Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update to the latest version of SQLite. |
---|---|
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
6912f911d530189686eacdb99c993fd2 |
User & Date: | drh 2009-09-11 13:57:35.000 |
Context
2009-09-11
| ||
14:37 | Get the new SQLite build working with SQLITE_OMIT_ANALYZE. check-in: e7138a41d3 user: drh tags: trunk | |
13:57 | Update to the latest version of SQLite. check-in: 6912f911d5 user: drh tags: trunk | |
2009-08-10
| ||
13:27 | Update the SQLite build to version 3.6.17. check-in: 1ed1dab9f0 user: drh tags: trunk | |
Changes
Changes to src/sqlite3.c.
1 2 | /****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | /****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite ** version 3.6.18. By combining all the individual C code files into this ** single large file, the entire code can be compiled as a one translation ** unit. This allows many compilers to do optimizations that would not be ** possible if the files were compiled separately. Performance improvements ** of 5% are more are commonly seen when SQLite is compiled as a single ** translation unit. ** ** This file is all you need to compile SQLite. To use SQLite in other ** programs, you need this file and the "sqlite3.h" header file that defines ** the programming interface to the SQLite library. (If you do not have ** the "sqlite3.h" header file at hand, you will find a copy embedded within ** the text of this file. Search for "Begin file sqlite3.h" to find the start ** of the embedded sqlite3.h header file.) Additional code files may be needed ** if you want a wrapper to interface SQLite with your choice of programming ** language. The code for the "sqlite3" command-line shell is also in a ** separate file. This file contains only code for the core SQLite library. ** ** This amalgamation was generated on 2009-09-11 13:56:20 UTC. */ #define SQLITE_CORE 1 #define SQLITE_AMALGAMATION 1 #ifndef SQLITE_PRIVATE # define SQLITE_PRIVATE static #endif #ifndef SQLITE_API |
︙ | ︙ | |||
37 38 39 40 41 42 43 | ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** | < > > > > > > > > > > > > > > > > > > > > > > > > > > > | 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** */ #ifndef _SQLITEINT_H_ #define _SQLITEINT_H_ /* ** These #defines should enable >2GB file support on POSIX if the ** underlying operating system supports it. If the OS lacks ** large file support, or if the OS is windows, these should be no-ops. ** ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any ** system #includes. Hence, this block of code must be the very first ** code in all source files. ** ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch ** on the compiler command line. This is necessary if you are compiling ** on a recent machine (ex: Red Hat 7.2) but you want your code to work ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 ** without this option, LFS is enable. But LFS does not exist in the kernel ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary ** portability you should omit LFS. ** ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. */ #ifndef SQLITE_DISABLE_LFS # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* ** Include the configuration header output by 'configure' if we're using the ** autoconf-based build */ #ifdef _HAVE_SQLITE_CONFIG_H #include "config.h" #endif |
︙ | ︙ | |||
243 244 245 246 247 248 249 250 251 252 253 254 255 256 | ** Maximum length (in bytes) of the pattern in a LIKE or GLOB ** operator. */ #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 #endif /************** End of sqliteLimit.h *****************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /* Disable nuisance warnings on Borland compilers */ #if defined(__BORLANDC__) #pragma warn -rch /* unreachable code */ #pragma warn -ccc /* Condition is always true or false */ | > > > > > > > > > > > | 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | ** Maximum length (in bytes) of the pattern in a LIKE or GLOB ** operator. */ #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 #endif /* ** Maximum depth of recursion for triggers. */ #ifndef SQLITE_MAX_TRIGGER_DEPTH #if defined(SQLITE_SMALL_STACK) # define SQLITE_MAX_TRIGGER_DEPTH 10 #else # define SQLITE_MAX_TRIGGER_DEPTH 1000 #endif #endif /************** End of sqliteLimit.h *****************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /* Disable nuisance warnings on Borland compilers */ #if defined(__BORLANDC__) #pragma warn -rch /* unreachable code */ #pragma warn -ccc /* Condition is always true or false */ |
︙ | ︙ | |||
269 270 271 272 273 274 275 276 277 278 279 280 281 282 | */ #ifdef HAVE_STDINT_H #include <stdint.h> #endif #ifdef HAVE_INTTYPES_H #include <inttypes.h> #endif /* ** This macro is used to "hide" some ugliness in casting an int ** value to a ptr value under the MSVC 64-bit compiler. Casting ** non 64-bit values to ptr types results in a "hard" error with ** the MSVC 64-bit compiler which this attempts to avoid. ** | > > | 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | */ #ifdef HAVE_STDINT_H #include <stdint.h> #endif #ifdef HAVE_INTTYPES_H #include <inttypes.h> #endif #define SQLITE_INDEX_SAMPLES 10 /* ** This macro is used to "hide" some ugliness in casting an int ** value to a ptr value under the MSVC 64-bit compiler. Casting ** non 64-bit values to ptr types results in a "hard" error with ** the MSVC 64-bit compiler which this attempts to avoid. ** |
︙ | ︙ | |||
302 303 304 305 306 307 308 | # define SQLITE_PTR_TO_INT(X) ((int)(X)) # endif #else # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) #endif | < < < < < < < < < < < < < < < < < < < < < < < < < < < | 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | # define SQLITE_PTR_TO_INT(X) ((int)(X)) # endif #else # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) #endif /* ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. ** Older versions of SQLite used an optional THREADSAFE macro. ** We support that for legacy */ #if !defined(SQLITE_THREADSAFE) |
︙ | ︙ | |||
530 531 532 533 534 535 536 | ** or constant definition does not appear in this file, then it is ** not a published API of SQLite, is subject to change without ** notice, and should not be referenced by programs that use SQLite. ** ** Some of the definitions that are in this file are marked as ** "experimental". Experimental interfaces are normally new ** features recently added to SQLite. We do not anticipate changes | | | < < > > > > > | | 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 | ** or constant definition does not appear in this file, then it is ** not a published API of SQLite, is subject to change without ** notice, and should not be referenced by programs that use SQLite. ** ** Some of the definitions that are in this file are marked as ** "experimental". Experimental interfaces are normally new ** features recently added to SQLite. We do not anticipate changes ** to experimental interfaces but reserve the right to make minor changes ** if experience from use "in the wild" suggest such changes are prudent. ** ** The official C-language API documentation for SQLite is derived ** from comments in this file. This file is the authoritative source ** on how SQLite interfaces are suppose to operate. ** ** The name of this file under configuration management is "sqlite.h.in". ** The makefile makes some minor changes to this file (such as inserting ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. */ #ifndef _SQLITE3_H_ #define _SQLITE3_H_ #include <stdarg.h> /* Needed for the definition of va_list */ /* ** Make sure we can call this stuff from C++. */ #if 0 extern "C" { #endif /* ** Add the ability to override 'extern' */ #ifndef SQLITE_EXTERN # define SQLITE_EXTERN extern #endif #ifndef SQLITE_API # define SQLITE_API #endif /* ** These no-op macros are used in front of interfaces to mark those ** interfaces as either deprecated or experimental. New applications ** should not use deprecated interfaces - they are support for backwards ** compatibility only. Application writers should be aware that ** experimental interfaces are subject to change in point releases. ** ** These macros used to resolve to various kinds of compiler magic that ** would generate warning messages when they were used. But that ** compiler magic ended up generating such a flurry of bug reports ** that we have taken it all out and gone back to using simple |
︙ | ︙ | |||
596 597 598 599 600 601 602 | /* ** CAPI3REF: Compile-Time Library Version Numbers {H10010} <S60100> ** ** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in ** the sqlite3.h file specify the version of SQLite with which ** that header file is associated. ** | | < | | | | | > > > > > > > > > > > > > > > > | > > | | > | | | > > | > > > | > | > | > > > > > | | | 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 | /* ** CAPI3REF: Compile-Time Library Version Numbers {H10010} <S60100> ** ** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in ** the sqlite3.h file specify the version of SQLite with which ** that header file is associated. ** ** The "version" of SQLite is a string of the form "W.X.Y" or "W.X.Y.Z". ** The W value is major version number and is always 3 in SQLite3. ** The W value only changes when backwards compatibility is ** broken and we intend to never break backwards compatibility. ** The X value is the minor version number and only changes when ** there are major feature enhancements that are forwards compatible ** but not backwards compatible. ** The Y value is the release number and is incremented with ** each release but resets back to 0 whenever X is incremented. ** The Z value only appears on branch releases. ** ** The SQLITE_VERSION_NUMBER is an integer that is computed as ** follows: ** ** <blockquote><pre> ** SQLITE_VERSION_NUMBER = W*1000000 + X*1000 + Y ** </pre></blockquote> ** ** Since version 3.6.18, SQLite source code has been stored in the ** <a href="http://www.fossil-scm.org/">fossil configuration management ** system</a>. The SQLITE_SOURCE_ID ** macro is a string which identifies a particular check-in of SQLite ** within its configuration management system. The string contains the ** date and time of the check-in (UTC) and an SHA1 hash of the entire ** source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. ** ** Requirements: [H10011] [H10014] */ #define SQLITE_VERSION "3.6.18" #define SQLITE_VERSION_NUMBER 3006018 #define SQLITE_SOURCE_ID "2009-09-10 22:30:54 3ea10434434d27a1300ba2b58e2c47c54909f4ff" /* ** CAPI3REF: Run-Time Library Version Numbers {H10020} <S60100> ** KEYWORDS: sqlite3_version ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] #defines in the header, ** but are associated with the library instead of the header file. Cautious ** programmers might include assert() statements in their application to ** verify that values returned by these interfaces match the macros in ** the header, and thus insure that the application is ** compiled with matching library and header files. ** ** <blockquote><pre> ** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER ); ** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 ); ** assert( strcmp(sqlite3_libversion,SQLITE_VERSION)==0 ); ** </pre></blockquote> ** ** The sqlite3_libversion() function returns the same information as is ** in the sqlite3_version[] string constant. The function is provided ** for use in DLLs since DLL users usually do not have direct access to string ** constants within the DLL. Similarly, the sqlite3_sourceid() function ** returns the same information as is in the [SQLITE_SOURCE_ID] #define of ** the header file. ** ** See also: [sqlite_version()] and [sqlite_source_id()]. ** ** Requirements: [H10021] [H10022] [H10023] */ SQLITE_API const char sqlite3_version[] = SQLITE_VERSION; SQLITE_API const char *sqlite3_libversion(void); SQLITE_API const char *sqlite3_sourceid(void); SQLITE_API int sqlite3_libversion_number(void); /* ** CAPI3REF: Test To See If The Library Is Threadsafe {H10100} <S60100> ** ** SQLite can be compiled with or without mutexes. When ** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes ** are enabled and SQLite is threadsafe. When the ** [SQLITE_THREADSAFE] macro is 0, ** the mutexes are omitted. Without the mutexes, it is not safe ** to use SQLite concurrently from more than one thread. ** ** Enabling mutexes incurs a measurable performance penalty. ** So if speed is of utmost importance, it makes sense to disable ** the mutexes. But for maximum safety, mutexes should be enabled. ** The default behavior is for mutexes to be enabled. ** ** This interface can be used by an application to make sure that the ** version of SQLite that it is linking against was compiled with ** the desired setting of the [SQLITE_THREADSAFE] macro. ** ** This interface only reports on the compile-time mutex setting ** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with ** SQLITE_THREADSAFE=1 then mutexes are enabled by default but ** can be fully or partially disabled using a call to [sqlite3_config()] |
