];
    }
  }
  sqlite3DbFree(p->db, p->aLabel);
  p->aLabel = 0;

  *pMaxFuncArgs = nMaxArgs;














}

/*
** Return the address of the next instruction to be inserted.
*/
SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){
  assert( p->magic==VDBE_MAGIC_INIT );
  return p->nOp;
}

/*
** This function returns a pointer to the array of opcodes associated with
** the Vdbe passed as the first argument. It is the callers responsibility
** to arrange for the returned array to be eventually freed using the 
** vdbeFreeOpArray() function.
**
** Before returning, *pnOp is set to the number of entries in the returned
** array. Also, *pnMaxArg is set to the larger of its current value and 
** the number of entries in the Vdbe.apArg[] array required to execute the 
** returned program.
*/
SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
  VdbeOp *aOp = p->aOp;
  assert( aOp && !p->db->mallocFailed );

  /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
  assert( p->aMutex.nMutex==0 );

  resolveP2Values(p, pnMaxArg);
  *pnOp = p->nOp;
  p->aOp = 0;
  return aOp;
}

/*
** Add a whole list of operations to the operation stack.  Return the
** address of the first operation added.
*/
SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
  int addr;
46875
46876
46877
46878
46879
46880
46881



















































46882
46883
46884
46885
46886
46887
46888
        sqlite3ValueFree((sqlite3_value*)p4);
        break;
      }
      case P4_VTAB : {
        sqlite3VtabUnlock((VTable *)p4);
        break;
      }



















































    }
  }
}


/*
** Change N opcodes starting at addr to No-ops.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







47669
47670
47671
47672
47673
47674
47675
47676
47677
47678
47679
47680
47681
47682
47683
47684
47685
47686
47687
47688
47689
47690
47691
47692
47693
47694
47695
47696
47697
47698
47699
47700
47701
47702
47703
47704
47705
47706
47707
47708
47709
47710
47711
47712
47713
47714
47715
47716
47717
47718
47719
47720
47721
47722
47723
47724
47725
47726
47727
47728
47729
47730
47731
47732
47733
        sqlite3ValueFree((sqlite3_value*)p4);
        break;
      }
      case P4_VTAB : {
        sqlite3VtabUnlock((VTable *)p4);
        break;
      }
      case P4_SUBPROGRAM : {
        sqlite3VdbeProgramDelete(db, (SubProgram *)p4, 1);
        break;
      }
    }
  }
}

/*
** Free the space allocated for aOp and any p4 values allocated for the
** opcodes contained within. If aOp is not NULL it is assumed to contain 
** nOp entries. 
*/
static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
  if( aOp ){
    Op *pOp;
    for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
      freeP4(db, pOp->p4type, pOp->p4.p);
#ifdef SQLITE_DEBUG
      sqlite3DbFree(db, pOp->zComment);
#endif     
    }
  }
  sqlite3DbFree(db, aOp);
}

/*
** Decrement the ref-count on the SubProgram structure passed as the
** second argument. If the ref-count reaches zero, free the structure.
**
** The array of VDBE opcodes stored as SubProgram.aOp is freed if
** either the ref-count reaches zero or parameter freeop is non-zero.
**
** Since the array of opcodes pointed to by SubProgram.aOp may directly
** or indirectly contain a reference to the SubProgram structure itself.
** By passing a non-zero freeop parameter, the caller may ensure that all
** SubProgram structures and their aOp arrays are freed, even when there
** are such circular references.
*/
SQLITE_PRIVATE void sqlite3VdbeProgramDelete(sqlite3 *db, SubProgram *p, int freeop){
  if( p ){
    assert( p->nRef>0 );
    if( freeop || p->nRef==1 ){
      Op *aOp = p->aOp;
      p->aOp = 0;
      vdbeFreeOpArray(db, aOp, p->nOp);
      p->nOp = 0;
    }
    p->nRef--;
    if( p->nRef==0 ){
      sqlite3DbFree(db, p);
    }
  }
}


/*
** Change N opcodes starting at addr to No-ops.
46997
46998
46999
47000
47001
47002
47003

47004
47005
47006
47007
47008
47009
47010
47011
47012
47013
47014
47015

47016
47017
47018
47019
47020
47021
47022
** Change the comment on the the most recently coded instruction.  Or
** insert a No-op and add the comment to that new instruction.  This
** makes the code easier to read during debugging.  None of this happens
** in a production build.
*/
SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
  va_list ap;

  assert( p->nOp>0 || p->aOp==0 );
  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
  if( p->nOp ){
    char **pz = &p->aOp[p->nOp-1].zComment;
    va_start(ap, zFormat);
    sqlite3DbFree(p->db, *pz);
    *pz = sqlite3VMPrintf(p->db, zFormat, ap);
    va_end(ap);
  }
}
SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
  va_list ap;

  sqlite3VdbeAddOp0(p, OP_Noop);
  assert( p->nOp>0 || p->aOp==0 );
  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
  if( p->nOp ){
    char **pz = &p->aOp[p->nOp-1].zComment;
    va_start(ap, zFormat);
    sqlite3DbFree(p->db, *pz);







>












>







47842
47843
47844
47845
47846
47847
47848
47849
47850
47851
47852
47853
47854
47855
47856
47857
47858
47859
47860
47861
47862
47863
47864
47865
47866
47867
47868
47869
** Change the comment on the the most recently coded instruction.  Or
** insert a No-op and add the comment to that new instruction.  This
** makes the code easier to read during debugging.  None of this happens
** in a production build.
*/
SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
  va_list ap;
  if( !p ) return;
  assert( p->nOp>0 || p->aOp==0 );
  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
  if( p->nOp ){
    char **pz = &p->aOp[p->nOp-1].zComment;
    va_start(ap, zFormat);
    sqlite3DbFree(p->db, *pz);
    *pz = sqlite3VMPrintf(p->db, zFormat, ap);
    va_end(ap);
  }
}
SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
  va_list ap;
  if( !p ) return;
  sqlite3VdbeAddOp0(p, OP_Noop);
  assert( p->nOp>0 || p->aOp==0 );
  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
  if( p->nOp ){
    char **pz = &p->aOp[p->nOp-1].zComment;
    va_start(ap, zFormat);
    sqlite3DbFree(p->db, *pz);
47128
47129
47130
47131
47132
47133
47134



47135
47136
47137
47138
47139
47140
47141
47142
47143
47144
47145
47146
47147




47148
47149
47150
47151
47152
47153
47154
47155
47156
47157
47158
47159
47160
47161
47162
47163
47164
47165
47166
47167
47168
47169
47170
47171
      assert( (pMem->flags & MEM_Null)==0 );
      if( pMem->flags & MEM_Str ){
        zP4 = pMem->z;
      }else if( pMem->flags & MEM_Int ){
        sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
      }else if( pMem->flags & MEM_Real ){
        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);



      }
      break;
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    case P4_VTAB: {
      sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
      sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
      break;
    }
#endif
    case P4_INTARRAY: {
      sqlite3_snprintf(nTemp, zTemp, "intarray");
      break;




    }
    default: {
      zP4 = pOp->p4.z;
      if( zP4==0 ){
        zP4 = zTemp;
        zTemp[0] = 0;
      }
    }
  }
  assert( zP4!=0 );
  return zP4;
}
#endif

/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
**
*/
SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){
  int mask;
  assert( i>=0 && i<p->db->nDb && i<sizeof(u32)*8 );
  assert( i<(int)sizeof(p->btreeMask)*8 );
  mask = ((u32)1)<<i;
  if( (p->btreeMask & mask)==0 ){







>
>
>













>
>
>
>
















<







47975
47976
47977
47978
47979
47980
47981
47982
47983
47984
47985
47986
47987
47988
47989
47990
47991
47992
47993
47994
47995
47996
47997
47998
47999
48000
48001
48002
48003
48004
48005
48006
48007
48008
48009
48010
48011
48012
48013
48014
48015
48016
48017

48018
48019
48020
48021
48022
48023
48024
      assert( (pMem->flags & MEM_Null)==0 );
      if( pMem->flags & MEM_Str ){
        zP4 = pMem->z;
      }else if( pMem->flags & MEM_Int ){
        sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
      }else if( pMem->flags & MEM_Real ){
        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
      }else{
        assert( pMem->flags & MEM_Blob );
        zP4 = "(blob)";
      }
      break;
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    case P4_VTAB: {
      sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
      sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
      break;
    }
#endif
    case P4_INTARRAY: {
      sqlite3_snprintf(nTemp, zTemp, "intarray");
      break;
    }
    case P4_SUBPROGRAM: {
      sqlite3_snprintf(nTemp, zTemp, "program");
      break;
    }
    default: {
      zP4 = pOp->p4.z;
      if( zP4==0 ){
        zP4 = zTemp;
        zTemp[0] = 0;
      }
    }
  }
  assert( zP4!=0 );
  return zP4;
}
#endif

/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.

*/
SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){
  int mask;
  assert( i>=0 && i<p->db->nDb && i<sizeof(u32)*8 );
  assert( i<(int)sizeof(p->btreeMask)*8 );
  mask = ((u32)1)<<i;
  if( (p->btreeMask & mask)==0 ){
47216
47217
47218
47219
47220
47221
47222
47223
47224
47225
47226
47227
47228
47229
47230
47231
47232
47233
47234
















47235
47236
47237
47238
47239
47240
47241
      ** callgrind, this causes a certain test case to hit the CPU 4.7 
      ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 
      ** sqlite3MemRelease() were called from here. With -O2, this jumps
      ** to 6.6 percent. The test case is inserting 1000 rows into a table 
      ** with no indexes using a single prepared INSERT statement, bind() 
      ** and reset(). Inserts are grouped into a transaction.
      */
      if( p->flags&(MEM_Agg|MEM_Dyn) ){
        sqlite3VdbeMemRelease(p);
      }else if( p->zMalloc ){
        sqlite3DbFree(db, p->zMalloc);
        p->zMalloc = 0;
      }

      p->flags = MEM_Null;
    }
    db->mallocFailed = malloc_failed;
  }
}

















#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p){
  int ii;
  int nFree = 0;
  assert( sqlite3_mutex_held(p->db->mutex) );
  for(ii=1; ii<=p->nMem; ii++){







|











>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







48069
48070
48071
48072
48073
48074
48075
48076
48077
48078
48079
48080
48081
48082
48083
48084
48085
48086
48087
48088
48089
48090
48091
48092
48093
48094
48095
48096
48097
48098
48099
48100
48101
48102
48103
48104
48105
48106
48107
48108
48109
48110
      ** callgrind, this causes a certain test case to hit the CPU 4.7 
      ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 
      ** sqlite3MemRelease() were called from here. With -O2, this jumps
      ** to 6.6 percent. The test case is inserting 1000 rows into a table 
      ** with no indexes using a single prepared INSERT statement, bind() 
      ** and reset(). Inserts are grouped into a transaction.
      */
      if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
        sqlite3VdbeMemRelease(p);
      }else if( p->zMalloc ){
        sqlite3DbFree(db, p->zMalloc);
        p->zMalloc = 0;
      }

      p->flags = MEM_Null;
    }
    db->mallocFailed = malloc_failed;
  }
}

/*
** Delete a VdbeFrame object and its contents. VdbeFrame objects are
** allocated by the OP_Program opcode in sqlite3VdbeExec().
*/
SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame *p){
  int i;
  Mem *aMem = VdbeFrameMem(p);
  VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
  for(i=0; i<p->nChildCsr; i++){
    sqlite3VdbeFreeCursor(p->v, apCsr[i]);
  }
  releaseMemArray(aMem, p->nChildMem);
  sqlite3DbFree(p->v->db, p);
}


#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p){
  int ii;
  int nFree = 0;
  assert( sqlite3_mutex_held(p->db->mutex) );
  for(ii=1; ii<=p->nMem; ii++){
47265
47266
47267
47268
47269
47270
47271




47272
47273
47274
47275
47276
47277
47278
47279
47280
47281
47282
47283
47284
47285
47286
47287
47288
47289
47290
47291
47292
47293














47294
47295
47296
47297
47298
47299
47300
47301
47302
47303
47304
47305
47306


47307








47308
47309
47310
47311
47312
47313
47314
47315
47316
47317
47318
47319
47320














47321
47322
47323
47324
47325
47326
47327
** p->explain==2, only OP_Explain instructions are listed and these
** are shown in a different format.  p->explain==2 is used to implement
** EXPLAIN QUERY PLAN.
*/
SQLITE_PRIVATE int sqlite3VdbeList(
  Vdbe *p                   /* The VDBE */
){




  sqlite3 *db = p->db;
  int i;
  int rc = SQLITE_OK;
  Mem *pMem = p->pResultSet = &p->aMem[1];

  assert( p->explain );
  assert( p->magic==VDBE_MAGIC_RUN );
  assert( db->magic==SQLITE_MAGIC_BUSY );
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );

  /* Even though this opcode does not use dynamic strings for
  ** the result, result columns may become dynamic if the user calls
  ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
  */
  releaseMemArray(pMem, p->nMem);

  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite3_column_text() or
    ** sqlite3_column_text16() failed.  */
    db->mallocFailed = 1;
    return SQLITE_ERROR;
  }















  do{
    i = p->pc++;
  }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
  if( i>=p->nOp ){
    p->rc = SQLITE_OK;
    rc = SQLITE_DONE;
  }else if( db->u1.isInterrupted ){
    p->rc = SQLITE_INTERRUPT;
    rc = SQLITE_ERROR;
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
  }else{
    char *z;


    Op *pOp = &p->aOp[i];








    if( p->explain==1 ){
      pMem->flags = MEM_Int;
      pMem->type = SQLITE_INTEGER;
      pMem->u.i = i;                                /* Program counter */
      pMem++;
  
      pMem->flags = MEM_Static|MEM_Str|MEM_Term;
      pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */
      assert( pMem->z!=0 );
      pMem->n = sqlite3Strlen30(pMem->z);
      pMem->type = SQLITE_TEXT;
      pMem->enc = SQLITE_UTF8;
      pMem++;














    }

    pMem->flags = MEM_Int;
    pMem->u.i = pOp->p1;                          /* P1 */
    pMem->type = SQLITE_INTEGER;
    pMem++;








>
>
>
>














|







>
>
>
>
>
>
>
>
>
>
>
>
>
>



|
|








>
>
|
>
>
>
>
>
>
>
>













>
>
>
>
>
>
>
>
>
>
>
>
>
>







48134
48135
48136
48137
48138
48139
48140
48141
48142
48143
48144
48145
48146
48147
48148
48149
48150
48151
48152
48153
48154
48155
48156
48157
48158
48159
48160
48161
48162
48163
48164
48165
48166
48167
48168
48169
48170
48171
48172
48173
48174
48175
48176
48177
48178
48179
48180
48181
48182
48183
48184
48185
48186
48187
48188
48189
48190
48191
48192
48193
48194
48195
48196
48197
48198
48199
48200
48201
48202
48203
48204
48205
48206
48207
48208
48209
48210
48211
48212
48213
48214
48215
48216
48217
48218
48219
48220
48221
48222
48223
48224
48225
48226
48227
48228
48229
48230
48231
48232
48233
48234
48235
48236
48237
48238
** p->explain==2, only OP_Explain instructions are listed and these
** are shown in a different format.  p->explain==2 is used to implement
** EXPLAIN QUERY PLAN.
*/
SQLITE_PRIVATE int sqlite3VdbeList(
  Vdbe *p                   /* The VDBE */
){
  int nRow;                            /* Total number of rows to return */
  int nSub = 0;                        /* Number of sub-vdbes seen so far */
  SubProgram **apSub = 0;              /* Array of sub-vdbes */
  Mem *pSub = 0;
  sqlite3 *db = p->db;
  int i;
  int rc = SQLITE_OK;
  Mem *pMem = p->pResultSet = &p->aMem[1];

  assert( p->explain );
  assert( p->magic==VDBE_MAGIC_RUN );
  assert( db->magic==SQLITE_MAGIC_BUSY );
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );

  /* Even though this opcode does not use dynamic strings for
  ** the result, result columns may become dynamic if the user calls
  ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
  */
  releaseMemArray(pMem, 8);

  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite3_column_text() or
    ** sqlite3_column_text16() failed.  */
    db->mallocFailed = 1;
    return SQLITE_ERROR;
  }

  /* Figure out total number of rows that will be returned by this 
  ** EXPLAIN program.  */
  nRow = p->nOp;
  if( p->explain==1 ){
    pSub = &p->aMem[9];
    if( pSub->flags&MEM_Blob ){
      nSub = pSub->n/sizeof(Vdbe*);
      apSub = (SubProgram **)pSub->z;
    }
    for(i=0; i<nSub; i++){
      nRow += apSub[i]->nOp;
    }
  }

  do{
    i = p->pc++;
  }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
  if( i>=nRow ){
    p->rc = SQLITE_OK;
    rc = SQLITE_DONE;
  }else if( db->u1.isInterrupted ){
    p->rc = SQLITE_INTERRUPT;
    rc = SQLITE_ERROR;
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
  }else{
    char *z;
    Op *pOp;
    if( i<p->nOp ){
      pOp = &p->aOp[i];
    }else{
      int j;
      i -= p->nOp;
      for(j=0; i>=apSub[j]->nOp; j++){
        i -= apSub[j]->nOp;
      }
      pOp = &apSub[j]->aOp[i];
    }
    if( p->explain==1 ){
      pMem->flags = MEM_Int;
      pMem->type = SQLITE_INTEGER;
      pMem->u.i = i;                                /* Program counter */
      pMem++;
  
      pMem->flags = MEM_Static|MEM_Str|MEM_Term;
      pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */
      assert( pMem->z!=0 );
      pMem->n = sqlite3Strlen30(pMem->z);
      pMem->type = SQLITE_TEXT;
      pMem->enc = SQLITE_UTF8;
      pMem++;

      if( pOp->p4type==P4_SUBPROGRAM ){
        int nByte = (nSub+1)*sizeof(SubProgram*);
        int j;
        for(j=0; j<nSub; j++){
          if( apSub[j]==pOp->p4.pProgram ) break;
        }
        if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){
          apSub = (SubProgram **)pSub->z;
          apSub[nSub++] = pOp->p4.pProgram;
          pSub->flags |= MEM_Blob;
          pSub->n = nSub*sizeof(SubProgram*);
        }
      }
    }

    pMem->flags = MEM_Int;
    pMem->u.i = pOp->p1;                          /* P1 */
    pMem->type = SQLITE_INTEGER;
    pMem++;

47488
47489
47490
47491
47492
47493
47494

47495

47496
47497
47498
47499
47500
47501
47502
** is passed -1 and nMem, nCursor and isExplain are all passed zero.
*/
SQLITE_PRIVATE void sqlite3VdbeMakeReady(
  Vdbe *p,                       /* The VDBE */
  int nVar,                      /* Number of '?' see in the SQL statement */
  int nMem,                      /* Number of memory cells to allocate */
  int nCursor,                   /* Number of cursors to allocate */

  int isExplain                  /* True if the EXPLAIN keywords is present */

){
  int n;
  sqlite3 *db = p->db;

  assert( p!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );








>
|
>







48399
48400
48401
48402
48403
48404
48405
48406
48407
48408
48409
48410
48411
48412
48413
48414
48415
** is passed -1 and nMem, nCursor and isExplain are all passed zero.
*/
SQLITE_PRIVATE void sqlite3VdbeMakeReady(
  Vdbe *p,                       /* The VDBE */
  int nVar,                      /* Number of '?' see in the SQL statement */
  int nMem,                      /* Number of memory cells to allocate */
  int nCursor,                   /* Number of cursors to allocate */
  int nArg,                      /* Maximum number of args in SubPrograms */
  int isExplain,                 /* True if the EXPLAIN keywords is present */
  int usesStmtJournal            /* True to set Vdbe.usesStmtJournal */
){
  int n;
  sqlite3 *db = p->db;

  assert( p!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );

47523
47524
47525
47526
47527
47528
47529
47530
47531

47532
47533
47534
47535
47536
47537
47538
  ** first time this function is called for a given VDBE, not when it is
  ** being called from sqlite3_reset() to reset the virtual machine.
  */
  if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
    u8 *zCsr = (u8 *)&p->aOp[p->nOp];
    u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc];
    int nByte;
    int nArg;       /* Maximum number of args passed to a user function. */
    resolveP2Values(p, &nArg);

    if( isExplain && nMem<10 ){
      nMem = 10;
    }
    memset(zCsr, 0, zEnd-zCsr);
    zCsr += (zCsr - (u8*)0)&7;
    assert( EIGHT_BYTE_ALIGNMENT(zCsr) );








<

>







48436
48437
48438
48439
48440
48441
48442

48443
48444
48445
48446
48447
48448
48449
48450
48451
  ** first time this function is called for a given VDBE, not when it is
  ** being called from sqlite3_reset() to reset the virtual machine.
  */
  if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
    u8 *zCsr = (u8 *)&p->aOp[p->nOp];
    u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc];
    int nByte;

    resolveP2Values(p, &nArg);
    p->usesStmtJournal = (u8)usesStmtJournal;
    if( isExplain && nMem<10 ){
      nMem = 10;
    }
    memset(zCsr, 0, zEnd-zCsr);
    zCsr += (zCsr - (u8*)0)&7;
    assert( EIGHT_BYTE_ALIGNMENT(zCsr) );

47617
47618
47619
47620
47621
47622
47623
47624
47625
47626

















47627
47628
47629
47630





47631
47632







47633
47634

47635
47636
47637
47638
47639
47640




47641
47642
47643
47644
47645
47646
47647
47648
47649
47650
47651
47652
47653
47654
47655
47656
47657
47658
47659
47660
47661





47662
47663
47664
47665
47666
47667
47668
47669
47670
47671
47672
47673
47674
47675
    p->inVtabMethod = 1;
    (void)sqlite3SafetyOff(p->db);
    pModule->xClose(pVtabCursor);
    (void)sqlite3SafetyOn(p->db);
    p->inVtabMethod = 0;
  }
#endif
  if( !pCx->ephemPseudoTable ){
    sqlite3DbFree(p->db, pCx->pData);
  }

















}

/*
** Close all cursors.





*/
static void closeAllCursors(Vdbe *p){







  int i;
  if( p->apCsr==0 ) return;

  for(i=0; i<p->nCursor; i++){
    VdbeCursor *pC = p->apCsr[i];
    if( pC ){
      sqlite3VdbeFreeCursor(p, pC);
      p->apCsr[i] = 0;
    }




  }
}

/*
** Clean up the VM after execution.
**
** This routine will automatically close any cursors, lists, and/or
** sorters that were left open.  It also deletes the values of
** variables in the aVar[] array.
*/
static void Cleanup(Vdbe *p){
  int i;
  sqlite3 *db = p->db;
  Mem *pMem;
  closeAllCursors(p);
  for(pMem=&p->aMem[1], i=1; i<=p->nMem; i++, pMem++){
    if( pMem->flags & MEM_RowSet ){
      sqlite3RowSetClear(pMem->u.pRowSet);
    }
    MemSetTypeFlag(pMem, MEM_Null);
  }





  releaseMemArray(&p->aMem[1], p->nMem);
  if( p->contextStack ){
    sqlite3DbFree(db, p->contextStack);
  }
  p->contextStack = 0;
  p->contextStackDepth = 0;
  p->contextStackTop = 0;
  sqlite3DbFree(db, p->zErrMsg);
  p->zErrMsg = 0;
  p->pResultSet = 0;
}

/*
** Set the number of result columns that will be returned by this SQL







<
<
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




>
>
>
>
>


>
>
>
>
>
>
>
|
|
>
|
|
|
|
|
|
>
>
>
>











<

<
<
<
<
<
|
<
<
>
>
>
>
>
|
|
<
|
<
<
<







48530
48531
48532
48533
48534
48535
48536


48537
48538
48539
48540
48541
48542
48543
48544
48545
48546
48547
48548
48549
48550
48551
48552
48553
48554
48555
48556
48557
48558
48559
48560
48561
48562
48563
48564
48565
48566
48567
48568
48569
48570
48571
48572
48573
48574
48575
48576
48577
48578
48579
48580
48581
48582
48583
48584
48585
48586
48587
48588
48589
48590
48591
48592
48593
48594
48595
48596

48597





48598


48599
48600
48601
48602
48603
48604
48605

48606



48607
48608
48609
48610
48611
48612
48613
    p->inVtabMethod = 1;
    (void)sqlite3SafetyOff(p->db);
    pModule->xClose(pVtabCursor);
    (void)sqlite3SafetyOn(p->db);
    p->inVtabMethod = 0;
  }
#endif


}

/*
** Copy the values stored in the VdbeFrame structure to its Vdbe. This
** is used, for example, when a trigger sub-program is halted to restore
** control to the main program.
*/
SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
  Vdbe *v = pFrame->v;
  v->aOp = pFrame->aOp;
  v->nOp = pFrame->nOp;
  v->aMem = pFrame->aMem;
  v->nMem = pFrame->nMem;
  v->apCsr = pFrame->apCsr;
  v->nCursor = pFrame->nCursor;
  v->db->lastRowid = pFrame->lastRowid;
  v->nChange = pFrame->nChange;
  return pFrame->pc;
}

/*
** Close all cursors.
**
** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 
** cell array. This is necessary as the memory cell array may contain
** pointers to VdbeFrame objects, which may in turn contain pointers to
** open cursors.
*/
static void closeAllCursors(Vdbe *p){
  if( p->pFrame ){
    VdbeFrame *pFrame = p->pFrame;
    for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
    sqlite3VdbeFrameRestore(pFrame);
  }
  p->pFrame = 0;
  p->nFrame = 0;

  if( p->apCsr ){
    int i;
    for(i=0; i<p->nCursor; i++){
      VdbeCursor *pC = p->apCsr[i];
      if( pC ){
        sqlite3VdbeFreeCursor(p, pC);
        p->apCsr[i] = 0;
      }
    }
  }
  if( p->aMem ){
    releaseMemArray(&p->aMem[1], p->nMem);
  }
}

/*
** Clean up the VM after execution.
**
** This routine will automatically close any cursors, lists, and/or
** sorters that were left open.  It also deletes the values of
** variables in the aVar[] array.
*/
static void Cleanup(Vdbe *p){

  sqlite3 *db = p->db;








#ifdef SQLITE_DEBUG
  /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 
  ** Vdbe.aMem[] arrays have already been cleaned up.  */
  int i;
  for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 );
  for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null );
#endif





  sqlite3DbFree(db, p->zErrMsg);
  p->zErrMsg = 0;
  p->pResultSet = 0;
}

/*
** Set the number of result columns that will be returned by this SQL
48386
48387
48388
48389
48390
48391
48392
48393
48394
48395
48396
48397
48398
48399
48400
48401
48402
48403
48404
48405
48406
48407
48408
48409
48410
48411
48412
48413
48414
48415
48416
48417
48418


48419
48420
48421
48422
48423
48424
48425
48426
48427
48428
48429
  }
}

/*
** Delete an entire VDBE.
*/
SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
  int i;
  sqlite3 *db;

  if( NEVER(p==0) ) return;
  db = p->db;
  if( p->pPrev ){
    p->pPrev->pNext = p->pNext;
  }else{
    assert( db->pVdbe==p );
    db->pVdbe = p->pNext;
  }
  if( p->pNext ){
    p->pNext->pPrev = p->pPrev;
  }
  if( p->aOp ){
    Op *pOp = p->aOp;
    for(i=0; i<p->nOp; i++, pOp++){
      freeP4(db, pOp->p4type, pOp->p4.p);
#ifdef SQLITE_DEBUG
      sqlite3DbFree(db, pOp->zComment);
#endif     
    }
  }
  releaseMemArray(p->aVar, p->nVar);
  sqlite3DbFree(db, p->aLabel);
  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);


  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  p->magic = VDBE_MAGIC_DEAD;
  sqlite3DbFree(db, p->aOp);
  sqlite3DbFree(db, p->pFree);
  sqlite3DbFree(db, p);
}

/*
** Make sure the cursor p is ready to read or write the row to which it
** was last positioned.  Return an error code if an OOM fault or I/O error







<













<
<
<
<
<
<
<
<
<

<

>
>



<







49324
49325
49326
49327
49328
49329
49330

49331
49332
49333
49334
49335
49336
49337
49338
49339
49340
49341
49342
49343









49344

49345
49346
49347
49348
49349
49350

49351
49352
49353
49354
49355
49356
49357
  }
}

/*
** Delete an entire VDBE.
*/
SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){

  sqlite3 *db;

  if( NEVER(p==0) ) return;
  db = p->db;
  if( p->pPrev ){
    p->pPrev->pNext = p->pNext;
  }else{
    assert( db->pVdbe==p );
    db->pVdbe = p->pNext;
  }
  if( p->pNext ){
    p->pNext->pPrev = p->pPrev;
  }









  releaseMemArray(p->aVar, p->nVar);

  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aLabel);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  p->magic = VDBE_MAGIC_DEAD;

  sqlite3DbFree(db, p->pFree);
  sqlite3DbFree(db, p);
}

/*
** Make sure the cursor p is ready to read or write the row to which it
** was last positioned.  Return an error code if an OOM fault or I/O error
48994
48995
48996
48997
48998
48999
49000


49001
49002
49003
49004
49005
49006
49007
49008
49009
49010
49011
49012
49013
49014
49015
49016
49017
49018
49019
49020
49021
49022
SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
  i64 nCellKey = 0;
  int rc;
  u32 szHdr;        /* Size of the header */
  u32 typeRowid;    /* Serial type of the rowid */
  u32 lenRowid;     /* Size of the rowid */
  Mem m, v;



  /* Get the size of the index entry.  Only indices entries of less
  ** than 2GiB are support - anything large must be database corruption.
  ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
  ** this code can safely assume that nCellKey is 32-bits  
  */
  assert( sqlite3BtreeCursorIsValid(pCur) );
  rc = sqlite3BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
  assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );

  /* Read in the complete content of the index entry */
  m.flags = 0;
  m.db = db;
  m.zMalloc = 0;
  rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }

  /* The index entry must begin with a header size */
  (void)getVarint32((u8*)m.z, szHdr);







>
>












|
<
<







49922
49923
49924
49925
49926
49927
49928
49929
49930
49931
49932
49933
49934
49935
49936
49937
49938
49939
49940
49941
49942
49943


49944
49945
49946
49947
49948
49949
49950
SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
  i64 nCellKey = 0;
  int rc;
  u32 szHdr;        /* Size of the header */
  u32 typeRowid;    /* Serial type of the rowid */
  u32 lenRowid;     /* Size of the rowid */
  Mem m, v;

  UNUSED_PARAMETER(db);

  /* Get the size of the index entry.  Only indices entries of less
  ** than 2GiB are support - anything large must be database corruption.
  ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
  ** this code can safely assume that nCellKey is 32-bits  
  */
  assert( sqlite3BtreeCursorIsValid(pCur) );
  rc = sqlite3BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
  assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );

  /* Read in the complete content of the index entry */
  memset(&m, 0, sizeof(m));


  rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }

  /* The index entry must begin with a header size */
  (void)getVarint32((u8*)m.z, szHdr);
49086
49087
49088
49089
49090
49091
49092
49093
49094
49095
49096
49097
49098
49099
49100
49101
49102
  assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
  /* nCellKey will always be between 0 and 0xffffffff because of the say
  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
  if( nCellKey<=0 || nCellKey>0x7fffffff ){
    *res = 0;
    return SQLITE_CORRUPT;
  }
  m.db = 0;
  m.flags = 0;
  m.zMalloc = 0;
  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
  sqlite3VdbeMemRelease(&m);







|
<
<







50014
50015
50016
50017
50018
50019
50020
50021


50022
50023
50024
50025
50026
50027
50028
  assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
  /* nCellKey will always be between 0 and 0xffffffff because of the say
  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
  if( nCellKey<=0 || nCellKey>0x7fffffff ){
    *res = 0;
    return SQLITE_CORRUPT;
  }
  memset(&m, 0, sizeof(m));


  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
  sqlite3VdbeMemRelease(&m);
49219
49220
49221
49222
49223
49224
49225
49226
49227
49228
49229
49230
49231
49232
49233
  int rc;
  if( pStmt==0 ){
    rc = SQLITE_OK;
  }else{
    Vdbe *v = (Vdbe*)pStmt;
    sqlite3_mutex_enter(v->db->mutex);
    rc = sqlite3VdbeReset(v);
    sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
    assert( (rc & (v->db->errMask))==rc );
    rc = sqlite3ApiExit(v->db, rc);
    sqlite3_mutex_leave(v->db->mutex);
  }
  return rc;
}








|







50145
50146
50147
50148
50149
50150
50151
50152
50153
50154
50155
50156
50157
50158
50159
  int rc;
  if( pStmt==0 ){
    rc = SQLITE_OK;
  }else{
    Vdbe *v = (Vdbe*)pStmt;
    sqlite3_mutex_enter(v->db->mutex);
    rc = sqlite3VdbeReset(v);
    sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0);
    assert( (rc & (v->db->errMask))==rc );
    rc = sqlite3ApiExit(v->db, rc);
    sqlite3_mutex_leave(v->db->mutex);
  }
  return rc;
}

50538
50539
50540
50541
50542
50543
50544
50545
50546
50547
50548
50549
50550
50551
50552
** if we run out of memory.
*/
static VdbeCursor *allocateCursor(
  Vdbe *p,              /* The virtual machine */
  int iCur,             /* Index of the new VdbeCursor */
  int nField,           /* Number of fields in the table or index */
  int iDb,              /* When database the cursor belongs to, or -1 */
  int isBtreeCursor     /* True for B-Tree vs. pseudo-table or vtab */
){
  /* Find the memory cell that will be used to store the blob of memory
  ** required for this VdbeCursor structure. It is convenient to use a 
  ** vdbe memory cell to manage the memory allocation required for a
  ** VdbeCursor structure for the following reasons:
  **
  **   * Sometimes cursor numbers are used for a couple of different







|







51464
51465
51466
51467
51468
51469
51470
51471
51472
51473
51474
51475
51476
51477
51478
** if we run out of memory.
*/
static VdbeCursor *allocateCursor(
  Vdbe *p,              /* The virtual machine */
  int iCur,             /* Index of the new VdbeCursor */
  int nField,           /* Number of fields in the table or index */
  int iDb,              /* When database the cursor belongs to, or -1 */
  int isBtreeCursor     /* True for B-Tree.  False for pseudo-table or vtab */
){
  /* Find the memory cell that will be used to store the blob of memory
  ** required for this VdbeCursor structure. It is convenient to use a 
  ** vdbe memory cell to manage the memory allocation required for a
  ** VdbeCursor structure for the following reasons:
  **
  **   * Sometimes cursor numbers are used for a couple of different
51099
51100
51101
51102
51103
51104
51105

51106
51107
51108
51109
51110
51111
51112
      Mem sMem;          /* For storing the record being decoded */
      u8 *zIdx;          /* Index into header */
      u8 *zEndHdr;       /* Pointer to first byte after the header */
      u32 offset;        /* Offset into the data */
      u64 offset64;      /* 64-bit offset.  64 bits needed to catch overflow */
      int szHdr;         /* Size of the header size field at start of record */
      int avail;         /* Number of bytes of available data */

    } am;
    struct OP_Affinity_stack_vars {
      char *zAffinity;   /* The affinity to be applied */
      Mem *pData0;       /* First register to which to apply affinity */
      Mem *pLast;        /* Last register to which to apply affinity */
      Mem *pRec;         /* Current register */
    } an;







>







52025
52026
52027
52028
52029
52030
52031
52032
52033
52034
52035
52036
52037
52038
52039
      Mem sMem;          /* For storing the record being decoded */
      u8 *zIdx;          /* Index into header */
      u8 *zEndHdr;       /* Pointer to first byte after the header */
      u32 offset;        /* Offset into the data */
      u64 offset64;      /* 64-bit offset.  64 bits needed to catch overflow */
      int szHdr;         /* Size of the header size field at start of record */
      int avail;         /* Number of bytes of available data */
      Mem *pReg;         /* PseudoTable input register */
    } am;
    struct OP_Affinity_stack_vars {
      char *zAffinity;   /* The affinity to be applied */
      Mem *pData0;       /* First register to which to apply affinity */
      Mem *pLast;        /* Last register to which to apply affinity */
      Mem *pRec;         /* Current register */
    } an;
51127
51128
51129
51130
51131
51132
51133
51134
51135
51136
51137
51138
51139
51140
51141
51142
51143
51144
51145
51146
51147
51148
51149
51150
51151
51152
51153
51154
51155
51156
51157
51158
51159
51160
51161
51162
51163
51164
51165
51166
51167
51168
51169
51170
51171
51172
51173
51174
51175
51176
51177
51178
51179
51180
51181
51182
51183
51184
51185
51186
51187
51188
51189
51190
51191
51192
51193
51194
51195
51196
51197
51198
51199
51200
51201
51202
51203
51204
51205
51206
51207
51208
51209
51210
51211
51212
51213
51214
51215
51216
51217
51218
51219
51220
51221

51222
51223
51224
51225
51226
51227
51228
51229
51230
51231
51232
51233
51234
51235
51236
51237
51238
51239
51240
51241
51242
51243
51244
51245
51246
51247
51248
51249
51250
51251
51252
51253
51254
51255
51256
51257
51258
51259
51260
51261
51262
51263
51264
51265
51266
51267
51268
51269
51270
51271
51272
51273
51274
51275
51276
51277
51278
51279
51280
51281
51282
51283
51284
51285
51286
51287
51288
51289
51290
51291
51292
51293
51294
51295
51296
51297
51298
51299
51300
51301
51302
51303
51304
51305
51306
51307
51308
51309
51310
51311
51312
51313
51314
51315
51316
51317
51318
51319
51320
51321
51322
51323
51324
51325
51326
51327
51328










51329
51330
51331

51332
51333
51334
51335

51336
51337
51338
51339
51340
51341
51342
      int i;                 /* Space used in zNewRecord[] */
      int len;               /* Length of a field */
    } ao;
    struct OP_Count_stack_vars {
      i64 nEntry;
      BtCursor *pCrsr;
    } ap;
    struct OP_Statement_stack_vars {
      Btree *pBt;
    } aq;
    struct OP_Savepoint_stack_vars {
      int p1;                         /* Value of P1 operand */
      char *zName;                    /* Name of savepoint */
      int nName;
      Savepoint *pNew;
      Savepoint *pSavepoint;
      Savepoint *pTmp;
      int iSavepoint;
      int ii;
    } ar;
    struct OP_AutoCommit_stack_vars {
      int desiredAutoCommit;
      int iRollback;
      int turnOnAC;
    } as;
    struct OP_Transaction_stack_vars {
      Btree *pBt;
    } at;
    struct OP_ReadCookie_stack_vars {
      int iMeta;
      int iDb;
      int iCookie;
    } au;
    struct OP_SetCookie_stack_vars {
      Db *pDb;
    } av;
    struct OP_VerifyCookie_stack_vars {
      int iMeta;
      Btree *pBt;
    } aw;
    struct OP_OpenWrite_stack_vars {
      int nField;
      KeyInfo *pKeyInfo;
      int p2;
      int iDb;
      int wrFlag;
      Btree *pX;
      VdbeCursor *pCur;
      Db *pDb;
    } ax;
    struct OP_OpenEphemeral_stack_vars {
      VdbeCursor *pCx;
    } ay;
    struct OP_OpenPseudo_stack_vars {
      VdbeCursor *pCx;
    } az;
    struct OP_SeekGt_stack_vars {
      int res;
      int oc;
      VdbeCursor *pC;
      UnpackedRecord r;
      int nField;
      i64 iKey;      /* The rowid we are to seek to */
    } ba;
    struct OP_Seek_stack_vars {
      VdbeCursor *pC;
    } bb;
    struct OP_Found_stack_vars {
      int alreadyExists;
      VdbeCursor *pC;
      int res;
      UnpackedRecord *pIdxKey;
      char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
    } bc;
    struct OP_IsUnique_stack_vars {
      u16 ii;
      VdbeCursor *pCx;
      BtCursor *pCrsr;
      u16 nField;
      Mem *aMem;
      UnpackedRecord r;                  /* B-Tree index search key */
      i64 R;                             /* Rowid stored in register P3 */
    } bd;
    struct OP_NotExists_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      int res;
      u64 iKey;
    } be;
    struct OP_NewRowid_stack_vars {
      i64 v;                 /* The new rowid */
      VdbeCursor *pC;        /* Cursor of table to get the new rowid */
      int res;               /* Result of an sqlite3BtreeLast() */
      int cnt;               /* Counter to limit the number of searches */
      Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */

    } bf;
    struct OP_Insert_stack_vars {
      Mem *pData;
      Mem *pKey;
      i64 iKey;   /* The integer ROWID or key for the record to be inserted */
      VdbeCursor *pC;
      int nZero;
      int seekResult;
      const char *zDb;
      const char *zTbl;
      int op;
    } bg;
    struct OP_Delete_stack_vars {
      i64 iKey;
      VdbeCursor *pC;
    } bh;
    struct OP_RowData_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      u32 n;
      i64 n64;
    } bi;
    struct OP_Rowid_stack_vars {
      VdbeCursor *pC;
      i64 v;
      sqlite3_vtab *pVtab;
      const sqlite3_module *pModule;
    } bj;
    struct OP_NullRow_stack_vars {
      VdbeCursor *pC;
    } bk;
    struct OP_Last_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      int res;
    } bl;
    struct OP_Rewind_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      int res;
    } bm;
    struct OP_Next_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      int res;
    } bn;
    struct OP_IdxInsert_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      int nKey;
      const char *zKey;
    } bo;
    struct OP_IdxDelete_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      int res;
      UnpackedRecord r;
    } bp;
    struct OP_IdxRowid_stack_vars {
      BtCursor *pCrsr;
      VdbeCursor *pC;
      i64 rowid;
    } bq;
    struct OP_IdxGE_stack_vars {
      VdbeCursor *pC;
      int res;
      UnpackedRecord r;
    } br;
    struct OP_Destroy_stack_vars {
      int iMoved;
      int iCnt;
      Vdbe *pVdbe;
      int iDb;
    } bs;
    struct OP_Clear_stack_vars {
      int nChange;
    } bt;
    struct OP_CreateTable_stack_vars {
      int pgno;
      int flags;
      Db *pDb;
    } bu;
    struct OP_ParseSchema_stack_vars {
      int iDb;
      const char *zMaster;
      char *zSql;
      InitData initData;
    } bv;
    struct OP_IntegrityCk_stack_vars {
      int nRoot;      /* Number of tables to check.  (Number of root pages.) */
      int *aRoot;     /* Array of rootpage numbers for tables to be checked */
      int j;          /* Loop counter */
      int nErr;       /* Number of errors reported */
      char *z;        /* Text of the error report */
      Mem *pnErr;     /* Register keeping track of errors remaining */
    } bw;
    struct OP_RowSetAdd_stack_vars {
      Mem *pIdx;
      Mem *pVal;
    } bx;
    struct OP_RowSetRead_stack_vars {
      Mem *pIdx;
      i64 val;
    } by;
    struct OP_RowSetTest_stack_vars {
      int iSet;
      int exists;










    } bz;
    struct OP_ContextPush_stack_vars {
      int i;

      Context *pContext;
    } ca;
    struct OP_ContextPop_stack_vars {
      Context *pContext;

    } cb;
    struct OP_AggStep_stack_vars {
      int n;
      int i;
      Mem *pMem;
      Mem *pRec;
      sqlite3_context ctx;







<
<
<









|




|


|




|


|



|









|


|


|







|


|






|








|





|






>
|

|
|
|
|
|
|
|
|
|
|



|





|





|


|




|




|




|





|





|




|




|





|


|




|





|







|



|



|



>
>
>
>
>
>
>
>
>
>

|
<
>
|

|
|
>







52054
52055
52056
52057
52058
52059
52060



52061
52062
52063
52064
52065
52066
52067
52068
52069
52070
52071
52072
52073
52074
52075
52076
52077
52078
52079
52080
52081
52082
52083
52084
52085
52086
52087
52088
52089
52090
52091
52092
52093
52094
52095
52096
52097
52098
52099
52100
52101
52102
52103
52104
52105
52106
52107
52108
52109
52110
52111
52112
52113
52114
52115
52116
52117
52118
52119
52120
52121
52122
52123
52124
52125
52126
52127
52128
52129
52130
52131
52132
52133
52134
52135
52136
52137
52138
52139
52140
52141
52142
52143
52144
52145
52146
52147
52148
52149
52150
52151
52152
52153
52154
52155
52156
52157
52158
52159
52160
52161
52162
52163
52164
52165
52166
52167
52168
52169
52170
52171
52172
52173
52174
52175
52176
52177
52178
52179
52180
52181
52182
52183
52184
52185
52186
52187
52188
52189
52190
52191
52192
52193
52194
52195
52196
52197
52198
52199
52200
52201
52202
52203
52204
52205
52206
52207
52208
52209
52210
52211
52212
52213
52214
52215
52216
52217
52218
52219
52220
52221
52222
52223
52224
52225
52226
52227
52228
52229
52230
52231
52232
52233
52234
52235
52236
52237
52238
52239
52240
52241
52242
52243
52244
52245
52246
52247
52248
52249
52250
52251
52252
52253
52254
52255
52256
52257
52258
52259
52260
52261
52262
52263
52264
52265

52266
52267
52268
52269
52270
52271
52272
52273
52274
52275
52276
52277
52278
      int i;                 /* Space used in zNewRecord[] */
      int len;               /* Length of a field */
    } ao;
    struct OP_Count_stack_vars {
      i64 nEntry;
      BtCursor *pCrsr;
    } ap;



    struct OP_Savepoint_stack_vars {
      int p1;                         /* Value of P1 operand */
      char *zName;                    /* Name of savepoint */
      int nName;
      Savepoint *pNew;
      Savepoint *pSavepoint;
      Savepoint *pTmp;
      int iSavepoint;
      int ii;
    } aq;
    struct OP_AutoCommit_stack_vars {
      int desiredAutoCommit;
      int iRollback;
      int turnOnAC;
    } ar;
    struct OP_Transaction_stack_vars {
      Btree *pBt;
    } as;
    struct OP_ReadCookie_stack_vars {
      int iMeta;
      int iDb;
      int iCookie;
    } at;
    struct OP_SetCookie_stack_vars {
      Db *pDb;
    } au;
    struct OP_VerifyCookie_stack_vars {
      int iMeta;
      Btree *pBt;
    } av;
    struct OP_OpenWrite_stack_vars {
      int nField;
      KeyInfo *pKeyInfo;
      int p2;
      int iDb;
      int wrFlag;
      Btree *pX;
      VdbeCursor *pCur;
      Db *pDb;
    } aw;
    struct OP_OpenEphemeral_stack_vars {
      VdbeCursor *pCx;
    } ax;
    struct OP_OpenPseudo_stack_vars {
      VdbeCursor *pCx;
    } ay;
    struct OP_SeekGt_stack_vars {
      int res;
      int oc;
      VdbeCursor *pC;
      UnpackedRecord r;
      int nField;
      i64 iKey;      /* The rowid we are to seek to */
    } az;
    struct OP_Seek_stack_vars {
      VdbeCursor *pC;
    } ba;
    struct OP_Found_stack_vars {
      int alreadyExists;
      VdbeCursor *pC;
      int res;
      UnpackedRecord *pIdxKey;
      char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
    } bb;
    struct OP_IsUnique_stack_vars {
      u16 ii;
      VdbeCursor *pCx;
      BtCursor *pCrsr;
      u16 nField;
      Mem *aMem;
      UnpackedRecord r;                  /* B-Tree index search key */
      i64 R;                             /* Rowid stored in register P3 */
    } bc;
    struct OP_NotExists_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      int res;
      u64 iKey;
    } bd;
    struct OP_NewRowid_stack_vars {
      i64 v;                 /* The new rowid */
      VdbeCursor *pC;        /* Cursor of table to get the new rowid */
      int res;               /* Result of an sqlite3BtreeLast() */
      int cnt;               /* Counter to limit the number of searches */
      Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
      VdbeFrame *pFrame;     /* Root frame of VDBE */
    } be;
    struct OP_Insert_stack_vars {
      Mem *pData;       /* MEM cell holding data for the record to be inserted */
      Mem *pKey;        /* MEM cell holding key  for the record */
      i64 iKey;         /* The integer ROWID or key for the record to be inserted */
      VdbeCursor *pC;   /* Cursor to table into which insert is written */
      int nZero;        /* Number of zero-bytes to append */
      int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
      const char *zDb;  /* database name - used by the update hook */
      const char *zTbl; /* Table name - used by the opdate hook */
      int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
    } bf;
    struct OP_Delete_stack_vars {
      i64 iKey;
      VdbeCursor *pC;
    } bg;
    struct OP_RowData_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      u32 n;
      i64 n64;
    } bh;
    struct OP_Rowid_stack_vars {
      VdbeCursor *pC;
      i64 v;
      sqlite3_vtab *pVtab;
      const sqlite3_module *pModule;
    } bi;
    struct OP_NullRow_stack_vars {
      VdbeCursor *pC;
    } bj;
    struct OP_Last_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      int res;
    } bk;
    struct OP_Rewind_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      int res;
    } bl;
    struct OP_Next_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      int res;
    } bm;
    struct OP_IdxInsert_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      int nKey;
      const char *zKey;
    } bn;
    struct OP_IdxDelete_stack_vars {
      VdbeCursor *pC;
      BtCursor *pCrsr;
      int res;
      UnpackedRecord r;
    } bo;
    struct OP_IdxRowid_stack_vars {
      BtCursor *pCrsr;
      VdbeCursor *pC;
      i64 rowid;
    } bp;
    struct OP_IdxGE_stack_vars {
      VdbeCursor *pC;
      int res;
      UnpackedRecord r;
    } bq;
    struct OP_Destroy_stack_vars {
      int iMoved;
      int iCnt;
      Vdbe *pVdbe;
      int iDb;
    } br;
    struct OP_Clear_stack_vars {
      int nChange;
    } bs;
    struct OP_CreateTable_stack_vars {
      int pgno;
      int flags;
      Db *pDb;
    } bt;
    struct OP_ParseSchema_stack_vars {
      int iDb;
      const char *zMaster;
      char *zSql;
      InitData initData;
    } bu;
    struct OP_IntegrityCk_stack_vars {
      int nRoot;      /* Number of tables to check.  (Number of root pages.) */
      int *aRoot;     /* Array of rootpage numbers for tables to be checked */
      int j;          /* Loop counter */
      int nErr;       /* Number of errors reported */
      char *z;        /* Text of the error report */
      Mem *pnErr;     /* Register keeping track of errors remaining */
    } bv;
    struct OP_RowSetAdd_stack_vars {
      Mem *pIdx;
      Mem *pVal;
    } bw;
    struct OP_RowSetRead_stack_vars {
      Mem *pIdx;
      i64 val;
    } bx;
    struct OP_RowSetTest_stack_vars {
      int iSet;
      int exists;
    } by;
    struct OP_Program_stack_vars {
      int nMem;               /* Number of memory registers for sub-program */
      int nByte;              /* Bytes of runtime space required for sub-program */
      Mem *pRt;               /* Register to allocate runtime space */
      Mem *pMem;              /* Used to iterate through memory cells */
      Mem *pEnd;              /* Last memory cell in new array */
      VdbeFrame *pFrame;      /* New vdbe frame to execute in */
      SubProgram *pProgram;   /* Sub-program to execute */
      void *t;                /* Token identifying trigger */
    } bz;
    struct OP_Param_stack_vars {

      VdbeFrame *pFrame;
      Mem *pIn;
    } ca;
    struct OP_MemMax_stack_vars {
      Mem *pIn1;
      VdbeFrame *pFrame;
    } cb;
    struct OP_AggStep_stack_vars {
      int n;
      int i;
      Mem *pMem;
      Mem *pRec;
      sqlite3_context ctx;
51535
51536
51537
51538
51539
51540
51541


51542
51543
51544
51545
51546
51547
51548
51549
51550
51551
51552
51553
      pIn1 = &p->aMem[pOp->p1];
      REGISTER_TRACE(pOp->p1, pIn1);
      if( (opProperty & OPFLG_IN2)!=0 ){
        assert( pOp->p2>0 );
        assert( pOp->p2<=p->nMem );
        pIn2 = &p->aMem[pOp->p2];
        REGISTER_TRACE(pOp->p2, pIn2);


        if( (opProperty & OPFLG_OUT3)!=0 ){
          assert( pOp->p3>0 );
          assert( pOp->p3<=p->nMem );
          pOut = &p->aMem[pOp->p3];
        }
      }else if( (opProperty & OPFLG_IN3)!=0 ){
        assert( pOp->p3>0 );
        assert( pOp->p3<=p->nMem );
        pIn3 = &p->aMem[pOp->p3];
        REGISTER_TRACE(pOp->p3, pIn3);
      }
    }else if( (opProperty & OPFLG_IN2)!=0 ){







>
>
|
|
|
|
<







52471
52472
52473
52474
52475
52476
52477
52478
52479
52480
52481
52482
52483

52484
52485
52486
52487
52488
52489
52490
      pIn1 = &p->aMem[pOp->p1];
      REGISTER_TRACE(pOp->p1, pIn1);
      if( (opProperty & OPFLG_IN2)!=0 ){
        assert( pOp->p2>0 );
        assert( pOp->p2<=p->nMem );
        pIn2 = &p->aMem[pOp->p2];
        REGISTER_TRACE(pOp->p2, pIn2);
        /* As currently implemented, in2 implies out3.  There is no reason
        ** why this has to be, it just worked out that way. */
        assert( (opProperty & OPFLG_OUT3)!=0 );
        assert( pOp->p3>0 );
        assert( pOp->p3<=p->nMem );
        pOut = &p->aMem[pOp->p3];

      }else if( (opProperty & OPFLG_IN3)!=0 ){
        assert( pOp->p3>0 );
        assert( pOp->p3<=p->nMem );
        pIn3 = &p->aMem[pOp->p3];
        REGISTER_TRACE(pOp->p3, pIn3);
      }
    }else if( (opProperty & OPFLG_IN2)!=0 ){
51683
51684
51685
51686
51687
51688
51689


















51690
51691
51692

51693
51694
51695
51696
51697
51698
51699
** If P4 is not null then it is an error message string.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program.  So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {


















  p->rc = pOp->p1;
  p->pc = pc;
  p->errorAction = (u8)pOp->p2;

  if( pOp->p4.z ){
    sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
  if( rc==SQLITE_BUSY ){
    p->rc = rc = SQLITE_BUSY;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

<

>







52620
52621
52622
52623
52624
52625
52626
52627
52628
52629
52630
52631
52632
52633
52634
52635
52636
52637
52638
52639
52640
52641
52642
52643
52644
52645

52646
52647
52648
52649
52650
52651
52652
52653
52654
** If P4 is not null then it is an error message string.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program.  So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {
  if( pOp->p1==SQLITE_OK && p->pFrame ){
    /* Halt the sub-program. Return control to the parent frame. */
    VdbeFrame *pFrame = p->pFrame;
    p->pFrame = pFrame->pParent;
    p->nFrame--;
    sqlite3VdbeSetChanges(db, p->nChange);
    pc = sqlite3VdbeFrameRestore(pFrame);
    if( pOp->p2==OE_Ignore ){
      /* Instruction pc is the OP_Program that invoked the sub-program 
      ** currently being halted. If the p2 instruction of this OP_Halt
      ** instruction is set to OE_Ignore, then the sub-program is throwing
      ** an IGNORE exception. In this case jump to the address specified
      ** as the p2 of the calling OP_Program.  */
      pc = p->aOp[pc].p2-1;
    }
    break;
  }

  p->rc = pOp->p1;

  p->errorAction = (u8)pOp->p2;
  p->pc = pc;
  if( pOp->p4.z ){
    sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
  if( rc==SQLITE_BUSY ){
    p->rc = rc = SQLITE_BUSY;
52050
52051
52052
52053
52054
52055
52056
52057
52058
52059
52060
52061
52062
52063
52064
52065
52066
** Subtract the value in register P1 from the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Divide P1 P2 P3 * *
**
** Divide the value in register P1 by the value in register P2
** and store the result in register P3.  If the value in register P2
** is zero, then the result is NULL.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Remainder P1 P2 P3 * *
**
** Compute the remainder after integer division of the value in
** register P1 by the value in register P2 and store the result in P3. 
** If the value in register P2 is zero the result is NULL.
** If either operand is NULL, the result is NULL.







|
|
|







53005
53006
53007
53008
53009
53010
53011
53012
53013
53014
53015
53016
53017
53018
53019
53020
53021
** Subtract the value in register P1 from the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Divide P1 P2 P3 * *
**
** Divide the value in register P1 by the value in register P2
** and store the result in register P3 (P3=P2/P1). If the value in 
** register P1 is zero, then the result is NULL. If either input is 
** NULL, the result is NULL.
*/
/* Opcode: Remainder P1 P2 P3 * *
**
** Compute the remainder after integer division of the value in
** register P1 by the value in register P2 and store the result in P3. 
** If the value in register P2 is zero the result is NULL.
** If either operand is NULL, the result is NULL.
52816
52817
52818
52819
52820
52821
52822
52823
52824
52825
52826
52827
52828
52829
52830
52831
52832
52833
52834
52835
52836
52837
52838
52839
52840
52841
52842
52843
52844
52845
52846
52847
52848
52849
52850
52851
52852
52853
52854
52855
52856
52857





52858
52859
52860
52861
52862
52863
52864
case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
  if( (pIn1->flags & MEM_Null)==0 ){
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: SetNumColumns * P2 * * *
**
** This opcode sets the number of columns for the cursor opened by the
** following instruction to P2.
**
** An OP_SetNumColumns is only useful if it occurs immediately before 
** one of the following opcodes:
**
**     OpenRead
**     OpenWrite
**     OpenPseudo
**
** If the OP_Column opcode is to be executed on a cursor, then
** this opcode must be present immediately before the opcode that
** opens the cursor.
*/
#if 0
case OP_SetNumColumns: {
  break;
}
#endif

/* Opcode: Column P1 P2 P3 P4 *
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction.  (See the MakeRecord opcode for additional
** information about the format of the data.)  Extract the P2-th column
** from this record.  If there are less that (P2+1) 
** values in the record, extract a NULL.
**
** The value extracted is stored in register P3.
**
** If the column contains fewer than P2 fields, then extract a NULL.  Or,
** if the P4 argument is a P4_MEM use the value of the P4 argument as
** the result.





*/
case OP_Column: {
#if 0  /* local variables moved into u.am */
  u32 payloadSize;   /* Number of bytes in the record */
  i64 payloadSize64; /* Number of bytes in the record */
  int p1;            /* P1 value of the opcode */
  int p2;            /* column number to retrieve */







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|












>
>
>
>
>







53771
53772
53773
53774
53775
53776
53777






















53778
53779
53780
53781
53782
53783
53784
53785
53786
53787
53788
53789
53790
53791
53792
53793
53794
53795
53796
53797
53798
53799
53800
53801
53802
case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
  if( (pIn1->flags & MEM_Null)==0 ){
    pc = pOp->p2 - 1;
  }
  break;
}























/* Opcode: Column P1 P2 P3 P4 P5
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction.  (See the MakeRecord opcode for additional
** information about the format of the data.)  Extract the P2-th column
** from this record.  If there are less that (P2+1) 
** values in the record, extract a NULL.
**
** The value extracted is stored in register P3.
**
** If the column contains fewer than P2 fields, then extract a NULL.  Or,
** if the P4 argument is a P4_MEM use the value of the P4 argument as
** the result.
**
** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
** then the cache of the cursor is reset prior to extracting the column.
** The first OP_Column against a pseudo-table after the value of the content
** register has changed should have this bit set.
*/
case OP_Column: {
#if 0  /* local variables moved into u.am */
  u32 payloadSize;   /* Number of bytes in the record */
  i64 payloadSize64; /* Number of bytes in the record */
  int p1;            /* P1 value of the opcode */
  int p2;            /* column number to retrieve */
52875
52876
52877
52878
52879
52880
52881

52882
52883
52884
52885
52886
52887
52888
  Mem sMem;          /* For storing the record being decoded */
  u8 *zIdx;          /* Index into header */
  u8 *zEndHdr;       /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u64 offset64;      /* 64-bit offset.  64 bits needed to catch overflow */
  int szHdr;         /* Size of the header size field at start of record */
  int avail;         /* Number of bytes of available data */

#endif /* local variables moved into u.am */


  u.am.p1 = pOp->p1;
  u.am.p2 = pOp->p2;
  u.am.pC = 0;
  memset(&u.am.sMem, 0, sizeof(u.am.sMem));







>







53813
53814
53815
53816
53817
53818
53819
53820
53821
53822
53823
53824
53825
53826
53827
  Mem sMem;          /* For storing the record being decoded */
  u8 *zIdx;          /* Index into header */
  u8 *zEndHdr;       /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u64 offset64;      /* 64-bit offset.  64 bits needed to catch overflow */
  int szHdr;         /* Size of the header size field at start of record */
  int avail;         /* Number of bytes of available data */
  Mem *pReg;         /* PseudoTable input register */
#endif /* local variables moved into u.am */


  u.am.p1 = pOp->p1;
  u.am.p2 = pOp->p2;
  u.am.pC = 0;
  memset(&u.am.sMem, 0, sizeof(u.am.sMem));
52929
52930
52931
52932
52933
52934
52935
52936
52937

52938
52939
52940
52941
52942
52943
52944
52945
52946
52947
      assert( (u.am.payloadSize64 & SQLITE_MAX_U32)==(u64)u.am.payloadSize64 );
      u.am.payloadSize = (u32)u.am.payloadSize64;
    }else{
      assert( sqlite3BtreeCursorIsValid(u.am.pCrsr) );
      rc = sqlite3BtreeDataSize(u.am.pCrsr, &u.am.payloadSize);
      assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
    }
  }else if( u.am.pC->pseudoTable ){
    /* The record is the sole entry of a pseudo-table */

    u.am.payloadSize = u.am.pC->nData;
    u.am.zRec = u.am.pC->pData;
    u.am.pC->cacheStatus = CACHE_STALE;
    assert( u.am.payloadSize==0 || u.am.zRec!=0 );
  }else{
    /* Consider the row to be NULL */
    u.am.payloadSize = 0;
  }

  /* If u.am.payloadSize is 0, then just store a NULL */







|
|
>
|
|
|







53868
53869
53870
53871
53872
53873
53874
53875
53876
53877
53878
53879
53880
53881
53882
53883
53884
53885
53886
53887
      assert( (u.am.payloadSize64 & SQLITE_MAX_U32)==(u64)u.am.payloadSize64 );
      u.am.payloadSize = (u32)u.am.payloadSize64;
    }else{
      assert( sqlite3BtreeCursorIsValid(u.am.pCrsr) );
      rc = sqlite3BtreeDataSize(u.am.pCrsr, &u.am.payloadSize);
      assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
    }
  }else if( u.am.pC->pseudoTableReg>0 ){
    u.am.pReg = &p->aMem[u.am.pC->pseudoTableReg];
    assert( u.am.pReg->flags & MEM_Blob );
    u.am.payloadSize = u.am.pReg->n;
    u.am.zRec = u.am.pReg->z;
    u.am.pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
    assert( u.am.payloadSize==0 || u.am.zRec!=0 );
  }else{
    /* Consider the row to be NULL */
    u.am.payloadSize = 0;
  }

  /* If u.am.payloadSize is 0, then just store a NULL */
53315
53316
53317
53318
53319
53320
53321
53322
53323
53324
53325
53326
53327
53328
53329
53330
53331
53332
53333
53334
53335
53336
53337
53338
53339
53340
53341
53342
53343
53344
53345
53346
53347
53348
53349
53350
53351
53352
53353
53354
53355
53356
53357
53358
53359
53360
53361
53362
53363
53364
53365
53366
53367
53368
53369
53370
53371
53372
53373
53374
53375
53376
53377
53378
53379
53380
53381
53382
53383
53384
53385
53386
53387
53388
53389
53390
53391
53392
53393
53394
53395
53396
53397
53398
53399
53400
53401
53402
53403
53404
53405
53406
53407
53408
53409
53410
53411
53412
53413
53414
53415
53416
53417
53418
53419
53420
53421
53422
53423
53424
53425
53426
53427
53428
53429
53430
53431
53432
53433
53434
53435
53436
53437
53438
53439
53440
53441
53442
53443
53444
53445
53446
53447
53448
53449
53450
53451
53452
53453
53454
53455
53456
53457
53458
53459
53460
53461
53462
53463
53464
53465
53466
53467
53468
53469
53470
53471
53472
53473
53474
53475
53476
53477
53478
53479
53480
53481
53482
53483
53484
53485
53486
53487
53488
53489
53490
53491
53492
53493
53494
53495
53496
53497
53498
53499
53500
53501
53502
53503
53504
53505
53506
53507
53508
53509
53510
53511
53512
53513
53514
53515
53516
53517
53518
53519
53520
53521
53522
53523
53524
53525
53526
53527
53528
53529
53530
53531
53532
53533
53534
53535
53536
53537
53538
53539
53540
53541
53542
53543
53544
53545
53546
53547
53548
53549
53550
53551
53552
53553
53554
53555
53556
53557
53558
53559
53560
53561
53562
53563
53564
53565
53566
53567
53568
53569
53570
53571
53572
53573
53574
53575
53576
  }
  pOut->flags = MEM_Int;
  pOut->u.i = u.ap.nEntry;
  break;
}
#endif

/* Opcode: Statement P1 * * * *
**
** Begin an individual statement transaction which is part of a larger
** transaction.  This is needed so that the statement
** can be rolled back after an error without having to roll back the
** entire transaction.  The statement transaction will automatically
** commit when the VDBE halts.
**
** If the database connection is currently in autocommit mode (that 
** is to say, if it is in between BEGIN and COMMIT)
** and if there are no other active statements on the same database
** connection, then this operation is a no-op.  No statement transaction
** is needed since any error can use the normal ROLLBACK process to
** undo changes.
**
** If a statement transaction is started, then a statement journal file
** will be allocated and initialized.
**
** The statement is begun on the database file with index P1.  The main
** database file has an index of 0 and the file used for temporary tables
** has an index of 1.
*/
case OP_Statement: {
#if 0  /* local variables moved into u.aq */
  Btree *pBt;
#endif /* local variables moved into u.aq */
  if( db->autoCommit==0 || db->activeVdbeCnt>1 ){
    assert( pOp->p1>=0 && pOp->p1<db->nDb );
    assert( db->aDb[pOp->p1].pBt!=0 );
    u.aq.pBt = db->aDb[pOp->p1].pBt;
    assert( sqlite3BtreeIsInTrans(u.aq.pBt) );
    assert( (p->btreeMask & (1<<pOp->p1))!=0 );
    if( p->iStatement==0 ){
      assert( db->nStatement>=0 && db->nSavepoint>=0 );
      db->nStatement++;
      p->iStatement = db->nSavepoint + db->nStatement;
    }
    rc = sqlite3BtreeBeginStmt(u.aq.pBt, p->iStatement);
  }
  break;
}

/* Opcode: Savepoint P1 * * P4 *
**
** Open, release or rollback the savepoint named by parameter P4, depending
** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
*/
case OP_Savepoint: {
#if 0  /* local variables moved into u.ar */
  int p1;                         /* Value of P1 operand */
  char *zName;                    /* Name of savepoint */
  int nName;
  Savepoint *pNew;
  Savepoint *pSavepoint;
  Savepoint *pTmp;
  int iSavepoint;
  int ii;
#endif /* local variables moved into u.ar */

  u.ar.p1 = pOp->p1;
  u.ar.zName = pOp->p4.z;

  /* Assert that the u.ar.p1 parameter is valid. Also that if there is no open
  ** transaction, then there cannot be any savepoints.
  */
  assert( db->pSavepoint==0 || db->autoCommit==0 );
  assert( u.ar.p1==SAVEPOINT_BEGIN||u.ar.p1==SAVEPOINT_RELEASE||u.ar.p1==SAVEPOINT_ROLLBACK );
  assert( db->pSavepoint || db->isTransactionSavepoint==0 );
  assert( checkSavepointCount(db) );

  if( u.ar.p1==SAVEPOINT_BEGIN ){
    if( db->writeVdbeCnt>0 ){
      /* A new savepoint cannot be created if there are active write
      ** statements (i.e. open read/write incremental blob handles).
      */
      sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
        "SQL statements in progress");
      rc = SQLITE_BUSY;
    }else{
      u.ar.nName = sqlite3Strlen30(u.ar.zName);

      /* Create a new savepoint structure. */
      u.ar.pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+u.ar.nName+1);
      if( u.ar.pNew ){
        u.ar.pNew->zName = (char *)&u.ar.pNew[1];
        memcpy(u.ar.pNew->zName, u.ar.zName, u.ar.nName+1);

        /* If there is no open transaction, then mark this as a special
        ** "transaction savepoint". */
        if( db->autoCommit ){
          db->autoCommit = 0;
          db->isTransactionSavepoint = 1;
        }else{
          db->nSavepoint++;
        }

        /* Link the new savepoint into the database handle's list. */
        u.ar.pNew->pNext = db->pSavepoint;
        db->pSavepoint = u.ar.pNew;
      }
    }
  }else{
    u.ar.iSavepoint = 0;

    /* Find the named savepoint. If there is no such savepoint, then an
    ** an error is returned to the user.  */
    for(
      u.ar.pSavepoint = db->pSavepoint;
      u.ar.pSavepoint && sqlite3StrICmp(u.ar.pSavepoint->zName, u.ar.zName);
      u.ar.pSavepoint = u.ar.pSavepoint->pNext
    ){
      u.ar.iSavepoint++;
    }
    if( !u.ar.pSavepoint ){
      sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", u.ar.zName);
      rc = SQLITE_ERROR;
    }else if(
        db->writeVdbeCnt>0 || (u.ar.p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1)
    ){
      /* It is not possible to release (commit) a savepoint if there are
      ** active write statements. It is not possible to rollback a savepoint
      ** if there are any active statements at all.
      */
      sqlite3SetString(&p->zErrMsg, db,
        "cannot %s savepoint - SQL statements in progress",
        (u.ar.p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
      );
      rc = SQLITE_BUSY;
    }else{

      /* Determine whether or not this is a transaction savepoint. If so,
      ** and this is a RELEASE command, then the current transaction
      ** is committed.
      */
      int isTransaction = u.ar.pSavepoint->pNext==0 && db->isTransactionSavepoint;
      if( isTransaction && u.ar.p1==SAVEPOINT_RELEASE ){
        db->autoCommit = 1;
        if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
          p->pc = pc;
          db->autoCommit = 0;
          p->rc = rc = SQLITE_BUSY;
          goto vdbe_return;
        }
        db->isTransactionSavepoint = 0;
        rc = p->rc;
      }else{
        u.ar.iSavepoint = db->nSavepoint - u.ar.iSavepoint - 1;
        for(u.ar.ii=0; u.ar.ii<db->nDb; u.ar.ii++){
          rc = sqlite3BtreeSavepoint(db->aDb[u.ar.ii].pBt, u.ar.p1, u.ar.iSavepoint);
          if( rc!=SQLITE_OK ){
            goto abort_due_to_error;
          }
        }
        if( u.ar.p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
          sqlite3ExpirePreparedStatements(db);
          sqlite3ResetInternalSchema(db, 0);
        }
      }

      /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
      ** savepoints nested inside of the savepoint being operated on. */
      while( db->pSavepoint!=u.ar.pSavepoint ){
        u.ar.pTmp = db->pSavepoint;
        db->pSavepoint = u.ar.pTmp->pNext;
        sqlite3DbFree(db, u.ar.pTmp);
        db->nSavepoint--;
      }

      /* If it is a RELEASE, then destroy the savepoint being operated on too */
      if( u.ar.p1==SAVEPOINT_RELEASE ){
        assert( u.ar.pSavepoint==db->pSavepoint );
        db->pSavepoint = u.ar.pSavepoint->pNext;
        sqlite3DbFree(db, u.ar.pSavepoint);
        if( !isTransaction ){
          db->nSavepoint--;
        }
      }
    }
  }

  break;
}

/* Opcode: AutoCommit P1 P2 * * *
**
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
** back any currently active btree transactions. If there are any active
** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
** there are active writing VMs or active VMs that use shared cache.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {
#if 0  /* local variables moved into u.as */
  int desiredAutoCommit;
  int iRollback;
  int turnOnAC;
#endif /* local variables moved into u.as */

  u.as.desiredAutoCommit = pOp->p1;
  u.as.iRollback = pOp->p2;
  u.as.turnOnAC = u.as.desiredAutoCommit && !db->autoCommit;
  assert( u.as.desiredAutoCommit==1 || u.as.desiredAutoCommit==0 );
  assert( u.as.desiredAutoCommit==1 || u.as.iRollback==0 );
  assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */

  if( u.as.turnOnAC && u.as.iRollback && db->activeVdbeCnt>1 ){
    /* If this instruction implements a ROLLBACK and other VMs are
    ** still running, and a transaction is active, return an error indicating
    ** that the other VMs must complete first.
    */
    sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
        "SQL statements in progress");
    rc = SQLITE_BUSY;
  }else if( u.as.turnOnAC && !u.as.iRollback && db->writeVdbeCnt>0 ){
    /* If this instruction implements a COMMIT and other VMs are writing
    ** return an error indicating that the other VMs must complete first.
    */
    sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
        "SQL statements in progress");
    rc = SQLITE_BUSY;
  }else if( u.as.desiredAutoCommit!=db->autoCommit ){
    if( u.as.iRollback ){
      assert( u.as.desiredAutoCommit==1 );
      sqlite3RollbackAll(db);
      db->autoCommit = 1;
    }else{
      db->autoCommit = (u8)u.as.desiredAutoCommit;
      if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
        p->pc = pc;
        db->autoCommit = (u8)(1-u.as.desiredAutoCommit);
        p->rc = rc = SQLITE_BUSY;
        goto vdbe_return;
      }
    }
    assert( db->nStatement==0 );
    sqlite3CloseSavepoints(db);
    if( p->rc==SQLITE_OK ){
      rc = SQLITE_DONE;
    }else{
      rc = SQLITE_ERROR;
    }
    goto vdbe_return;
  }else{
    sqlite3SetString(&p->zErrMsg, db,
        (!u.as.desiredAutoCommit)?"cannot start a transaction within a transaction":(
        (u.as.iRollback)?"cannot rollback - no transaction is active":
                   "cannot commit - no transaction is active"));

    rc = SQLITE_ERROR;
  }
  break;
}








<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







|








|

|
|

|



|



|








|


|
|
|
|











|
|



|




|
|
|

|

|
|


|







|








|
|










|
|
|




|







|
|
|
|




|
|
|
|




















|



|

|
|
|
|
|


|







|






|
|
|



|


|














|
|







54255
54256
54257
54258
54259
54260
54261










































54262
54263
54264
54265
54266
54267
54268
54269
54270
54271
54272
54273
54274
54275
54276
54277
54278
54279
54280
54281
54282
54283
54284
54285
54286
54287
54288
54289
54290
54291
54292
54293
54294
54295
54296
54297
54298
54299
54300
54301
54302
54303
54304
54305
54306
54307
54308
54309
54310
54311
54312
54313
54314
54315
54316
54317
54318
54319
54320
54321
54322
54323
54324
54325
54326
54327
54328
54329
54330
54331
54332
54333
54334
54335
54336
54337
54338
54339
54340
54341
54342
54343
54344
54345
54346
54347
54348
54349
54350
54351
54352
54353
54354
54355
54356
54357
54358
54359
54360
54361
54362
54363
54364
54365
54366
54367
54368
54369
54370
54371
54372
54373
54374
54375
54376
54377
54378
54379
54380
54381
54382
54383
54384
54385
54386
54387
54388
54389
54390
54391
54392
54393
54394
54395
54396
54397
54398
54399
54400
54401
54402
54403
54404
54405
54406
54407
54408
54409
54410
54411
54412
54413
54414
54415
54416
54417
54418
54419
54420
54421
54422
54423
54424
54425
54426
54427
54428
54429
54430
54431
54432
54433
54434
54435
54436
54437
54438
54439
54440
54441
54442
54443
54444
54445
54446
54447
54448
54449
54450
54451
54452
54453
54454
54455
54456
54457
54458
54459
54460
54461
54462
54463
54464
54465
54466
54467
54468
54469
54470
54471
54472
54473
54474
  }
  pOut->flags = MEM_Int;
  pOut->u.i = u.ap.nEntry;
  break;
}
#endif











































/* Opcode: Savepoint P1 * * P4 *
**
** Open, release or rollback the savepoint named by parameter P4, depending
** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
*/
case OP_Savepoint: {
#if 0  /* local variables moved into u.aq */
  int p1;                         /* Value of P1 operand */
  char *zName;                    /* Name of savepoint */
  int nName;
  Savepoint *pNew;
  Savepoint *pSavepoint;
  Savepoint *pTmp;
  int iSavepoint;
  int ii;
#endif /* local variables moved into u.aq */

  u.aq.p1 = pOp->p1;
  u.aq.zName = pOp->p4.z;

  /* Assert that the u.aq.p1 parameter is valid. Also that if there is no open
  ** transaction, then there cannot be any savepoints.
  */
  assert( db->pSavepoint==0 || db->autoCommit==0 );
  assert( u.aq.p1==SAVEPOINT_BEGIN||u.aq.p1==SAVEPOINT_RELEASE||u.aq.p1==SAVEPOINT_ROLLBACK );
  assert( db->pSavepoint || db->isTransactionSavepoint==0 );
  assert( checkSavepointCount(db) );

  if( u.aq.p1==SAVEPOINT_BEGIN ){
    if( db->writeVdbeCnt>0 ){
      /* A new savepoint cannot be created if there are active write
      ** statements (i.e. open read/write incremental blob handles).
      */
      sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
        "SQL statements in progress");
      rc = SQLITE_BUSY;
    }else{
      u.aq.nName = sqlite3Strlen30(u.aq.zName);

      /* Create a new savepoint structure. */
      u.aq.pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+u.aq.nName+1);
      if( u.aq.pNew ){
        u.aq.pNew->zName = (char *)&u.aq.pNew[1];
        memcpy(u.aq.pNew->zName, u.aq.zName, u.aq.nName+1);

        /* If there is no open transaction, then mark this as a special
        ** "transaction savepoint". */
        if( db->autoCommit ){
          db->autoCommit = 0;
          db->isTransactionSavepoint = 1;
        }else{
          db->nSavepoint++;
        }

        /* Link the new savepoint into the database handle's list. */
        u.aq.pNew->pNext = db->pSavepoint;
        db->pSavepoint = u.aq.pNew;
      }
    }
  }else{
    u.aq.iSavepoint = 0;

    /* Find the named savepoint. If there is no such savepoint, then an
    ** an error is returned to the user.  */
    for(
      u.aq.pSavepoint = db->pSavepoint;
      u.aq.pSavepoint && sqlite3StrICmp(u.aq.pSavepoint->zName, u.aq.zName);
      u.aq.pSavepoint = u.aq.pSavepoint->pNext
    ){
      u.aq.iSavepoint++;
    }
    if( !u.aq.pSavepoint ){
      sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", u.aq.zName);
      rc = SQLITE_ERROR;
    }else if(
        db->writeVdbeCnt>0 || (u.aq.p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1)
    ){
      /* It is not possible to release (commit) a savepoint if there are
      ** active write statements. It is not possible to rollback a savepoint
      ** if there are any active statements at all.
      */
      sqlite3SetString(&p->zErrMsg, db,
        "cannot %s savepoint - SQL statements in progress",
        (u.aq.p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
      );
      rc = SQLITE_BUSY;
    }else{

      /* Determine whether or not this is a transaction savepoint. If so,
      ** and this is a RELEASE command, then the current transaction
      ** is committed.
      */
      int isTransaction = u.aq.pSavepoint->pNext==0 && db->isTransactionSavepoint;
      if( isTransaction && u.aq.p1==SAVEPOINT_RELEASE ){
        db->autoCommit = 1;
        if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
          p->pc = pc;
          db->autoCommit = 0;
          p->rc = rc = SQLITE_BUSY;
          goto vdbe_return;
        }
        db->isTransactionSavepoint = 0;
        rc = p->rc;
      }else{
        u.aq.iSavepoint = db->nSavepoint - u.aq.iSavepoint - 1;
        for(u.aq.ii=0; u.aq.ii<db->nDb; u.aq.ii++){
          rc = sqlite3BtreeSavepoint(db->aDb[u.aq.ii].pBt, u.aq.p1, u.aq.iSavepoint);
          if( rc!=SQLITE_OK ){
            goto abort_due_to_error;
          }
        }
        if( u.aq.p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
          sqlite3ExpirePreparedStatements(db);
          sqlite3ResetInternalSchema(db, 0);
        }
      }

      /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
      ** savepoints nested inside of the savepoint being operated on. */
      while( db->pSavepoint!=u.aq.pSavepoint ){
        u.aq.pTmp = db->pSavepoint;
        db->pSavepoint = u.aq.pTmp->pNext;
        sqlite3DbFree(db, u.aq.pTmp);
        db->nSavepoint--;
      }

      /* If it is a RELEASE, then destroy the savepoint being operated on too */
      if( u.aq.p1==SAVEPOINT_RELEASE ){
        assert( u.aq.pSavepoint==db->pSavepoint );
        db->pSavepoint = u.aq.pSavepoint->pNext;
        sqlite3DbFree(db, u.aq.pSavepoint);
        if( !isTransaction ){
          db->nSavepoint--;
        }
      }
    }
  }

  break;
}

/* Opcode: AutoCommit P1 P2 * * *
**
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
** back any currently active btree transactions. If there are any active
** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
** there are active writing VMs or active VMs that use shared cache.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {
#if 0  /* local variables moved into u.ar */
  int desiredAutoCommit;
  int iRollback;
  int turnOnAC;
#endif /* local variables moved into u.ar */

  u.ar.desiredAutoCommit = pOp->p1;
  u.ar.iRollback = pOp->p2;
  u.ar.turnOnAC = u.ar.desiredAutoCommit && !db->autoCommit;
  assert( u.ar.desiredAutoCommit==1 || u.ar.desiredAutoCommit==0 );
  assert( u.ar.desiredAutoCommit==1 || u.ar.iRollback==0 );
  assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */

  if( u.ar.turnOnAC && u.ar.iRollback && db->activeVdbeCnt>1 ){
    /* If this instruction implements a ROLLBACK and other VMs are
    ** still running, and a transaction is active, return an error indicating
    ** that the other VMs must complete first.
    */
    sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
        "SQL statements in progress");
    rc = SQLITE_BUSY;
  }else if( u.ar.turnOnAC && !u.ar.iRollback && db->writeVdbeCnt>0 ){
    /* If this instruction implements a COMMIT and other VMs are writing
    ** return an error indicating that the other VMs must complete first.
    */
    sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
        "SQL statements in progress");
    rc = SQLITE_BUSY;
  }else if( u.ar.desiredAutoCommit!=db->autoCommit ){
    if( u.ar.iRollback ){
      assert( u.ar.desiredAutoCommit==1 );
      sqlite3RollbackAll(db);
      db->autoCommit = 1;
    }else{
      db->autoCommit = (u8)u.ar.desiredAutoCommit;
      if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
        p->pc = pc;
        db->autoCommit = (u8)(1-u.ar.desiredAutoCommit);
        p->rc = rc = SQLITE_BUSY;
        goto vdbe_return;
      }
    }
    assert( db->nStatement==0 );
    sqlite3CloseSavepoints(db);
    if( p->rc==SQLITE_OK ){
      rc = SQLITE_DONE;
    }else{
      rc = SQLITE_ERROR;
    }
    goto vdbe_return;
  }else{
    sqlite3SetString(&p->zErrMsg, db,
        (!u.ar.desiredAutoCommit)?"cannot start a transaction within a transaction":(
        (u.ar.iRollback)?"cannot rollback - no transaction is active":
                   "cannot commit - no transaction is active"));

    rc = SQLITE_ERROR;
  }
  break;
}

53588
53589
53590
53591
53592
53593
53594










53595
53596
53597
53598
53599
53600
53601
53602
53603
53604
53605
53606
53607
53608
53609
53610
53611
53612
53613
53614
53615
53616












53617
53618
53619
53620
53621
53622
53623
53624
53625
53626
53627
53628
53629
53630
53631
53632
53633
53634
53635
53636
53637
53638
53639
53640
53641
53642
53643
53644
53645
53646
53647
53648
53649
53650
53651
53652
53653
53654
53655
53656
53657
53658
53659
53660
53661
53662
53663
53664
53665
53666
53667
53668
53669
53670
53671
53672
53673
53674
53675
53676
53677
53678
53679
53680
53681
53682
53683
53684
53685
53686
53687
53688
** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
** obtained on the database file when a write-transaction is started.  No
** other process can start another write transaction while this transaction is
** underway.  Starting a write transaction also creates a rollback journal. A
** write transaction must be started before any changes can be made to the
** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
** on the file.