︙ | ︙ | |||
918 919 920 921 922 923 924 925 926 927 928 929 930 931 | #define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */ #define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */ #define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */ #define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */ #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ #define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ /* ** CAPI3REF: Device Characteristics {H10240} <H11120> ** ** The xDeviceCapabilities method of the [sqlite3_io_methods] ** object returns an integer which is a vector of the these ** bit values expressing I/O characteristics of the mass storage | > > | 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 | #define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */ #define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */ #define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */ #define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */ #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ #define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */ /* ** CAPI3REF: Device Characteristics {H10240} <H11120> ** ** The xDeviceCapabilities method of the [sqlite3_io_methods] ** object returns an integer which is a vector of the these ** bit values expressing I/O characteristics of the mass storage |
︙ | ︙ | |||
985 986 987 988 989 990 991 | #define SQLITE_SYNC_NORMAL 0x00002 #define SQLITE_SYNC_FULL 0x00003 #define SQLITE_SYNC_DATAONLY 0x00010 /* ** CAPI3REF: OS Interface Open File Handle {H11110} <S20110> ** | | > | | 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 | #define SQLITE_SYNC_NORMAL 0x00002 #define SQLITE_SYNC_FULL 0x00003 #define SQLITE_SYNC_DATAONLY 0x00010 /* ** CAPI3REF: OS Interface Open File Handle {H11110} <S20110> ** ** An [sqlite3_file] object represents an open file in the ** [sqlite3_vfs | OS interface layer]. Individual OS interface ** implementations will ** want to subclass this object by appending additional fields ** for their own use. The pMethods entry is a pointer to an ** [sqlite3_io_methods] object that defines methods for performing ** I/O operations on the open file. */ typedef struct sqlite3_file sqlite3_file; struct sqlite3_file { |
︙ | ︙ | |||
1362 1363 1364 1365 1366 1367 1368 | ** ** The application should never invoke either sqlite3_os_init() ** or sqlite3_os_end() directly. The application should only invoke ** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init() ** interface is called automatically by sqlite3_initialize() and ** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate ** implementations for sqlite3_os_init() and sqlite3_os_end() | | > | | 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 | ** ** The application should never invoke either sqlite3_os_init() ** or sqlite3_os_end() directly. The application should only invoke ** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init() ** interface is called automatically by sqlite3_initialize() and ** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate ** implementations for sqlite3_os_init() and sqlite3_os_end() ** are built into SQLite when it is compiled for Unix, Windows, or OS/2. ** When [custom builds | built for other platforms] ** (using the [SQLITE_OS_OTHER=1] compile-time ** option) the application must supply a suitable implementation for ** sqlite3_os_init() and sqlite3_os_end(). An application-supplied ** implementation of sqlite3_os_init() or sqlite3_os_end() ** must return [SQLITE_OK] on success and some other [error code] upon ** failure. */ SQLITE_API int sqlite3_initialize(void); |
︙ | ︙ | |||
1444 1445 1446 1447 1448 1449 1450 | ** ** An instance of this object defines the interface between SQLite ** and low-level memory allocation routines. ** ** This object is used in only one place in the SQLite interface. ** A pointer to an instance of this object is the argument to ** [sqlite3_config()] when the configuration option is | > | | | > | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > | 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 | ** ** An instance of this object defines the interface between SQLite ** and low-level memory allocation routines. ** ** This object is used in only one place in the SQLite interface. ** A pointer to an instance of this object is the argument to ** [sqlite3_config()] when the configuration option is ** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC]. ** By creating an instance of this object ** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC]) ** during configuration, an application can specify an alternative ** memory allocation subsystem for SQLite to use for all of its ** dynamic memory needs. ** ** Note that SQLite comes with several [built-in memory allocators] ** that are perfectly adequate for the overwhelming majority of applications ** and that this object is only useful to a tiny minority of applications ** with specialized memory allocation requirements. This object is ** also used during testing of SQLite in order to specify an alternative ** memory allocator that simulates memory out-of-memory conditions in ** order to verify that SQLite recovers gracefully from such ** conditions. ** ** The xMalloc and xFree methods must work like the ** malloc() and free() functions from the standard C library. ** The xRealloc method must work like realloc() from the standard C library ** with the exception that if the second argument to xRealloc is zero, ** xRealloc must be a no-op - it must not perform any allocation or ** deallocation. SQLite guaranteeds that the second argument to ** xRealloc is always a value returned by a prior call to xRoundup. ** And so in cases where xRoundup always returns a positive number, ** xRealloc can perform exactly as the standard library realloc() and ** still be in compliance with this specification. ** ** xSize should return the allocated size of a memory allocation ** previously obtained from xMalloc or xRealloc. The allocated size ** is always at least as big as the requested size but may be larger. ** ** The xRoundup method returns what would be the allocated size of ** a memory allocation given a particular requested size. Most memory ** allocators round up memory allocations at least to the next multiple ** of 8. Some allocators round up to a larger multiple or to a power of 2. ** Every memory allocation request coming in through [sqlite3_malloc()] ** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0, ** that causes the corresponding memory allocation to fail. ** ** The xInit method initializes the memory allocator. (For example, ** it might allocate any require mutexes or initialize internal data ** structures. The xShutdown method is invoked (indirectly) by ** [sqlite3_shutdown()] and should deallocate any resources acquired ** by xInit. The pAppData pointer is used as the only parameter to ** xInit and xShutdown. ** ** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes ** the xInit method, so the xInit method need not be threadsafe. The ** xShutdown method is only called from [sqlite3_shutdown()] so it does ** not need to be threadsafe either. For all other methods, SQLite ** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the ** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which ** it is by default) and so the methods are automatically serialized. ** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other ** methods must be threadsafe or else make their own arrangements for ** serialization. ** ** SQLite will never invoke xInit() more than once without an intervening ** call to xShutdown(). */ typedef struct sqlite3_mem_methods sqlite3_mem_methods; struct sqlite3_mem_methods { void *(*xMalloc)(int); /* Memory allocation function */ void (*xFree)(void*); /* Free a prior allocation */ void *(*xRealloc)(void*,int); /* Resize an allocation */ int (*xSize)(void*); /* Return the size of an allocation */ |
︙ | ︙ | |||
1629 1630 1631 1632 1633 1634 1635 | ** structure is filled with the currently defined mutex routines. ** This option can be used to overload the default mutex allocation ** routines with a wrapper used to track mutex usage for performance ** profiling or testing, for example.</dd> ** ** <dt>SQLITE_CONFIG_LOOKASIDE</dt> ** <dd>This option takes two arguments that determine the default | | | > > > | 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 | ** structure is filled with the currently defined mutex routines. ** This option can be used to overload the default mutex allocation ** routines with a wrapper used to track mutex usage for performance ** profiling or testing, for example.</dd> ** ** <dt>SQLITE_CONFIG_LOOKASIDE</dt> ** <dd>This option takes two arguments that determine the default ** memory allocation lookaside optimization. The first argument is the ** size of each lookaside buffer slot and the second is the number of ** slots allocated to each database connection. This option sets the ** <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE] ** verb to [sqlite3_db_config()] can be used to change the lookaside ** configuration on individual connections.</dd> ** ** <dt>SQLITE_CONFIG_PCACHE</dt> ** <dd>This option takes a single argument which is a pointer to ** an [sqlite3_pcache_methods] object. This object specifies the interface ** to a custom page cache implementation. SQLite makes a copy of the ** object and uses it for page cache memory allocations.</dd> ** |
︙ | ︙ | |||
1681 1682 1683 1684 1685 1686 1687 | ** is invoked. ** ** <dl> ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt> ** <dd>This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** The first argument (the third parameter to [sqlite3_db_config()] is a | | | > > > | 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 | ** is invoked. ** ** <dl> ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt> ** <dd>This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** The first argument (the third parameter to [sqlite3_db_config()] is a ** pointer to an memory buffer to use for lookaside memory. ** The first argument may be NULL in which case SQLite will allocate the ** lookaside buffer itself using [sqlite3_malloc()]. The second argument is the ** size of each lookaside buffer slot and the third argument is the number of ** slots. The size of the buffer in the first argument must be greater than ** or equal to the product of the second and third arguments. The buffer ** must be aligned to an 8-byte boundary. If the second argument is not ** a multiple of 8, it is internally rounded down to the next smaller ** multiple of 8. See also: [SQLITE_CONFIG_LOOKASIDE]</dd> ** ** </dl> */ #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ /* |