**
** If P2 is zero, then a read-lock is obtained on the database file.
*/
case OP_Transaction: {
#if 0  /* local variables moved into u.at */
  Btree *pBt;
#endif /* local variables moved into u.at */

  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  u.at.pBt = db->aDb[pOp->p1].pBt;

  if( u.at.pBt ){
    rc = sqlite3BtreeBeginTrans(u.at.pBt, pOp->p2);
    if( rc==SQLITE_BUSY ){
      p->pc = pc;
      p->rc = rc = SQLITE_BUSY;
      goto vdbe_return;
    }
    if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
      goto abort_due_to_error;
    }












  }
  break;
}

/* Opcode: ReadCookie P1 P2 P3 * *
**
** Read cookie number P3 from database P1 and write it into register P2.
** P3==1 is the schema version.  P3==2 is the database format.
** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {               /* out2-prerelease */
#if 0  /* local variables moved into u.au */
  int iMeta;
  int iDb;
  int iCookie;
#endif /* local variables moved into u.au */

  u.au.iDb = pOp->p1;
  u.au.iCookie = pOp->p3;
  assert( pOp->p3<SQLITE_N_BTREE_META );
  assert( u.au.iDb>=0 && u.au.iDb<db->nDb );
  assert( db->aDb[u.au.iDb].pBt!=0 );
  assert( (p->btreeMask & (1<<u.au.iDb))!=0 );

  sqlite3BtreeGetMeta(db->aDb[u.au.iDb].pBt, u.au.iCookie, (u32 *)&u.au.iMeta);
  pOut->u.i = u.au.iMeta;
  MemSetTypeFlag(pOut, MEM_Int);
  break;
}

/* Opcode: SetCookie P1 P2 P3 * *
**
** Write the content of register P3 (interpreted as an integer)
** into cookie number P2 of database P1.  P2==1 is the schema version.  
** P2==2 is the database format. P2==3 is the recommended pager cache 
** size, and so forth.  P1==0 is the main database file and P1==1 is the 
** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {       /* in3 */
#if 0  /* local variables moved into u.av */
  Db *pDb;
#endif /* local variables moved into u.av */
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  u.av.pDb = &db->aDb[pOp->p1];
  assert( u.av.pDb->pBt!=0 );
  sqlite3VdbeMemIntegerify(pIn3);
  /* See note about index shifting on OP_ReadCookie */
  rc = sqlite3BtreeUpdateMeta(u.av.pDb->pBt, pOp->p2, (int)pIn3->u.i);
  if( pOp->p2==BTREE_SCHEMA_VERSION ){
    /* When the schema cookie changes, record the new cookie internally */
    u.av.pDb->pSchema->schema_cookie = (int)pIn3->u.i;
    db->flags |= SQLITE_InternChanges;
  }else if( pOp->p2==BTREE_FILE_FORMAT ){
    /* Record changes in the file format */
    u.av.pDb->pSchema->file_format = (u8)pIn3->u.i;
  }
  if( pOp->p1==1 ){
    /* Invalidate all prepared statements whenever the TEMP database
    ** schema is changed.  Ticket #1644 */
    sqlite3ExpirePreparedStatements(db);
  }
  break;







>
>
>
>
>
>
>
>
>
>




|

|



|

|
|








>
>
>
>
>
>
>
>
>
>
>
>

















|



|

|
|

|
|
|

|
|















|

|



|
|


|


|



|







54486
54487
54488
54489
54490
54491
54492
54493
54494
54495
54496
54497
54498
54499
54500
54501
54502
54503
54504
54505
54506
54507
54508
54509
54510
54511
54512
54513
54514
54515
54516
54517
54518
54519
54520
54521
54522
54523
54524
54525
54526
54527
54528
54529
54530
54531
54532
54533
54534
54535
54536
54537
54538
54539
54540
54541
54542
54543
54544
54545
54546
54547
54548
54549
54550
54551
54552
54553
54554
54555
54556
54557
54558
54559
54560
54561
54562
54563
54564
54565
54566
54567
54568
54569
54570
54571
54572
54573
54574
54575
54576
54577
54578
54579
54580
54581
54582
54583
54584
54585
54586
54587
54588
54589
54590
54591
54592
54593
54594
54595
54596
54597
54598
54599
54600
54601
54602
54603
54604
54605
54606
54607
54608
** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
** obtained on the database file when a write-transaction is started.  No
** other process can start another write transaction while this transaction is
** underway.  Starting a write transaction also creates a rollback journal. A
** write transaction must be started before any changes can be made to the
** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
** on the file.
**
** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
** true (this flag is set if the Vdbe may modify more than one row and may
** throw an ABORT exception), a statement transaction may also be opened.
** More specifically, a statement transaction is opened iff the database
** connection is currently not in autocommit mode, or if there are other
** active statements. A statement transaction allows the affects of this
** VDBE to be rolled back after an error without having to roll back the
** entire transaction. If no error is encountered, the statement transaction
** will automatically commit when the VDBE halts.
**
** If P2 is zero, then a read-lock is obtained on the database file.
*/
case OP_Transaction: {
#if 0  /* local variables moved into u.as */
  Btree *pBt;
#endif /* local variables moved into u.as */

  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  u.as.pBt = db->aDb[pOp->p1].pBt;

  if( u.as.pBt ){
    rc = sqlite3BtreeBeginTrans(u.as.pBt, pOp->p2);
    if( rc==SQLITE_BUSY ){
      p->pc = pc;
      p->rc = rc = SQLITE_BUSY;
      goto vdbe_return;
    }
    if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
      goto abort_due_to_error;
    }

    if( pOp->p2 && p->usesStmtJournal
     && (db->autoCommit==0 || db->activeVdbeCnt>1)
    ){
      assert( sqlite3BtreeIsInTrans(u.as.pBt) );
      if( p->iStatement==0 ){
        assert( db->nStatement>=0 && db->nSavepoint>=0 );
        db->nStatement++;
        p->iStatement = db->nSavepoint + db->nStatement;
      }
      rc = sqlite3BtreeBeginStmt(u.as.pBt, p->iStatement);
    }
  }
  break;
}

/* Opcode: ReadCookie P1 P2 P3 * *
**
** Read cookie number P3 from database P1 and write it into register P2.
** P3==1 is the schema version.  P3==2 is the database format.
** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {               /* out2-prerelease */
#if 0  /* local variables moved into u.at */
  int iMeta;
  int iDb;
  int iCookie;
#endif /* local variables moved into u.at */

  u.at.iDb = pOp->p1;
  u.at.iCookie = pOp->p3;
  assert( pOp->p3<SQLITE_N_BTREE_META );
  assert( u.at.iDb>=0 && u.at.iDb<db->nDb );
  assert( db->aDb[u.at.iDb].pBt!=0 );
  assert( (p->btreeMask & (1<<u.at.iDb))!=0 );

  sqlite3BtreeGetMeta(db->aDb[u.at.iDb].pBt, u.at.iCookie, (u32 *)&u.at.iMeta);
  pOut->u.i = u.at.iMeta;
  MemSetTypeFlag(pOut, MEM_Int);
  break;
}

/* Opcode: SetCookie P1 P2 P3 * *
**
** Write the content of register P3 (interpreted as an integer)
** into cookie number P2 of database P1.  P2==1 is the schema version.  
** P2==2 is the database format. P2==3 is the recommended pager cache 
** size, and so forth.  P1==0 is the main database file and P1==1 is the 
** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {       /* in3 */
#if 0  /* local variables moved into u.au */
  Db *pDb;
#endif /* local variables moved into u.au */
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  u.au.pDb = &db->aDb[pOp->p1];
  assert( u.au.pDb->pBt!=0 );
  sqlite3VdbeMemIntegerify(pIn3);
  /* See note about index shifting on OP_ReadCookie */
  rc = sqlite3BtreeUpdateMeta(u.au.pDb->pBt, pOp->p2, (int)pIn3->u.i);
  if( pOp->p2==BTREE_SCHEMA_VERSION ){
    /* When the schema cookie changes, record the new cookie internally */
    u.au.pDb->pSchema->schema_cookie = (int)pIn3->u.i;
    db->flags |= SQLITE_InternChanges;
  }else if( pOp->p2==BTREE_FILE_FORMAT ){
    /* Record changes in the file format */
    u.au.pDb->pSchema->file_format = (u8)pIn3->u.i;
  }
  if( pOp->p1==1 ){
    /* Invalidate all prepared statements whenever the TEMP database
    ** schema is changed.  Ticket #1644 */
    sqlite3ExpirePreparedStatements(db);
  }
  break;
53701
53702
53703
53704
53705
53706
53707
53708
53709
53710
53711
53712
53713
53714
53715
53716
53717
53718
53719
53720
53721
53722
53723
53724
53725
53726
53727
53728
53729
53730
53731
53732
53733
53734
53735
53736
53737
53738
53739
53740
53741
53742
53743
** and that the current process needs to reread the schema.
**
** Either a transaction needs to have been started or an OP_Open needs
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
case OP_VerifyCookie: {
#if 0  /* local variables moved into u.aw */
  int iMeta;
  Btree *pBt;
#endif /* local variables moved into u.aw */
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  u.aw.pBt = db->aDb[pOp->p1].pBt;
  if( u.aw.pBt ){
    sqlite3BtreeGetMeta(u.aw.pBt, BTREE_SCHEMA_VERSION, (u32 *)&u.aw.iMeta);
  }else{
    u.aw.iMeta = 0;
  }
  if( u.aw.iMeta!=pOp->p2 ){
    sqlite3DbFree(db, p->zErrMsg);
    p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
    /* If the schema-cookie from the database file matches the cookie
    ** stored with the in-memory representation of the schema, do
    ** not reload the schema from the database file.
    **
    ** If virtual-tables are in use, this is not just an optimization.
    ** Often, v-tables store their data in other SQLite tables, which
    ** are queried from within xNext() and other v-table methods using
    ** prepared queries. If such a query is out-of-date, we do not want to
    ** discard the database schema, as the user code implementing the
    ** v-table would have to be ready for the sqlite3_vtab structure itself
    ** to be invalidated whenever sqlite3_step() is called from within
    ** a v-table method.
    */
    if( db->aDb[pOp->p1].pSchema->schema_cookie!=u.aw.iMeta ){
      sqlite3ResetInternalSchema(db, pOp->p1);
    }

    sqlite3ExpirePreparedStatements(db);
    rc = SQLITE_SCHEMA;
  }
  break;







|


|


|
|
|

|

|















|







54621
54622
54623
54624
54625
54626
54627
54628
54629
54630
54631
54632
54633
54634
54635
54636
54637
54638
54639
54640
54641
54642
54643
54644
54645
54646
54647
54648
54649
54650
54651
54652
54653
54654
54655
54656
54657
54658
54659
54660
54661
54662
54663
** and that the current process needs to reread the schema.
**
** Either a transaction needs to have been started or an OP_Open needs
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
case OP_VerifyCookie: {
#if 0  /* local variables moved into u.av */
  int iMeta;
  Btree *pBt;
#endif /* local variables moved into u.av */
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  u.av.pBt = db->aDb[pOp->p1].pBt;
  if( u.av.pBt ){
    sqlite3BtreeGetMeta(u.av.pBt, BTREE_SCHEMA_VERSION, (u32 *)&u.av.iMeta);
  }else{
    u.av.iMeta = 0;
  }
  if( u.av.iMeta!=pOp->p2 ){
    sqlite3DbFree(db, p->zErrMsg);
    p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
    /* If the schema-cookie from the database file matches the cookie
    ** stored with the in-memory representation of the schema, do
    ** not reload the schema from the database file.
    **
    ** If virtual-tables are in use, this is not just an optimization.
    ** Often, v-tables store their data in other SQLite tables, which
    ** are queried from within xNext() and other v-table methods using
    ** prepared queries. If such a query is out-of-date, we do not want to
    ** discard the database schema, as the user code implementing the
    ** v-table would have to be ready for the sqlite3_vtab structure itself
    ** to be invalidated whenever sqlite3_step() is called from within
    ** a v-table method.
    */
    if( db->aDb[pOp->p1].pSchema->schema_cookie!=u.av.iMeta ){
      sqlite3ResetInternalSchema(db, pOp->p1);
    }

    sqlite3ExpirePreparedStatements(db);
    rc = SQLITE_SCHEMA;
  }
  break;
53790
53791
53792
53793
53794
53795
53796
53797
53798
53799
53800
53801
53802
53803
53804
53805
53806
53807
53808
53809
53810
53811
53812
53813
53814
53815
53816
53817
53818
53819
53820
53821
53822
53823
53824
53825
53826
53827
53828
53829
53830
53831
53832
53833
53834
53835
53836
53837
53838
53839
53840
53841
53842
53843
53844
53845
53846
53847
53848
53849
53850
53851
53852
53853
53854
53855
53856
53857
53858
53859
53860
53861
53862
53863
53864
53865
53866
53867
53868
53869
53870
53871
53872
53873
53874
53875
53876
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_OpenRead:
case OP_OpenWrite: {
#if 0  /* local variables moved into u.ax */
  int nField;
  KeyInfo *pKeyInfo;
  int p2;
  int iDb;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;
#endif /* local variables moved into u.ax */

  u.ax.nField = 0;
  u.ax.pKeyInfo = 0;
  u.ax.p2 = pOp->p2;
  u.ax.iDb = pOp->p3;
  assert( u.ax.iDb>=0 && u.ax.iDb<db->nDb );
  assert( (p->btreeMask & (1<<u.ax.iDb))!=0 );
  u.ax.pDb = &db->aDb[u.ax.iDb];
  u.ax.pX = u.ax.pDb->pBt;
  assert( u.ax.pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){
    u.ax.wrFlag = 1;
    if( u.ax.pDb->pSchema->file_format < p->minWriteFileFormat ){
      p->minWriteFileFormat = u.ax.pDb->pSchema->file_format;
    }
  }else{
    u.ax.wrFlag = 0;
  }
  if( pOp->p5 ){
    assert( u.ax.p2>0 );
    assert( u.ax.p2<=p->nMem );
    pIn2 = &p->aMem[u.ax.p2];
    sqlite3VdbeMemIntegerify(pIn2);
    u.ax.p2 = (int)pIn2->u.i;
    /* The u.ax.p2 value always comes from a prior OP_CreateTable opcode and
    ** that opcode will always set the u.ax.p2 value to 2 or more or else fail.
    ** If there were a failure, the prepared statement would have halted
    ** before reaching this instruction. */
    if( NEVER(u.ax.p2<2) ) {
      rc = SQLITE_CORRUPT_BKPT;
      goto abort_due_to_error;
    }
  }
  if( pOp->p4type==P4_KEYINFO ){
    u.ax.pKeyInfo = pOp->p4.pKeyInfo;
    u.ax.pKeyInfo->enc = ENC(p->db);
    u.ax.nField = u.ax.pKeyInfo->nField+1;
  }else if( pOp->p4type==P4_INT32 ){
    u.ax.nField = pOp->p4.i;
  }
  assert( pOp->p1>=0 );
  u.ax.pCur = allocateCursor(p, pOp->p1, u.ax.nField, u.ax.iDb, 1);
  if( u.ax.pCur==0 ) goto no_mem;
  u.ax.pCur->nullRow = 1;
  rc = sqlite3BtreeCursor(u.ax.pX, u.ax.p2, u.ax.wrFlag, u.ax.pKeyInfo, u.ax.pCur->pCursor);
  u.ax.pCur->pKeyInfo = u.ax.pKeyInfo;

  /* Since it performs no memory allocation or IO, the only values that
  ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK.
  ** SQLITE_EMPTY is only returned when attempting to open the table
  ** rooted at page 1 of a zero-byte database.  */
  assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
  if( rc==SQLITE_EMPTY ){
    u.ax.pCur->pCursor = 0;
    rc = SQLITE_OK;
  }

  /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */
  u.ax.pCur->isTable = pOp->p4type!=P4_KEYINFO;
  u.ax.pCur->isIndex = !u.ax.pCur->isTable;
  break;
}

/* Opcode: OpenEphemeral P1 P2 * P4 *
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if 







|








|

|
|
|
|
|
|
|
|
|

|
|
|


|


|
|
|

|
|
|


|





|
|
|

|


|
|
|
|
|







|







|
|







54710
54711
54712
54713
54714
54715
54716
54717
54718
54719
54720
54721
54722
54723
54724
54725
54726
54727
54728
54729
54730
54731
54732
54733
54734
54735
54736
54737
54738
54739
54740
54741
54742
54743
54744
54745
54746
54747
54748
54749
54750
54751
54752
54753
54754
54755
54756
54757
54758
54759
54760
54761
54762
54763
54764
54765
54766
54767
54768
54769
54770
54771
54772
54773
54774
54775
54776
54777
54778
54779
54780
54781
54782
54783
54784
54785
54786
54787
54788
54789
54790
54791
54792
54793
54794
54795
54796
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_OpenRead:
case OP_OpenWrite: {
#if 0  /* local variables moved into u.aw */
  int nField;
  KeyInfo *pKeyInfo;
  int p2;
  int iDb;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;
#endif /* local variables moved into u.aw */

  u.aw.nField = 0;
  u.aw.pKeyInfo = 0;
  u.aw.p2 = pOp->p2;
  u.aw.iDb = pOp->p3;
  assert( u.aw.iDb>=0 && u.aw.iDb<db->nDb );
  assert( (p->btreeMask & (1<<u.aw.iDb))!=0 );
  u.aw.pDb = &db->aDb[u.aw.iDb];
  u.aw.pX = u.aw.pDb->pBt;
  assert( u.aw.pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){
    u.aw.wrFlag = 1;
    if( u.aw.pDb->pSchema->file_format < p->minWriteFileFormat ){
      p->minWriteFileFormat = u.aw.pDb->pSchema->file_format;
    }
  }else{
    u.aw.wrFlag = 0;
  }
  if( pOp->p5 ){
    assert( u.aw.p2>0 );
    assert( u.aw.p2<=p->nMem );
    pIn2 = &p->aMem[u.aw.p2];
    sqlite3VdbeMemIntegerify(pIn2);
    u.aw.p2 = (int)pIn2->u.i;
    /* The u.aw.p2 value always comes from a prior OP_CreateTable opcode and
    ** that opcode will always set the u.aw.p2 value to 2 or more or else fail.
    ** If there were a failure, the prepared statement would have halted
    ** before reaching this instruction. */
    if( NEVER(u.aw.p2<2) ) {
      rc = SQLITE_CORRUPT_BKPT;
      goto abort_due_to_error;
    }
  }
  if( pOp->p4type==P4_KEYINFO ){
    u.aw.pKeyInfo = pOp->p4.pKeyInfo;
    u.aw.pKeyInfo->enc = ENC(p->db);
    u.aw.nField = u.aw.pKeyInfo->nField+1;
  }else if( pOp->p4type==P4_INT32 ){
    u.aw.nField = pOp->p4.i;
  }
  assert( pOp->p1>=0 );
  u.aw.pCur = allocateCursor(p, pOp->p1, u.aw.nField, u.aw.iDb, 1);
  if( u.aw.pCur==0 ) goto no_mem;
  u.aw.pCur->nullRow = 1;
  rc = sqlite3BtreeCursor(u.aw.pX, u.aw.p2, u.aw.wrFlag, u.aw.pKeyInfo, u.aw.pCur->pCursor);
  u.aw.pCur->pKeyInfo = u.aw.pKeyInfo;

  /* Since it performs no memory allocation or IO, the only values that
  ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK.
  ** SQLITE_EMPTY is only returned when attempting to open the table
  ** rooted at page 1 of a zero-byte database.  */
  assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
  if( rc==SQLITE_EMPTY ){
    u.aw.pCur->pCursor = 0;
    rc = SQLITE_OK;
  }

  /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */
  u.aw.pCur->isTable = pOp->p4type!=P4_KEYINFO;
  u.aw.pCur->isIndex = !u.aw.pCur->isTable;
  break;
}

/* Opcode: OpenEphemeral P1 P2 * P4 *
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if 
53885
53886
53887
53888
53889
53890
53891
53892
53893
53894
53895
53896
53897
53898
53899
53900
53901
53902
53903
53904
53905
53906
53907
53908
53909
53910
53911
53912
53913
53914
53915
53916
53917
53918
53919
53920
53921
53922
53923
53924
53925
53926
53927
53928
53929
53930
53931
53932
53933
53934
53935
53936
53937
53938
53939
53940
53941
53942
53943
53944
53945
53946
53947
53948
53949
53950
53951
53952
53953
53954
53955
53956
53957
53958
53959
53960
53961
53962
53963
53964
53965
53966
53967
53968
53969
53970
53971
53972
53973
53974
53975
53976
53977
53978
53979
53980
** This opcode was once called OpenTemp.  But that created
** confusion because the term "temp table", might refer either
** to a TEMP table at the SQL level, or to a table opened by
** this opcode.  Then this opcode was call OpenVirtual.  But
** that created confusion with the whole virtual-table idea.
*/
case OP_OpenEphemeral: {
#if 0  /* local variables moved into u.ay */
  VdbeCursor *pCx;
#endif /* local variables moved into u.ay */
  static const int openFlags =
      SQLITE_OPEN_READWRITE |
      SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE |
      SQLITE_OPEN_DELETEONCLOSE |
      SQLITE_OPEN_TRANSIENT_DB;

  assert( pOp->p1>=0 );
  u.ay.pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( u.ay.pCx==0 ) goto no_mem;
  u.ay.pCx->nullRow = 1;
  rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
                           &u.ay.pCx->pBt);
  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeBeginTrans(u.ay.pCx->pBt, 1);
  }
  if( rc==SQLITE_OK ){
    /* If a transient index is required, create it by calling
    ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
    ** opening it. If a transient table is required, just use the
    ** automatically created table with root-page 1 (an INTKEY table).
    */
    if( pOp->p4.pKeyInfo ){
      int pgno;
      assert( pOp->p4type==P4_KEYINFO );
      rc = sqlite3BtreeCreateTable(u.ay.pCx->pBt, &pgno, BTREE_ZERODATA);
      if( rc==SQLITE_OK ){
        assert( pgno==MASTER_ROOT+1 );
        rc = sqlite3BtreeCursor(u.ay.pCx->pBt, pgno, 1,
                                (KeyInfo*)pOp->p4.z, u.ay.pCx->pCursor);
        u.ay.pCx->pKeyInfo = pOp->p4.pKeyInfo;
        u.ay.pCx->pKeyInfo->enc = ENC(p->db);
      }
      u.ay.pCx->isTable = 0;
    }else{
      rc = sqlite3BtreeCursor(u.ay.pCx->pBt, MASTER_ROOT, 1, 0, u.ay.pCx->pCursor);
      u.ay.pCx->isTable = 1;
    }
  }
  u.ay.pCx->isIndex = !u.ay.pCx->isTable;
  break;
}

/* Opcode: OpenPseudo P1 P2 P3 * *
**
** Open a new cursor that points to a fake table that contains a single
** row of data.  Any attempt to write a second row of data causes the
** first row to be deleted.  All data is deleted when the cursor is
** closed.
**
** A pseudo-table created by this opcode is useful for holding the
** NEW or OLD tables in a trigger.  Also used to hold the a single
** row output from the sorter so that the row can be decomposed into
** individual columns using the OP_Column opcode.
**
** When OP_Insert is executed to insert a row in to the pseudo table,
** the pseudo-table cursor may or may not make it's own copy of the
** original row data. If P2 is 0, then the pseudo-table will copy the
** original row data. Otherwise, a pointer to the original memory cell
** is stored. In this case, the vdbe program must ensure that the 
** memory cell containing the row data is not overwritten until the
** pseudo table is closed (or a new row is inserted into it).
**
** P3 is the number of fields in the records that will be stored by
** the pseudo-table.
*/
case OP_OpenPseudo: {
#if 0  /* local variables moved into u.az */
  VdbeCursor *pCx;
#endif /* local variables moved into u.az */

  assert( pOp->p1>=0 );
  u.az.pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
  if( u.az.pCx==0 ) goto no_mem;
  u.az.pCx->nullRow = 1;
  u.az.pCx->pseudoTable = 1;
  u.az.pCx->ephemPseudoTable = (u8)pOp->p2;
  u.az.pCx->isTable = 1;
  u.az.pCx->isIndex = 0;
  break;
}

/* Opcode: Close P1 * * * *
**
** Close a cursor previously opened as P1.  If P1 is not
** currently open, this instruction is a no-op.







|

|








|
|
|

|

|










|


|
|
|
|

|

|
|


|






|
|
|

|
<

|
<
<
|
<
<
<
<
<





|

|


|
|
|
|
<
|
|







54805
54806
54807
54808
54809
54810
54811
54812
54813
54814
54815
54816
54817
54818
54819
54820
54821
54822
54823
54824
54825
54826
54827
54828
54829
54830
54831
54832
54833
54834
54835
54836
54837
54838
54839
54840
54841
54842
54843
54844
54845
54846
54847
54848
54849
54850
54851
54852
54853
54854
54855
54856
54857
54858
54859
54860
54861
54862
54863
54864
54865

54866
54867


54868





54869
54870
54871
54872
54873
54874
54875
54876
54877
54878
54879
54880
54881
54882

54883
54884
54885
54886
54887
54888
54889
54890
54891
** This opcode was once called OpenTemp.  But that created
** confusion because the term "temp table", might refer either
** to a TEMP table at the SQL level, or to a table opened by
** this opcode.  Then this opcode was call OpenVirtual.  But
** that created confusion with the whole virtual-table idea.
*/
case OP_OpenEphemeral: {
#if 0  /* local variables moved into u.ax */
  VdbeCursor *pCx;
#endif /* local variables moved into u.ax */
  static const int openFlags =
      SQLITE_OPEN_READWRITE |
      SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE |
      SQLITE_OPEN_DELETEONCLOSE |
      SQLITE_OPEN_TRANSIENT_DB;

  assert( pOp->p1>=0 );
  u.ax.pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( u.ax.pCx==0 ) goto no_mem;
  u.ax.pCx->nullRow = 1;
  rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
                           &u.ax.pCx->pBt);
  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeBeginTrans(u.ax.pCx->pBt, 1);
  }
  if( rc==SQLITE_OK ){
    /* If a transient index is required, create it by calling
    ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
    ** opening it. If a transient table is required, just use the
    ** automatically created table with root-page 1 (an INTKEY table).
    */
    if( pOp->p4.pKeyInfo ){
      int pgno;
      assert( pOp->p4type==P4_KEYINFO );
      rc = sqlite3BtreeCreateTable(u.ax.pCx->pBt, &pgno, BTREE_ZERODATA);
      if( rc==SQLITE_OK ){
        assert( pgno==MASTER_ROOT+1 );
        rc = sqlite3BtreeCursor(u.ax.pCx->pBt, pgno, 1,
                                (KeyInfo*)pOp->p4.z, u.ax.pCx->pCursor);
        u.ax.pCx->pKeyInfo = pOp->p4.pKeyInfo;
        u.ax.pCx->pKeyInfo->enc = ENC(p->db);
      }
      u.ax.pCx->isTable = 0;
    }else{
      rc = sqlite3BtreeCursor(u.ax.pCx->pBt, MASTER_ROOT, 1, 0, u.ax.pCx->pCursor);
      u.ax.pCx->isTable = 1;
    }
  }
  u.ax.pCx->isIndex = !u.ax.pCx->isTable;
  break;
}

/* Opcode: OpenPseudo P1 P2 P3 * *
**
** Open a new cursor that points to a fake table that contains a single
** row of data.  The content of that one row in the content of memory
** register P2.  In other words, cursor P1 becomes an alias for the 
** MEM_Blob content contained in register P2.
**
** A pseudo-table created by this opcode is used to hold the a single

** row output from the sorter so that the row can be decomposed into
** individual columns using the OP_Column opcode.  The OP_Column opcode


** is the only cursor opcode that works with a pseudo-table.





**
** P3 is the number of fields in the records that will be stored by
** the pseudo-table.
*/
case OP_OpenPseudo: {
#if 0  /* local variables moved into u.ay */
  VdbeCursor *pCx;
#endif /* local variables moved into u.ay */

  assert( pOp->p1>=0 );
  u.ay.pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
  if( u.ay.pCx==0 ) goto no_mem;
  u.ay.pCx->nullRow = 1;
  u.ay.pCx->pseudoTableReg = pOp->p2;

  u.ay.pCx->isTable = 1;
  u.ay.pCx->isIndex = 0;
  break;
}

/* Opcode: Close P1 * * * *
**
** Close a cursor previously opened as P1.  If P1 is not
** currently open, this instruction is a no-op.
54038
54039
54040
54041
54042
54043
54044
54045
54046
54047
54048
54049
54050
54051
54052
54053
54054
54055
54056
54057

54058
54059
54060
54061
54062
54063
54064
54065
54066
54067
54068
54069
54070
54071
54072
54073
54074
54075
54076
54077
54078
54079
54080
54081
54082
54083
54084
54085
54086
54087
54088
54089
54090
54091
54092
54093
54094
54095
54096
54097
54098
54099
54100
54101
54102
54103
54104
54105
54106
54107
54108
54109
54110
54111
54112
54113
54114
54115
54116
54117
54118
54119
54120
54121
54122
54123
54124
54125
54126
54127
54128
54129
54130
54131
54132
54133
54134
54135
54136
54137
54138
54139
54140
54141
54142
54143
54144
54145
54146
54147
54148
54149
54150
54151
54152
54153
54154
54155
54156
54157
54158
54159
54160
54161
54162
54163
54164
54165
54166
54167
54168
54169
54170
54171
54172
54173
54174
54175
54176
54177
54178
54179
54180
54181
54182
54183
54184
54185
54186
54187
54188
54189
54190
54191
54192
54193
54194
54195
54196
54197
54198
54199
54200
54201
54202
54203
54204
54205
54206
**
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
*/
case OP_SeekLt:         /* jump, in3 */
case OP_SeekLe:         /* jump, in3 */
case OP_SeekGe:         /* jump, in3 */
case OP_SeekGt: {       /* jump, in3 */
#if 0  /* local variables moved into u.ba */
  int res;
  int oc;
  VdbeCursor *pC;
  UnpackedRecord r;
  int nField;
  i64 iKey;      /* The rowid we are to seek to */
#endif /* local variables moved into u.ba */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p2!=0 );
  u.ba.pC = p->apCsr[pOp->p1];
  assert( u.ba.pC!=0 );

  if( u.ba.pC->pCursor!=0 ){
    u.ba.oc = pOp->opcode;
    u.ba.pC->nullRow = 0;
    if( u.ba.pC->isTable ){
      /* The input value in P3 might be of any type: integer, real, string,
      ** blob, or NULL.  But it needs to be an integer before we can do
      ** the seek, so covert it. */
      applyNumericAffinity(pIn3);
      u.ba.iKey = sqlite3VdbeIntValue(pIn3);
      u.ba.pC->rowidIsValid = 0;

      /* If the P3 value could not be converted into an integer without
      ** loss of information, then special processing is required... */
      if( (pIn3->flags & MEM_Int)==0 ){
        if( (pIn3->flags & MEM_Real)==0 ){
          /* If the P3 value cannot be converted into any kind of a number,
          ** then the seek is not possible, so jump to P2 */
          pc = pOp->p2 - 1;
          break;
        }
        /* If we reach this point, then the P3 value must be a floating
        ** point number. */
        assert( (pIn3->flags & MEM_Real)!=0 );

        if( u.ba.iKey==SMALLEST_INT64 && (pIn3->r<(double)u.ba.iKey || pIn3->r>0) ){
          /* The P3 value is too large in magnitude to be expressed as an
          ** integer. */
          u.ba.res = 1;
          if( pIn3->r<0 ){
            if( u.ba.oc==OP_SeekGt || u.ba.oc==OP_SeekGe ){
              rc = sqlite3BtreeFirst(u.ba.pC->pCursor, &u.ba.res);
              if( rc!=SQLITE_OK ) goto abort_due_to_error;
            }
          }else{
            if( u.ba.oc==OP_SeekLt || u.ba.oc==OP_SeekLe ){
              rc = sqlite3BtreeLast(u.ba.pC->pCursor, &u.ba.res);
              if( rc!=SQLITE_OK ) goto abort_due_to_error;
            }
          }
          if( u.ba.res ){
            pc = pOp->p2 - 1;
          }
          break;
        }else if( u.ba.oc==OP_SeekLt || u.ba.oc==OP_SeekGe ){
          /* Use the ceiling() function to convert real->int */
          if( pIn3->r > (double)u.ba.iKey ) u.ba.iKey++;
        }else{
          /* Use the floor() function to convert real->int */
          assert( u.ba.oc==OP_SeekLe || u.ba.oc==OP_SeekGt );
          if( pIn3->r < (double)u.ba.iKey ) u.ba.iKey--;
        }
      }
      rc = sqlite3BtreeMovetoUnpacked(u.ba.pC->pCursor, 0, (u64)u.ba.iKey, 0, &u.ba.res);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      if( u.ba.res==0 ){
        u.ba.pC->rowidIsValid = 1;
        u.ba.pC->lastRowid = u.ba.iKey;
      }
    }else{
      u.ba.nField = pOp->p4.i;
      assert( pOp->p4type==P4_INT32 );
      assert( u.ba.nField>0 );
      u.ba.r.pKeyInfo = u.ba.pC->pKeyInfo;
      u.ba.r.nField = (u16)u.ba.nField;
      if( u.ba.oc==OP_SeekGt || u.ba.oc==OP_SeekLe ){
        u.ba.r.flags = UNPACKED_INCRKEY;
      }else{
        u.ba.r.flags = 0;
      }
      u.ba.r.aMem = &p->aMem[pOp->p3];
      rc = sqlite3BtreeMovetoUnpacked(u.ba.pC->pCursor, &u.ba.r, 0, 0, &u.ba.res);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      u.ba.pC->rowidIsValid = 0;
    }
    u.ba.pC->deferredMoveto = 0;
    u.ba.pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_TEST
    sqlite3_search_count++;
#endif
    if( u.ba.oc==OP_SeekGe || u.ba.oc==OP_SeekGt ){
      if( u.ba.res<0 || (u.ba.res==0 && u.ba.oc==OP_SeekGt) ){
        rc = sqlite3BtreeNext(u.ba.pC->pCursor, &u.ba.res);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
        u.ba.pC->rowidIsValid = 0;
      }else{
        u.ba.res = 0;
      }
    }else{
      assert( u.ba.oc==OP_SeekLt || u.ba.oc==OP_SeekLe );
      if( u.ba.res>0 || (u.ba.res==0 && u.ba.oc==OP_SeekLt) ){
        rc = sqlite3BtreePrevious(u.ba.pC->pCursor, &u.ba.res);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
        u.ba.pC->rowidIsValid = 0;
      }else{
        /* u.ba.res might be negative because the table is empty.  Check to
        ** see if this is the case.
        */
        u.ba.res = sqlite3BtreeEof(u.ba.pC->pCursor);
      }
    }
    assert( pOp->p2>0 );
    if( u.ba.res ){
      pc = pOp->p2 - 1;
    }
  }else{
    /* This happens when attempting to open the sqlite3_master table
    ** for read access returns SQLITE_EMPTY. In this case always
    ** take the jump (since there are no records in the table).
    */
    assert( u.ba.pC->pseudoTable==0 );
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Seek P1 P2 * * *
**
** P1 is an open table cursor and P2 is a rowid integer.  Arrange
** for P1 to move so that it points to the rowid given by P2.
**
** This is actually a deferred seek.  Nothing actually happens until
** the cursor is used to read a record.  That way, if no reads
** occur, no unnecessary I/O happens.
*/
case OP_Seek: {    /* in2 */
#if 0  /* local variables moved into u.bb */
  VdbeCursor *pC;
#endif /* local variables moved into u.bb */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bb.pC = p->apCsr[pOp->p1];
  assert( u.bb.pC!=0 );
  if( ALWAYS(u.bb.pC->pCursor!=0) ){
    assert( u.bb.pC->isTable );
    u.bb.pC->nullRow = 0;
    u.bb.pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
    u.bb.pC->rowidIsValid = 0;
    u.bb.pC->deferredMoveto = 1;
  }
  break;
}
  

/* Opcode: Found P1 P2 P3 * *
**







|






|



|
|
>
|
|
|
|




|
|














|


|

|
|



|
|



|



|

|


|
|


|



|
|
|


|

|
|
|
|
|

|

|
|



|

|
|



|
|
|

|

|


|
|
|

|

|


|



|







<















|

|


|
|
|
|
|
|
|
|







54949
54950
54951
54952
54953
54954
54955
54956
54957
54958
54959
54960
54961
54962
54963
54964
54965
54966
54967
54968
54969
54970
54971
54972
54973
54974
54975
54976
54977
54978
54979
54980
54981
54982
54983
54984
54985
54986
54987
54988
54989
54990
54991
54992
54993
54994
54995
54996
54997
54998
54999
55000
55001
55002
55003
55004
55005
55006
55007
55008
55009
55010
55011
55012
55013
55014
55015
55016
55017
55018
55019
55020
55021
55022
55023
55024
55025
55026
55027
55028
55029
55030
55031
55032
55033
55034
55035
55036
55037
55038
55039
55040
55041
55042
55043
55044
55045
55046
55047
55048
55049
55050
55051
55052
55053
55054
55055
55056
55057
55058
55059
55060
55061
55062
55063
55064
55065
55066
55067
55068
55069
55070
55071
55072
55073
55074
55075
55076
55077
55078
55079
55080
55081
55082

55083
55084
55085
55086
55087
55088
55089
55090
55091
55092
55093
55094
55095
55096
55097
55098
55099
55100
55101
55102
55103
55104
55105
55106
55107
55108
55109
55110
55111
55112
55113
55114
55115
55116
55117
**
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
*/
case OP_SeekLt:         /* jump, in3 */
case OP_SeekLe:         /* jump, in3 */
case OP_SeekGe:         /* jump, in3 */
case OP_SeekGt: {       /* jump, in3 */
#if 0  /* local variables moved into u.az */
  int res;
  int oc;
  VdbeCursor *pC;
  UnpackedRecord r;
  int nField;
  i64 iKey;      /* The rowid we are to seek to */
#endif /* local variables moved into u.az */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p2!=0 );
  u.az.pC = p->apCsr[pOp->p1];
  assert( u.az.pC!=0 );
  assert( u.az.pC->pseudoTableReg==0 );
  if( u.az.pC->pCursor!=0 ){
    u.az.oc = pOp->opcode;
    u.az.pC->nullRow = 0;
    if( u.az.pC->isTable ){
      /* The input value in P3 might be of any type: integer, real, string,
      ** blob, or NULL.  But it needs to be an integer before we can do
      ** the seek, so covert it. */
      applyNumericAffinity(pIn3);
      u.az.iKey = sqlite3VdbeIntValue(pIn3);
      u.az.pC->rowidIsValid = 0;

      /* If the P3 value could not be converted into an integer without
      ** loss of information, then special processing is required... */
      if( (pIn3->flags & MEM_Int)==0 ){
        if( (pIn3->flags & MEM_Real)==0 ){
          /* If the P3 value cannot be converted into any kind of a number,
          ** then the seek is not possible, so jump to P2 */
          pc = pOp->p2 - 1;
          break;
        }
        /* If we reach this point, then the P3 value must be a floating
        ** point number. */
        assert( (pIn3->flags & MEM_Real)!=0 );

        if( u.az.iKey==SMALLEST_INT64 && (pIn3->r<(double)u.az.iKey || pIn3->r>0) ){
          /* The P3 value is too large in magnitude to be expressed as an
          ** integer. */
          u.az.res = 1;
          if( pIn3->r<0 ){
            if( u.az.oc==OP_SeekGt || u.az.oc==OP_SeekGe ){
              rc = sqlite3BtreeFirst(u.az.pC->pCursor, &u.az.res);
              if( rc!=SQLITE_OK ) goto abort_due_to_error;
            }
          }else{
            if( u.az.oc==OP_SeekLt || u.az.oc==OP_SeekLe ){
              rc = sqlite3BtreeLast(u.az.pC->pCursor, &u.az.res);
              if( rc!=SQLITE_OK ) goto abort_due_to_error;
            }
          }
          if( u.az.res ){
            pc = pOp->p2 - 1;
          }
          break;
        }else if( u.az.oc==OP_SeekLt || u.az.oc==OP_SeekGe ){
          /* Use the ceiling() function to convert real->int */
          if( pIn3->r > (double)u.az.iKey ) u.az.iKey++;
        }else{
          /* Use the floor() function to convert real->int */
          assert( u.az.oc==OP_SeekLe || u.az.oc==OP_SeekGt );
          if( pIn3->r < (double)u.az.iKey ) u.az.iKey--;
        }
      }
      rc = sqlite3BtreeMovetoUnpacked(u.az.pC->pCursor, 0, (u64)u.az.iKey, 0, &u.az.res);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      if( u.az.res==0 ){
        u.az.pC->rowidIsValid = 1;
        u.az.pC->lastRowid = u.az.iKey;
      }
    }else{
      u.az.nField = pOp->p4.i;
      assert( pOp->p4type==P4_INT32 );
      assert( u.az.nField>0 );
      u.az.r.pKeyInfo = u.az.pC->pKeyInfo;
      u.az.r.nField = (u16)u.az.nField;
      if( u.az.oc==OP_SeekGt || u.az.oc==OP_SeekLe ){
        u.az.r.flags = UNPACKED_INCRKEY;
      }else{
        u.az.r.flags = 0;
      }
      u.az.r.aMem = &p->aMem[pOp->p3];
      rc = sqlite3BtreeMovetoUnpacked(u.az.pC->pCursor, &u.az.r, 0, 0, &u.az.res);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      u.az.pC->rowidIsValid = 0;
    }
    u.az.pC->deferredMoveto = 0;
    u.az.pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_TEST
    sqlite3_search_count++;
#endif
    if( u.az.oc==OP_SeekGe || u.az.oc==OP_SeekGt ){
      if( u.az.res<0 || (u.az.res==0 && u.az.oc==OP_SeekGt) ){
        rc = sqlite3BtreeNext(u.az.pC->pCursor, &u.az.res);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
        u.az.pC->rowidIsValid = 0;
      }else{
        u.az.res = 0;
      }
    }else{
      assert( u.az.oc==OP_SeekLt || u.az.oc==OP_SeekLe );
      if( u.az.res>0 || (u.az.res==0 && u.az.oc==OP_SeekLt) ){
        rc = sqlite3BtreePrevious(u.az.pC->pCursor, &u.az.res);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
        u.az.pC->rowidIsValid = 0;
      }else{
        /* u.az.res might be negative because the table is empty.  Check to
        ** see if this is the case.
        */
        u.az.res = sqlite3BtreeEof(u.az.pC->pCursor);
      }
    }
    assert( pOp->p2>0 );
    if( u.az.res ){
      pc = pOp->p2 - 1;
    }
  }else{
    /* This happens when attempting to open the sqlite3_master table
    ** for read access returns SQLITE_EMPTY. In this case always
    ** take the jump (since there are no records in the table).
    */

    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Seek P1 P2 * * *
**
** P1 is an open table cursor and P2 is a rowid integer.  Arrange
** for P1 to move so that it points to the rowid given by P2.
**
** This is actually a deferred seek.  Nothing actually happens until
** the cursor is used to read a record.  That way, if no reads
** occur, no unnecessary I/O happens.
*/
case OP_Seek: {    /* in2 */
#if 0  /* local variables moved into u.ba */
  VdbeCursor *pC;
#endif /* local variables moved into u.ba */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.ba.pC = p->apCsr[pOp->p1];
  assert( u.ba.pC!=0 );
  if( ALWAYS(u.ba.pC->pCursor!=0) ){
    assert( u.ba.pC->isTable );
    u.ba.pC->nullRow = 0;
    u.ba.pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
    u.ba.pC->rowidIsValid = 0;
    u.ba.pC->deferredMoveto = 1;
  }
  break;
}
  

/* Opcode: Found P1 P2 P3 * *
**
54230
54231
54232
54233
54234
54235
54236
54237
54238
54239
54240
54241
54242
54243
54244
54245
54246
54247
54248
54249
54250
54251
54252
54253
54254
54255
54256
54257
54258
54259
54260
54261
54262
54263
54264
54265
54266
54267
54268
54269
54270
54271
54272
54273
54274
54275
54276
54277
54278
54279
54280
54281
** to P2.  If an entry does existing, fall through.  The cursor is left
** pointing to the entry that matches.
**
** See also: Found, NotExists, IsUnique
*/
case OP_NotFound:       /* jump, in3 */
case OP_Found: {        /* jump, in3 */
#if 0  /* local variables moved into u.bc */
  int alreadyExists;
  VdbeCursor *pC;
  int res;
  UnpackedRecord *pIdxKey;
  char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
#endif /* local variables moved into u.bc */

  u.bc.alreadyExists = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bc.pC = p->apCsr[pOp->p1];
  assert( u.bc.pC!=0 );
  if( ALWAYS(u.bc.pC->pCursor!=0) ){

    assert( u.bc.pC->isTable==0 );
    assert( pIn3->flags & MEM_Blob );
    ExpandBlob(pIn3);
    u.bc.pIdxKey = sqlite3VdbeRecordUnpack(u.bc.pC->pKeyInfo, pIn3->n, pIn3->z,
                                      u.bc.aTempRec, sizeof(u.bc.aTempRec));
    if( u.bc.pIdxKey==0 ){
      goto no_mem;
    }
    if( pOp->opcode==OP_Found ){
      u.bc.pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
    }
    rc = sqlite3BtreeMovetoUnpacked(u.bc.pC->pCursor, u.bc.pIdxKey, 0, 0, &u.bc.res);
    sqlite3VdbeDeleteUnpackedRecord(u.bc.pIdxKey);
    if( rc!=SQLITE_OK ){
      break;
    }
    u.bc.alreadyExists = (u.bc.res==0);
    u.bc.pC->deferredMoveto = 0;
    u.bc.pC->cacheStatus = CACHE_STALE;
  }
  if( pOp->opcode==OP_Found ){
    if( u.bc.alreadyExists ) pc = pOp->p2 - 1;
  }else{
    if( !u.bc.alreadyExists ) pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IsUnique P1 P2 P3 P4 *
**
** Cursor P1 is open on an index.  So it has no data and its key consists 







|





|

|

|
|
|

|


|
|
|



|

|
|



|
|
|


|

|







55141
55142
55143
55144
55145
55146
55147
55148
55149
55150
55151
55152
55153
55154
55155
55156
55157
55158
55159
55160
55161
55162
55163
55164
55165
55166
55167
55168
55169
55170
55171
55172
55173
55174
55175
55176
55177
55178
55179
55180
55181
55182
55183
55184
55185
55186
55187
55188
55189
55190
55191
55192
** to P2.  If an entry does existing, fall through.  The cursor is left
** pointing to the entry that matches.
**
** See also: Found, NotExists, IsUnique
*/
case OP_NotFound:       /* jump, in3 */
case OP_Found: {        /* jump, in3 */
#if 0  /* local variables moved into u.bb */
  int alreadyExists;
  VdbeCursor *pC;
  int res;
  UnpackedRecord *pIdxKey;
  char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
#endif /* local variables moved into u.bb */

  u.bb.alreadyExists = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bb.pC = p->apCsr[pOp->p1];
  assert( u.bb.pC!=0 );
  if( ALWAYS(u.bb.pC->pCursor!=0) ){

    assert( u.bb.pC->isTable==0 );
    assert( pIn3->flags & MEM_Blob );
    ExpandBlob(pIn3);
    u.bb.pIdxKey = sqlite3VdbeRecordUnpack(u.bb.pC->pKeyInfo, pIn3->n, pIn3->z,
                                      u.bb.aTempRec, sizeof(u.bb.aTempRec));
    if( u.bb.pIdxKey==0 ){
      goto no_mem;
    }
    if( pOp->opcode==OP_Found ){
      u.bb.pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
    }
    rc = sqlite3BtreeMovetoUnpacked(u.bb.pC->pCursor, u.bb.pIdxKey, 0, 0, &u.bb.res);
    sqlite3VdbeDeleteUnpackedRecord(u.bb.pIdxKey);
    if( rc!=SQLITE_OK ){
      break;
    }
    u.bb.alreadyExists = (u.bb.res==0);
    u.bb.pC->deferredMoveto = 0;
    u.bb.pC->cacheStatus = CACHE_STALE;
  }
  if( pOp->opcode==OP_Found ){
    if( u.bb.alreadyExists ) pc = pOp->p2 - 1;
  }else{
    if( !u.bb.alreadyExists ) pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IsUnique P1 P2 P3 P4 *
**
** Cursor P1 is open on an index.  So it has no data and its key consists 
54298
54299
54300
54301
54302
54303
54304
54305
54306
54307
54308
54309
54310
54311
54312
54313
54314
54315
54316
54317
54318
54319
54320
54321
54322
54323
54324
54325
54326
54327
54328
54329
54330
54331
54332
54333
54334
54335
54336
54337
54338
54339
54340
54341
54342
54343
54344
54345
54346
54347
54348
54349
54350
54351
54352
54353
54354
54355
54356
54357
54358
54359
54360
54361
54362
54363
54364
54365
54366
54367
54368
54369
54370
54371
54372
54373
54374
54375
54376
54377
54378
54379
54380
54381
54382
54383
54384
54385
54386
54387
54388
54389

54390
54391
54392
54393
54394
54395
54396
54397
54398
54399
54400
54401
54402
54403
54404
54405
54406
54407
54408
54409
54410
54411
54412
54413
54414
54415
54416
54417
54418
54419
54420
** to instruction P2. Otherwise, the rowid of the conflicting index
** entry is copied to register P3 and control falls through to the next
** instruction.
**
** See also: NotFound, NotExists, Found
*/
case OP_IsUnique: {        /* jump, in3 */
#if 0  /* local variables moved into u.bd */
  u16 ii;
  VdbeCursor *pCx;
  BtCursor *pCrsr;
  u16 nField;
  Mem *aMem;
  UnpackedRecord r;                  /* B-Tree index search key */
  i64 R;                             /* Rowid stored in register P3 */
#endif /* local variables moved into u.bd */

  u.bd.aMem = &p->aMem[pOp->p4.i];
  /* Assert that the values of parameters P1 and P4 are in range. */
  assert( pOp->p4type==P4_INT32 );
  assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );

  /* Find the index cursor. */
  u.bd.pCx = p->apCsr[pOp->p1];
  assert( u.bd.pCx->deferredMoveto==0 );
  u.bd.pCx->seekResult = 0;
  u.bd.pCx->cacheStatus = CACHE_STALE;
  u.bd.pCrsr = u.bd.pCx->pCursor;

  /* If any of the values are NULL, take the jump. */
  u.bd.nField = u.bd.pCx->pKeyInfo->nField;
  for(u.bd.ii=0; u.bd.ii<u.bd.nField; u.bd.ii++){
    if( u.bd.aMem[u.bd.ii].flags & MEM_Null ){
      pc = pOp->p2 - 1;
      u.bd.pCrsr = 0;
      break;
    }
  }
  assert( (u.bd.aMem[u.bd.nField].flags & MEM_Null)==0 );

  if( u.bd.pCrsr!=0 ){
    /* Populate the index search key. */
    u.bd.r.pKeyInfo = u.bd.pCx->pKeyInfo;
    u.bd.r.nField = u.bd.nField + 1;
    u.bd.r.flags = UNPACKED_PREFIX_SEARCH;
    u.bd.r.aMem = u.bd.aMem;

    /* Extract the value of u.bd.R from register P3. */
    sqlite3VdbeMemIntegerify(pIn3);
    u.bd.R = pIn3->u.i;

    /* Search the B-Tree index. If no conflicting record is found, jump
    ** to P2. Otherwise, copy the rowid of the conflicting record to
    ** register P3 and fall through to the next instruction.  */
    rc = sqlite3BtreeMovetoUnpacked(u.bd.pCrsr, &u.bd.r, 0, 0, &u.bd.pCx->seekResult);
    if( (u.bd.r.flags & UNPACKED_PREFIX_SEARCH) || u.bd.r.rowid==u.bd.R ){
      pc = pOp->p2 - 1;
    }else{
      pIn3->u.i = u.bd.r.rowid;
    }
  }
  break;
}

/* Opcode: NotExists P1 P2 P3 * *
**
** Use the content of register P3 as a integer key.  If a record 
** with that key does not exist in table of P1, then jump to P2. 
** If the record does exist, then fall thru.  The cursor is left 
** pointing to the record if it exists.
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and that P1 is a table whereas
** NotFound assumes key is a blob constructed from MakeRecord and
** P1 is an index.
**
** See also: Found, NotFound, IsUnique
*/
case OP_NotExists: {        /* jump, in3 */
#if 0  /* local variables moved into u.be */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  u64 iKey;
#endif /* local variables moved into u.be */

  assert( pIn3->flags & MEM_Int );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.be.pC = p->apCsr[pOp->p1];
  assert( u.be.pC!=0 );
  assert( u.be.pC->isTable );

  u.be.pCrsr = u.be.pC->pCursor;
  if( u.be.pCrsr!=0 ){
    u.be.res = 0;
    u.be.iKey = pIn3->u.i;
    rc = sqlite3BtreeMovetoUnpacked(u.be.pCrsr, 0, u.be.iKey, 0, &u.be.res);
    u.be.pC->lastRowid = pIn3->u.i;
    u.be.pC->rowidIsValid = u.be.res==0 ?1:0;
    u.be.pC->nullRow = 0;
    u.be.pC->cacheStatus = CACHE_STALE;
    u.be.pC->deferredMoveto = 0;
    if( u.be.res!=0 ){
      pc = pOp->p2 - 1;
      assert( u.be.pC->rowidIsValid==0 );
    }
    u.be.pC->seekResult = u.be.res;
  }else{
    /* This happens when an attempt to open a read cursor on the
    ** sqlite_master table returns SQLITE_EMPTY.
    */
    assert( !u.be.pC->pseudoTable );
    assert( u.be.pC->isTable );
    pc = pOp->p2 - 1;
    assert( u.be.pC->rowidIsValid==0 );
    u.be.pC->seekResult = 0;
  }
  break;
}

/* Opcode: Sequence P1 P2 * * *
**
** Find the next available sequence number for cursor P1.







|







|

|






|
|
|
|
|


|
|
|

|



|

|

|
|
|
|

|

|




|
|


|




















|




|



|
|
|
>
|
|
|
|
|
|
|
|
|
|
|

|

|




<
<

|
|







55209
55210
55211
55212
55213
55214
55215
55216
55217
55218
55219
55220
55221
55222
55223
55224
55225
55226
55227
55228
55229
55230
55231
55232
55233
55234
55235
55236
55237
55238
55239
55240
55241
55242
55243
55244
55245
55246
55247
55248
55249
55250
55251
55252
55253
55254
55255
55256
55257
55258
55259
55260
55261
55262
55263
55264
55265
55266
55267
55268
55269
55270
55271
55272
55273
55274
55275
55276
55277
55278
55279
55280
55281
55282
55283
55284
55285
55286
55287
55288
55289
55290
55291
55292
55293
55294
55295
55296
55297
55298
55299
55300
55301
55302
55303
55304
55305
55306
55307
55308
55309
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320


55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
** to instruction P2. Otherwise, the rowid of the conflicting index
** entry is copied to register P3 and control falls through to the next
** instruction.
**
** See also: NotFound, NotExists, Found
*/
case OP_IsUnique: {        /* jump, in3 */
#if 0  /* local variables moved into u.bc */
  u16 ii;
  VdbeCursor *pCx;
  BtCursor *pCrsr;
  u16 nField;
  Mem *aMem;
  UnpackedRecord r;                  /* B-Tree index search key */
  i64 R;                             /* Rowid stored in register P3 */
#endif /* local variables moved into u.bc */

  u.bc.aMem = &p->aMem[pOp->p4.i];
  /* Assert that the values of parameters P1 and P4 are in range. */
  assert( pOp->p4type==P4_INT32 );
  assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );

  /* Find the index cursor. */
  u.bc.pCx = p->apCsr[pOp->p1];
  assert( u.bc.pCx->deferredMoveto==0 );
  u.bc.pCx->seekResult = 0;
  u.bc.pCx->cacheStatus = CACHE_STALE;
  u.bc.pCrsr = u.bc.pCx->pCursor;

  /* If any of the values are NULL, take the jump. */
  u.bc.nField = u.bc.pCx->pKeyInfo->nField;
  for(u.bc.ii=0; u.bc.ii<u.bc.nField; u.bc.ii++){
    if( u.bc.aMem[u.bc.ii].flags & MEM_Null ){
      pc = pOp->p2 - 1;
      u.bc.pCrsr = 0;
      break;
    }
  }
  assert( (u.bc.aMem[u.bc.nField].flags & MEM_Null)==0 );

  if( u.bc.pCrsr!=0 ){
    /* Populate the index search key. */
    u.bc.r.pKeyInfo = u.bc.pCx->pKeyInfo;
    u.bc.r.nField = u.bc.nField + 1;
    u.bc.r.flags = UNPACKED_PREFIX_SEARCH;
    u.bc.r.aMem = u.bc.aMem;

    /* Extract the value of u.bc.R from register P3. */
    sqlite3VdbeMemIntegerify(pIn3);
    u.bc.R = pIn3->u.i;

    /* Search the B-Tree index. If no conflicting record is found, jump
    ** to P2. Otherwise, copy the rowid of the conflicting record to
    ** register P3 and fall through to the next instruction.  */
    rc = sqlite3BtreeMovetoUnpacked(u.bc.pCrsr, &u.bc.r, 0, 0, &u.bc.pCx->seekResult);
    if( (u.bc.r.flags & UNPACKED_PREFIX_SEARCH) || u.bc.r.rowid==u.bc.R ){
      pc = pOp->p2 - 1;
    }else{
      pIn3->u.i = u.bc.r.rowid;
    }
  }
  break;
}

/* Opcode: NotExists P1 P2 P3 * *
**
** Use the content of register P3 as a integer key.  If a record 
** with that key does not exist in table of P1, then jump to P2. 
** If the record does exist, then fall thru.  The cursor is left 
** pointing to the record if it exists.
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and that P1 is a table whereas
** NotFound assumes key is a blob constructed from MakeRecord and
** P1 is an index.
**
** See also: Found, NotFound, IsUnique
*/
case OP_NotExists: {        /* jump, in3 */
#if 0  /* local variables moved into u.bd */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  u64 iKey;
#endif /* local variables moved into u.bd */

  assert( pIn3->flags & MEM_Int );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bd.pC = p->apCsr[pOp->p1];
  assert( u.bd.pC!=0 );
  assert( u.bd.pC->isTable );
  assert( u.bd.pC->pseudoTableReg==0 );
  u.bd.pCrsr = u.bd.pC->pCursor;
  if( u.bd.pCrsr!=0 ){
    u.bd.res = 0;
    u.bd.iKey = pIn3->u.i;
    rc = sqlite3BtreeMovetoUnpacked(u.bd.pCrsr, 0, u.bd.iKey, 0, &u.bd.res);
    u.bd.pC->lastRowid = pIn3->u.i;
    u.bd.pC->rowidIsValid = u.bd.res==0 ?1:0;
    u.bd.pC->nullRow = 0;
    u.bd.pC->cacheStatus = CACHE_STALE;
    u.bd.pC->deferredMoveto = 0;
    if( u.bd.res!=0 ){
      pc = pOp->p2 - 1;
      assert( u.bd.pC->rowidIsValid==0 );
    }
    u.bd.pC->seekResult = u.bd.res;
  }else{
    /* This happens when an attempt to open a read cursor on the
    ** sqlite_master table returns SQLITE_EMPTY.
    */


    pc = pOp->p2 - 1;
    assert( u.bd.pC->rowidIsValid==0 );
    u.bd.pC->seekResult = 0;
  }
  break;
}

/* Opcode: Sequence P1 P2 * * *
**
** Find the next available sequence number for cursor P1.
54434
54435
54436
54437
54438
54439
54440
54441
54442
54443
54444
54445
54446
54447
54448
54449
54450
54451
54452
54453
54454

54455
54456
54457
54458
54459
54460
54461
54462
54463
54464
54465
54466
54467
54468
54469
54470
54471
54472
54473
54474
54475
54476
54477
54478
54479
54480
54481
54482
54483
54484
54485
54486
54487
54488
54489
54490
54491
54492
54493
54494
54495
54496
54497
54498
54499
54500
54501
54502
54503
54504
54505
54506
54507
54508
54509
54510
54511
54512
54513

54514








54515


54516
54517
54518
54519
54520
54521
54522
54523
54524
54525
54526
54527
54528
54529
54530
54531
54532
54533
54534
54535
54536
54537
54538
54539
54540
54541
54542
54543
54544
54545
54546
54547
54548
54549
54550
54551
54552
54553
54554
54555
54556
54557
54558
54559
54560
54561
54562
54563
54564
54565
54566
54567
54568
54569
54570
54571
54572













54573
54574
54575
54576
54577
54578
54579
54580
54581
54582
54583
54584
54585
54586
54587
54588
54589
54590
54591
54592
54593
54594
54595
54596
54597
54598
54599
54600
54601
54602
54603
54604
54605

54606
54607
54608
54609
54610
54611
54612
54613
54614
54615
54616
54617
54618
54619
54620
54621
54622
54623
54624
54625
54626
54627
54628
54629
54630
54631
54632
54633
54634
54635
54636
54637
54638
54639
54640
54641
54642
54643
54644
54645
54646
54647
54648
54649
54650
54651
54652
54653
54654
54655
54656
54657
54658
54659
54660
54661
54662
54663
54664
54665
54666
54667
54668
54669
54670
54671
54672
54673
/* Opcode: NewRowid P1 P2 P3 * *
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to.  The new record number is written
** written to register P2.
**
** If P3>0 then P3 is a register that holds the largest previously
** generated record number.  No new record numbers are allowed to be less
** than this value.  When this value reaches its maximum, a SQLITE_FULL
** error is generated.  The P3 register is updated with the generated
** record number.  This P3 mechanism is used to help implement the
** AUTOINCREMENT feature.
*/
case OP_NewRowid: {           /* out2-prerelease */
#if 0  /* local variables moved into u.bf */
  i64 v;                 /* The new rowid */
  VdbeCursor *pC;        /* Cursor of table to get the new rowid */
  int res;               /* Result of an sqlite3BtreeLast() */
  int cnt;               /* Counter to limit the number of searches */
  Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */

#endif /* local variables moved into u.bf */

  u.bf.v = 0;
  u.bf.res = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bf.pC = p->apCsr[pOp->p1];
  assert( u.bf.pC!=0 );
  if( NEVER(u.bf.pC->pCursor==0) ){
    /* The zero initialization above is all that is needed */
  }else{
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
    **
    ** First we attempt to find the largest existing rowid and add one
    ** to that.  But if the largest existing rowid is already the maximum
    ** positive integer, we have to fall through to the second
    ** probabilistic algorithm
    **
    ** The second algorithm is to select a rowid at random and see if
    ** it already exists in the table.  If it does not exist, we have
    ** succeeded.  If the random rowid does exist, we select a new one
    ** and try again, up to 100 times.
    */
    assert( u.bf.pC->isTable );
    u.bf.cnt = 0;

#ifdef SQLITE_32BIT_ROWID
#   define MAX_ROWID 0x7fffffff
#else
    /* Some compilers complain about constants of the form 0x7fffffffffffffff.
    ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
    ** to provide the constant while making all compilers happy.
    */
#   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
#endif

    if( !u.bf.pC->useRandomRowid ){
      u.bf.v = sqlite3BtreeGetCachedRowid(u.bf.pC->pCursor);
      if( u.bf.v==0 ){
        rc = sqlite3BtreeLast(u.bf.pC->pCursor, &u.bf.res);
        if( rc!=SQLITE_OK ){
          goto abort_due_to_error;
        }
        if( u.bf.res ){
          u.bf.v = 1;
        }else{
          assert( sqlite3BtreeCursorIsValid(u.bf.pC->pCursor) );
          rc = sqlite3BtreeKeySize(u.bf.pC->pCursor, &u.bf.v);
          assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
          if( u.bf.v==MAX_ROWID ){
            u.bf.pC->useRandomRowid = 1;
          }else{
            u.bf.v++;
          }
        }
      }

#ifndef SQLITE_OMIT_AUTOINCREMENT
      if( pOp->p3 ){

        assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */








        u.bf.pMem = &p->aMem[pOp->p3];


	REGISTER_TRACE(pOp->p3, u.bf.pMem);
        sqlite3VdbeMemIntegerify(u.bf.pMem);
        assert( (u.bf.pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
        if( u.bf.pMem->u.i==MAX_ROWID || u.bf.pC->useRandomRowid ){
          rc = SQLITE_FULL;
          goto abort_due_to_error;
        }
        if( u.bf.v<u.bf.pMem->u.i+1 ){
          u.bf.v = u.bf.pMem->u.i + 1;
        }
        u.bf.pMem->u.i = u.bf.v;
      }
#endif

      sqlite3BtreeSetCachedRowid(u.bf.pC->pCursor, u.bf.v<MAX_ROWID ? u.bf.v+1 : 0);
    }
    if( u.bf.pC->useRandomRowid ){
      assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
                             ** an AUTOINCREMENT table. */
      u.bf.v = db->lastRowid;
      u.bf.cnt = 0;
      do{
        if( u.bf.cnt==0 && (u.bf.v&0xffffff)==u.bf.v ){
          u.bf.v++;
        }else{
          sqlite3_randomness(sizeof(u.bf.v), &u.bf.v);
          if( u.bf.cnt<5 ) u.bf.v &= 0xffffff;
        }
        rc = sqlite3BtreeMovetoUnpacked(u.bf.pC->pCursor, 0, (u64)u.bf.v, 0, &u.bf.res);
        u.bf.cnt++;
      }while( u.bf.cnt<100 && rc==SQLITE_OK && u.bf.res==0 );
      if( rc==SQLITE_OK && u.bf.res==0 ){
        rc = SQLITE_FULL;
        goto abort_due_to_error;
      }
    }
    u.bf.pC->rowidIsValid = 0;
    u.bf.pC->deferredMoveto = 0;
    u.bf.pC->cacheStatus = CACHE_STALE;
  }
  MemSetTypeFlag(pOut, MEM_Int);
  pOut->u.i = u.bf.v;
  break;
}

/* Opcode: Insert P1 P2 P3 P4 P5
**
** Write an entry into the table of cursor P1.  A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten.  The data is the value stored register
** number P2. The key is stored in register P3. The key must
** be an integer.
**
** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
** then rowid is stored for subsequent return by the
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).













**
** Parameter P4 may point to a string containing the table-name, or
** may be NULL. If it is not NULL, then the update-hook 
** (sqlite3.xUpdateCallback) is invoked following a successful insert.
**
** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
** allocated, then ownership of P2 is transferred to the pseudo-cursor
** and register P2 becomes ephemeral.  If the cursor is changed, the
** value of register P2 will then change.  Make sure this does not
** cause any problems.)
**
** This instruction only works on tables.  The equivalent instruction
** for indices is OP_IdxInsert.
*/
case OP_Insert: {
#if 0  /* local variables moved into u.bg */
  Mem *pData;
  Mem *pKey;
  i64 iKey;   /* The integer ROWID or key for the record to be inserted */
  VdbeCursor *pC;
  int nZero;
  int seekResult;
  const char *zDb;
  const char *zTbl;
  int op;
#endif /* local variables moved into u.bg */

  u.bg.pData = &p->aMem[pOp->p2];
  u.bg.pKey = &p->aMem[pOp->p3];
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bg.pC = p->apCsr[pOp->p1];
  assert( u.bg.pC!=0 );
  assert( u.bg.pC->pCursor!=0 || u.bg.pC->pseudoTable );

  assert( u.bg.pKey->flags & MEM_Int );
  assert( u.bg.pC->isTable );
  REGISTER_TRACE(pOp->p2, u.bg.pData);
  REGISTER_TRACE(pOp->p3, u.bg.pKey);

  u.bg.iKey = u.bg.pKey->u.i;
  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
  if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = u.bg.pKey->u.i;
  if( u.bg.pData->flags & MEM_Null ){
    u.bg.pData->z = 0;
    u.bg.pData->n = 0;
  }else{
    assert( u.bg.pData->flags & (MEM_Blob|MEM_Str) );
  }
  if( u.bg.pC->pseudoTable ){
    if( !u.bg.pC->ephemPseudoTable ){
      sqlite3DbFree(db, u.bg.pC->pData);
    }
    u.bg.pC->iKey = u.bg.iKey;
    u.bg.pC->nData = u.bg.pData->n;
    if( u.bg.pC->ephemPseudoTable || u.bg.pData->z==u.bg.pData->zMalloc ){
      u.bg.pC->pData = u.bg.pData->z;
      if( !u.bg.pC->ephemPseudoTable ){
        u.bg.pData->flags &= ~MEM_Dyn;
        u.bg.pData->flags |= MEM_Ephem;
        u.bg.pData->zMalloc = 0;
      }
    }else{
      u.bg.pC->pData = sqlite3Malloc( u.bg.pC->nData+2 );
      if( !u.bg.pC->pData ) goto no_mem;
      memcpy(u.bg.pC->pData, u.bg.pData->z, u.bg.pC->nData);
      u.bg.pC->pData[u.bg.pC->nData] = 0;
      u.bg.pC->pData[u.bg.pC->nData+1] = 0;
    }
    u.bg.pC->nullRow = 0;
  }else{
    u.bg.seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? u.bg.pC->seekResult : 0);
    if( u.bg.pData->flags & MEM_Zero ){
      u.bg.nZero = u.bg.pData->u.nZero;
    }else{
      u.bg.nZero = 0;
    }
    sqlite3BtreeSetCachedRowid(u.bg.pC->pCursor, 0);
    rc = sqlite3BtreeInsert(u.bg.pC->pCursor, 0, u.bg.iKey,
                            u.bg.pData->z, u.bg.pData->n, u.bg.nZero,
                            pOp->p5 & OPFLAG_APPEND, u.bg.seekResult
    );
  }

  u.bg.pC->rowidIsValid = 0;
  u.bg.pC->deferredMoveto = 0;
  u.bg.pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    u.bg.zDb = db->aDb[u.bg.pC->iDb].zName;
    u.bg.zTbl = pOp->p4.z;
    u.bg.op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
    assert( u.bg.pC->isTable );
    db->xUpdateCallback(db->pUpdateArg, u.bg.op, u.bg.zDb, u.bg.zTbl, u.bg.iKey);
    assert( u.bg.pC->iDb>=0 );
  }
  break;
}

/* Opcode: Delete P1 P2 * P4 *
**
** Delete the record at which the P1 cursor is currently pointing.







|
|
|
|
|



|





>
|

|
|

|
|
|















|
|











|
|
|
|



|
|

|
|

|
|

|






>
|
>
>
>
>
>
>
>
>
|
>
>
|
|
|
|



|
|

|



|

|


|
|

|
|

|
|

|
|
|
|




|
|
|


|







|

|





>
>
>
>
>
>
>
>
>
>
>
>
>















|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
>
|
|
|
|

|

|
|
|
|

|

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
|
|
|
|
|
|
|
|
|
<
<
|
|
|



|
|
|
|
|
|







55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
55400
55401
55402
55403
55404
55405
55406
55407
55408
55409
55410
55411
55412
55413
55414
55415
55416
55417
55418
55419
55420
55421
55422
55423
55424
55425
55426
55427
55428
55429
55430
55431
55432
55433
55434
55435
55436
55437
55438
55439
55440
55441
55442
55443
55444
55445
55446
55447
55448
55449
55450
55451
55452
55453
55454
55455
55456
55457
55458
55459
55460
55461
55462
55463
55464
55465
55466
55467
55468
55469
55470
55471
55472
55473
55474
55475
55476
55477
55478
55479
55480
55481
55482
55483
55484
55485
55486
55487
55488
55489
55490
55491
55492
55493
55494
55495
55496
55497
55498
55499
55500
55501
55502
55503
55504
55505
55506
55507
55508
55509
55510
55511
55512
55513
55514
55515
55516
55517
55518
55519
55520
55521
55522
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
55553
55554
55555






















55556
55557
55558
55559
55560
55561
55562
55563
55564
55565
55566


55567
55568
55569
55570
55571
55572
55573
55574
55575
55576
55577
55578
55579
55580
55581
55582
55583
55584
55585
/* Opcode: NewRowid P1 P2 P3 * *
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to.  The new record number is written
** written to register P2.
**
** If P3>0 then P3 is a register in the root frame of this VDBE that holds 
** the largest previously generated record number. No new record numbers are
** allowed to be less than this value. When this value reaches its maximum, 
** a SQLITE_FULL error is generated. The P3 register is updated with the '
** generated record number. This P3 mechanism is used to help implement the
** AUTOINCREMENT feature.
*/
case OP_NewRowid: {           /* out2-prerelease */
#if 0  /* local variables moved into u.be */
  i64 v;                 /* The new rowid */
  VdbeCursor *pC;        /* Cursor of table to get the new rowid */
  int res;               /* Result of an sqlite3BtreeLast() */
  int cnt;               /* Counter to limit the number of searches */
  Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
  VdbeFrame *pFrame;     /* Root frame of VDBE */
#endif /* local variables moved into u.be */

  u.be.v = 0;
  u.be.res = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.be.pC = p->apCsr[pOp->p1];
  assert( u.be.pC!=0 );
  if( NEVER(u.be.pC->pCursor==0) ){
    /* The zero initialization above is all that is needed */
  }else{
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
    **
    ** First we attempt to find the largest existing rowid and add one
    ** to that.  But if the largest existing rowid is already the maximum
    ** positive integer, we have to fall through to the second
    ** probabilistic algorithm
    **
    ** The second algorithm is to select a rowid at random and see if
    ** it already exists in the table.  If it does not exist, we have
    ** succeeded.  If the random rowid does exist, we select a new one
    ** and try again, up to 100 times.
    */
    assert( u.be.pC->isTable );
    u.be.cnt = 0;

#ifdef SQLITE_32BIT_ROWID
#   define MAX_ROWID 0x7fffffff
#else
    /* Some compilers complain about constants of the form 0x7fffffffffffffff.
    ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
    ** to provide the constant while making all compilers happy.
    */
#   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
#endif

    if( !u.be.pC->useRandomRowid ){
      u.be.v = sqlite3BtreeGetCachedRowid(u.be.pC->pCursor);
      if( u.be.v==0 ){
        rc = sqlite3BtreeLast(u.be.pC->pCursor, &u.be.res);
        if( rc!=SQLITE_OK ){
          goto abort_due_to_error;
        }
        if( u.be.res ){
          u.be.v = 1;
        }else{
          assert( sqlite3BtreeCursorIsValid(u.be.pC->pCursor) );
          rc = sqlite3BtreeKeySize(u.be.pC->pCursor, &u.be.v);
          assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
          if( u.be.v==MAX_ROWID ){
            u.be.pC->useRandomRowid = 1;
          }else{
            u.be.v++;
          }
        }
      }

#ifndef SQLITE_OMIT_AUTOINCREMENT
      if( pOp->p3 ){
        /* Assert that P3 is a valid memory cell. */
        assert( pOp->p3>0 );
        if( p->pFrame ){
          for(u.be.pFrame=p->pFrame; u.be.pFrame->pParent; u.be.pFrame=u.be.pFrame->pParent);
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=u.be.pFrame->nMem );
          u.be.pMem = &u.be.pFrame->aMem[pOp->p3];
        }else{
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=p->nMem );
          u.be.pMem = &p->aMem[pOp->p3];
        }

        REGISTER_TRACE(pOp->p3, u.be.pMem);
        sqlite3VdbeMemIntegerify(u.be.pMem);
        assert( (u.be.pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
        if( u.be.pMem->u.i==MAX_ROWID || u.be.pC->useRandomRowid ){
          rc = SQLITE_FULL;
          goto abort_due_to_error;
        }
        if( u.be.v<u.be.pMem->u.i+1 ){
          u.be.v = u.be.pMem->u.i + 1;
        }
        u.be.pMem->u.i = u.be.v;
      }
#endif

      sqlite3BtreeSetCachedRowid(u.be.pC->pCursor, u.be.v<MAX_ROWID ? u.be.v+1 : 0);
    }
    if( u.be.pC->useRandomRowid ){
      assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
                             ** an AUTOINCREMENT table. */
      u.be.v = db->lastRowid;
      u.be.cnt = 0;
      do{
        if( u.be.cnt==0 && (u.be.v&0xffffff)==u.be.v ){
          u.be.v++;
        }else{
          sqlite3_randomness(sizeof(u.be.v), &u.be.v);
          if( u.be.cnt<5 ) u.be.v &= 0xffffff;
        }
        rc = sqlite3BtreeMovetoUnpacked(u.be.pC->pCursor, 0, (u64)u.be.v, 0, &u.be.res);
        u.be.cnt++;
      }while( u.be.cnt<100 && rc==SQLITE_OK && u.be.res==0 );
      if( rc==SQLITE_OK && u.be.res==0 ){
        rc = SQLITE_FULL;
        goto abort_due_to_error;
      }
    }
    u.be.pC->rowidIsValid = 0;
    u.be.pC->deferredMoveto = 0;
    u.be.pC->cacheStatus = CACHE_STALE;
  }
  MemSetTypeFlag(pOut, MEM_Int);
  pOut->u.i = u.be.v;
  break;
}

/* Opcode: Insert P1 P2 P3 P4 P5
**
** Write an entry into the table of cursor P1.  A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten.  The data is the value MEM_Blob stored in register
** number P2. The key is stored in register P3. The key must
** be a MEM_Int.
**
** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
** then rowid is stored for subsequent return by the
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
**
** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
** the last seek operation (OP_NotExists) was a success, then this
** operation will not attempt to find the appropriate row before doing
** the insert but will instead overwrite the row that the cursor is
** currently pointing to.  Presumably, the prior OP_NotExists opcode
** has already positioned the cursor correctly.  This is an optimization
** that boosts performance by avoiding redundant seeks.
**
** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
** is part of an INSERT operation.  The difference is only important to
** the update hook.
**
** Parameter P4 may point to a string containing the table-name, or
** may be NULL. If it is not NULL, then the update-hook 
** (sqlite3.xUpdateCallback) is invoked following a successful insert.
**
** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
** allocated, then ownership of P2 is transferred to the pseudo-cursor
** and register P2 becomes ephemeral.  If the cursor is changed, the
** value of register P2 will then change.  Make sure this does not
** cause any problems.)
**
** This instruction only works on tables.  The equivalent instruction
** for indices is OP_IdxInsert.
*/
case OP_Insert: {
#if 0  /* local variables moved into u.bf */
  Mem *pData;       /* MEM cell holding data for the record to be inserted */
  Mem *pKey;        /* MEM cell holding key  for the record */
  i64 iKey;         /* The integer ROWID or key for the record to be inserted */
  VdbeCursor *pC;   /* Cursor to table into which insert is written */
  int nZero;        /* Number of zero-bytes to append */
  int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
  const char *zDb;  /* database name - used by the update hook */
  const char *zTbl; /* Table name - used by the opdate hook */
  int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
#endif /* local variables moved into u.bf */

  u.bf.pData = &p->aMem[pOp->p2];
  u.bf.pKey = &p->aMem[pOp->p3];
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bf.pC = p->apCsr[pOp->p1];
  assert( u.bf.pC!=0 );
  assert( u.bf.pC->pCursor!=0 );
  assert( u.bf.pC->pseudoTableReg==0 );
  assert( u.bf.pKey->flags & MEM_Int );
  assert( u.bf.pC->isTable );
  REGISTER_TRACE(pOp->p2, u.bf.pData);
  REGISTER_TRACE(pOp->p3, u.bf.pKey);

  u.bf.iKey = u.bf.pKey->u.i;
  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
  if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = u.bf.pKey->u.i;
  if( u.bf.pData->flags & MEM_Null ){
    u.bf.pData->z = 0;
    u.bf.pData->n = 0;
  }else{
    assert( u.bf.pData->flags & (MEM_Blob|MEM_Str) );
  }






















  u.bf.seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? u.bf.pC->seekResult : 0);
  if( u.bf.pData->flags & MEM_Zero ){
    u.bf.nZero = u.bf.pData->u.nZero;
  }else{
    u.bf.nZero = 0;
  }
  sqlite3BtreeSetCachedRowid(u.bf.pC->pCursor, 0);
  rc = sqlite3BtreeInsert(u.bf.pC->pCursor, 0, u.bf.iKey,
                          u.bf.pData->z, u.bf.pData->n, u.bf.nZero,
                          pOp->p5 & OPFLAG_APPEND, u.bf.seekResult
  );


  u.bf.pC->rowidIsValid = 0;
  u.bf.pC->deferredMoveto = 0;
  u.bf.pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    u.bf.zDb = db->aDb[u.bf.pC->iDb].zName;
    u.bf.zTbl = pOp->p4.z;
    u.bf.op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
    assert( u.bf.pC->isTable );
    db->xUpdateCallback(db->pUpdateArg, u.bf.op, u.bf.zDb, u.bf.zTbl, u.bf.iKey);
    assert( u.bf.pC->iDb>=0 );
  }
  break;
}

/* Opcode: Delete P1 P2 * P4 *
**
** Delete the record at which the P1 cursor is currently pointing.
54685
54686
54687
54688
54689
54690
54691
54692
54693
54694
54695
54696
54697
54698
54699
54700
54701
54702
54703
54704
54705
54706
54707
54708
54709
54710
54711
54712
54713
54714
54715
54716
54717
54718
54719
54720
54721
54722
54723
54724
54725
54726
54727
54728
54729
54730
54731
54732
54733
54734
54735
54736
54737
54738
54739
54740
54741
54742

54743
54744
54745
54746
54747
54748
54749
54750
54751
54752
54753
54754
54755
**
** If P4 is not NULL, then it is the name of the table that P1 is
** pointing to.  The update hook will be invoked, if it exists.
** If P4 is not NULL then the P1 cursor must have been positioned
** using OP_NotFound prior to invoking this opcode.
*/
case OP_Delete: {
#if 0  /* local variables moved into u.bh */
  i64 iKey;
  VdbeCursor *pC;
#endif /* local variables moved into u.bh */

  u.bh.iKey = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bh.pC = p->apCsr[pOp->p1];
  assert( u.bh.pC!=0 );
  assert( u.bh.pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */

  /* If the update-hook will be invoked, set u.bh.iKey to the rowid of the
  ** row being deleted.
  */
  if( db->xUpdateCallback && pOp->p4.z ){
    assert( u.bh.pC->isTable );
    assert( u.bh.pC->rowidIsValid );  /* lastRowid set by previous OP_NotFound */
    u.bh.iKey = u.bh.pC->lastRowid;
  }

  /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
  ** OP_Column on the same table without any intervening operations that
  ** might move or invalidate the cursor.  Hence cursor u.bh.pC is always pointing
  ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
  ** below is always a no-op and cannot fail.  We will run it anyhow, though,
  ** to guard against future changes to the code generator.
  **/
  assert( u.bh.pC->deferredMoveto==0 );
  rc = sqlite3VdbeCursorMoveto(u.bh.pC);
  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;

  sqlite3BtreeSetCachedRowid(u.bh.pC->pCursor, 0);
  rc = sqlite3BtreeDelete(u.bh.pC->pCursor);
  u.bh.pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    const char *zDb = db->aDb[u.bh.pC->iDb].zName;
    const char *zTbl = pOp->p4.z;
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, u.bh.iKey);
    assert( u.bh.pC->iDb>=0 );
  }
  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
  break;
}

/* Opcode: ResetCount P1 * *
**
** This opcode resets the VMs internal change counter to 0. If P1 is true,
** then the value of the change counter is copied to the database handle
** change counter (returned by subsequent calls to sqlite3_changes())

** before it is reset. This is used by trigger programs.
*/
case OP_ResetCount: {
  if( pOp->p1 ){
    sqlite3VdbeSetChanges(db, p->nChange);
  }
  p->nChange = 0;
  break;
}

/* Opcode: RowData P1 P2 * * *
**
** Write into register P2 the complete row data for cursor P1.







|


|

|

|
|
|

|



|
|
|




|




|
|


|
|
|



|

|
|




<
|

<
|
|
>
|


<
|
<







55597
55598
55599
55600
55601
55602
55603
55604
55605
55606
55607
55608
55609
55610
55611
55612
55613
55614
55615
55616
55617
55618
55619
55620
55621
55622
55623
55624
55625
55626
55627
55628
55629
55630
55631
55632
55633
55634
55635
55636
55637
55638
55639
55640
55641
55642
55643
55644
55645
55646
55647
55648

55649
55650

55651
55652
55653
55654
55655
55656

55657

55658
55659
55660
55661
55662
55663
55664
**
** If P4 is not NULL, then it is the name of the table that P1 is
** pointing to.  The update hook will be invoked, if it exists.
** If P4 is not NULL then the P1 cursor must have been positioned
** using OP_NotFound prior to invoking this opcode.
*/
case OP_Delete: {
#if 0  /* local variables moved into u.bg */
  i64 iKey;
  VdbeCursor *pC;
#endif /* local variables moved into u.bg */

  u.bg.iKey = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bg.pC = p->apCsr[pOp->p1];
  assert( u.bg.pC!=0 );
  assert( u.bg.pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */

  /* If the update-hook will be invoked, set u.bg.iKey to the rowid of the
  ** row being deleted.
  */
  if( db->xUpdateCallback && pOp->p4.z ){
    assert( u.bg.pC->isTable );
    assert( u.bg.pC->rowidIsValid );  /* lastRowid set by previous OP_NotFound */
    u.bg.iKey = u.bg.pC->lastRowid;
  }

  /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
  ** OP_Column on the same table without any intervening operations that
  ** might move or invalidate the cursor.  Hence cursor u.bg.pC is always pointing
  ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
  ** below is always a no-op and cannot fail.  We will run it anyhow, though,
  ** to guard against future changes to the code generator.
  **/
  assert( u.bg.pC->deferredMoveto==0 );
  rc = sqlite3VdbeCursorMoveto(u.bg.pC);
  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;

  sqlite3BtreeSetCachedRowid(u.bg.pC->pCursor, 0);
  rc = sqlite3BtreeDelete(u.bg.pC->pCursor);
  u.bg.pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    const char *zDb = db->aDb[u.bg.pC->iDb].zName;
    const char *zTbl = pOp->p4.z;
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, u.bg.iKey);
    assert( u.bg.pC->iDb>=0 );
  }
  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
  break;
}

/* Opcode: ResetCount * * * * *
**

** The value of the change counter is copied to the database handle
** change counter (returned by subsequent calls to sqlite3_changes()).
** Then the VMs internal change counter resets to 0.
** This is used by trigger programs.
*/
case OP_ResetCount: {

  sqlite3VdbeSetChanges(db, p->nChange);

  p->nChange = 0;
  break;
}

/* Opcode: RowData P1 P2 * * *
**
** Write into register P2 the complete row data for cursor P1.
54768
54769
54770
54771
54772
54773
54774
54775
54776
54777
54778
54779
54780
54781
54782
54783
54784
54785
54786
54787
54788
54789
54790
54791
54792
54793
54794
54795
54796
54797
54798
54799
54800
54801
54802
54803
54804
54805
54806
54807
54808
54809
54810
54811
54812
54813
54814
54815
54816
54817
54818
54819
54820
54821
54822
54823
54824
54825
54826
54827
54828
54829
54830
54831
54832
54833
54834
54835
54836
54837
54838
54839
54840
54841
54842
54843
54844
54845
54846
54847
54848
54849
54850
54851
54852
54853
54854

54855
54856
54857
54858
54859
54860
54861
54862
54863
54864
54865
54866
54867
54868
54869
54870
54871
54872
54873
54874
54875
54876
54877
54878
54879
54880
54881
54882
54883
54884
54885
54886
54887
54888
54889
54890
54891
54892
54893
54894
54895
54896
54897
54898
54899
54900
54901
54902
54903
54904
54905
54906
54907
54908
54909
54910
54911
54912
54913
54914
54915
54916
54917
54918
54919
54920
54921
54922
54923
54924
54925
54926
54927
54928
54929
54930
54931
54932
54933
54934
54935
54936
54937
54938
54939
54940
54941
54942
54943
54944
54945
54946
54947
** it is found in the database file.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
*/
case OP_RowKey:
case OP_RowData: {
#if 0  /* local variables moved into u.bi */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  u32 n;
  i64 n64;
#endif /* local variables moved into u.bi */

  pOut = &p->aMem[pOp->p2];

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bi.pC = p->apCsr[pOp->p1];
  assert( u.bi.pC->isTable || pOp->opcode==OP_RowKey );
  assert( u.bi.pC->isIndex || pOp->opcode==OP_RowData );
  assert( u.bi.pC!=0 );
  assert( u.bi.pC->nullRow==0 );
  assert( u.bi.pC->pseudoTable==0 );
  assert( u.bi.pC->pCursor!=0 );
  u.bi.pCrsr = u.bi.pC->pCursor;
  assert( sqlite3BtreeCursorIsValid(u.bi.pCrsr) );

  /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
  ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
  ** the cursor.  Hence the following sqlite3VdbeCursorMoveto() call is always
  ** a no-op and can never fail.  But we leave it in place as a safety.
  */
  assert( u.bi.pC->deferredMoveto==0 );
  rc = sqlite3VdbeCursorMoveto(u.bi.pC);
  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;

  if( u.bi.pC->isIndex ){
    assert( !u.bi.pC->isTable );
    rc = sqlite3BtreeKeySize(u.bi.pCrsr, &u.bi.n64);
    assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
    if( u.bi.n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
    u.bi.n = (u32)u.bi.n64;
  }else{
    rc = sqlite3BtreeDataSize(u.bi.pCrsr, &u.bi.n);
    assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
    if( u.bi.n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
  }
  if( sqlite3VdbeMemGrow(pOut, u.bi.n, 0) ){
    goto no_mem;
  }
  pOut->n = u.bi.n;
  MemSetTypeFlag(pOut, MEM_Blob);
  if( u.bi.pC->isIndex ){
    rc = sqlite3BtreeKey(u.bi.pCrsr, 0, u.bi.n, pOut->z);
  }else{
    rc = sqlite3BtreeData(u.bi.pCrsr, 0, u.bi.n, pOut->z);
  }
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Rowid P1 P2 * * *
**
** Store in register P2 an integer which is the key of the table entry that
** P1 is currently point to.
**
** P1 can be either an ordinary table or a virtual table.  There used to
** be a separate OP_VRowid opcode for use with virtual tables, but this
** one opcode now works for both table types.
*/
case OP_Rowid: {                 /* out2-prerelease */
#if 0  /* local variables moved into u.bj */
  VdbeCursor *pC;
  i64 v;
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
#endif /* local variables moved into u.bj */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bj.pC = p->apCsr[pOp->p1];
  assert( u.bj.pC!=0 );

  if( u.bj.pC->nullRow ){
    /* Do nothing so that reg[P2] remains NULL */
    break;
  }else if( u.bj.pC->deferredMoveto ){
    u.bj.v = u.bj.pC->movetoTarget;
  }else if( u.bj.pC->pseudoTable ){
    u.bj.v = u.bj.pC->iKey;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  }else if( u.bj.pC->pVtabCursor ){
    u.bj.pVtab = u.bj.pC->pVtabCursor->pVtab;
    u.bj.pModule = u.bj.pVtab->pModule;
    assert( u.bj.pModule->xRowid );
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    rc = u.bj.pModule->xRowid(u.bj.pC->pVtabCursor, &u.bj.v);
    sqlite3DbFree(db, p->zErrMsg);
    p->zErrMsg = u.bj.pVtab->zErrMsg;
    u.bj.pVtab->zErrMsg = 0;
    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{
    assert( u.bj.pC->pCursor!=0 );
    rc = sqlite3VdbeCursorMoveto(u.bj.pC);
    if( rc ) goto abort_due_to_error;
    if( u.bj.pC->rowidIsValid ){
      u.bj.v = u.bj.pC->lastRowid;
    }else{
      rc = sqlite3BtreeKeySize(u.bj.pC->pCursor, &u.bj.v);
      assert( rc==SQLITE_OK );  /* Always so because of CursorMoveto() above */
    }
  }
  pOut->u.i = u.bj.v;
  MemSetTypeFlag(pOut, MEM_Int);
  break;
}

/* Opcode: NullRow P1 * * * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always
** write a NULL.
*/
case OP_NullRow: {
#if 0  /* local variables moved into u.bk */
  VdbeCursor *pC;
#endif /* local variables moved into u.bk */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bk.pC = p->apCsr[pOp->p1];
  assert( u.bk.pC!=0 );
  u.bk.pC->nullRow = 1;
  u.bk.pC->rowidIsValid = 0;
  if( u.bk.pC->pCursor ){
    sqlite3BtreeClearCursor(u.bk.pC->pCursor);
  }
  break;
}

/* Opcode: Last P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last: {        /* jump */
#if 0  /* local variables moved into u.bl */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
#endif /* local variables moved into u.bl */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bl.pC = p->apCsr[pOp->p1];
  assert( u.bl.pC!=0 );
  u.bl.pCrsr = u.bl.pC->pCursor;
  if( u.bl.pCrsr==0 ){
    u.bl.res = 1;
  }else{
    rc = sqlite3BtreeLast(u.bl.pCrsr, &u.bl.res);
  }
  u.bl.pC->nullRow = (u8)u.bl.res;
  u.bl.pC->deferredMoveto = 0;
  u.bl.pC->rowidIsValid = 0;
  u.bl.pC->cacheStatus = CACHE_STALE;
  if( pOp->p2>0 && u.bl.res ){
    pc = pOp->p2 - 1;
  }
  break;
}


/* Opcode: Sort P1 P2 * * *







|




|





|
|
|
|
|
|
|
|
|






|
|


|
|
|

|


|

|

|



|


|

|
|

|
















|




|


|
|
>
|


|
|
<
<

|
|
|
|

|

|
|



|
|

|
|

|



|











|

|


|
|
|
|
|
|













|



|


|
|
|
|
|

|

|
|
|
|
|







55677
55678
55679
55680
55681
55682
55683
55684
55685
55686
55687
55688
55689
55690
55691
55692
55693
55694
55695
55696
55697
55698
55699
55700
55701
55702
55703
55704
55705
55706
55707
55708
55709
55710
55711
55712
55713
55714
55715
55716
55717
55718
55719
55720
55721
55722
55723
55724
55725
55726
55727
55728
55729
55730
55731
55732
55733
55734
55735
55736
55737
55738
55739
55740
55741
55742
55743
55744
55745
55746
55747
55748
55749
55750
55751
55752
55753
55754
55755
55756
55757
55758
55759
55760
55761
55762
55763
55764
55765
55766
55767
55768
55769


55770
55771
55772
55773
55774
55775
55776
55777
55778
55779
55780
55781
55782
55783
55784
55785
55786
55787
55788
55789
55790
55791
55792
55793
55794
55795
55796
55797
55798
55799
55800
55801
55802
55803
55804
55805
55806
55807
55808
55809
55810
55811
55812
55813
55814
55815
55816
55817
55818
55819
55820
55821
55822
55823
55824
55825
55826
55827
55828
55829
55830
55831
55832
55833
55834
55835
55836
55837
55838
55839
55840
55841
55842
55843
55844
55845
55846
55847
55848
55849
55850
55851
55852
55853
55854
55855
** it is found in the database file.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
*/
case OP_RowKey:
case OP_RowData: {
#if 0  /* local variables moved into u.bh */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  u32 n;
  i64 n64;
#endif /* local variables moved into u.bh */

  pOut = &p->aMem[pOp->p2];

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bh.pC = p->apCsr[pOp->p1];
  assert( u.bh.pC->isTable || pOp->opcode==OP_RowKey );
  assert( u.bh.pC->isIndex || pOp->opcode==OP_RowData );
  assert( u.bh.pC!=0 );
  assert( u.bh.pC->nullRow==0 );
  assert( u.bh.pC->pseudoTableReg==0 );
  assert( u.bh.pC->pCursor!=0 );
  u.bh.pCrsr = u.bh.pC->pCursor;
  assert( sqlite3BtreeCursorIsValid(u.bh.pCrsr) );

  /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
  ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
  ** the cursor.  Hence the following sqlite3VdbeCursorMoveto() call is always
  ** a no-op and can never fail.  But we leave it in place as a safety.
  */
  assert( u.bh.pC->deferredMoveto==0 );
  rc = sqlite3VdbeCursorMoveto(u.bh.pC);
  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;

  if( u.bh.pC->isIndex ){
    assert( !u.bh.pC->isTable );
    rc = sqlite3BtreeKeySize(u.bh.pCrsr, &u.bh.n64);
    assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
    if( u.bh.n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
    u.bh.n = (u32)u.bh.n64;
  }else{
    rc = sqlite3BtreeDataSize(u.bh.pCrsr, &u.bh.n);
    assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
    if( u.bh.n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
  }
  if( sqlite3VdbeMemGrow(pOut, u.bh.n, 0) ){
    goto no_mem;
  }
  pOut->n = u.bh.n;
  MemSetTypeFlag(pOut, MEM_Blob);
  if( u.bh.pC->isIndex ){
    rc = sqlite3BtreeKey(u.bh.pCrsr, 0, u.bh.n, pOut->z);
  }else{
    rc = sqlite3BtreeData(u.bh.pCrsr, 0, u.bh.n, pOut->z);
  }
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Rowid P1 P2 * * *
**
** Store in register P2 an integer which is the key of the table entry that
** P1 is currently point to.
**
** P1 can be either an ordinary table or a virtual table.  There used to
** be a separate OP_VRowid opcode for use with virtual tables, but this
** one opcode now works for both table types.
*/
case OP_Rowid: {                 /* out2-prerelease */
#if 0  /* local variables moved into u.bi */
  VdbeCursor *pC;
  i64 v;
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
#endif /* local variables moved into u.bi */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bi.pC = p->apCsr[pOp->p1];
  assert( u.bi.pC!=0 );
  assert( u.bi.pC->pseudoTableReg==0 );
  if( u.bi.pC->nullRow ){
    /* Do nothing so that reg[P2] remains NULL */
    break;
  }else if( u.bi.pC->deferredMoveto ){
    u.bi.v = u.bi.pC->movetoTarget;


#ifndef SQLITE_OMIT_VIRTUALTABLE
  }else if( u.bi.pC->pVtabCursor ){
    u.bi.pVtab = u.bi.pC->pVtabCursor->pVtab;
    u.bi.pModule = u.bi.pVtab->pModule;
    assert( u.bi.pModule->xRowid );
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    rc = u.bi.pModule->xRowid(u.bi.pC->pVtabCursor, &u.bi.v);
    sqlite3DbFree(db, p->zErrMsg);
    p->zErrMsg = u.bi.pVtab->zErrMsg;
    u.bi.pVtab->zErrMsg = 0;
    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{
    assert( u.bi.pC->pCursor!=0 );
    rc = sqlite3VdbeCursorMoveto(u.bi.pC);
    if( rc ) goto abort_due_to_error;
    if( u.bi.pC->rowidIsValid ){
      u.bi.v = u.bi.pC->lastRowid;
    }else{
      rc = sqlite3BtreeKeySize(u.bi.pC->pCursor, &u.bi.v);
      assert( rc==SQLITE_OK );  /* Always so because of CursorMoveto() above */
    }
  }
  pOut->u.i = u.bi.v;
  MemSetTypeFlag(pOut, MEM_Int);
  break;
}

/* Opcode: NullRow P1 * * * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always
** write a NULL.
*/
case OP_NullRow: {
#if 0  /* local variables moved into u.bj */
  VdbeCursor *pC;
#endif /* local variables moved into u.bj */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bj.pC = p->apCsr[pOp->p1];
  assert( u.bj.pC!=0 );
  u.bj.pC->nullRow = 1;
  u.bj.pC->rowidIsValid = 0;
  if( u.bj.pC->pCursor ){
    sqlite3BtreeClearCursor(u.bj.pC->pCursor);
  }
  break;
}

/* Opcode: Last P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last: {        /* jump */
#if 0  /* local variables moved into u.bk */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
#endif /* local variables moved into u.bk */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bk.pC = p->apCsr[pOp->p1];
  assert( u.bk.pC!=0 );
  u.bk.pCrsr = u.bk.pC->pCursor;
  if( u.bk.pCrsr==0 ){
    u.bk.res = 1;
  }else{
    rc = sqlite3BtreeLast(u.bk.pCrsr, &u.bk.res);
  }
  u.bk.pC->nullRow = (u8)u.bk.res;
  u.bk.pC->deferredMoveto = 0;
  u.bk.pC->rowidIsValid = 0;
  u.bk.pC->cacheStatus = CACHE_STALE;
  if( pOp->p2>0 && u.bk.res ){
    pc = pOp->p2 - 1;
  }
  break;
}


/* Opcode: Sort P1 P2 * * *
54969
54970
54971
54972
54973
54974
54975
54976
54977
54978
54979
54980
54981
54982
54983
54984
54985
54986
54987
54988
54989
54990
54991
54992
54993
54994
54995
54996
54997
54998
54999
55000
55001
55002
55003
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind: {        /* jump */
#if 0  /* local variables moved into u.bm */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
#endif /* local variables moved into u.bm */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bm.pC = p->apCsr[pOp->p1];
  assert( u.bm.pC!=0 );
  if( (u.bm.pCrsr = u.bm.pC->pCursor)!=0 ){
    rc = sqlite3BtreeFirst(u.bm.pCrsr, &u.bm.res);
    u.bm.pC->atFirst = u.bm.res==0 ?1:0;
    u.bm.pC->deferredMoveto = 0;
    u.bm.pC->cacheStatus = CACHE_STALE;
    u.bm.pC->rowidIsValid = 0;
  }else{
    u.bm.res = 1;
  }
  u.bm.pC->nullRow = (u8)u.bm.res;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
  if( u.bm.res ){
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Next P1 P2 * * *
**







|



|


|
|
|
|
|
|
|
|

|

|

|







55877
55878
55879
55880
55881
55882
55883
55884
55885
55886
55887
55888
55889
55890
55891
55892
55893
55894
55895
55896
55897
55898
55899
55900
55901
55902
55903
55904
55905
55906
55907
55908
55909
55910
55911
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind: {        /* jump */
#if 0  /* local variables moved into u.bl */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
#endif /* local variables moved into u.bl */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bl.pC = p->apCsr[pOp->p1];
  assert( u.bl.pC!=0 );
  if( (u.bl.pCrsr = u.bl.pC->pCursor)!=0 ){
    rc = sqlite3BtreeFirst(u.bl.pCrsr, &u.bl.res);
    u.bl.pC->atFirst = u.bl.res==0 ?1:0;
    u.bl.pC->deferredMoveto = 0;
    u.bl.pC->cacheStatus = CACHE_STALE;
    u.bl.pC->rowidIsValid = 0;
  }else{
    u.bl.res = 1;
  }
  u.bl.pC->nullRow = (u8)u.bl.res;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
  if( u.bl.res ){
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Next P1 P2 * * *
**
55017
55018
55019
55020
55021
55022
55023
55024
55025
55026
55027
55028
55029
55030
55031
55032
55033
55034
55035
55036
55037
55038
55039
55040
55041
55042
55043
55044
55045
55046
55047
55048
55049
55050
55051
55052
55053
55054
55055
55056
55057
55058
55059
55060
55061
55062
55063
55064
55065
55066
55067
55068
55069
55070
55071
55072
55073
55074
55075
55076
55077
55078
55079
55080
55081
55082
55083
55084
55085
55086
55087
55088
55089
55090
55091
55092
55093
55094
55095
55096
55097
55098
55099
55100
55101
55102
55103
55104
55105
55106
55107
55108
55109
55110
55111
55112
55113
55114
55115
55116
55117
55118
55119
55120
55121
55122
55123
55124
55125
55126
55127
55128
55129
55130
55131
55132
55133
55134
55135
55136
55137
55138
55139
55140
55141
55142
55143
55144
55145
55146
55147
55148
55149
55150
55151
55152
55153
55154
55155
55156
55157
55158
55159
55160
55161
55162
55163
55164
55165
55166
55167
55168
55169
55170
55171
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
*/
case OP_Prev:          /* jump */
case OP_Next: {        /* jump */
#if 0  /* local variables moved into u.bn */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
#endif /* local variables moved into u.bn */

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bn.pC = p->apCsr[pOp->p1];
  if( u.bn.pC==0 ){
    break;  /* See ticket #2273 */
  }
  u.bn.pCrsr = u.bn.pC->pCursor;
  if( u.bn.pCrsr==0 ){
    u.bn.pC->nullRow = 1;
    break;
  }
  u.bn.res = 1;
  assert( u.bn.pC->deferredMoveto==0 );
  rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(u.bn.pCrsr, &u.bn.res) :
                              sqlite3BtreePrevious(u.bn.pCrsr, &u.bn.res);
  u.bn.pC->nullRow = (u8)u.bn.res;
  u.bn.pC->cacheStatus = CACHE_STALE;
  if( u.bn.res==0 ){
    pc = pOp->p2 - 1;
    if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
#ifdef SQLITE_TEST
    sqlite3_search_count++;
#endif
  }
  u.bn.pC->rowidIsValid = 0;
  break;
}

/* Opcode: IdxInsert P1 P2 P3 * P5
**
** Register P2 holds a SQL index key made using the
** MakeRecord instructions.  This opcode writes that key
** into the index P1.  Data for the entry is nil.
**
** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** This instruction only works for indices.  The equivalent instruction
** for tables is OP_Insert.
*/
case OP_IdxInsert: {        /* in2 */
#if 0  /* local variables moved into u.bo */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int nKey;
  const char *zKey;
#endif /* local variables moved into u.bo */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bo.pC = p->apCsr[pOp->p1];
  assert( u.bo.pC!=0 );
  assert( pIn2->flags & MEM_Blob );
  u.bo.pCrsr = u.bo.pC->pCursor;
  if( ALWAYS(u.bo.pCrsr!=0) ){
    assert( u.bo.pC->isTable==0 );
    rc = ExpandBlob(pIn2);
    if( rc==SQLITE_OK ){
      u.bo.nKey = pIn2->n;
      u.bo.zKey = pIn2->z;
      rc = sqlite3BtreeInsert(u.bo.pCrsr, u.bo.zKey, u.bo.nKey, "", 0, 0, pOp->p3,
          ((pOp->p5 & OPFLAG_USESEEKRESULT) ? u.bo.pC->seekResult : 0)
      );
      assert( u.bo.pC->deferredMoveto==0 );
      u.bo.pC->cacheStatus = CACHE_STALE;
    }
  }
  break;
}

/* Opcode: IdxDelete P1 P2 P3 * *
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the 
** index opened by cursor P1.
*/
case OP_IdxDelete: {
#if 0  /* local variables moved into u.bp */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  UnpackedRecord r;
#endif /* local variables moved into u.bp */

  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bp.pC = p->apCsr[pOp->p1];
  assert( u.bp.pC!=0 );
  u.bp.pCrsr = u.bp.pC->pCursor;
  if( ALWAYS(u.bp.pCrsr!=0) ){
    u.bp.r.pKeyInfo = u.bp.pC->pKeyInfo;
    u.bp.r.nField = (u16)pOp->p3;
    u.bp.r.flags = 0;
    u.bp.r.aMem = &p->aMem[pOp->p2];
    rc = sqlite3BtreeMovetoUnpacked(u.bp.pCrsr, &u.bp.r, 0, 0, &u.bp.res);
    if( rc==SQLITE_OK && u.bp.res==0 ){
      rc = sqlite3BtreeDelete(u.bp.pCrsr);
    }
    assert( u.bp.pC->deferredMoveto==0 );
    u.bp.pC->cacheStatus = CACHE_STALE;
  }
  break;
}

/* Opcode: IdxRowid P1 P2 * * *
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1.  This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeRecord.
*/
case OP_IdxRowid: {              /* out2-prerelease */
#if 0  /* local variables moved into u.bq */
  BtCursor *pCrsr;
  VdbeCursor *pC;
  i64 rowid;
#endif /* local variables moved into u.bq */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bq.pC = p->apCsr[pOp->p1];
  assert( u.bq.pC!=0 );
  u.bq.pCrsr = u.bq.pC->pCursor;
  if( ALWAYS(u.bq.pCrsr!=0) ){
    rc = sqlite3VdbeCursorMoveto(u.bq.pC);
    if( NEVER(rc) ) goto abort_due_to_error;
    assert( u.bq.pC->deferredMoveto==0 );
    assert( u.bq.pC->isTable==0 );
    if( !u.bq.pC->nullRow ){
      rc = sqlite3VdbeIdxRowid(db, u.bq.pCrsr, &u.bq.rowid);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      MemSetTypeFlag(pOut, MEM_Int);
      pOut->u.i = u.bq.rowid;
    }
  }
  break;
}

/* Opcode: IdxGE P1 P2 P3 P4 P5
**







|



|



|
|


|
|
|


|
|
|
|
|
|
|






|
















|




|


|
|

|
|
|


|
|
|
|

|
|












|




|




|
|
|
|
|
|
|
|
|
|
|

|
|













|



|


|
|
|
|
|

|
|
|
|




|







55925
55926
55927
55928
55929
55930
55931
55932
55933
55934
55935
55936
55937
55938
55939
55940
55941
55942
55943
55944
55945
55946
55947
55948
55949
55950
55951
55952
55953
55954
55955
55956
55957
55958
55959
55960
55961
55962
55963
55964
55965
55966
55967
55968
55969
55970
55971
55972
55973
55974
55975
55976
55977
55978
55979
55980
55981
55982
55983
55984
55985
55986
55987
55988
55989
55990
55991
55992
55993
55994
55995
55996
55997
55998
55999
56000
56001
56002
56003
56004
56005
56006
56007
56008
56009
56010
56011
56012
56013
56014
56015
56016
56017
56018
56019
56020
56021
56022
56023
56024
56025
56026
56027
56028
56029
56030
56031
56032
56033
56034
56035
56036
56037
56038
56039
56040
56041
56042
56043
56044
56045
56046
56047
56048
56049
56050
56051
56052
56053
56054
56055
56056
56057
56058
56059
56060
56061
56062
56063
56064
56065
56066
56067
56068
56069
56070
56071
56072
56073
56074
56075
56076
56077
56078
56079
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
*/
case OP_Prev:          /* jump */
case OP_Next: {        /* jump */
#if 0  /* local variables moved into u.bm */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
#endif /* local variables moved into u.bm */

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bm.pC = p->apCsr[pOp->p1];
  if( u.bm.pC==0 ){
    break;  /* See ticket #2273 */
  }
  u.bm.pCrsr = u.bm.pC->pCursor;
  if( u.bm.pCrsr==0 ){
    u.bm.pC->nullRow = 1;
    break;
  }
  u.bm.res = 1;
  assert( u.bm.pC->deferredMoveto==0 );
  rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(u.bm.pCrsr, &u.bm.res) :
                              sqlite3BtreePrevious(u.bm.pCrsr, &u.bm.res);
  u.bm.pC->nullRow = (u8)u.bm.res;
  u.bm.pC->cacheStatus = CACHE_STALE;
  if( u.bm.res==0 ){
    pc = pOp->p2 - 1;
    if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
#ifdef SQLITE_TEST
    sqlite3_search_count++;
#endif
  }
  u.bm.pC->rowidIsValid = 0;
  break;
}

/* Opcode: IdxInsert P1 P2 P3 * P5
**
** Register P2 holds a SQL index key made using the
** MakeRecord instructions.  This opcode writes that key
** into the index P1.  Data for the entry is nil.
**
** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** This instruction only works for indices.  The equivalent instruction
** for tables is OP_Insert.
*/
case OP_IdxInsert: {        /* in2 */
#if 0  /* local variables moved into u.bn */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int nKey;
  const char *zKey;
#endif /* local variables moved into u.bn */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bn.pC = p->apCsr[pOp->p1];
  assert( u.bn.pC!=0 );
  assert( pIn2->flags & MEM_Blob );
  u.bn.pCrsr = u.bn.pC->pCursor;
  if( ALWAYS(u.bn.pCrsr!=0) ){
    assert( u.bn.pC->isTable==0 );
    rc = ExpandBlob(pIn2);
    if( rc==SQLITE_OK ){
      u.bn.nKey = pIn2->n;
      u.bn.zKey = pIn2->z;
      rc = sqlite3BtreeInsert(u.bn.pCrsr, u.bn.zKey, u.bn.nKey, "", 0, 0, pOp->p3,
          ((pOp->p5 & OPFLAG_USESEEKRESULT) ? u.bn.pC->seekResult : 0)
      );
      assert( u.bn.pC->deferredMoveto==0 );
      u.bn.pC->cacheStatus = CACHE_STALE;
    }
  }
  break;
}

/* Opcode: IdxDelete P1 P2 P3 * *
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the 
** index opened by cursor P1.
*/
case OP_IdxDelete: {
#if 0  /* local variables moved into u.bo */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  UnpackedRecord r;
#endif /* local variables moved into u.bo */

  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bo.pC = p->apCsr[pOp->p1];
  assert( u.bo.pC!=0 );
  u.bo.pCrsr = u.bo.pC->pCursor;
  if( ALWAYS(u.bo.pCrsr!=0) ){
    u.bo.r.pKeyInfo = u.bo.pC->pKeyInfo;
    u.bo.r.nField = (u16)pOp->p3;
    u.bo.r.flags = 0;
    u.bo.r.aMem = &p->aMem[pOp->p2];
    rc = sqlite3BtreeMovetoUnpacked(u.bo.pCrsr, &u.bo.r, 0, 0, &u.bo.res);
    if( rc==SQLITE_OK && u.bo.res==0 ){
      rc = sqlite3BtreeDelete(u.bo.pCrsr);
    }
    assert( u.bo.pC->deferredMoveto==0 );
    u.bo.pC->cacheStatus = CACHE_STALE;
  }
  break;
}

/* Opcode: IdxRowid P1 P2 * * *
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1.  This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeRecord.
*/
case OP_IdxRowid: {              /* out2-prerelease */
#if 0  /* local variables moved into u.bp */
  BtCursor *pCrsr;
  VdbeCursor *pC;
  i64 rowid;
#endif /* local variables moved into u.bp */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bp.pC = p->apCsr[pOp->p1];
  assert( u.bp.pC!=0 );
  u.bp.pCrsr = u.bp.pC->pCursor;
  if( ALWAYS(u.bp.pCrsr!=0) ){
    rc = sqlite3VdbeCursorMoveto(u.bp.pC);
    if( NEVER(rc) ) goto abort_due_to_error;
    assert( u.bp.pC->deferredMoveto==0 );
    assert( u.bp.pC->isTable==0 );
    if( !u.bp.pC->nullRow ){
      rc = sqlite3VdbeIdxRowid(db, u.bp.pCrsr, &u.bp.rowid);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      MemSetTypeFlag(pOut, MEM_Int);
      pOut->u.i = u.bp.rowid;
    }
  }
  break;
}

/* Opcode: IdxGE P1 P2 P3 P4 P5
**
55191
55192
55193
55194
55195
55196
55197
55198
55199
55200
55201
55202
55203
55204
55205
55206
55207
55208
55209
55210
55211
55212
55213
55214
55215
55216
55217
55218
55219
55220
55221
55222
55223
55224
55225
55226
55227
55228
55229
55230
55231
55232
55233
** Otherwise fall through to the next instruction.
**
** If P5 is non-zero then the key value is increased by an epsilon prior 
** to the comparison.  This makes the opcode work like IdxLE.
*/
case OP_IdxLT:          /* jump, in3 */
case OP_IdxGE: {        /* jump, in3 */
#if 0  /* local variables moved into u.br */
  VdbeCursor *pC;
  int res;
  UnpackedRecord r;
#endif /* local variables moved into u.br */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.br.pC = p->apCsr[pOp->p1];
  assert( u.br.pC!=0 );
  if( ALWAYS(u.br.pC->pCursor!=0) ){
    assert( u.br.pC->deferredMoveto==0 );
    assert( pOp->p5==0 || pOp->p5==1 );
    assert( pOp->p4type==P4_INT32 );
    u.br.r.pKeyInfo = u.br.pC->pKeyInfo;
    u.br.r.nField = (u16)pOp->p4.i;
    if( pOp->p5 ){
      u.br.r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
    }else{
      u.br.r.flags = UNPACKED_IGNORE_ROWID;
    }
    u.br.r.aMem = &p->aMem[pOp->p3];
    rc = sqlite3VdbeIdxKeyCompare(u.br.pC, &u.br.r, &u.br.res);
    if( pOp->opcode==OP_IdxLT ){
      u.br.res = -u.br.res;
    }else{
      assert( pOp->opcode==OP_IdxGE );
      u.br.res++;
    }
    if( u.br.res>0 ){
      pc = pOp->p2 - 1 ;
    }
  }
  break;
}

/* Opcode: Destroy P1 P2 P3 * *







|



|


|
|
|
|


|
|

|

|

|
|

|


|

|







56099
56100
56101
56102
56103
56104
56105
56106
56107
56108
56109
56110
56111
56112
56113
56114
56115
56116
56117
56118
56119
56120
56121
56122
56123
56124
56125
56126
56127
56128
56129
56130
56131
56132
56133
56134
56135
56136
56137
56138
56139
56140
56141
** Otherwise fall through to the next instruction.
**
** If P5 is non-zero then the key value is increased by an epsilon prior 
** to the comparison.  This makes the opcode work like IdxLE.
*/
case OP_IdxLT:          /* jump, in3 */
case OP_IdxGE: {        /* jump, in3 */
#if 0  /* local variables moved into u.bq */
  VdbeCursor *pC;
  int res;
  UnpackedRecord r;
#endif /* local variables moved into u.bq */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  u.bq.pC = p->apCsr[pOp->p1];
  assert( u.bq.pC!=0 );
  if( ALWAYS(u.bq.pC->pCursor!=0) ){
    assert( u.bq.pC->deferredMoveto==0 );
    assert( pOp->p5==0 || pOp->p5==1 );
    assert( pOp->p4type==P4_INT32 );
    u.bq.r.pKeyInfo = u.bq.pC->pKeyInfo;
    u.bq.r.nField = (u16)pOp->p4.i;
    if( pOp->p5 ){
      u.bq.r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
    }else{
      u.bq.r.flags = UNPACKED_IGNORE_ROWID;
    }
    u.bq.r.aMem = &p->aMem[pOp->p3];
    rc = sqlite3VdbeIdxKeyCompare(u.bq.pC, &u.bq.r, &u.bq.res);
    if( pOp->opcode==OP_IdxLT ){
      u.bq.res = -u.bq.res;
    }else{
      assert( pOp->opcode==OP_IdxGE );
      u.bq.res++;
    }
    if( u.bq.res>0 ){
      pc = pOp->p2 - 1 ;
    }
  }
  break;
}

/* Opcode: Destroy P1 P2 P3 * *
55247
55248
55249
55250
55251
55252
55253
55254
55255
55256
55257
55258
55259
55260
55261
55262
55263
55264
55265
55266
55267
55268
55269
55270
55271
55272
55273
55274
55275
55276
55277
55278
55279
55280
55281
55282
55283
55284
55285
55286
55287
55288
55289
** movement was required (because the table being dropped was already 
** the last one in the database) then a zero is stored in register P2.
** If AUTOVACUUM is disabled then a zero is stored in register P2.
**
** See also: Clear
*/
case OP_Destroy: {     /* out2-prerelease */
#if 0  /* local variables moved into u.bs */
  int iMoved;
  int iCnt;
  Vdbe *pVdbe;
  int iDb;
#endif /* local variables moved into u.bs */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  u.bs.iCnt = 0;
  for(u.bs.pVdbe=db->pVdbe; u.bs.pVdbe; u.bs.pVdbe = u.bs.pVdbe->pNext){
    if( u.bs.pVdbe->magic==VDBE_MAGIC_RUN && u.bs.pVdbe->inVtabMethod<2 && u.bs.pVdbe->pc>=0 ){
      u.bs.iCnt++;
    }
  }
#else
  u.bs.iCnt = db->activeVdbeCnt;
#endif
  if( u.bs.iCnt>1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    u.bs.iDb = pOp->p3;
    assert( u.bs.iCnt==1 );
    assert( (p->btreeMask & (1<<u.bs.iDb))!=0 );
    rc = sqlite3BtreeDropTable(db->aDb[u.bs.iDb].pBt, pOp->p1, &u.bs.iMoved);
    MemSetTypeFlag(pOut, MEM_Int);
    pOut->u.i = u.bs.iMoved;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( rc==SQLITE_OK && u.bs.iMoved!=0 ){
      sqlite3RootPageMoved(&db->aDb[u.bs.iDb], u.bs.iMoved, pOp->p1);
    }
#endif
  }
  break;
}

/* Opcode: Clear P1 P2 P3







|




|

|
|
|
|



|

|



|
|
|
|

|

|
|







56155
56156
56157
56158
56159
56160
56161
56162
56163
56164
56165
56166
56167
56168
56169
56170
56171
56172
56173
56174
56175
56176
56177
56178
56179
56180
56181
56182
56183
56184
56185
56186
56187
56188
56189
56190
56191
56192
56193
56194
56195
56196
56197
** movement was required (because the table being dropped was already 
** the last one in the database) then a zero is stored in register P2.
** If AUTOVACUUM is disabled then a zero is stored in register P2.
**
** See also: Clear
*/
case OP_Destroy: {     /* out2-prerelease */
#if 0  /* local variables moved into u.br */
  int iMoved;
  int iCnt;
  Vdbe *pVdbe;
  int iDb;
#endif /* local variables moved into u.br */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  u.br.iCnt = 0;
  for(u.br.pVdbe=db->pVdbe; u.br.pVdbe; u.br.pVdbe = u.br.pVdbe->pNext){
    if( u.br.pVdbe->magic==VDBE_MAGIC_RUN && u.br.pVdbe->inVtabMethod<2 && u.br.pVdbe->pc>=0 ){
      u.br.iCnt++;
    }
  }
#else
  u.br.iCnt = db->activeVdbeCnt;
#endif
  if( u.br.iCnt>1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    u.br.iDb = pOp->p3;
    assert( u.br.iCnt==1 );
    assert( (p->btreeMask & (1<<u.br.iDb))!=0 );
    rc = sqlite3BtreeDropTable(db->aDb[u.br.iDb].pBt, pOp->p1, &u.br.iMoved);
    MemSetTypeFlag(pOut, MEM_Int);
    pOut->u.i = u.br.iMoved;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( rc==SQLITE_OK && u.br.iMoved!=0 ){
      sqlite3RootPageMoved(&db->aDb[u.br.iDb], u.br.iMoved, pOp->p1);
    }
#endif
  }
  break;
}

/* Opcode: Clear P1 P2 P3
55301
55302
55303
55304
55305
55306
55307
55308
55309
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
** count is incremented by the number of rows in the table being cleared. 
** If P3 is greater than zero, then the value stored in register P3 is
** also incremented by the number of rows in the table being cleared.
**
** See also: Destroy
*/
case OP_Clear: {
#if 0  /* local variables moved into u.bt */
  int nChange;
#endif /* local variables moved into u.bt */

  u.bt.nChange = 0;
  assert( (p->btreeMask & (1<<pOp->p2))!=0 );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &u.bt.nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += u.bt.nChange;
    if( pOp->p3>0 ){
      p->aMem[pOp->p3].u.i += u.bt.nChange;
    }
  }
  break;
}

/* Opcode: CreateTable P1 P2 * * *
**







|

|

|


|


|

|







56209
56210
56211
56212
56213
56214
56215
56216
56217
56218
56219
56220
56221
56222
56223
56224
56225
56226
56227
56228
56229
56230
56231
56232
56233
56234
56235
** count is incremented by the number of rows in the table being cleared. 
** If P3 is greater than zero, then the value stored in register P3 is
** also incremented by the number of rows in the table being cleared.
**
** See also: Destroy
*/
case OP_Clear: {
#if 0  /* local variables moved into u.bs */
  int nChange;
#endif /* local variables moved into u.bs */

  u.bs.nChange = 0;
  assert( (p->btreeMask & (1<<pOp->p2))!=0 );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &u.bs.nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += u.bs.nChange;
    if( pOp->p3>0 ){
      p->aMem[pOp->p3].u.i += u.bs.nChange;
    }
  }
  break;
}

/* Opcode: CreateTable P1 P2 * * *
**
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
55400
55401
55402
55403
55404
55405
55406
55407
55408
55409
55410
55411
55412
55413
55414
55415
55416
55417
55418
55419
55420
55421
55422
55423
55424
55425
55426
55427
55428
55429
55430
55431
55432
55433
55434
55435
55436
55437
55438
55439
55440
55441
55442
55443
55444
** P1>1.  Write the root page number of the new table into
** register P2.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:            /* out2-prerelease */
case OP_CreateTable: {          /* out2-prerelease */
#if 0  /* local variables moved into u.bu */
  int pgno;
  int flags;
  Db *pDb;
#endif /* local variables moved into u.bu */

  u.bu.pgno = 0;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  u.bu.pDb = &db->aDb[pOp->p1];
  assert( u.bu.pDb->pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){
    /* u.bu.flags = BTREE_INTKEY; */
    u.bu.flags = BTREE_LEAFDATA|BTREE_INTKEY;
  }else{
    u.bu.flags = BTREE_ZERODATA;
  }
  rc = sqlite3BtreeCreateTable(u.bu.pDb->pBt, &u.bu.pgno, u.bu.flags);
  pOut->u.i = u.bu.pgno;
  MemSetTypeFlag(pOut, MEM_Int);
  break;
}

/* Opcode: ParseSchema P1 P2 * P4 *
**
** Read and parse all entries from the SQLITE_MASTER table of database P1
** that match the WHERE clause P4.  P2 is the "force" flag.   Always do
** the parsing if P2 is true.  If P2 is false, then this routine is a
** no-op if the schema is not currently loaded.  In other words, if P2
** is false, the SQLITE_MASTER table is only parsed if the rest of the
** schema is already loaded into the symbol table.
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine.  It is thus a re-entrant opcode.
*/
case OP_ParseSchema: {
#if 0  /* local variables moved into u.bv */
  int iDb;
  const char *zMaster;
  char *zSql;
  InitData initData;
#endif /* local variables moved into u.bv */

  u.bv.iDb = pOp->p1;
  assert( u.bv.iDb>=0 && u.bv.iDb<db->nDb );

  /* If pOp->p2 is 0, then this opcode is being executed to read a
  ** single row, for example the row corresponding to a new index
  ** created by this VDBE, from the sqlite_master table. It only
  ** does this if the corresponding in-memory schema is currently
  ** loaded. Otherwise, the new index definition can be loaded along
  ** with the rest of the schema when it is required.
  **
  ** Although the mutex on the BtShared object that corresponds to
  ** database u.bv.iDb (the database containing the sqlite_master table
  ** read by this instruction) is currently held, it is necessary to
  ** obtain the mutexes on all attached databases before checking if
  ** the schema of u.bv.iDb is loaded. This is because, at the start of
  ** the sqlite3_exec() call below, SQLite will invoke
  ** sqlite3BtreeEnterAll(). If all mutexes are not already held, the
  ** u.bv.iDb mutex may be temporarily released to avoid deadlock. If
  ** this happens, then some other thread may delete the in-memory
  ** schema of database u.bv.iDb before the SQL statement runs. The schema
  ** will not be reloaded becuase the db->init.busy flag is set. This
  ** can result in a "no such table: sqlite_master" or "malformed
  ** database schema" error being returned to the user.
  */
  assert( sqlite3BtreeHoldsMutex(db->aDb[u.bv.iDb].pBt) );
  sqlite3BtreeEnterAll(db);
  if( pOp->p2 || DbHasProperty(db, u.bv.iDb, DB_SchemaLoaded) ){
    u.bv.zMaster = SCHEMA_TABLE(u.bv.iDb);
    u.bv.initData.db = db;
    u.bv.initData.iDb = pOp->p1;
    u.bv.initData.pzErrMsg = &p->zErrMsg;
    u.bv.zSql = sqlite3MPrintf(db,
       "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
       db->aDb[u.bv.iDb].zName, u.bv.zMaster, pOp->p4.z);
    if( u.bv.zSql==0 ){
      rc = SQLITE_NOMEM;
    }else{
      (void)sqlite3SafetyOff(db);
      assert( db->init.busy==0 );
      db->init.busy = 1;
      u.bv.initData.rc = SQLITE_OK;
      assert( !db->mallocFailed );
      rc = sqlite3_exec(db, u.bv.zSql, sqlite3InitCallback, &u.bv.initData, 0);
      if( rc==SQLITE_OK ) rc = u.bv.initData.rc;
      sqlite3DbFree(db, u.bv.zSql);
      db->init.busy = 0;
      (void)sqlite3SafetyOn(db);
    }
  }
  sqlite3BtreeLeaveAll(db);
  if( rc==SQLITE_NOMEM ){
    goto no_mem;







|



|

|


|
|

|
|

|

|
|

















|




|

|
|









|


|


|

|




|

|
|
|
|
|
|

|
|





|

|
|
|







56251
56252
56253
56254
56255
56256
56257
56258
56259
56260
56261
56262
56263
56264
56265
56266
56267
56268
56269
56270
56271
56272
56273
56274
56275
56276
56277
56278
56279
56280
56281
56282
56283
56284
56285
56286
56287
56288
56289
56290
56291
56292
56293
56294
56295
56296
56297
56298
56299
56300
56301
56302
56303
56304
56305
56306
56307
56308
56309
56310
56311
56312
56313
56314
56315
56316
56317
56318
56319
56320
56321
56322
56323
56324
56325
56326
56327
56328
56329
56330
56331
56332
56333
56334
56335
56336
56337
56338
56339
56340
56341
56342
56343
56344
56345
56346
56347
56348
56349
56350
56351
56352
** P1>1.  Write the root page number of the new table into
** register P2.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:            /* out2-prerelease */
case OP_CreateTable: {          /* out2-prerelease */
#if 0  /* local variables moved into u.bt */
  int pgno;
  int flags;
  Db *pDb;
#endif /* local variables moved into u.bt */

  u.bt.pgno = 0;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  u.bt.pDb = &db->aDb[pOp->p1];
  assert( u.bt.pDb->pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){
    /* u.bt.flags = BTREE_INTKEY; */
    u.bt.flags = BTREE_LEAFDATA|BTREE_INTKEY;
  }else{
    u.bt.flags = BTREE_ZERODATA;
  }
  rc = sqlite3BtreeCreateTable(u.bt.pDb->pBt, &u.bt.pgno, u.bt.flags);
  pOut->u.i = u.bt.pgno;
  MemSetTypeFlag(pOut, MEM_Int);
  break;
}

/* Opcode: ParseSchema P1 P2 * P4 *
**
** Read and parse all entries from the SQLITE_MASTER table of database P1
** that match the WHERE clause P4.  P2 is the "force" flag.   Always do
** the parsing if P2 is true.  If P2 is false, then this routine is a
** no-op if the schema is not currently loaded.  In other words, if P2
** is false, the SQLITE_MASTER table is only parsed if the rest of the
** schema is already loaded into the symbol table.
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine.  It is thus a re-entrant opcode.
*/
case OP_ParseSchema: {
#if 0  /* local variables moved into u.bu */
  int iDb;
  const char *zMaster;
  char *zSql;
  InitData initData;
#endif /* local variables moved into u.bu */

  u.bu.iDb = pOp->p1;
  assert( u.bu.iDb>=0 && u.bu.iDb<db->nDb );

  /* If pOp->p2 is 0, then this opcode is being executed to read a
  ** single row, for example the row corresponding to a new index
  ** created by this VDBE, from the sqlite_master table. It only
  ** does this if the corresponding in-memory schema is currently
  ** loaded. Otherwise, the new index definition can be loaded along
  ** with the rest of the schema when it is required.
  **
  ** Although the mutex on the BtShared object that corresponds to
  ** database u.bu.iDb (the database containing the sqlite_master table
  ** read by this instruction) is currently held, it is necessary to
  ** obtain the mutexes on all attached databases before checking if
  ** the schema of u.bu.iDb is loaded. This is because, at the start of
  ** the sqlite3_exec() call below, SQLite will invoke
  ** sqlite3BtreeEnterAll(). If all mutexes are not already held, the
  ** u.bu.iDb mutex may be temporarily released to avoid deadlock. If
  ** this happens, then some other thread may delete the in-memory
  ** schema of database u.bu.iDb before the SQL statement runs. The schema
  ** will not be reloaded becuase the db->init.busy flag is set. This
  ** can result in a "no such table: sqlite_master" or "malformed
  ** database schema" error being returned to the user.
  */
  assert( sqlite3BtreeHoldsMutex(db->aDb[u.bu.iDb].pBt) );
  sqlite3BtreeEnterAll(db);
  if( pOp->p2 || DbHasProperty(db, u.bu.iDb, DB_SchemaLoaded) ){
    u.bu.zMaster = SCHEMA_TABLE(u.bu.iDb);
    u.bu.initData.db = db;
    u.bu.initData.iDb = pOp->p1;
    u.bu.initData.pzErrMsg = &p->zErrMsg;
    u.bu.zSql = sqlite3MPrintf(db,
       "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
       db->aDb[u.bu.iDb].zName, u.bu.zMaster, pOp->p4.z);
    if( u.bu.zSql==0 ){
      rc = SQLITE_NOMEM;
    }else{
      (void)sqlite3SafetyOff(db);
      assert( db->init.busy==0 );
      db->init.busy = 1;
      u.bu.initData.rc = SQLITE_OK;
      assert( !db->mallocFailed );
      rc = sqlite3_exec(db, u.bu.zSql, sqlite3InitCallback, &u.bu.initData, 0);
      if( rc==SQLITE_OK ) rc = u.bu.initData.rc;
      sqlite3DbFree(db, u.bu.zSql);
      db->init.busy = 0;
      (void)sqlite3SafetyOn(db);
    }
  }
  sqlite3BtreeLeaveAll(db);
  if( rc==SQLITE_NOMEM ){
    goto no_mem;
55515
55516
55517
55518
55519
55520
55521
55522
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
55553
55554
55555
55556
55557
55558
55559
55560
55561
55562
55563
55564
55565
55566
55567
55568
55569
55570
55571
55572
55573
55574
55575
55576
55577
55578
55579
55580
55581
55582
55583
55584
55585
55586
55587
55588
55589
55590
55591
55592
55593
55594
55595
55596
55597
55598
55599
55600
55601
55602
55603
55604
55605
55606
55607
55608
55609
55610
55611
55612
55613
55614
55615
55616
55617
55618
55619
55620
**
** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used to implement the integrity_check pragma.
*/
case OP_IntegrityCk: {
#if 0  /* local variables moved into u.bw */
  int nRoot;      /* Number of tables to check.  (Number of root pages.) */
  int *aRoot;     /* Array of rootpage numbers for tables to be checked */
  int j;          /* Loop counter */
  int nErr;       /* Number of errors reported */
  char *z;        /* Text of the error report */
  Mem *pnErr;     /* Register keeping track of errors remaining */
#endif /* local variables moved into u.bw */

  u.bw.nRoot = pOp->p2;
  assert( u.bw.nRoot>0 );
  u.bw.aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(u.bw.nRoot+1) );
  if( u.bw.aRoot==0 ) goto no_mem;
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  u.bw.pnErr = &p->aMem[pOp->p3];
  assert( (u.bw.pnErr->flags & MEM_Int)!=0 );
  assert( (u.bw.pnErr->flags & (MEM_Str|MEM_Blob))==0 );
  pIn1 = &p->aMem[pOp->p1];
  for(u.bw.j=0; u.bw.j<u.bw.nRoot; u.bw.j++){
    u.bw.aRoot[u.bw.j] = (int)sqlite3VdbeIntValue(&pIn1[u.bw.j]);
  }
  u.bw.aRoot[u.bw.j] = 0;
  assert( pOp->p5<db->nDb );
  assert( (p->btreeMask & (1<<pOp->p5))!=0 );
  u.bw.z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, u.bw.aRoot, u.bw.nRoot,
                                 (int)u.bw.pnErr->u.i, &u.bw.nErr);
  sqlite3DbFree(db, u.bw.aRoot);
  u.bw.pnErr->u.i -= u.bw.nErr;
  sqlite3VdbeMemSetNull(pIn1);
  if( u.bw.nErr==0 ){
    assert( u.bw.z==0 );
  }else if( u.bw.z==0 ){
    goto no_mem;
  }else{
    sqlite3VdbeMemSetStr(pIn1, u.bw.z, -1, SQLITE_UTF8, sqlite3_free);
  }
  UPDATE_MAX_BLOBSIZE(pIn1);
  sqlite3VdbeChangeEncoding(pIn1, encoding);
  break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/* Opcode: RowSetAdd P1 P2 * * *
**
** Insert the integer value held by register P2 into a boolean index
** held in register P1.
**
** An assertion fails if P2 is not an integer.
*/
case OP_RowSetAdd: {       /* in2 */
#if 0  /* local variables moved into u.bx */
  Mem *pIdx;
  Mem *pVal;
#endif /* local variables moved into u.bx */
  assert( pOp->p1>0 && pOp->p1<=p->nMem );
  u.bx.pIdx = &p->aMem[pOp->p1];
  assert( pOp->p2>0 && pOp->p2<=p->nMem );
  u.bx.pVal = &p->aMem[pOp->p2];
  assert( (u.bx.pVal->flags & MEM_Int)!=0 );
  if( (u.bx.pIdx->flags & MEM_RowSet)==0 ){
    sqlite3VdbeMemSetRowSet(u.bx.pIdx);
    if( (u.bx.pIdx->flags & MEM_RowSet)==0 ) goto no_mem;
  }
  sqlite3RowSetInsert(u.bx.pIdx->u.pRowSet, u.bx.pVal->u.i);
  break;
}

/* Opcode: RowSetRead P1 P2 P3 * *
**
** Extract the smallest value from boolean index P1 and put that value into
** register P3.  Or, if boolean index P1 is initially empty, leave P3
** unchanged and jump to instruction P2.
*/
case OP_RowSetRead: {       /* jump, out3 */
#if 0  /* local variables moved into u.by */
  Mem *pIdx;
  i64 val;
#endif /* local variables moved into u.by */
  assert( pOp->p1>0 && pOp->p1<=p->nMem );
  CHECK_FOR_INTERRUPT;
  u.by.pIdx = &p->aMem[pOp->p1];
  pOut = &p->aMem[pOp->p3];
  if( (u.by.pIdx->flags & MEM_RowSet)==0
   || sqlite3RowSetNext(u.by.pIdx->u.pRowSet, &u.by.val)==0
  ){
    /* The boolean index is empty */
    sqlite3VdbeMemSetNull(u.by.pIdx);
    pc = pOp->p2 - 1;
  }else{
    /* A value was pulled from the index */
    assert( pOp->p3>0 && pOp->p3<=p->nMem );
    sqlite3VdbeMemSetInt64(pOut, u.by.val);
  }
  break;
}