︙ | ︙ | |||
2090 2091 2092 2093 2094 2095 2096 | char **pzErrmsg /* Error msg written here */ ); SQLITE_API void sqlite3_free_table(char **result); /* ** CAPI3REF: Formatted String Printing Functions {H17400} <S70000><S20000> ** | | | 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 | char **pzErrmsg /* Error msg written here */ ); SQLITE_API void sqlite3_free_table(char **result); /* ** CAPI3REF: Formatted String Printing Functions {H17400} <S70000><S20000> ** ** These routines are work-alikes of the "printf()" family of functions ** from the standard C library. ** ** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their ** results into memory obtained from [sqlite3_malloc()]. ** The strings returned by these two routines should be ** released by [sqlite3_free()]. Both routines return a ** NULL pointer if [sqlite3_malloc()] is unable to allocate enough |
︙ | ︙ | |||
2377 2378 2379 2380 2381 2382 2383 | ** ** The authorizer callback must not do anything that will modify ** the database connection that invoked the authorizer callback. ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their ** database connections for the meaning of "modify" in this paragraph. ** ** When [sqlite3_prepare_v2()] is used to prepare a statement, the | | | 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 | ** ** The authorizer callback must not do anything that will modify ** the database connection that invoked the authorizer callback. ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their ** database connections for the meaning of "modify" in this paragraph. ** ** When [sqlite3_prepare_v2()] is used to prepare a statement, the ** statement might be re-prepared during [sqlite3_step()] due to a ** schema change. Hence, the application should ensure that the ** correct authorizer callback remains in place during the [sqlite3_step()]. ** ** Note that the authorizer callback is invoked only during ** [sqlite3_prepare()] or its variants. Authorization is not ** performed during statement evaluation in [sqlite3_step()], unless ** as stated in the previous paragraph, sqlite3_step() invokes |
︙ | ︙ | |||
2544 2545 2546 2547 2548 2549 2550 | ** associated with the [database connection] handle should be released by ** passing it to [sqlite3_close()] when it is no longer required. ** ** The sqlite3_open_v2() interface works like sqlite3_open() ** except that it accepts two additional parameters for additional control ** over the new database connection. The flags parameter can take one of ** the following three values, optionally combined with the | | > | > > > > > > | 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 | ** associated with the [database connection] handle should be released by ** passing it to [sqlite3_close()] when it is no longer required. ** ** The sqlite3_open_v2() interface works like sqlite3_open() ** except that it accepts two additional parameters for additional control ** over the new database connection. The flags parameter can take one of ** the following three values, optionally combined with the ** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE], ** and/or [SQLITE_OPEN_PRIVATECACHE] flags: ** ** <dl> ** <dt>[SQLITE_OPEN_READONLY]</dt> ** <dd>The database is opened in read-only mode. If the database does not ** already exist, an error is returned.</dd> ** ** <dt>[SQLITE_OPEN_READWRITE]</dt> ** <dd>The database is opened for reading and writing if possible, or reading ** only if the file is write protected by the operating system. In either ** case the database must already exist, otherwise an error is returned.</dd> ** ** <dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt> ** <dd>The database is opened for reading and writing, and is creates it if ** it does not already exist. This is the behavior that is always used for ** sqlite3_open() and sqlite3_open16().</dd> ** </dl> ** ** If the 3rd parameter to sqlite3_open_v2() is not one of the ** combinations shown above or one of the combinations shown above combined ** with the [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], ** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_SHAREDCACHE] flags, ** then the behavior is undefined. ** ** If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection ** opens in the multi-thread [threading mode] as long as the single-thread ** mode has not been set at compile-time or start-time. If the ** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens ** in the serialized [threading mode] unless single-thread was ** previously selected at compile-time or start-time. ** The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be ** eligible to use [shared cache mode], regardless of whether or not shared ** cache is enabled using [sqlite3_enable_shared_cache()]. The ** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not ** participate in [shared cache mode] even if it is enabled. ** ** If the filename is ":memory:", then a private, temporary in-memory database ** is created for the connection. This in-memory database will vanish when ** the database connection is closed. Future versions of SQLite might ** make use of additional special filenames that begin with the ":" character. ** It is recommended that when a database filename actually does begin with ** a ":" character you should prefix the filename with a pathname such as |
︙ | ︙ | |||
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 | ** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt> ** <dd>The maximum length of the pattern argument to the [LIKE] or ** [GLOB] operators.</dd> ** ** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt> ** <dd>The maximum number of variables in an SQL statement that can ** be bound.</dd> ** </dl> */ #define SQLITE_LIMIT_LENGTH 0 #define SQLITE_LIMIT_SQL_LENGTH 1 #define SQLITE_LIMIT_COLUMN 2 #define SQLITE_LIMIT_EXPR_DEPTH 3 #define SQLITE_LIMIT_COMPOUND_SELECT 4 #define SQLITE_LIMIT_VDBE_OP 5 #define SQLITE_LIMIT_FUNCTION_ARG 6 #define SQLITE_LIMIT_ATTACHED 7 #define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 #define SQLITE_LIMIT_VARIABLE_NUMBER 9 /* ** CAPI3REF: Compiling An SQL Statement {H13010} <S10000> ** KEYWORDS: {SQL statement compiler} ** ** To execute an SQL query, it must first be compiled into a byte-code ** program using one of these routines. | > > > > | 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 | ** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt> ** <dd>The maximum length of the pattern argument to the [LIKE] or ** [GLOB] operators.</dd> ** ** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt> ** <dd>The maximum number of variables in an SQL statement that can ** be bound.</dd> ** ** <dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt> ** <dd>The maximum depth of recursion for triggers.</dd> ** </dl> */ #define SQLITE_LIMIT_LENGTH 0 #define SQLITE_LIMIT_SQL_LENGTH 1 #define SQLITE_LIMIT_COLUMN 2 #define SQLITE_LIMIT_EXPR_DEPTH 3 #define SQLITE_LIMIT_COMPOUND_SELECT 4 #define SQLITE_LIMIT_VDBE_OP 5 #define SQLITE_LIMIT_FUNCTION_ARG 6 #define SQLITE_LIMIT_ATTACHED 7 #define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 #define SQLITE_LIMIT_VARIABLE_NUMBER 9 #define SQLITE_LIMIT_TRIGGER_DEPTH 10 /* ** CAPI3REF: Compiling An SQL Statement {H13010} <S10000> ** KEYWORDS: {SQL statement compiler} ** ** To execute an SQL query, it must first be compiled into a byte-code ** program using one of these routines. |
︙ | ︙ | |||
2954 2955 2956 2957 2958 2959 2960 | /* ** CAPI3REF: Binding Values To Prepared Statements {H13500} <S70300> ** KEYWORDS: {host parameter} {host parameters} {host parameter name} ** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} ** ** In the SQL strings input to [sqlite3_prepare_v2()] and its variants, | | > | | | 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 | /* ** CAPI3REF: Binding Values To Prepared Statements {H13500} <S70300> ** KEYWORDS: {host parameter} {host parameters} {host parameter name} ** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} ** ** In the SQL strings input to [sqlite3_prepare_v2()] and its variants, ** literals may be replaced by a [parameter] that matches one of following ** templates: ** ** <ul> ** <li> ? ** <li> ?NNN ** <li> :VVV ** <li> @VVV ** <li> $VVV ** </ul> ** ** In the templates above, NNN represents an integer literal, ** and VVV represents an alphanumeric identifer. The values of these ** parameters (also called "host parameter names" or "SQL parameters") ** can be set using the sqlite3_bind_*() routines defined here. ** ** The first argument to the sqlite3_bind_*() routines is always ** a pointer to the [sqlite3_stmt] object returned from ** [sqlite3_prepare_v2()] or its variants. ** |
︙ | ︙ | |||
3617 3618 3619 3620 3621 3622 3623 | ** parameter is less than -1 or greater than 127 then the behavior is ** undefined. ** ** The fourth parameter, eTextRep, specifies what ** [SQLITE_UTF8 | text encoding] this SQL function prefers for ** its parameters. Any SQL function implementation should be able to work ** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be | | | 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 | ** parameter is less than -1 or greater than 127 then the behavior is ** undefined. ** ** The fourth parameter, eTextRep, specifies what ** [SQLITE_UTF8 | text encoding] this SQL function prefers for ** its parameters. Any SQL function implementation should be able to work ** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be ** more efficient with one encoding than another. An application may ** invoke sqlite3_create_function() or sqlite3_create_function16() multiple ** times with the same function but with different values of eTextRep. ** When multiple implementations of the same function are available, SQLite ** will pick the one that involves the least amount of data conversion. ** If there is only a single implementation which does not care what text ** encoding is used, then the fourth argument should be [SQLITE_ANY]. ** |
︙ | ︙ | |||
3639 3640 3641 3642 3643 3644 3645 | ** parameters. An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL should be passed for xFunc. To delete an existing ** SQL function or aggregate, pass NULL for all three function callbacks. ** ** It is permitted to register multiple implementations of the same ** functions with the same name but with either differing numbers of ** arguments or differing preferred text encodings. SQLite will use | | | 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 | ** parameters. An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL should be passed for xFunc. To delete an existing ** SQL function or aggregate, pass NULL for all three function callbacks. ** ** It is permitted to register multiple implementations of the same ** functions with the same name but with either differing numbers of ** arguments or differing preferred text encodings. SQLite will use ** the implementation that most closely matches the way in which the ** SQL function is used. A function implementation with a non-negative ** nArg parameter is a better match than a function implementation with ** a negative nArg. A function where the preferred text encoding ** matches the database encoding is a better ** match than a function where the encoding is different. ** A function where the encoding difference is between UTF16le and UTF16be ** is a closer match than a function where the encoding difference is |