/* Opcode: RowSetTest P1 P2 P3 P4
**
** Register P3 is assumed to hold a 64-bit integer value. If register P1







|






|

|
|
|
|

|
|
|

|
|

|


|
|
|
|

|
|
|


|















|


|

|

|
|
|
|
|

|










|


|


|

|
|


|




|







56423
56424
56425
56426
56427
56428
56429
56430
56431
56432
56433
56434
56435
56436
56437
56438
56439
56440
56441
56442
56443
56444
56445
56446
56447
56448
56449
56450
56451
56452
56453
56454
56455
56456
56457
56458
56459
56460
56461
56462
56463
56464
56465
56466
56467
56468
56469
56470
56471
56472
56473
56474
56475
56476
56477
56478
56479
56480
56481
56482
56483
56484
56485
56486
56487
56488
56489
56490
56491
56492
56493
56494
56495
56496
56497
56498
56499
56500
56501
56502
56503
56504
56505
56506
56507
56508
56509
56510
56511
56512
56513
56514
56515
56516
56517
56518
56519
56520
56521
56522
56523
56524
56525
56526
56527
56528
**
** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used to implement the integrity_check pragma.
*/
case OP_IntegrityCk: {
#if 0  /* local variables moved into u.bv */
  int nRoot;      /* Number of tables to check.  (Number of root pages.) */
  int *aRoot;     /* Array of rootpage numbers for tables to be checked */
  int j;          /* Loop counter */
  int nErr;       /* Number of errors reported */
  char *z;        /* Text of the error report */
  Mem *pnErr;     /* Register keeping track of errors remaining */
#endif /* local variables moved into u.bv */

  u.bv.nRoot = pOp->p2;
  assert( u.bv.nRoot>0 );
  u.bv.aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(u.bv.nRoot+1) );
  if( u.bv.aRoot==0 ) goto no_mem;
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  u.bv.pnErr = &p->aMem[pOp->p3];
  assert( (u.bv.pnErr->flags & MEM_Int)!=0 );
  assert( (u.bv.pnErr->flags & (MEM_Str|MEM_Blob))==0 );
  pIn1 = &p->aMem[pOp->p1];
  for(u.bv.j=0; u.bv.j<u.bv.nRoot; u.bv.j++){
    u.bv.aRoot[u.bv.j] = (int)sqlite3VdbeIntValue(&pIn1[u.bv.j]);
  }
  u.bv.aRoot[u.bv.j] = 0;
  assert( pOp->p5<db->nDb );
  assert( (p->btreeMask & (1<<pOp->p5))!=0 );
  u.bv.z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, u.bv.aRoot, u.bv.nRoot,
                                 (int)u.bv.pnErr->u.i, &u.bv.nErr);
  sqlite3DbFree(db, u.bv.aRoot);
  u.bv.pnErr->u.i -= u.bv.nErr;
  sqlite3VdbeMemSetNull(pIn1);
  if( u.bv.nErr==0 ){
    assert( u.bv.z==0 );
  }else if( u.bv.z==0 ){
    goto no_mem;
  }else{
    sqlite3VdbeMemSetStr(pIn1, u.bv.z, -1, SQLITE_UTF8, sqlite3_free);
  }
  UPDATE_MAX_BLOBSIZE(pIn1);
  sqlite3VdbeChangeEncoding(pIn1, encoding);
  break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/* Opcode: RowSetAdd P1 P2 * * *
**
** Insert the integer value held by register P2 into a boolean index
** held in register P1.
**
** An assertion fails if P2 is not an integer.
*/
case OP_RowSetAdd: {       /* in2 */
#if 0  /* local variables moved into u.bw */
  Mem *pIdx;
  Mem *pVal;
#endif /* local variables moved into u.bw */
  assert( pOp->p1>0 && pOp->p1<=p->nMem );
  u.bw.pIdx = &p->aMem[pOp->p1];
  assert( pOp->p2>0 && pOp->p2<=p->nMem );
  u.bw.pVal = &p->aMem[pOp->p2];
  assert( (u.bw.pVal->flags & MEM_Int)!=0 );
  if( (u.bw.pIdx->flags & MEM_RowSet)==0 ){
    sqlite3VdbeMemSetRowSet(u.bw.pIdx);
    if( (u.bw.pIdx->flags & MEM_RowSet)==0 ) goto no_mem;
  }
  sqlite3RowSetInsert(u.bw.pIdx->u.pRowSet, u.bw.pVal->u.i);
  break;
}

/* Opcode: RowSetRead P1 P2 P3 * *
**
** Extract the smallest value from boolean index P1 and put that value into
** register P3.  Or, if boolean index P1 is initially empty, leave P3
** unchanged and jump to instruction P2.
*/
case OP_RowSetRead: {       /* jump, out3 */
#if 0  /* local variables moved into u.bx */
  Mem *pIdx;
  i64 val;
#endif /* local variables moved into u.bx */
  assert( pOp->p1>0 && pOp->p1<=p->nMem );
  CHECK_FOR_INTERRUPT;
  u.bx.pIdx = &p->aMem[pOp->p1];
  pOut = &p->aMem[pOp->p3];
  if( (u.bx.pIdx->flags & MEM_RowSet)==0
   || sqlite3RowSetNext(u.bx.pIdx->u.pRowSet, &u.bx.val)==0
  ){
    /* The boolean index is empty */
    sqlite3VdbeMemSetNull(u.bx.pIdx);
    pc = pOp->p2 - 1;
  }else{
    /* A value was pulled from the index */
    assert( pOp->p3>0 && pOp->p3<=p->nMem );
    sqlite3VdbeMemSetInt64(pOut, u.bx.val);
  }
  break;
}

/* Opcode: RowSetTest P1 P2 P3 P4
**
** Register P3 is assumed to hold a 64-bit integer value. If register P1
55635
55636
55637
55638
55639
55640
55641
55642
55643
55644
55645
55646
55647
55648
55649
55650
55651
55652
55653
55654
55655
55656
55657
55658
55659
55660
55661
55662
55663
55664
55665
55666
55667
55668
55669
55670
55671
55672
55673
55674
55675
55676

55677
55678






















55679



55680
















55681















55682











55683






















































55684
55685
55686
55687
55688
55689
55690
55691
55692
55693
55694
55695
55696
55697
55698
55699
55700
55701
55702
55703
55704
55705
55706
55707
55708
55709
55710
55711
55712
55713
55714
55715
55716
55717
55718
55719
55720
55721
55722
55723
55724


55725
55726
55727
55728
55729
55730
55731










55732
55733
55734
55735
55736
55737
55738
55739
55740
55741
55742
** (b) when P4==-1 there is no need to insert the value, as it will
** never be tested for, and (c) when a value that is part of set X is
** inserted, there is no need to search to see if the same value was
** previously inserted as part of set X (only if it was previously
** inserted as part of some other set).
*/
case OP_RowSetTest: {                     /* jump, in1, in3 */
#if 0  /* local variables moved into u.bz */
  int iSet;
  int exists;
#endif /* local variables moved into u.bz */

  u.bz.iSet = pOp->p4.i;
  assert( pIn3->flags&MEM_Int );

  /* If there is anything other than a rowset object in memory cell P1,
  ** delete it now and initialize P1 with an empty rowset
  */
  if( (pIn1->flags & MEM_RowSet)==0 ){
    sqlite3VdbeMemSetRowSet(pIn1);
    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
  }

  assert( pOp->p4type==P4_INT32 );
  assert( u.bz.iSet==-1 || u.bz.iSet>=0 );
  if( u.bz.iSet ){
    u.bz.exists = sqlite3RowSetTest(pIn1->u.pRowSet,
                               (u8)(u.bz.iSet>=0 ? u.bz.iSet & 0xf : 0xff),
                               pIn3->u.i);
    if( u.bz.exists ){
      pc = pOp->p2 - 1;
      break;
    }
  }
  if( u.bz.iSet>=0 ){
    sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
  }
  break;
}


#ifndef SQLITE_OMIT_TRIGGER

/* Opcode: ContextPush * * * 
**






















** Save the current Vdbe context such that it can be restored by a ContextPop



** opcode. The context stores the last insert row id, the last statement change
















** count, and the current statement change count.















*/











case OP_ContextPush: {






















































#if 0  /* local variables moved into u.ca */
  int i;
  Context *pContext;
#endif /* local variables moved into u.ca */

  u.ca.i = p->contextStackTop++;
  assert( u.ca.i>=0 );
  /* FIX ME: This should be allocated as part of the vdbe at compile-time */
  if( u.ca.i>=p->contextStackDepth ){
    p->contextStackDepth = u.ca.i+1;
    p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
                                          sizeof(Context)*(u.ca.i+1));
    if( p->contextStack==0 ) goto no_mem;
  }
  u.ca.pContext = &p->contextStack[u.ca.i];
  u.ca.pContext->lastRowid = db->lastRowid;
  u.ca.pContext->nChange = p->nChange;
  break;
}

/* Opcode: ContextPop * * * 
**
** Restore the Vdbe context to the state it was in when contextPush was last
** executed. The context stores the last insert row id, the last statement
** change count, and the current statement change count.
*/
case OP_ContextPop: {
#if 0  /* local variables moved into u.cb */
  Context *pContext;
#endif /* local variables moved into u.cb */
  u.cb.pContext = &p->contextStack[--p->contextStackTop];
  assert( p->contextStackTop>=0 );
  db->lastRowid = u.cb.pContext->lastRowid;
  p->nChange = u.cb.pContext->nChange;
  break;
}
#endif /* #ifndef SQLITE_OMIT_TRIGGER */

#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Opcode: MemMax P1 P2 * * *
**


** Set the value of register P1 to the maximum of its current value
** and the value in register P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemMax: {        /* in1, in2 */










  sqlite3VdbeMemIntegerify(pIn1);
  sqlite3VdbeMemIntegerify(pIn2);
  if( pIn1->u.i<pIn2->u.i){
    pIn1->u.i = pIn2->u.i;
  }
  break;
}
#endif /* SQLITE_OMIT_AUTOINCREMENT */

/* Opcode: IfPos P1 P2 * * *
**







|


|

|











|
|
|
|

|




|







>
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|
|

|
<
|
<
<
|
<
<
<
<
<
<
<



<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<





>
>
|
|




|
>
>
>
>
>
>
>
>
>
>
|

|
|







56543
56544
56545
56546
56547
56548
56549
56550
56551
56552
56553
56554
56555
56556
56557
56558
56559
56560
56561
56562
56563
56564
56565
56566
56567
56568
56569
56570
56571
56572
56573
56574
56575
56576
56577
56578
56579
56580
56581
56582
56583
56584
56585
56586
56587
56588
56589
56590
56591
56592
56593
56594
56595
56596
56597
56598
56599
56600
56601
56602
56603
56604
56605
56606
56607
56608
56609
56610
56611
56612
56613
56614
56615
56616
56617
56618
56619
56620
56621
56622
56623
56624
56625
56626
56627
56628
56629
56630
56631
56632
56633
56634
56635
56636
56637
56638
56639
56640
56641
56642
56643
56644
56645
56646
56647
56648
56649
56650
56651
56652
56653
56654
56655
56656
56657
56658
56659
56660
56661
56662
56663
56664
56665
56666
56667
56668
56669
56670
56671
56672
56673
56674
56675
56676
56677
56678
56679
56680
56681
56682
56683
56684
56685
56686
56687
56688
56689
56690
56691
56692
56693
56694
56695
56696
56697
56698
56699
56700
56701
56702
56703
56704
56705
56706
56707
56708
56709
56710
56711
56712
56713
56714
56715
56716
56717
56718

56719


56720







56721
56722
56723
















56724
56725
56726
56727
56728
56729
56730
56731
56732
56733
56734
56735
56736
56737
56738
56739
56740
56741
56742
56743
56744
56745
56746
56747
56748
56749
56750
56751
56752
56753
56754
56755
56756
56757
56758
** (b) when P4==-1 there is no need to insert the value, as it will
** never be tested for, and (c) when a value that is part of set X is
** inserted, there is no need to search to see if the same value was
** previously inserted as part of set X (only if it was previously
** inserted as part of some other set).
*/
case OP_RowSetTest: {                     /* jump, in1, in3 */
#if 0  /* local variables moved into u.by */
  int iSet;
  int exists;
#endif /* local variables moved into u.by */

  u.by.iSet = pOp->p4.i;
  assert( pIn3->flags&MEM_Int );

  /* If there is anything other than a rowset object in memory cell P1,
  ** delete it now and initialize P1 with an empty rowset
  */
  if( (pIn1->flags & MEM_RowSet)==0 ){
    sqlite3VdbeMemSetRowSet(pIn1);
    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
  }

  assert( pOp->p4type==P4_INT32 );
  assert( u.by.iSet==-1 || u.by.iSet>=0 );
  if( u.by.iSet ){
    u.by.exists = sqlite3RowSetTest(pIn1->u.pRowSet,
                               (u8)(u.by.iSet>=0 ? u.by.iSet & 0xf : 0xff),
                               pIn3->u.i);
    if( u.by.exists ){
      pc = pOp->p2 - 1;
      break;
    }
  }
  if( u.by.iSet>=0 ){
    sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
  }
  break;
}


#ifndef SQLITE_OMIT_TRIGGER

/* Opcode: Program P1 P2 P3 P4 *
**
** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 
**
** P1 contains the address of the memory cell that contains the first memory 
** cell in an array of values used as arguments to the sub-program. P2 
** contains the address to jump to if the sub-program throws an IGNORE 
** exception using the RAISE() function. Register P3 contains the address 
** of a memory cell in this (the parent) VM that is used to allocate the 
** memory required by the sub-vdbe at runtime.
**
** P4 is a pointer to the VM containing the trigger program.
*/
case OP_Program: {        /* jump */
#if 0  /* local variables moved into u.bz */
  int nMem;               /* Number of memory registers for sub-program */
  int nByte;              /* Bytes of runtime space required for sub-program */
  Mem *pRt;               /* Register to allocate runtime space */
  Mem *pMem;              /* Used to iterate through memory cells */
  Mem *pEnd;              /* Last memory cell in new array */
  VdbeFrame *pFrame;      /* New vdbe frame to execute in */
  SubProgram *pProgram;   /* Sub-program to execute */
  void *t;                /* Token identifying trigger */
#endif /* local variables moved into u.bz */

  u.bz.pProgram = pOp->p4.pProgram;
  u.bz.pRt = &p->aMem[pOp->p3];
  assert( u.bz.pProgram->nOp>0 );

  /* If the SQLITE_RecTriggers flag is clear, then recursive invocation of
  ** triggers is disabled for backwards compatibility (flag set/cleared by
  ** the "PRAGMA recursive_triggers" command).
  **
  ** It is recursive invocation of triggers, at the SQL level, that is
  ** disabled. In some cases a single trigger may generate more than one
  ** SubProgram (if the trigger may be executed with more than one different
  ** ON CONFLICT algorithm). SubProgram structures associated with a
  ** single trigger all have the same value for the SubProgram.token
  ** variable.
  */
  if( 0==(db->flags&SQLITE_RecTriggers) ){
    u.bz.t = u.bz.pProgram->token;
    for(u.bz.pFrame=p->pFrame; u.bz.pFrame && u.bz.pFrame->token!=u.bz.t; u.bz.pFrame=u.bz.pFrame->pParent);
    if( u.bz.pFrame ) break;
  }

  if( p->nFrame>db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
    rc = SQLITE_ERROR;
    sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
    break;
  }

  /* Register u.bz.pRt is used to store the memory required to save the state
  ** of the current program, and the memory required at runtime to execute
  ** the trigger program. If this trigger has been fired before, then u.bz.pRt
  ** is already allocated. Otherwise, it must be initialized.  */
  if( (u.bz.pRt->flags&MEM_Frame)==0 ){
    /* SubProgram.nMem is set to the number of memory cells used by the
    ** program stored in SubProgram.aOp. As well as these, one memory
    ** cell is required for each cursor used by the program. Set local
    ** variable u.bz.nMem (and later, VdbeFrame.nChildMem) to this value.
    */
    u.bz.nMem = u.bz.pProgram->nMem + u.bz.pProgram->nCsr;
    u.bz.nByte = ROUND8(sizeof(VdbeFrame))
              + u.bz.nMem * sizeof(Mem)
              + u.bz.pProgram->nCsr * sizeof(VdbeCursor *);
    u.bz.pFrame = sqlite3DbMallocZero(db, u.bz.nByte);
    if( !u.bz.pFrame ){
      goto no_mem;
    }
    sqlite3VdbeMemRelease(u.bz.pRt);
    u.bz.pRt->flags = MEM_Frame;
    u.bz.pRt->u.pFrame = u.bz.pFrame;

    u.bz.pFrame->v = p;
    u.bz.pFrame->nChildMem = u.bz.nMem;
    u.bz.pFrame->nChildCsr = u.bz.pProgram->nCsr;
    u.bz.pFrame->pc = pc;
    u.bz.pFrame->aMem = p->aMem;
    u.bz.pFrame->nMem = p->nMem;
    u.bz.pFrame->apCsr = p->apCsr;
    u.bz.pFrame->nCursor = p->nCursor;
    u.bz.pFrame->aOp = p->aOp;
    u.bz.pFrame->nOp = p->nOp;
    u.bz.pFrame->token = u.bz.pProgram->token;

    u.bz.pEnd = &VdbeFrameMem(u.bz.pFrame)[u.bz.pFrame->nChildMem];
    for(u.bz.pMem=VdbeFrameMem(u.bz.pFrame); u.bz.pMem!=u.bz.pEnd; u.bz.pMem++){
      u.bz.pMem->flags = MEM_Null;
      u.bz.pMem->db = db;
    }
  }else{
    u.bz.pFrame = u.bz.pRt->u.pFrame;
    assert( u.bz.pProgram->nMem+u.bz.pProgram->nCsr==u.bz.pFrame->nChildMem );
    assert( u.bz.pProgram->nCsr==u.bz.pFrame->nChildCsr );
    assert( pc==u.bz.pFrame->pc );
  }

  p->nFrame++;
  u.bz.pFrame->pParent = p->pFrame;
  u.bz.pFrame->lastRowid = db->lastRowid;
  u.bz.pFrame->nChange = p->nChange;
  p->nChange = 0;
  p->pFrame = u.bz.pFrame;
  p->aMem = &VdbeFrameMem(u.bz.pFrame)[-1];
  p->nMem = u.bz.pFrame->nChildMem;
  p->nCursor = (u16)u.bz.pFrame->nChildCsr;
  p->apCsr = (VdbeCursor **)&p->aMem[p->nMem+1];
  p->aOp = u.bz.pProgram->aOp;
  p->nOp = u.bz.pProgram->nOp;
  pc = -1;

  break;
}

/* Opcode: Param P1 P2 * * *
**
** This opcode is only ever present in sub-programs called via the 
** OP_Program instruction. Copy a value currently stored in a memory 
** cell of the calling (parent) frame to cell P2 in the current frames 
** address space. This is used by trigger programs to access the new.* 
** and old.* values.
**
** The address of the cell in the parent frame is determined by adding
** the value of the P1 argument to the value of the P1 argument to the
** calling OP_Program instruction.
*/
case OP_Param: {           /* out2-prerelease */
#if 0  /* local variables moved into u.ca */
  VdbeFrame *pFrame;
  Mem *pIn;
#endif /* local variables moved into u.ca */
  u.ca.pFrame = p->pFrame;

  u.ca.pIn = &u.ca.pFrame->aMem[pOp->p1 + u.ca.pFrame->aOp[u.ca.pFrame->pc].p1];


  sqlite3VdbeMemShallowCopy(pOut, u.ca.pIn, MEM_Ephem);







  break;
}

















#endif /* #ifndef SQLITE_OMIT_TRIGGER */

#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Opcode: MemMax P1 P2 * * *
**
** P1 is a register in the root frame of this VM (the root frame is
** different from the current frame if this instruction is being executed
** within a sub-program). Set the value of register P1 to the maximum of 
** its current value and the value in register P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemMax: {        /* in2 */
#if 0  /* local variables moved into u.cb */
  Mem *pIn1;
  VdbeFrame *pFrame;
#endif /* local variables moved into u.cb */
  if( p->pFrame ){
    for(u.cb.pFrame=p->pFrame; u.cb.pFrame->pParent; u.cb.pFrame=u.cb.pFrame->pParent);
    u.cb.pIn1 = &u.cb.pFrame->aMem[pOp->p1];
  }else{
    u.cb.pIn1 = &p->aMem[pOp->p1];
  }
  sqlite3VdbeMemIntegerify(u.cb.pIn1);
  sqlite3VdbeMemIntegerify(pIn2);
  if( u.cb.pIn1->u.i<pIn2->u.i){
    u.cb.pIn1->u.i = pIn2->u.i;
  }
  break;
}
#endif /* SQLITE_OMIT_AUTOINCREMENT */

/* Opcode: IfPos P1 P2 * * *
**
56713
56714
56715
56716
56717
56718
56719
56720
56721
56722
56723
56724
56725
56726
56727
      ** always return an SQL NULL. This is useful because it means
      ** we can invoke OP_Column to fill in the vdbe cursors type 
      ** and offset cache without causing any IO.
      */
      sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
      sqlite3VdbeChangeP2(v, 7, pTab->nCol);
      if( !db->mallocFailed ){
        sqlite3VdbeMakeReady(v, 1, 1, 1, 0);
      }
    }
   
    sqlite3BtreeLeaveAll(db);
    rc = sqlite3SafetyOff(db);
    if( NEVER(rc!=SQLITE_OK) || db->mallocFailed ){
      goto blob_open_out;







|







57729
57730
57731
57732
57733
57734
57735
57736
57737
57738
57739
57740
57741
57742
57743
      ** always return an SQL NULL. This is useful because it means
      ** we can invoke OP_Column to fill in the vdbe cursors type 
      ** and offset cache without causing any IO.
      */
      sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
      sqlite3VdbeChangeP2(v, 7, pTab->nCol);
      if( !db->mallocFailed ){
        sqlite3VdbeMakeReady(v, 1, 1, 1, 0, 0, 0);
      }
    }
   
    sqlite3BtreeLeaveAll(db);
    rc = sqlite3SafetyOff(db);
    if( NEVER(rc!=SQLITE_OK) || db->mallocFailed ){
      goto blob_open_out;
57661
57662
57663
57664
57665
57666
57667

57668
57669
57670
57671
57672
57673
57674
  int cnt = 0;                      /* Number of matching column names */
  int cntTab = 0;                   /* Number of matching table names */
  sqlite3 *db = pParse->db;         /* The database connection */
  struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
  struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
  NameContext *pTopNC = pNC;        /* First namecontext in the list */
  Schema *pSchema = 0;              /* Schema of the expression */


  assert( pNC );     /* the name context cannot be NULL. */
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( ~ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );

  /* Initialize the node to no-match */
  pExpr->iTable = -1;







>







58677
58678
58679
58680
58681
58682
58683
58684
58685
58686
58687
58688
58689
58690
58691
  int cnt = 0;                      /* Number of matching column names */
  int cntTab = 0;                   /* Number of matching table names */
  sqlite3 *db = pParse->db;         /* The database connection */
  struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
  struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
  NameContext *pTopNC = pNC;        /* First namecontext in the list */
  Schema *pSchema = 0;              /* Schema of the expression */
  int isTrigger = 0;

  assert( pNC );     /* the name context cannot be NULL. */
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( ~ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );

  /* Initialize the node to no-match */
  pExpr->iTable = -1;
57746
57747
57748
57749
57750
57751
57752
57753
57754
57755
57756
57757
57758
57759
57760
57761
57762
57763
57764
57765
57766
57767
57768
57769
57770
57771
57772
57773
57774



57775

57776








57777

57778
57779
57780
57781
57782
57783
57784
57785
57786


57787
57788
57789
57790
57791
57792
57793
57794
57795
      }
    }

#ifndef SQLITE_OMIT_TRIGGER
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference
    */
    if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
      TriggerStack *pTriggerStack = pParse->trigStack;
      Table *pTab = 0;
      u32 *piColMask = 0;
      if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
        pExpr->iTable = pTriggerStack->newIdx;
        assert( pTriggerStack->pTab );
        pTab = pTriggerStack->pTab;
        piColMask = &(pTriggerStack->newColMask);
      }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
        pExpr->iTable = pTriggerStack->oldIdx;
        assert( pTriggerStack->pTab );
        pTab = pTriggerStack->pTab;
        piColMask = &(pTriggerStack->oldColMask);
      }

      if( pTab ){ 
        int iCol;
        Column *pCol = pTab->aCol;

        pSchema = pTab->pSchema;
        cntTab++;



        for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {

          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){








            cnt++;

            pExpr->iColumn = iCol==pTab->iPKey ? -1 : (i16)iCol;
            pExpr->pTab = pTab;
            testcase( iCol==31 );
            testcase( iCol==32 );
            if( iCol>=32 ){
              *piColMask = 0xffffffff;
            }else{
              *piColMask |= ((u32)1)<<iCol;
            }


            break;
          }
        }
      }
    }
#endif /* !defined(SQLITE_OMIT_TRIGGER) */

    /*
    ** Perhaps the name is a reference to the ROWID







|
|

|
|
|
<
|
<
|
|
<
|
<




<
<


>
>
>
|
>
|
>
>
>
>
>
>
>
>
|
>
|
|


<
<
<
|
|
>
>
|
<







58763
58764
58765
58766
58767
58768
58769
58770
58771
58772
58773
58774
58775

58776

58777
58778

58779

58780
58781
58782
58783


58784
58785
58786
58787
58788
58789
58790
58791
58792
58793
58794
58795
58796
58797
58798
58799
58800
58801
58802
58803
58804
58805



58806
58807
58808
58809
58810

58811
58812
58813
58814
58815
58816
58817
      }
    }

#ifndef SQLITE_OMIT_TRIGGER
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference
    */
    if( zDb==0 && zTab!=0 && cnt==0 && pParse->pTriggerTab!=0 ){
      int op = pParse->eTriggerOp;
      Table *pTab = 0;
      assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT );
      if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){
        pExpr->iTable = 1;

        pTab = pParse->pTriggerTab;

      }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){
        pExpr->iTable = 0;

        pTab = pParse->pTriggerTab;

      }

      if( pTab ){ 
        int iCol;


        pSchema = pTab->pSchema;
        cntTab++;
        if( sqlite3IsRowid(zCol) ){
          iCol = -1;
        }else{
          for(iCol=0; iCol<pTab->nCol; iCol++){
            Column *pCol = &pTab->aCol[iCol];
            if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
              if( iCol==pTab->iPKey ){
                iCol = -1;
              }
              break;
            }
          }
        }
        if( iCol<pTab->nCol ){
          cnt++;
          if( iCol<0 ){
            pExpr->affinity = SQLITE_AFF_INTEGER;
          }else if( pExpr->iTable==0 ){
            testcase( iCol==31 );
            testcase( iCol==32 );



            pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
          }
          pExpr->iColumn = (i16)iCol;
          pExpr->pTab = pTab;
          isTrigger = 1;

        }
      }
    }
#endif /* !defined(SQLITE_OMIT_TRIGGER) */

    /*
    ** Perhaps the name is a reference to the ROWID
57893
57894
57895
57896
57897
57898
57899
57900
57901
57902
57903
57904
57905
57906
57907

  /* Clean up and return
  */
  sqlite3ExprDelete(db, pExpr->pLeft);
  pExpr->pLeft = 0;
  sqlite3ExprDelete(db, pExpr->pRight);
  pExpr->pRight = 0;
  pExpr->op = TK_COLUMN;
lookupname_end:
  if( cnt==1 ){
    assert( pNC!=0 );
    sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
    /* Increment the nRef value on all name contexts from TopNC up to
    ** the point where the name matched. */
    for(;;){







|







58915
58916
58917
58918
58919
58920
58921
58922
58923
58924
58925
58926
58927
58928
58929

  /* Clean up and return
  */
  sqlite3ExprDelete(db, pExpr->pLeft);
  pExpr->pLeft = 0;
  sqlite3ExprDelete(db, pExpr->pRight);
  pExpr->pRight = 0;
  pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN);
lookupname_end:
  if( cnt==1 ){
    assert( pNC!=0 );
    sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
    /* Increment the nRef value on all name contexts from TopNC up to
    ** the point where the name matched. */
    for(;;){
58700
58701
58702
58703
58704
58705
58706
58707
58708
58709
58710
58711
58712
58713
58714
58715
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.448 2009/07/27 10:05:05 danielk1977 Exp $
*/

/*
** Return the 'affinity' of the expression pExpr if any.
**
** If pExpr is a column, a reference to a column via an 'AS' alias,
** or a sub-select with a column as the return value, then the 







<
<







59722
59723
59724
59725
59726
59727
59728


59729
59730
59731
59732
59733
59734
59735
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.


*/

/*
** Return the 'affinity' of the expression pExpr if any.
**
** If pExpr is a column, a reference to a column via an 'AS' alias,
** or a sub-select with a column as the return value, then the 
58780
58781
58782
58783
58784
58785
58786

58787

58788
58789
58790
58791
58792
58793
58794
  CollSeq *pColl = 0;
  Expr *p = pExpr;
  while( ALWAYS(p) ){
    int op;
    pColl = p->pColl;
    if( pColl ) break;
    op = p->op;

    if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){

      /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
      ** a TK_COLUMN but was previously evaluated and cached in a register */
      const char *zColl;
      int j = p->iColumn;
      if( j>=0 ){
        sqlite3 *db = pParse->db;
        zColl = p->pTab->aCol[j].zColl;







>
|
>







59800
59801
59802
59803
59804
59805
59806
59807
59808
59809
59810
59811
59812
59813
59814
59815
59816
  CollSeq *pColl = 0;
  Expr *p = pExpr;
  while( ALWAYS(p) ){
    int op;
    pColl = p->pColl;
    if( pColl ) break;
    op = p->op;
    if( p->pTab!=0 && (
        op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
    )){
      /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
      ** a TK_COLUMN but was previously evaluated and cached in a register */
      const char *zColl;
      int j = p->iColumn;
      if( j>=0 ){
        sqlite3 *db = pParse->db;
        zColl = p->pTab->aCol[j].zColl;
60086
60087
60088
60089
60090
60091
60092
60093
60094
60095
60096
60097
60098
60099
60100
    ** has already been allocated. So assume sqlite3GetVdbe() is always
    ** successful here.
    */
    assert(v);
    if( iCol<0 ){
      int iMem = ++pParse->nMem;
      int iAddr;
      sqlite3VdbeUsesBtree(v, iDb);

      iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);

      sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
      eType = IN_INDEX_ROWID;








<







61108
61109
61110
61111
61112
61113
61114

61115
61116
61117
61118
61119
61120
61121
    ** has already been allocated. So assume sqlite3GetVdbe() is always
    ** successful here.
    */
    assert(v);
    if( iCol<0 ){
      int iMem = ++pParse->nMem;
      int iAddr;


      iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);

      sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
      eType = IN_INDEX_ROWID;

60120
60121
60122
60123
60124
60125
60126
60127
60128
60129
60130
60131
60132
60133
60134
60135
60136
         && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
        ){
          int iMem = ++pParse->nMem;
          int iAddr;
          char *pKey;
  
          pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
          iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
          sqlite3VdbeUsesBtree(v, iDb);

          iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
          sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
  
          sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
                               pKey,P4_KEYINFO_HANDOFF);
          VdbeComment((v, "%s", pIdx->zName));
          eType = IN_INDEX_INDEX;







<
<
<







61141
61142
61143
61144
61145
61146
61147



61148
61149
61150
61151
61152
61153
61154
         && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
        ){
          int iMem = ++pParse->nMem;
          int iAddr;
          char *pKey;
  
          pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);



          iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
          sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
  
          sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
                               pKey,P4_KEYINFO_HANDOFF);
          VdbeComment((v, "%s", pIdx->zName));
          eType = IN_INDEX_INDEX;
60211
60212
60213
60214
60215
60216
60217
60218
60219
60220
60221
60222
60223
60224
60225
  **    *  The right-hand side is a correlated subquery
  **    *  The right-hand side is an expression list containing variables
  **    *  We are inside a trigger
  **
  ** If all of the above are false, then we can run this code just once
  ** save the results, and reuse the same result on subsequent invocations.
  */
  if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
    int mem = ++pParse->nMem;
    sqlite3VdbeAddOp1(v, OP_If, mem);
    testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
    assert( testAddr>0 || pParse->db->mallocFailed );
  }

  switch( pExpr->op ){







|







61229
61230
61231
61232
61233
61234
61235
61236
61237
61238
61239
61240
61241
61242
61243
  **    *  The right-hand side is a correlated subquery
  **    *  The right-hand side is an expression list containing variables
  **    *  We are inside a trigger
  **
  ** If all of the above are false, then we can run this code just once
  ** save the results, and reuse the same result on subsequent invocations.
  */
  if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
    int mem = ++pParse->nMem;
    sqlite3VdbeAddOp1(v, OP_If, mem);
    testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
    assert( testAddr>0 || pParse->db->mallocFailed );
  }

  switch( pExpr->op ){
60398
60399
60400
60401
60402
60403
60404
60405
60406
60407
60408
60409
60410
60411
60412
60413
60414
60415
60416
60417
60418
** like the continuation of the number.
*/
static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
  if( ALWAYS(z!=0) ){
    double value;
    char *zV;
    sqlite3AtoF(z, &value);
    if( sqlite3IsNaN(value) ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
    }else{
      if( negateFlag ) value = -value;
      zV = dup8bytes(v, (char*)&value);
      sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
    }
  }
}


/*
** Generate an instruction that will put the integer describe by
** text z[0..n-1] into register iMem.







|
<
<
|
|
|
<







61416
61417
61418
61419
61420
61421
61422
61423


61424
61425
61426

61427
61428
61429
61430
61431
61432
61433
** like the continuation of the number.
*/
static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
  if( ALWAYS(z!=0) ){
    double value;
    char *zV;
    sqlite3AtoF(z, &value);
    assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */


    if( negateFlag ) value = -value;
    zV = dup8bytes(v, (char*)&value);
    sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);

  }
}


/*
** Generate an instruction that will put the integer describe by
** text z[0..n-1] into register iMem.
61060
61061
61062
61063
61064
61065
61066
61067



61068
61069

61070

61071
61072
61073
61074
61075
61076
61077
        pFarg = pExpr->x.pList;
      }
      nFarg = pFarg ? pFarg->nExpr : 0;
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
      assert( pDef!=0 );



      if( pFarg ){
        r1 = sqlite3GetTempRange(pParse, nFarg);

        sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);

      }else{
        r1 = 0;
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      /* Possibly overload the function if the first argument is
      ** a virtual table column.
      **







|
>
>
>


>

>







62075
62076
62077
62078
62079
62080
62081
62082
62083
62084
62085
62086
62087
62088
62089
62090
62091
62092
62093
62094
62095
62096
62097
        pFarg = pExpr->x.pList;
      }
      nFarg = pFarg ? pFarg->nExpr : 0;
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
      if( pDef==0 ){
        sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
        break;
      }
      if( pFarg ){
        r1 = sqlite3GetTempRange(pParse, nFarg);
        sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
        sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
        sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
      }else{
        r1 = 0;
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      /* Possibly overload the function if the first argument is
      ** a virtual table column.
      **
61245
61246
61247
61248
61249
61250
61251




















































61252
61253
61254
61255
61256
61257
61258
      sqlite3ReleaseTempReg(pParse, r4);
      break;
    }
    case TK_UPLUS: {
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
      break;
    }





















































    /*
    ** Form A:
    **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
    **
    ** Form B:
    **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







62265
62266
62267
62268
62269
62270
62271
62272
62273
62274
62275
62276
62277
62278
62279
62280
62281
62282
62283
62284
62285
62286
62287
62288
62289
62290
62291
62292
62293
62294
62295
62296
62297
62298
62299
62300
62301
62302
62303
62304
62305
62306
62307
62308
62309
62310
62311
62312
62313
62314
62315
62316
62317
62318
62319
62320
62321
62322
62323
62324
62325
62326
62327
62328
62329
62330
      sqlite3ReleaseTempReg(pParse, r4);
      break;
    }
    case TK_UPLUS: {
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
      break;
    }

    case TK_TRIGGER: {
      /* If the opcode is TK_TRIGGER, then the expression is a reference
      ** to a column in the new.* or old.* pseudo-tables available to
      ** trigger programs. In this case Expr.iTable is set to 1 for the
      ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
      ** is set to the column of the pseudo-table to read, or to -1 to
      ** read the rowid field.
      **
      ** The expression is implemented using an OP_Param opcode. The p1
      ** parameter is set to 0 for an old.rowid reference, or to (i+1)
      ** to reference another column of the old.* pseudo-table, where 
      ** i is the index of the column. For a new.rowid reference, p1 is
      ** set to (n+1), where n is the number of columns in each pseudo-table.
      ** For a reference to any other column in the new.* pseudo-table, p1
      ** is set to (n+2+i), where n and i are as defined previously. For
      ** example, if the table on which triggers are being fired is
      ** declared as:
      **
      **   CREATE TABLE t1(a, b);
      **
      ** Then p1 is interpreted as follows:
      **
      **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
      **   p1==1   ->    old.a         p1==4   ->    new.a
      **   p1==2   ->    old.b         p1==5   ->    new.b       
      */
      Table *pTab = pExpr->pTab;
      int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;

      assert( pExpr->iTable==0 || pExpr->iTable==1 );
      assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
      assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
      assert( p1>=0 && p1<(pTab->nCol*2+2) );

      sqlite3VdbeAddOp2(v, OP_Param, p1, target);
      VdbeComment((v, "%s.%s -> $%d",
        (pExpr->iTable ? "new" : "old"),
        (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
        target
      ));

      /* If the column has REAL affinity, it may currently be stored as an
      ** integer. Use OP_RealAffinity to make sure it is really real.  */
      if( pExpr->iColumn>=0 
       && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
      ){
        sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
      }
      break;
    }


    /*
    ** Form A:
    **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
    **
    ** Form B:
    **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
61330
61331
61332
61333
61334
61335
61336





61337
61338
61339
61340
61341
61342
61343
61344
61345

61346

61347
61348
61349
61350
61351
61352
61353
61354

61355
61356
61357
61358
61359
61360
61361
      assert( db->mallocFailed || pParse->nErr>0 
           || pParse->iCacheLevel==iCacheLevel );
      sqlite3VdbeResolveLabel(v, endLabel);
      break;
    }
#ifndef SQLITE_OMIT_TRIGGER
    case TK_RAISE: {





      if( !pParse->trigStack ){
        sqlite3ErrorMsg(pParse,
                       "RAISE() may only be used within a trigger-program");
        return 0;
      }
      if( pExpr->affinity!=OE_Ignore ){
         assert( pExpr->affinity==OE_Rollback ||
                 pExpr->affinity == OE_Abort ||
                 pExpr->affinity == OE_Fail );

         assert( !ExprHasProperty(pExpr, EP_IntValue) );

         sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->affinity, 0,
                           pExpr->u.zToken, 0);
      } else {
         assert( pExpr->affinity == OE_Ignore );
         sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
         sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
         VdbeComment((v, "raise(IGNORE)"));
      }

      break;
    }
#endif
  }
  sqlite3ReleaseTempReg(pParse, regFree1);
  sqlite3ReleaseTempReg(pParse, regFree2);
  return inReg;







>
>
>
>
>
|




|
<
|
<
>
|
>
|
|
|
|
<
<
<

>







62402
62403
62404
62405
62406
62407
62408
62409
62410
62411
62412
62413
62414
62415
62416
62417
62418
62419

62420

62421
62422
62423
62424
62425
62426
62427



62428
62429
62430
62431
62432
62433
62434
62435
62436
      assert( db->mallocFailed || pParse->nErr>0 
           || pParse->iCacheLevel==iCacheLevel );
      sqlite3VdbeResolveLabel(v, endLabel);
      break;
    }
#ifndef SQLITE_OMIT_TRIGGER
    case TK_RAISE: {
      assert( pExpr->affinity==OE_Rollback 
           || pExpr->affinity==OE_Abort
           || pExpr->affinity==OE_Fail
           || pExpr->affinity==OE_Ignore
      );
      if( !pParse->pTriggerTab ){
        sqlite3ErrorMsg(pParse,
                       "RAISE() may only be used within a trigger-program");
        return 0;
      }
      if( pExpr->affinity==OE_Abort ){

        sqlite3MayAbort(pParse);

      }
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      if( pExpr->affinity==OE_Ignore ){
        sqlite3VdbeAddOp4(
            v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
      }else{
        sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);



      }

      break;
    }
#endif
  }
  sqlite3ReleaseTempReg(pParse, regFree1);
  sqlite3ReleaseTempReg(pParse, regFree2);
  return inReg;
61523
61524
61525
61526
61527
61528
61529

61530
61531
61532
61533
61534
61535
61536
    }
  }
  if( isAppropriateForFactoring(pExpr) ){
    int r1 = ++pParse->nMem;
    int r2;
    r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
    if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);

    pExpr->op = TK_REGISTER;
    pExpr->iTable = r2;
    return WRC_Prune;
  }
  return WRC_Continue;
}








>







62598
62599
62600
62601
62602
62603
62604
62605
62606
62607
62608
62609
62610
62611
62612
    }
  }
  if( isAppropriateForFactoring(pExpr) ){
    int r1 = ++pParse->nMem;
    int r2;
    r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
    if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
    pExpr->op2 = pExpr->op;
    pExpr->op = TK_REGISTER;
    pExpr->iTable = r2;
    return WRC_Prune;
  }
  return WRC_Continue;
}

62373
62374
62375
62376
62377
62378
62379
62380
62381
62382
62383
62384
62385
62386
62387
62388
62389
62390
  ** expression being built up in zWhere.
  */
  if( pTab->pSchema!=pTempSchema ){
    sqlite3 *db = pParse->db;
    for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
      if( pTrig->pSchema==pTempSchema ){
        if( !zWhere ){
          zWhere = sqlite3MPrintf(db, "name=%Q", pTrig->name);
        }else{
          tmp = zWhere;
          zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, pTrig->name);
          sqlite3DbFree(db, tmp);
        }
      }
    }
  }
  return zWhere;
}







|


|







63449
63450
63451
63452
63453
63454
63455
63456
63457
63458
63459
63460
63461
63462
63463
63464
63465
63466
  ** expression being built up in zWhere.
  */
  if( pTab->pSchema!=pTempSchema ){
    sqlite3 *db = pParse->db;
    for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
      if( pTrig->pSchema==pTempSchema ){
        if( !zWhere ){
          zWhere = sqlite3MPrintf(db, "name=%Q", pTrig->zName);
        }else{
          tmp = zWhere;
          zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, pTrig->zName);
          sqlite3DbFree(db, tmp);
        }
      }
    }
  }
  return zWhere;
}
62412
62413
62414
62415
62416
62417
62418
62419
62420
62421
62422
62423
62424
62425
62426
  assert( iDb>=0 );

#ifndef SQLITE_OMIT_TRIGGER
  /* Drop any table triggers from the internal schema. */
  for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
    int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
    assert( iTrigDb==iDb || iTrigDb==1 );
    sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->name, 0);
  }
#endif

  /* Drop the table and index from the internal schema */
  sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);

  /* Reload the table, index and permanent trigger schemas. */







|







63488
63489
63490
63491
63492
63493
63494
63495
63496
63497
63498
63499
63500
63501
63502
  assert( iDb>=0 );

#ifndef SQLITE_OMIT_TRIGGER
  /* Drop any table triggers from the internal schema. */
  for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
    int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
    assert( iTrigDb==iDb || iTrigDb==1 );
    sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->zName, 0);
  }
#endif

  /* Drop the table and index from the internal schema */
  sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);

  /* Reload the table, index and permanent trigger schemas. */
62539
62540
62541
62542
62543
62544
62545

62546
62547
62548
62549
62550
62551
62552
  ** SQLite tables) that are identified by the name of the virtual table.
  */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( pVTab ){
    int i = ++pParse->nMem;
    sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0);
    sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB);

  }
#endif

  /* figure out how many UTF-8 characters are in zName */
  zTabName = pTab->zName;
  nTabName = sqlite3Utf8CharLen(zTabName, -1);








>







63615
63616
63617
63618
63619
63620
63621
63622
63623
63624
63625
63626
63627
63628
63629
  ** SQLite tables) that are identified by the name of the virtual table.
  */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( pVTab ){
    int i = ++pParse->nMem;
    sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0);
    sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB);
    sqlite3MayAbort(pParse);
  }
#endif

  /* figure out how many UTF-8 characters are in zName */
  zTabName = pTab->zName;
  nTabName = sqlite3Utf8CharLen(zTabName, -1);

62854
62855
62856
62857
62858
62859
62860
62861


62862
62863
62864

62865


62866



62867
62868
62869
62870
62871
62872
62873














62874
62875
62876
62877
62878
62879
62880
62881
62882
62883
62884




62885
62886
62887
62888
62889
62890
62891
62892
62893
62894
62895
62896

62897
62898
62899
62900
62901
62902
62903





62904
62905
62906
62907
62908
62909
62910
62911
62912
62913
62914
62915
62916
62917



62918
62919
62920

62921
62922
62923
62924
62925
62926
62927
62928
62929
62930
62931
62932

62933
62934
62935
62936
62937
62938
62939
62940
62941















62942
62943
62944
62945
62946
62947
62948
62949
62950
62951
62952
62953
62954
62955
62956
62957
62958
62959
62960
62961
62962

62963
62964
62965
62966
62967
62968
62969
62970

62971
62972
62973
62974
62975
62976
62977
62978





62979

62980



62981



62982








62983
62984





62985

62986

62987
62988

62989
62990
62991
62992

62993

62994
62995
62996
62997
62998
62999
63000
63001
63002
63003
63004
63005
63006
63007
63008
63009
63010

63011
63012

































63013
63014
63015







63016
63017
63018
63019
63020
63021
63022


63023
63024
63025
63026
63027
63028
63029
63030
63031
63032
63033
63034
63035
63036
63037
63038
63039
63040
63041
63042
63043
63044
63045
63046
63047
63048
63049
63050
63051
63052
63053
63054
63055
63056
63057
63058
63059
63060
63061
63062
63063
63064
63065
63066
** This file contains code associated with the ANALYZE command.
**
** @(#) $Id: analyze.c,v 1.52 2009/04/16 17:45:48 drh Exp $
*/
#ifndef SQLITE_OMIT_ANALYZE

/*
** This routine generates code that opens the sqlite_stat1 table on cursor


** iStatCur.
**
** If the sqlite_stat1 tables does not previously exist, it is created.

** If it does previously exist, all entires associated with table zWhere


** are removed.  If zWhere==0 then all entries are removed.



*/
static void openStatTable(
  Parse *pParse,          /* Parsing context */
  int iDb,                /* The database we are looking in */
  int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
  const char *zWhere      /* Delete entries associated with this table */
){














  sqlite3 *db = pParse->db;
  Db *pDb;
  int iRootPage;
  u8 createStat1 = 0;
  Table *pStat;
  Vdbe *v = sqlite3GetVdbe(pParse);

  if( v==0 ) return;
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  assert( sqlite3VdbeDb(v)==db );
  pDb = &db->aDb[iDb];




  if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
    /* The sqlite_stat1 tables does not exist.  Create it.  
    ** Note that a side-effect of the CREATE TABLE statement is to leave
    ** the rootpage of the new table in register pParse->regRoot.  This is
    ** important because the OpenWrite opcode below will be needing it. */
    sqlite3NestedParse(pParse,
      "CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
      pDb->zName
    );
    iRootPage = pParse->regRoot;
    createStat1 = 1;  /* Cause rootpage to be taken from top of stack */
  }else if( zWhere ){

    /* The sqlite_stat1 table exists.  Delete all entries associated with
    ** the table zWhere. */
    sqlite3NestedParse(pParse,
       "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
       pDb->zName, zWhere
    );
    iRootPage = pStat->tnum;





  }else{
    /* The sqlite_stat1 table already exists.  Delete all rows. */
    iRootPage = pStat->tnum;
    sqlite3VdbeAddOp2(v, OP_Clear, pStat->tnum, iDb);
  }

  /* Open the sqlite_stat1 table for writing. Unless it was created
  ** by this vdbe program, lock it for writing at the shared-cache level. 
  ** If this vdbe did create the sqlite_stat1 table, then it must have 
  ** already obtained a schema-lock, making the write-lock redundant.
  */
  if( !createStat1 ){
    sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
  }



  sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur, iRootPage, iDb);
  sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
  sqlite3VdbeChangeP5(v, createStat1);

}

/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
  Table *pTab,     /* Table whose indices are to be analyzed */
  int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
  int iMem         /* Available memory locations begin here */
){

  Index *pIdx;     /* An index to being analyzed */
  int iIdxCur;     /* Index of VdbeCursor for index being analyzed */
  int nCol;        /* Number of columns in the index */
  Vdbe *v;         /* The virtual machine being built up */
  int i;           /* Loop counter */
  int topOfLoop;   /* The top of the loop */
  int endOfLoop;   /* The end of the loop */
  int addr;        /* The address of an instruction */
  int iDb;         /* Index of database containing pTab */
















  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) || pTab->pIndex==0 ){
    /* Do no analysis for tables that have no indices */
    return;
  }
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  assert( iDb>=0 );
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      pParse->db->aDb[iDb].zName ) ){
    return;
  }
#endif

  /* Establish a read-lock on the table at the shared-cache level. */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iIdxCur = pParse->nTab++;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){

    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
    int regFields;    /* Register block for building records */
    int regRec;       /* Register holding completed record */
    int regTemp;      /* Temporary use register */
    int regCol;       /* Content of a column from the table being analyzed */
    int regRowid;     /* Rowid for the inserted record */
    int regF2;


    /* Open a cursor to the index to be analyzed
    */
    assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
    nCol = pIdx->nColumn;
    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
        (char *)pKey, P4_KEYINFO_HANDOFF);
    VdbeComment((v, "%s", pIdx->zName));
    regFields = iMem+nCol*2;





    regTemp = regRowid = regCol = regFields+3;

    regRec = regCol+1;



    if( regRec>pParse->nMem ){



      pParse->nMem = regRec;








    }






    /* Memory cells are used as follows:

    **

    **    mem[iMem]:             The total number of rows in the table.
    **    mem[iMem+1]:           Number of distinct values in column 1

    **    ...
    **    mem[iMem+nCol]:        Number of distinct values in column N
    **    mem[iMem+nCol+1]       Last observed value of column 1
    **    ...

    **    mem[iMem+nCol+nCol]:   Last observed value of column N

    **
    ** Cells iMem through iMem+nCol are initialized to 0.  The others
    ** are initialized to NULL.
    */
    for(i=0; i<=nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
    }

    /* Do the analysis.
    */
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);

    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);

































      sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1);
      /**** TODO:  add collating sequence *****/
      sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);







    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      sqlite3VdbeJumpHere(v, topOfLoop + 2*(i + 1));
      sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
    }


    sqlite3VdbeResolveLabel(v, endOfLoop);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);

    /* Store the results.  
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entries
    ** in the index.  There is one additional integer in the list for each
    ** column of the table.  This additional integer is a guess of how many
    ** rows of the table the index will select.  If D is the count of distinct
    ** values and K is the total number of rows, then the integer is computed
    ** as:
    **
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
    sqlite3VdbeAddOp4(v, OP_String8, 0, regFields, 0, pTab->zName, 0);
    sqlite3VdbeAddOp4(v, OP_String8, 0, regFields+1, 0, pIdx->zName, 0);
    regF2 = regFields+2;
    sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regF2);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
      sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
      sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
      sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
      sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
    }
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regFields, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, addr);
  }
}








|
>
>
|


>
|
>
>
|
>
>
>







>
>
>
>
>
>
>
>
>
>
>
>
>
>


<
<
<

<




>
>
>
>
|
|
|
|
|
|
|
<
|
|
|
|
>
|
|
<
<
<
<
|
>
>
>
>
>
|
|
<
|
|
|
<
<
<
<
<
<
<

>
>
>
|
|
|
>












>
|
|
<
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






|
|



|









>

|
<
|
|
<
<
|
>
|
<
|
<



|
>
>
>
>
>
|
>
|
>
>
>
|
>
>
>
|
>
>
>
>
>
>
>
>


>
>
>
>
>
|
>

>
|
<
>
|
|
|
|
>
|
>

|
|








|
|




>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



>
>
>
>
>
>
>



|



>
>




|


















<
<
<
|


|




|

|







63931
63932
63933
63934
63935
63936
63937
63938
63939
63940
63941
63942
63943
63944
63945
63946
63947
63948
63949
63950
63951
63952
63953
63954
63955
63956
63957
63958
63959
63960
63961
63962
63963
63964
63965
63966
63967
63968
63969
63970
63971
63972
63973
63974



63975

63976
63977
63978
63979
63980
63981
63982
63983
63984
63985
63986
63987
63988
63989
63990

63991
63992
63993
63994
63995
63996
63997




63998
63999
64000
64001
64002
64003
64004
64005

64006
64007
64008







64009
64010
64011
64012
64013
64014
64015
64016
64017
64018
64019
64020
64021
64022
64023
64024
64025
64026
64027
64028
64029
64030
64031

64032
64033
64034
64035
64036
64037
64038
64039
64040
64041
64042
64043
64044
64045
64046
64047
64048
64049
64050
64051
64052
64053
64054
64055
64056
64057
64058
64059
64060
64061
64062
64063
64064
64065
64066
64067
64068
64069
64070
64071
64072
64073
64074
64075
64076

64077
64078


64079
64080
64081

64082

64083
64084
64085
64086
64087
64088
64089
64090
64091
64092
64093
64094
64095
64096
64097
64098
64099
64100
64101
64102
64103
64104
64105
64106
64107
64108
64109
64110
64111
64112
64113
64114
64115
64116
64117
64118
64119
64120
64121
64122

64123
64124
64125
64126
64127
64128
64129
64130
64131
64132
64133
64134
64135
64136
64137
64138
64139
64140
64141
64142
64143
64144
64145
64146
64147
64148
64149
64150
64151
64152
64153
64154
64155
64156
64157
64158
64159
64160
64161
64162
64163
64164
64165
64166
64167
64168
64169
64170
64171
64172
64173
64174
64175
64176
64177
64178
64179
64180
64181
64182
64183
64184
64185
64186
64187
64188
64189
64190
64191
64192
64193
64194
64195
64196
64197
64198
64199
64200
64201
64202
64203
64204
64205
64206
64207
64208
64209
64210
64211
64212
64213
64214
64215
64216
64217
64218
64219
64220
64221
64222
64223
64224
64225



64226
64227
64228
64229
64230
64231
64232
64233
64234
64235
64236
64237
64238
64239
64240
64241
64242
64243
** This file contains code associated with the ANALYZE command.
**
** @(#) $Id: analyze.c,v 1.52 2009/04/16 17:45:48 drh Exp $
*/
#ifndef SQLITE_OMIT_ANALYZE

/*
** This routine generates code that opens the sqlite_stat1 table for
** writing with cursor iStatCur. If the library was built with the
** SQLITE_ENABLE_STAT2 macro defined, then the sqlite_stat2 table is
** opened for writing using cursor (iStatCur+1)
**
** If the sqlite_stat1 tables does not previously exist, it is created.
** Similarly, if the sqlite_stat2 table does not exist and the library
** is compiled with SQLITE_ENABLE_STAT2 defined, it is created. 
**
** Argument zWhere may be a pointer to a buffer containing a table name,
** or it may be a NULL pointer. If it is not NULL, then all entries in
** the sqlite_stat1 and (if applicable) sqlite_stat2 tables associated
** with the named table are deleted. If zWhere==0, then code is generated
** to delete all stat table entries.
*/
static void openStatTable(
  Parse *pParse,          /* Parsing context */
  int iDb,                /* The database we are looking in */
  int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
  const char *zWhere      /* Delete entries associated with this table */
){
  static struct {
    const char *zName;
    const char *zCols;
  } aTable[] = {
    { "sqlite_stat1", "tbl,idx,stat" },
#ifdef SQLITE_ENABLE_STAT2
    { "sqlite_stat2", "tbl,idx,sampleno,sample" },
#endif
  };

  int aRoot[] = {0, 0};
  u8 aCreateTbl[] = {0, 0};

  int i;
  sqlite3 *db = pParse->db;
  Db *pDb;



  Vdbe *v = sqlite3GetVdbe(pParse);

  if( v==0 ) return;
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  assert( sqlite3VdbeDb(v)==db );
  pDb = &db->aDb[iDb];

  for(i=0; i<ArraySize(aTable); i++){
    const char *zTab = aTable[i].zName;
    Table *pStat;
    if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
      /* The sqlite_stat[12] table does not exist. Create it. Note that a 
      ** side-effect of the CREATE TABLE statement is to leave the rootpage 
      ** of the new table in register pParse->regRoot. This is important 
      ** because the OpenWrite opcode below will be needing it. */
      sqlite3NestedParse(pParse,
          "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols

      );
      aRoot[i] = pParse->regRoot;
      aCreateTbl[i] = 1;
    }else{
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */




      aRoot[i] = pStat->tnum;
      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){
        sqlite3NestedParse(pParse,
           "DELETE FROM %Q.%s WHERE tbl=%Q", pDb->zName, zTab, zWhere
        );
      }else{
        /* The sqlite_stat[12] table already exists.  Delete all rows. */

        sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
      }
    }







  }

  /* Open the sqlite_stat[12] tables for writing. */
  for(i=0; i<ArraySize(aTable); i++){
    sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
    sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
    sqlite3VdbeChangeP5(v, aCreateTbl[i]);
  }
}

/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
  Table *pTab,     /* Table whose indices are to be analyzed */
  int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
  int iMem         /* Available memory locations begin here */
){
  sqlite3 *db = pParse->db;    /* Database handle */
  Index *pIdx;                 /* An index to being analyzed */
  int iIdxCur;                 /* Cursor open on index being analyzed */

  Vdbe *v;                     /* The virtual machine being built up */
  int i;                       /* Loop counter */
  int topOfLoop;               /* The top of the loop */
  int endOfLoop;               /* The end of the loop */
  int addr;                    /* The address of an instruction */
  int iDb;                     /* Index of database containing pTab */
  int regTabname = iMem++;     /* Register containing table name */
  int regIdxname = iMem++;     /* Register containing index name */
  int regSampleno = iMem++;    /* Register containing next sample number */
  int regCol = iMem++;         /* Content of a column analyzed table */
  int regRec = iMem++;         /* Register holding completed record */
  int regTemp = iMem++;        /* Temporary use register */
  int regRowid = iMem++;       /* Rowid for the inserted record */

#ifdef SQLITE_ENABLE_STAT2
  int regTemp2 = iMem++;       /* Temporary use register */
  int regSamplerecno = iMem++; /* Index of next sample to record */
  int regRecno = iMem++;       /* Current sample index */
  int regLast = iMem++;        /* Index of last sample to record */
  int regFirst = iMem++;       /* Index of first sample to record */
#endif

  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) || pTab->pIndex==0 ){
    /* Do no analysis for tables that have no indices */
    return;
  }
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  assert( iDb>=0 );
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      db->aDb[iDb].zName ) ){
    return;
  }
#endif

  /* Establish a read-lock on the table at the shared-cache level. */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iIdxCur = pParse->nTab++;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol = pIdx->nColumn;
    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);


    if( iMem+1+(nCol*2)>pParse->nMem ){
      pParse->nMem = iMem+1+(nCol*2);


    }

    /* Open a cursor to the index to be analyzed. */

    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );

    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
        (char *)pKey, P4_KEYINFO_HANDOFF);
    VdbeComment((v, "%s", pIdx->zName));

    /* Populate the registers containing the table and index names. */
    if( pTab->pIndex==pIdx ){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
    }
    sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);

#ifdef SQLITE_ENABLE_STAT2

    /* If this iteration of the loop is generating code to analyze the
    ** first index in the pTab->pIndex list, then register regLast has
    ** not been populated. In this case populate it now.  */
    if( pTab->pIndex==pIdx ){
      sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regSamplerecno);
      sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2-1, regTemp);
      sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2, regTemp2);

      sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regLast);
      sqlite3VdbeAddOp2(v, OP_Null, 0, regFirst);
      addr = sqlite3VdbeAddOp3(v, OP_Lt, regSamplerecno, 0, regLast);
      sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regFirst);
      sqlite3VdbeAddOp3(v, OP_Multiply, regLast, regTemp, regLast);
      sqlite3VdbeAddOp2(v, OP_AddImm, regLast, SQLITE_INDEX_SAMPLES*2-2);
      sqlite3VdbeAddOp3(v, OP_Divide,  regTemp2, regLast, regLast);
      sqlite3VdbeJumpHere(v, addr);
    }

    /* Zero the regSampleno and regRecno registers. */
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleno);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRecno);
    sqlite3VdbeAddOp2(v, OP_Copy, regFirst, regSamplerecno);
#endif

    /* The block of memory cells initialized here is used as follows.
    **
    **    iMem:                
    **        The total number of rows in the table.

    **
    **    iMem+1 .. iMem+nCol: 
    **        Number of distinct entries in index considering the 
    **        left-most N columns only, where N is between 1 and nCol, 
    **        inclusive.
    **
    **    iMem+nCol+1 .. Mem+2*nCol:  
    **        Previous value of indexed columns, from left to right.
    **
    ** Cells iMem through iMem+nCol are initialized to 0. The others are 
    ** initialized to contain an SQL NULL.
    */
    for(i=0; i<=nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
    }

    /* Start the analysis loop. This loop runs through all the entries in
    ** the index b-tree.  */
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);

    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
#ifdef SQLITE_ENABLE_STAT2
      if( i==0 ){
        /* Check if the record that cursor iIdxCur points to contains a
        ** value that should be stored in the sqlite_stat2 table. If so,
        ** store it.  */
        int ne = sqlite3VdbeAddOp3(v, OP_Ne, regRecno, 0, regSamplerecno);
        assert( regTabname+1==regIdxname 
             && regTabname+2==regSampleno
             && regTabname+3==regCol
        );
        sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
        sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 4, regRec, "aaab", 0);
        sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid);
        sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid);

        /* Calculate new values for regSamplerecno and regSampleno.
        **
        **   sampleno = sampleno + 1
        **   samplerecno = samplerecno+(remaining records)/(remaining samples)
        */
        sqlite3VdbeAddOp2(v, OP_AddImm, regSampleno, 1);
        sqlite3VdbeAddOp3(v, OP_Subtract, regRecno, regLast, regTemp);
        sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
        sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regTemp2);
        sqlite3VdbeAddOp3(v, OP_Subtract, regSampleno, regTemp2, regTemp2);
        sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regTemp, regTemp);
        sqlite3VdbeAddOp3(v, OP_Add, regSamplerecno, regTemp, regSamplerecno);

        sqlite3VdbeJumpHere(v, ne);
        sqlite3VdbeAddOp2(v, OP_AddImm, regRecno, 1);
      }
#endif

      sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1);
      /**** TODO:  add collating sequence *****/
      sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
    }
    if( db->mallocFailed ){
      /* If a malloc failure has occurred, then the result of the expression 
      ** passed as the second argument to the call to sqlite3VdbeJumpHere() 
      ** below may be negative. Which causes an assert() to fail (or an
      ** out-of-bounds write if SQLITE_DEBUG is not defined).  */
      return;
    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-(nCol*2));
      sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
    }

    /* End of the analysis loop. */
    sqlite3VdbeResolveLabel(v, endOfLoop);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);

    /* Store the results in sqlite_stat1.
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entries
    ** in the index.  There is one additional integer in the list for each
    ** column of the table.  This additional integer is a guess of how many
    ** rows of the table the index will select.  If D is the count of distinct
    ** values and K is the total number of rows, then the integer is computed
    ** as:
    **
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);



    sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
      sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
      sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
      sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
      sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
    }
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, addr);
  }
}

63082
63083
63084
63085
63086
63087
63088
63089

63090
63091
63092
63093
63094
63095
63096
  sqlite3 *db = pParse->db;
  Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
  HashElem *k;
  int iStatCur;
  int iMem;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab++;

  openStatTable(pParse, iDb, iStatCur, 0);
  iMem = pParse->nMem+1;
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);







|
>







64259
64260
64261
64262
64263
64264
64265
64266
64267
64268
64269
64270
64271
64272
64273
64274
  sqlite3 *db = pParse->db;
  Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
  HashElem *k;
  int iStatCur;
  int iMem;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 2;
  openStatTable(pParse, iDb, iStatCur, 0);
  iMem = pParse->nMem+1;
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
63104
63105
63106
63107
63108
63109
63110
63111

63112
63113
63114
63115
63116
63117
63118
  int iDb;
  int iStatCur;

  assert( pTab!=0 );
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab++;

  openStatTable(pParse, iDb, iStatCur, pTab->zName);
  analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
  loadAnalysis(pParse, iDb);
}

/*
** Generate code for the ANALYZE command.  The parser calls this routine







|
>







64282
64283
64284
64285
64286
64287
64288
64289
64290
64291
64292
64293
64294
64295
64296
64297
  int iDb;
  int iStatCur;

  assert( pTab!=0 );
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 2;
  openStatTable(pParse, iDb, iStatCur, pTab->zName);
  analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
  loadAnalysis(pParse, iDb);
}

/*
** Generate code for the ANALYZE command.  The parser calls this routine
63224
63225
63226
63227
63228
63229
63230























63231

















63232
63233
63234
63235
63236
63237
63238
63239
63240
63241
63242
63243
63244
63245
63246

63247
63248
63249
63250
63251
63252
63253
63254
63255
63256
63257
63258
63259
63260
63261
63262
63263
63264
63265
63266














































































63267

63268
63269
63270
63271
63272
63273
63274
    pIndex->aiRowEst[i] = v;
    if( *z==' ' ) z++;
  }
  return 0;
}

/*























** Load the content of the sqlite_stat1 table into the index hash tables.

















*/
SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
  analysisInfo sInfo;
  HashElem *i;
  char *zSql;
  int rc;

  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );
  assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );

  /* Clear any prior statistics */
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3DefaultRowEst(pIdx);

  }

  /* Check to make sure the sqlite_stat1 table existss */
  sInfo.db = db;
  sInfo.zDatabase = db->aDb[iDb].zName;
  if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
     return SQLITE_ERROR;
  }


  /* Load new statistics out of the sqlite_stat1 table */
  zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1",
                        sInfo.zDatabase);
  if( zSql==0 ){
    rc = SQLITE_NOMEM;
  }else{
    (void)sqlite3SafetyOff(db);
    rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
    (void)sqlite3SafetyOn(db);
    sqlite3DbFree(db, zSql);














































































    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;

  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>















>


|



|


<

|
|







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>







64403
64404
64405
64406
64407
64408
64409
64410
64411
64412
64413
64414
64415
64416
64417
64418
64419
64420
64421
64422
64423
64424
64425
64426
64427
64428
64429
64430
64431
64432
64433
64434
64435
64436
64437
64438
64439
64440
64441
64442
64443
64444
64445
64446
64447
64448
64449
64450
64451
64452
64453
64454
64455
64456
64457
64458
64459
64460
64461
64462
64463
64464
64465
64466
64467
64468
64469
64470
64471
64472
64473
64474
64475

64476
64477
64478
64479
64480
64481
64482
64483
64484
64485
64486
64487
64488
64489
64490
64491
64492
64493
64494
64495
64496
64497
64498
64499
64500
64501
64502
64503
64504
64505
64506
64507
64508
64509
64510
64511
64512
64513
64514
64515
64516
64517
64518
64519
64520
64521
64522
64523
64524
64525
64526
64527
64528
64529
64530
64531
64532
64533
64534
64535
64536
64537
64538
64539
64540
64541
64542
64543
64544
64545
64546
64547
64548
64549
64550
64551
64552
64553
64554
64555
64556
64557
64558
64559
64560
64561
64562
64563
64564
64565
64566
64567
64568
64569
64570
64571
64572
    pIndex->aiRowEst[i] = v;
    if( *z==' ' ) z++;
  }
  return 0;
}

/*
** If the Index.aSample variable is not NULL, delete the aSample[] array
** and its contents.
*/
SQLITE_PRIVATE void sqlite3DeleteIndexSamples(Index *pIdx){
#ifdef SQLITE_ENABLE_STAT2
  if( pIdx->aSample ){
    int j;
    sqlite3 *dbMem = pIdx->pTable->dbMem;
    for(j=0; j<SQLITE_INDEX_SAMPLES; j++){
      IndexSample *p = &pIdx->aSample[j];
      if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
        sqlite3DbFree(pIdx->pTable->dbMem, p->u.z);
      }
    }
    sqlite3DbFree(dbMem, pIdx->aSample);
    pIdx->aSample = 0;
  }
#else
  UNUSED_PARAMETER(pIdx);
#endif
}

/*
** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
** arrays. The contents of sqlite_stat2 are used to populate the
** Index.aSample[] arrays.
**
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
** is returned. In this case, even if SQLITE_ENABLE_STAT2 was defined 
** during compilation and the sqlite_stat2 table is present, no data is 
** read from it.
**
** If SQLITE_ENABLE_STAT2 was defined during compilation and the 
** sqlite_stat2 table is not present in the database, SQLITE_ERROR is
** returned. However, in this case, data is read from the sqlite_stat1
** table (if it is present) before returning.
**
** If an OOM error occurs, this function always sets db->mallocFailed.
** This means if the caller does not care about other errors, the return
** code may be ignored.
*/
SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
  analysisInfo sInfo;
  HashElem *i;
  char *zSql;
  int rc;

  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );
  assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );

  /* Clear any prior statistics */
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3DefaultRowEst(pIdx);
    sqlite3DeleteIndexSamples(pIdx);
  }

  /* Check to make sure the sqlite_stat1 table exists */
  sInfo.db = db;
  sInfo.zDatabase = db->aDb[iDb].zName;
  if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
    return SQLITE_ERROR;
  }


  /* Load new statistics out of the sqlite_stat1 table */
  zSql = sqlite3MPrintf(db, 
      "SELECT idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
  if( zSql==0 ){
    rc = SQLITE_NOMEM;
  }else{
    (void)sqlite3SafetyOff(db);
    rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
    (void)sqlite3SafetyOn(db);
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat2 table. */
#ifdef SQLITE_ENABLE_STAT2
  if( rc==SQLITE_OK && !sqlite3FindTable(db, "sqlite_stat2", sInfo.zDatabase) ){
    rc = SQLITE_ERROR;
  }
  if( rc==SQLITE_OK ){
    sqlite3_stmt *pStmt = 0;

    zSql = sqlite3MPrintf(db, 
        "SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase);
    if( !zSql ){
      rc = SQLITE_NOMEM;
    }else{
      (void)sqlite3SafetyOff(db);
      rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
      (void)sqlite3SafetyOn(db);
      sqlite3DbFree(db, zSql);
    }

    if( rc==SQLITE_OK ){
      (void)sqlite3SafetyOff(db);
      while( sqlite3_step(pStmt)==SQLITE_ROW ){
        char *zIndex = (char *)sqlite3_column_text(pStmt, 0);
        Index *pIdx = sqlite3FindIndex(db, zIndex, sInfo.zDatabase);
        if( pIdx ){
          int iSample = sqlite3_column_int(pStmt, 1);
          sqlite3 *dbMem = pIdx->pTable->dbMem;
          assert( dbMem==db || dbMem==0 );
          if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){
            int eType = sqlite3_column_type(pStmt, 2);

            if( pIdx->aSample==0 ){
              static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES;
              pIdx->aSample = (IndexSample *)sqlite3DbMallocZero(dbMem, sz);
              if( pIdx->aSample==0 ){
                db->mallocFailed = 1;
                break;
              }
            }

            assert( pIdx->aSample );
            {
              IndexSample *pSample = &pIdx->aSample[iSample];
              pSample->eType = (u8)eType;
              if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
                pSample->u.r = sqlite3_column_double(pStmt, 2);
              }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
                const char *z = (const char *)(
                    (eType==SQLITE_BLOB) ?
                    sqlite3_column_blob(pStmt, 2):
                    sqlite3_column_text(pStmt, 2)
                );
                int n = sqlite3_column_bytes(pStmt, 2);
                if( n>24 ){
                  n = 24;
                }
                pSample->nByte = (u8)n;
                pSample->u.z = sqlite3DbMallocRaw(dbMem, n);
                if( pSample->u.z ){
                  memcpy(pSample->u.z, z, n);
                }else{
                  db->mallocFailed = 1;
                  break;
                }
              }
            }
          }
        }
      }
      rc = sqlite3_finalize(pStmt);
      (void)sqlite3SafetyOn(db);
    }
  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */

63923
63924
63925
63926
63927
63928
63929

63930
63931
63932
63933
63934
63935
63936
63937
63938





63939
63940
63941
63942
63943
63944
63945
63946
63947
63948
63949
63950
63951
63952
63953
63954
63955
63956
63957
63958
63959
63960
63961
63962
63963
63964
63965
63966
  sqlite3 *db = pParse->db;
  int rc;
  Table *pTab = 0;      /* The table being read */
  const char *zCol;     /* Name of the column of the table */
  int iSrc;             /* Index in pTabList->a[] of table being read */
  const char *zDBase;   /* Name of database being accessed */
  int iDb;              /* The index of the database the expression refers to */


  if( db->xAuth==0 ) return;
  assert( pExpr->op==TK_COLUMN );
  iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
  if( iDb<0 ){
    /* An attempt to read a column out of a subquery or other
    ** temporary table. */
    return;
  }





  if( pTabList ){
    for(iSrc=0; iSrc<pTabList->nSrc; iSrc++){
      if( pExpr->iTable==pTabList->a[iSrc].iCursor ){
        pTab = pTabList->a[iSrc].pTab;
	break;
      }
    }
  }
  if( !pTab ){
    TriggerStack *pStack = pParse->trigStack;
    if( ALWAYS(pStack) ){
      /* This must be an attempt to read the NEW or OLD pseudo-tables
      ** of a trigger.  */
      assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
      pTab = pStack->pTab;
    }
  }
  if( NEVER(pTab==0) ) return;
  if( pExpr->iColumn>=0 ){
    assert( pExpr->iColumn<pTab->nCol );
    zCol = pTab->aCol[pExpr->iColumn].zName;
  }else if( pTab->iPKey>=0 ){
    assert( pTab->iPKey<pTab->nCol );
    zCol = pTab->aCol[pTab->iPKey].zName;
  }else{
    zCol = "ROWID";
  }
  assert( iDb>=0 && iDb<db->nDb );







>


<






>
>
>
>
>
|
|


|



<
<
<
<
<
|
|
|
<
<
|
|
|







65221
65222
65223
65224
65225
65226
65227
65228
65229
65230

65231
65232
65233
65234
65235
65236
65237
65238
65239
65240
65241
65242
65243
65244
65245
65246
65247
65248
65249





65250
65251
65252


65253
65254
65255
65256
65257
65258
65259
65260
65261
65262
  sqlite3 *db = pParse->db;
  int rc;
  Table *pTab = 0;      /* The table being read */
  const char *zCol;     /* Name of the column of the table */
  int iSrc;             /* Index in pTabList->a[] of table being read */
  const char *zDBase;   /* Name of database being accessed */
  int iDb;              /* The index of the database the expression refers to */
  int iCol;             /* Index of column in table */

  if( db->xAuth==0 ) return;

  iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
  if( iDb<0 ){
    /* An attempt to read a column out of a subquery or other
    ** temporary table. */
    return;
  }

  assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER );
  if( pExpr->op==TK_TRIGGER ){
    pTab = pParse->pTriggerTab;
  }else{
    assert( pTabList );
    for(iSrc=0; ALWAYS(iSrc<pTabList->nSrc); iSrc++){
      if( pExpr->iTable==pTabList->a[iSrc].iCursor ){
        pTab = pTabList->a[iSrc].pTab;
        break;
      }
    }
  }





  iCol = pExpr->iColumn;
  if( NEVER(pTab==0) ) return;



  if( iCol>=0 ){
    assert( iCol<pTab->nCol );
    zCol = pTab->aCol[iCol].zName;
  }else if( pTab->iPKey>=0 ){
    assert( pTab->iPKey<pTab->nCol );
    zCol = pTab->aCol[pTab->iPKey].zName;
  }else{
    zCol = "ROWID";
  }
  assert( iDb>=0 && iDb<db->nDb );
64111
64112
64113
64114
64115
64116
64117

64118
64119
64120
64121
64122

64123
64124
64125
64126
64127
64128
64129
64130
64131
64132
64133
64134
64135
64136
64137
64138
64139
64140
64141
64142
64143
64144
64145
64146
64147
64148
64149
SQLITE_PRIVATE void sqlite3TableLock(
  Parse *pParse,     /* Parsing context */
  int iDb,           /* Index of the database containing the table to lock */
  int iTab,          /* Root page number of the table to be locked */
  u8 isWriteLock,    /* True for a write lock */
  const char *zName  /* Name of the table to be locked */
){

  int i;
  int nBytes;
  TableLock *p;

  assert( iDb>=0 );

  for(i=0; i<pParse->nTableLock; i++){
    p = &pParse->aTableLock[i];
    if( p->iDb==iDb && p->iTab==iTab ){
      p->isWriteLock = (p->isWriteLock || isWriteLock);
      return;
    }
  }

  nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
  pParse->aTableLock = 
      sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
  if( pParse->aTableLock ){
    p = &pParse->aTableLock[pParse->nTableLock++];
    p->iDb = iDb;
    p->iTab = iTab;
    p->isWriteLock = isWriteLock;
    p->zName = zName;
  }else{
    pParse->nTableLock = 0;
    pParse->db->mallocFailed = 1;
  }
}

/*
** Code an OP_TableLock instruction for each table locked by the
** statement (configured by calls to sqlite3TableLock()).
*/







>



<

>
|
|






|
|
|
|
|





|
|







65407
65408
65409
65410
65411
65412
65413
65414
65415
65416
65417

65418
65419
65420
65421
65422
65423
65424
65425
65426
65427
65428
65429
65430
65431
65432
65433
65434
65435
65436
65437
65438
65439
65440
65441
65442
65443
65444
65445
65446
SQLITE_PRIVATE void sqlite3TableLock(
  Parse *pParse,     /* Parsing context */
  int iDb,           /* Index of the database containing the table to lock */
  int iTab,          /* Root page number of the table to be locked */
  u8 isWriteLock,    /* True for a write lock */
  const char *zName  /* Name of the table to be locked */
){
  Parse *pToplevel = sqlite3ParseToplevel(pParse);
  int i;
  int nBytes;
  TableLock *p;

  assert( iDb>=0 );

  for(i=0; i<pToplevel->nTableLock; i++){
    p = &pToplevel->aTableLock[i];
    if( p->iDb==iDb && p->iTab==iTab ){
      p->isWriteLock = (p->isWriteLock || isWriteLock);
      return;
    }
  }

  nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
  pToplevel->aTableLock =
      sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
  if( pToplevel->aTableLock ){
    p = &pToplevel->aTableLock[pToplevel->nTableLock++];
    p->iDb = iDb;
    p->iTab = iTab;
    p->isWriteLock = isWriteLock;
    p->zName = zName;
  }else{
    pToplevel->nTableLock = 0;
    pToplevel->db->mallocFailed = 1;
  }
}

/*
** Code an OP_TableLock instruction for each table locked by the
** statement (configured by calls to sqlite3TableLock()).
*/
64184
64185
64186
64187
64188
64189
64190


64191
64192
64193
64194
64195
64196
64197
  if( pParse->nested ) return;
  if( pParse->nErr ) return;

  /* Begin by generating some termination code at the end of the
  ** vdbe program
  */
  v = sqlite3GetVdbe(pParse);


  if( v ){
    sqlite3VdbeAddOp0(v, OP_Halt);

    /* The cookie mask contains one bit for each database file open.
    ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
    ** set for each database that is used.  Generate code to start a
    ** transaction on each used database and to verify the schema cookie







>
>







65481
65482
65483
65484
65485
65486
65487
65488
65489
65490
65491
65492
65493
65494
65495
65496
  if( pParse->nested ) return;
  if( pParse->nErr ) return;

  /* Begin by generating some termination code at the end of the
  ** vdbe program
  */
  v = sqlite3GetVdbe(pParse);
  assert( !pParse->isMultiWrite 
       || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
  if( v ){
    sqlite3VdbeAddOp0(v, OP_Halt);

    /* The cookie mask contains one bit for each database file open.
    ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
    ** set for each database that is used.  Generate code to start a
    ** transaction on each used database and to verify the schema cookie
64241
64242
64243
64244
64245
64246
64247
64248

64249
64250
64251
64252
64253
64254
64255
  if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
#ifdef SQLITE_DEBUG
    FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
    sqlite3VdbeTrace(v, trace);
#endif
    assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
    sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
                         pParse->nTab, pParse->explain);

    pParse->rc = SQLITE_DONE;
    pParse->colNamesSet = 0;
  }else if( pParse->rc==SQLITE_OK ){
    pParse->rc = SQLITE_ERROR;
  }
  pParse->nTab = 0;
  pParse->nMem = 0;







|
>







65540
65541
65542
65543
65544
65545
65546
65547
65548
65549
65550
65551
65552
65553
65554
65555
  if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
#ifdef SQLITE_DEBUG
    FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
    sqlite3VdbeTrace(v, trace);
#endif
    assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
    sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
                         pParse->nTab, pParse->nMaxArg, pParse->explain,
                         pParse->isMultiWrite && pParse->mayAbort);
    pParse->rc = SQLITE_DONE;
    pParse->colNamesSet = 0;
  }else if( pParse->rc==SQLITE_OK ){
    pParse->rc = SQLITE_ERROR;
  }
  pParse->nTab = 0;
  pParse->nMem = 0;
64390
64391
64392
64393
64394
64395
64396

64397
64398
64399
64400
64401
64402
64403

/*
** Reclaim the memory used by an index
*/
static void freeIndex(Index *p){
  sqlite3 *db = p->pTable->dbMem;
  /* testcase( db==0 ); */

  sqlite3DbFree(db, p->zColAff);
  sqlite3DbFree(db, p);
}

/*
** Remove the given index from the index hash table, and free
** its memory structures.