︙ | ︙ | |||
3987 3988 3989 3990 3991 3992 3993 | ** is non-negative, then as many bytes (not characters) of the text ** pointed to by the 2nd parameter are taken as the application-defined ** function result. ** If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that ** function as the destructor on the text or BLOB result when it has ** finished using that result. | | > | | 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 | ** is non-negative, then as many bytes (not characters) of the text ** pointed to by the 2nd parameter are taken as the application-defined ** function result. ** If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that ** function as the destructor on the text or BLOB result when it has ** finished using that result. ** If the 4th parameter to the sqlite3_result_text* interfaces or to ** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite ** assumes that the text or BLOB result is in constant space and does not ** copy the content of the parameter nor call a destructor on the content ** when it has finished using that result. ** If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT ** then SQLite makes a copy of the result into space obtained from ** from [sqlite3_malloc()] before it returns. ** ** The sqlite3_result_value() interface sets the result of ** the application-defined function to be a copy the |
︙ | ︙ | |||
4969 4970 4971 4972 4973 4974 4975 | ** a expired BLOB handle fail with an return code of [SQLITE_ABORT]. ** Changes written into a BLOB prior to the BLOB expiring are not ** rollback by the expiration of the BLOB. Such changes will eventually ** commit if the transaction continues to completion. ** ** Use the [sqlite3_blob_bytes()] interface to determine the size of ** the opened blob. The size of a blob may not be changed by this | | | 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 | ** a expired BLOB handle fail with an return code of [SQLITE_ABORT]. ** Changes written into a BLOB prior to the BLOB expiring are not ** rollback by the expiration of the BLOB. Such changes will eventually ** commit if the transaction continues to completion. ** ** Use the [sqlite3_blob_bytes()] interface to determine the size of ** the opened blob. The size of a blob may not be changed by this ** interface. Use the [UPDATE] SQL command to change the size of a ** blob. ** ** The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces ** and the built-in [zeroblob] SQL function can be used, if desired, ** to create an empty, zero-filled blob in which to read or write using ** this interface. ** |
︙ | ︙ | |||
5209 5210 5211 5212 5213 5214 5215 | ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. {H17016} But SQLite will only request a recursive mutex in ** cases where it really needs one. {END} If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return | | | 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 | ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. {H17016} But SQLite will only request a recursive mutex in ** cases where it really needs one. {END} If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return ** a pointer to a static preexisting mutex. {END} Six static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** {H17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST |
︙ | ︙ | |||
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 | ** The only difference is that the public sqlite3_XXX functions enumerated ** above silently ignore any invocations that pass a NULL pointer instead ** of a valid mutex handle. The implementations of the methods defined ** by this structure are not required to handle this case, the results ** of passing a NULL pointer instead of a valid mutex handle are undefined ** (i.e. it is acceptable to provide an implementation that segfaults if ** it is passed a NULL pointer). */ typedef struct sqlite3_mutex_methods sqlite3_mutex_methods; struct sqlite3_mutex_methods { int (*xMutexInit)(void); int (*xMutexEnd)(void); sqlite3_mutex *(*xMutexAlloc)(int); void (*xMutexFree)(sqlite3_mutex *); | > > > > > > > > > > > > > > > | 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 | ** The only difference is that the public sqlite3_XXX functions enumerated ** above silently ignore any invocations that pass a NULL pointer instead ** of a valid mutex handle. The implementations of the methods defined ** by this structure are not required to handle this case, the results ** of passing a NULL pointer instead of a valid mutex handle are undefined ** (i.e. it is acceptable to provide an implementation that segfaults if ** it is passed a NULL pointer). ** ** The xMutexInit() method must be threadsafe. It must be harmless to ** invoke xMutexInit() mutiple times within the same process and without ** intervening calls to xMutexEnd(). Second and subsequent calls to ** xMutexInit() must be no-ops. ** ** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()] ** and its associates). Similarly, xMutexAlloc() must not use SQLite memory ** allocation for a static mutex. However xMutexAlloc() may use SQLite ** memory allocation for a fast or recursive mutex. ** ** SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is ** called, but only if the prior call to xMutexInit returned SQLITE_OK. ** If xMutexInit fails in any way, it is expected to clean up after itself ** prior to returning. */ typedef struct sqlite3_mutex_methods sqlite3_mutex_methods; struct sqlite3_mutex_methods { int (*xMutexInit)(void); int (*xMutexEnd)(void); sqlite3_mutex *(*xMutexAlloc)(int); void (*xMutexFree)(sqlite3_mutex *); |
︙ | ︙ | |||
5480 5481 5482 5483 5484 5485 5486 | ** nothing is written into *pHighwater and the resetFlag is ignored. ** Other parameters record only the highwater mark and not the current ** value. For these latter parameters nothing is written into *pCurrent. ** ** This routine returns SQLITE_OK on success and a non-zero ** [error code] on failure. ** | | | 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 | ** nothing is written into *pHighwater and the resetFlag is ignored. ** Other parameters record only the highwater mark and not the current ** value. For these latter parameters nothing is written into *pCurrent. ** ** This routine returns SQLITE_OK on success and a non-zero ** [error code] on failure. ** ** This routine is threadsafe but is not atomic. This routine can be ** called while other threads are running the same or different SQLite ** interfaces. However the values returned in *pCurrent and ** *pHighwater reflect the status of SQLite at different points in time ** and it is possible that another thread might change the parameter ** in between the times when *pCurrent and *pHighwater are written. ** ** See also: [sqlite3_db_status()] |
︙ | ︙ | |||
5603 5604 5605 5606 5607 5608 5609 | */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg); /* ** CAPI3REF: Status Parameters for database connections {H17520} <H17500> ** EXPERIMENTAL ** | > > > > > | > > | 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 | */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg); /* ** CAPI3REF: Status Parameters for database connections {H17520} <H17500> ** EXPERIMENTAL ** ** These constants are the available integer "verbs" that can be passed as ** the second argument to the [sqlite3_db_status()] interface. ** ** New verbs may be added in future releases of SQLite. Existing verbs ** might be discontinued. Applications should check the return code from ** [sqlite3_db_status()] to make sure that the call worked. ** The [sqlite3_db_status()] interface will return a non-zero error code ** if a discontinued or unsupported verb is invoked. ** ** <dl> ** <dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt> ** <dd>This parameter returns the number of lookaside memory slots currently ** checked out.</dd> ** </dl> */ |
︙ | ︙ | |||
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 | ** ** See [sqlite3_pcache_methods] for additional information. */ typedef struct sqlite3_pcache sqlite3_pcache; /* ** CAPI3REF: Application Defined Page Cache. ** EXPERIMENTAL ** ** The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can ** register an alternative page cache implementation by passing in an ** instance of the sqlite3_pcache_methods structure. The majority of the | > | | | | | > > | > > | | > > > > > > > > > | > > | > > > > > > | | | | > > > | | | | | | | | | | < | < < < < < < | < | < < < | < < < < | > > > > > > > | < < < | 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 | ** ** See [sqlite3_pcache_methods] for additional information. */ typedef struct sqlite3_pcache sqlite3_pcache; /* ** CAPI3REF: Application Defined Page Cache. ** KEYWORDS: {page cache} ** EXPERIMENTAL ** ** The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can ** register an alternative page cache implementation by passing in an ** instance of the sqlite3_pcache_methods structure. The majority of the ** heap memory used by SQLite is used by the page cache to cache data read ** from, or ready to be written to, the database file. By implementing a ** custom page cache using this API, an application can control more ** precisely the amount of memory consumed by SQLite, the way in which ** that memory is allocated and released, and the policies used to ** determine exactly which parts of a database file are cached and for ** how long. ** ** The contents of the sqlite3_pcache_methods structure are copied to an ** internal buffer by SQLite within the call to [sqlite3_config]. Hence ** the application may discard the parameter after the call to ** [sqlite3_config()] returns. ** ** The xInit() method is called once for each call to [sqlite3_initialize()] ** (usually only once during the lifetime of the process). It is passed ** a copy of the sqlite3_pcache_methods.pArg value. It can be used to set ** up global structures and mutexes required by the custom page cache ** implementation. ** ** The xShutdown() method is called from within [sqlite3_shutdown()], ** if the application invokes this API. It can be used to clean up ** any outstanding resources before process shutdown, if required. ** ** SQLite holds a [SQLITE_MUTEX_RECURSIVE] mutex when it invokes ** the xInit method, so the xInit method need not be threadsafe. The ** xShutdown method is only called from [sqlite3_shutdown()] so it does ** not need to be threadsafe either. All other methods must be threadsafe ** in multithreaded applications. ** ** SQLite will never invoke xInit() more than once without an intervening ** call to xShutdown(). ** ** The xCreate() method is used to construct a new cache instance. SQLite ** will typically create one cache instance for each open database file, ** though this is not guaranteed. The ** first parameter, szPage, is the size in bytes of the pages that must ** be allocated by the cache. szPage will not be a power of two. szPage ** will the page size of the database file that is to be cached plus an ** increment (here called "R") of about 100 or 200. SQLite will use the ** extra R bytes on each page to store metadata about the underlying ** database page on disk. The value of R depends ** on the SQLite version, the target platform, and how SQLite was compiled. ** R is constant for a particular build of SQLite. The second argument to ** xCreate(), bPurgeable, is true if the cache being created will ** be used to cache database pages of a file stored on disk, or ** false if it is used for an in-memory database. The cache implementation ** does not have to do anything special based with the value of bPurgeable; ** it is purely advisory. On a cache where bPurgeable is false, SQLite will ** never invoke xUnpin() except to deliberately delete a page. ** In other words, a cache created with bPurgeable set to false will ** never contain any unpinned pages. ** ** The xCachesize() method may be called at any time by SQLite to set the ** suggested maximum cache-size (number of pages stored by) the cache ** instance passed as the first argument. This is the value configured using ** the SQLite "[PRAGMA cache_size]" command. As with the bPurgeable parameter, ** the implementation is not required to do anything with this ** value; it is advisory only. ** ** The xPagecount() method should return the number of pages currently ** stored in the cache. ** ** The xFetch() method is used to fetch a page and return a pointer to it. ** A 'page', in this context, is a buffer of szPage bytes aligned at an ** 8-byte boundary. The page to be fetched is determined by the key. The ** mimimum key value is 1. After it has been retrieved using xFetch, the page ** is considered to be "pinned". ** ** If the requested page is already in the page cache, then the page cache ** implementation must return a pointer to the page buffer with its content ** intact. If the requested page is not already in the cache, then the ** behavior of the cache implementation is determined by the value of the ** createFlag parameter passed to xFetch, according to the following table: ** ** <table border=1 width=85% align=center> ** <tr><th> createFlag <th> Behaviour when page is not already in cache ** <tr><td> 0 <td> Do not allocate a new page. Return NULL. ** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so. ** Otherwise return NULL. ** <tr><td> 2 <td> Make every effort to allocate a new page. Only return ** NULL if allocating a new page is effectively impossible. ** </table> ** ** SQLite will normally invoke xFetch() with a createFlag of 0 or 1. If ** a call to xFetch() with createFlag==1 returns NULL, then SQLite will ** attempt to unpin one or more cache pages by spilling the content of ** pinned pages to disk and synching the operating system disk cache. After ** attempting to unpin pages, the xFetch() method will be invoked again with ** a createFlag of 2. ** ** xUnpin() is called by SQLite with a pointer to a currently pinned page ** as its second argument. If the third parameter, discard, is non-zero, ** then the page should be evicted from the cache. In this case SQLite ** assumes that the next time the page is retrieved from the cache using ** the xFetch() method, it will be zeroed. If the discard parameter is ** zero, then the page is considered to be unpinned. The cache implementation ** may choose to evict unpinned pages at any time. ** ** The cache is not required to perform any reference counting. A single ** call to xUnpin() unpins the page regardless of the number of prior calls ** to xFetch(). ** ** The xRekey() method is used to change the key value associated with the ** page passed as the second argument from oldKey to newKey. If the cache |
︙ | ︙ | |||
6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 | # undef double #endif #if 0 } /* End of the 'extern "C"' block */ #endif #endif /************** End of sqlite3.h *********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include hash.h in the middle of sqliteInt.h ******************/ /************** Begin file hash.h ********************************************/ /* ** 2001 September 22 | > | 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 | # undef double #endif #if 0 } /* End of the 'extern "C"' block */ #endif #endif /************** End of sqlite3.h *********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include hash.h in the middle of sqliteInt.h ******************/ /************** Begin file hash.h ********************************************/ /* ** 2001 September 22 |
︙ | ︙ | |||
6426 6427 6428 6429 6430 6431 6432 | ** If compiling for a processor that lacks floating point support, ** substitute integer for floating-point */ #ifdef SQLITE_OMIT_FLOATING_POINT # define double sqlite_int64 # define LONGDOUBLE_TYPE sqlite_int64 # ifndef SQLITE_BIG_DBL | | | 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 | ** If compiling for a processor that lacks floating point support, ** substitute integer for floating-point */ #ifdef SQLITE_OMIT_FLOATING_POINT # define double sqlite_int64 # define LONGDOUBLE_TYPE sqlite_int64 # ifndef SQLITE_BIG_DBL # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) # endif # define SQLITE_OMIT_DATETIME_FUNCS 1 # define SQLITE_OMIT_TRACE 1 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT # undef SQLITE_HAVE_ISNAN #endif #ifndef SQLITE_BIG_DBL |
︙ | ︙ | |||
6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 | ** the default file format for new databases and the maximum file format ** that the library can read. */ #define SQLITE_MAX_FILE_FORMAT 4 #ifndef SQLITE_DEFAULT_FILE_FORMAT # define SQLITE_DEFAULT_FILE_FORMAT 1 #endif /* ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified ** on the command-line */ #ifndef SQLITE_TEMP_STORE # define SQLITE_TEMP_STORE 1 | > > > > | 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 | ** the default file format for new databases and the maximum file format ** that the library can read. */ #define SQLITE_MAX_FILE_FORMAT 4 #ifndef SQLITE_DEFAULT_FILE_FORMAT # define SQLITE_DEFAULT_FILE_FORMAT 1 #endif #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 #endif /* ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified ** on the command-line */ #ifndef SQLITE_TEMP_STORE # define SQLITE_TEMP_STORE 1 |
︙ | ︙ | |||
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 | typedef struct ExprList ExprList; typedef struct ExprSpan ExprSpan; typedef struct FKey FKey; typedef struct FuncDef FuncDef; typedef struct FuncDefHash FuncDefHash; typedef struct IdList IdList; typedef struct Index Index; typedef struct KeyClass KeyClass; typedef struct KeyInfo KeyInfo; typedef struct Lookaside Lookaside; typedef struct LookasideSlot LookasideSlot; typedef struct Module Module; typedef struct NameContext NameContext; typedef struct Parse Parse; typedef struct Savepoint Savepoint; typedef struct Select Select; typedef struct SrcList SrcList; typedef struct StrAccum StrAccum; typedef struct Table Table; typedef struct TableLock TableLock; typedef struct Token Token; | > | | 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 | typedef struct ExprList ExprList; typedef struct ExprSpan ExprSpan; typedef struct FKey FKey; typedef struct FuncDef FuncDef; typedef struct FuncDefHash FuncDefHash; typedef struct IdList IdList; typedef struct Index Index; typedef struct IndexSample IndexSample; typedef struct KeyClass KeyClass; typedef struct KeyInfo KeyInfo; typedef struct Lookaside Lookaside; typedef struct LookasideSlot LookasideSlot; typedef struct Module Module; typedef struct NameContext NameContext; typedef struct Parse Parse; typedef struct Savepoint Savepoint; typedef struct Select Select; typedef struct SrcList SrcList; typedef struct StrAccum StrAccum; typedef struct Table Table; typedef struct TableLock TableLock; typedef struct Token Token; typedef struct TriggerPrg TriggerPrg; typedef struct TriggerStep TriggerStep; typedef struct Trigger Trigger; typedef struct UnpackedRecord UnpackedRecord; typedef struct VTable VTable; typedef struct Walker Walker; typedef struct WherePlan WherePlan; typedef struct WhereInfo WhereInfo; |
︙ | ︙ | |||
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 | /* ** The names of the following types declared in vdbeInt.h are required ** for the VdbeOp definition. */ typedef struct VdbeFunc VdbeFunc; typedef struct Mem Mem; /* ** A single instruction of the virtual machine has an opcode ** and as many as three operands. The instruction is recorded ** as an instance of the following structure: */ struct VdbeOp { u8 opcode; /* What operation to perform */ signed char p4type; /* One of the P4_xxx constants for p4 */ u8 opflags; /* Not currently used */ u8 p5; /* Fifth parameter is an unsigned character */ int p1; /* First operand */ int p2; /* Second parameter (often the jump destination) */ int p3; /* The third parameter */ | > | > > > > > > > > > > > > > > | > | 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 | /* ** The names of the following types declared in vdbeInt.h are required ** for the VdbeOp definition. */ typedef struct VdbeFunc VdbeFunc; typedef struct Mem Mem; typedef struct SubProgram SubProgram; /* ** A single instruction of the virtual machine has an opcode ** and as many as three operands. The instruction is recorded ** as an instance of the following structure: */ struct VdbeOp { u8 opcode; /* What operation to perform */ signed char p4type; /* One of the P4_xxx constants for p4 */ u8 opflags; /* Not currently used */ u8 p5; /* Fifth parameter is an unsigned character */ int p1; /* First operand */ int p2; /* Second parameter (often the jump destination) */ int p3; /* The third parameter */ union { /* fourth parameter */ int i; /* Integer value if p4type==P4_INT32 */ void *p; /* Generic pointer */ char *z; /* Pointer to data for string (char array) types */ i64 *pI64; /* Used when p4type is P4_INT64 */ double *pReal; /* Used when p4type is P4_REAL */ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ Mem *pMem; /* Used when p4type is P4_MEM */ VTable *pVtab; /* Used when p4type is P4_VTAB */ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ int *ai; /* Used when p4type is P4_INTARRAY */ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ } p4; #ifdef SQLITE_DEBUG char *zComment; /* Comment to improve readability */ #endif #ifdef VDBE_PROFILE int cnt; /* Number of times this instruction was executed */ u64 cycles; /* Total time spent executing this instruction */ #endif }; typedef struct VdbeOp VdbeOp; /* ** A sub-routine used to implement a trigger program. */ struct SubProgram { VdbeOp *aOp; /* Array of opcodes for sub-program */ int nOp; /* Elements in aOp[] */ int nMem; /* Number of memory cells required */ int nCsr; /* Number of cursors required */ int nRef; /* Number of pointers to this structure */ void *token; /* id that may be used to recursive triggers */ }; /* ** A smaller version of VdbeOp used for the VdbeAddOpList() function because ** it takes up less space. */ struct VdbeOpList { u8 opcode; /* What operation to perform */ signed char p1; /* First operand */ signed char p2; /* Second parameter (often the jump destination) */ signed char p3; /* Third parameter */ }; typedef struct VdbeOpList VdbeOpList; /* ** Allowed values of VdbeOp.p4type */ #define P4_NOTUSED 0 /* The P4 parameter is not used */ #define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */ #define P4_STATIC (-2) /* Pointer to a static string */ #define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */ #define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */ #define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */ #define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */ #define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */ #define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */ #define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */ #define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ #define P4_REAL (-12) /* P4 is a 64-bit floating point value */ #define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ #define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ #define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */ #define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */ /* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure ** is made. That copy is freed when the Vdbe is finalized. But if the ** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still ** gets freed when the Vdbe is finalized so it still should be obtained ** from a single sqliteMalloc(). But no copy is made and the calling ** function should *not* try to free the KeyInfo. |