>







65690
65691
65692
65693
65694
65695
65696
65697
65698
65699
65700
65701
65702
65703
65704

/*
** Reclaim the memory used by an index
*/
static void freeIndex(Index *p){
  sqlite3 *db = p->pTable->dbMem;
  /* testcase( db==0 ); */
  sqlite3DeleteIndexSamples(p);
  sqlite3DbFree(db, p->zColAff);
  sqlite3DbFree(db, p);
}

/*
** Remove the given index from the index hash table, and free
** its memory structures.
65303
65304
65305
65306
65307
65308
65309
65310
65311
65312
65313
65314
65315
65316
65317
  sqlite3 *db = pParse->db;
  u8 enc = ENC(db);
  u8 initbusy = db->init.busy;
  CollSeq *pColl;

  pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
  if( !initbusy && (!pColl || !pColl->xCmp) ){
    pColl = sqlite3GetCollSeq(db, pColl, zName);
    if( !pColl ){
      sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
    }
  }

  return pColl;
}







|







66604
66605
66606
66607
66608
66609
66610
66611
66612
66613
66614
66615
66616
66617
66618
  sqlite3 *db = pParse->db;
  u8 enc = ENC(db);
  u8 initbusy = db->init.busy;
  CollSeq *pColl;

  pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
  if( !initbusy && (!pColl || !pColl->xCmp) ){
    pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
    if( !pColl ){
      sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
    }
  }

  return pColl;
}
65923
65924
65925
65926
65927
65928
65929

65930
65931
65932
65933
65934
65935
65936
** if a root-page of another table is moved by the btree-layer whilst
** erasing iTable (this can happen with an auto-vacuum database).
*/ 
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  int r1 = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);

#ifndef SQLITE_OMIT_AUTOVACUUM
  /* OP_Destroy stores an in integer r1. If this integer
  ** is non-zero, then it is the root page number of a table moved to
  ** location iTable. The following code modifies the sqlite_master table to
  ** reflect this.
  **
  ** The "#NNN" in the SQL is a special constant that means whatever value







>







67224
67225
67226
67227
67228
67229
67230
67231
67232
67233
67234
67235
67236
67237
67238
** if a root-page of another table is moved by the btree-layer whilst
** erasing iTable (this can happen with an auto-vacuum database).
*/ 
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  int r1 = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
  sqlite3MayAbort(pParse);
#ifndef SQLITE_OMIT_AUTOVACUUM
  /* OP_Destroy stores an in integer r1. If this integer
  ** is non-zero, then it is the root page number of a table moved to
  ** location iTable. The following code modifies the sqlite_master table to
  ** reflect this.
  **
  ** The "#NNN" in the SQL is a special constant that means whatever value
66364
66365
66366
66367
66368
66369
66370
66371
66372
66373
66374
66375
66376
66377
66378
66379
    ** (made available to the compiler for reuse) using 
    ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
    ** opcode use the values stored within seems dangerous. However, since
    ** we can be sure that no other temp registers have been allocated
    ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
    */
    sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
    sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
                    "indexed columns are not unique", P4_STATIC);
  }
  sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
  sqlite3VdbeJumpHere(v, addr1);
  sqlite3VdbeAddOp1(v, OP_Close, iTab);







|
|







67666
67667
67668
67669
67670
67671
67672
67673
67674
67675
67676
67677
67678
67679
67680
67681
    ** (made available to the compiler for reuse) using 
    ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
    ** opcode use the values stored within seems dangerous. However, since
    ** we can be sure that no other temp registers have been allocated
    ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
    */
    sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
    sqlite3HaltConstraint(
        pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
  }
  sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
  sqlite3VdbeJumpHere(v, addr1);
  sqlite3VdbeAddOp1(v, OP_Close, iTab);
67468
67469
67470
67471
67472
67473
67474
67475
67476
67477
67478

67479
67480
67481
67482
67483
67484
67485



67486
67487
67488
67489
67490
67491
67492
67493
67494
67495
67496
67497
67498
67499
67500
67501
67502
67503
67504
67505
67506
67507
67508
67509
67510
67511
67512
67513

67514
67515
67516

67517








67518






67519

67520
67521

67522
67523
67524
67525
67526
67527
67528
** cookie verification subroutine code happens in sqlite3FinishCoding().
**
** If iDb<0 then code the OP_Goto only - don't set flag to verify the
** schema on any databases.  This can be used to position the OP_Goto
** early in the code, before we know if any database tables will be used.
*/
SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
  sqlite3 *db;
  Vdbe *v;
  int mask;


  v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;  /* This only happens if there was a prior error */
  db = pParse->db;
  if( pParse->cookieGoto==0 ){
    pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
  }
  if( iDb>=0 ){



    assert( iDb<db->nDb );
    assert( db->aDb[iDb].pBt!=0 || iDb==1 );
    assert( iDb<SQLITE_MAX_ATTACHED+2 );
    mask = 1<<iDb;
    if( (pParse->cookieMask & mask)==0 ){
      pParse->cookieMask |= mask;
      pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
      if( !OMIT_TEMPDB && iDb==1 ){
        sqlite3OpenTempDatabase(pParse);
      }
    }
  }
}

/*
** Generate VDBE code that prepares for doing an operation that
** might change the database.
**
** This routine starts a new transaction if we are not already within
** a transaction.  If we are already within a transaction, then a checkpoint
** is set if the setStatement parameter is true.  A checkpoint should
** be set for operations that might fail (due to a constraint) part of
** the way through and which will need to undo some writes without having to
** rollback the whole transaction.  For operations where all constraints
** can be checked before any changes are made to the database, it is never
** necessary to undo a write and the checkpoint should not be set.
*/
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){

  sqlite3CodeVerifySchema(pParse, iDb);
  pParse->writeMask |= 1<<iDb;
  if( setStatement && pParse->nested==0 ){

    /* Every place where this routine is called with setStatement!=0 has








    ** already successfully created a VDBE. */






    assert( pParse->pVdbe );

    sqlite3VdbeAddOp1(pParse->pVdbe, OP_Statement, iDb);
  }

}

/*
** Check to see if pIndex uses the collating sequence pColl.  Return
** true if it does and false if it does not.
*/
#ifndef SQLITE_OMIT_REINDEX







|
<
<

>
|
|
<
<
|


>
>
>




|
|
|

|



















>

|
|
>
|
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
|
>
|

>







68770
68771
68772
68773
68774
68775
68776
68777


68778
68779
68780
68781


68782
68783
68784
68785
68786
68787
68788
68789
68790
68791
68792
68793
68794
68795
68796
68797
68798
68799
68800
68801
68802
68803
68804
68805
68806
68807
68808
68809
68810
68811
68812
68813
68814
68815
68816
68817
68818
68819
68820
68821
68822
68823
68824
68825
68826
68827
68828
68829
68830
68831
68832
68833
68834
68835
68836
68837
68838
68839
68840
68841
68842
68843
68844
68845
68846
68847
68848
** cookie verification subroutine code happens in sqlite3FinishCoding().
**
** If iDb<0 then code the OP_Goto only - don't set flag to verify the
** schema on any databases.  This can be used to position the OP_Goto
** early in the code, before we know if any database tables will be used.
*/
SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
  Parse *pToplevel = sqlite3ParseToplevel(pParse);



  if( pToplevel->cookieGoto==0 ){
    Vdbe *v = sqlite3GetVdbe(pToplevel);
    if( v==0 ) return;  /* This only happens if there was a prior error */


    pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
  }
  if( iDb>=0 ){
    sqlite3 *db = pToplevel->db;
    int mask;

    assert( iDb<db->nDb );
    assert( db->aDb[iDb].pBt!=0 || iDb==1 );
    assert( iDb<SQLITE_MAX_ATTACHED+2 );
    mask = 1<<iDb;
    if( (pToplevel->cookieMask & mask)==0 ){
      pToplevel->cookieMask |= mask;
      pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
      if( !OMIT_TEMPDB && iDb==1 ){
        sqlite3OpenTempDatabase(pToplevel);
      }
    }
  }
}

/*
** Generate VDBE code that prepares for doing an operation that
** might change the database.
**
** This routine starts a new transaction if we are not already within
** a transaction.  If we are already within a transaction, then a checkpoint
** is set if the setStatement parameter is true.  A checkpoint should
** be set for operations that might fail (due to a constraint) part of
** the way through and which will need to undo some writes without having to
** rollback the whole transaction.  For operations where all constraints
** can be checked before any changes are made to the database, it is never
** necessary to undo a write and the checkpoint should not be set.
*/
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
  Parse *pToplevel = sqlite3ParseToplevel(pParse);
  sqlite3CodeVerifySchema(pParse, iDb);
  pToplevel->writeMask |= 1<<iDb;
  pToplevel->isMultiWrite |= setStatement;
}

/* 
** Set the "may throw abort exception" flag for the statement currently 
** being coded.
*/
SQLITE_PRIVATE void sqlite3MayAbort(Parse *pParse){
  Parse *pToplevel = sqlite3ParseToplevel(pParse);
  pToplevel->mayAbort = 1;
}

/*
** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
** error. The onError parameter determines which (if any) of the statement
** and/or current transaction is rolled back.
*/
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( onError==OE_Abort ){
    sqlite3MayAbort(pParse);
  }
  sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
}

/*
** Check to see if pIndex uses the collating sequence pColl.  Return
** true if it does and false if it does not.
*/
#ifndef SQLITE_OMIT_REINDEX
67705
67706
67707
67708
67709
67710
67711
67712
67713
67714
67715
67716
67717
67718
67719
67720
67721
67722
67723
67724
67725
67726
67727
**
** $Id: callback.c,v 1.42 2009/06/17 00:35:31 drh Exp $
*/


/*
** Invoke the 'collation needed' callback to request a collation sequence
** in the database text encoding of name zName, length nName.
** If the collation sequence
*/
static void callCollNeeded(sqlite3 *db, const char *zName){
  assert( !db->xCollNeeded || !db->xCollNeeded16 );
  if( db->xCollNeeded ){
    char *zExternal = sqlite3DbStrDup(db, zName);
    if( !zExternal ) return;
    db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal);
    sqlite3DbFree(db, zExternal);
  }
#ifndef SQLITE_OMIT_UTF16
  if( db->xCollNeeded16 ){
    char const *zExternal;
    sqlite3_value *pTmp = sqlite3ValueNew(db);
    sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC);







|
<

|




|







69025
69026
69027
69028
69029
69030
69031
69032

69033
69034
69035
69036
69037
69038
69039
69040
69041
69042
69043
69044
69045
69046
**
** $Id: callback.c,v 1.42 2009/06/17 00:35:31 drh Exp $
*/


/*
** Invoke the 'collation needed' callback to request a collation sequence
** in the encoding enc of name zName, length nName.

*/
static void callCollNeeded(sqlite3 *db, int enc, const char *zName){
  assert( !db->xCollNeeded || !db->xCollNeeded16 );
  if( db->xCollNeeded ){
    char *zExternal = sqlite3DbStrDup(db, zName);
    if( !zExternal ) return;
    db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal);
    sqlite3DbFree(db, zExternal);
  }
#ifndef SQLITE_OMIT_UTF16
  if( db->xCollNeeded16 ){
    char const *zExternal;
    sqlite3_value *pTmp = sqlite3ValueNew(db);
    sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC);
67756
67757
67758
67759
67760
67761
67762
67763
67764
67765
67766
67767
67768
67769
67770
67771
67772
67773
67774
67775
67776

67777
67778
67779
67780
67781
67782
67783
67784
67785
67786
67787
67788
67789
67790
67791
67792
67793
67794
67795
67796
67797
67798
  }
  return SQLITE_ERROR;
}

/*
** This function is responsible for invoking the collation factory callback
** or substituting a collation sequence of a different encoding when the
** requested collation sequence is not available in the database native
** encoding.
** 
** If it is not NULL, then pColl must point to the database native encoding 
** collation sequence with name zName, length nName.
**
** The return value is either the collation sequence to be used in database
** db for collation type name zName, length nName, or NULL, if no collation
** sequence can be found.
**
** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq()
*/
SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(
  sqlite3* db,          /* The database connection */

  CollSeq *pColl,       /* Collating sequence with native encoding, or NULL */
  const char *zName     /* Collating sequence name */
){
  CollSeq *p;

  p = pColl;
  if( !p ){
    p = sqlite3FindCollSeq(db, ENC(db), zName, 0);
  }
  if( !p || !p->xCmp ){
    /* No collation sequence of this type for this encoding is registered.
    ** Call the collation factory to see if it can supply us with one.
    */
    callCollNeeded(db, zName);
    p = sqlite3FindCollSeq(db, ENC(db), zName, 0);
  }
  if( p && !p->xCmp && synthCollSeq(db, p) ){
    p = 0;
  }
  assert( !p || p->xCmp );
  return p;
}







|
<












>







|





|
|







69075
69076
69077
69078
69079
69080
69081
69082

69083
69084
69085
69086
69087
69088
69089
69090
69091
69092
69093
69094
69095
69096
69097
69098
69099
69100
69101
69102
69103
69104
69105
69106
69107
69108
69109
69110
69111
69112
69113
69114
69115
69116
69117
  }
  return SQLITE_ERROR;
}

/*
** This function is responsible for invoking the collation factory callback
** or substituting a collation sequence of a different encoding when the
** requested collation sequence is not available in the desired encoding.

** 
** If it is not NULL, then pColl must point to the database native encoding 
** collation sequence with name zName, length nName.
**
** The return value is either the collation sequence to be used in database
** db for collation type name zName, length nName, or NULL, if no collation
** sequence can be found.
**
** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq()
*/
SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(
  sqlite3* db,          /* The database connection */
  u8 enc,               /* The desired encoding for the collating sequence */
  CollSeq *pColl,       /* Collating sequence with native encoding, or NULL */
  const char *zName     /* Collating sequence name */
){
  CollSeq *p;

  p = pColl;
  if( !p ){
    p = sqlite3FindCollSeq(db, enc, zName, 0);
  }
  if( !p || !p->xCmp ){
    /* No collation sequence of this type for this encoding is registered.
    ** Call the collation factory to see if it can supply us with one.
    */
    callCollNeeded(db, enc, zName);
    p = sqlite3FindCollSeq(db, enc, zName, 0);
  }
  if( p && !p->xCmp && synthCollSeq(db, p) ){
    p = 0;
  }
  assert( !p || p->xCmp );
  return p;
}
67807
67808
67809
67810
67811
67812
67813

67814
67815
67816
67817
67818
67819
67820
67821
** request a definition of the collating sequence. If this doesn't work, 
** an equivalent collating sequence that uses a text encoding different
** from the main database is substituted, if one is available.
*/
SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
  if( pColl ){
    const char *zName = pColl->zName;

    CollSeq *p = sqlite3GetCollSeq(pParse->db, pColl, zName);
    if( !p ){
      sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
      pParse->nErr++;
      return SQLITE_ERROR;
    }
    assert( p==pColl );
  }







>
|







69126
69127
69128
69129
69130
69131
69132
69133
69134
69135
69136
69137
69138
69139
69140
69141
** request a definition of the collating sequence. If this doesn't work, 
** an equivalent collating sequence that uses a text encoding different
** from the main database is substituted, if one is available.
*/
SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
  if( pColl ){
    const char *zName = pColl->zName;
    sqlite3 *db = pParse->db;
    CollSeq *p = sqlite3GetCollSeq(db, ENC(db), pColl, zName);
    if( !p ){
      sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
      pParse->nErr++;
      return SQLITE_ERROR;
    }
    assert( p==pColl );
  }
68365
68366
68367
68368
68369
68370
68371
68372
68373
68374
68375
68376
68377
68378
68379
68380
68381
68382
68383
68384
68385
68386
68387
68388
68389
68390
68391
68392
68393
  int end, addr = 0;     /* A couple addresses of generated code */
  int i;                 /* Loop counter */
  WhereInfo *pWInfo;     /* Information about the WHERE clause */
  Index *pIdx;           /* For looping over indices of the table */
  int iCur;              /* VDBE Cursor number for pTab */
  sqlite3 *db;           /* Main database structure */
  AuthContext sContext;  /* Authorization context */
  int oldIdx = -1;       /* Cursor for the OLD table of AFTER triggers */
  NameContext sNC;       /* Name context to resolve expressions in */
  int iDb;               /* Database number */
  int memCnt = -1;       /* Memory cell used for change counting */
  int rcauth;            /* Value returned by authorization callback */

#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* True if attempting to delete from a view */
  Trigger *pTrigger;           /* List of table triggers, if required */
#endif
  int iBeginAfterTrigger = 0;  /* Address of after trigger program */
  int iEndAfterTrigger = 0;    /* Exit of after trigger program */
  int iBeginBeforeTrigger = 0; /* Address of before trigger program */
  int iEndBeforeTrigger = 0;   /* Exit of before trigger program */
  u32 old_col_mask = 0;        /* Mask of OLD.* columns in use */

  memset(&sContext, 0, sizeof(sContext));
  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ){
    goto delete_from_cleanup;
  }
  assert( pTabList->nSrc==1 );







<









<
<
<
<
<







69685
69686
69687
69688
69689
69690
69691

69692
69693
69694
69695
69696
69697
69698
69699
69700





69701
69702
69703
69704
69705
69706
69707
  int end, addr = 0;     /* A couple addresses of generated code */
  int i;                 /* Loop counter */
  WhereInfo *pWInfo;     /* Information about the WHERE clause */
  Index *pIdx;           /* For looping over indices of the table */
  int iCur;              /* VDBE Cursor number for pTab */
  sqlite3 *db;           /* Main database structure */
  AuthContext sContext;  /* Authorization context */

  NameContext sNC;       /* Name context to resolve expressions in */
  int iDb;               /* Database number */
  int memCnt = -1;       /* Memory cell used for change counting */
  int rcauth;            /* Value returned by authorization callback */

#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* True if attempting to delete from a view */
  Trigger *pTrigger;           /* List of table triggers, if required */
#endif






  memset(&sContext, 0, sizeof(sContext));
  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ){
    goto delete_from_cleanup;
  }
  assert( pTabList->nSrc==1 );
68430
68431
68432
68433
68434
68435
68436
68437
68438
68439
68440
68441
68442
68443
68444
68445
68446
68447
68448
68449
  rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb);
  assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE );
  if( rcauth==SQLITE_DENY ){
    goto delete_from_cleanup;
  }
  assert(!isView || pTrigger);

  /* Allocate a cursor used to store the old.* data for a trigger.
  */
  if( pTrigger ){ 
    oldIdx = pParse->nTab++;
  }

  /* Assign  cursor number to the table and all its indices.
  */
  assert( pTabList->nSrc==1 );
  iCur = pTabList->a[0].iCursor = pParse->nTab++;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    pParse->nTab++;
  }







<
<
<
<
<
<







69744
69745
69746
69747
69748
69749
69750






69751
69752
69753
69754
69755
69756
69757
  rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb);
  assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE );
  if( rcauth==SQLITE_DENY ){
    goto delete_from_cleanup;
  }
  assert(!isView || pTrigger);







  /* Assign  cursor number to the table and all its indices.
  */
  assert( pTabList->nSrc==1 );
  iCur = pTabList->a[0].iCursor = pParse->nTab++;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    pParse->nTab++;
  }
68459
68460
68461
68462
68463
68464
68465
68466
68467
68468
68469
68470
68471
68472
68473
68474
68475
68476
68477
68478
68479
68480
68481
68482
68483
68484
68485
68486
68487
68488
68489
68490
  v = sqlite3GetVdbe(pParse);
  if( v==0 ){
    goto delete_from_cleanup;
  }
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, (pTrigger?1:0), iDb);

  if( pTrigger ){
    int orconf = ((pParse->trigStack)?pParse->trigStack->orconf:OE_Default);
    int iGoto = sqlite3VdbeAddOp0(v, OP_Goto);
    addr = sqlite3VdbeMakeLabel(v);

    iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
    (void)sqlite3CodeRowTrigger(pParse, pTrigger, TK_DELETE, 0, 
        TRIGGER_BEFORE, pTab, -1, oldIdx, orconf, addr, &old_col_mask, 0);
    iEndBeforeTrigger = sqlite3VdbeAddOp0(v, OP_Goto);

    iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
    (void)sqlite3CodeRowTrigger(pParse, pTrigger, TK_DELETE, 0, 
        TRIGGER_AFTER, pTab, -1, oldIdx, orconf, addr, &old_col_mask, 0);
    iEndAfterTrigger = sqlite3VdbeAddOp0(v, OP_Goto);

    sqlite3VdbeJumpHere(v, iGoto);
  }

  /* If we are trying to delete from a view, realize that view into
  ** a ephemeral table.
  */
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
  if( isView ){
    sqlite3MaterializeView(pParse, pTab, pWhere, iCur);
  }







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







69767
69768
69769
69770
69771
69772
69773


















69774
69775
69776
69777
69778
69779
69780
  v = sqlite3GetVdbe(pParse);
  if( v==0 ){
    goto delete_from_cleanup;
  }
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, (pTrigger?1:0), iDb);



















  /* If we are trying to delete from a view, realize that view into
  ** a ephemeral table.
  */
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
  if( isView ){
    sqlite3MaterializeView(pParse, pTab, pWhere, iCur);
  }
68505
68506
68507
68508
68509
68510
68511
68512
68513
68514
68515
68516
68517
68518
68519
68520
68521
68522
68523
68524
68525
68526
68527
68528
68529
68530

68531
68532
68533
68534
68535
68536
68537
68538
68539
68540
68541
68542
68543
68544
68545
68546
68547
68548
68549
68550
68551
68552
68553
68554
68555
68556




68557
68558
68559
68560
68561
68562
68563
68564
68565
68566
68567
68568
68569
68570
68571
68572
68573
68574
68575
68576
68577
68578
68579
68580
68581
68582
68583
68584
68585
68586
68587
68588
68589
68590
68591
68592
68593
68594
68595
68596
68597
68598
68599

68600
68601
68602

68603
68604
68605
68606
68607
68608
68609
68610
68611
68612
68613
68614
68615
68616
68617
68618
68619
68620
68621
68622
68623
68624
68625
68626
68627
68628
68629
68630
68631
68632
68633
68634
68635
68636
68637
68638
68639
68640
68641
68642
68643
68644
68645
68646
68647
68648
68649
  if( db->flags & SQLITE_CountRows ){
    memCnt = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
  }

#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
  /* Special case: A DELETE without a WHERE clause deletes everything.
  ** It is easier just to erase the whole table.  Note, however, that
  ** this means that the row change count will be incorrect.
  */
  if( rcauth==SQLITE_OK && pWhere==0 && !pTrigger && !IsVirtual(pTab) ){
    assert( !isView );
    sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt,
                      pTab->zName, P4_STATIC);
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pIdx->pSchema==pTab->pSchema );
      sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
    }
  }else
#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
  /* The usual case: There is a WHERE clause so we have to scan through
  ** the table and pick which records to delete.
  */
  {
    int iRowid = ++pParse->nMem;    /* Used for storing rowid values. */
    int iRowSet = ++pParse->nMem;   /* Register for rowset of rows to delete */

    int regRowid;                   /* Actual register containing rowids */

    /* Collect rowids of every row to be deleted.
    */
    sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0,WHERE_DUPLICATES_OK);
    if( pWInfo==0 ) goto delete_from_cleanup;
    regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid, 0);
    sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid);
    if( db->flags & SQLITE_CountRows ){
      sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
    }
    sqlite3WhereEnd(pWInfo);

    /* Open the pseudo-table used to store OLD if there are triggers.
    */
    if( pTrigger ){
      sqlite3VdbeAddOp3(v, OP_OpenPseudo, oldIdx, 0, pTab->nCol);
    }

    /* Delete every item whose key was written to the list during the
    ** database scan.  We have to delete items after the scan is complete
    ** because deleting an item can change the scan order.
    */
    end = sqlite3VdbeMakeLabel(v);





    if( !isView ){
      /* Open cursors for the table we are deleting from and 
      ** all its indices.
      */
      sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
    }

    /* This is the beginning of the delete loop. If a trigger encounters
    ** an IGNORE constraint, it jumps back to here.
    */
    if( pTrigger ){
      sqlite3VdbeResolveLabel(v, addr);
    }
    addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, end, iRowid);

    if( pTrigger ){
      int iData = ++pParse->nMem;   /* For storing row data of OLD table */

      /* If the record is no longer present in the table, jump to the
      ** next iteration of the loop through the contents of the fifo.
      */
      sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, iRowid);

      /* Populate the OLD.* pseudo-table */
      if( old_col_mask ){
        sqlite3VdbeAddOp2(v, OP_RowData, iCur, iData);
      }else{
        sqlite3VdbeAddOp2(v, OP_Null, 0, iData);
      }
      sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, iData, iRowid);

      /* Jump back and run the BEFORE triggers */
      sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
      sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
    }

    if( !isView ){
      /* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
      if( IsVirtual(pTab) ){
        const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
        sqlite3VtabMakeWritable(pParse, pTab);
        sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVTab, P4_VTAB);

      }else
#endif
      {

        sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, pParse->nested==0);
      }
    }

    /* If there are row triggers, close all cursors then invoke
    ** the AFTER triggers
    */
    if( pTrigger ){
      /* Jump back and run the AFTER triggers */
      sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
      sqlite3VdbeJumpHere(v, iEndAfterTrigger);
    }

    /* End of the delete loop */
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
    sqlite3VdbeResolveLabel(v, end);

    /* Close the cursors after the loop if there are no row triggers */
    if( !isView  && !IsVirtual(pTab) ){
      for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
        sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum);
      }
      sqlite3VdbeAddOp1(v, OP_Close, iCur);
    }
  }

  /* Update the sqlite_sequence table by storing the content of the
  ** maximum rowid counter values recorded while inserting into
  ** autoincrement tables.
  */
  if( pParse->nested==0 && pParse->trigStack==0 ){
    sqlite3AutoincrementEnd(pParse);
  }

  /*
  ** Return the number of rows that were deleted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC);
  }

delete_from_cleanup:
  sqlite3AuthContextPop(&sContext);







|
|
|














<

>














<
<
<
<
<
<


|
<


>
>
>
>

<
<
<



<
<
<
<
<
<


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|

|
|
|
|
>
|

|
>
|
<
<
<
<
<
<
<
<
<
<






|
|











|



<
|



|







69795
69796
69797
69798
69799
69800
69801
69802
69803
69804
69805
69806
69807
69808
69809
69810
69811
69812
69813
69814
69815
69816
69817
69818

69819
69820
69821
69822
69823
69824
69825
69826
69827
69828
69829
69830
69831
69832
69833
69834






69835
69836
69837

69838
69839
69840
69841
69842
69843
69844



69845
69846
69847






69848
69849






















69850
69851
69852
69853
69854
69855
69856
69857
69858
69859
69860
69861










69862
69863
69864
69865
69866
69867
69868
69869
69870
69871
69872
69873
69874
69875
69876
69877
69878
69879
69880
69881
69882
69883
69884

69885
69886
69887
69888
69889
69890
69891
69892
69893
69894
69895
69896
  if( db->flags & SQLITE_CountRows ){
    memCnt = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
  }

#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
  /* Special case: A DELETE without a WHERE clause deletes everything.
  ** It is easier just to erase the whole table. Prior to version 3.6.5,
  ** this optimization caused the row change count (the value returned by 
  ** API function sqlite3_count_changes) to be set incorrectly.  */
  if( rcauth==SQLITE_OK && pWhere==0 && !pTrigger && !IsVirtual(pTab) ){
    assert( !isView );
    sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt,
                      pTab->zName, P4_STATIC);
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pIdx->pSchema==pTab->pSchema );
      sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
    }
  }else
#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
  /* The usual case: There is a WHERE clause so we have to scan through
  ** the table and pick which records to delete.
  */
  {

    int iRowSet = ++pParse->nMem;   /* Register for rowset of rows to delete */
    int iRowid = ++pParse->nMem;    /* Used for storing rowid values. */
    int regRowid;                   /* Actual register containing rowids */

    /* Collect rowids of every row to be deleted.
    */
    sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0,WHERE_DUPLICATES_OK);
    if( pWInfo==0 ) goto delete_from_cleanup;
    regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid, 0);
    sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid);
    if( db->flags & SQLITE_CountRows ){
      sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
    }
    sqlite3WhereEnd(pWInfo);







    /* Delete every item whose key was written to the list during the
    ** database scan.  We have to delete items after the scan is complete
    ** because deleting an item can change the scan order.  */

    end = sqlite3VdbeMakeLabel(v);

    /* Unless this is a view, open cursors for the table we are 
    ** deleting from and all its indices. If this is a view, then the
    ** only effect this statement has is to fire the INSTEAD OF 
    ** triggers.  */
    if( !isView ){



      sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
    }







    addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, end, iRowid);























    /* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      sqlite3VtabMakeWritable(pParse, pTab);
      sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVTab, P4_VTAB);
      sqlite3MayAbort(pParse);
    }else
#endif
    {
      int count = (pParse->nested==0);    /* True to count changes */
      sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, count, pTrigger, OE_Default);










    }

    /* End of the delete loop */
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
    sqlite3VdbeResolveLabel(v, end);

    /* Close the cursors open on the table and its indexes. */
    if( !isView && !IsVirtual(pTab) ){
      for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
        sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum);
      }
      sqlite3VdbeAddOp1(v, OP_Close, iCur);
    }
  }

  /* Update the sqlite_sequence table by storing the content of the
  ** maximum rowid counter values recorded while inserting into
  ** autoincrement tables.
  */
  if( pParse->nested==0 && pParse->pTriggerTab==0 ){
    sqlite3AutoincrementEnd(pParse);
  }


  /* Return the number of rows that were deleted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC);
  }

delete_from_cleanup:
  sqlite3AuthContextPop(&sContext);
68664
68665
68666
68667
68668
68669
68670
68671
68672
68673
68674
68675
68676
68677
68678
68679
68680


68681



68682


68683





68684









68685






















68686






68687
68688
68689
68690
68691












68692
68693
68694
68695
68696
68697
68698
68699
**
**   2.  Read/write cursors for all indices of pTab must be open as
**       cursor number base+i for the i-th index.
**
**   3.  The record number of the row to be deleted must be stored in
**       memory cell iRowid.
**
** This routine pops the top of the stack to remove the record number
** and then generates code to remove both the table record and all index
** entries that point to that record.
*/
SQLITE_PRIVATE void sqlite3GenerateRowDelete(
  Parse *pParse,     /* Parsing context */
  Table *pTab,       /* Table containing the row to be deleted */
  int iCur,          /* Cursor number for the table */
  int iRowid,        /* Memory cell that contains the rowid to delete */
  int count          /* Increment the row change counter */


){



  int addr;


  Vdbe *v;















  v = pParse->pVdbe;






















  addr = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowid);






  sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0);
  sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
  if( count ){
    sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
  }












  sqlite3VdbeJumpHere(v, addr);
}

/*
** This routine generates VDBE code that causes the deletion of all
** index entries associated with a single row of a single table.
**
** The VDBE must be in a particular state when this routine is called.







<
|
|






|
>
>

>
>
>
|
>
>
|
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
|







69911
69912
69913
69914
69915
69916
69917

69918
69919
69920
69921
69922
69923
69924
69925
69926
69927
69928
69929
69930
69931
69932
69933
69934
69935
69936
69937
69938
69939
69940
69941
69942
69943
69944
69945
69946
69947
69948
69949
69950
69951
69952
69953
69954
69955
69956
69957
69958
69959
69960
69961
69962
69963
69964
69965
69966
69967
69968
69969
69970
69971
69972
69973
69974
69975
69976
69977
69978
69979
69980
69981
69982
69983
69984
69985
69986
69987
69988
69989
69990
69991
69992
69993
69994
69995
69996
69997
69998
69999
70000
70001
70002
70003
70004
70005
70006
**
**   2.  Read/write cursors for all indices of pTab must be open as
**       cursor number base+i for the i-th index.
**
**   3.  The record number of the row to be deleted must be stored in
**       memory cell iRowid.
**

** This routine generates code to remove both the table record and all 
** index entries that point to that record.
*/
SQLITE_PRIVATE void sqlite3GenerateRowDelete(
  Parse *pParse,     /* Parsing context */
  Table *pTab,       /* Table containing the row to be deleted */
  int iCur,          /* Cursor number for the table */
  int iRowid,        /* Memory cell that contains the rowid to delete */
  int count,         /* If non-zero, increment the row change counter */
  Trigger *pTrigger, /* List of triggers to (potentially) fire */
  int onconf         /* Default ON CONFLICT policy for triggers */
){
  Vdbe *v = pParse->pVdbe;        /* Vdbe */
  int iOld = 0;                   /* First register in OLD.* array */
  int iLabel;                     /* Label resolved to end of generated code */

  /* Vdbe is guaranteed to have been allocated by this stage. */
  assert( v );

  /* Seek cursor iCur to the row to delete. If this row no longer exists 
  ** (this can happen if a trigger program has already deleted it), do
  ** not attempt to delete it or fire any DELETE triggers.  */
  iLabel = sqlite3VdbeMakeLabel(v);
  sqlite3VdbeAddOp3(v, OP_NotExists, iCur, iLabel, iRowid);
 
  /* If there are any triggers to fire, allocate a range of registers to
  ** use for the old.* references in the triggers.  */
  if( pTrigger ){
    u32 mask;                     /* Mask of OLD.* columns in use */
    int iCol;                     /* Iterator used while populating OLD.* */

    /* TODO: Could use temporary registers here. Also could attempt to
    ** avoid copying the contents of the rowid register.  */
    mask = sqlite3TriggerOldmask(pParse, pTrigger, TK_DELETE, 0, pTab, onconf);
    iOld = pParse->nMem+1;
    pParse->nMem += (1 + pTab->nCol);

    /* Populate the OLD.* pseudo-table register array. These values will be 
    ** used by any BEFORE and AFTER triggers that exist.  */
    sqlite3VdbeAddOp2(v, OP_Copy, iRowid, iOld);
    for(iCol=0; iCol<pTab->nCol; iCol++){
      if( mask==0xffffffff || mask&(1<<iCol) ){
        int iTarget = iOld + iCol + 1;
        sqlite3VdbeAddOp3(v, OP_Column, iCur, iCol, iTarget);
        sqlite3ColumnDefault(v, pTab, iCol, iTarget);
      }
    }

    /* Invoke any BEFORE trigger programs */
    sqlite3CodeRowTrigger(pParse, pTrigger, 
        TK_DELETE, 0, TRIGGER_BEFORE, pTab, -1, iOld, onconf, iLabel
    );

    /* Seek the cursor to the row to be deleted again. It may be that
    ** the BEFORE triggers coded above have already removed the row
    ** being deleted. Do not attempt to delete the row a second time, and 
    ** do not fire AFTER triggers.  */
    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, iLabel, iRowid);
  }

  /* Delete the index and table entries. Skip this step if pTab is really
  ** a view (in which case the only effect of the DELETE statement is to
  ** fire the INSTEAD OF triggers).  */ 
  if( pTab->pSelect==0 ){
    sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0);
    sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
    if( count ){
      sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
    }
  }

  /* Invoke AFTER triggers. */
  if( pTrigger ){
    sqlite3CodeRowTrigger(pParse, pTrigger, 
        TK_DELETE, 0, TRIGGER_AFTER, pTab, -1, iOld, onconf, iLabel
    );
  }

  /* Jump here if the row had already been deleted before any BEFORE
  ** trigger programs were invoked. Or if a trigger program throws a 
  ** RAISE(IGNORE) exception.  */
  sqlite3VdbeResolveLabel(v, iLabel);
}

/*
** This routine generates VDBE code that causes the deletion of all
** index entries associated with a single row of a single table.
**
** The VDBE must be in a particular state when this routine is called.
68759
68760
68761
68762
68763
68764
68765
68766
68767
68768
68769
68770
68771
68772
68773
    }else{
      sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j);
      sqlite3ColumnDefault(v, pTab, idx, -1);
    }
  }
  if( doMakeRec ){
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut);
    sqlite3IndexAffinityStr(v, pIdx);
    sqlite3ExprCacheAffinityChange(pParse, regBase, nCol+1);
  }
  sqlite3ReleaseTempRange(pParse, regBase, nCol+1);
  return regBase;
}

/* Make sure "isView" gets undefined in case this file becomes part of







|







70066
70067
70068
70069
70070
70071
70072
70073
70074
70075
70076
70077
70078
70079
70080
    }else{
      sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j);
      sqlite3ColumnDefault(v, pTab, idx, -1);
    }
  }
  if( doMakeRec ){
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut);
    sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0);
    sqlite3ExprCacheAffinityChange(pParse, regBase, nCol+1);
  }
  sqlite3ReleaseTempRange(pParse, regBase, nCol+1);
  return regBase;
}

/* Make sure "isView" gets undefined in case this file becomes part of
68790
68791
68792
68793
68794
68795
68796
68797
68798
68799
68800
68801
68802
68803
68804
68805
*************************************************************************
** This file contains the C functions that implement various SQL
** functions of SQLite.  
**
** There is only one exported symbol in this file - the function
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
** All other code has file scope.
**
** $Id: func.c,v 1.239 2009/06/19 16:44:41 drh Exp $
*/

/*
** Return the collating function associated with a function.
*/
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
  return context->pColl;







<
<







70097
70098
70099
70100
70101
70102
70103


70104
70105
70106
70107
70108
70109
70110
*************************************************************************
** This file contains the C functions that implement various SQL
** functions of SQLite.  
**
** There is only one exported symbol in this file - the function
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
** All other code has file scope.


*/

/*
** Return the collating function associated with a function.
*/
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
  return context->pColl;
69473
69474
69475
69476
69477
69478
69479
69480
69481
69482
69483
69484
69485
69486
69487
69488
69489
69490














69491
69492
69493
69494
69495
69496
69497
  UNUSED_PARAMETER(NotUsed);
  if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
    sqlite3_result_value(context, argv[0]);
  }
}

/*
** Implementation of the VERSION(*) function.  The result is the version
** of the SQLite library that is running.
*/
static void versionFunc(
  sqlite3_context *context,
  int NotUsed,
  sqlite3_value **NotUsed2
){
  UNUSED_PARAMETER2(NotUsed, NotUsed2);
  sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
}















/* Array for converting from half-bytes (nybbles) into ASCII hex
** digits. */
static const char hexdigits[] = {
  '0', '1', '2', '3', '4', '5', '6', '7',
  '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' 
};







|










>
>
>
>
>
>
>
>
>
>
>
>
>
>







70778
70779
70780
70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
70800
70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
  UNUSED_PARAMETER(NotUsed);
  if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
    sqlite3_result_value(context, argv[0]);
  }
}

/*
** Implementation of the sqlite_version() function.  The result is the version
** of the SQLite library that is running.
*/
static void versionFunc(
  sqlite3_context *context,
  int NotUsed,
  sqlite3_value **NotUsed2
){
  UNUSED_PARAMETER2(NotUsed, NotUsed2);
  sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
}

/*
** Implementation of the sqlite_source_id() function. The result is a string
** that identifies the particular version of the source code used to build
** SQLite.
*/
static void sourceidFunc(
  sqlite3_context *context,
  int NotUsed,
  sqlite3_value **NotUsed2
){
  UNUSED_PARAMETER2(NotUsed, NotUsed2);
  sqlite3_result_text(context, SQLITE_SOURCE_ID, -1, SQLITE_STATIC);
}

/* Array for converting from half-bytes (nybbles) into ASCII hex
** digits. */
static const char hexdigits[] = {
  '0', '1', '2', '3', '4', '5', '6', '7',
  '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' 
};
70204
70205
70206
70207
70208
70209
70210

70211
70212
70213
70214
70215
70216
70217
    FUNCTION(coalesce,           0, 0, 0, 0                ),
    FUNCTION(hex,                1, 0, 0, hexFunc          ),
    FUNCTION(ifnull,             2, 0, 1, ifnullFunc       ),
    FUNCTION(random,             0, 0, 0, randomFunc       ),
    FUNCTION(randomblob,         1, 0, 0, randomBlob       ),
    FUNCTION(nullif,             2, 0, 1, nullifFunc       ),
    FUNCTION(sqlite_version,     0, 0, 0, versionFunc      ),

    FUNCTION(quote,              1, 0, 0, quoteFunc        ),
    FUNCTION(last_insert_rowid,  0, 0, 0, last_insert_rowid),
    FUNCTION(changes,            0, 0, 0, changes          ),
    FUNCTION(total_changes,      0, 0, 0, total_changes    ),
    FUNCTION(replace,            3, 0, 0, replaceFunc      ),
    FUNCTION(zeroblob,           1, 0, 0, zeroblobFunc     ),
  #ifdef SQLITE_SOUNDEX







>







71523
71524
71525
71526
71527
71528
71529
71530
71531
71532
71533
71534
71535
71536
71537
    FUNCTION(coalesce,           0, 0, 0, 0                ),
    FUNCTION(hex,                1, 0, 0, hexFunc          ),
    FUNCTION(ifnull,             2, 0, 1, ifnullFunc       ),
    FUNCTION(random,             0, 0, 0, randomFunc       ),
    FUNCTION(randomblob,         1, 0, 0, randomBlob       ),
    FUNCTION(nullif,             2, 0, 1, nullifFunc       ),
    FUNCTION(sqlite_version,     0, 0, 0, versionFunc      ),
    FUNCTION(sqlite_source_id,   0, 0, 0, sourceidFunc     ),
    FUNCTION(quote,              1, 0, 0, quoteFunc        ),
    FUNCTION(last_insert_rowid,  0, 0, 0, last_insert_rowid),
    FUNCTION(changes,            0, 0, 0, changes          ),
    FUNCTION(total_changes,      0, 0, 0, total_changes    ),
    FUNCTION(replace,            3, 0, 0, replaceFunc      ),
    FUNCTION(zeroblob,           1, 0, 0, zeroblobFunc     ),
  #ifdef SQLITE_SOUNDEX
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
70304
70305
70306




70307
70308
70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
  sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName);
  sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
  sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32);
  VdbeComment((v, "%s", pTab->zName));
}

/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:
**
**  Character      Column affinity
**  ------------------------------
**  'a'            TEXT
**  'b'            NONE
**  'c'            NUMERIC
**  'd'            INTEGER
**  'e'            REAL
**
** An extra 'b' is appended to the end of the string to cover the
** rowid that appears as the last column in every index.




*/
SQLITE_PRIVATE void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
  if( !pIdx->zColAff ){
    /* The first time a column affinity string for a particular index is
    ** required, it is allocated and populated here. It is then stored as
    ** a member of the Index structure for subsequent use.
    **
    ** The column affinity string will eventually be deleted by
    ** sqliteDeleteIndex() when the Index structure itself is cleaned
    ** up.
    */
    int n;
    Table *pTab = pIdx->pTable;
    sqlite3 *db = sqlite3VdbeDb(v);
    pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2);
    if( !pIdx->zColAff ){
      db->mallocFailed = 1;
      return;
    }
    for(n=0; n<pIdx->nColumn; n++){
      pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
    }
    pIdx->zColAff[n++] = SQLITE_AFF_NONE;
    pIdx->zColAff[n] = 0;
  }
 
  sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
}

/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for table pTab. A column affinity string has one character
** for each column indexed by the index, according to the affinity of the
** column:







|
|
|











>
>
>
>

|















|








|







71606
71607
71608
71609
71610
71611
71612
71613
71614
71615
71616
71617
71618
71619
71620
71621
71622
71623
71624
71625
71626
71627
71628
71629
71630
71631
71632
71633
71634
71635
71636
71637
71638
71639
71640
71641
71642
71643
71644
71645
71646
71647
71648
71649
71650
71651
71652
71653
71654
71655
71656
71657
71658
71659
71660
71661
71662
71663
71664
  sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName);
  sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
  sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32);
  VdbeComment((v, "%s", pTab->zName));
}

/*
** Return a pointer to the column affinity string associated with index
** pIdx. A column affinity string has one character for each column in 
** the table, according to the affinity of the column:
**
**  Character      Column affinity
**  ------------------------------
**  'a'            TEXT
**  'b'            NONE
**  'c'            NUMERIC
**  'd'            INTEGER
**  'e'            REAL
**
** An extra 'b' is appended to the end of the string to cover the
** rowid that appears as the last column in every index.
**
** Memory for the buffer containing the column index affinity string
** is managed along with the rest of the Index structure. It will be
** released when sqlite3DeleteIndex() is called.
*/
SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
  if( !pIdx->zColAff ){
    /* The first time a column affinity string for a particular index is
    ** required, it is allocated and populated here. It is then stored as
    ** a member of the Index structure for subsequent use.
    **
    ** The column affinity string will eventually be deleted by
    ** sqliteDeleteIndex() when the Index structure itself is cleaned
    ** up.
    */
    int n;
    Table *pTab = pIdx->pTable;
    sqlite3 *db = sqlite3VdbeDb(v);
    pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2);
    if( !pIdx->zColAff ){
      db->mallocFailed = 1;
      return 0;
    }
    for(n=0; n<pIdx->nColumn; n++){
      pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
    }
    pIdx->zColAff[n++] = SQLITE_AFF_NONE;
    pIdx->zColAff[n] = 0;
  }
 
  return pIdx->zColAff;
}

/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for table pTab. A column affinity string has one character
** for each column indexed by the index, according to the affinity of the
** column:
70442
70443
70444
70445
70446
70447
70448

70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
70472
70473
70474
70475
70476
70477
70478
70479





70480
70481
70482
70483
70484
70485
70486
static int autoIncBegin(
  Parse *pParse,      /* Parsing context */
  int iDb,            /* Index of the database holding pTab */
  Table *pTab         /* The table we are writing to */
){
  int memId = 0;      /* Register holding maximum rowid */
  if( pTab->tabFlags & TF_Autoincrement ){

    AutoincInfo *pInfo;

    pInfo = pParse->pAinc;
    while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
    if( pInfo==0 ){
      pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
      if( pInfo==0 ) return 0;
      pInfo->pNext = pParse->pAinc;
      pParse->pAinc = pInfo;
      pInfo->pTab = pTab;
      pInfo->iDb = iDb;
      pParse->nMem++;                  /* Register to hold name of table */
      pInfo->regCtr = ++pParse->nMem;  /* Max rowid register */
      pParse->nMem++;                  /* Rowid in sqlite_sequence */
    }
    memId = pInfo->regCtr;
  }
  return memId;
}

/*
** This routine generates code that will initialize all of the
** register used by the autoincrement tracker.  
*/
SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse){
  AutoincInfo *p;            /* Information about an AUTOINCREMENT */
  sqlite3 *db = pParse->db;  /* The database connection */
  Db *pDb;                   /* Database only autoinc table */
  int memId;                 /* Register holding max rowid */
  int addr;                  /* A VDBE address */
  Vdbe *v = pParse->pVdbe;   /* VDBE under construction */






  assert( v );   /* We failed long ago if this is not so */
  for(p = pParse->pAinc; p; p = p->pNext){
    pDb = &db->aDb[p->iDb];
    memId = p->regCtr;
    sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
    addr = sqlite3VdbeCurrentAddr(v);







>


|




|
|


|
|
|

















>
>
>
>
>







71766
71767
71768
71769
71770
71771
71772
71773
71774
71775
71776
71777
71778
71779
71780
71781
71782
71783
71784
71785
71786
71787
71788
71789
71790
71791
71792
71793
71794
71795
71796
71797
71798
71799
71800
71801
71802
71803
71804
71805
71806
71807
71808
71809
71810
71811
71812
71813
71814
71815
71816
static int autoIncBegin(
  Parse *pParse,      /* Parsing context */
  int iDb,            /* Index of the database holding pTab */
  Table *pTab         /* The table we are writing to */
){
  int memId = 0;      /* Register holding maximum rowid */
  if( pTab->tabFlags & TF_Autoincrement ){
    Parse *pToplevel = sqlite3ParseToplevel(pParse);
    AutoincInfo *pInfo;

    pInfo = pToplevel->pAinc;
    while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
    if( pInfo==0 ){
      pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
      if( pInfo==0 ) return 0;
      pInfo->pNext = pToplevel->pAinc;
      pToplevel->pAinc = pInfo;
      pInfo->pTab = pTab;
      pInfo->iDb = iDb;
      pToplevel->nMem++;                  /* Register to hold name of table */
      pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
      pToplevel->nMem++;                  /* Rowid in sqlite_sequence */
    }
    memId = pInfo->regCtr;
  }
  return memId;
}

/*
** This routine generates code that will initialize all of the
** register used by the autoincrement tracker.  
*/
SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse){
  AutoincInfo *p;            /* Information about an AUTOINCREMENT */
  sqlite3 *db = pParse->db;  /* The database connection */
  Db *pDb;                   /* Database only autoinc table */
  int memId;                 /* Register holding max rowid */
  int addr;                  /* A VDBE address */
  Vdbe *v = pParse->pVdbe;   /* VDBE under construction */

  /* This routine is never called during trigger-generation.  It is
  ** only called from the top-level */
  assert( pParse->pTriggerTab==0 );
  assert( pParse==sqlite3ParseToplevel(pParse) );

  assert( v );   /* We failed long ago if this is not so */
  for(p = pParse->pAinc; p; p = p->pNext){
    pDb = &db->aDb[p->iDb];
    memId = p->regCtr;
    sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
    addr = sqlite3VdbeCurrentAddr(v);
70695
70696
70697
70698
70699
70700
70701
70702
70703
70704
70705
70706
70707
70708
70709
70710
70711
70712
70713
70714
70715
70716
70717
70718
70719
70720
70721
70722
70723
70724
  int endOfLoop;        /* Label for the end of the insertion loop */
  int useTempTable = 0; /* Store SELECT results in intermediate table */
  int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
  int addrInsTop = 0;   /* Jump to label "D" */
  int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
  int addrSelect = 0;   /* Address of coroutine that implements the SELECT */
  SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
  int newIdx = -1;      /* Cursor for the NEW pseudo-table */
  int iDb;              /* Index of database holding TABLE */
  Db *pDb;              /* The database containing table being inserted into */
  int appendFlag = 0;   /* True if the insert is likely to be an append */

  /* Register allocations */
  int regFromSelect = 0;/* Base register for data coming from SELECT */
  int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
  int regRowCount = 0;  /* Memory cell used for the row counter */
  int regIns;           /* Block of regs holding rowid+data being inserted */
  int regRowid;         /* registers holding insert rowid */
  int regData;          /* register holding first column to insert */
  int regRecord;        /* Holds the assemblied row record */
  int regEof = 0;       /* Register recording end of SELECT data */
  int *aRegIdx = 0;     /* One register allocated to each index */


#ifndef SQLITE_OMIT_TRIGGER
  int isView;                 /* True if attempting to insert into a view */
  Trigger *pTrigger;          /* List of triggers on pTab, if required */
  int tmask;                  /* Mask of trigger times */
#endif








<














<







72025
72026
72027
72028
72029
72030
72031

72032
72033
72034
72035
72036
72037
72038
72039
72040
72041
72042
72043
72044
72045

72046
72047
72048
72049
72050
72051
72052
  int endOfLoop;        /* Label for the end of the insertion loop */
  int useTempTable = 0; /* Store SELECT results in intermediate table */
  int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
  int addrInsTop = 0;   /* Jump to label "D" */
  int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
  int addrSelect = 0;   /* Address of coroutine that implements the SELECT */
  SelectDest dest;      /* Destination for SELECT on rhs of INSERT */

  int iDb;              /* Index of database holding TABLE */
  Db *pDb;              /* The database containing table being inserted into */
  int appendFlag = 0;   /* True if the insert is likely to be an append */

  /* Register allocations */
  int regFromSelect = 0;/* Base register for data coming from SELECT */
  int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
  int regRowCount = 0;  /* Memory cell used for the row counter */
  int regIns;           /* Block of regs holding rowid+data being inserted */
  int regRowid;         /* registers holding insert rowid */
  int regData;          /* register holding first column to insert */
  int regRecord;        /* Holds the assemblied row record */
  int regEof = 0;       /* Register recording end of SELECT data */
  int *aRegIdx = 0;     /* One register allocated to each index */


#ifndef SQLITE_OMIT_TRIGGER
  int isView;                 /* True if attempting to insert into a view */
  Trigger *pTrigger;          /* List of triggers on pTab, if required */
  int tmask;                  /* Mask of trigger times */
#endif

70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
  /* Allocate a VDBE
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto insert_cleanup;
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);

  /* if there are row triggers, allocate a temp table for new.* references. */
  if( pTrigger ){
    newIdx = pParse->nTab++;
  }

#ifndef SQLITE_OMIT_XFER_OPT
  /* If the statement is of the form
  **
  **       INSERT INTO <table1> SELECT * FROM <table2>;
  **
  ** Then special optimizations can be applied that make the transfer
  ** very fast and which reduce fragmentation of indices.







<
<
<
<
<







72109
72110
72111
72112
72113
72114
72115





72116
72117
72118
72119
72120
72121
72122
  /* Allocate a VDBE
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto insert_cleanup;
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);






#ifndef SQLITE_OMIT_XFER_OPT
  /* If the statement is of the form
  **
  **       INSERT INTO <table1> SELECT * FROM <table2>;
  **
  ** Then special optimizations can be applied that make the transfer
  ** very fast and which reduce fragmentation of indices.
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
71000
71001
71002
71003
71004
71005
71006
71007
71008
  /* If there is no IDLIST term but the table has an integer primary
  ** key, the set the keyColumn variable to the primary key column index
  ** in the original table definition.
  */
  if( pColumn==0 && nColumn>0 ){
    keyColumn = pTab->iPKey;
  }

  /* Open the temp table for FOR EACH ROW triggers
  */
  if( pTrigger ){
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, newIdx, 0, pTab->nCol);
  }
    
  /* Initialize the count of rows to be inserted
  */
  if( db->flags & SQLITE_CountRows ){
    regRowCount = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
  }







<
<
<
<
<
<







72312
72313
72314
72315
72316
72317
72318






72319
72320
72321
72322
72323
72324
72325
  /* If there is no IDLIST term but the table has an integer primary
  ** key, the set the keyColumn variable to the primary key column index
  ** in the original table definition.
  */
  if( pColumn==0 && nColumn>0 ){
    keyColumn = pTab->iPKey;
  }






    
  /* Initialize the count of rows to be inserted
  */
  if( db->flags & SQLITE_CountRows ){
    regRowCount = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
  }
71061
71062
71063
71064
71065
71066
71067
71068
71069
71070
71071
71072
71073
71074
71075
71076
71077
71078
71079
71080
71081
71082
71083
71084
71085
71086
71087
71088
71089
71090
71091
71092
71093
71094
71095
71096
71097
71098
71099
71100
71101
71102
71103
71104
71105
71106
71107
71108
71109
71110
71111
71112
71113
71114
71115
71116
71117
71118
71119
71120
71121
71122
71123
71124
71125
71126
71127
71128

71129
71130
71131
71132
71133
71134
71135
71136
71137
71138
71139
71140

71141
71142
71143
71144
71145
71146
71147
  }
  regData = regRowid+1;

  /* Run the BEFORE and INSTEAD OF triggers, if there are any
  */
  endOfLoop = sqlite3VdbeMakeLabel(v);
  if( tmask & TRIGGER_BEFORE ){
    int regTrigRowid;
    int regCols;
    int regRec;

    /* build the NEW.* reference row.  Note that if there is an INTEGER
    ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
    ** translated into a unique ID for the row.  But on a BEFORE trigger,
    ** we do not know what the unique ID will be (because the insert has
    ** not happened yet) so we substitute a rowid of -1
    */
    regTrigRowid = sqlite3GetTempReg(pParse);
    if( keyColumn<0 ){
      sqlite3VdbeAddOp2(v, OP_Integer, -1, regTrigRowid);
    }else{
      int j1;
      if( useTempTable ){
        sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regTrigRowid);
      }else{
        assert( pSelect==0 );  /* Otherwise useTempTable is true */
        sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regTrigRowid);
      }
      j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regTrigRowid);
      sqlite3VdbeAddOp2(v, OP_Integer, -1, regTrigRowid);
      sqlite3VdbeJumpHere(v, j1);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, regTrigRowid);
    }

    /* Cannot have triggers on a virtual table. If it were possible,
    ** this block would have to account for hidden column.
    */
    assert(!IsVirtual(pTab));

    /* Create the new column data
    */
    regCols = sqlite3GetTempRange(pParse, pTab->nCol);
    for(i=0; i<pTab->nCol; i++){
      if( pColumn==0 ){
        j = i;
      }else{
        for(j=0; j<pColumn->nId; j++){
          if( pColumn->a[j].idx==i ) break;
        }
      }
      if( pColumn && j>=pColumn->nId ){
        sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
      }else if( useTempTable ){
        sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i); 
      }else{
        assert( pSelect==0 ); /* Otherwise useTempTable is true */
        sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
      }
    }
    regRec = sqlite3GetTempReg(pParse);
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);

    /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
    ** do not attempt any conversions before assembling the record.
    ** If this is a real table, attempt conversions as required by the
    ** table column affinities.
    */
    if( !isView ){

      sqlite3TableAffinityStr(v, pTab);
    }
    sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regTrigRowid);
    sqlite3ReleaseTempReg(pParse, regRec);
    sqlite3ReleaseTempReg(pParse, regTrigRowid);
    sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);

    /* Fire BEFORE or INSTEAD OF triggers */
    if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 
        pTab, newIdx, -1, onError, endOfLoop, 0, 0) ){
      goto insert_cleanup;
    }

  }

  /* Push the record number for the new entry onto the stack.  The
  ** record number is a randomly generate integer created by NewRowid
  ** except when the table has an INTEGER PRIMARY KEY column, in which
  ** case the record number is the same as that column. 
  */







<
|
<







<

|



|


|

|
|

|





|



<









|

|


|


<
<







>


<
<
<
<


|
|
<
|
>







72378
72379
72380
72381
72382
72383
72384

72385

72386
72387
72388
72389
72390
72391
72392

72393
72394
72395
72396
72397
72398
72399
72400
72401
72402
72403
72404
72405
72406
72407
72408
72409
72410
72411
72412
72413
72414
72415

72416
72417
72418
72419
72420
72421
72422
72423
72424
72425
72426
72427
72428
72429
72430
72431
72432


72433
72434
72435
72436
72437
72438
72439
72440
72441
72442




72443
72444
72445
72446

72447
72448
72449
72450
72451
72452
72453
72454
72455
  }
  regData = regRowid+1;

  /* Run the BEFORE and INSTEAD OF triggers, if there are any
  */
  endOfLoop = sqlite3VdbeMakeLabel(v);
  if( tmask & TRIGGER_BEFORE ){

    int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);


    /* build the NEW.* reference row.  Note that if there is an INTEGER
    ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
    ** translated into a unique ID for the row.  But on a BEFORE trigger,
    ** we do not know what the unique ID will be (because the insert has
    ** not happened yet) so we substitute a rowid of -1
    */

    if( keyColumn<0 ){
      sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
    }else{
      int j1;
      if( useTempTable ){
        sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols);
      }else{
        assert( pSelect==0 );  /* Otherwise useTempTable is true */
        sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols);
      }
      j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols);
      sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
      sqlite3VdbeJumpHere(v, j1);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols);
    }

    /* Cannot have triggers on a virtual table. If it were possible,
    ** this block would have to account for hidden column.
    */
    assert( !IsVirtual(pTab) );

    /* Create the new column data
    */

    for(i=0; i<pTab->nCol; i++){
      if( pColumn==0 ){
        j = i;
      }else{
        for(j=0; j<pColumn->nId; j++){
          if( pColumn->a[j].idx==i ) break;
        }
      }
      if( pColumn && j>=pColumn->nId ){
        sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
      }else if( useTempTable ){
        sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 
      }else{
        assert( pSelect==0 ); /* Otherwise useTempTable is true */
        sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
      }
    }



    /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
    ** do not attempt any conversions before assembling the record.
    ** If this is a real table, attempt conversions as required by the
    ** table column affinities.
    */
    if( !isView ){
      sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol);
      sqlite3TableAffinityStr(v, pTab);
    }





    /* Fire BEFORE or INSTEAD OF triggers */
    sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 
        pTab, -1, regCols-pTab->nCol-1, onError, endOfLoop);


    sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
  }

  /* Push the record number for the new entry onto the stack.  The
  ** record number is a randomly generate integer created by NewRowid
  ** except when the table has an INTEGER PRIMARY KEY column, in which
  ** case the record number is the same as that column. 
  */
71232
71233
71234
71235
71236
71237
71238

71239
71240
71241
71242
71243
71244
71245
71246
71247
71248
71249
71250
71251
71252
71253
71254
71255
71256
71257
71258
71259
71260
71261
71262
71263
71264
71265
71266
71267
71268
71269
71270
71271
    ** do the insertion.
    */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      sqlite3VtabMakeWritable(pParse, pTab);
      sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);

    }else
#endif
    {
      int isReplace;    /* Set to true if constraints may cause a replace */
      sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx,
          keyColumn>=0, 0, onError, endOfLoop, &isReplace
      );
      sqlite3CompleteInsertion(
          pParse, pTab, baseCur, regIns, aRegIdx, 0,
          (tmask&TRIGGER_AFTER) ? newIdx : -1, appendFlag, isReplace==0
      );
    }
  }

  /* Update the count of rows that are inserted
  */
  if( (db->flags & SQLITE_CountRows)!=0 ){
    sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
  }

  if( pTrigger ){
    /* Code AFTER triggers */
    if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 
          pTab, newIdx, -1, onError, endOfLoop, 0, 0) ){
      goto insert_cleanup;
    }
  }

  /* The bottom of the main insertion loop, if the data source
  ** is a SELECT statement.
  */
  sqlite3VdbeResolveLabel(v, endOfLoop);
  if( useTempTable ){







>








|
<












|
|
<
<







72540
72541
72542
72543
72544
72545
72546
72547
72548
72549
72550
72551
72552
72553
72554
72555
72556

72557
72558
72559
72560
72561
72562
72563
72564
72565
72566
72567
72568
72569
72570


72571
72572
72573
72574
72575
72576
72577
    ** do the insertion.
    */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      sqlite3VtabMakeWritable(pParse, pTab);
      sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
      sqlite3MayAbort(pParse);
    }else
#endif
    {
      int isReplace;    /* Set to true if constraints may cause a replace */
      sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx,
          keyColumn>=0, 0, onError, endOfLoop, &isReplace
      );
      sqlite3CompleteInsertion(
          pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0

      );
    }
  }

  /* Update the count of rows that are inserted
  */
  if( (db->flags & SQLITE_CountRows)!=0 ){
    sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
  }

  if( pTrigger ){
    /* Code AFTER triggers */
    sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 
        pTab, -1, regData-2-pTab->nCol, onError, endOfLoop);


  }

  /* The bottom of the main insertion loop, if the data source
  ** is a SELECT statement.
  */
  sqlite3VdbeResolveLabel(v, endOfLoop);
  if( useTempTable ){
71286
71287
71288
71289
71290
71291
71292
71293
71294
71295
71296
71297
71298
71299
71300
71301
71302
71303
71304
71305
71306
71307
71308
71309
71310
71311
71312
71313
71314
71315
71316
71317
71318
71319
71320
71321
71322
71323
71324
71325
71326
71327
71328
71329
71330
71331
71332
71333
71334
71335

71336

71337
71338
71339
71340
71341
71342
71343
71344
71345
71346
71347
  }

insert_end:
  /* Update the sqlite_sequence table by storing the content of the
  ** maximum rowid counter values recorded while inserting into
  ** autoincrement tables.
  */
  if( pParse->nested==0 && pParse->trigStack==0 ){
    sqlite3AutoincrementEnd(pParse);
  }

  /*
  ** Return the number of rows inserted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
  }

insert_cleanup:
  sqlite3SrcListDelete(db, pTabList);
  sqlite3ExprListDelete(db, pList);
  sqlite3SelectDelete(db, pSelect);
  sqlite3IdListDelete(db, pColumn);
  sqlite3DbFree(db, aRegIdx);
}

/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE.
**
** The input is a range of consecutive registers as follows:
**
**    1.  The rowid of the row to be updated before the update.  This
**        value is omitted unless we are doing an UPDATE that involves a
**        change to the record number or writing to a virtual table.
**
**    2.  The rowid of the row after the update.
**
**    3.  The data in the first column of the entry after the update.
**
**    i.  Data from middle columns...
**
**    N.  The data in the last column of the entry after the update.
**
** The regRowid parameter is the index of the register containing (2).
**
** The old rowid shown as entry (1) above is omitted unless both isUpdate

** and rowidChng are 1.  isUpdate is true for UPDATEs and false for

** INSERTs.  RowidChng means that the new rowid is explicitly specified by
** the update or insert statement.  If rowidChng is false, it means that
** the rowid is computed automatically in an insert or that the rowid value
** is not modified by the update.
**
** The code generated by this routine store new index entries into
** registers identified by aRegIdx[].  No index entry is created for
** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
** the same as the order of indices on the linked list of indices
** attached to the table.
**







|








|


















<
<
<
<
|

|





|

|
>
|
>
|
|
|
|







72592
72593
72594
72595
72596
72597
72598
72599
72600
72601
72602
72603
72604
72605
72606
72607
72608
72609
72610
72611
72612
72613
72614
72615
72616
72617
72618
72619
72620
72621
72622
72623
72624
72625
72626




72627
72628
72629
72630
72631
72632
72633
72634
72635
72636
72637
72638
72639
72640
72641
72642
72643
72644
72645
72646
72647
72648
72649
72650
72651
  }

insert_end:
  /* Update the sqlite_sequence table by storing the content of the
  ** maximum rowid counter values recorded while inserting into
  ** autoincrement tables.
  */
  if( pParse->nested==0 && pParse->pTriggerTab==0 ){
    sqlite3AutoincrementEnd(pParse);
  }

  /*
  ** Return the number of rows inserted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
  }

insert_cleanup:
  sqlite3SrcListDelete(db, pTabList);
  sqlite3ExprListDelete(db, pList);
  sqlite3SelectDelete(db, pSelect);
  sqlite3IdListDelete(db, pColumn);
  sqlite3DbFree(db, aRegIdx);
}

/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE.
**
** The input is a range of consecutive registers as follows:
**




**    1.  The rowid of the row after the update.
**
**    2.  The data in the first column of the entry after the update.
**
**    i.  Data from middle columns...
**
**    N.  The data in the last column of the entry after the update.
**
** The regRowid parameter is the index of the register containing (1).
**
** If isUpdate is true and rowidChng is non-zero, then rowidChng contains
** the address of a register containing the rowid before the update takes
** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate
** is false, indicating an INSERT statement, then a non-zero rowidChng 
** indicates that the rowid was explicitly specified as part of the
** INSERT statement. If rowidChng is false, it means that  the rowid is
** computed automatically in an insert or that the rowid value is not 
** modified by an update.
**
** The code generated by this routine store new index entries into
** registers identified by aRegIdx[].  No index entry is created for
** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
** the same as the order of indices on the linked list of indices
** attached to the table.
**
71408
71409
71410
71411
71412
71413
71414
71415
71416
71417
71418
71419
71420
71421
71422
71423
71424
71425
71426
71427
71428
71429
71430
71431
71432
71433
71434
71435
71436
71437
71438
71439
71440
71441
71442
71443

71444
71445
71446
71447
71448
71449
71450
71451
  int onError;        /* Conflict resolution strategy */
  int j1;             /* Addresss of jump instruction */
  int j2 = 0, j3;     /* Addresses of jump instructions */
  int regData;        /* Register containing first data column */
  int iCur;           /* Table cursor number */
  Index *pIdx;         /* Pointer to one of the indices */
  int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
  int hasTwoRowids = (isUpdate && rowidChng);

  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  nCol = pTab->nCol;
  regData = regRowid + 1;


  /* Test all NOT NULL constraints.
  */
  for(i=0; i<nCol; i++){
    if( i==pTab->iPKey ){
      continue;
    }
    onError = pTab->aCol[i].notNull;
    if( onError==OE_None ) continue;
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
      onError = OE_Abort;
    }
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
        || onError==OE_Ignore || onError==OE_Replace );
    switch( onError ){
      case OE_Rollback:

      case OE_Abort:
      case OE_Fail: {
        char *zMsg;
        j1 = sqlite3VdbeAddOp3(v, OP_HaltIfNull,
                                  SQLITE_CONSTRAINT, onError, regData+i);
        zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
                              pTab->zName, pTab->aCol[i].zName);
        sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);







|






<




















|
>
|







72712
72713
72714
72715
72716
72717
72718
72719
72720
72721
72722
72723
72724
72725

72726
72727
72728
72729
72730
72731
72732
72733
72734
72735
72736
72737
72738
72739
72740
72741
72742
72743
72744
72745
72746
72747
72748
72749
72750
72751
72752
72753
72754
72755
  int onError;        /* Conflict resolution strategy */
  int j1;             /* Addresss of jump instruction */
  int j2 = 0, j3;     /* Addresses of jump instructions */
  int regData;        /* Register containing first data column */
  int iCur;           /* Table cursor number */
  Index *pIdx;         /* Pointer to one of the indices */
  int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
  int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid;

  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  nCol = pTab->nCol;
  regData = regRowid + 1;