︙ | ︙ | |||
7175 7176 7177 7178 7179 7180 7181 | #define OP_Copy 20 #define OP_Trace 21 #define OP_Function 22 #define OP_IfNeg 23 #define OP_And 67 /* same as TK_AND */ #define OP_Subtract 85 /* same as TK_MINUS */ #define OP_Noop 24 | > | | | | | | | | | | | | | | | | | | < | 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 | #define OP_Copy 20 #define OP_Trace 21 #define OP_Function 22 #define OP_IfNeg 23 #define OP_And 67 /* same as TK_AND */ #define OP_Subtract 85 /* same as TK_MINUS */ #define OP_Noop 24 #define OP_Program 25 #define OP_Return 26 #define OP_Remainder 88 /* same as TK_REM */ #define OP_NewRowid 27 #define OP_Multiply 86 /* same as TK_STAR */ #define OP_Variable 28 #define OP_String 29 #define OP_RealAffinity 30 #define OP_VRename 31 #define OP_ParseSchema 32 #define OP_VOpen 33 #define OP_Close 34 #define OP_CreateIndex 35 #define OP_IsUnique 36 #define OP_NotFound 37 #define OP_Int64 38 #define OP_MustBeInt 39 #define OP_Halt 40 #define OP_Rowid 41 #define OP_IdxLT 42 #define OP_AddImm 43 #define OP_RowData 44 #define OP_MemMax 45 #define OP_Or 66 /* same as TK_OR */ #define OP_NotExists 46 #define OP_Gosub 47 #define OP_Divide 87 /* same as TK_SLASH */ #define OP_Integer 48 |
︙ | ︙ | |||
7218 7219 7220 7221 7222 7223 7224 | #define OP_Last 54 #define OP_SeekLe 55 #define OP_IsNull 71 /* same as TK_ISNULL */ #define OP_IncrVacuum 56 #define OP_IdxRowid 57 #define OP_ShiftRight 83 /* same as TK_RSHIFT */ #define OP_ResetCount 58 | < | | | > | 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 | #define OP_Last 54 #define OP_SeekLe 55 #define OP_IsNull 71 /* same as TK_ISNULL */ #define OP_IncrVacuum 56 #define OP_IdxRowid 57 #define OP_ShiftRight 83 /* same as TK_RSHIFT */ #define OP_ResetCount 58 #define OP_Yield 59 #define OP_DropTrigger 60 #define OP_DropIndex 61 #define OP_Param 62 #define OP_IdxGE 63 #define OP_IdxDelete 64 #define OP_Vacuum 65 #define OP_IfNot 68 #define OP_DropTable 69 #define OP_SeekLt 70 #define OP_MakeRecord 79 |
︙ | ︙ | |||
7244 7245 7246 7247 7248 7249 7250 | #define OP_Clear 98 #define OP_Le 76 /* same as TK_LE */ #define OP_VerifyCookie 99 #define OP_AggStep 100 #define OP_ToText 139 /* same as TK_TO_TEXT */ #define OP_Not 19 /* same as TK_NOT */ #define OP_ToReal 143 /* same as TK_TO_REAL */ | < | | | < | | | | | | | | | | | | | | | | | | | | | | | | | | | > > | 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 | #define OP_Clear 98 #define OP_Le 76 /* same as TK_LE */ #define OP_VerifyCookie 99 #define OP_AggStep 100 #define OP_ToText 139 /* same as TK_TO_TEXT */ #define OP_Not 19 /* same as TK_NOT */ #define OP_ToReal 143 /* same as TK_TO_REAL */ #define OP_Transaction 101 #define OP_VFilter 102 #define OP_Ne 73 /* same as TK_NE */ #define OP_VDestroy 103 #define OP_BitOr 81 /* same as TK_BITOR */ #define OP_Next 104 #define OP_Count 105 #define OP_IdxInsert 106 #define OP_Lt 77 /* same as TK_LT */ #define OP_SeekGe 107 #define OP_Insert 108 #define OP_Destroy 109 #define OP_ReadCookie 110 #define OP_RowSetTest 111 #define OP_LoadAnalysis 112 #define OP_Explain 113 #define OP_HaltIfNull 114 #define OP_OpenPseudo 115 #define OP_OpenEphemeral 116 #define OP_Null 117 #define OP_Move 118 #define OP_Blob 119 #define OP_Add 84 /* same as TK_PLUS */ #define OP_Rewind 120 #define OP_SeekGt 121 #define OP_VBegin 122 #define OP_VUpdate 123 #define OP_IfZero 124 #define OP_BitNot 93 /* same as TK_BITNOT */ #define OP_VCreate 125 #define OP_Found 126 #define OP_IfPos 127 #define OP_NullRow 128 #define OP_Jump 129 #define OP_Permutation 131 /* The following opcode values are never used */ #define OP_NotUsed_132 132 #define OP_NotUsed_133 133 #define OP_NotUsed_134 134 #define OP_NotUsed_135 135 #define OP_NotUsed_136 136 #define OP_NotUsed_137 137 #define OP_NotUsed_138 138 |
︙ | ︙ | |||
7304 7305 7306 7307 7308 7309 7310 | #define OPFLG_IN2 0x0008 /* in2: P2 is an input */ #define OPFLG_IN3 0x0010 /* in3: P3 is an input */ #define OPFLG_OUT3 0x0020 /* out3: P3 is an output */ #define OPFLG_INITIALIZER {\ /* 0 */ 0x00, 0x01, 0x00, 0x00, 0x10, 0x08, 0x02, 0x00,\ /* 8 */ 0x00, 0x04, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00,\ /* 16 */ 0x02, 0x00, 0x01, 0x04, 0x04, 0x00, 0x00, 0x05,\ | | | | | | | | | | | 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 | #define OPFLG_IN2 0x0008 /* in2: P2 is an input */ #define OPFLG_IN3 0x0010 /* in3: P3 is an input */ #define OPFLG_OUT3 0x0020 /* out3: P3 is an output */ #define OPFLG_INITIALIZER {\ /* 0 */ 0x00, 0x01, 0x00, 0x00, 0x10, 0x08, 0x02, 0x00,\ /* 8 */ 0x00, 0x04, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00,\ /* 16 */ 0x02, 0x00, 0x01, 0x04, 0x04, 0x00, 0x00, 0x05,\ /* 24 */ 0x00, 0x01, 0x04, 0x02, 0x00, 0x02, 0x04, 0x00,\ /* 32 */ 0x00, 0x00, 0x00, 0x02, 0x11, 0x11, 0x02, 0x05,\ /* 40 */ 0x00, 0x02, 0x11, 0x04, 0x00, 0x08, 0x11, 0x01,\ /* 48 */ 0x02, 0x01, 0x21, 0x08, 0x00, 0x02, 0x01, 0x11,\ /* 56 */ 0x01, 0x02, 0x00, 0x04, 0x00, 0x00, 0x02, 0x11,\ /* 64 */ 0x00, 0x00, 0x2c, 0x2c, 0x05, 0x00, 0x11, 0x05,\ /* 72 */ 0x05, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x00,\ /* 80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\ /* 88 */ 0x2c, 0x2c, 0x00, 0x00, 0x00, 0x04, 0x02, 0x00,\ /* 96 */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,\ /* 104 */ 0x01, 0x02, 0x08, 0x11, 0x00, 0x02, 0x02, 0x15,\ /* 112 */ 0x00, 0x00, 0x10, 0x00, 0x00, 0x02, 0x00, 0x02,\ /* 120 */ 0x01, 0x11, 0x00, 0x00, 0x05, 0x00, 0x11, 0x05,\ /* 128 */ 0x00, 0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 136 */ 0x00, 0x00, 0x00, 0x04, 0x04, 0x04, 0x04, 0x04,\ } /************** End of opcodes.h *********************************************/ /************** Continuing where we left off in vdbe.h ***********************/ /* |
︙ | ︙ | |||
7346 7347 7348 7349 7350 7351 7352 | SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr); SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N); SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N); SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int); SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*); | | > > > | 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 | SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr); SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N); SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N); SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int); SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int,int,int); SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int); SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *, int); SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe*,FILE*); #endif SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int); SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*)); SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*); SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int); SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*); SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*); SQLITE_PRIVATE void sqlite3VdbeProgramDelete(sqlite3 *, SubProgram *, int); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT SQLITE_PRIVATE int sqlite3VdbeReleaseMemory(int); #endif SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,char*,int); SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*); SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); |
︙ | ︙ | |||
7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 | ** */ #define PENDING_BYTE sqlite3PendingByte #define RESERVED_BYTE (PENDING_BYTE+1) #define SHARED_FIRST (PENDING_BYTE+2) #define SHARED_SIZE 510 /* ** Functions for accessing sqlite3_file methods */ SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*); SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset); SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset); SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size); | > > > > > | 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 | ** */ #define PENDING_BYTE sqlite3PendingByte #define RESERVED_BYTE (PENDING_BYTE+1) #define SHARED_FIRST (PENDING_BYTE+2) #define SHARED_SIZE 510 /* ** Wrapper around OS specific sqlite3_os_init() function. */ SQLITE_PRIVATE int sqlite3OsInit(void); /* ** Functions for accessing sqlite3_file methods */ SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*); SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset); SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset); SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size); |
︙ | ︙ | |||
8140 8141 8142 8143 8144 8145 8146 | #define DB_UnresetViews 0x0002 /* Some views have defined column names */ #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ /* ** The number of different kinds of things that can be limited ** using the sqlite3_limit() interface. */ | | | 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 | #define DB_UnresetViews 0x0002 /* Some views have defined column names */ #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ /* ** The number of different kinds of things that can be limited ** using the sqlite3_limit() interface. */ #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) /* ** Lookaside malloc is a set of fixed-size buffers that can be used ** to satisfy small transient memory allocation requests for objects ** associated with a particular database connection. The use of ** lookaside malloc provides a significant performance enhancement ** (approx 10%) by avoiding numerous malloc/free requests while parsing |
︙ | ︙ | |||
8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 | #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ #define SQLITE_ReverseOrder 0x00100000 /* Reverse unordered SELECTs */ /* ** Possible values for the sqlite.magic field. ** The numbers are obtained at random and have no special meaning, other ** than being distinct from one another. */ #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ | > | 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 | #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ #define SQLITE_ReverseOrder 0x00100000 /* Reverse unordered SELECTs */ #define SQLITE_RecTriggers 0x00200000 /* Enable recursive triggers */ /* ** Possible values for the sqlite.magic field. ** The numbers are obtained at random and have no special meaning, other ** than being distinct from one another. */ #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ |
︙ | ︙ | |||
8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 | u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ char *zColAff; /* String defining the affinity of each column */ Index *pNext; /* The next index associated with the same table */ Schema *pSchema; /* Schema containing this index */ u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ char **azColl; /* Array of collation sequence names for index */ }; /* ** Each token coming out of the lexer is an instance of ** this structure. Tokens are also used as part of an expression. ** ** Note if Token.z==0 then Token.dyn and Token.n are undefined and | > > > > > > > > > > > > > > | 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 | u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ char *zColAff; /* String defining the affinity of each column */ Index *pNext; /* The next index associated with the same table */ Schema *pSchema; /* Schema containing this index */ u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ char **azColl; /* Array of collation sequence names for index */ IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */ }; /* ** Each sample stored in the sqlite_stat2 table is represented in memory ** using a structure of this type. */ struct IndexSample { union { char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ double r; /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */ } u; u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ u8 nByte; /* Size in byte of text or blob. */ }; /* ** Each token coming out of the lexer is an instance of ** this structure. Tokens are also used as part of an expression. ** ** Note if Token.z==0 then Token.dyn and Token.n are undefined and |
︙ | ︙ | |||
8999 9000 9001 9002 9003 9004 9005 | /* If the EP_Reduced flag is set in the Expr.flags mask, then no ** space is allocated for the fields below this point. An attempt to ** access them will result in a segfault or malfunction. *********************************************************************/ int iTable; /* TK_COLUMN: cursor number of table holding column | | > | > | 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 | /* If the EP_Reduced flag is set in the Expr.flags mask, then no ** space is allocated for the fields below this point. An attempt to ** access them will result in a segfault or malfunction. *********************************************************************/ int iTable; /* TK_COLUMN: cursor number of table holding column ** TK_REGISTER: register number ** TK_TRIGGER: 1 -> new, 0 -> old */ i16 iColumn; /* TK_COLUMN: column index. -1 for rowid */ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ u8 flags2; /* Second set of flags. EP2_... */ u8 op2; /* If a TK_REGISTER, the original value of Expr.op */ AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ Table *pTab; /* Table for TK_COLUMN expressions. */ #if SQLITE_MAX_EXPR_DEPTH>0 int nHeight; /* Height of the tree headed by this node */ #endif }; |
︙ | ︙ | |||
9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 | /* ** Size of the column cache */ #ifndef SQLITE_N_COLCACHE # define SQLITE_N_COLCACHE 10 #endif /* ** An SQL parser context. A copy of this structure is passed through ** the parser and down into all the parser action routine in order to ** carry around information that is global to the entire parse. ** ** The structure is divided into two parts. When the parser and code ** generate call themselves recursively, the first part of the structure | > > > > > > > > > > > > > > > > > > > > > > > > > | 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 | /* ** Size of the column cache */ #ifndef SQLITE_N_COLCACHE # define SQLITE_N_COLCACHE 10 #endif /* ** At least one instance of the following structure is created for each ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE ** statement. All such objects are stored in the linked list headed at ** Parse.pTriggerPrg and deleted once statement compilation has been ** completed. ** ** A Vdbe sub-program that implements the body and WHEN clause of trigger ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. ** The Parse.pTriggerPrg list never contains two entries with the same ** values for both pTrigger and orconf. ** ** The TriggerPrg.oldmask variable is set to a mask of old.* columns ** accessed (or set to 0 for triggers fired as a result of INSERT ** statements). */ struct TriggerPrg { Trigger *pTrigger; /* Trigger this program was coded from */ int orconf; /* Default ON CONFLICT policy */ SubProgram *pProgram; /* Program implementing pTrigger/orconf */ u32 oldmask; /* Mask of old.* columns accessed */ TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ }; /* ** An SQL parser context. A copy of this structure is passed through ** the parser and down into all the parser action routine in order to ** carry around information that is global to the entire parse. ** ** The structure is divided into two parts. When the parser and code ** generate call themselves recursively, the first part of the structure |
︙ | ︙ | |||
9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 | u8 tempReg; /* iReg is a temp register that needs to be freed */ int iLevel; /* Nesting level */ int iReg; /* Reg with value of this column. 0 means none. */ int lru; /* Least recently used entry has the smallest value */ } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ u32 writeMask; /* Start a write transaction on these databases */ u32 cookieMask; /* Bitmask of schema verified databases */ int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ #ifndef SQLITE_OMIT_SHARED_CACHE int nTableLock; /* Number of locks in aTableLock */ TableLock *aTableLock; /* Required table locks for shared-cache mode */ #endif int regRowid; /* Register holding rowid of CREATE TABLE entry */ int regRoot; /* Register holding root page number for new objects */ AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ /* Above is constant between recursions. Below is reset before and after ** each recursion */ int nVar; /* Number of '?' variables seen in the SQL so far */ int nVarExpr; /* Number of used slots in apVarExpr[] */ int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ int nAlias; /* Number of aliased result set columns */ int nAliasAlloc; /* Number of allocated slots for aAlias[] */ int *aAlias; /* Register used to hold aliased result */ u8 explain; /* True if the EXPLAIN flag is found on the query */ Token sNameToken; /* Token with unqualified schema object name */ Token sLastToken; /* The last token parsed */ const char *zTail; /* All SQL text past the last semicolon parsed */ Table *pNewTable; /* A table being constructed by CREATE TABLE */ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ | > > > > > > > > > > < > | | | | | > | | 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 | u8 tempReg; /* iReg is a temp register that needs to be freed */ int iLevel; /* Nesting level */ int iReg; /* Reg with value of this column. 0 means none. */ int lru; /* Least recently used entry has the smallest value */ } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ u32 writeMask; /* Start a write transaction on these databases */ u32 cookieMask; /* Bitmask of schema verified databases */ u8 isMultiWrite; /* True if statement may affect/insert multiple rows */ u8 mayAbort; /* True if statement may throw an ABORT exception */ int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ #ifndef SQLITE_OMIT_SHARED_CACHE int nTableLock; /* Number of locks in aTableLock */ TableLock *aTableLock; /* Required table locks for shared-cache mode */ #endif int regRowid; /* Register holding rowid of CREATE TABLE entry */ int regRoot; /* Register holding root page number for new objects */ AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ int nMaxArg; /* Max args passed to user function by sub-program */ /* Information used while coding trigger programs. */ Parse *pToplevel; /* Parse structure for main program (or NULL) */ Table *pTriggerTab; /* Table triggers are being coded for */ u32 oldmask; /* Mask of old.* columns referenced */ u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ /* Above is constant between recursions. Below is reset before and after ** each recursion */ int nVar; /* Number of '?' variables seen in the SQL so far */ int nVarExpr; /* Number of used slots in apVarExpr[] */ int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ int nAlias; /* Number of aliased result set columns */ int nAliasAlloc; /* Number of allocated slots for aAlias[] */ int *aAlias; /* Register used to hold aliased result */ u8 explain; /* True if the EXPLAIN flag is found on the query */ Token sNameToken; /* Token with unqualified schema object name */ Token sLastToken; /* The last token parsed */ const char *zTail; /* All SQL text past the last semicolon parsed */ Table *pNewTable; /* A table being constructed by CREATE TABLE */ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ #ifndef SQLITE_OMIT_VIRTUALTABLE Token sArg; /* Complete text of a module argument */ u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ int nVtabLock; /* Number of virtual tables to lock */ Table **apVtabLock; /* Pointer to virtual tables needing locking */ #endif int nHeight; /* Expression tree height of current sub-select */ Table *pZombieTab; /* List of Table objects to delete after code gen */ TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ }; #ifdef SQLITE_OMIT_VIRTUALTABLE #define IN_DECLARE_VTAB 0 #else #define IN_DECLARE_VTAB (pParse->declareVtab) #endif /* ** An instance of the following structure can be declared on a stack and used ** to save the Parse.zAuthContext value so that it can be restored later. */ struct AuthContext { const char *zAuthContext; /* Put saved Parse.zAuthContext here */ Parse *pParse; /* The Parse structure */ }; /* ** Bitfield flags for P5 value in OP_Insert and OP_Delete */ #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ /* * Each trigger present in the database schema is stored as an instance of * struct Trigger. * * Pointers to instances of struct Trigger are stored in two ways. * 1. In the "trigHash" hash table (part of the sqlite3* that represents the * database). This allows Trigger structures to be retrieved by name. * 2. All triggers associated with a single table form a linked list, using the * pNext member of struct Trigger. A pointer to the first element of the * linked list is stored as the "pTrigger" member of the associated * struct Table. * * The "step_list" member points to the first element of a linked list * containing the SQL statements specified as the trigger program. */ struct Trigger { char *zName; /* The name of the trigger */ char *table; /* The table or view to which the trigger applies */ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, the <column-list> is stored here */ Schema *pSchema; /* Schema containing the trigger */ |
︙ | ︙ | |||
9640 9641 9642 9643 9644 9645 9646 | Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ IdList *pIdList; /* Column names for INSERT */ TriggerStep *pNext; /* Next in the link-list */ TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ }; | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 | Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ IdList *pIdList; /* Column names for INSERT */ TriggerStep *pNext; /* Next in the link-list */ TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ }; /* ** The following structure contains information used by the sqliteFix... ** routines as they walk the parse tree to make database references ** explicit. */ typedef struct DbFixer DbFixer; struct DbFixer { |
︙ | ︙ | |||