  /* Test all NOT NULL constraints.
  */
  for(i=0; i<nCol; i++){
    if( i==pTab->iPKey ){
      continue;
    }
    onError = pTab->aCol[i].notNull;
    if( onError==OE_None ) continue;
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
      onError = OE_Abort;
    }
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
        || onError==OE_Ignore || onError==OE_Replace );
    switch( onError ){
      case OE_Abort:
        sqlite3MayAbort(pParse);
      case OE_Rollback:
      case OE_Fail: {
        char *zMsg;
        j1 = sqlite3VdbeAddOp3(v, OP_HaltIfNull,
                                  SQLITE_CONSTRAINT, onError, regData+i);
        zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
                              pTab->zName, pTab->aCol[i].zName);
        sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
71472
71473
71474
71475
71476
71477
71478
71479
71480
71481
71482
71483
71484
71485
71486
71487
71488
71489
71490
71491
71492
71493
71494
71495
71496
71497
71498
71499
71500
71501
71502
71503
71504
71505
71506
71507
71508
71509
71510
71511
71512
71513
71514


















71515

71516
71517
71518
71519
71520
71521
71522
    int allOk = sqlite3VdbeMakeLabel(v);
    pParse->ckBase = regData;
    sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    if( onError==OE_Ignore ){
      sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
    }else{
      sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
    }
    sqlite3VdbeResolveLabel(v, allOk);
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* If we have an INTEGER PRIMARY KEY, make sure the primary key
  ** of the new record does not previously exist.  Except, if this
  ** is an UPDATE and the primary key is not changing, that is OK.
  */
  if( rowidChng ){
    onError = pTab->keyConf;
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    
    if( onError!=OE_Replace || pTab->pIndex ){
      if( isUpdate ){
        j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
      }
      j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
      switch( onError ){
        default: {
          onError = OE_Abort;
          /* Fall thru into the next case */
        }
        case OE_Rollback:
        case OE_Abort:
        case OE_Fail: {
          sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
                           "PRIMARY KEY must be unique", P4_STATIC);
          break;
        }
        case OE_Replace: {


















          sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);

          seenReplace = 1;
          break;
        }
        case OE_Ignore: {
          assert( seenReplace==0 );
          sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
          break;







|



















|










|
|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>







72776
72777
72778
72779
72780
72781
72782
72783
72784
72785
72786
72787
72788
72789
72790
72791
72792
72793
72794
72795
72796
72797
72798
72799
72800
72801
72802
72803
72804
72805
72806
72807
72808
72809
72810
72811
72812
72813
72814
72815
72816
72817
72818
72819
72820
72821
72822
72823
72824
72825
72826
72827
72828
72829
72830
72831
72832
72833
72834
72835
72836
72837
72838
72839
72840
72841
72842
72843
72844
72845
    int allOk = sqlite3VdbeMakeLabel(v);
    pParse->ckBase = regData;
    sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    if( onError==OE_Ignore ){
      sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
    }else{
      sqlite3HaltConstraint(pParse, onError, 0, 0);
    }
    sqlite3VdbeResolveLabel(v, allOk);
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* If we have an INTEGER PRIMARY KEY, make sure the primary key
  ** of the new record does not previously exist.  Except, if this
  ** is an UPDATE and the primary key is not changing, that is OK.
  */
  if( rowidChng ){
    onError = pTab->keyConf;
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    
    if( onError!=OE_Replace || pTab->pIndex ){
      if( isUpdate ){
        j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng);
      }
      j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
      switch( onError ){
        default: {
          onError = OE_Abort;
          /* Fall thru into the next case */
        }
        case OE_Rollback:
        case OE_Abort:
        case OE_Fail: {
          sqlite3HaltConstraint(
            pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
          break;
        }
        case OE_Replace: {
          /* If there are DELETE triggers on this table and the
          ** recursive-triggers flag is set, call GenerateRowDelete() to
          ** remove the conflicting row from the the table. This will fire
          ** the triggers and remove both the table and index b-tree entries.
          **
          ** Otherwise, if there are no triggers or the recursive-triggers
          ** flag is not set, call GenerateRowIndexDelete(). This removes
          ** the index b-tree entries only. The table b-tree entry will be 
          ** replaced by the new entry when it is inserted.  */
          Trigger *pTrigger = 0;
          if( pParse->db->flags&SQLITE_RecTriggers ){
            pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
          }
          if( pTrigger ){
            sqlite3GenerateRowDelete(
                pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace
            );
          }else{
            sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
          }
          seenReplace = 1;
          break;
        }
        case OE_Ignore: {
          assert( seenReplace==0 );
          sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
          break;
71547
71548
71549
71550
71551
71552
71553
71554
71555
71556
71557
71558
71559
71560
71561
71562
71563
71564
71565
71566
71567
71568
71569
71570
71571
71572
71573
71574
71575
71576
71577
71578
71579
71580
71581
71582
71583
        sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
      }else{
        sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
      }
    }
    sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
    sqlite3IndexAffinityStr(v, pIdx);
    sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);

    /* Find out what action to take in case there is an indexing conflict */
    onError = pIdx->onError;
    if( onError==OE_None ){ 
      sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
      continue;  /* pIdx is not a UNIQUE index */
    }
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( seenReplace ){
      if( onError==OE_Ignore ) onError = OE_Replace;
      else if( onError==OE_Fail ) onError = OE_Abort;
    }
    

    /* Check to see if the new index entry will be unique */
    regR = sqlite3GetTempReg(pParse);
    sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
    j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
                           regR, SQLITE_INT_TO_PTR(regIdx),
                           P4_INT32);
    sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);

    /* Generate code that executes if the new index entry is not unique */
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail







|


















<


|







72870
72871
72872
72873
72874
72875
72876
72877
72878
72879
72880
72881
72882
72883
72884
72885
72886
72887
72888
72889
72890
72891
72892
72893
72894
72895

72896
72897
72898
72899
72900
72901
72902
72903
72904
72905
        sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
      }else{
        sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
      }
    }
    sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
    sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0);
    sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);

    /* Find out what action to take in case there is an indexing conflict */
    onError = pIdx->onError;
    if( onError==OE_None ){ 
      sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
      continue;  /* pIdx is not a UNIQUE index */
    }
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( seenReplace ){
      if( onError==OE_Ignore ) onError = OE_Replace;
      else if( onError==OE_Fail ) onError = OE_Abort;
    }
    

    /* Check to see if the new index entry will be unique */
    regR = sqlite3GetTempReg(pParse);
    sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR);
    j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
                           regR, SQLITE_INT_TO_PTR(regIdx),
                           P4_INT32);
    sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);

    /* Generate code that executes if the new index entry is not unique */
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
71599
71600
71601
71602
71603
71604
71605
71606
71607
71608
71609
71610
71611
71612
71613
71614
71615

71616



71617


71618
71619
71620
71621
71622
71623
71624
          sqlite3StrAccumAppend(&errMsg, zSep, -1);
          zSep = ", ";
          sqlite3StrAccumAppend(&errMsg, zCol, -1);
        }
        sqlite3StrAccumAppend(&errMsg,
            pIdx->nColumn>1 ? " are not unique" : " is not unique", -1);
        zErr = sqlite3StrAccumFinish(&errMsg);
        sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErr, 0);
        sqlite3DbFree(errMsg.db, zErr);
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
        break;
      }
      default: {

        assert( onError==OE_Replace );



        sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);


        seenReplace = 1;
        break;
      }
    }
    sqlite3VdbeJumpHere(v, j3);
    sqlite3ReleaseTempReg(pParse, regR);
  }







|









>

>
>
>
|
>
>







72921
72922
72923
72924
72925
72926
72927
72928
72929
72930
72931
72932
72933
72934
72935
72936
72937
72938
72939
72940
72941
72942
72943
72944
72945
72946
72947
72948
72949
72950
72951
72952
          sqlite3StrAccumAppend(&errMsg, zSep, -1);
          zSep = ", ";
          sqlite3StrAccumAppend(&errMsg, zCol, -1);
        }
        sqlite3StrAccumAppend(&errMsg,
            pIdx->nColumn>1 ? " are not unique" : " is not unique", -1);
        zErr = sqlite3StrAccumFinish(&errMsg);
        sqlite3HaltConstraint(pParse, onError, zErr, 0);
        sqlite3DbFree(errMsg.db, zErr);
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
        break;
      }
      default: {
        Trigger *pTrigger = 0;
        assert( onError==OE_Replace );
        if( pParse->db->flags&SQLITE_RecTriggers ){
          pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
        }
        sqlite3GenerateRowDelete(
            pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace
        );
        seenReplace = 1;
        break;
      }
    }
    sqlite3VdbeJumpHere(v, j3);
    sqlite3ReleaseTempReg(pParse, regR);
  }
71640
71641
71642
71643
71644
71645
71646
71647
71648
71649
71650
71651
71652
71653
71654
SQLITE_PRIVATE void sqlite3CompleteInsertion(
  Parse *pParse,      /* The parser context */
  Table *pTab,        /* the table into which we are inserting */
  int baseCur,        /* Index of a read/write cursor pointing at pTab */
  int regRowid,       /* Range of content */
  int *aRegIdx,       /* Register used by each index.  0 for unused indices */
  int isUpdate,       /* True for UPDATE, False for INSERT */
  int newIdx,         /* Index of NEW table for triggers.  -1 if none */
  int appendBias,     /* True if this is likely to be an append */
  int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
){
  int i;
  Vdbe *v;
  int nIdx;
  Index *pIdx;







<







72968
72969
72970
72971
72972
72973
72974

72975
72976
72977
72978
72979
72980
72981
SQLITE_PRIVATE void sqlite3CompleteInsertion(
  Parse *pParse,      /* The parser context */
  Table *pTab,        /* the table into which we are inserting */
  int baseCur,        /* Index of a read/write cursor pointing at pTab */
  int regRowid,       /* Range of content */
  int *aRegIdx,       /* Register used by each index.  0 for unused indices */
  int isUpdate,       /* True for UPDATE, False for INSERT */

  int appendBias,     /* True if this is likely to be an append */
  int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
){
  int i;
  Vdbe *v;
  int nIdx;
  Index *pIdx;
71668
71669
71670
71671
71672
71673
71674
71675
71676
71677
71678
71679
71680
71681
71682
71683
71684
71685
71686
    }
  }
  regData = regRowid + 1;
  regRec = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
  sqlite3TableAffinityStr(v, pTab);
  sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
#ifndef SQLITE_OMIT_TRIGGER
  if( newIdx>=0 ){
    sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
  }
#endif
  if( pParse->nested ){
    pik_flags = 0;
  }else{
    pik_flags = OPFLAG_NCHANGE;
    pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
  }
  if( appendBias ){







<
<
<
<
<







72995
72996
72997
72998
72999
73000
73001





73002
73003
73004
73005
73006
73007
73008
    }
  }
  regData = regRowid + 1;
  regRec = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
  sqlite3TableAffinityStr(v, pTab);
  sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);





  if( pParse->nested ){
    pik_flags = 0;
  }else{
    pik_flags = OPFLAG_NCHANGE;
    pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
  }
  if( appendBias ){
71996
71997
71998
71999
72000
72001
72002
72003
72004
72005
72006
72007
72008
72009
72010
72011
  sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
  emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
  regData = sqlite3GetTempReg(pParse);
  regRowid = sqlite3GetTempReg(pParse);
  if( pDest->iPKey>=0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
    sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
                      "PRIMARY KEY must be unique", P4_STATIC);
    sqlite3VdbeJumpHere(v, addr2);
    autoIncStep(pParse, regAutoinc, regRowid);
  }else if( pDest->pIndex==0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
  }else{
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    assert( (pDest->tabFlags & TF_Autoincrement)==0 );







|
|







73318
73319
73320
73321
73322
73323
73324
73325
73326
73327
73328
73329
73330
73331
73332
73333
  sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
  emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
  regData = sqlite3GetTempReg(pParse);
  regRowid = sqlite3GetTempReg(pParse);
  if( pDest->iPKey>=0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
    sqlite3HaltConstraint(
        pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
    sqlite3VdbeJumpHere(v, addr2);
    autoIncStep(pParse, regAutoinc, regRowid);
  }else if( pDest->pIndex==0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
  }else{
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    assert( (pDest->tabFlags & TF_Autoincrement)==0 );
73389
73390
73391
73392
73393
73394
73395

73396
73397
73398
73399
73400
73401
73402
    /* The following is VERY experimental */
    { "writable_schema",          SQLITE_WriteSchema|SQLITE_RecoveryMode },
    { "omit_readlock",            SQLITE_NoReadlock    },

    /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
    ** flag if there are any active statements. */
    { "read_uncommitted",         SQLITE_ReadUncommitted },

  };
  int i;
  const struct sPragmaType *p;
  for(i=0, p=aPragma; i<ArraySize(aPragma); i++, p++){
    if( sqlite3StrICmp(zLeft, p->zName)==0 ){
      sqlite3 *db = pParse->db;
      Vdbe *v;







>







74711
74712
74713
74714
74715
74716
74717
74718
74719
74720
74721
74722
74723
74724
74725
    /* The following is VERY experimental */
    { "writable_schema",          SQLITE_WriteSchema|SQLITE_RecoveryMode },
    { "omit_readlock",            SQLITE_NoReadlock    },

    /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
    ** flag if there are any active statements. */
    { "read_uncommitted",         SQLITE_ReadUncommitted },
    { "recursive_triggers",       SQLITE_RecTriggers },
  };
  int i;
  const struct sPragmaType *p;
  for(i=0, p=aPragma; i<ArraySize(aPragma); i++, p++){
    if( sqlite3StrICmp(zLeft, p->zName)==0 ){
      sqlite3 *db = pParse->db;
      Vdbe *v;
75295
75296
75297
75298
75299
75300
75301








75302
75303
75304
75305
75306
75307
75308

  if( zErrMsg ){
    sqlite3Error(db, rc, "%s", zErrMsg);
    sqlite3DbFree(db, zErrMsg);
  }else{
    sqlite3Error(db, rc, 0);
  }









end_prepare:

  sqlite3StackFree(db, pParse);
  rc = sqlite3ApiExit(db, rc);
  assert( (rc&db->errMask)==rc );
  return rc;







>
>
>
>
>
>
>
>







76618
76619
76620
76621
76622
76623
76624
76625
76626
76627
76628
76629
76630
76631
76632
76633
76634
76635
76636
76637
76638
76639

  if( zErrMsg ){
    sqlite3Error(db, rc, "%s", zErrMsg);
    sqlite3DbFree(db, zErrMsg);
  }else{
    sqlite3Error(db, rc, 0);
  }

  /* Delete any TriggerPrg structures allocated while parsing this statement. */
  while( pParse->pTriggerPrg ){
    TriggerPrg *pT = pParse->pTriggerPrg;
    pParse->pTriggerPrg = pT->pNext;
    sqlite3VdbeProgramDelete(db, pT->pProgram, 0);
    sqlite3DbFree(db, pT);
  }

end_prepare:

  sqlite3StackFree(db, pParse);
  rc = sqlite3ApiExit(db, rc);
  assert( (rc&db->errMask)==rc );
  return rc;
76250
76251
76252
76253
76254
76255
76256

76257
76258
76259



76260
76261
76262
76263
76264
76265
76266
76267
76268
76269
76270
76271
  int eDest = pDest->eDest;
  int iParm = pDest->iParm;

  int regRow;
  int regRowid;

  iTab = pOrderBy->iECursor;

  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    pseudoTab = pParse->nTab++;
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output, nColumn);



  }
  addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
  codeOffset(v, p, addrContinue);
  regRow = sqlite3GetTempReg(pParse);
  regRowid = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      testcase( eDest==SRT_Table );
      testcase( eDest==SRT_EphemTab );
      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);







>


|
>
>
>



<
<







77581
77582
77583
77584
77585
77586
77587
77588
77589
77590
77591
77592
77593
77594
77595
77596
77597


77598
77599
77600
77601
77602
77603
77604
  int eDest = pDest->eDest;
  int iParm = pDest->iParm;

  int regRow;
  int regRowid;

  iTab = pOrderBy->iECursor;
  regRow = sqlite3GetTempReg(pParse);
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    pseudoTab = pParse->nTab++;
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
    regRowid = 0;
  }else{
    regRowid = sqlite3GetTempReg(pParse);
  }
  addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
  codeOffset(v, p, addrContinue);


  sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      testcase( eDest==SRT_Table );
      testcase( eDest==SRT_EphemTab );
      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
76289
76290
76291
76292
76293
76294
76295
76296
76297
76298
76299
76300



76301
76302
76303
76304
76305
76306
76307
    }
#endif
    default: {
      int i;
      assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 
      testcase( eDest==SRT_Output );
      testcase( eDest==SRT_Coroutine );
      sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
      for(i=0; i<nColumn; i++){
        assert( regRow!=pDest->iMem+i );
        sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);



      }
      if( eDest==SRT_Output ){
        sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
        sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
      }else{
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
      }







<
<



>
>
>







77622
77623
77624
77625
77626
77627
77628


77629
77630
77631
77632
77633
77634
77635
77636
77637
77638
77639
77640
77641
    }
#endif
    default: {
      int i;
      assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 
      testcase( eDest==SRT_Output );
      testcase( eDest==SRT_Coroutine );


      for(i=0; i<nColumn; i++){
        assert( regRow!=pDest->iMem+i );
        sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
        if( i==0 ){
          sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
        }
      }
      if( eDest==SRT_Output ){
        sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
        sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
      }else{
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
      }
76377
76378
76379
76380
76381
76382
76383
76384
76385

76386
76387
76388
76389
76390

76391
76392



76393

76394


76395
76396
76397
76398
76399
76400
76401
76402
76403
76404
76405
76406
76407
76408
76409
76410
76411
76412
76413
76414
76415
76416
76417
76418
76419
          pS = pTabList->a[j].pSelect;
        }else{
          pNC = pNC->pNext;
        }
      }

      if( pTab==0 ){
        /* FIX ME:
        ** This can occurs if you have something like "SELECT new.x;" inside

        ** a trigger.  In other words, if you reference the special "new"
        ** table in the result set of a select.  We do not have a good way
        ** to find the actual table type, so call it "TEXT".  This is really
        ** something of a bug, but I do not know how to fix it.
        **

        ** This code does not produce the correct answer - it just prevents
        ** a segfault.  See ticket #1229.



        */

        zType = "TEXT";


        break;
      }

      assert( pTab );
      if( pS ){
        /* The "table" is actually a sub-select or a view in the FROM clause
        ** of the SELECT statement. Return the declaration type and origin
        ** data for the result-set column of the sub-select.
        */
        if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){
          /* If iCol is less than zero, then the expression requests the
          ** rowid of the sub-select or view. This expression is legal (see 
          ** test case misc2.2.2) - it always evaluates to NULL.
          */
          NameContext sNC;
          Expr *p = pS->pEList->a[iCol].pExpr;
          sNC.pSrcList = pS->pSrc;
          sNC.pNext = 0;
          sNC.pParse = pNC->pParse;
          zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
        }
      }else if( ALWAYS(pTab->pSchema) ){
        /* A real table */
        assert( !pS );
        if( iCol<0 ) iCol = pTab->iPKey;







<
|
>
|
|
|
<

>
|
|
>
>
>
|
>
|
>
>



|













|







77711
77712
77713
77714
77715
77716
77717

77718
77719
77720
77721
77722

77723
77724
77725
77726
77727
77728
77729
77730
77731
77732
77733
77734
77735
77736
77737
77738
77739
77740
77741
77742
77743
77744
77745
77746
77747
77748
77749
77750
77751
77752
77753
77754
77755
77756
77757
77758
77759
          pS = pTabList->a[j].pSelect;
        }else{
          pNC = pNC->pNext;
        }
      }

      if( pTab==0 ){

        /* At one time, code such as "SELECT new.x" within a trigger would
        ** cause this condition to run.  Since then, we have restructured how
        ** trigger code is generated and so this condition is no longer 
        ** possible. However, it can still be true for statements like
        ** the following:

        **
        **   CREATE TABLE t1(col INTEGER);
        **   SELECT (SELECT t1.col) FROM FROM t1;
        **
        ** when columnType() is called on the expression "t1.col" in the 
        ** sub-select. In this case, set the column type to NULL, even
        ** though it should really be "INTEGER".
        **
        ** This is not a problem, as the column type of "t1.col" is never
        ** used. When columnType() is called on the expression 
        ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
        ** branch below.  */
        break;
      }

      assert( pTab && pExpr->pTab==pTab );
      if( pS ){
        /* The "table" is actually a sub-select or a view in the FROM clause
        ** of the SELECT statement. Return the declaration type and origin
        ** data for the result-set column of the sub-select.
        */
        if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){
          /* If iCol is less than zero, then the expression requests the
          ** rowid of the sub-select or view. This expression is legal (see 
          ** test case misc2.2.2) - it always evaluates to NULL.
          */
          NameContext sNC;
          Expr *p = pS->pEList->a[iCol].pExpr;
          sNC.pSrcList = pS->pSrc;
          sNC.pNext = pNC;
          sNC.pParse = pNC->pParse;
          zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
        }
      }else if( ALWAYS(pTab->pSchema) ){
        /* A real table */
        assert( !pS );
        if( iCol<0 ) iCol = pTab->iPKey;
78218
78219
78220
78221
78222
78223
78224

78225
78226
78227
78228
78229
78230
78231
78232
78233
  ** refer to the subquery even after flattening.  Ticket #3346.
  **
  ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
  */
  if( ALWAYS(pSubitem->pTab!=0) ){
    Table *pTabToDel = pSubitem->pTab;
    if( pTabToDel->nRef==1 ){

      pTabToDel->pNextZombie = pParse->pZombieTab;
      pParse->pZombieTab = pTabToDel;
    }else{
      pTabToDel->nRef--;
    }
    pSubitem->pTab = 0;
  }

  /* The following loop runs once for each term in a compound-subquery







>
|
|







79558
79559
79560
79561
79562
79563
79564
79565
79566
79567
79568
79569
79570
79571
79572
79573
79574
  ** refer to the subquery even after flattening.  Ticket #3346.
  **
  ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
  */
  if( ALWAYS(pSubitem->pTab!=0) ){
    Table *pTabToDel = pSubitem->pTab;
    if( pTabToDel->nRef==1 ){
      Parse *pToplevel = sqlite3ParseToplevel(pParse);
      pTabToDel->pNextZombie = pToplevel->pZombieTab;
      pToplevel->pZombieTab = pTabToDel;
    }else{
      pTabToDel->nRef--;
    }
    pSubitem->pTab = 0;
  }

  /* The following loop runs once for each term in a compound-subquery
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
  if (tr_tm == TK_INSTEAD){
    tr_tm = TK_BEFORE;
  }

  /* Build the Trigger object */
  pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger));
  if( pTrigger==0 ) goto trigger_cleanup;
  pTrigger->name = zName;
  zName = 0;
  pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
  pTrigger->pSchema = db->aDb[iDb].pSchema;
  pTrigger->pTabSchema = pTab->pSchema;
  pTrigger->op = (u8)op;
  pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
  pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);







|







81477
81478
81479
81480
81481
81482
81483
81484
81485
81486
81487
81488
81489
81490
81491
  if (tr_tm == TK_INSTEAD){
    tr_tm = TK_BEFORE;
  }

  /* Build the Trigger object */
  pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger));
  if( pTrigger==0 ) goto trigger_cleanup;
  pTrigger->zName = zName;
  zName = 0;
  pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
  pTrigger->pSchema = db->aDb[iDb].pSchema;
  pTrigger->pTabSchema = pTab->pSchema;
  pTrigger->op = (u8)op;
  pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
  pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
  DbFixer sFix;
  int iDb;                                 /* Database containing the trigger */
  Token nameToken;           /* Trigger name for error reporting */

  pTrig = pParse->pNewTrigger;
  pParse->pNewTrigger = 0;
  if( NEVER(pParse->nErr) || !pTrig ) goto triggerfinish_cleanup;
  zName = pTrig->name;
  iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
  pTrig->step_list = pStepList;
  while( pStepList ){
    pStepList->pTrig = pTrig;
    pStepList = pStepList->pNext;
  }
  nameToken.z = pTrig->name;
  nameToken.n = sqlite3Strlen30(nameToken.z);
  if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &nameToken) 
          && sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){
    goto triggerfinish_cleanup;
  }

  /* if we are not initializing, and this trigger is not on a TEMP table, 







|






|







81520
81521
81522
81523
81524
81525
81526
81527
81528
81529
81530
81531
81532
81533
81534
81535
81536
81537
81538
81539
81540
81541
  DbFixer sFix;
  int iDb;                                 /* Database containing the trigger */
  Token nameToken;           /* Trigger name for error reporting */

  pTrig = pParse->pNewTrigger;
  pParse->pNewTrigger = 0;
  if( NEVER(pParse->nErr) || !pTrig ) goto triggerfinish_cleanup;
  zName = pTrig->zName;
  iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
  pTrig->step_list = pStepList;
  while( pStepList ){
    pStepList->pTrig = pTrig;
    pStepList = pStepList->pNext;
  }
  nameToken.z = pTrig->zName;
  nameToken.n = sqlite3Strlen30(nameToken.z);
  if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &nameToken) 
          && sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){
    goto triggerfinish_cleanup;
  }

  /* if we are not initializing, and this trigger is not on a TEMP table, 
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382

/* 
** Recursively delete a Trigger structure
*/
SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){
  if( pTrigger==0 ) return;
  sqlite3DeleteTriggerStep(db, pTrigger->step_list);
  sqlite3DbFree(db, pTrigger->name);
  sqlite3DbFree(db, pTrigger->table);
  sqlite3ExprDelete(db, pTrigger->pWhen);
  sqlite3IdListDelete(db, pTrigger->pColumns);
  sqlite3DbFree(db, pTrigger);
}

/*







|







81709
81710
81711
81712
81713
81714
81715
81716
81717
81718
81719
81720
81721
81722
81723

/* 
** Recursively delete a Trigger structure
*/
SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){
  if( pTrigger==0 ) return;
  sqlite3DeleteTriggerStep(db, pTrigger->step_list);
  sqlite3DbFree(db, pTrigger->zName);
  sqlite3DbFree(db, pTrigger->table);
  sqlite3ExprDelete(db, pTrigger->pWhen);
  sqlite3IdListDelete(db, pTrigger->pColumns);
  sqlite3DbFree(db, pTrigger);
}

/*
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
  assert( pTable->pSchema==pTrigger->pSchema || iDb==1 );
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code = SQLITE_DROP_TRIGGER;
    const char *zDb = db->aDb[iDb].zName;
    const char *zTab = SCHEMA_TABLE(iDb);
    if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
    if( sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
      sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
      return;
    }
  }
#endif

  /* Generate code to destroy the database record of the trigger.







|







81789
81790
81791
81792
81793
81794
81795
81796
81797
81798
81799
81800
81801
81802
81803
  assert( pTable->pSchema==pTrigger->pSchema || iDb==1 );
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code = SQLITE_DROP_TRIGGER;
    const char *zDb = db->aDb[iDb].zName;
    const char *zTab = SCHEMA_TABLE(iDb);
    if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
    if( sqlite3AuthCheck(pParse, code, pTrigger->zName, pTable->zName, zDb) ||
      sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
      return;
    }
  }
#endif

  /* Generate code to destroy the database record of the trigger.
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
      { OP_Delete,     0, 0,        0},
      { OP_Next,       0, ADDR(1),  0}, /* 8 */
    };

    sqlite3BeginWriteOperation(pParse, 0, iDb);
    sqlite3OpenMasterTable(pParse, iDb);
    base = sqlite3VdbeAddOpList(v,  ArraySize(dropTrigger), dropTrigger);
    sqlite3VdbeChangeP4(v, base+1, pTrigger->name, 0);
    sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC);
    sqlite3ChangeCookie(pParse, iDb);
    sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
    sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->name, 0);
    if( pParse->nMem<3 ){
      pParse->nMem = 3;
    }
  }
}

/*







|



|







81816
81817
81818
81819
81820
81821
81822
81823
81824
81825
81826
81827
81828
81829
81830
81831
81832
81833
81834
      { OP_Delete,     0, 0,        0},
      { OP_Next,       0, ADDR(1),  0}, /* 8 */
    };

    sqlite3BeginWriteOperation(pParse, 0, iDb);
    sqlite3OpenMasterTable(pParse, iDb);
    base = sqlite3VdbeAddOpList(v,  ArraySize(dropTrigger), dropTrigger);
    sqlite3VdbeChangeP4(v, base+1, pTrigger->zName, 0);
    sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC);
    sqlite3ChangeCookie(pParse, iDb);
    sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
    sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0);
    if( pParse->nMem<3 ){
      pParse->nMem = 3;
    }
  }
}

/*
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602

80603
80604
80605
80606




80607
80608








80609
80610
80611
80612
80613
80614
80615
80616

80617
80618
80619


80620
80621
80622
80623
80624
80625
80626

80627
80628
80629
80630


80631
80632
80633
80634
80635
80636
80637

80638
80639

80640
80641
80642

80643

























































80644









80645


























80646











80647



80648











80649
80650
80651
80652


80653

80654

80655
80656

80657



80658











80659


































80660
80661
80662
80663
80664
80665
80666
      pSrc->a[pSrc->nSrc-1].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName);
    }
  }
  return pSrc;
}

/*
** Generate VDBE code for zero or more statements inside the body of a
** trigger.  
*/
static int codeTriggerProgram(
  Parse *pParse,            /* The parser context */
  TriggerStep *pStepList,   /* List of statements inside the trigger body */
  int orconfin              /* Conflict algorithm. (OE_Abort, etc) */  
){
  TriggerStep * pTriggerStep = pStepList;
  int orconf;
  Vdbe *v = pParse->pVdbe;
  sqlite3 *db = pParse->db;


  assert( pTriggerStep!=0 );
  assert( v!=0 );
  sqlite3VdbeAddOp2(v, OP_ContextPush, 0, 0);
  VdbeComment((v, "begin trigger %s", pStepList->pTrig->name));




  while( pTriggerStep ){
    sqlite3ExprCacheClear(pParse);








    orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
    pParse->trigStack->orconf = orconf;
    switch( pTriggerStep->op ){
      case TK_UPDATE: {
        SrcList *pSrc;
        pSrc = targetSrcList(pParse, pTriggerStep);
        sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
        sqlite3Update(pParse, pSrc,

                sqlite3ExprListDup(db, pTriggerStep->pExprList, 0), 
                sqlite3ExprDup(db, pTriggerStep->pWhere, 0), orconf);
        sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);


        break;
      }
      case TK_INSERT: {
        SrcList *pSrc;
        pSrc = targetSrcList(pParse, pTriggerStep);
        sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
        sqlite3Insert(pParse, pSrc,

          sqlite3ExprListDup(db, pTriggerStep->pExprList, 0), 
          sqlite3SelectDup(db, pTriggerStep->pSelect, 0), 
          sqlite3IdListDup(db, pTriggerStep->pIdList), orconf);
        sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);


        break;
      }
      case TK_DELETE: {
        SrcList *pSrc;
        sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
        pSrc = targetSrcList(pParse, pTriggerStep);
        sqlite3DeleteFrom(pParse, pSrc, 

                          sqlite3ExprDup(db, pTriggerStep->pWhere, 0));
        sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);

        break;
      }
      default: assert( pTriggerStep->op==TK_SELECT ); {

        Select *ss = sqlite3SelectDup(db, pTriggerStep->pSelect, 0);

























































        if( ss ){









          SelectDest dest;






































          sqlite3SelectDestInit(&dest, SRT_Discard, 0);



          sqlite3Select(pParse, ss, &dest);











          sqlite3SelectDelete(db, ss);
        }
        break;
      }


    } 

    pTriggerStep = pTriggerStep->pNext;

  }
  sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);

  VdbeComment((v, "end trigger %s", pStepList->pTrig->name));















  return 0;


































}

/*
** This is called to code FOR EACH ROW triggers.
**
** When the code that this function generates is executed, the following 
** must be true:







|
|




|

|
<



>
|

<
|
>
>
>
>
|
<
>
>
>
>
>
>
>
>
|
|
|

<
<
<
|
>
|
|
<
>
>



<
<
<
|
>
|
|
|
<
>
>



<
<
<
|
>
|
<
>


|
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
|
|
<
|
>
>
|
>
|
>
|
|
>
|
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







81924
81925
81926
81927
81928
81929
81930
81931
81932
81933
81934
81935
81936
81937
81938
81939

81940
81941
81942
81943
81944
81945

81946
81947
81948
81949
81950
81951

81952
81953
81954
81955
81956
81957
81958
81959
81960
81961
81962
81963



81964
81965
81966
81967

81968
81969
81970
81971
81972



81973
81974
81975
81976
81977

81978
81979
81980
81981
81982



81983
81984
81985

81986
81987
81988
81989
81990
81991
81992
81993
81994
81995
81996
81997
81998
81999
82000
82001
82002
82003
82004
82005
82006
82007
82008
82009
82010
82011
82012
82013
82014
82015
82016
82017
82018
82019
82020
82021
82022
82023
82024
82025
82026
82027
82028
82029
82030
82031
82032
82033
82034
82035
82036
82037
82038
82039
82040
82041
82042
82043
82044
82045
82046
82047
82048
82049
82050
82051
82052
82053
82054
82055
82056
82057
82058
82059
82060
82061
82062
82063
82064
82065
82066
82067
82068
82069
82070
82071
82072
82073
82074
82075
82076
82077
82078
82079
82080
82081
82082
82083
82084
82085
82086
82087
82088
82089
82090
82091
82092
82093
82094
82095
82096
82097
82098
82099
82100
82101
82102
82103
82104
82105
82106
82107
82108
82109
82110
82111
82112
82113
82114
82115

82116
82117
82118
82119
82120
82121
82122
82123
82124
82125
82126
82127
82128
82129
82130
82131
82132
82133
82134
82135
82136
82137
82138
82139
82140
82141
82142
82143
82144
82145
82146
82147
82148
82149
82150
82151
82152
82153
82154
82155
82156
82157
82158
82159
82160
82161
82162
82163
82164
82165
82166
82167
82168
82169
82170
82171
82172
82173
82174
82175
82176
82177
82178
82179
82180
82181
82182
82183
      pSrc->a[pSrc->nSrc-1].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName);
    }
  }
  return pSrc;
}

/*
** Generate VDBE code for the statements inside the body of a single 
** trigger.
*/
static int codeTriggerProgram(
  Parse *pParse,            /* The parser context */
  TriggerStep *pStepList,   /* List of statements inside the trigger body */
  int orconf                /* Conflict algorithm. (OE_Abort, etc) */  
){
  TriggerStep *pStep;

  Vdbe *v = pParse->pVdbe;
  sqlite3 *db = pParse->db;

  assert( pParse->pTriggerTab && pParse->pToplevel );
  assert( pStepList );
  assert( v!=0 );

  for(pStep=pStepList; pStep; pStep=pStep->pNext){
    /* Figure out the ON CONFLICT policy that will be used for this step
    ** of the trigger program. If the statement that caused this trigger
    ** to fire had an explicit ON CONFLICT, then use it. Otherwise, use
    ** the ON CONFLICT policy that was specified as part of the trigger
    ** step statement. Example:

    **
    **   CREATE TRIGGER AFTER INSERT ON t1 BEGIN;
    **     INSERT OR REPLACE INTO t2 VALUES(new.a, new.b);
    **   END;
    **
    **   INSERT INTO t1 ... ;            -- insert into t2 uses REPLACE policy
    **   INSERT OR IGNORE INTO t1 ... ;  -- insert into t2 uses IGNORE policy
    */
    pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf;

    switch( pStep->op ){
      case TK_UPDATE: {



        sqlite3Update(pParse, 
          targetSrcList(pParse, pStep),
          sqlite3ExprListDup(db, pStep->pExprList, 0), 
          sqlite3ExprDup(db, pStep->pWhere, 0), 

          pParse->eOrconf
        );
        break;
      }
      case TK_INSERT: {



        sqlite3Insert(pParse, 
          targetSrcList(pParse, pStep),
          sqlite3ExprListDup(db, pStep->pExprList, 0), 
          sqlite3SelectDup(db, pStep->pSelect, 0), 
          sqlite3IdListDup(db, pStep->pIdList), 

          pParse->eOrconf
        );
        break;
      }
      case TK_DELETE: {



        sqlite3DeleteFrom(pParse, 
          targetSrcList(pParse, pStep),
          sqlite3ExprDup(db, pStep->pWhere, 0)

        );
        break;
      }
      default: assert( pStep->op==TK_SELECT ); {
        SelectDest sDest;
        Select *pSelect = sqlite3SelectDup(db, pStep->pSelect, 0);
        sqlite3SelectDestInit(&sDest, SRT_Discard, 0);
        sqlite3Select(pParse, pSelect, &sDest);
        sqlite3SelectDelete(db, pSelect);
        break;
      }
    } 
    if( pStep->op!=TK_SELECT ){
      sqlite3VdbeAddOp0(v, OP_ResetCount);
    }
  }

  return 0;
}

#ifdef SQLITE_DEBUG
/*
** This function is used to add VdbeComment() annotations to a VDBE
** program. It is not used in production code, only for debugging.
*/
static const char *onErrorText(int onError){
  switch( onError ){
    case OE_Abort:    return "abort";
    case OE_Rollback: return "rollback";
    case OE_Fail:     return "fail";
    case OE_Replace:  return "replace";
    case OE_Ignore:   return "ignore";
    case OE_Default:  return "default";
  }
  return "n/a";
}
#endif

/*
** Parse context structure pFrom has just been used to create a sub-vdbe
** (trigger program). If an error has occurred, transfer error information
** from pFrom to pTo.
*/
static void transferParseError(Parse *pTo, Parse *pFrom){
  assert( pFrom->zErrMsg==0 || pFrom->nErr );
  assert( pTo->zErrMsg==0 || pTo->nErr );
  if( pTo->nErr==0 ){
    pTo->zErrMsg = pFrom->zErrMsg;
    pTo->nErr = pFrom->nErr;
  }else{
    sqlite3DbFree(pFrom->db, pFrom->zErrMsg);
  }
}

/*
** Create and populate a new TriggerPrg object with a sub-program 
** implementing trigger pTrigger with ON CONFLICT policy orconf.
*/
static TriggerPrg *codeRowTrigger(
  Parse *pParse,       /* Current parse context */
  Trigger *pTrigger,   /* Trigger to code */
  Table *pTab,         /* The table pTrigger is attached to */
  int orconf           /* ON CONFLICT policy to code trigger program with */
){
  Parse *pTop = sqlite3ParseToplevel(pParse);
  sqlite3 *db = pParse->db;   /* Database handle */
  TriggerPrg *pPrg;           /* Value to return */
  Expr *pWhen = 0;            /* Duplicate of trigger WHEN expression */
  Vdbe *v;                    /* Temporary VM */
  NameContext sNC;            /* Name context for sub-vdbe */
  SubProgram *pProgram = 0;   /* Sub-vdbe for trigger program */
  Parse *pSubParse;           /* Parse context for sub-vdbe */
  int iEndTrigger = 0;        /* Label to jump to if WHEN is false */

  assert( pTab==tableOfTrigger(pTrigger) );

  /* Allocate the TriggerPrg and SubProgram objects. To ensure that they
  ** are freed if an error occurs, link them into the Parse.pTriggerPrg 
  ** list of the top-level Parse object sooner rather than later.  */
  pPrg = sqlite3DbMallocZero(db, sizeof(TriggerPrg));
  if( !pPrg ) return 0;
  pPrg->pNext = pTop->pTriggerPrg;
  pTop->pTriggerPrg = pPrg;
  pPrg->pProgram = pProgram = sqlite3DbMallocZero(db, sizeof(SubProgram));
  if( !pProgram ) return 0;
  pProgram->nRef = 1;
  pPrg->pTrigger = pTrigger;
  pPrg->orconf = orconf;

  /* Allocate and populate a new Parse context to use for coding the 
  ** trigger sub-program.  */
  pSubParse = sqlite3StackAllocZero(db, sizeof(Parse));
  if( !pSubParse ) return 0;
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pSubParse;
  pSubParse->db = db;
  pSubParse->pTriggerTab = pTab;
  pSubParse->pToplevel = pTop;
  pSubParse->zAuthContext = pTrigger->zName;
  pSubParse->eTriggerOp = pTrigger->op;

  v = sqlite3GetVdbe(pSubParse);
  if( v ){
    VdbeComment((v, "Start: %s.%s (%s %s%s%s ON %s)", 
      pTrigger->zName, onErrorText(orconf),
      (pTrigger->tr_tm==TRIGGER_BEFORE ? "BEFORE" : "AFTER"),
        (pTrigger->op==TK_UPDATE ? "UPDATE" : ""),
        (pTrigger->op==TK_INSERT ? "INSERT" : ""),
        (pTrigger->op==TK_DELETE ? "DELETE" : ""),
      pTab->zName
    ));
#ifndef SQLITE_OMIT_TRACE
    sqlite3VdbeChangeP4(v, -1, 
      sqlite3MPrintf(db, "-- TRIGGER %s", pTrigger->zName), P4_DYNAMIC
    );
#endif

    /* If one was specified, code the WHEN clause. If it evaluates to false
    ** (or NULL) the sub-vdbe is immediately halted by jumping to the 
    ** OP_Halt inserted at the end of the program.  */
    if( pTrigger->pWhen ){
      pWhen = sqlite3ExprDup(db, pTrigger->pWhen, 0);
      if( SQLITE_OK==sqlite3ResolveExprNames(&sNC, pWhen) 
       && db->mallocFailed==0 
      ){
        iEndTrigger = sqlite3VdbeMakeLabel(v);
        sqlite3ExprIfFalse(pSubParse, pWhen, iEndTrigger, SQLITE_JUMPIFNULL);
      }
      sqlite3ExprDelete(db, pWhen);
    }


    /* Code the trigger program into the sub-vdbe. */
    codeTriggerProgram(pSubParse, pTrigger->step_list, orconf);

    /* Insert an OP_Halt at the end of the sub-program. */
    if( iEndTrigger ){
      sqlite3VdbeResolveLabel(v, iEndTrigger);
    }
    sqlite3VdbeAddOp0(v, OP_Halt);
    VdbeComment((v, "End: %s.%s", pTrigger->zName, onErrorText(orconf)));

    transferParseError(pParse, pSubParse);
    if( db->mallocFailed==0 ){
      pProgram->aOp = sqlite3VdbeTakeOpArray(v, &pProgram->nOp, &pTop->nMaxArg);
    }
    pProgram->nMem = pSubParse->nMem;
    pProgram->nCsr = pSubParse->nTab;
    pProgram->token = (void *)pTrigger;
    pPrg->oldmask = pSubParse->oldmask;
    sqlite3VdbeDelete(v);
  }

  assert( !pSubParse->pAinc       && !pSubParse->pZombieTab );
  assert( !pSubParse->pTriggerPrg && !pSubParse->nMaxArg );
  sqlite3StackFree(db, pSubParse);

  return pPrg;
}
    
/*
** Return a pointer to a TriggerPrg object containing the sub-program for
** trigger pTrigger with default ON CONFLICT algorithm orconf. If no such
** TriggerPrg object exists, a new object is allocated and populated before
** being returned.
*/
static TriggerPrg *getRowTrigger(
  Parse *pParse,       /* Current parse context */
  Trigger *pTrigger,   /* Trigger to code */
  Table *pTab,         /* The table trigger pTrigger is attached to */
  int orconf           /* ON CONFLICT algorithm. */
){
  Parse *pRoot = sqlite3ParseToplevel(pParse);
  TriggerPrg *pPrg;

  assert( pTab==tableOfTrigger(pTrigger) );

  /* It may be that this trigger has already been coded (or is in the
  ** process of being coded). If this is the case, then an entry with
  ** a matching TriggerPrg.pTrigger field will be present somewhere
  ** in the Parse.pTriggerPrg list. Search for such an entry.  */
  for(pPrg=pRoot->pTriggerPrg; 
      pPrg && (pPrg->pTrigger!=pTrigger || pPrg->orconf!=orconf); 
      pPrg=pPrg->pNext
  );

  /* If an existing TriggerPrg could not be located, create a new one. */
  if( !pPrg ){
    pPrg = codeRowTrigger(pParse, pTrigger, pTab, orconf);
  }

  return pPrg;
}

/*
** This is called to code FOR EACH ROW triggers.
**
** When the code that this function generates is executed, the following 
** must be true:
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723

80724
80725
80726
80727
80728
80729
80730

80731
80732
80733
80734
80735
80736
80737

80738
80739
80740


80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758

80759


80760
80761










80762
80763

80764
80765

80766
80767
80768


80769
80770
80771
80772

80773
80774
80775
80776

80777
80778
80779
80780



80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792

80793
80794
80795
80796
80797
80798
80799
** are set to values that describe the columns used by the trigger program
** in the OLD.* and NEW.* tables respectively. If column N of the 
** pseudo-table is read at least once, the corresponding bit of the output
** mask is set. If a column with an index greater than 32 is read, the
** output mask is set to the special value 0xffffffff.
**
*/
SQLITE_PRIVATE int sqlite3CodeRowTrigger(
  Parse *pParse,       /* Parse context */
  Trigger *pTrigger,   /* List of triggers on table pTab */
  int op,              /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
  ExprList *pChanges,  /* Changes list for any UPDATE OF triggers */
  int tr_tm,           /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
  Table *pTab,         /* The table to code triggers from */
  int newIdx,          /* The indice of the "new" row to access */
  int oldIdx,          /* The indice of the "old" row to access */
  int orconf,          /* ON CONFLICT policy */
  int ignoreJump,      /* Instruction to jump to for RAISE(IGNORE) */
  u32 *piOldColMask,   /* OUT: Mask of columns used from the OLD.* table */
  u32 *piNewColMask    /* OUT: Mask of columns used from the NEW.* table */
){
  Trigger *p;
  sqlite3 *db = pParse->db;
  TriggerStack trigStackEntry;

  trigStackEntry.oldColMask = 0;
  trigStackEntry.newColMask = 0;

  assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
  assert(tr_tm == TRIGGER_BEFORE || tr_tm == TRIGGER_AFTER );

  assert(newIdx != -1 || oldIdx != -1);

  for(p=pTrigger; p; p=p->pNext){
    int fire_this = 0;

    /* Sanity checking:  The schema for the trigger and for the table are
    ** always defined.  The trigger must be in the same schema as the table
    ** or else it must be a TEMP trigger. */
    assert( p->pSchema!=0 );
    assert( p->pTabSchema!=0 );
    assert( p->pSchema==p->pTabSchema || p->pSchema==db->aDb[1].pSchema );


    /* Determine whether we should code this trigger */
    if( 
      p->op==op && 
      p->tr_tm==tr_tm && 
      checkColumnOverlap(p->pColumns,pChanges)
    ){

      TriggerStack *pS;      /* Pointer to trigger-stack entry */
      for(pS=pParse->trigStack; pS && p!=pS->pTrigger; pS=pS->pNext){}
      if( !pS ){
        fire_this = 1;
      }
#if 0    /* Give no warning for recursive triggers.  Just do not do them */
      else{

        sqlite3ErrorMsg(pParse, "recursive triggers not supported (%s)",
            p->name);
        return SQLITE_ERROR;


      }
#endif
    }
 
    if( fire_this ){
      int endTrigger;
      Expr * whenExpr;
      AuthContext sContext;
      NameContext sNC;

#ifndef SQLITE_OMIT_TRACE
      sqlite3VdbeAddOp4(pParse->pVdbe, OP_Trace, 0, 0, 0,
                        sqlite3MPrintf(db, "-- TRIGGER %s", p->name),
                        P4_DYNAMIC);
#endif
      memset(&sNC, 0, sizeof(sNC));
      sNC.pParse = pParse;


      /* Push an entry on to the trigger stack */


      trigStackEntry.pTrigger = p;
      trigStackEntry.newIdx = newIdx;










      trigStackEntry.oldIdx = oldIdx;
      trigStackEntry.pTab = pTab;

      trigStackEntry.pNext = pParse->trigStack;
      trigStackEntry.ignoreJump = ignoreJump;

      pParse->trigStack = &trigStackEntry;
      sqlite3AuthContextPush(pParse, &sContext, p->name);



      /* code the WHEN clause */
      endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
      whenExpr = sqlite3ExprDup(db, p->pWhen, 0);
      if( db->mallocFailed || sqlite3ResolveExprNames(&sNC, whenExpr) ){

        pParse->trigStack = trigStackEntry.pNext;
        sqlite3ExprDelete(db, whenExpr);
        return 1;
      }

      sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, SQLITE_JUMPIFNULL);
      sqlite3ExprDelete(db, whenExpr);

      codeTriggerProgram(pParse, p->step_list, orconf); 




      /* Pop the entry off the trigger stack */
      pParse->trigStack = trigStackEntry.pNext;
      sqlite3AuthContextPop(&sContext);

      sqlite3VdbeResolveLabel(pParse->pVdbe, endTrigger);
    }
  }
  if( piOldColMask ) *piOldColMask |= trigStackEntry.oldColMask;
  if( piNewColMask ) *piNewColMask |= trigStackEntry.newColMask;
  return 0;
}

#endif /* !defined(SQLITE_OMIT_TRIGGER) */

/************** End of trigger.c *********************************************/
/************** Begin file update.c ******************************************/
/*
** 2001 September 15
**







|









|
<
<


<
<

<
|




<
<

<






|
>


<
|
|
|

>
|
|
<
|
|
|
|
>
|
|
<
>
>

<

|
<
<
<
<
<
|
<
<
<
<
<
<
<

>
|
>
>
|
<
>
>
>
>
>
>
>
>
>
>
<
|
>
|
<
>
|
|
|
>
>
|
|
<
<
>
|
<
|
|
>
|
<
|
|
>
>
>
|
<
<
<
|
<
|
|
<
<
|

>







82199
82200
82201
82202
82203
82204
82205
82206
82207
82208
82209
82210
82211
82212
82213
82214
82215
82216


82217
82218


82219

82220
82221
82222
82223
82224


82225

82226
82227
82228
82229
82230
82231
82232
82233
82234
82235

82236
82237
82238
82239
82240
82241
82242

82243
82244
82245
82246
82247
82248
82249

82250
82251
82252

82253
82254





82255







82256
82257
82258
82259
82260
82261

82262
82263
82264
82265
82266
82267
82268
82269
82270
82271

82272
82273
82274

82275
82276
82277
82278
82279
82280
82281
82282


82283
82284

82285
82286
82287
82288

82289
82290
82291
82292
82293
82294



82295

82296
82297


82298
82299
82300
82301
82302
82303
82304
82305
82306
82307
** are set to values that describe the columns used by the trigger program
** in the OLD.* and NEW.* tables respectively. If column N of the 
** pseudo-table is read at least once, the corresponding bit of the output
** mask is set. If a column with an index greater than 32 is read, the
** output mask is set to the special value 0xffffffff.
**
*/
SQLITE_PRIVATE void sqlite3CodeRowTrigger(
  Parse *pParse,       /* Parse context */
  Trigger *pTrigger,   /* List of triggers on table pTab */
  int op,              /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
  ExprList *pChanges,  /* Changes list for any UPDATE OF triggers */
  int tr_tm,           /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
  Table *pTab,         /* The table to code triggers from */
  int newIdx,          /* The indice of the "new" row to access */
  int oldIdx,          /* The indice of the "old" row to access */
  int orconf,          /* ON CONFLICT policy */
  int ignoreJump       /* Instruction to jump to for RAISE(IGNORE) */


){
  Trigger *p;




  UNUSED_PARAMETER(newIdx);

  assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
  assert(tr_tm == TRIGGER_BEFORE || tr_tm == TRIGGER_AFTER );



  for(p=pTrigger; p; p=p->pNext){


    /* Sanity checking:  The schema for the trigger and for the table are
    ** always defined.  The trigger must be in the same schema as the table
    ** or else it must be a TEMP trigger. */
    assert( p->pSchema!=0 );
    assert( p->pTabSchema!=0 );
    assert( p->pSchema==p->pTabSchema 
         || p->pSchema==pParse->db->aDb[1].pSchema );

    /* Determine whether we should code this trigger */

    if( p->op==op 
     && p->tr_tm==tr_tm 
     && checkColumnOverlap(p->pColumns,pChanges)
    ){
      Vdbe *v = sqlite3GetVdbe(pParse); /* Main VM */
      TriggerPrg *pPrg;
      pPrg = getRowTrigger(pParse, p, pTab, orconf);

      assert( pPrg || pParse->nErr || pParse->db->mallocFailed );

      /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program 
      ** is a pointer to the sub-vdbe containing the trigger program.  */
      if( pPrg ){
        sqlite3VdbeAddOp3(v, OP_Program, oldIdx, ignoreJump, ++pParse->nMem);
        pPrg->pProgram->nRef++;

        sqlite3VdbeChangeP4(v, -1, (const char *)pPrg->pProgram, P4_SUBPROGRAM);
        VdbeComment((v, "Call: %s.%s", p->zName, onErrorText(orconf)));
      }

    }
  }





}








/*
** Triggers fired by UPDATE or DELETE statements may access values stored
** in the old.* pseudo-table. This function returns a 32-bit bitmask
** indicating which columns of the old.* table actually are used by
** triggers. This information may be used by the caller to avoid having

** to load the entire old.* record into memory when executing an UPDATE
** or DELETE command.
**
** Bit 0 of the returned mask is set if the left-most column of the
** table may be accessed using an old.<col> reference. Bit 1 is set if
** the second leftmost column value is required, and so on. If there
** are more than 32 columns in the table, and at least one of the columns
** with an index greater than 32 may be accessed, 0xffffffff is returned.
**
** It is not possible to determine if the old.rowid column is accessed

** by triggers. The caller must always assume that it is.
**
** There is no equivalent function for new.* references.

*/
SQLITE_PRIVATE u32 sqlite3TriggerOldmask(
  Parse *pParse,       /* Parse context */
  Trigger *pTrigger,   /* List of triggers on table pTab */
  int op,              /* Either TK_UPDATE or TK_DELETE */
  ExprList *pChanges,  /* Changes list for any UPDATE OF triggers */
  Table *pTab,         /* The table to code triggers from */
  int orconf           /* Default ON CONFLICT policy for trigger steps */


){
  u32 mask = 0;

  Trigger *p;

  assert(op==TK_UPDATE || op==TK_DELETE);
  for(p=pTrigger; p; p=p->pNext){

    if( p->op==op && checkColumnOverlap(p->pColumns,pChanges) ){
      TriggerPrg *pPrg;
      pPrg = getRowTrigger(pParse, p, pTab, orconf);
      if( pPrg ){
        mask |= pPrg->oldmask;
      }



    }

  }



  return mask;
}

#endif /* !defined(SQLITE_OMIT_TRIGGER) */

/************** End of trigger.c *********************************************/
/************** Begin file update.c ******************************************/
/*
** 2001 September 15
**
80911
80912
80913
80914
80915
80916
80917
80918
80919
80920
80921
80922
80923
80924
80925
80926
80927
80928
80929
80930
80931
80932

80933

80934
80935
80936
80937
80938
80939
80940
80941
80942
80943
80944
80945
80946
80947
80948
80949
80950
80951
80952
80953
80954
80955
80956
  int j1;                /* Addresses of jump instructions */
  int okOnePass;         /* True for one-pass algorithm without the FIFO */

#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* Trying to update a view */
  Trigger *pTrigger;           /* List of triggers on pTab, if required */
#endif
  int iBeginAfterTrigger = 0;  /* Address of after trigger program */
  int iEndAfterTrigger = 0;    /* Exit of after trigger program */
  int iBeginBeforeTrigger = 0; /* Address of before trigger program */
  int iEndBeforeTrigger = 0;   /* Exit of before trigger program */
  u32 old_col_mask = 0;        /* Mask of OLD.* columns in use */
  u32 new_col_mask = 0;        /* Mask of NEW.* columns in use */

  int newIdx      = -1;  /* index of trigger "new" temp table       */
  int oldIdx      = -1;  /* index of trigger "old" temp table       */

  /* Register Allocations */
  int regRowCount = 0;   /* A count of rows changed */
  int regOldRowid;       /* The old rowid */
  int regNewRowid;       /* The new rowid */
  int regData;           /* New data for the row */

  int regRowSet = 0;     /* Rowset of rows to be updated */


  memset(&sContext, 0, sizeof(sContext));
  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ){
    goto update_cleanup;
  }
  assert( pTabList->nSrc==1 );

  /* Locate the table which we want to update. 
  */
  pTab = sqlite3SrcListLookup(pParse, pTabList);
  if( pTab==0 ) goto update_cleanup;
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);

  /* Figure out if we have any triggers and if the table being
  ** updated is a view
  */
#ifndef SQLITE_OMIT_TRIGGER
  pTrigger = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges, 0);
  isView = pTab->pSelect!=0;
#else
# define pTrigger 0
# define isView 0







<
<
<
<
|
<
<
<
<





|
>

>















|







82419
82420
82421
82422
82423
82424
82425




82426




82427
82428
82429
82430
82431
82432
82433
82434
82435
82436
82437
82438
82439
82440
82441
82442
82443
82444
82445
82446
82447
82448
82449
82450
82451
82452
82453
82454
82455
82456
82457
82458
  int j1;                /* Addresses of jump instructions */
  int okOnePass;         /* True for one-pass algorithm without the FIFO */

#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* Trying to update a view */
  Trigger *pTrigger;           /* List of triggers on pTab, if required */
#endif




  u32 oldmask = 0;        /* Mask of OLD.* columns in use */





  /* Register Allocations */
  int regRowCount = 0;   /* A count of rows changed */
  int regOldRowid;       /* The old rowid */
  int regNewRowid;       /* The new rowid */
  int regNew;
  int regOld = 0;
  int regRowSet = 0;     /* Rowset of rows to be updated */
  int regRec;            /* Register used for new table record to insert */

  memset(&sContext, 0, sizeof(sContext));
  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ){
    goto update_cleanup;
  }
  assert( pTabList->nSrc==1 );

  /* Locate the table which we want to update. 
  */
  pTab = sqlite3SrcListLookup(pParse, pTabList);
  if( pTab==0 ) goto update_cleanup;
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);

  /* Figure out if we have any triggers and if the table being
  ** updated is a view.
  */
#ifndef SQLITE_OMIT_TRIGGER
  pTrigger = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges, 0);
  isView = pTab->pSelect!=0;
#else
# define pTrigger 0
# define isView 0
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
80979
80980
80981
80982
80983
80984
80985
80986
80987
  if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){
    goto update_cleanup;
  }
  aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol );
  if( aXRef==0 ) goto update_cleanup;
  for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;

  /* If there are FOR EACH ROW triggers, allocate cursors for the
  ** special OLD and NEW tables
  */
  if( pTrigger ){
    newIdx = pParse->nTab++;
    oldIdx = pParse->nTab++;
  }

  /* Allocate a cursors for the main database table and for all indices.
  ** The index cursors might not be used, but if they are used they
  ** need to occur right after the database cursor.  So go ahead and
  ** allocate enough space, just in case.
  */
  pTabList->a[0].iCursor = iCur = pParse->nTab++;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){







<
<
<
<
<
<
<
<







82468
82469
82470
82471
82472
82473
82474








82475
82476
82477
82478
82479
82480
82481
  if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){
    goto update_cleanup;
  }
  aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol );
  if( aXRef==0 ) goto update_cleanup;
  for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;









  /* Allocate a cursors for the main database table and for all indices.
  ** The index cursors might not be used, but if they are used they
  ** need to occur right after the database cursor.  So go ahead and
  ** allocate enough space, just in case.
  */
  pTabList->a[0].iCursor = iCur = pParse->nTab++;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
81059
81060
81061
81062
81063
81064
81065
81066
81067
81068
81069
81070
81071
81072
81073
81074
81075
81076
81077
81078
81079
81080
81081
81082
81083
81084
81085
81086
81087
81088
81089
81090
81091
81092
81093
81094
81095
81096
81097
81098
81099
81100
81101
81102
81103
81104
81105
81106
81107
81108
81109


81110
81111
81112
81113
81114


81115
81116
81117
81118
81119
81120
81121
81122

81123
81124
81125

81126
81127
81128
81129
81130
81131
81132
81133



81134
81135
81136
81137
81138
81139
81140
          break;
        }
      }
    }
    aRegIdx[j] = reg;
  }

  /* Allocate a block of register used to store the change record
  ** sent to sqlite3GenerateConstraintChecks().  There are either
  ** one or two registers for holding the rowid.  One rowid register
  ** is used if chngRowid is false and two are used if chngRowid is
  ** true.  Following these are pTab->nCol register holding column
  ** data.
  */
  regOldRowid = regNewRowid = pParse->nMem + 1;
  pParse->nMem += pTab->nCol + 1;
  if( chngRowid ){
    regNewRowid++;
    pParse->nMem++;
  }
  regData = regNewRowid+1;
 

  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto update_cleanup;
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, 1, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
  /* Virtual tables must be handled separately */
  if( IsVirtual(pTab) ){
    updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
                       pWhere);
    pWhere = 0;
    pTabList = 0;
    goto update_cleanup;
  }
#endif

  /* Start the view context
  */
  if( isView ){
    sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
  }

  /* Generate the code for triggers.
  */
  if( pTrigger ){
    int iGoto;



    /* Create pseudo-tables for NEW and OLD
    */
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, oldIdx, 0, pTab->nCol);
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, newIdx, 0, pTab->nCol);



    iGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    addr = sqlite3VdbeMakeLabel(v);
    iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
    if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, 
          TRIGGER_BEFORE, pTab, newIdx, oldIdx, onError, addr, 
          &old_col_mask, &new_col_mask) ){
      goto update_cleanup;

    }
    iEndBeforeTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);

    if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, 
          TRIGGER_AFTER, pTab, newIdx, oldIdx, onError, addr, 
          &old_col_mask, &new_col_mask) ){
      goto update_cleanup;
    }
    iEndAfterTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    sqlite3VdbeJumpHere(v, iGoto);
  }




  /* If we are trying to update a view, realize that view into
  ** a ephemeral table.
  */
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
  if( isView ){
    sqlite3MaterializeView(pParse, pTab, pWhere, iCur);







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
















|
<
<
<
<
|
<
<

<
>
>
|
<
<
<
<
>
>
|
<
<
<
|
|
<
<
>
|
<
<
>
|
|
<
<
|
<
<
|
>
>
>







82553
82554
82555
82556
82557
82558
82559
















82560

82561
82562
82563
82564
82565
82566
82567
82568
82569
82570
82571
82572
82573
82574
82575
82576
82577




82578


82579

82580
82581
82582




82583
82584
82585



82586
82587


82588
82589


82590
82591
82592


82593


82594
82595
82596
82597
82598
82599
82600
82601
82602
82603
82604
          break;
        }
      }
    }
    aRegIdx[j] = reg;
  }

















  /* Begin generating code. */

  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto update_cleanup;
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, 1, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
  /* Virtual tables must be handled separately */
  if( IsVirtual(pTab) ){
    updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
                       pWhere);
    pWhere = 0;
    pTabList = 0;
    goto update_cleanup;
  }
#endif

  /* Allocate required registers. */




  regOldRowid = regNewRowid = ++pParse->nMem;


  if( pTrigger ){

    regOld = pParse->nMem + 1;
    pParse->nMem += pTab->nCol;
  }




  if( chngRowid || pTrigger ){
    regNewRowid = ++pParse->nMem;
  }



  regNew = pParse->nMem + 1;
  pParse->nMem += pTab->nCol;


  regRec = ++pParse->nMem;



  /* Start the view context. */
  if( isView ){
    sqlite3AuthContextPush(pParse, &sContext, pTab->zName);


  }



  /* If there are any triggers, set oldmask and new_col_mask. */
  oldmask = sqlite3TriggerOldmask(
      pParse, pTrigger, TK_UPDATE, pChanges, pTab, onError);

  /* If we are trying to update a view, realize that view into
  ** a ephemeral table.
  */
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
  if( isView ){
    sqlite3MaterializeView(pParse, pTab, pWhere, iCur);
81165
81166
81167
81168
81169
81170
81171
81172
81173
81174
81175
81176
81177
81178
81179

  /* End the database scan loop.
  */
  sqlite3WhereEnd(pWInfo);

  /* Initialize the count of updated rows
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
    regRowCount = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
  }

  if( !isView ){
    /* 
    ** Open every index that needs updating.  Note that if any







|







82629
82630
82631
82632
82633
82634
82635
82636
82637
82638
82639
82640
82641
82642
82643

  /* End the database scan loop.
  */
  sqlite3WhereEnd(pWInfo);

  /* Initialize the count of updated rows
  */
  if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab ){
    regRowCount = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
  }

  if( !isView ){
    /* 
    ** Open every index that needs updating.  Note that if any
81198
81199
81200
81201
81202
81203
81204
81205
81206
81207
81208
81209
81210
81211
81212
81213
81214
81215
81216
81217
81218
81219
81220
81221
81222
81223
81224
81225
81226


81227
81228

81229
81230
81231
81232
81233
81234
81235
81236
81237
81238


81239
81240
81241
81242
81243
81244
81245
81246
81247
81248
81249
81250
81251
81252
81253
81254
81255
81256
81257
81258
81259
81260
81261
81262









81263
81264
81265
81266




81267
81268
81269
81270
81271
81272
81273
81274
81275

81276
81277
81278
81279
81280
81281
81282
81283
81284
81285
81286
81287
81288
81289
81290
81291
81292
81293
81294


81295
81296
81297
81298
81299
81300

81301
81302
81303
81304
81305
81306
81307
81308





81309
81310
81311
81312
81313
81314

81315
81316
81317
81318
81319
81320
81321
81322
81323
81324
81325
81326
81327
81328
81329
81330
81331
81332
81333
81334
81335
81336
81337
81338
81339
81340
81341
81342
81343
81344
81345
81346
81347
81348
81349
81350
81351
81352

81353
81354
81355
81356
81357
81358
81359
81360
81361
81362
81363
81364
81365
81366
81367
81368
81369
81370
81371
81372
81373
81374
81375
81376
81377
81378
81379
81380
81381
81382
81383
81384
81385
81386
81387
81388
81389
81390
81391
81392
        KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
        sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb,
                       (char*)pKey, P4_KEYINFO_HANDOFF);
        assert( pParse->nTab>iCur+i+1 );
      }
    }
  }
  
  /* Jump back to this point if a trigger encounters an IGNORE constraint. */
  if( pTrigger ){
    sqlite3VdbeResolveLabel(v, addr);
  }

  /* Top of the update loop */
  if( okOnePass ){
    int a1 = sqlite3VdbeAddOp1(v, OP_NotNull, regOldRowid);
    addr = sqlite3VdbeAddOp0(v, OP_Goto);
    sqlite3VdbeJumpHere(v, a1);
  }else{
    addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, 0, regOldRowid);
  }

  if( pTrigger ){
    int regRowid;
    int regRow;
    int regCols;

    /* Make cursor iCur point to the record that is being updated.
    */


    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);


    /* Generate the OLD table
    */
    regRowid = sqlite3GetTempReg(pParse);
    regRow = sqlite3GetTempReg(pParse);
    sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
    if( !old_col_mask ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, regRow);
    }else{
      sqlite3VdbeAddOp2(v, OP_RowData, iCur, regRow);
    }


    sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, regRow, regRowid);

    /* Generate the NEW table
    */
    if( chngRowid ){
      sqlite3ExprCodeAndCache(pParse, pRowidExpr, regRowid);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
    }else{
      sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
    }
    regCols = sqlite3GetTempRange(pParse, pTab->nCol);
    for(i=0; i<pTab->nCol; i++){
      if( i==pTab->iPKey ){
        sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
        continue;
      }
      j = aXRef[i];
      if( (i<32 && (new_col_mask&((u32)1<<i))!=0) || new_col_mask==0xffffffff ){
        if( j<0 ){
          sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regCols+i);
          sqlite3ColumnDefault(v, pTab, i, -1);
        }else{
          sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr, regCols+i);
        }









      }else{
        sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
      }
    }




    sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRow);
    if( !isView ){
      sqlite3TableAffinityStr(v, pTab);
      sqlite3ExprCacheAffinityChange(pParse, regCols, pTab->nCol);
    }
    sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
    /* if( pParse->nErr ) goto update_cleanup; */
    sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRow, regRowid);
    sqlite3ReleaseTempReg(pParse, regRowid);

    sqlite3ReleaseTempReg(pParse, regRow);

    sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
    sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
  }

  if( !isView ){
    /* Loop over every record that needs updating.  We have to load
    ** the old data for each record to be updated because some columns
    ** might not change and we will need to copy the old value.
    ** Also, the old data is needed to delete the old index entries.
    ** So make the cursor point at the old record.
    */
    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);

    /* If the record number will change, push the record number as it
    ** will be after the update. (The old record number is currently
    ** on top of the stack.)
    */


    if( chngRowid ){
      sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid);
    }

    /* Compute new data for this record.  

    */
    for(i=0; i<pTab->nCol; i++){
      if( i==pTab->iPKey ){
        sqlite3VdbeAddOp2(v, OP_Null, 0, regData+i);
        continue;
      }
      j = aXRef[i];
      if( j<0 ){





        sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regData+i);
        sqlite3ColumnDefault(v, pTab, i, regData+i);
      }else{
        sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regData+i);
      }
    }


    /* Do constraint checks
    */
    sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid,
                                    aRegIdx, chngRowid, 1,
                                    onError, addr, 0);

    /* Delete the old indices for the current record.
    */
    j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid);
    sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx);

    /* If changing the record number, delete the old record.
    */
    if( chngRowid ){
      sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
    }
    sqlite3VdbeJumpHere(v, j1);

    /* Create the new index entries and the new record.
    */
    sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid, 
                             aRegIdx, 1, -1, 0, 0);
  }

  /* Increment the row counter 
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack){
    sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
  }

  /* If there are triggers, close all the cursors after each iteration
  ** through the loop.  The fire the after triggers.
  */
  if( pTrigger ){
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
    sqlite3VdbeJumpHere(v, iEndAfterTrigger);
  }


  /* Repeat the above with the next record to be updated, until
  ** all record selected by the WHERE clause have been updated.
  */
  sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
  sqlite3VdbeJumpHere(v, addr);

  /* Close all tables */
  for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    if( openAll || aRegIdx[i]>0 ){
      sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0);
    }
  }
  sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
  if( pTrigger ){
    sqlite3VdbeAddOp2(v, OP_Close, newIdx, 0);
    sqlite3VdbeAddOp2(v, OP_Close, oldIdx, 0);
  }

  /* Update the sqlite_sequence table by storing the content of the
  ** maximum rowid counter values recorded while inserting into
  ** autoincrement tables.
  */
  if( pParse->nested==0 && pParse->trigStack==0 ){
    sqlite3AutoincrementEnd(pParse);
  }

  /*
  ** Return the number of rows that were changed. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested==0 ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC);
  }

update_cleanup:
  sqlite3AuthContextPop(&sContext);







<
<
<
<
<










<
<
<
<
<
|
<
>
>
|

>
|
<
<
<
<
|
<
<
<
<
>
>
|
|
<
<
<
<
<
|
|
|
<
<
<
<
<
|
<
<
<
<
<
<
<
|
>
>
>
>
>
>
>
>
>
|
|
|
|
>
>
>
>
|
|
|
<
|
|
|
|
|
>
|
|
<
<
|
|
<
<
<
<
<
<
<
<

<
<
<
<
>
>
|
|
|
<
|
<
>
<
<
<
<
<
|
<
<
>
>
>
>
>
|
<
<
<
|
|
>

|
<

<
|

|
<


|
|
<




|
|
<
|
<




|



<
<
<
|
<
<
<
>














<
<
<
<





|








|







82662
82663
82664
82665
82666
82667
82668





82669
82670
82671
82672
82673
82674
82675
82676
82677
82678





82679

82680
82681
82682
82683
82684
82685




82686




82687
82688
82689
82690





82691
82692
82693





82694







82695
82696
82697
82698
82699
82700
82701
82702
82703
82704
82705
82706
82707
82708
82709
82710
82711
82712
82713
82714
82715

82716
82717
82718
82719
82720
82721
82722
82723


82724
82725








82726




82727
82728
82729
82730
82731

82732

82733





82734


82735
82736
82737
82738
82739
82740



82741
82742
82743
82744
82745

82746

82747
82748
82749

82750
82751
82752
82753

82754
82755
82756
82757
82758
82759

82760

82761
82762
82763
82764
82765
82766
82767
82768



82769



82770
82771
82772
82773
82774
82775
82776
82777
82778
82779
82780
82781
82782
82783
82784




82785
82786
82787
82788
82789
82790
82791
82792
82793
82794
82795
82796
82797
82798
82799
82800
82801
82802
82803
82804
82805
82806
        KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
        sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb,
                       (char*)pKey, P4_KEYINFO_HANDOFF);
        assert( pParse->nTab>iCur+i+1 );
      }
    }
  }






  /* Top of the update loop */
  if( okOnePass ){
    int a1 = sqlite3VdbeAddOp1(v, OP_NotNull, regOldRowid);
    addr = sqlite3VdbeAddOp0(v, OP_Goto);
    sqlite3VdbeJumpHere(v, a1);
  }else{
    addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, 0, regOldRowid);
  }






  /* Make cursor iCur point to the record that is being updated. If

  ** this record does not exist for some reason (deleted by a trigger,
  ** for example, then jump to the next iteration of the RowSet loop.  */
  sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);

  /* If there are triggers on this table, populate an array of registers 
  ** with the required old.* column data.  */




  if( pTrigger ){




    for(i=0; i<pTab->nCol; i++){
      if( aXRef[i]<0 || oldmask==0xffffffff || (oldmask & (1<<i)) ){
        sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regOld+i);
        sqlite3ColumnDefault(v, pTab, i, regOld+i);





      }else{
        sqlite3VdbeAddOp2(v, OP_Null, 0, regOld+i);
      }





    }







  }

  /* If the record number will change, set register regNewRowid to
  ** contain the new value. If the record number is not being modified,
  ** then regNewRowid is the same register as regOldRowid, which is
  ** already populated.  */
  assert( chngRowid || pTrigger || regOldRowid==regNewRowid );
  if( chngRowid ){
    sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
    sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid);
  }else if( pTrigger ){
    sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid);
  }

  /* Populate the array of registers beginning at regNew with the new
  ** row data. This array is used to check constaints, create the new
  ** table and index records, and as the values for any new.* references
  ** made by triggers.  */
  for(i=0; i<pTab->nCol; i++){
    if( i==pTab->iPKey ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);

    }else{
      j = aXRef[i];
      if( j<0 ){
        sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regNew+i);
        sqlite3ColumnDefault(v, pTab, i, regNew+i);
      }else{
        sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regNew+i);
      }


    }
  }













  /* Fire any BEFORE UPDATE triggers. This happens before constraints are
  ** verified. One could argue that this is wrong.  */
  if( pTrigger ){
    sqlite3VdbeAddOp2(v, OP_Affinity, regNew, pTab->nCol);
    sqlite3TableAffinityStr(v, pTab);

    sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, 

        TRIGGER_BEFORE, pTab, -1, regOldRowid, onError, addr);








    /* The row-trigger may have deleted the row being updated. In this
    ** case, jump to the next row. No updates or AFTER triggers are 
    ** required. This behaviour - what happens when the row being updated
    ** is deleted or renamed by a BEFORE trigger - is left undefined in the
    ** documentation.  */
    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);



  }

  if( !isView ){

    /* Do constraint checks. */

    sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid,

        aRegIdx, (chngRowid?regOldRowid:0), 1, onError, addr, 0);

    /* Delete the index entries associated with the current record.  */

    j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid);
    sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx);
  
    /* If changing the record number, delete the old record.  */

    if( chngRowid ){
      sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
    }
    sqlite3VdbeJumpHere(v, j1);
  
    /* Insert the new index entries and the new record. */

    sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid, aRegIdx, 1, 0, 0);

  }

  /* Increment the row counter 
  */
  if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab){
    sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
  }




  sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, 



      TRIGGER_AFTER, pTab, -1, regOldRowid, onError, addr);

  /* Repeat the above with the next record to be updated, until
  ** all record selected by the WHERE clause have been updated.
  */
  sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
  sqlite3VdbeJumpHere(v, addr);

  /* Close all tables */
  for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    if( openAll || aRegIdx[i]>0 ){
      sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0);
    }
  }
  sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);





  /* Update the sqlite_sequence table by storing the content of the
  ** maximum rowid counter values recorded while inserting into
  ** autoincrement tables.
  */
  if( pParse->nested==0 && pParse->pTriggerTab==0 ){
    sqlite3AutoincrementEnd(pParse);
  }

  /*
  ** Return the number of rows that were changed. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( (db->flags&SQLITE_CountRows) && !pParse->pTriggerTab && !pParse->nested ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC);
  }

update_cleanup:
  sqlite3AuthContextPop(&sContext);
81478
81479
81480
81481
81482
81483
81484

81485
81486
81487
81488
81489
81490
81491
  sqlite3VdbeAddOp3(v, OP_Column,  ephemTab, 0, iReg);
  sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1);
  for(i=0; i<pTab->nCol; i++){
    sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i);
  }
  sqlite3VtabMakeWritable(pParse, pTab);
  sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVTab, P4_VTAB);

  sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1);
  sqlite3VdbeJumpHere(v, addr);
  sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);

  /* Cleanup */
  sqlite3SelectDelete(db, pSelect);  
}







>







82892
82893
82894
82895
82896
82897
82898
82899
82900
82901
82902
82903
82904
82905
82906
  sqlite3VdbeAddOp3(v, OP_Column,  ephemTab, 0, iReg);
  sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1);
  for(i=0; i<pTab->nCol; i++){
    sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i);
  }
  sqlite3VtabMakeWritable(pParse, pTab);
  sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVTab, P4_VTAB);
  sqlite3MayAbort(pParse);
  sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1);
  sqlite3VdbeJumpHere(v, addr);
  sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);

  /* Cleanup */
  sqlite3SelectDelete(db, pSelect);  
}
82736
82737
82738
82739
82740
82741
82742

82743
82744
82745
82746
82747
82748
82749
82750
82751
82752
82753
82754
82755
82756
82757
82758
82759
82760
82761
82762
82763
/*
** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
** array so that an OP_VBegin will get generated for it.  Add pTab to the
** array if it is missing.  If pTab is already in the array, this routine
** is a no-op.
*/
SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){

  int i, n;
  Table **apVtabLock;

  assert( IsVirtual(pTab) );
  for(i=0; i<pParse->nVtabLock; i++){
    if( pTab==pParse->apVtabLock[i] ) return;
  }
  n = (pParse->nVtabLock+1)*sizeof(pParse->apVtabLock[0]);
  apVtabLock = sqlite3_realloc(pParse->apVtabLock, n);
  if( apVtabLock ){
    pParse->apVtabLock = apVtabLock;
    pParse->apVtabLock[pParse->nVtabLock++] = pTab;
  }else{
    pParse->db->mallocFailed = 1;
  }
}

#endif /* SQLITE_OMIT_VIRTUALTABLE */

/************** End of vtab.c ************************************************/
/************** Begin file where.c *******************************************/







>




|
|

|
|

|
|

|







84151
84152
84153
84154
84155
84156
84157
84158
84159
84160
84161
84162
84163
84164
84165
84166
84167
84168
84169
84170
84171
84172
84173
84174
84175
84176
84177
84178
84179
/*
** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
** array so that an OP_VBegin will get generated for it.  Add pTab to the
** array if it is missing.  If pTab is already in the array, this routine
** is a no-op.
*/
SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
  Parse *pToplevel = sqlite3ParseToplevel(pParse);
  int i, n;
  Table **apVtabLock;

  assert( IsVirtual(pTab) );
  for(i=0; i<pToplevel->nVtabLock; i++){
    if( pTab==pToplevel->apVtabLock[i] ) return;
  }
  n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
  apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n);
  if( apVtabLock ){
    pToplevel->apVtabLock = apVtabLock;
    pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
  }else{
    pToplevel->db->mallocFailed = 1;
  }
}

#endif /* SQLITE_OMIT_VIRTUALTABLE */

/************** End of vtab.c ************************************************/
/************** Begin file where.c *******************************************/
82953
82954
82955
82956
82957
82958
82959

82960
82961
82962
82963
82964
82965
82966
** A WhereCost object records a lookup strategy and the estimated
** cost of pursuing that strategy.
*/
struct WhereCost {
  WherePlan plan;    /* The lookup strategy */
  double rCost;      /* Overall cost of pursuing this search strategy */
  double nRow;       /* Estimated number of output rows */

};

/*
** Bitmasks for the operators that indices are able to exploit.  An
** OR-ed combination of these values can be used when searching for
** terms in the where clause.
*/







>







84369
84370
84371
84372
84373
84374
84375
84376
84377
84378
84379
84380
84381
84382
84383
** A WhereCost object records a lookup strategy and the estimated
** cost of pursuing that strategy.
*/
struct WhereCost {
  WherePlan plan;    /* The lookup strategy */
  double rCost;      /* Overall cost of pursuing this search strategy */
  double nRow;       /* Estimated number of output rows */
  Bitmask used;      /* Bitmask of cursors used by this plan */
};

/*
** Bitmasks for the operators that indices are able to exploit.  An
** OR-ed combination of these values can be used when searching for
** terms in the where clause.
*/
84096
84097
84098
84099
84100
84101
84102





84103
84104
84105
84106
84107
84108
84109
  struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
  sqlite3 *db = pParse->db;

  assert( pOrderBy!=0 );
  nTerm = pOrderBy->nExpr;
  assert( nTerm>0 );






  /* Match terms of the ORDER BY clause against columns of
  ** the index.
  **
  ** Note that indices have pIdx->nColumn regular columns plus
  ** one additional column containing the rowid.  The rowid column
  ** of the index is also allowed to match against the ORDER BY
  ** clause.







>
>
>
>
>







85513
85514
85515
85516
85517
85518
85519
85520
85521
85522
85523
85524
85525
85526
85527
85528
85529
85530
85531
  struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
  sqlite3 *db = pParse->db;

  assert( pOrderBy!=0 );
  nTerm = pOrderBy->nExpr;
  assert( nTerm>0 );

  /* Argument pIdx must either point to a 'real' named index structure, 
  ** or an index structure allocated on the stack by bestBtreeIndex() to
  ** represent the rowid index that is part of every table.  */
  assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );

  /* Match terms of the ORDER BY clause against columns of
  ** the index.
  **
  ** Note that indices have pIdx->nColumn regular columns plus
  ** one additional column containing the rowid.  The rowid column
  ** of the index is also allowed to match against the ORDER BY
  ** clause.
84122
84123
84124
84125
84126
84127
84128
84129
84130
84131
84132
84133
84134
84135
84136
      ** left-most table of the FROM clause */
      break;
    }
    pColl = sqlite3ExprCollSeq(pParse, pExpr);
    if( !pColl ){
      pColl = db->pDfltColl;
    }
    if( i<pIdx->nColumn ){
      iColumn = pIdx->aiColumn[i];
      if( iColumn==pIdx->pTable->iPKey ){
        iColumn = -1;
      }
      iSortOrder = pIdx->aSortOrder[i];
      zColl = pIdx->azColl[i];
    }else{







|







85544
85545
85546
85547
85548
85549
85550
85551
85552
85553
85554
85555
85556
85557
85558
      ** left-most table of the FROM clause */
      break;
    }
    pColl = sqlite3ExprCollSeq(pParse, pExpr);
    if( !pColl ){
      pColl = db->pDfltColl;
    }
    if( pIdx->zName && i<pIdx->nColumn ){
      iColumn = pIdx->aiColumn[i];
      if( iColumn==pIdx->pTable->iPKey ){
        iColumn = -1;
      }
      iSortOrder = pIdx->aSortOrder[i];
      zColl = pIdx->azColl[i];
    }else{
84151
84152
84153
84154
84155
84156
84157
84158
84159
84160
84161
84162
84163
84164
84165
      }else{
        /* If an index column fails to match and is not constrained by ==
        ** then the index cannot satisfy the ORDER BY constraint.
        */
        return 0;
      }
    }
    assert( pIdx->aSortOrder!=0 );
    assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
    assert( iSortOrder==0 || iSortOrder==1 );
    termSortOrder = iSortOrder ^ pTerm->sortOrder;
    if( i>nEqCol ){
      if( termSortOrder!=sortOrder ){
        /* Indices can only be used if all ORDER BY terms past the
        ** equality constraints are all either DESC or ASC. */







|







85573
85574
85575
85576
85577
85578
85579
85580
85581
85582
85583
85584
85585
85586
85587
      }else{
        /* If an index column fails to match and is not constrained by ==
        ** then the index cannot satisfy the ORDER BY constraint.
        */
        return 0;
      }
    }
    assert( pIdx->aSortOrder!=0 || iColumn==-1 );
    assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
    assert( iSortOrder==0 || iSortOrder==1 );
    termSortOrder = iSortOrder ^ pTerm->sortOrder;
    if( i>nEqCol ){
      if( termSortOrder!=sortOrder ){
        /* Indices can only be used if all ORDER BY terms past the
        ** equality constraints are all either DESC or ASC. */
84191
84192
84193
84194
84195
84196
84197
84198
84199
84200
84201
84202
84203
84204
84205
84206
84207
84208
84209
84210
84211
84212
84213
84214
84215
84216
84217
84218
84219
84220
84221
84222
84223
84224
84225
84226
84227
84228
      && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
    /* All terms of this index match some prefix of the ORDER BY clause
    ** and the index is UNIQUE and no terms on the tail of the ORDER BY
    ** clause reference other tables in a join.  If this is all true then
    ** the order by clause is superfluous. */
    return 1;
  }
  return 0;
}

/*
** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
** by sorting in order of ROWID.  Return true if so and set *pbRev to be
** true for reverse ROWID and false for forward ROWID order.
*/
static int sortableByRowid(
  int base,               /* Cursor number for table to be sorted */
  ExprList *pOrderBy,     /* The ORDER BY clause */
  WhereMaskSet *pMaskSet, /* Mapping from table cursors to bitmaps */
  int *pbRev              /* Set to 1 if ORDER BY is DESC */
){
  Expr *p;

  assert( pOrderBy!=0 );
  assert( pOrderBy->nExpr>0 );
  p = pOrderBy->a[0].pExpr;
  if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
    && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
    *pbRev = pOrderBy->a[0].sortOrder;
    return 1;
  }
  return 0;
}

/*
** Prepare a crude estimate of the logarithm of the input value.
** The results need not be exact.  This is only used for estimating
** the total cost of performing operations with O(logN) or O(NlogN)







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







85613
85614
85615
85616
85617
85618
85619
























85620
85621
85622
85623
85624
85625
85626
      && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
    /* All terms of this index match some prefix of the ORDER BY clause
    ** and the index is UNIQUE and no terms on the tail of the ORDER BY
    ** clause reference other tables in a join.  If this is all true then
    ** the order by clause is superfluous. */
    return 1;
  }
























  return 0;
}

/*
** Prepare a crude estimate of the logarithm of the input value.
** The results need not be exact.  This is only used for estimating
** the total cost of performing operations with O(logN) or O(NlogN)
84318
84319
84320
84321
84322
84323
84324

84325
84326
84327
84328
84329
84330
84331
    ){
      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
      WhereTerm *pOrTerm;
      int flags = WHERE_MULTI_OR;
      double rTotal = 0;
      double nRow = 0;


      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        WhereCost sTermCost;
        WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 
          (pOrTerm - pOrWC->a), (pTerm - pWC->a)
        ));
        if( pOrTerm->eOperator==WO_AND ){







>







85716
85717
85718
85719
85720
85721
85722
85723
85724
85725
85726
85727
85728
85729
85730
    ){
      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
      WhereTerm *pOrTerm;
      int flags = WHERE_MULTI_OR;
      double rTotal = 0;
      double nRow = 0;
      Bitmask used = 0;

      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        WhereCost sTermCost;
        WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 
          (pOrTerm - pOrWC->a), (pTerm - pWC->a)
        ));
        if( pOrTerm->eOperator==WO_AND ){
84340
84341
84342
84343
84344
84345
84346

84347
84348
84349
84350
84351
84352
84353
84354
84355
84356
84357
84358
84359
84360
84361
84362
84363

84364
84365
84366
84367
84368
84369
84370
          tempWC.nTerm = 1;
          bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost);
        }else{
          continue;
        }
        rTotal += sTermCost.rCost;
        nRow += sTermCost.nRow;

        if( rTotal>=pCost->rCost ) break;
      }

      /* If there is an ORDER BY clause, increase the scan cost to account 
      ** for the cost of the sort. */
      if( pOrderBy!=0 ){
        rTotal += nRow*estLog(nRow);
        WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal));
      }

      /* If the cost of scanning using this OR term for optimization is
      ** less than the current cost stored in pCost, replace the contents
      ** of pCost. */
      WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
      if( rTotal<pCost->rCost ){
        pCost->rCost = rTotal;
        pCost->nRow = nRow;

        pCost->plan.wsFlags = flags;
        pCost->plan.u.pTerm = pTerm;
      }
    }
  }
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
}







>

















>







85739
85740
85741
85742
85743
85744
85745
85746
85747
85748
85749
85750
85751
85752
85753
85754
85755
85756
85757
85758
85759
85760
85761
85762
85763
85764
85765
85766
85767
85768
85769
85770
85771
          tempWC.nTerm = 1;
          bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost);
        }else{
          continue;
        }
        rTotal += sTermCost.rCost;
        nRow += sTermCost.nRow;
        used |= sTermCost.used;
        if( rTotal>=pCost->rCost ) break;
      }

      /* If there is an ORDER BY clause, increase the scan cost to account 
      ** for the cost of the sort. */
      if( pOrderBy!=0 ){
        rTotal += nRow*estLog(nRow);
        WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal));
      }

      /* If the cost of scanning using this OR term for optimization is
      ** less than the current cost stored in pCost, replace the contents
      ** of pCost. */
      WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
      if( rTotal<pCost->rCost ){
        pCost->rCost = rTotal;
        pCost->nRow = nRow;
        pCost->used = used;
        pCost->plan.wsFlags = flags;
        pCost->plan.u.pTerm = pTerm;
      }
    }
  }
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
}
84609
84610
84611
84612
84613
84614
84615
84616
84617
84618
84619
84620
84621
84622
84623
84624
84625
84626
84627
84628
84629
84630
84631
84632
84633
84634
84635







84636
84637
84638
84639
84640
84641
84642
  ** each time.
  */
  pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
  pUsage = pIdxInfo->aConstraintUsage;
  for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
    j = pIdxCons->iTermOffset;
    pTerm = &pWC->a[j];
    pIdxCons->usable =  (pTerm->prereqRight & notReady)==0 ?1:0;
  }
  memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
  if( pIdxInfo->needToFreeIdxStr ){
    sqlite3_free(pIdxInfo->idxStr);
  }
  pIdxInfo->idxStr = 0;
  pIdxInfo->idxNum = 0;
  pIdxInfo->needToFreeIdxStr = 0;
  pIdxInfo->orderByConsumed = 0;
  /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
  pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
  nOrderBy = pIdxInfo->nOrderBy;
  if( !pOrderBy ){
    pIdxInfo->nOrderBy = 0;
  }

  if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
    return;
  }








  /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
  ** inital value of lowestCost in this loop. If it is, then the
  ** (cost<lowestCost) test below will never be true.
  ** 
  ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT 
  ** is defined.







|



















>
>
>
>
>
>
>







86010
86011
86012
86013
86014
86015
86016
86017
86018
86019
86020
86021
86022
86023
86024
86025
86026
86027
86028
86029
86030
86031
86032
86033
86034
86035
86036
86037
86038
86039
86040
86041
86042
86043
86044
86045
86046
86047
86048
86049
86050
  ** each time.
  */
  pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
  pUsage = pIdxInfo->aConstraintUsage;
  for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
    j = pIdxCons->iTermOffset;
    pTerm = &pWC->a[j];
    pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
  }
  memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
  if( pIdxInfo->needToFreeIdxStr ){
    sqlite3_free(pIdxInfo->idxStr);
  }
  pIdxInfo->idxStr = 0;
  pIdxInfo->idxNum = 0;
  pIdxInfo->needToFreeIdxStr = 0;
  pIdxInfo->orderByConsumed = 0;
  /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
  pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
  nOrderBy = pIdxInfo->nOrderBy;
  if( !pOrderBy ){
    pIdxInfo->nOrderBy = 0;
  }

  if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
    return;
  }

  pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++){
    if( pUsage[i].argvIndex>0 ){
      pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
    }
  }

  /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
  ** inital value of lowestCost in this loop. If it is, then the
  ** (cost<lowestCost) test below will never be true.
  ** 
  ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT 
  ** is defined.
84655
84656
84657
84658
84659
84660
84661















































































































































































































84662
84663
84664
84665
84666
84667
84668

  /* Try to find a more efficient access pattern by using multiple indexes
  ** to optimize an OR expression within the WHERE clause. 
  */
  bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
















































































































































































































/*
** Find the query plan for accessing a particular table.  Write the
** best query plan and its cost into the WhereCost object supplied as the
** last parameter.
**
** The lowest cost plan wins.  The cost is an estimate of the amount of







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







86063
86064
86065
86066
86067
86068
86069
86070
86071
86072
86073
86074
86075
86076
86077
86078
86079
86080
86081
86082
86083
86084
86085
86086
86087
86088
86089
86090
86091
86092
86093
86094
86095
86096
86097
86098
86099
86100
86101
86102
86103
86104
86105
86106
86107
86108
86109
86110
86111
86112
86113
86114
86115
86116
86117
86118
86119
86120
86121
86122
86123
86124
86125
86126
86127
86128
86129
86130
86131
86132
86133
86134
86135
86136
86137
86138
86139
86140
86141
86142
86143
86144
86145
86146
86147
86148
86149
86150
86151
86152
86153
86154
86155
86156
86157
86158
86159
86160
86161
86162
86163
86164
86165
86166
86167
86168
86169
86170
86171
86172
86173
86174
86175
86176
86177
86178
86179
86180
86181
86182
86183
86184
86185
86186
86187
86188
86189
86190
86191
86192
86193
86194
86195
86196
86197
86198
86199
86200
86201
86202
86203
86204
86205
86206
86207
86208
86209
86210
86211
86212
86213
86214
86215
86216
86217
86218
86219
86220
86221
86222
86223
86224
86225
86226
86227
86228
86229
86230
86231
86232
86233
86234
86235
86236
86237
86238
86239
86240
86241
86242
86243
86244
86245
86246
86247
86248
86249
86250
86251
86252
86253
86254
86255
86256
86257
86258
86259
86260
86261
86262
86263
86264
86265
86266
86267
86268
86269
86270
86271
86272
86273
86274
86275
86276
86277
86278
86279
86280
86281
86282
86283

  /* Try to find a more efficient access pattern by using multiple indexes
  ** to optimize an OR expression within the WHERE clause. 
  */
  bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** Argument pIdx is a pointer to an index structure that has an array of
** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
** stored in Index.aSample. The domain of values stored in said column
** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions.
** Region 0 contains all values smaller than the first sample value. Region
** 1 contains values larger than or equal to the value of the first sample,
** but smaller than the value of the second. And so on.
**
** If successful, this function determines which of the regions value 
** pVal lies in, sets *piRegion to the region index (a value between 0
** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK.
** Or, if an OOM occurs while converting text values between encodings,
** SQLITE_NOMEM is returned and *piRegion is undefined.
*/
#ifdef SQLITE_ENABLE_STAT2
static int whereRangeRegion(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  sqlite3_value *pVal,        /* Value to consider */
  int *piRegion               /* OUT: Region of domain in which value lies */
){
  if( ALWAYS(pVal) ){
    IndexSample *aSample = pIdx->aSample;
    int i = 0;
    int eType = sqlite3_value_type(pVal);

    if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
      double r = sqlite3_value_double(pVal);
      for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
        if( aSample[i].eType==SQLITE_NULL ) continue;
        if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break;
      }
    }else{ 
      sqlite3 *db = pParse->db;
      CollSeq *pColl;
      const u8 *z;
      int n;

      /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */
      assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );

      if( eType==SQLITE_BLOB ){
        z = (const u8 *)sqlite3_value_blob(pVal);
        pColl = db->pDfltColl;
        assert( pColl->enc==SQLITE_UTF8 );
      }else{
        pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
        if( pColl==0 ){
          sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
                          *pIdx->azColl);
          return SQLITE_ERROR;
        }
        z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
        if( !z ){
          return SQLITE_NOMEM;
        }
        assert( z && pColl && pColl->xCmp );
      }
      n = sqlite3ValueBytes(pVal, pColl->enc);

      for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
        int r;
        int eSampletype = aSample[i].eType;
        if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
        if( (eSampletype!=eType) ) break;
        if( pColl->enc==SQLITE_UTF8 ){
          r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
        }else{
          int nSample;
          char *zSample = sqlite3Utf8to16(
              db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
          );
          if( !zSample ){
            assert( db->mallocFailed );
            return SQLITE_NOMEM;
          }
          r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
          sqlite3DbFree(db, zSample);
        }
        if( r>0 ) break;
      }
    }

    assert( i>=0 && i<=SQLITE_INDEX_SAMPLES );
    *piRegion = i;
  }
  return SQLITE_OK;
}
#endif   /* #ifdef SQLITE_ENABLE_STAT2 */

/*
** This function is used to estimate the number of rows that will be visited
** by scanning an index for a range of values. The range may have an upper
** bound, a lower bound, or both. The WHERE clause terms that set the upper
** and lower bounds are represented by pLower and pUpper respectively. For
** example, assuming that index p is on t1(a):
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**                    |_____|   |_____|
**                       |         |
**                     pLower    pUpper
**
** If either of the upper or lower bound is not present, then NULL is passed in
** place of the corresponding WhereTerm.
**
** The nEq parameter is passed the index of the index column subject to the
** range constraint. Or, equivalently, the number of equality constraints
** optimized by the proposed index scan. For example, assuming index p is
** on t1(a, b), and the SQL query is:
**
**   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
**
** then nEq should be passed the value 1 (as the range restricted column,
** b, is the second left-most column of the index). Or, if the query is:
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq should be passed 0.
**
** The returned value is an integer between 1 and 100, inclusive. A return
** value of 1 indicates that the proposed range scan is expected to visit
** approximately 1/100th (1%) of the rows selected by the nEq equality
** constraints (if any). A return value of 100 indicates that it is expected
** that the range scan will visit every row (100%) selected by the equality
** constraints.
**
** In the absence of sqlite_stat2 ANALYZE data, each range inequality
** reduces the search space by 2/3rds.  Hence a single constraint (x>?)
** results in a return of 33 and a range constraint (x>? AND x<?) results
** in a return of 11.
*/
static int whereRangeScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index containing the range-compared column; "x" */
  int nEq,             /* index into p->aCol[] of the range-compared column */
  WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
  WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
  int *piEst           /* OUT: Return value */
){
  int rc = SQLITE_OK;

#ifdef SQLITE_ENABLE_STAT2
  sqlite3 *db = pParse->db;
  sqlite3_value *pLowerVal = 0;
  sqlite3_value *pUpperVal = 0;

  if( nEq==0 && p->aSample ){
    int iEst;
    int iLower = 0;
    int iUpper = SQLITE_INDEX_SAMPLES;
    u8 aff = p->pTable->aCol[0].affinity;

    if( pLower ){
      Expr *pExpr = pLower->pExpr->pRight;
      rc = sqlite3ValueFromExpr(db, pExpr, SQLITE_UTF8, aff, &pLowerVal);
    }
    if( rc==SQLITE_OK && pUpper ){
      Expr *pExpr = pUpper->pExpr->pRight;
      rc = sqlite3ValueFromExpr(db, pExpr, SQLITE_UTF8, aff, &pUpperVal);
    }

    if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){
      sqlite3ValueFree(pLowerVal);
      sqlite3ValueFree(pUpperVal);
      goto range_est_fallback;
    }else if( pLowerVal==0 ){
      rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
      if( pLower ) iLower = iUpper/2;
    }else if( pUpperVal==0 ){
      rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
      if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2;
    }else{
      rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
      if( rc==SQLITE_OK ){
        rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
      }
    }

    iEst = iUpper - iLower;
    testcase( iEst==SQLITE_INDEX_SAMPLES );
    assert( iEst<=SQLITE_INDEX_SAMPLES );
    if( iEst<1 ){
      iEst = 1;
    }

    sqlite3ValueFree(pLowerVal);
    sqlite3ValueFree(pUpperVal);
    *piEst = (iEst * 100)/SQLITE_INDEX_SAMPLES;
    return rc;
  }
range_est_fallback:
#else
  UNUSED_PARAMETER(pParse);
  UNUSED_PARAMETER(p);
  UNUSED_PARAMETER(nEq);
#endif
  assert( pLower || pUpper );
  if( pLower && pUpper ){
    *piEst = 11;
  }else{
    *piEst = 33;
  }
  return rc;
}


/*
** Find the query plan for accessing a particular table.  Write the
** best query plan and its cost into the WhereCost object supplied as the
** last parameter.
**
** The lowest cost plan wins.  The cost is an estimate of the amount of
84692
84693
84694
84695
84696
84697
84698
84699
84700
84701
84702
84703
84704
84705
84706
84707

84708
84709
84710
84711
84712
84713
84714
84715
84716
84717
84718
84719
84720
84721
84722
84723
84724
84725
84726
84727
84728
84729
84730
84731
84732
84733
84734
84735
84736
84737
84738
84739
84740
84741
84742
84743
84744
84745
84746
84747
84748
84749
84750
84751
84752
84753
84754
84755
84756
84757
84758
84759
84760
84761
84762
84763
84764
84765
84766
84767
84768
84769
84770
84771
84772
84773
84774
84775
84776
84777
84778
84779
84780
84781
84782
84783
84784
84785
84786
84787
84788
84789
84790
84791
84792
84793
84794
84795
84796
84797
84798
84799
84800
84801
84802
84803
84804
84805
84806
84807
84808
84809
84810
84811
84812
84813
84814
84815
84816
84817
84818
84819
84820
84821
84822
84823
84824
84825
84826
84827
84828
84829
84830
84831
84832
84833
84834
84835
84836
84837
84838
84839

84840
















84841










84842
84843




84844
84845
84846














84847
84848
84849
84850
84851







84852






84853








84854







84855















84856

84857






84858

84859
84860
84861
84862
84863
84864
84865
84866
84867
84868
84869
84870
84871
84872
84873
84874

84875
84876
84877
84878
84879
84880
84881



84882



84883
84884

84885




84886
84887
84888
84889
84890
84891
84892
84893
84894
84895
84896
84897
84898
84899
84900
84901
84902


84903
84904
84905
84906
84907
84908
84909
84910
84911
84912
84913
84914
84915
84916
84917
84918
84919
84920
84921
84922
84923
84924
84925
84926
84927
84928
84929
84930
84931
84932
84933
84934
84935
84936
84937
84938
84939
84940
84941
84942
84943
84944
84945
84946
84947



84948
84949
84950
84951
84952
84953
84954
84955
84956
84957
84958







































84959
84960
84961

84962






84963
84964

84965
84966
84967
84968

84969
84970
84971
84972
84973








84974
84975
84976
84977




84978









84979
84980

84981

84982
84983
84984
84985
84986
84987
84988
84989
  Parse *pParse,              /* The parsing context */
  WhereClause *pWC,           /* The WHERE clause */
  struct SrcList_item *pSrc,  /* The FROM clause term to search */
  Bitmask notReady,           /* Mask of cursors that are not available */
  ExprList *pOrderBy,         /* The ORDER BY clause */
  WhereCost *pCost            /* Lowest cost query plan */
){
  WhereTerm *pTerm;           /* A single term of the WHERE clause */
  int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
  Index *pProbe;              /* An index we are evaluating */
  int rev;                    /* True to scan in reverse order */
  int wsFlags;                /* Flags associated with pProbe */
  int nEq;                    /* Number of == or IN constraints */
  int eqTermMask;             /* Mask of valid equality operators */
  double cost;                /* Cost of using pProbe */
  double nRow;                /* Estimated number of rows in result set */

  int i;                      /* Loop counter */

  WHERETRACE(("bestIndex: tbl=%s notReady=%llx\n", pSrc->pTab->zName,notReady));
  pProbe = pSrc->pTab->pIndex;
  if( pSrc->notIndexed ){
    pProbe = 0;
  }

  /* If the table has no indices and there are no terms in the where
  ** clause that refer to the ROWID, then we will never be able to do
  ** anything other than a full table scan on this table.  We might as
  ** well put it first in the join order.  That way, perhaps it can be
  ** referenced by other tables in the join.
  */
  memset(pCost, 0, sizeof(*pCost));
  if( pProbe==0 &&
     findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
     (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
     if( pParse->db->flags & SQLITE_ReverseOrder ){
      /* For application testing, randomly reverse the output order for
      ** SELECT statements that omit the ORDER BY clause.  This will help
      ** to find cases where
      */
      pCost->plan.wsFlags |= WHERE_REVERSE;
    }
    return;
  }
  pCost->rCost = SQLITE_BIG_DBL;

  /* Check for a rowid=EXPR or rowid IN (...) constraints. If there was
  ** an INDEXED BY clause attached to this table, skip this step.
  */
  if( !pSrc->pIndex ){
    pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
    if( pTerm ){
      Expr *pExpr;
      pCost->plan.wsFlags = WHERE_ROWID_EQ;
      if( pTerm->eOperator & WO_EQ ){
        /* Rowid== is always the best pick.  Look no further.  Because only
        ** a single row is generated, output is always in sorted order */
        pCost->plan.wsFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
        pCost->plan.nEq = 1;
        WHERETRACE(("... best is rowid\n"));
        pCost->rCost = 0;
        pCost->nRow = 1;
        return;
      }else if( !ExprHasProperty((pExpr = pTerm->pExpr), EP_xIsSelect) 
             && pExpr->x.pList 
      ){
        /* Rowid IN (LIST): cost is NlogN where N is the number of list
        ** elements.  */
        pCost->rCost = pCost->nRow = pExpr->x.pList->nExpr;
        pCost->rCost *= estLog(pCost->rCost);
      }else{
        /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
        ** in the result of the inner select.  We have no way to estimate
        ** that value so make a wild guess. */
        pCost->nRow = 100;
        pCost->rCost = 200;
      }
      WHERETRACE(("... rowid IN cost: %.9g\n", pCost->rCost));
    }
  
    /* Estimate the cost of a table scan.  If we do not know how many
    ** entries are in the table, use 1 million as a guess.
    */
    cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
    WHERETRACE(("... table scan base cost: %.9g\n", cost));
    wsFlags = WHERE_ROWID_RANGE;
  
    /* Check for constraints on a range of rowids in a table scan.
    */
    pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
    if( pTerm ){
      if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
        wsFlags |= WHERE_TOP_LIMIT;
        cost /= 3;  /* Guess that rowid<EXPR eliminates two-thirds of rows */
      }
      if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
        wsFlags |= WHERE_BTM_LIMIT;
        cost /= 3;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
      }
      WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
    }else{
      wsFlags = 0;
    }
    nRow = cost;
  
    /* If the table scan does not satisfy the ORDER BY clause, increase
    ** the cost by NlogN to cover the expense of sorting. */
    if( pOrderBy ){
      if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
        wsFlags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
        if( rev ){
          wsFlags |= WHERE_REVERSE;
        }
      }else{
        cost += cost*estLog(cost);
        WHERETRACE(("... sorting increases cost to %.9g\n", cost));
      }
    }else if( pParse->db->flags & SQLITE_ReverseOrder ){
      /* For application testing, randomly reverse the output order for
      ** SELECT statements that omit the ORDER BY clause.  This will help
      ** to find cases where
      */
      wsFlags |= WHERE_REVERSE;
    }

    /* Remember this case if it is the best so far */
    if( cost<pCost->rCost ){
      pCost->rCost = cost;
      pCost->nRow = nRow;
      pCost->plan.wsFlags = wsFlags;
    }
  }

  bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);

  /* If the pSrc table is the right table of a LEFT JOIN then we may not
  ** use an index to satisfy IS NULL constraints on that table.  This is
  ** because columns might end up being NULL if the table does not match -
  ** a circumstance which the index cannot help us discover.  Ticket #2177.
  */
  if( (pSrc->jointype & JT_LEFT)!=0 ){
    eqTermMask = WO_EQ|WO_IN;
  }else{
    eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
  }

  /* Look at each index.
  */
  if( pSrc->pIndex ){

    pProbe = pSrc->pIndex;
















  }










  for(; pProbe; pProbe=(pSrc->pIndex ? 0 : pProbe->pNext)){
    double inMultiplier = 1;  /* Number of equality look-ups needed */




    int inMultIsEst = 0;      /* True if inMultiplier is an estimate */

    WHERETRACE(("... index %s:\n", pProbe->zName));















    /* Count the number of columns in the index that are satisfied
    ** by x=EXPR or x IS NULL constraints or x IN (...) constraints.
    ** For a term of the form x=EXPR or x IS NULL we only have to do 
    ** a single binary search.  But for x IN (...) we have to do a







    ** number of binary searched






    ** equal to the number of entries on the RHS of the IN operator.








    ** The inMultipler variable with try to estimate the number of







    ** binary searches needed.















    */

    wsFlags = 0;






    for(i=0; i<pProbe->nColumn; i++){

      int j = pProbe->aiColumn[i];
      pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
      if( pTerm==0 ) break;
      wsFlags |= WHERE_COLUMN_EQ;
      if( pTerm->eOperator & WO_IN ){
        Expr *pExpr = pTerm->pExpr;
        wsFlags |= WHERE_COLUMN_IN;
        if( ExprHasProperty(pExpr, EP_xIsSelect) ){
          inMultiplier *= 25;
          inMultIsEst = 1;
        }else if( pExpr->x.pList ){
          inMultiplier *= pExpr->x.pList->nExpr + 1;
        }
      }else if( pTerm->eOperator & WO_ISNULL ){
        wsFlags |= WHERE_COLUMN_NULL;
      }

    }
    nRow = pProbe->aiRowEst[i] * inMultiplier;
    /* If inMultiplier is an estimate and that estimate results in an
    ** nRow it that is more than half number of rows in the table,
    ** then reduce inMultipler */
    if( inMultIsEst && nRow*2 > pProbe->aiRowEst[0] ){
      nRow = pProbe->aiRowEst[0]/2;



      inMultiplier = nRow/pProbe->aiRowEst[i];



    }
    cost = nRow + inMultiplier*estLog(pProbe->aiRowEst[0]);

    nEq = i;




    if( pProbe->onError!=OE_None && nEq==pProbe->nColumn ){
      testcase( wsFlags & WHERE_COLUMN_IN );
      testcase( wsFlags & WHERE_COLUMN_NULL );
      if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
        wsFlags |= WHERE_UNIQUE;
      }
    }
    WHERETRACE(("...... nEq=%d inMult=%.9g nRow=%.9g cost=%.9g\n",
                nEq, inMultiplier, nRow, cost));

    /* Look for range constraints.  Assume that each range constraint
    ** makes the search space 1/3rd smaller.
    */
    if( nEq<pProbe->nColumn ){
      int j = pProbe->aiColumn[nEq];
      pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
      if( pTerm ){


        wsFlags |= WHERE_COLUMN_RANGE;
        if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
          wsFlags |= WHERE_TOP_LIMIT;
          cost /= 3;
          nRow /= 3;
        }
        if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
          wsFlags |= WHERE_BTM_LIMIT;
          cost /= 3;
          nRow /= 3;
        }
        WHERETRACE(("...... range reduces nRow to %.9g and cost to %.9g\n",
                    nRow, cost));
      }
    }

    /* Add the additional cost of sorting if that is a factor.
    */
    if( pOrderBy ){
      if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0
       && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev)
      ){
        if( wsFlags==0 ){
          wsFlags = WHERE_COLUMN_RANGE;
        }
        wsFlags |= WHERE_ORDERBY;
        if( rev ){
          wsFlags |= WHERE_REVERSE;
        }
      }else{
        cost += cost*estLog(cost);
        WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
      }
    }else if( wsFlags!=0 && (pParse->db->flags & SQLITE_ReverseOrder)!=0 ){
      /* For application testing, randomly reverse the output order for
      ** SELECT statements that omit the ORDER BY clause.  This will help
      ** to find cases where
      */
      wsFlags |= WHERE_REVERSE;
    }

    /* Check to see if we can get away with using just the index without
    ** ever reading the table.  If that is the case, then halve the
    ** cost of this index.
    */



    if( wsFlags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
      Bitmask m = pSrc->colUsed;
      int j;
      for(j=0; j<pProbe->nColumn; j++){
        int x = pProbe->aiColumn[j];
        if( x<BMS-1 ){
          m &= ~(((Bitmask)1)<<x);
        }
      }
      if( m==0 ){
        wsFlags |= WHERE_IDX_ONLY;







































        cost /= 2;
        WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
      }

    }







    /* If this index has achieved the lowest cost so far, then use it.

    */
    if( wsFlags!=0 && cost < pCost->rCost ){
      pCost->rCost = cost;
      pCost->nRow = nRow;

      pCost->plan.wsFlags = wsFlags;
      pCost->plan.nEq = nEq;
      assert( pCost->plan.wsFlags & WHERE_INDEXED );
      pCost->plan.u.pIdx = pProbe;
    }








  }

  /* Report the best result
  */




  pCost->plan.wsFlags |= eqTermMask;









  WHERETRACE(("best index is %s, nrow=%.9g, cost=%.9g, wsFlags=%x, nEq=%d\n",
        (pCost->plan.wsFlags & WHERE_INDEXED)!=0 ?

             pCost->plan.u.pIdx->zName : "(none)", pCost->nRow,

        pCost->rCost, pCost->plan.wsFlags, pCost->plan.nEq));
}

/*
** Find the query plan for accessing table pSrc->pTab. Write the
** best query plan and its cost into the WhereCost object supplied 
** as the last parameter. This function may calculate the cost of
** both real and virtual table scans.







<


<
|
|
|
|
<
>
|
|
<
<
<
<
|
|
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<





|
|

|


<
<

>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
|
<
>
>
>
>
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
>
>
>
>
>
>
>
|
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
|
>
>
>
>
>
>
|
>
|
|

|




|
|

|




>

|
<
|
<
|
|
>
>
>
|
>
>
>
|
<
>
|
>
>
>
>
|






<
<

<
<
<
<
<
<
<
>
>
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<


|

<
<
<
|
<
|
<

|
<

<
<
<
<
<
<


<
|
|
<
>
>
>
|


|
|






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
<
|
>
|
>
>
>
>
>
>

|
>

|


>
|

<
|

>
>
>
>
>
>
>
>


|
|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
|
|
>
|
>
|







86307
86308
86309
86310
86311
86312
86313

86314
86315

86316
86317
86318
86319

86320
86321
86322




86323
86324






86325












86326
86327

























































































86328
86329
86330
86331
86332
86333
86334
86335
86336
86337
86338


86339
86340
86341
86342
86343
86344
86345
86346
86347
86348
86349
86350
86351
86352
86353
86354
86355
86356
86357
86358
86359
86360
86361
86362
86363
86364
86365
86366
86367
86368
86369

86370
86371
86372
86373
86374
86375
86376
86377
86378
86379
86380
86381
86382
86383
86384
86385
86386
86387
86388
86389
86390
86391
86392
86393
86394
86395
86396
86397
86398
86399
86400
86401
86402
86403
86404
86405
86406
86407
86408
86409
86410
86411
86412
86413
86414
86415
86416
86417
86418
86419
86420
86421
86422
86423
86424
86425
86426
86427
86428
86429
86430
86431
86432
86433
86434
86435
86436
86437
86438
86439
86440
86441
86442
86443
86444
86445
86446
86447
86448
86449
86450
86451
86452
86453
86454
86455
86456
86457
86458
86459
86460
86461
86462
86463
86464
86465
86466
86467
86468
86469
86470
86471
86472

86473

86474
86475
86476
86477
86478
86479
86480
86481
86482
86483

86484
86485
86486
86487
86488
86489
86490
86491
86492
86493
86494
86495
86496


86497







86498
86499
86500














86501


86502
86503
86504
86505



86506

86507

86508
86509

86510






86511
86512

86513
86514

86515
86516
86517
86518
86519
86520
86521
86522
86523
86524
86525
86526
86527
86528
86529
86530
86531
86532
86533
86534
86535
86536
86537
86538
86539
86540
86541
86542
86543
86544
86545
86546
86547
86548
86549
86550
86551
86552
86553
86554
86555
86556
86557
86558
86559
86560
86561
86562
86563
86564
86565
86566
86567
86568

86569
86570
86571
86572
86573
86574
86575
86576
86577
86578
86579
86580
86581
86582
86583
86584
86585
86586
86587

86588
86589
86590
86591
86592
86593
86594
86595
86596
86597
86598
86599
86600
86601
86602
86603
86604
86605
86606
86607
86608
86609
86610
86611
86612
86613
86614
86615
86616
86617
86618
86619
86620
86621
86622
86623
86624
86625
86626
86627
86628
  Parse *pParse,              /* The parsing context */
  WhereClause *pWC,           /* The WHERE clause */
  struct SrcList_item *pSrc,  /* The FROM clause term to search */
  Bitmask notReady,           /* Mask of cursors that are not available */
  ExprList *pOrderBy,         /* The ORDER BY clause */
  WhereCost *pCost            /* Lowest cost query plan */
){

  int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
  Index *pProbe;              /* An index we are evaluating */

  Index *pIdx;                /* Copy of pProbe, or zero for IPK index */
  int eqTermMask;             /* Current mask of valid equality operators */
  int idxEqTermMask;          /* Index mask of valid equality operators */
  Index sPk;                  /* A fake index object for the primary key */

  unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
  int aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
  int wsFlagMask;             /* Allowed flags in pCost->plan.wsFlag */





  /* Initialize the cost to a worst-case value */






  memset(pCost, 0, sizeof(*pCost));












  pCost->rCost = SQLITE_BIG_DBL;


























































































  /* If the pSrc table is the right table of a LEFT JOIN then we may not
  ** use an index to satisfy IS NULL constraints on that table.  This is
  ** because columns might end up being NULL if the table does not match -
  ** a circumstance which the index cannot help us discover.  Ticket #2177.
  */
  if( pSrc->jointype & JT_LEFT ){
    idxEqTermMask = WO_EQ|WO_IN;
  }else{
    idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
  }



  if( pSrc->pIndex ){
    /* An INDEXED BY clause specifies a particular index to use */
    pIdx = pProbe = pSrc->pIndex;
    wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
    eqTermMask = idxEqTermMask;
  }else{
    /* There is no INDEXED BY clause.  Create a fake Index object to
    ** represent the primary key */
    Index *pFirst;                /* Any other index on the table */
    memset(&sPk, 0, sizeof(Index));
    sPk.nColumn = 1;
    sPk.aiColumn = &aiColumnPk;
    sPk.aiRowEst = aiRowEstPk;
    aiRowEstPk[1] = 1;
    sPk.onError = OE_Replace;
    sPk.pTable = pSrc->pTab;
    pFirst = pSrc->pTab->pIndex;
    if( pSrc->notIndexed==0 ){
      sPk.pNext = pFirst;
    }
    /* The aiRowEstPk[0] is an estimate of the total number of rows in the
    ** table.  Get this information from the ANALYZE information if it is
    ** available.  If not available, assume the table 1 million rows in size.
    */
    if( pFirst ){
      assert( pFirst->aiRowEst!=0 ); /* Allocated together with pFirst */
      aiRowEstPk[0] = pFirst->aiRowEst[0];
    }else{
      aiRowEstPk[0] = 1000000;
    }
    pProbe = &sPk;

    wsFlagMask = ~(
        WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
    );
    eqTermMask = WO_EQ|WO_IN;
    pIdx = 0;
  }

  /* Loop over all indices looking for the best one to use
  */
  for(; pProbe; pIdx=pProbe=pProbe->pNext){
    const unsigned int * const aiRowEst = pProbe->aiRowEst;
    double cost;                /* Cost of using pProbe */
    double nRow;                /* Estimated number of rows in result set */
    int rev;                    /* True to scan in reverse order */
    int wsFlags = 0;
    Bitmask used = 0;

    /* The following variables are populated based on the properties of
    ** scan being evaluated. They are then used to determine the expected
    ** cost and number of rows returned.
    **
    **  nEq: 
    **    Number of equality terms that can be implemented using the index.
    **
    **  nInMul:  
    **    The "in-multiplier". This is an estimate of how many seek operations 
    **    SQLite must perform on the index in question. For example, if the 
    **    WHERE clause is:
    **
    **      WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
    **
    **    SQLite must perform 9 lookups on an index on (a, b), so nInMul is 
    **    set to 9. Given the same schema and either of the following WHERE 
    **    clauses:
    **
    **      WHERE a =  1
    **      WHERE a >= 2
    **
    **    nInMul is set to 1.
    **
    **    If there exists a WHERE term of the form "x IN (SELECT ...)", then 
    **    the sub-select is assumed to return 25 rows for the purposes of 
    **    determining nInMul.
    **
    **  bInEst:  
    **    Set to true if there was at least one "x IN (SELECT ...)" term used 
    **    in determining the value of nInMul.
    **
    **  nBound:
    **    An estimate on the amount of the table that must be searched.  A
    **    value of 100 means the entire table is searched.  Range constraints
    **    might reduce this to a value less than 100 to indicate that only
    **    a fraction of the table needs searching.  In the absence of
    **    sqlite_stat2 ANALYZE data, a single inequality reduces the search
    **    space to 1/3rd its original size.  So an x>? constraint reduces
    **    nBound to 33.  Two constraints (x>? AND x<?) reduce nBound to 11.
    **
    **  bSort:   
    **    Boolean. True if there is an ORDER BY clause that will require an 
    **    external sort (i.e. scanning the index being evaluated will not 
    **    correctly order records).
    **
    **  bLookup: 
    **    Boolean. True if for each index entry visited a lookup on the 
    **    corresponding table b-tree is required. This is always false 
    **    for the rowid index. For other indexes, it is true unless all the 
    **    columns of the table used by the SELECT statement are present in 
    **    the index (such an index is sometimes described as a covering index).
    **    For example, given the index on (a, b), the second of the following 
    **    two queries requires table b-tree lookups, but the first does not.
    **
    **             SELECT a, b    FROM tbl WHERE a = 1;
    **             SELECT a, b, c FROM tbl WHERE a = 1;
    */
    int nEq;
    int bInEst = 0;
    int nInMul = 1;
    int nBound = 100;
    int bSort = 0;
    int bLookup = 0;

    /* Determine the values of nEq and nInMul */
    for(nEq=0; nEq<pProbe->nColumn; nEq++){
      WhereTerm *pTerm;           /* A single term of the WHERE clause */
      int j = pProbe->aiColumn[nEq];
      pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
      if( pTerm==0 ) break;
      wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
      if( pTerm->eOperator & WO_IN ){
        Expr *pExpr = pTerm->pExpr;
        wsFlags |= WHERE_COLUMN_IN;
        if( ExprHasProperty(pExpr, EP_xIsSelect) ){
          nInMul *= 25;
          bInEst = 1;
        }else if( pExpr->x.pList ){
          nInMul *= pExpr->x.pList->nExpr + 1;
        }
      }else if( pTerm->eOperator & WO_ISNULL ){
        wsFlags |= WHERE_COLUMN_NULL;
      }
      used |= pTerm->prereqRight;
    }


    /* Determine the value of nBound. */

    if( nEq<pProbe->nColumn ){
      int j = pProbe->aiColumn[nEq];
      if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
        WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
        WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
        whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &nBound);
        if( pTop ){
          wsFlags |= WHERE_TOP_LIMIT;
          used |= pTop->prereqRight;
        }

        if( pBtm ){
          wsFlags |= WHERE_BTM_LIMIT;
          used |= pBtm->prereqRight;
        }
        wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
      }
    }else if( pProbe->onError!=OE_None ){
      testcase( wsFlags & WHERE_COLUMN_IN );
      testcase( wsFlags & WHERE_COLUMN_NULL );
      if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
        wsFlags |= WHERE_UNIQUE;
      }
    }










    /* If there is an ORDER BY clause and the index being considered will
    ** naturally scan rows in the required order, set the appropriate flags
    ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index














    ** will scan rows in a different order, set the bSort variable.  */


    if( pOrderBy ){
      if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0
        && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev)
      ){



        wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;

        wsFlags |= (rev ? WHERE_REVERSE : 0);

      }else{
        bSort = 1;

      }






    }


    /* If currently calculating the cost of using an index (not the IPK
    ** index), determine if all required column data may be obtained without 

    ** seeking to entries in the main table (i.e. if the index is a covering
    ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
    ** wsFlags. Otherwise, set the bLookup variable to true.  */
    if( pIdx && wsFlags ){
      Bitmask m = pSrc->colUsed;
      int j;
      for(j=0; j<pIdx->nColumn; j++){
        int x = pIdx->aiColumn[j];
        if( x<BMS-1 ){
          m &= ~(((Bitmask)1)<<x);
        }
      }
      if( m==0 ){
        wsFlags |= WHERE_IDX_ONLY;
      }else{
        bLookup = 1;
      }
    }

    /**** Begin adding up the cost of using this index (Needs improvements)
    **
    ** Estimate the number of rows of output.  For an IN operator,
    ** do not let the estimate exceed half the rows in the table.
    */
    nRow = (double)(aiRowEst[nEq] * nInMul);
    if( bInEst && nRow*2>aiRowEst[0] ){
      nRow = aiRowEst[0]/2;
      nInMul = (int)(nRow / aiRowEst[nEq]);
    }

    /* Assume constant cost to access a row and logarithmic cost to
    ** do a binary search.  Hence, the initial cost is the number of output
    ** rows plus log2(table-size) times the number of binary searches.
    */
    cost = nRow + nInMul*estLog(aiRowEst[0]);

    /* Adjust the number of rows and the cost downward to reflect rows
    ** that are excluded by range constraints.
    */
    nRow = (nRow * (double)nBound) / (double)100;
    cost = (cost * (double)nBound) / (double)100;

    /* Add in the estimated cost of sorting the result
    */
    if( bSort ){
      cost += cost*estLog(cost);
    }

    /* If all information can be taken directly from the index, we avoid
    ** doing table lookups.  This reduces the cost by half.  (Not really -
    ** this needs to be fixed.)
    */
    if( pIdx && bLookup==0 ){
      cost /= (double)2;

    }
    /**** Cost of using this index has now been computed ****/

    WHERETRACE((
      "tbl=%s idx=%s nEq=%d nInMul=%d nBound=%d bSort=%d bLookup=%d"
      " wsFlags=%d   (nRow=%.2f cost=%.2f)\n",
      pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), 
      nEq, nInMul, nBound, bSort, bLookup, wsFlags, nRow, cost
    ));

    /* If this index is the best we have seen so far, then record this
    ** index and its cost in the pCost structure.
    */
    if( (!pIdx || wsFlags) && cost<pCost->rCost ){
      pCost->rCost = cost;
      pCost->nRow = nRow;
      pCost->used = used;
      pCost->plan.wsFlags = (wsFlags&wsFlagMask);
      pCost->plan.nEq = nEq;

      pCost->plan.u.pIdx = pIdx;
    }

    /* If there was an INDEXED BY clause, then only that one index is
    ** considered. */
    if( pSrc->pIndex ) break;

    /* Reset masks for the next index in the loop */
    wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
    eqTermMask = idxEqTermMask;
  }

  /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
  ** is set, then reverse the order that the index will be scanned
  ** in. This is used for application testing, to help find cases
  ** where application behaviour depends on the (undefined) order that
  ** SQLite outputs rows in in the absence of an ORDER BY clause.  */
  if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
    pCost->plan.wsFlags |= WHERE_REVERSE;
  }

  assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
  assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
  assert( pSrc->pIndex==0 
       || pCost->plan.u.pIdx==0 
       || pCost->plan.u.pIdx==pSrc->pIndex 
  );

  WHERETRACE(("best index is: %s\n", 
    (pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
  ));
  
  bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
  pCost->plan.wsFlags |= eqTermMask;
}

/*
** Find the query plan for accessing table pSrc->pTab. Write the
** best query plan and its cost into the WhereCost object supplied 
** as the last parameter. This function may calculate the cost of
** both real and virtual table scans.
85046
85047
85048
85049
85050
85051
85052
85053
85054




85055
85056
85057
85058
85059
85060
85061
85062
85063
85064
85065
85066
85067
85068
85069
85070
        disableTerm(pLevel, pOther);
      }
    }
  }
}

/*
** Apply the affinities associated with the first n columns of index
** pIdx to the values in the n registers starting at base.




*/
static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){
  if( n>0 ){
    Vdbe *v = pParse->pVdbe;
    assert( v!=0 );
    sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
    sqlite3IndexAffinityStr(v, pIdx);
    sqlite3ExprCacheAffinityChange(pParse, base, n);
  }
}


/*
** Generate code for a single equality term of the WHERE clause.  An equality
** term can be either X=expr or X IN (...).   pTerm is the term to be 
** coded.







|
|
>
>
>
>

|
<
|
|
|
|
|
<







86685
86686
86687
86688
86689
86690
86691
86692
86693
86694
86695
86696
86697
86698
86699

86700
86701
86702
86703
86704

86705
86706
86707
86708
86709
86710
86711
        disableTerm(pLevel, pOther);
      }
    }
  }
}

/*
** Code an OP_Affinity opcode to apply the column affinity string zAff
** to the n registers starting at base. 
**
** Buffer zAff was allocated using sqlite3DbMalloc(). It is the 
** responsibility of this function to arrange for it to be eventually
** freed using sqlite3DbFree().
*/
static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){

  Vdbe *v = pParse->pVdbe;
  assert( v!=0 );
  sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
  sqlite3VdbeChangeP4(v, -1, zAff, P4_DYNAMIC);
  sqlite3ExprCacheAffinityChange(pParse, base, n);

}


/*
** Generate code for a single equality term of the WHERE clause.  An equality
** term can be either X=expr or X IN (...).   pTerm is the term to be 
** coded.
85147
85148
85149
85150
85151
85152
85153















85154
85155
85156
85157
85158
85159
85160

85161
85162
85163
85164
85165
85166
85167
85168
85169

85170
85171
85172
85173
85174
85175
85176
85177
85178
85179





85180
85181
85182
85183
85184
85185
85186
**
** This routine always allocates at least one memory cell and returns
** the index of that memory cell. The code that
** calls this routine will use that memory cell to store the termination
** key value of the loop.  If one or more IN operators appear, then
** this routine allocates an additional nEq memory cells for internal
** use.















*/
static int codeAllEqualityTerms(
  Parse *pParse,        /* Parsing context */
  WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
  WhereClause *pWC,     /* The WHERE clause */
  Bitmask notReady,     /* Which parts of FROM have not yet been coded */
  int nExtraReg         /* Number of extra registers to allocate */

){
  int nEq = pLevel->plan.nEq;   /* The number of == or IN constraints to code */
  Vdbe *v = pParse->pVdbe;      /* The vm under construction */
  Index *pIdx;                  /* The index being used for this loop */
  int iCur = pLevel->iTabCur;   /* The cursor of the table */
  WhereTerm *pTerm;             /* A single constraint term */
  int j;                        /* Loop counter */
  int regBase;                  /* Base register */
  int nReg;                     /* Number of registers to allocate */


  /* This module is only called on query plans that use an index. */
  assert( pLevel->plan.wsFlags & WHERE_INDEXED );
  pIdx = pLevel->plan.u.pIdx;

  /* Figure out how many memory cells we will need then allocate them.
  */
  regBase = pParse->nMem + 1;
  nReg = pLevel->plan.nEq + nExtraReg;
  pParse->nMem += nReg;






  /* Evaluate the equality constraints
  */
  assert( pIdx->nColumn>=nEq );
  for(j=0; j<nEq; j++){
    int r1;
    int k = pIdx->aiColumn[j];







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






|
>









>










>
>
>
>
>







86788
86789
86790
86791
86792
86793
86794
86795
86796
86797
86798
86799
86800
86801
86802
86803
86804
86805
86806
86807
86808
86809
86810
86811
86812
86813
86814
86815
86816
86817
86818
86819
86820
86821
86822
86823
86824
86825
86826
86827
86828
86829
86830
86831
86832
86833
86834
86835
86836
86837
86838
86839
86840
86841
86842
86843
86844
86845
86846
86847
86848
86849
**
** This routine always allocates at least one memory cell and returns
** the index of that memory cell. The code that
** calls this routine will use that memory cell to store the termination
** key value of the loop.  If one or more IN operators appear, then
** this routine allocates an additional nEq memory cells for internal
** use.
**
** Before returning, *pzAff is set to point to a buffer containing a
** copy of the column affinity string of the index allocated using
** sqlite3DbMalloc(). Except, entries in the copy of the string associated
** with equality constraints that use NONE affinity are set to
** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
**
**   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
**   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
**
** In the example above, the index on t1(a) has TEXT affinity. But since
** the right hand side of the equality constraint (t2.b) has NONE affinity,
** no conversion should be attempted before using a t2.b value as part of
** a key to search the index. Hence the first byte in the returned affinity
** string in this example would be set to SQLITE_AFF_NONE.
*/
static int codeAllEqualityTerms(
  Parse *pParse,        /* Parsing context */
  WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
  WhereClause *pWC,     /* The WHERE clause */
  Bitmask notReady,     /* Which parts of FROM have not yet been coded */
  int nExtraReg,        /* Number of extra registers to allocate */
  char **pzAff          /* OUT: Set to point to affinity string */
){
  int nEq = pLevel->plan.nEq;   /* The number of == or IN constraints to code */
  Vdbe *v = pParse->pVdbe;      /* The vm under construction */
  Index *pIdx;                  /* The index being used for this loop */
  int iCur = pLevel->iTabCur;   /* The cursor of the table */
  WhereTerm *pTerm;             /* A single constraint term */
  int j;                        /* Loop counter */
  int regBase;                  /* Base register */
  int nReg;                     /* Number of registers to allocate */
  char *zAff;                   /* Affinity string to return */

  /* This module is only called on query plans that use an index. */
  assert( pLevel->plan.wsFlags & WHERE_INDEXED );
  pIdx = pLevel->plan.u.pIdx;

  /* Figure out how many memory cells we will need then allocate them.
  */
  regBase = pParse->nMem + 1;
  nReg = pLevel->plan.nEq + nExtraReg;
  pParse->nMem += nReg;

  zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
  if( !zAff ){
    pParse->db->mallocFailed = 1;
  }

  /* Evaluate the equality constraints
  */
  assert( pIdx->nColumn>=nEq );
  for(j=0; j<nEq; j++){
    int r1;
    int k = pIdx->aiColumn[j];
85196
85197
85198
85199
85200
85201
85202




85203
85204


85205
85206
85207
85208
85209
85210
85211
        sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
      }
    }
    testcase( pTerm->eOperator & WO_ISNULL );
    testcase( pTerm->eOperator & WO_IN );
    if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
      sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);




    }
  }


  return regBase;
}

/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/







>
>
>
>
|
|
>
>







86859
86860
86861
86862
86863
86864
86865
86866
86867
86868
86869
86870
86871
86872
86873
86874
86875
86876
86877
86878
86879
86880
        sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
      }
    }
    testcase( pTerm->eOperator & WO_ISNULL );
    testcase( pTerm->eOperator & WO_IN );
    if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
      sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
      if( zAff 
       && sqlite3CompareAffinity(pTerm->pExpr->pRight, zAff[j])==SQLITE_AFF_NONE
      ){
        zAff[j] = SQLITE_AFF_NONE;
      }
    }
  }
  *pzAff = zAff;
  return regBase;
}

/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
85453
85454
85455
85456
85457
85458
85459

85460
85461
85462
85463
85464
85465
85466
    int endEq;                   /* True if range end uses ==, >= or <= */
    int start_constraints;       /* Start of range is constrained */
    int nConstraint;             /* Number of constraint terms */
    Index *pIdx;         /* The index we will be using */
    int iIdxCur;         /* The VDBE cursor for the index */
    int nExtraReg = 0;   /* Number of extra registers needed */
    int op;              /* Instruction opcode */


    pIdx = pLevel->plan.u.pIdx;
    iIdxCur = pLevel->iIdxCur;
    k = pIdx->aiColumn[nEq];     /* Column for inequality constraints */

    /* If this loop satisfies a sort order (pOrderBy) request that 
    ** was passed to this function to implement a "SELECT min(x) ..." 







>







87122
87123
87124
87125
87126
87127
87128
87129
87130
87131
87132
87133
87134
87135
87136
    int endEq;                   /* True if range end uses ==, >= or <= */
    int start_constraints;       /* Start of range is constrained */
    int nConstraint;             /* Number of constraint terms */
    Index *pIdx;         /* The index we will be using */
    int iIdxCur;         /* The VDBE cursor for the index */
    int nExtraReg = 0;   /* Number of extra registers needed */
    int op;              /* Instruction opcode */
    char *zAff;

    pIdx = pLevel->plan.u.pIdx;
    iIdxCur = pLevel->iIdxCur;
    k = pIdx->aiColumn[nEq];     /* Column for inequality constraints */

    /* If this loop satisfies a sort order (pOrderBy) request that 
    ** was passed to this function to implement a "SELECT min(x) ..." 
85492
85493
85494
85495
85496
85497
85498
85499


85500
85501
85502
85503
85504
85505
85506
85507
85508
85509
85510
85511
85512
85513
85514
85515
85516
85517
85518
85519
85520
85521

85522
85523








85524
85525
85526
85527
85528
85529
85530
85531
85532
85533
85534
85535
85536
85537
85538
85539
85540
85541
85542
85543
85544
85545
85546
85547

85548
85549
85550









85551
85552
85553
85554
85555
85556
85557
85558
      nExtraReg = 1;
    }

    /* Generate code to evaluate all constraint terms using == or IN
    ** and store the values of those terms in an array of registers
    ** starting at regBase.
    */
    regBase = codeAllEqualityTerms(pParse, pLevel, pWC, notReady, nExtraReg);


    addrNxt = pLevel->addrNxt;


    /* If we are doing a reverse order scan on an ascending index, or
    ** a forward order scan on a descending index, interchange the 
    ** start and end terms (pRangeStart and pRangeEnd).
    */
    if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
      SWAP(WhereTerm *, pRangeEnd, pRangeStart);
    }

    testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
    testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
    testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
    testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
    startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
    endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
    start_constraints = pRangeStart || nEq>0;

    /* Seek the index cursor to the start of the range. */
    nConstraint = nEq;
    if( pRangeStart ){

      sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq);
      sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);








      nConstraint++;
    }else if( isMinQuery ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
      nConstraint++;
      startEq = 0;
      start_constraints = 1;
    }
    codeApplyAffinity(pParse, regBase, nConstraint, pIdx);
    op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
    assert( op!=0 );
    testcase( op==OP_Rewind );
    testcase( op==OP_Last );
    testcase( op==OP_SeekGt );
    testcase( op==OP_SeekGe );
    testcase( op==OP_SeekLe );
    testcase( op==OP_SeekLt );
    sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase, 
                      SQLITE_INT_TO_PTR(nConstraint), P4_INT32);

    /* Load the value for the inequality constraint at the end of the
    ** range (if any).
    */
    nConstraint = nEq;
    if( pRangeEnd ){

      sqlite3ExprCacheRemove(pParse, regBase+nEq);
      sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq);
      sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);









      codeApplyAffinity(pParse, regBase, nEq+1, pIdx);
      nConstraint++;
    }

    /* Top of the loop body */
    pLevel->p2 = sqlite3VdbeCurrentAddr(v);

    /* Check if the index cursor is past the end of the range. */







|
>
>

<




















>
|

>
>
>
>
>
>
>
>







|
















>

|

>
>
>
>
>
>
>
>
>
|







87162
87163
87164
87165
87166
87167
87168
87169
87170
87171
87172

87173
87174
87175
87176
87177
87178
87179
87180
87181
87182
87183
87184
87185
87186
87187
87188
87189
87190
87191
87192
87193
87194
87195
87196
87197
87198
87199
87200
87201
87202
87203
87204
87205
87206
87207
87208
87209
87210
87211
87212
87213
87214
87215
87216
87217
87218
87219
87220
87221
87222
87223
87224
87225
87226
87227
87228
87229
87230
87231
87232
87233
87234
87235
87236
87237
87238
87239
87240
87241
87242
87243
87244
87245
87246
87247
87248
      nExtraReg = 1;
    }

    /* Generate code to evaluate all constraint terms using == or IN
    ** and store the values of those terms in an array of registers
    ** starting at regBase.
    */
    regBase = codeAllEqualityTerms(
        pParse, pLevel, pWC, notReady, nExtraReg, &zAff
    );
    addrNxt = pLevel->addrNxt;


    /* If we are doing a reverse order scan on an ascending index, or
    ** a forward order scan on a descending index, interchange the 
    ** start and end terms (pRangeStart and pRangeEnd).
    */
    if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
      SWAP(WhereTerm *, pRangeEnd, pRangeStart);
    }

    testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
    testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
    testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
    testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
    startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
    endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
    start_constraints = pRangeStart || nEq>0;

    /* Seek the index cursor to the start of the range. */
    nConstraint = nEq;
    if( pRangeStart ){
      Expr *pRight = pRangeStart->pExpr->pRight;
      sqlite3ExprCode(pParse, pRight, regBase+nEq);
      sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
      if( zAff 
       && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE
      ){
        /* Since the comparison is to be performed with no conversions applied
        ** to the operands, set the affinity to apply to pRight to 
        ** SQLITE_AFF_NONE.  */
        zAff[nConstraint] = SQLITE_AFF_NONE;
      }
      nConstraint++;
    }else if( isMinQuery ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
      nConstraint++;
      startEq = 0;
      start_constraints = 1;
    }
    codeApplyAffinity(pParse, regBase, nConstraint, zAff);
    op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
    assert( op!=0 );
    testcase( op==OP_Rewind );
    testcase( op==OP_Last );
    testcase( op==OP_SeekGt );
    testcase( op==OP_SeekGe );
    testcase( op==OP_SeekLe );
    testcase( op==OP_SeekLt );
    sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase, 
                      SQLITE_INT_TO_PTR(nConstraint), P4_INT32);

    /* Load the value for the inequality constraint at the end of the
    ** range (if any).
    */
    nConstraint = nEq;
    if( pRangeEnd ){
      Expr *pRight = pRangeEnd->pExpr->pRight;
      sqlite3ExprCacheRemove(pParse, regBase+nEq);
      sqlite3ExprCode(pParse, pRight, regBase+nEq);
      sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
      zAff = sqlite3DbStrDup(pParse->db, zAff);
      if( zAff 
       && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE
      ){
        /* Since the comparison is to be performed with no conversions applied
        ** to the operands, set the affinity to apply to pRight to 
        ** SQLITE_AFF_NONE.  */
        zAff[nConstraint] = SQLITE_AFF_NONE;
      }
      codeApplyAffinity(pParse, regBase, nEq+1, zAff);
      nConstraint++;
    }

    /* Top of the loop body */
    pLevel->p2 = sqlite3VdbeCurrentAddr(v);

    /* Check if the index cursor is past the end of the range. */
86029
86030
86031
86032
86033
86034
86035
86036
86037
86038
86039
86040
86041




































86042
86043
86044
86045
86046
86047
86048
86049
86050
86051
86052
86053
86054
86055
86056
86057
86058
86059
86060
86061
86062
86063
86064
86065



86066
86067

86068
86069
86070
86071
86072

86073
86074
86075
86076
86077
86078
86079
86080
  pLevel = pWInfo->a;
  andFlags = ~0;
  WHERETRACE(("*** Optimizer Start ***\n"));
  for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    WhereCost bestPlan;         /* Most efficient plan seen so far */
    Index *pIdx;                /* Index for FROM table at pTabItem */
    int j;                      /* For looping over FROM tables */
    int bestJ = 0;              /* The value of j */
    Bitmask m;                  /* Bitmask value for j or bestJ */
    int once = 0;               /* True when first table is seen */

    memset(&bestPlan, 0, sizeof(bestPlan));
    bestPlan.rCost = SQLITE_BIG_DBL;




































    for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
      int doNotReorder;    /* True if this table should not be reordered */
      WhereCost sCost;     /* Cost information from best[Virtual]Index() */
      ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */

      doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
      if( once && doNotReorder ) break;
      m = getMask(pMaskSet, pTabItem->iCursor);
      if( (m & notReady)==0 ){
        if( j==iFrom ) iFrom++;
        continue;
      }
      pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);

      assert( pTabItem->pTab );
#ifndef SQLITE_OMIT_VIRTUALTABLE
      if( IsVirtual(pTabItem->pTab) ){
        sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
        bestVirtualIndex(pParse, pWC, pTabItem, notReady, pOrderBy, &sCost, pp);
      }else 
#endif
      {
        bestBtreeIndex(pParse, pWC, pTabItem, notReady, pOrderBy, &sCost);
      }



      if( once==0 || sCost.rCost<bestPlan.rCost ){
        once = 1;

        bestPlan = sCost;
        bestJ = j;
      }
      if( doNotReorder ) break;
    }

    assert( once );
    assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
    WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
           pLevel-pWInfo->a));
    if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
      *ppOrderBy = 0;
    }
    andFlags &= bestPlan.plan.wsFlags;







|

|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
>
>
>
|
<
>
|
|
|
|
|
>
|







87719
87720
87721
87722
87723
87724
87725
87726
87727
87728
87729
87730
87731
87732
87733
87734
87735
87736
87737
87738
87739
87740
87741
87742
87743
87744
87745
87746
87747
87748
87749
87750
87751
87752
87753
87754
87755
87756
87757
87758
87759
87760
87761
87762
87763
87764
87765
87766
87767
87768
87769
87770
87771
87772
87773
87774
87775
87776
87777
87778
87779
87780
87781
87782
87783
87784
87785
87786
87787
87788
87789
87790
87791
87792
87793
87794
87795

87796
87797
87798
87799
87800
87801
87802
87803
87804
87805
87806
87807
87808
87809
87810
  pLevel = pWInfo->a;
  andFlags = ~0;
  WHERETRACE(("*** Optimizer Start ***\n"));
  for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    WhereCost bestPlan;         /* Most efficient plan seen so far */
    Index *pIdx;                /* Index for FROM table at pTabItem */
    int j;                      /* For looping over FROM tables */
    int bestJ = -1;             /* The value of j */
    Bitmask m;                  /* Bitmask value for j or bestJ */
    int isOptimal;              /* Iterator for optimal/non-optimal search */

    memset(&bestPlan, 0, sizeof(bestPlan));
    bestPlan.rCost = SQLITE_BIG_DBL;

    /* Loop through the remaining entries in the FROM clause to find the
    ** next nested loop. The FROM clause entries may be iterated through
    ** either once or twice. 
    **
    ** The first iteration, which is always performed, searches for the
    ** FROM clause entry that permits the lowest-cost, "optimal" scan. In
    ** this context an optimal scan is one that uses the same strategy
    ** for the given FROM clause entry as would be selected if the entry
    ** were used as the innermost nested loop.  In other words, a table
    ** is chosen such that the cost of running that table cannot be reduced
    ** by waiting for other tables to run first.
    **
    ** The second iteration is only performed if no optimal scan strategies
    ** were found by the first. This iteration is used to search for the
    ** lowest cost scan overall.
    **
    ** Previous versions of SQLite performed only the second iteration -
    ** the next outermost loop was always that with the lowest overall
    ** cost. However, this meant that SQLite could select the wrong plan
    ** for scripts such as the following:
    **   
    **   CREATE TABLE t1(a, b); 
    **   CREATE TABLE t2(c, d);
    **   SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
    **
    ** The best strategy is to iterate through table t1 first. However it
    ** is not possible to determine this with a simple greedy algorithm.
    ** However, since the cost of a linear scan through table t2 is the same 
    ** as the cost of a linear scan through table t1, a simple greedy 
    ** algorithm may choose to use t2 for the outer loop, which is a much
    ** costlier approach.
    */
    for(isOptimal=1; isOptimal>=0 && bestJ<0; isOptimal--){
      Bitmask mask = (isOptimal ? 0 : notReady);
      assert( (pTabList->nSrc-iFrom)>1 || isOptimal );
      for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
        int doNotReorder;    /* True if this table should not be reordered */
        WhereCost sCost;     /* Cost information from best[Virtual]Index() */
        ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */
  
        doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
        if( j!=iFrom && doNotReorder ) break;
        m = getMask(pMaskSet, pTabItem->iCursor);
        if( (m & notReady)==0 ){
          if( j==iFrom ) iFrom++;
          continue;
        }
        pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
  
        assert( pTabItem->pTab );
#ifndef SQLITE_OMIT_VIRTUALTABLE
        if( IsVirtual(pTabItem->pTab) ){
          sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
          bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp);
        }else 
#endif
        {
          bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost);
        }
        assert( isOptimal || (sCost.used&notReady)==0 );

        if( (sCost.used&notReady)==0
         && (j==iFrom || sCost.rCost<bestPlan.rCost) 

        ){
          bestPlan = sCost;
          bestJ = j;
        }
        if( doNotReorder ) break;
      }
    }
    assert( bestJ>=0 );
    assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
    WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
           pLevel-pWInfo->a));
    if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
      *ppOrderBy = 0;
    }
    andFlags &= bestPlan.plan.wsFlags;
89613
89614
89615
89616
89617
89618
89619
89620
89621
89622
89623
89624
89625
89626
89627
*/
/************** Include keywordhash.h in the middle of tokenize.c ************/
/************** Begin file keywordhash.h *************************************/
/***** This file contains automatically generated code ******
**
** The code in this file has been automatically generated by
**
**     $Header: /sqlite/sqlite/tool/mkkeywordhash.c,v 1.38 2009/06/09 14:27:41 drh Exp $
**
** The code in this file implements a function that determines whether
** or not a given identifier is really an SQL keyword.  The same thing
** might be implemented more directly using a hand-written hash table.
** But by using this automatically generated code, the size of the code
** is substantially reduced.  This is important for embedded applications
** on platforms with limited memory.







|







91343
91344
91345
91346
91347
91348
91349
91350
91351
91352
91353
91354
91355
91356
91357
*/
/************** Include keywordhash.h in the middle of tokenize.c ************/
/************** Begin file keywordhash.h *************************************/
/***** This file contains automatically generated code ******
**
** The code in this file has been automatically generated by
**
**     $Header: /home/drh/sqlite/trans/cvs/sqlite/sqlite/tool/mkkeywordhash.c,v 1.38 2009/06/09 14:27:41 drh Exp $
**
** The code in this file implements a function that determines whether
** or not a given identifier is really an SQL keyword.  The same thing
** might be implemented more directly using a hand-written hash table.
** But by using this automatically generated code, the size of the code
** is substantially reduced.  This is important for embedded applications
** on platforms with limited memory.
90613
90614
90615
90616
90617
90618
90619
90620
90621
90622
90623
90624
90625
90626
90627
90628
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.562 2009/07/20 11:32:03 drh Exp $
*/

#ifdef SQLITE_ENABLE_FTS3
/************** Include fts3.h in the middle of main.c ***********************/
/************** Begin file fts3.h ********************************************/
/*
** 2006 Oct 10







<
<







92343
92344
92345
92346
92347
92348
92349


92350
92351
92352
92353
92354
92355
92356
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.


*/

#ifdef SQLITE_ENABLE_FTS3
/************** Include fts3.h in the middle of main.c ***********************/
/************** Begin file fts3.h ********************************************/
/*
** 2006 Oct 10
90722
90723
90724
90725
90726
90727
90728

90729
90730
90731
90732
90733
90734
90735
/*
** The version of the library
*/
#ifndef SQLITE_AMALGAMATION
SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
#endif
SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; }

SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }

#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** If the following function pointer is not NULL and if
** SQLITE_ENABLE_IOTRACE is enabled, then messages describing







>







92450
92451
92452
92453
92454
92455
92456
92457
92458
92459
92460
92461
92462
92463
92464
/*
** The version of the library
*/
#ifndef SQLITE_AMALGAMATION
SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
#endif
SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; }
SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }

#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** If the following function pointer is not NULL and if
** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
90812
90813
90814
90815
90816
90817
90818

90819
90820
90821
90822
90823
90824
90825

90826
90827
90828
90829
90830
90831
90832
90833
90834
90835
90836
90837
90838
90839

90840
90841
90842
90843
90844
90845
90846
90847
90848
90849
90850
90851
90852
90853
90854
90855

90856

90857

90858
90859
90860
90861
90862
90863
90864
90865
  ** This operation is protected by the STATIC_MASTER mutex.  Note that
  ** MutexAlloc() is called for a static mutex prior to initializing the
  ** malloc subsystem - this implies that the allocation of a static
  ** mutex must not require support from the malloc subsystem.
  */
  pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
  sqlite3_mutex_enter(pMaster);

  if( !sqlite3GlobalConfig.isMallocInit ){
    rc = sqlite3MallocInit();
  }
  if( rc==SQLITE_OK ){
    sqlite3GlobalConfig.isMallocInit = 1;
    if( !sqlite3GlobalConfig.pInitMutex ){
      sqlite3GlobalConfig.pInitMutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);

      if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){
        rc = SQLITE_NOMEM;
      }
    }
  }
  if( rc==SQLITE_OK ){
    sqlite3GlobalConfig.nRefInitMutex++;
  }
  sqlite3_mutex_leave(pMaster);

  /* If unable to initialize the malloc subsystem, then return early.
  ** There is little hope of getting SQLite to run if the malloc
  ** subsystem cannot be initialized.
  */

  if( rc!=SQLITE_OK ){
    return rc;
  }

  /* Do the rest of the initialization under the recursive mutex so
  ** that we will be able to handle recursive calls into
  ** sqlite3_initialize().  The recursive calls normally come through
  ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other
  ** recursive calls might also be possible.
  */
  sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
  if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
    FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
    sqlite3GlobalConfig.inProgress = 1;
    memset(pHash, 0, sizeof(sqlite3GlobalFunctions));
    sqlite3RegisterGlobalFunctions();

    rc = sqlite3PcacheInitialize();

    if( rc==SQLITE_OK ){

      rc = sqlite3_os_init();
    }
    if( rc==SQLITE_OK ){
      sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 
          sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
      sqlite3GlobalConfig.isInit = 1;
    }
    sqlite3GlobalConfig.inProgress = 0;







>






|
>










|
<
|
<
>
















>
|
>

>
|







92541
92542
92543
92544
92545
92546
92547
92548
92549
92550
92551
92552
92553
92554
92555
92556
92557
92558
92559
92560
92561
92562
92563
92564
92565
92566
92567

92568

92569
92570
92571
92572
92573
92574
92575
92576
92577
92578
92579
92580
92581
92582
92583
92584
92585
92586
92587
92588
92589
92590
92591
92592
92593
92594
92595
92596
92597
92598
  ** This operation is protected by the STATIC_MASTER mutex.  Note that
  ** MutexAlloc() is called for a static mutex prior to initializing the
  ** malloc subsystem - this implies that the allocation of a static
  ** mutex must not require support from the malloc subsystem.
  */
  pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
  sqlite3_mutex_enter(pMaster);
  sqlite3GlobalConfig.isMutexInit = 1;
  if( !sqlite3GlobalConfig.isMallocInit ){
    rc = sqlite3MallocInit();
  }
  if( rc==SQLITE_OK ){
    sqlite3GlobalConfig.isMallocInit = 1;
    if( !sqlite3GlobalConfig.pInitMutex ){
      sqlite3GlobalConfig.pInitMutex =
           sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
      if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){
        rc = SQLITE_NOMEM;
      }
    }
  }
  if( rc==SQLITE_OK ){
    sqlite3GlobalConfig.nRefInitMutex++;
  }
  sqlite3_mutex_leave(pMaster);

  /* If rc is not SQLITE_OK at this point, then either the malloc

  ** subsystem could not be initialized or the system failed to allocate

  ** the pInitMutex mutex. Return an error in either case.  */
  if( rc!=SQLITE_OK ){
    return rc;
  }

  /* Do the rest of the initialization under the recursive mutex so
  ** that we will be able to handle recursive calls into
  ** sqlite3_initialize().  The recursive calls normally come through
  ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other
  ** recursive calls might also be possible.
  */
  sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
  if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
    FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
    sqlite3GlobalConfig.inProgress = 1;
    memset(pHash, 0, sizeof(sqlite3GlobalFunctions));
    sqlite3RegisterGlobalFunctions();
    if( sqlite3GlobalConfig.isPCacheInit==0 ){
      rc = sqlite3PcacheInitialize();
    }
    if( rc==SQLITE_OK ){
      sqlite3GlobalConfig.isPCacheInit = 1;
      rc = sqlite3OsInit();
    }
    if( rc==SQLITE_OK ){
      sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 
          sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
      sqlite3GlobalConfig.isInit = 1;
    }
    sqlite3GlobalConfig.inProgress = 0;
90906
90907
90908
90909
90910
90911
90912


90913


90914
90915

90916
90917



90918
90919
90920

90921
90922
90923
90924
90925
90926
90927
** while any part of SQLite is otherwise in use in any thread.  This
** routine is not threadsafe.  But it is safe to invoke this routine
** on when SQLite is already shut down.  If SQLite is already shut down
** when this routine is invoked, then this routine is a harmless no-op.
*/
SQLITE_API int sqlite3_shutdown(void){
  if( sqlite3GlobalConfig.isInit ){


    sqlite3GlobalConfig.isMallocInit = 0;


    sqlite3PcacheShutdown();
    sqlite3_os_end();

    sqlite3_reset_auto_extension();
    sqlite3MallocEnd();



    sqlite3MutexEnd();
    sqlite3GlobalConfig.isInit = 0;
  }

  return SQLITE_OK;
}

/*
** This API allows applications to modify the global configuration of
** the SQLite library at run-time.
**







>
>
|
>
>

|
>
|

>
>
>

|

>







92639
92640
92641
92642
92643
92644
92645
92646
92647
92648
92649
92650
92651
92652
92653
92654
92655
92656
92657
92658
92659
92660
92661
92662
92663
92664
92665
92666
92667
92668
92669
** while any part of SQLite is otherwise in use in any thread.  This
** routine is not threadsafe.  But it is safe to invoke this routine
** on when SQLite is already shut down.  If SQLite is already shut down
** when this routine is invoked, then this routine is a harmless no-op.
*/
SQLITE_API int sqlite3_shutdown(void){
  if( sqlite3GlobalConfig.isInit ){
    sqlite3_os_end();
    sqlite3_reset_auto_extension();
    sqlite3GlobalConfig.isInit = 0;
  }
  if( sqlite3GlobalConfig.isPCacheInit ){
    sqlite3PcacheShutdown();
    sqlite3GlobalConfig.isPCacheInit = 0;
  }
  if( sqlite3GlobalConfig.isMallocInit ){
    sqlite3MallocEnd();
    sqlite3GlobalConfig.isMallocInit = 0;
  }
  if( sqlite3GlobalConfig.isMutexInit ){
    sqlite3MutexEnd();
    sqlite3GlobalConfig.isMutexInit = 0;
  }

  return SQLITE_OK;
}

/*
** This API allows applications to modify the global configuration of
** the SQLite library at run-time.
**
92032
92033
92034
92035
92036
92037
92038
92039
92040
92041

92042
92043
92044
92045
92046
92047
92048
}

/*
** Create a new collating function for database "db".  The name is zName
** and the encoding is enc.
*/
static int createCollation(
  sqlite3* db, 
  const char *zName, 
  int enc, 

  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*),
  void(*xDel)(void*)
){
  CollSeq *pColl;
  int enc2;
  int nName = sqlite3Strlen30(zName);







|

|
>







93774
93775
93776
93777
93778
93779
93780
93781
93782
93783
93784
93785
93786
93787
93788
93789
93790
93791
}

/*
** Create a new collating function for database "db".  The name is zName
** and the encoding is enc.
*/
static int createCollation(
  sqlite3* db,
  const char *zName, 
  u8 enc,
  u8 collType,
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*),
  void(*xDel)(void*)
){
  CollSeq *pColl;
  int enc2;
  int nName = sqlite3Strlen30(zName);
92099
92100
92101
92102
92103
92104
92105

92106
92107
92108
92109
92110
92111
92112

  pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1);
  if( pColl ){
    pColl->xCmp = xCompare;
    pColl->pUser = pCtx;
    pColl->xDel = xDel;
    pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED));

  }
  sqlite3Error(db, SQLITE_OK, 0);
  return SQLITE_OK;
}


/*







>







93842
93843
93844
93845
93846
93847
93848
93849
93850
93851
93852
93853
93854
93855
93856

  pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1);
  if( pColl ){
    pColl->xCmp = xCompare;
    pColl->pUser = pCtx;
    pColl->xDel = xDel;
    pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED));
    pColl->type = collType;
  }
  sqlite3Error(db, SQLITE_OK, 0);
  return SQLITE_OK;
}


/*
92121
92122
92123
92124
92125
92126
92127

92128
92129
92130
92131
92132
92133
92134
  SQLITE_MAX_EXPR_DEPTH,
  SQLITE_MAX_COMPOUND_SELECT,
  SQLITE_MAX_VDBE_OP,
  SQLITE_MAX_FUNCTION_ARG,
  SQLITE_MAX_ATTACHED,
  SQLITE_MAX_LIKE_PATTERN_LENGTH,
  SQLITE_MAX_VARIABLE_NUMBER,

};

/*
** Make sure the hard limits are set to reasonable values
*/
#if SQLITE_MAX_LENGTH<100
# error SQLITE_MAX_LENGTH must be at least 100







>







93865
93866
93867
93868
93869
93870
93871
93872
93873
93874
93875
93876
93877
93878
93879
  SQLITE_MAX_EXPR_DEPTH,
  SQLITE_MAX_COMPOUND_SELECT,
  SQLITE_MAX_VDBE_OP,
  SQLITE_MAX_FUNCTION_ARG,
  SQLITE_MAX_ATTACHED,
  SQLITE_MAX_LIKE_PATTERN_LENGTH,
  SQLITE_MAX_VARIABLE_NUMBER,
  SQLITE_MAX_TRIGGER_DEPTH,
};

/*
** Make sure the hard limits are set to reasonable values
*/
#if SQLITE_MAX_LENGTH<100
# error SQLITE_MAX_LENGTH must be at least 100
92156
92157
92158
92159
92160
92161
92162



92163
92164
92165
92166
92167
92168
92169
#endif
#if SQLITE_MAX_VARIABLE_NUMBER<1
# error SQLITE_MAX_VARIABLE_NUMBER must be at least 1
#endif
#if SQLITE_MAX_COLUMN>32767
# error SQLITE_MAX_COLUMN must not exceed 32767
#endif





/*
** Change the value of a limit.  Report the old value.
** If an invalid limit index is supplied, report -1.
** Make no changes but still report the old value if the
** new limit is negative.







>
>
>







93901
93902
93903
93904
93905
93906
93907
93908
93909
93910
93911
93912
93913
93914
93915
93916
93917
#endif
#if SQLITE_MAX_VARIABLE_NUMBER<1
# error SQLITE_MAX_VARIABLE_NUMBER must be at least 1
#endif
#if SQLITE_MAX_COLUMN>32767
# error SQLITE_MAX_COLUMN must not exceed 32767
#endif
#if SQLITE_MAX_TRIGGER_DEPTH<1
# error SQLITE_MAX_TRIGGER_DEPTH must be at least 1
#endif


/*
** Change the value of a limit.  Report the old value.
** If an invalid limit index is supplied, report -1.
** Make no changes but still report the old value if the
** new limit is negative.
92196
92197
92198
92199
92200
92201
92202
92203
92204
92205
92206
92207
92208
92209
92210
92211
92212
92213
92214
92215
92216
92217
92218
92219





92220
92221
92222
92223
92224
92225
92226
  const char *zFilename, /* Database filename UTF-8 encoded */
  sqlite3 **ppDb,        /* OUT: Returned database handle */
  unsigned flags,        /* Operational flags */
  const char *zVfs       /* Name of the VFS to use */
){
  sqlite3 *db;
  int rc;
  CollSeq *pColl;
  int isThreadsafe;

  *ppDb = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite3_initialize();
  if( rc ) return rc;
#endif

  if( sqlite3GlobalConfig.bCoreMutex==0 ){
    isThreadsafe = 0;
  }else if( flags & SQLITE_OPEN_NOMUTEX ){
    isThreadsafe = 0;
  }else if( flags & SQLITE_OPEN_FULLMUTEX ){
    isThreadsafe = 1;
  }else{
    isThreadsafe = sqlite3GlobalConfig.bFullMutex;





  }

  /* Remove harmful bits from the flags parameter
  **
  ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were
  ** dealt with in the previous code block.  Besides these, the only
  ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY,







<
















>
>
>
>
>







93944
93945
93946
93947
93948
93949
93950

93951
93952
93953
93954
93955
93956
93957
93958
93959
93960
93961
93962
93963
93964
93965
93966
93967
93968
93969
93970
93971
93972
93973
93974
93975
93976
93977
93978
  const char *zFilename, /* Database filename UTF-8 encoded */
  sqlite3 **ppDb,        /* OUT: Returned database handle */
  unsigned flags,        /* Operational flags */
  const char *zVfs       /* Name of the VFS to use */
){
  sqlite3 *db;
  int rc;

  int isThreadsafe;

  *ppDb = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite3_initialize();
  if( rc ) return rc;
#endif

  if( sqlite3GlobalConfig.bCoreMutex==0 ){
    isThreadsafe = 0;
  }else if( flags & SQLITE_OPEN_NOMUTEX ){
    isThreadsafe = 0;
  }else if( flags & SQLITE_OPEN_FULLMUTEX ){
    isThreadsafe = 1;
  }else{
    isThreadsafe = sqlite3GlobalConfig.bFullMutex;
  }
  if( flags & SQLITE_OPEN_PRIVATECACHE ){
    flags &= ~SQLITE_OPEN_SHAREDCACHE;
  }else if( sqlite3GlobalConfig.sharedCacheEnabled ){
    flags |= SQLITE_OPEN_SHAREDCACHE;
  }

  /* Remove harmful bits from the flags parameter
  **
  ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were
  ** dealt with in the previous code block.  Besides these, the only
  ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY,
92265
92266
92267
92268
92269
92270
92271



92272
92273
92274
92275
92276
92277
92278
92279
92280
92281
92282
92283
92284
92285
92286
92287
92288
92289

92290

92291

92292

92293
92294
92295
92296
92297
92298
92299
92300
92301
92302
92303
92304
92305
92306
92307
92308
92309
92310
92311
92312
92313
92314
  db->flags |= SQLITE_ShortColNames
#if SQLITE_DEFAULT_FILE_FORMAT<4
                 | SQLITE_LegacyFileFmt
#endif
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
                 | SQLITE_LoadExtension
#endif



      ;
  sqlite3HashInit(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3HashInit(&db->aModule);
#endif

  db->pVfs = sqlite3_vfs_find(zVfs);
  if( !db->pVfs ){
    rc = SQLITE_ERROR;
    sqlite3Error(db, rc, "no such vfs: %s", zVfs);
    goto opendb_out;
  }

  /* Add the default collation sequence BINARY. BINARY works for both UTF-8
  ** and UTF-16, so add a version for each to avoid any unnecessary
  ** conversions. The only error that can occur here is a malloc() failure.
  */
  createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);

  createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);

  createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);

  createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);

  if( db->mallocFailed ){
    goto opendb_out;
  }
  db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
  assert( db->pDfltColl!=0 );

  /* Also add a UTF-8 case-insensitive collation sequence. */
  createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);

  /* Set flags on the built-in collating sequences */
  db->pDfltColl->type = SQLITE_COLL_BINARY;
  pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 0);
  if( pColl ){
    pColl->type = SQLITE_COLL_NOCASE;
  }

  /* Open the backend database driver */
  db->openFlags = flags;
  rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE, 
                           flags | SQLITE_OPEN_MAIN_DB,
                           &db->aDb[0].pBt);
  if( rc!=SQLITE_OK ){







>
>
>

















|
>
|
>
|
>
|
>







|
|
<
<
<
<
<
<







94017
94018
94019
94020
94021
94022
94023
94024
94025
94026
94027
94028
94029
94030
94031
94032
94033
94034
94035
94036
94037
94038
94039
94040
94041
94042
94043
94044
94045
94046
94047
94048
94049
94050
94051
94052
94053
94054
94055
94056
94057
94058
94059
94060






94061
94062
94063
94064
94065
94066
94067
  db->flags |= SQLITE_ShortColNames
#if SQLITE_DEFAULT_FILE_FORMAT<4
                 | SQLITE_LegacyFileFmt
#endif
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
                 | SQLITE_LoadExtension
#endif
#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
                 | SQLITE_RecTriggers
#endif
      ;
  sqlite3HashInit(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3HashInit(&db->aModule);
#endif

  db->pVfs = sqlite3_vfs_find(zVfs);
  if( !db->pVfs ){
    rc = SQLITE_ERROR;
    sqlite3Error(db, rc, "no such vfs: %s", zVfs);
    goto opendb_out;
  }

  /* Add the default collation sequence BINARY. BINARY works for both UTF-8
  ** and UTF-16, so add a version for each to avoid any unnecessary
  ** conversions. The only error that can occur here is a malloc() failure.
  */
  createCollation(db, "BINARY", SQLITE_UTF8, SQLITE_COLL_BINARY, 0,
                  binCollFunc, 0);
  createCollation(db, "BINARY", SQLITE_UTF16BE, SQLITE_COLL_BINARY, 0,
                  binCollFunc, 0);
  createCollation(db, "BINARY", SQLITE_UTF16LE, SQLITE_COLL_BINARY, 0,
                  binCollFunc, 0);
  createCollation(db, "RTRIM", SQLITE_UTF8, SQLITE_COLL_USER, (void*)1,
                  binCollFunc, 0);
  if( db->mallocFailed ){
    goto opendb_out;
  }
  db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
  assert( db->pDfltColl!=0 );

  /* Also add a UTF-8 case-insensitive collation sequence. */
  createCollation(db, "NOCASE", SQLITE_UTF8, SQLITE_COLL_NOCASE, 0,
                  nocaseCollatingFunc, 0);







  /* Open the backend database driver */
  db->openFlags = flags;
  rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE, 
                           flags | SQLITE_OPEN_MAIN_DB,
                           &db->aDb[0].pBt);
  if( rc!=SQLITE_OK ){
92481
92482
92483
92484
92485
92486
92487
92488
92489
92490
92491
92492
92493
92494
92495
92496
92497
92498
92499
92500
92501
92502
92503
92504
92505
92506
92507
92508
92509
92510
92511
92512
92513
92514
92515
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*)
){
  int rc;
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  rc = createCollation(db, zName, enc, pCtx, xCompare, 0);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int sqlite3_create_collation_v2(
  sqlite3* db, 
  const char *zName, 
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*),
  void(*xDel)(void*)
){
  int rc;
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  rc = createCollation(db, zName, enc, pCtx, xCompare, xDel);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

#ifndef SQLITE_OMIT_UTF16
/*







|



















|







94234
94235
94236
94237
94238
94239
94240
94241
94242
94243
94244
94245
94246
94247
94248
94249
94250
94251
94252
94253
94254
94255
94256
94257
94258
94259
94260
94261
94262
94263
94264
94265
94266
94267
94268
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*)
){
  int rc;
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  rc = createCollation(db, zName, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, 0);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int sqlite3_create_collation_v2(
  sqlite3* db, 
  const char *zName, 
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*),
  void(*xDel)(void*)
){
  int rc;
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  rc = createCollation(db, zName, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, xDel);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

#ifndef SQLITE_OMIT_UTF16
/*
92524
92525
92526
92527
92528
92529
92530
92531
92532
92533
92534
92535
92536
92537
92538
){
  int rc = SQLITE_OK;
  char *zName8;
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  zName8 = sqlite3Utf16to8(db, zName, -1);
  if( zName8 ){
    rc = createCollation(db, zName8, enc, pCtx, xCompare, 0);
    sqlite3DbFree(db, zName8);
  }
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}
#endif /* SQLITE_OMIT_UTF16 */







|







94277
94278
94279
94280
94281
94282
94283
94284
94285
94286
94287
94288
94289
94290
94291
){
  int rc = SQLITE_OK;
  char *zName8;
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  zName8 = sqlite3Utf16to8(db, zName, -1);
  if( zName8 ){
    rc = createCollation(db, zName8, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, 0);
    sqlite3DbFree(db, zName8);
  }
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}
#endif /* SQLITE_OMIT_UTF16 */
Changes to src/sqlite3.h.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
** or constant definition does not appear in this file, then it is
** not a published API of SQLite, is subject to change without
** notice, and should not be referenced by programs that use SQLite.
**
** Some of the definitions that are in this file are marked as
** "experimental".  Experimental interfaces are normally new
** features recently added to SQLite.  We do not anticipate changes
** to experimental interfaces but reserve to make minor changes if
** experience from use "in the wild" suggest such changes are prudent.
**
** The official C-language API documentation for SQLite is derived
** from comments in this file.  This file is the authoritative source
** on how SQLite interfaces are suppose to operate.
**
** The name of this file under configuration management is "sqlite.h.in".
** The makefile makes some minor changes to this file (such as inserting
** the version number) and changes its name to "sqlite3.h" as
** part of the build process.
**
** @(#) $Id: sqlite.h.in,v 1.462 2009/08/06 17:40:46 drh Exp $
*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
#include <stdarg.h>     /* Needed for the definition of va_list */

/*
** Make sure we can call this stuff from C++.







|
|









<
<







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


32
33
34
35
36
37
38
** or constant definition does not appear in this file, then it is
** not a published API of SQLite, is subject to change without
** notice, and should not be referenced by programs that use SQLite.
**
** Some of the definitions that are in this file are marked as
** "experimental".  Experimental interfaces are normally new
** features recently added to SQLite.  We do not anticipate changes
** to experimental interfaces but reserve the right to make minor changes
** if experience from use "in the wild" suggest such changes are prudent.
**
** The official C-language API documentation for SQLite is derived
** from comments in this file.  This file is the authoritative source
** on how SQLite interfaces are suppose to operate.
**
** The name of this file under configuration management is "sqlite.h.in".
** The makefile makes some minor changes to this file (such as inserting
** the version number) and changes its name to "sqlite3.h" as
** part of the build process.


*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
#include <stdarg.h>     /* Needed for the definition of va_list */

/*
** Make sure we can call this stuff from C++.
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# define SQLITE_API
#endif


/*
** These no-op macros are used in front of interfaces to mark those
** interfaces as either deprecated or experimental.  New applications
** should not use deprecated intrfaces - they are support for backwards
** compatibility only.  Application writers should be aware that
** experimental interfaces are subject to change in point releases.
**
** These macros used to resolve to various kinds of compiler magic that
** would generate warning messages when they were used.  But that
** compiler magic ended up generating such a flurry of bug reports
** that we have taken it all out and gone back to using simple







|







53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# define SQLITE_API
#endif


/*
** These no-op macros are used in front of interfaces to mark those
** interfaces as either deprecated or experimental.  New applications
** should not use deprecated interfaces - they are support for backwards
** compatibility only.  Application writers should be aware that
** experimental interfaces are subject to change in point releases.
**
** These macros used to resolve to various kinds of compiler magic that
** would generate warning messages when they were used.  But that
** compiler magic ended up generating such a flurry of bug reports
** that we have taken it all out and gone back to using simple
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102















103


104
105
106
107
108

109
110
111
112
113
114
115
116


117



118

119

120
121
122
123
124




125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*
** CAPI3REF: Compile-Time Library Version Numbers {H10010} <S60100>
**
** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
** the sqlite3.h file specify the version of SQLite with which
** that header file is associated.
**
** The "version" of SQLite is a string of the form "X.Y.Z".
** The phrase "alpha" or "beta" might be appended after the Z.
** The X value is major version number always 3 in SQLite3.
** The X value only changes when backwards compatibility is
** broken and we intend to never break backwards compatibility.
** The Y value is the minor version number and only changes when
** there are major feature enhancements that are forwards compatible
** but not backwards compatible.
** The Z value is the release number and is incremented with
** each release but resets back to 0 whenever Y is incremented.

**















** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].


**
** Requirements: [H10011] [H10014]
*/
#define SQLITE_VERSION         "3.6.17"
#define SQLITE_VERSION_NUMBER  3006017


/*
** CAPI3REF: Run-Time Library Version Numbers {H10020} <S60100>
** KEYWORDS: sqlite3_version
**
** These features provide the same information as the [SQLITE_VERSION]
** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated
** with the library instead of the header file.  Cautious programmers might


** include a check in their application to verify that



** sqlite3_libversion_number() always returns the value

** [SQLITE_VERSION_NUMBER].

**
** The sqlite3_libversion() function returns the same information as is
** in the sqlite3_version[] string constant.  The function is provided
** for use in DLLs since DLL users usually do not have direct access to string
** constants within the DLL.




**
** Requirements: [H10021] [H10022] [H10023]
*/
SQLITE_API SQLITE_EXTERN const char sqlite3_version[];
SQLITE_API const char *sqlite3_libversion(void);

SQLITE_API int sqlite3_libversion_number(void);

/*
** CAPI3REF: Test To See If The Library Is Threadsafe {H10100} <S60100>
**
** SQLite can be compiled with or without mutexes.  When
** the [SQLITE_THREADSAFE] C preprocessor macro 1 or 2, mutexes
** are enabled and SQLite is threadsafe.  When the
** [SQLITE_THREADSAFE] macro is 0, 
** the mutexes are omitted.  Without the mutexes, it is not safe
** to use SQLite concurrently from more than one thread.
**
** Enabling mutexes incurs a measurable performance penalty.
** So if speed is of utmost importance, it makes sense to disable
** the mutexes.  But for maximum safety, mutexes should be enabled.
** The default behavior is for mutexes to be enabled.
**
** This interface can be used by a program to make sure that the
** version of SQLite that it is linking against was compiled with
** the desired setting of the [SQLITE_THREADSAFE] macro.
**
** This interface only reports on the compile-time mutex setting
** of the [SQLITE_THREADSAFE] flag.  If SQLite is compiled with
** SQLITE_THREADSAFE=1 then mutexes are enabled by default but
** can be fully or partially disabled using a call to [sqlite3_config()]







|
<
|
|

|


|
|
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>



|
|
>





|
|
|
>
>
|
>
>
>
|
>
|
>




|
>
>
>
>





>






|










|







83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
** CAPI3REF: Compile-Time Library Version Numbers {H10010} <S60100>
**
** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
** the sqlite3.h file specify the version of SQLite with which
** that header file is associated.
**
** The "version" of SQLite is a string of the form "W.X.Y" or "W.X.Y.Z".

** The W value is major version number and is always 3 in SQLite3.
** The W value only changes when backwards compatibility is
** broken and we intend to never break backwards compatibility.
** The X value is the minor version number and only changes when
** there are major feature enhancements that are forwards compatible
** but not backwards compatible.
** The Y value is the release number and is incremented with
** each release but resets back to 0 whenever X is incremented.
** The Z value only appears on branch releases.
**
** The SQLITE_VERSION_NUMBER is an integer that is computed as
** follows:
**
** <blockquote><pre>
** SQLITE_VERSION_NUMBER = W*1000000 + X*1000 + Y
** </pre></blockquote>
**
** Since version 3.6.18, SQLite source code has been stored in the
** <a href="http://www.fossil-scm.org/">fossil configuration management
** system</a>.  The SQLITE_SOURCE_ID
** macro is a string which identifies a particular check-in of SQLite
** within its configuration management system.  The string contains the
** date and time of the check-in (UTC) and an SHA1 hash of the entire
** source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
**
** Requirements: [H10011] [H10014]
*/
#define SQLITE_VERSION        "3.6.18"
#define SQLITE_VERSION_NUMBER 3006018
#define SQLITE_SOURCE_ID      "2009-09-10 22:30:54 3ea10434434d27a1300ba2b58e2c47c54909f4ff"

/*
** CAPI3REF: Run-Time Library Version Numbers {H10020} <S60100>
** KEYWORDS: sqlite3_version
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] #defines in the header,
** but are associated with the library instead of the header file.  Cautious
** programmers might include assert() statements in their application to
** verify that values returned by these interfaces match the macros in
** the header, and thus insure that the application is
** compiled with matching library and header files.
**
** <blockquote><pre>
** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
** assert( strcmp(sqlite3_libversion,SQLITE_VERSION)==0 );
** </pre></blockquote>
**
** The sqlite3_libversion() function returns the same information as is
** in the sqlite3_version[] string constant.  The function is provided
** for use in DLLs since DLL users usually do not have direct access to string
** constants within the DLL.  Similarly, the sqlite3_sourceid() function
** returns the same information as is in the [SQLITE_SOURCE_ID] #define of
** the header file.
**
** See also: [sqlite_version()] and [sqlite_source_id()].
**
** Requirements: [H10021] [H10022] [H10023]
*/
SQLITE_API SQLITE_EXTERN const char sqlite3_version[];
SQLITE_API const char *sqlite3_libversion(void);
SQLITE_API const char *sqlite3_sourceid(void);
SQLITE_API int sqlite3_libversion_number(void);

/*
** CAPI3REF: Test To See If The Library Is Threadsafe {H10100} <S60100>
**
** SQLite can be compiled with or without mutexes.  When
** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
** are enabled and SQLite is threadsafe.  When the
** [SQLITE_THREADSAFE] macro is 0, 
** the mutexes are omitted.  Without the mutexes, it is not safe
** to use SQLite concurrently from more than one thread.
**
** Enabling mutexes incurs a measurable performance penalty.
** So if speed is of utmost importance, it makes sense to disable
** the mutexes.  But for maximum safety, mutexes should be enabled.
** The default behavior is for mutexes to be enabled.
**
** This interface can be used by an application to make sure that the
** version of SQLite that it is linking against was compiled with
** the desired setting of the [SQLITE_THREADSAFE] macro.
**
** This interface only reports on the compile-time mutex setting
** of the [SQLITE_THREADSAFE] flag.  If SQLite is compiled with
** SQLITE_THREADSAFE=1 then mutexes are enabled by default but
** can be fully or partially disabled using a call to [sqlite3_config()]
407
408
409
410
411
412
413


414
415
416
417
418
419
420
#define SQLITE_OPEN_TRANSIENT_DB     0x00000400  /* VFS only */
#define SQLITE_OPEN_MAIN_JOURNAL     0x00000800  /* VFS only */
#define SQLITE_OPEN_TEMP_JOURNAL     0x00001000  /* VFS only */
#define SQLITE_OPEN_SUBJOURNAL       0x00002000  /* VFS only */
#define SQLITE_OPEN_MASTER_JOURNAL   0x00004000  /* VFS only */
#define SQLITE_OPEN_NOMUTEX          0x00008000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_FULLMUTEX        0x00010000  /* Ok for sqlite3_open_v2() */



/*
** CAPI3REF: Device Characteristics {H10240} <H11120>
**
** The xDeviceCapabilities method of the [sqlite3_io_methods]
** object returns an integer which is a vector of the these
** bit values expressing I/O characteristics of the mass storage







>
>







435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#define SQLITE_OPEN_TRANSIENT_DB     0x00000400  /* VFS only */
#define SQLITE_OPEN_MAIN_JOURNAL     0x00000800  /* VFS only */
#define SQLITE_OPEN_TEMP_JOURNAL     0x00001000  /* VFS only */
#define SQLITE_OPEN_SUBJOURNAL       0x00002000  /* VFS only */
#define SQLITE_OPEN_MASTER_JOURNAL   0x00004000  /* VFS only */
#define SQLITE_OPEN_NOMUTEX          0x00008000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_FULLMUTEX        0x00010000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_SHAREDCACHE      0x00020000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_PRIVATECACHE     0x00040000  /* Ok for sqlite3_open_v2() */

/*
** CAPI3REF: Device Characteristics {H10240} <H11120>
**
** The xDeviceCapabilities method of the [sqlite3_io_methods]
** object returns an integer which is a vector of the these
** bit values expressing I/O characteristics of the mass storage
474
475
476
477
478
479
480
481

482
483
484
485
486
487
488
489
#define SQLITE_SYNC_NORMAL        0x00002
#define SQLITE_SYNC_FULL          0x00003
#define SQLITE_SYNC_DATAONLY      0x00010

/*
** CAPI3REF: OS Interface Open File Handle {H11110} <S20110>
**
** An [sqlite3_file] object represents an open file in the OS

** interface layer.  Individual OS interface implementations will
** want to subclass this object by appending additional fields
** for their own use.  The pMethods entry is a pointer to an
** [sqlite3_io_methods] object that defines methods for performing
** I/O operations on the open file.
*/
typedef struct sqlite3_file sqlite3_file;
struct sqlite3_file {







|
>
|







504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
#define SQLITE_SYNC_NORMAL        0x00002
#define SQLITE_SYNC_FULL          0x00003
#define SQLITE_SYNC_DATAONLY      0x00010

/*
** CAPI3REF: OS Interface Open File Handle {H11110} <S20110>
**
** An [sqlite3_file] object represents an open file in the 
** [sqlite3_vfs | OS interface layer].  Individual OS interface
** implementations will
** want to subclass this object by appending additional fields
** for their own use.  The pMethods entry is a pointer to an
** [sqlite3_io_methods] object that defines methods for performing
** I/O operations on the open file.
*/
typedef struct sqlite3_file sqlite3_file;
struct sqlite3_file {
851
852
853
854
855
856
857
858

859
860
861
862
863
864
865
866
**
** The application should never invoke either sqlite3_os_init()
** or sqlite3_os_end() directly.  The application should only invoke
** sqlite3_initialize() and sqlite3_shutdown().  The sqlite3_os_init()
** interface is called automatically by sqlite3_initialize() and
** sqlite3_os_end() is called by sqlite3_shutdown().  Appropriate
** implementations for sqlite3_os_init() and sqlite3_os_end()
** are built into SQLite when it is compiled for unix, windows, or os/2.

** When built for other platforms (using the [SQLITE_OS_OTHER=1] compile-time
** option) the application must supply a suitable implementation for
** sqlite3_os_init() and sqlite3_os_end().  An application-supplied
** implementation of sqlite3_os_init() or sqlite3_os_end()
** must return [SQLITE_OK] on success and some other [error code] upon
** failure.
*/
SQLITE_API int sqlite3_initialize(void);







|
>
|







882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
**
** The application should never invoke either sqlite3_os_init()
** or sqlite3_os_end() directly.  The application should only invoke
** sqlite3_initialize() and sqlite3_shutdown().  The sqlite3_os_init()
** interface is called automatically by sqlite3_initialize() and
** sqlite3_os_end() is called by sqlite3_shutdown().  Appropriate
** implementations for sqlite3_os_init() and sqlite3_os_end()
** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
** When [custom builds | built for other platforms]
** (using the [SQLITE_OS_OTHER=1] compile-time
** option) the application must supply a suitable implementation for
** sqlite3_os_init() and sqlite3_os_end().  An application-supplied
** implementation of sqlite3_os_init() or sqlite3_os_end()
** must return [SQLITE_OK] on success and some other [error code] upon
** failure.
*/
SQLITE_API int sqlite3_initialize(void);
933
934
935
936
937
938
939

940
941
942

943
944
945
946
947
948
949
950
951
952
953
954
955








956
957
958
959
960
961
962
963
964



965
966
967
968
969
970
971














972
973
974
975
976
977
978
**
** An instance of this object defines the interface between SQLite
** and low-level memory allocation routines.
**
** This object is used in only one place in the SQLite interface.
** A pointer to an instance of this object is the argument to
** [sqlite3_config()] when the configuration option is

** [SQLITE_CONFIG_MALLOC].  By creating an instance of this object
** and passing it to [sqlite3_config()] during configuration, an
** application can specify an alternative memory allocation subsystem

** for SQLite to use for all of its dynamic memory needs.
**
** Note that SQLite comes with a built-in memory allocator that is
** perfectly adequate for the overwhelming majority of applications
** and that this object is only useful to a tiny minority of applications
** with specialized memory allocation requirements.  This object is
** also used during testing of SQLite in order to specify an alternative
** memory allocator that simulates memory out-of-memory conditions in
** order to verify that SQLite recovers gracefully from such
** conditions.
**
** The xMalloc, xFree, and xRealloc methods must work like the
** malloc(), free(), and realloc() functions from the standard library.








**
** xSize should return the allocated size of a memory allocation
** previously obtained from xMalloc or xRealloc.  The allocated size
** is always at least as big as the requested size but may be larger.
**
** The xRoundup method returns what would be the allocated size of
** a memory allocation given a particular requested size.  Most memory
** allocators round up memory allocations at least to the next multiple
** of 8.  Some allocators round up to a larger multiple or to a power of 2.



**
** The xInit method initializes the memory allocator.  (For example,
** it might allocate any require mutexes or initialize internal data
** structures.  The xShutdown method is invoked (indirectly) by
** [sqlite3_shutdown()] and should deallocate any resources acquired
** by xInit.  The pAppData pointer is used as the only parameter to
** xInit and xShutdown.














*/
typedef struct sqlite3_mem_methods sqlite3_mem_methods;
struct sqlite3_mem_methods {
  void *(*xMalloc)(int);         /* Memory allocation function */
  void (*xFree)(void*);          /* Free a prior allocation */
  void *(*xRealloc)(void*,int);  /* Resize an allocation */
  int (*xSize)(void*);           /* Return the size of an allocation */







>
|
|
|
>
|

|
|







|
|
>
>
>
>
>
>
>
>









>
>
>







>
>
>
>
>
>
>
>
>
>
>
>
>
>







965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
**
** An instance of this object defines the interface between SQLite
** and low-level memory allocation routines.
**
** This object is used in only one place in the SQLite interface.
** A pointer to an instance of this object is the argument to
** [sqlite3_config()] when the configuration option is
** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].  
** By creating an instance of this object
** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
** during configuration, an application can specify an alternative
** memory allocation subsystem for SQLite to use for all of its
** dynamic memory needs.
**
** Note that SQLite comes with several [built-in memory allocators]
** that are perfectly adequate for the overwhelming majority of applications
** and that this object is only useful to a tiny minority of applications
** with specialized memory allocation requirements.  This object is
** also used during testing of SQLite in order to specify an alternative
** memory allocator that simulates memory out-of-memory conditions in
** order to verify that SQLite recovers gracefully from such
** conditions.
**
** The xMalloc and xFree methods must work like the
** malloc() and free() functions from the standard C library.
** The xRealloc method must work like realloc() from the standard C library
** with the exception that if the second argument to xRealloc is zero,
** xRealloc must be a no-op - it must not perform any allocation or
** deallocation.  SQLite guaranteeds that the second argument to
** xRealloc is always a value returned by a prior call to xRoundup.
** And so in cases where xRoundup always returns a positive number,
** xRealloc can perform exactly as the standard library realloc() and
** still be in compliance with this specification.
**
** xSize should return the allocated size of a memory allocation
** previously obtained from xMalloc or xRealloc.  The allocated size
** is always at least as big as the requested size but may be larger.
**
** The xRoundup method returns what would be the allocated size of
** a memory allocation given a particular requested size.  Most memory
** allocators round up memory allocations at least to the next multiple
** of 8.  Some allocators round up to a larger multiple or to a power of 2.
** Every memory allocation request coming in through [sqlite3_malloc()]
** or [sqlite3_realloc()] first calls xRoundup.  If xRoundup returns 0, 
** that causes the corresponding memory allocation to fail.
**
** The xInit method initializes the memory allocator.  (For example,
** it might allocate any require mutexes or initialize internal data
** structures.  The xShutdown method is invoked (indirectly) by
** [sqlite3_shutdown()] and should deallocate any resources acquired
** by xInit.  The pAppData pointer is used as the only parameter to
** xInit and xShutdown.
**
** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes
** the xInit method, so the xInit method need not be threadsafe.  The
** xShutdown method is only called from [sqlite3_shutdown()] so it does
** not need to be threadsafe either.  For all other methods, SQLite
** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
** it is by default) and so the methods are automatically serialized.
** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
** methods must be threadsafe or else make their own arrangements for
** serialization.
**
** SQLite will never invoke xInit() more than once without an intervening
** call to xShutdown().
*/
typedef struct sqlite3_mem_methods sqlite3_mem_methods;
struct sqlite3_mem_methods {
  void *(*xMalloc)(int);         /* Memory allocation function */
  void (*xFree)(void*);          /* Free a prior allocation */
  void *(*xRealloc)(void*,int);  /* Resize an allocation */
  int (*xSize)(void*);           /* Return the size of an allocation */
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127



1128
1129
1130
1131
1132
1133
1134
** structure is filled with the currently defined mutex routines.
** This option can be used to overload the default mutex allocation
** routines with a wrapper used to track mutex usage for performance
** profiling or testing, for example.</dd>
**
** <dt>SQLITE_CONFIG_LOOKASIDE</dt>
** <dd>This option takes two arguments that determine the default
** memory allcation lookaside optimization.  The first argument is the
** size of each lookaside buffer slot and the second is the number of
** slots allocated to each database connection.</dd>



**
** <dt>SQLITE_CONFIG_PCACHE</dt>
** <dd>This option takes a single argument which is a pointer to
** an [sqlite3_pcache_methods] object.  This object specifies the interface
** to a custom page cache implementation.  SQLite makes a copy of the
** object and uses it for page cache memory allocations.</dd>
**







|

|
>
>
>







1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
** structure is filled with the currently defined mutex routines.
** This option can be used to overload the default mutex allocation
** routines with a wrapper used to track mutex usage for performance
** profiling or testing, for example.</dd>
**
** <dt>SQLITE_CONFIG_LOOKASIDE</dt>
** <dd>This option takes two arguments that determine the default
** memory allocation lookaside optimization.  The first argument is the
** size of each lookaside buffer slot and the second is the number of
** slots allocated to each database connection.  This option sets the
** <i>default</i> lookaside size.  The [SQLITE_DBCONFIG_LOOKASIDE]
** verb to [sqlite3_db_config()] can be used to change the lookaside
** configuration on individual connections.</dd>
**
** <dt>SQLITE_CONFIG_PCACHE</dt>
** <dd>This option takes a single argument which is a pointer to
** an [sqlite3_pcache_methods] object.  This object specifies the interface
** to a custom page cache implementation.  SQLite makes a copy of the
** object and uses it for page cache memory allocations.</dd>
**
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182



1183
1184
1185
1186
1187
1188
1189
** is invoked.
**
** <dl>
** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
** <dd>This option takes three additional arguments that determine the 
** [lookaside memory allocator] configuration for the [database connection].
** The first argument (the third parameter to [sqlite3_db_config()] is a
** pointer to an 8-byte aligned memory buffer to use for lookaside memory.
** The first argument may be NULL in which case SQLite will allocate the
** lookaside buffer itself using [sqlite3_malloc()].  The second argument is the
** size of each lookaside buffer slot and the third argument is the number of
** slots.  The size of the buffer in the first argument must be greater than
** or equal to the product of the second and third arguments.</dd>



**
** </dl>
*/
#define SQLITE_DBCONFIG_LOOKASIDE    1001  /* void* int int */


/*







|




|
>
>
>







1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
** is invoked.
**
** <dl>
** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
** <dd>This option takes three additional arguments that determine the 
** [lookaside memory allocator] configuration for the [database connection].
** The first argument (the third parameter to [sqlite3_db_config()] is a
** pointer to an memory buffer to use for lookaside memory.
** The first argument may be NULL in which case SQLite will allocate the
** lookaside buffer itself using [sqlite3_malloc()].  The second argument is the
** size of each lookaside buffer slot and the third argument is the number of
** slots.  The size of the buffer in the first argument must be greater than
** or equal to the product of the second and third arguments.  The buffer
** must be aligned to an 8-byte boundary.  If the second argument is not
** a multiple of 8, it is internally rounded down to the next smaller
** multiple of 8.  See also: [SQLITE_CONFIG_LOOKASIDE]</dd>
**
** </dl>
*/
#define SQLITE_DBCONFIG_LOOKASIDE    1001  /* void* int int */


/*
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
  char **pzErrmsg       /* Error msg written here */
);
SQLITE_API void sqlite3_free_table(char **result);

/*
** CAPI3REF: Formatted String Printing Functions {H17400} <S70000><S20000>
**
** These routines are workalikes of the "printf()" family of functions
** from the standard C library.
**
** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
** released by [sqlite3_free()].  Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough







|







1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
  char **pzErrmsg       /* Error msg written here */
);
SQLITE_API void sqlite3_free_table(char **result);

/*
** CAPI3REF: Formatted String Printing Functions {H17400} <S70000><S20000>
**
** These routines are work-alikes of the "printf()" family of functions
** from the standard C library.
**
** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
** released by [sqlite3_free()].  Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
**
** The authorizer callback must not do anything that will modify
** the database connection that invoked the authorizer callback.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** When [sqlite3_prepare_v2()] is used to prepare a statement, the
** statement might be reprepared during [sqlite3_step()] due to a 
** schema change.  Hence, the application should ensure that the
** correct authorizer callback remains in place during the [sqlite3_step()].
**
** Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants.  Authorization is not
** performed during statement evaluation in [sqlite3_step()], unless
** as stated in the previous paragraph, sqlite3_step() invokes







|







1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
**
** The authorizer callback must not do anything that will modify
** the database connection that invoked the authorizer callback.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** When [sqlite3_prepare_v2()] is used to prepare a statement, the
** statement might be re-prepared during [sqlite3_step()] due to a 
** schema change.  Hence, the application should ensure that the
** correct authorizer callback remains in place during the [sqlite3_step()].
**
** Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants.  Authorization is not
** performed during statement evaluation in [sqlite3_step()], unless
** as stated in the previous paragraph, sqlite3_step() invokes
2033
2034
2035
2036
2037
2038
2039
2040

2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060

2061
2062
2063
2064
2065
2066
2067
2068





2069
2070
2071
2072
2073
2074
2075
** associated with the [database connection] handle should be released by
** passing it to [sqlite3_close()] when it is no longer required.
**
** The sqlite3_open_v2() interface works like sqlite3_open()
** except that it accepts two additional parameters for additional control
** over the new database connection.  The flags parameter can take one of
** the following three values, optionally combined with the 
** [SQLITE_OPEN_NOMUTEX] or [SQLITE_OPEN_FULLMUTEX] flags:

**
** <dl>
** <dt>[SQLITE_OPEN_READONLY]</dt>
** <dd>The database is opened in read-only mode.  If the database does not
** already exist, an error is returned.</dd>
**
** <dt>[SQLITE_OPEN_READWRITE]</dt>
** <dd>The database is opened for reading and writing if possible, or reading
** only if the file is write protected by the operating system.  In either
** case the database must already exist, otherwise an error is returned.</dd>
**
** <dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
** <dd>The database is opened for reading and writing, and is creates it if
** it does not already exist. This is the behavior that is always used for
** sqlite3_open() and sqlite3_open16().</dd>
** </dl>
**
** If the 3rd parameter to sqlite3_open_v2() is not one of the
** combinations shown above or one of the combinations shown above combined
** with the [SQLITE_OPEN_NOMUTEX] or [SQLITE_OPEN_FULLMUTEX] flags,

** then the behavior is undefined.
**
** If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
** opens in the multi-thread [threading mode] as long as the single-thread
** mode has not been set at compile-time or start-time.  If the
** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens
** in the serialized [threading mode] unless single-thread was
** previously selected at compile-time or start-time.





**
** If the filename is ":memory:", then a private, temporary in-memory database
** is created for the connection.  This in-memory database will vanish when
** the database connection is closed.  Future versions of SQLite might
** make use of additional special filenames that begin with the ":" character.
** It is recommended that when a database filename actually does begin with
** a ":" character you should prefix the filename with a pathname such as







|
>



















|
>








>
>
>
>
>







2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
** associated with the [database connection] handle should be released by
** passing it to [sqlite3_close()] when it is no longer required.
**
** The sqlite3_open_v2() interface works like sqlite3_open()
** except that it accepts two additional parameters for additional control
** over the new database connection.  The flags parameter can take one of
** the following three values, optionally combined with the 
** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE],
** and/or [SQLITE_OPEN_PRIVATECACHE] flags:
**
** <dl>
** <dt>[SQLITE_OPEN_READONLY]</dt>
** <dd>The database is opened in read-only mode.  If the database does not
** already exist, an error is returned.</dd>
**
** <dt>[SQLITE_OPEN_READWRITE]</dt>
** <dd>The database is opened for reading and writing if possible, or reading
** only if the file is write protected by the operating system.  In either
** case the database must already exist, otherwise an error is returned.</dd>
**
** <dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
** <dd>The database is opened for reading and writing, and is creates it if
** it does not already exist. This is the behavior that is always used for
** sqlite3_open() and sqlite3_open16().</dd>
** </dl>
**
** If the 3rd parameter to sqlite3_open_v2() is not one of the
** combinations shown above or one of the combinations shown above combined
** with the [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX],
** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_SHAREDCACHE] flags,
** then the behavior is undefined.
**
** If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
** opens in the multi-thread [threading mode] as long as the single-thread
** mode has not been set at compile-time or start-time.  If the
** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens
** in the serialized [threading mode] unless single-thread was
** previously selected at compile-time or start-time.
** The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be
** eligible to use [shared cache mode], regardless of whether or not shared
** cache is enabled using [sqlite3_enable_shared_cache()].  The
** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not
** participate in [shared cache mode] even if it is enabled.
**
** If the filename is ":memory:", then a private, temporary in-memory database
** is created for the connection.  This in-memory database will vanish when
** the database connection is closed.  Future versions of SQLite might
** make use of additional special filenames that begin with the ":" character.
** It is recommended that when a database filename actually does begin with
** a ":" character you should prefix the filename with a pathname such as
2255
2256
2257
2258
2259
2260
2261



2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273

2274
2275
2276
2277
2278
2279
2280
** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
** <dd>The maximum length of the pattern argument to the [LIKE] or
** [GLOB] operators.</dd>
**
** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
** <dd>The maximum number of variables in an SQL statement that can
** be bound.</dd>



** </dl>
*/
#define SQLITE_LIMIT_LENGTH                    0
#define SQLITE_LIMIT_SQL_LENGTH                1
#define SQLITE_LIMIT_COLUMN                    2
#define SQLITE_LIMIT_EXPR_DEPTH                3
#define SQLITE_LIMIT_COMPOUND_SELECT           4
#define SQLITE_LIMIT_VDBE_OP                   5
#define SQLITE_LIMIT_FUNCTION_ARG              6
#define SQLITE_LIMIT_ATTACHED                  7
#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH       8
#define SQLITE_LIMIT_VARIABLE_NUMBER           9


/*
** CAPI3REF: Compiling An SQL Statement {H13010} <S10000>
** KEYWORDS: {SQL statement compiler}
**
** To execute an SQL query, it must first be compiled into a byte-code
** program using one of these routines.







>
>
>












>







2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
** <dd>The maximum length of the pattern argument to the [LIKE] or
** [GLOB] operators.</dd>
**
** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
** <dd>The maximum number of variables in an SQL statement that can
** be bound.</dd>
**
** <dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
** <dd>The maximum depth of recursion for triggers.</dd>
** </dl>
*/
#define SQLITE_LIMIT_LENGTH                    0
#define SQLITE_LIMIT_SQL_LENGTH                1
#define SQLITE_LIMIT_COLUMN                    2
#define SQLITE_LIMIT_EXPR_DEPTH                3
#define SQLITE_LIMIT_COMPOUND_SELECT           4
#define SQLITE_LIMIT_VDBE_OP                   5
#define SQLITE_LIMIT_FUNCTION_ARG              6
#define SQLITE_LIMIT_ATTACHED                  7
#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH       8
#define SQLITE_LIMIT_VARIABLE_NUMBER           9
#define SQLITE_LIMIT_TRIGGER_DEPTH            10

/*
** CAPI3REF: Compiling An SQL Statement {H13010} <S10000>
** KEYWORDS: {SQL statement compiler}
**
** To execute an SQL query, it must first be compiled into a byte-code
** program using one of these routines.
2443
2444
2445
2446
2447
2448
2449
2450

2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468

/*
** CAPI3REF: Binding Values To Prepared Statements {H13500} <S70300>
** KEYWORDS: {host parameter} {host parameters} {host parameter name}
** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
**
** In the SQL strings input to [sqlite3_prepare_v2()] and its variants,
** literals may be replaced by a [parameter] in one of these forms:

**
** <ul>
** <li>  ?
** <li>  ?NNN
** <li>  :VVV
** <li>  @VVV
** <li>  $VVV
** </ul>
**
** In the parameter forms shown above NNN is an integer literal,
** and VVV is an alpha-numeric parameter name. The values of these
** parameters (also called "host parameter names" or "SQL parameters")
** can be set using the sqlite3_bind_*() routines defined here.
**
** The first argument to the sqlite3_bind_*() routines is always
** a pointer to the [sqlite3_stmt] object returned from
** [sqlite3_prepare_v2()] or its variants.
**







|
>









|
|







2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545

/*
** CAPI3REF: Binding Values To Prepared Statements {H13500} <S70300>
** KEYWORDS: {host parameter} {host parameters} {host parameter name}
** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
**
** In the SQL strings input to [sqlite3_prepare_v2()] and its variants,
** literals may be replaced by a [parameter] that matches one of following
** templates:
**
** <ul>
** <li>  ?
** <li>  ?NNN
** <li>  :VVV
** <li>  @VVV
** <li>  $VVV
** </ul>
**
** In the templates above, NNN represents an integer literal,
** and VVV represents an alphanumeric identifer.  The values of these
** parameters (also called "host parameter names" or "SQL parameters")
** can be set using the sqlite3_bind_*() routines defined here.
**
** The first argument to the sqlite3_bind_*() routines is always
** a pointer to the [sqlite3_stmt] object returned from
** [sqlite3_prepare_v2()] or its variants.
**
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
** parameter is less than -1 or greater than 127 then the behavior is
** undefined.
**
** The fourth parameter, eTextRep, specifies what
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
** its parameters.  Any SQL function implementation should be able to work
** work with UTF-8, UTF-16le, or UTF-16be.  But some implementations may be
** more efficient with one encoding than another.  It is allowed to
** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
** times with the same function but with different values of eTextRep.
** When multiple implementations of the same function are available, SQLite
** will pick the one that involves the least amount of data conversion.
** If there is only a single implementation which does not care what text
** encoding is used, then the fourth argument should be [SQLITE_ANY].
**







|







3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
** parameter is less than -1 or greater than 127 then the behavior is
** undefined.
**
** The fourth parameter, eTextRep, specifies what
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
** its parameters.  Any SQL function implementation should be able to work
** work with UTF-8, UTF-16le, or UTF-16be.  But some implementations may be
** more efficient with one encoding than another.  An application may
** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
** times with the same function but with different values of eTextRep.
** When multiple implementations of the same function are available, SQLite
** will pick the one that involves the least amount of data conversion.
** If there is only a single implementation which does not care what text
** encoding is used, then the fourth argument should be [SQLITE_ANY].
**
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
** parameters. An aggregate SQL function requires an implementation of xStep
** and xFinal and NULL should be passed for xFunc. To delete an existing
** SQL function or aggregate, pass NULL for all three function callbacks.
**
** It is permitted to register multiple implementations of the same
** functions with the same name but with either differing numbers of
** arguments or differing preferred text encodings.  SQLite will use
** the implementation most closely matches the way in which the
** SQL function is used.  A function implementation with a non-negative
** nArg parameter is a better match than a function implementation with
** a negative nArg.  A function where the preferred text encoding
** matches the database encoding is a better
** match than a function where the encoding is different.  
** A function where the encoding difference is between UTF16le and UTF16be
** is a closer match than a function where the encoding difference is







|







3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
** parameters. An aggregate SQL function requires an implementation of xStep
** and xFinal and NULL should be passed for xFunc. To delete an existing
** SQL function or aggregate, pass NULL for all three function callbacks.
**
** It is permitted to register multiple implementations of the same
** functions with the same name but with either differing numbers of
** arguments or differing preferred text encodings.  SQLite will use
** the implementation that most closely matches the way in which the
** SQL function is used.  A function implementation with a non-negative
** nArg parameter is a better match than a function implementation with
** a negative nArg.  A function where the preferred text encoding
** matches the database encoding is a better
** match than a function where the encoding is different.  
** A function where the encoding difference is between UTF16le and UTF16be
** is a closer match than a function where the encoding difference is
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485

3486
3487
3488
3489
3490
3491
3492
3493
** is non-negative, then as many bytes (not characters) of the text
** pointed to by the 2nd parameter are taken as the application-defined
** function result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
** function as the destructor on the text or BLOB result when it has
** finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces or
** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
** assumes that the text or BLOB result is in constant space and does not

** copy the it or call a destructor when it has finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
** then SQLite makes a copy of the result into space obtained from
** from [sqlite3_malloc()] before it returns.
**
** The sqlite3_result_value() interface sets the result of
** the application-defined function to be a copy the







|


>
|







3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
** is non-negative, then as many bytes (not characters) of the text
** pointed to by the 2nd parameter are taken as the application-defined
** function result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
** function as the destructor on the text or BLOB result when it has
** finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces or to
** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
** assumes that the text or BLOB result is in constant space and does not
** copy the content of the parameter nor call a destructor on the content
** when it has finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
** then SQLite makes a copy of the result into space obtained from
** from [sqlite3_malloc()] before it returns.
**
** The sqlite3_result_value() interface sets the result of
** the application-defined function to be a copy the
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
** a expired BLOB handle fail with an return code of [SQLITE_ABORT].
** Changes written into a BLOB prior to the BLOB expiring are not
** rollback by the expiration of the BLOB.  Such changes will eventually
** commit if the transaction continues to completion.
**
** Use the [sqlite3_blob_bytes()] interface to determine the size of
** the opened blob.  The size of a blob may not be changed by this
** underface.  Use the [UPDATE] SQL command to change the size of a
** blob.
**
** The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function can be used, if desired,
** to create an empty, zero-filled blob in which to read or write using
** this interface.
**







|







4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
** a expired BLOB handle fail with an return code of [SQLITE_ABORT].
** Changes written into a BLOB prior to the BLOB expiring are not
** rollback by the expiration of the BLOB.  Such changes will eventually
** commit if the transaction continues to completion.
**
** Use the [sqlite3_blob_bytes()] interface to determine the size of
** the opened blob.  The size of a blob may not be changed by this
** interface.  Use the [UPDATE] SQL command to change the size of a
** blob.
**
** The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function can be used, if desired,
** to create an empty, zero-filled blob in which to read or write using
** this interface.
**
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  {H17016} But SQLite will only request a recursive mutex in
** cases where it really needs one.  {END} If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex. {END}  Four static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** {H17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST







|







4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  {H17016} But SQLite will only request a recursive mutex in
** cases where it really needs one.  {END} If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex. {END}  Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** {H17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
4804
4805
4806
4807
4808
4809
4810















4811
4812
4813
4814
4815
4816
4817
** The only difference is that the public sqlite3_XXX functions enumerated
** above silently ignore any invocations that pass a NULL pointer instead
** of a valid mutex handle. The implementations of the methods defined
** by this structure are not required to handle this case, the results
** of passing a NULL pointer instead of a valid mutex handle are undefined
** (i.e. it is acceptable to provide an implementation that segfaults if
** it is passed a NULL pointer).















*/
typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
struct sqlite3_mutex_methods {
  int (*xMutexInit)(void);
  int (*xMutexEnd)(void);
  sqlite3_mutex *(*xMutexAlloc)(int);
  void (*xMutexFree)(sqlite3_mutex *);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
** The only difference is that the public sqlite3_XXX functions enumerated
** above silently ignore any invocations that pass a NULL pointer instead
** of a valid mutex handle. The implementations of the methods defined
** by this structure are not required to handle this case, the results
** of passing a NULL pointer instead of a valid mutex handle are undefined
** (i.e. it is acceptable to provide an implementation that segfaults if
** it is passed a NULL pointer).
**
** The xMutexInit() method must be threadsafe.  It must be harmless to
** invoke xMutexInit() mutiple times within the same process and without
** intervening calls to xMutexEnd().  Second and subsequent calls to
** xMutexInit() must be no-ops.
**
** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
** and its associates).  Similarly, xMutexAlloc() must not use SQLite memory
** allocation for a static mutex.  However xMutexAlloc() may use SQLite
** memory allocation for a fast or recursive mutex.
**
** SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
** called, but only if the prior call to xMutexInit returned SQLITE_OK.
** If xMutexInit fails in any way, it is expected to clean up after itself
** prior to returning.
*/
typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
struct sqlite3_mutex_methods {
  int (*xMutexInit)(void);
  int (*xMutexEnd)(void);
  sqlite3_mutex *(*xMutexAlloc)(int);
  void (*xMutexFree)(sqlite3_mutex *);
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
** nothing is written into *pHighwater and the resetFlag is ignored.
** Other parameters record only the highwater mark and not the current
** value.  For these latter parameters nothing is written into *pCurrent.
**
** This routine returns SQLITE_OK on success and a non-zero
** [error code] on failure.
**
** This routine is threadsafe but is not atomic.  This routine can
** called while other threads are running the same or different SQLite
** interfaces.  However the values returned in *pCurrent and
** *pHighwater reflect the status of SQLite at different points in time
** and it is possible that another thread might change the parameter
** in between the times when *pCurrent and *pHighwater are written.
**
** See also: [sqlite3_db_status()]







|







5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
** nothing is written into *pHighwater and the resetFlag is ignored.
** Other parameters record only the highwater mark and not the current
** value.  For these latter parameters nothing is written into *pCurrent.
**
** This routine returns SQLITE_OK on success and a non-zero
** [error code] on failure.
**
** This routine is threadsafe but is not atomic.  This routine can be
** called while other threads are running the same or different SQLite
** interfaces.  However the values returned in *pCurrent and
** *pHighwater reflect the status of SQLite at different points in time
** and it is possible that another thread might change the parameter
** in between the times when *pCurrent and *pHighwater are written.
**
** See also: [sqlite3_db_status()]
5092
5093
5094
5095
5096
5097
5098





5099


5100
5101
5102
5103
5104
5105
5106
*/
SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);

/*
** CAPI3REF: Status Parameters for database connections {H17520} <H17500>
** EXPERIMENTAL
**





** Status verbs for [sqlite3_db_status()].


**
** <dl>
** <dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
** <dd>This parameter returns the number of lookaside memory slots currently
** checked out.</dd>
** </dl>
*/







>
>
>
>
>
|
>
>







5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
*/
SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);

/*
** CAPI3REF: Status Parameters for database connections {H17520} <H17500>
** EXPERIMENTAL
**
** These constants are the available integer "verbs" that can be passed as
** the second argument to the [sqlite3_db_status()] interface.
**
** New verbs may be added in future releases of SQLite. Existing verbs
** might be discontinued. Applications should check the return code from
** [sqlite3_db_status()] to make sure that the call worked.
** The [sqlite3_db_status()] interface will return a non-zero error code
** if a discontinued or unsupported verb is invoked.
**
** <dl>
** <dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
** <dd>This parameter returns the number of lookaside memory slots currently
** checked out.</dd>
** </dl>
*/
5170
5171
5172
5173
5174
5175
5176

5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191


5192
5193
5194
5195
5196
5197


5198
5199
5200









5201


5202
5203






5204
5205
5206
5207
5208



5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254







5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
**
** See [sqlite3_pcache_methods] for additional information.
*/
typedef struct sqlite3_pcache sqlite3_pcache;

/*
** CAPI3REF: Application Defined Page Cache.

** EXPERIMENTAL
**
** The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can
** register an alternative page cache implementation by passing in an 
** instance of the sqlite3_pcache_methods structure. The majority of the 
** heap memory used by sqlite is used by the page cache to cache data read 
** from, or ready to be written to, the database file. By implementing a 
** custom page cache using this API, an application can control more 
** precisely the amount of memory consumed by sqlite, the way in which 
** said memory is allocated and released, and the policies used to 
** determine exactly which parts of a database file are cached and for 
** how long.
**
** The contents of the structure are copied to an internal buffer by sqlite
** within the call to [sqlite3_config].


**
** The xInit() method is called once for each call to [sqlite3_initialize()]
** (usually only once during the lifetime of the process). It is passed
** a copy of the sqlite3_pcache_methods.pArg value. It can be used to set
** up global structures and mutexes required by the custom page cache 
** implementation. The xShutdown() method is called from within 


** [sqlite3_shutdown()], if the application invokes this API. It can be used
** to clean up any outstanding resources before process shutdown, if required.
**









** The xCreate() method is used to construct a new cache instance. The


** first parameter, szPage, is the size in bytes of the pages that must
** be allocated by the cache. szPage will not be a power of two. The






** second argument, bPurgeable, is true if the cache being created will
** be used to cache database pages read from a file stored on disk, or
** false if it is used for an in-memory database. The cache implementation
** does not have to do anything special based on the value of bPurgeable,
** it is purely advisory. 



**
** The xCachesize() method may be called at any time by SQLite to set the
** suggested maximum cache-size (number of pages stored by) the cache
** instance passed as the first argument. This is the value configured using
** the SQLite "[PRAGMA cache_size]" command. As with the bPurgeable parameter,
** the implementation is not required to do anything special with this
** value, it is advisory only.
**
** The xPagecount() method should return the number of pages currently
** stored in the cache supplied as an argument.
** 
** The xFetch() method is used to fetch a page and return a pointer to it. 
** A 'page', in this context, is a buffer of szPage bytes aligned at an
** 8-byte boundary. The page to be fetched is determined by the key. The
** mimimum key value is 1. After it has been retrieved using xFetch, the page 
** is considered to be pinned.
**
** If the requested page is already in the page cache, then a pointer to
** the cached buffer should be returned with its contents intact. If the
** page is not already in the cache, then the expected behaviour of the
** cache is determined by the value of the createFlag parameter passed
** to xFetch, according to the following table:
**
** <table border=1 width=85% align=center>
**   <tr><th>createFlag<th>Expected Behaviour
**   <tr><td>0<td>NULL should be returned. No new cache entry is created.
**   <tr><td>1<td>If createFlag is set to 1, this indicates that 
**                SQLite is holding pinned pages that can be unpinned
**                by writing their contents to the database file (a
**                relatively expensive operation). In this situation the
**                cache implementation has two choices: it can return NULL,
**                in which case SQLite will attempt to unpin one or more 
**                pages before re-requesting the same page, or it can
**                allocate a new page and return a pointer to it. If a new
**                page is allocated, then the first sizeof(void*) bytes of
**                it (at least) must be zeroed before it is returned.
**   <tr><td>2<td>If createFlag is set to 2, then SQLite is not holding any
**                pinned pages associated with the specific cache passed
**                as the first argument to xFetch() that can be unpinned. The
**                cache implementation should attempt to allocate a new
**                cache entry and return a pointer to it. Again, the first
**                sizeof(void*) bytes of the page should be zeroed before 
**                it is returned. If the xFetch() method returns NULL when 
**                createFlag==2, SQLite assumes that a memory allocation 
**                failed and returns SQLITE_NOMEM to the user.
** </table>







**
** xUnpin() is called by SQLite with a pointer to a currently pinned page
** as its second argument. If the third parameter, discard, is non-zero,
** then the page should be evicted from the cache. In this case SQLite 
** assumes that the next time the page is retrieved from the cache using
** the xFetch() method, it will be zeroed. If the discard parameter is
** zero, then the page is considered to be unpinned. The cache implementation
** may choose to reclaim (free or recycle) unpinned pages at any time.
** SQLite assumes that next time the page is retrieved from the cache
** it will either be zeroed, or contain the same data that it did when it
** was unpinned.
**
** The cache is not required to perform any reference counting. A single 
** call to xUnpin() unpins the page regardless of the number of prior calls 
** to xFetch().
**
** The xRekey() method is used to change the key value associated with the
** page passed as the second argument from oldKey to newKey. If the cache







>





|


|
|



|
|
>
>





|
>
>
|
|

>
>
>
>
>
>
>
>
>
|
>
>

|
>
>
>
>
>
>
|
|

|
|
>
>
>





|
|


|





|

|
|
|
|
|


|
<
|
<
<
<
<
<
<
|
<
|
<
<
<
|
<
<
<
<
|

>
>
>
>
>
>
>







|
<
<
<







5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358

5359






5360

5361



5362




5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379



5380
5381
5382
5383
5384
5385
5386
**
** See [sqlite3_pcache_methods] for additional information.
*/
typedef struct sqlite3_pcache sqlite3_pcache;

/*
** CAPI3REF: Application Defined Page Cache.
** KEYWORDS: {page cache}
** EXPERIMENTAL
**
** The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can
** register an alternative page cache implementation by passing in an 
** instance of the sqlite3_pcache_methods structure. The majority of the 
** heap memory used by SQLite is used by the page cache to cache data read 
** from, or ready to be written to, the database file. By implementing a 
** custom page cache using this API, an application can control more 
** precisely the amount of memory consumed by SQLite, the way in which 
** that memory is allocated and released, and the policies used to 
** determine exactly which parts of a database file are cached and for 
** how long.
**
** The contents of the sqlite3_pcache_methods structure are copied to an
** internal buffer by SQLite within the call to [sqlite3_config].  Hence
** the application may discard the parameter after the call to
** [sqlite3_config()] returns.
**
** The xInit() method is called once for each call to [sqlite3_initialize()]
** (usually only once during the lifetime of the process). It is passed
** a copy of the sqlite3_pcache_methods.pArg value. It can be used to set
** up global structures and mutexes required by the custom page cache 
** implementation. 
**
** The xShutdown() method is called from within [sqlite3_shutdown()], 
** if the application invokes this API. It can be used to clean up 
** any outstanding resources before process shutdown, if required.
**
** SQLite holds a [SQLITE_MUTEX_RECURSIVE] mutex when it invokes
** the xInit method, so the xInit method need not be threadsafe.  The
** xShutdown method is only called from [sqlite3_shutdown()] so it does
** not need to be threadsafe either.  All other methods must be threadsafe
** in multithreaded applications.
**
** SQLite will never invoke xInit() more than once without an intervening
** call to xShutdown().
**
** The xCreate() method is used to construct a new cache instance.  SQLite
** will typically create one cache instance for each open database file,
** though this is not guaranteed. The
** first parameter, szPage, is the size in bytes of the pages that must
** be allocated by the cache.  szPage will not be a power of two.  szPage
** will the page size of the database file that is to be cached plus an
** increment (here called "R") of about 100 or 200.  SQLite will use the
** extra R bytes on each page to store metadata about the underlying
** database page on disk.  The value of R depends
** on the SQLite version, the target platform, and how SQLite was compiled.
** R is constant for a particular build of SQLite.  The second argument to
** xCreate(), bPurgeable, is true if the cache being created will
** be used to cache database pages of a file stored on disk, or
** false if it is used for an in-memory database. The cache implementation
** does not have to do anything special based with the value of bPurgeable;
** it is purely advisory.  On a cache where bPurgeable is false, SQLite will
** never invoke xUnpin() except to deliberately delete a page.
** In other words, a cache created with bPurgeable set to false will
** never contain any unpinned pages.
**
** The xCachesize() method may be called at any time by SQLite to set the
** suggested maximum cache-size (number of pages stored by) the cache
** instance passed as the first argument. This is the value configured using
** the SQLite "[PRAGMA cache_size]" command. As with the bPurgeable parameter,
** the implementation is not required to do anything with this
** value; it is advisory only.
**
** The xPagecount() method should return the number of pages currently
** stored in the cache.
** 
** The xFetch() method is used to fetch a page and return a pointer to it. 
** A 'page', in this context, is a buffer of szPage bytes aligned at an
** 8-byte boundary. The page to be fetched is determined by the key. The
** mimimum key value is 1. After it has been retrieved using xFetch, the page 
** is considered to be "pinned".
**
** If the requested page is already in the page cache, then the page cache
** implementation must return a pointer to the page buffer with its content
** intact.  If the requested page is not already in the cache, then the
** behavior of the cache implementation is determined by the value of the
** createFlag parameter passed to xFetch, according to the following table:
**
** <table border=1 width=85% align=center>
** <tr><th> createFlag <th> Behaviour when page is not already in cache

** <tr><td> 0 <td> Do not allocate a new page.  Return NULL.






** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.

**                 Otherwise return NULL.



** <tr><td> 2 <td> Make every effort to allocate a new page.  Only return




**                 NULL if allocating a new page is effectively impossible.
** </table>
**
** SQLite will normally invoke xFetch() with a createFlag of 0 or 1.  If
** a call to xFetch() with createFlag==1 returns NULL, then SQLite will
** attempt to unpin one or more cache pages by spilling the content of
** pinned pages to disk and synching the operating system disk cache. After
** attempting to unpin pages, the xFetch() method will be invoked again with
** a createFlag of 2.
**
** xUnpin() is called by SQLite with a pointer to a currently pinned page
** as its second argument. If the third parameter, discard, is non-zero,
** then the page should be evicted from the cache. In this case SQLite 
** assumes that the next time the page is retrieved from the cache using
** the xFetch() method, it will be zeroed. If the discard parameter is
** zero, then the page is considered to be unpinned. The cache implementation
** may choose to evict unpinned pages at any time.



**
** The cache is not required to perform any reference counting. A single 
** call to xUnpin() unpins the page regardless of the number of prior calls 
** to xFetch().
**
** The xRekey() method is used to change the key value associated with the
** page passed as the second argument from oldKey to newKey. If the cache