9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 | int nPage; /* Number of pages in pPage[] */ int mxParserStack; /* maximum depth of the parser stack */ int sharedCacheEnabled; /* true if shared-cache mode enabled */ /* The above might be initialized to non-zero. The following need to always ** initially be zero, however. */ int isInit; /* True after initialization has finished */ int inProgress; /* True while initialization in progress */ int isMallocInit; /* True after malloc is initialized */ sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ int nRefInitMutex; /* Number of users of pInitMutex */ }; /* ** Context pointer passed down through the tree-walk. */ | > > | 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 | int nPage; /* Number of pages in pPage[] */ int mxParserStack; /* maximum depth of the parser stack */ int sharedCacheEnabled; /* true if shared-cache mode enabled */ /* The above might be initialized to non-zero. The following need to always ** initially be zero, however. */ int isInit; /* True after initialization has finished */ int inProgress; /* True while initialization in progress */ int isMutexInit; /* True after mutexes are initialized */ int isMallocInit; /* True after malloc is initialized */ int isPCacheInit; /* True after malloc is initialized */ sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ int nRefInitMutex; /* Number of users of pInitMutex */ }; /* ** Context pointer passed down through the tree-walk. */ |
︙ | ︙ | |||
10066 10067 10068 10069 10070 10071 10072 | SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*); SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *); SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*); SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*); SQLITE_PRIVATE int sqlite3IsRowid(const char*); | | | > > | 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 | SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*); SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *); SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*); SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*); SQLITE_PRIVATE int sqlite3IsRowid(const char*); SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, int*,int,int,int,int,int*); SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int); SQLITE_PRIVATE void sqlite3MayAbort(Parse *); SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, char*, int); SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int); SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*); SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int); SQLITE_PRIVATE void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); |
︙ | ︙ | |||
10107 10108 10109 10110 10111 10112 10113 | SQLITE_PRIVATE void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, Expr*,int, int); SQLITE_PRIVATE void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); SQLITE_PRIVATE void sqlite3DropTrigger(Parse*, SrcList*, int); SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse*, Trigger*); SQLITE_PRIVATE Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *, Table *); | | | > > | > > | 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 | SQLITE_PRIVATE void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, Expr*,int, int); SQLITE_PRIVATE void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); SQLITE_PRIVATE void sqlite3DropTrigger(Parse*, SrcList*, int); SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse*, Trigger*); SQLITE_PRIVATE Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *, Table *); SQLITE_PRIVATE void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, int, int, int, int); void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, ExprList*,Select*,u8); SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3*, Trigger*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); SQLITE_PRIVATE u32 sqlite3TriggerOldmask(Parse*,Trigger*,int,ExprList*,Table*,int); # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) #else # define sqlite3TriggersExist(B,C,D,E,F) 0 # define sqlite3DeleteTrigger(A,B) # define sqlite3DropTriggerPtr(A,B) # define sqlite3UnlinkAndDeleteTrigger(A,B,C) # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J) # define sqlite3TriggerList(X, Y) 0 # define sqlite3ParseToplevel(p) p # define sqlite3TriggerOldmask(A,B,C,D,E,F) 0 #endif SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*); SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int); #ifndef SQLITE_OMIT_AUTHORIZATION SQLITE_PRIVATE void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); |
︙ | ︙ | |||
10194 10195 10196 10197 10198 10199 10200 | */ #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) #define getVarint sqlite3GetVarint #define putVarint sqlite3PutVarint | | | 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 | */ #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) #define getVarint sqlite3GetVarint #define putVarint sqlite3PutVarint SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *, Index *); SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *, Table *); SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2); SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr); SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*); SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...); SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n); |
︙ | ︙ | |||
10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 | SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8); SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8); SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*); SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *); SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int); SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); #ifndef SQLITE_AMALGAMATION SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[]; SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[]; SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config; SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; | > > > | 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 | SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8); SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8); SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*); SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *); SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int); #ifdef SQLITE_ENABLE_STAT2 SQLITE_PRIVATE char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); #endif SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); #ifndef SQLITE_AMALGAMATION SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[]; SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[]; SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config; SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; |
︙ | ︙ | |||
10244 10245 10246 10247 10248 10249 10250 | SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*); SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int); SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *); SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *); | | > | 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 | SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*); SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int); SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *); SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *); SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*); SQLITE_PRIVATE char sqlite3AffinityType(const char*); SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*); SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*); SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*); SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *); SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB); SQLITE_PRIVATE void sqlite3DeleteIndexSamples(Index*); SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*); SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int); SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int); SQLITE_PRIVATE void sqlite3SchemaFree(void *); SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *); SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *); |
︙ | ︙ | |||
10434 10435 10436 10437 10438 10439 10440 | ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains definitions of global variables and contants. | < < | 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 | ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains definitions of global variables and contants. */ /* An array to map all upper-case characters into their corresponding ** lower-case character. ** ** SQLite only considers US-ASCII (or EBCDIC) characters. We do not |
︙ | ︙ | |||
10575 10576 10577 10578 10579 10580 10581 | 0, /* szScratch */ 0, /* nScratch */ (void*)0, /* pPage */ 0, /* szPage */ 0, /* nPage */ 0, /* mxParserStack */ 0, /* sharedCacheEnabled */ | | > > | 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 | 0, /* szScratch */ 0, /* nScratch */ (void*)0, /* pPage */ 0, /* szPage */ 0, /* nPage */ 0, /* mxParserStack */ 0, /* sharedCacheEnabled */ /* All the rest should always be initialized to zero */ 0, /* isInit */ 0, /* inProgress */ 0, /* isMutexInit */ 0, /* isMallocInit */ 0, /* isPCacheInit */ 0, /* pInitMutex */ 0, /* nRefInitMutex */ }; /* ** Hash table for global functions - functions common to all |
︙ | ︙ | |||
11184 11185 11186 11187 11188 11189 11190 | } else { int s = (int)(x.s + 0.5); x.s = s; } x.tz = 0; x.validJD = 0; computeJD(&x); | | | 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 | } else { int s = (int)(x.s + 0.5); x.s = s; } x.tz = 0; x.validJD = 0; computeJD(&x); t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); #ifdef HAVE_LOCALTIME_R { struct tm sLocal; localtime_r(&t, &sLocal); y.Y = sLocal.tm_year + 1900; y.M = sLocal.tm_mon + 1; y.D = sLocal.tm_mday; |
︙ | ︙ | |||
11960 11961 11962 11963 11964 11965 11966 | const char *zPath, sqlite3_file *pFile, int flags, int *pFlagsOut ){ int rc; DO_OS_MALLOC_TEST(0); | > > > > | | 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 | const char *zPath, sqlite3_file *pFile, int flags, int *pFlagsOut ){ int rc; DO_OS_MALLOC_TEST(0); /* 0x7f1f is a mask of SQLITE_OPEN_ flags that are valid to be passed ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example, ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before ** reaching the VFS. */ rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x7f1f, pFlagsOut); assert( rc==SQLITE_OK || pFile->pMethods==0 ); return rc; } SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ return pVfs->xDelete(pVfs, zPath, dirSync); } SQLITE_PRIVATE int sqlite3OsAccess( |
︙ | ︙ | |||
12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 | SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *pFile){ int rc = SQLITE_OK; assert( pFile ); rc = sqlite3OsClose(pFile); sqlite3_free(pFile); return rc; } /* ** The list of all registered VFS implementations. */ static sqlite3_vfs * SQLITE_WSD vfsList = 0; #define vfsList GLOBAL(sqlite3_vfs *, vfsList) | > > > > > > > > > > > > > | 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 | SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *pFile){ int rc = SQLITE_OK; assert( pFile ); rc = sqlite3OsClose(pFile); sqlite3_free(pFile); return rc; } /* ** This function is a wrapper around the OS specific implementation of ** sqlite3_os_init(). The purpose of the wrapper is to provide the ** ability to simulate a malloc failure, so that the handling of an ** error in sqlite3_os_init() by the upper layers can be tested. */ SQLITE_PRIVATE int sqlite3OsInit(void){ void *p = sqlite3_malloc(10); if( p==0 ) return SQLITE_NOMEM; sqlite3_free(p); return sqlite3_os_init(); } /* ** The list of all registered VFS implementations. */ static sqlite3_vfs * SQLITE_WSD vfsList = 0; #define vfsList GLOBAL(sqlite3_vfs *, vfsList) |
︙ | ︙ | |||
13581 13582 13583 13584 13585 13586 13587 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** ** This version of the memory allocation subsystem omits all | | | > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | > > | > > > > > > > | | 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** ** This version of the memory allocation subsystem omits all ** use of malloc(). The application gives SQLite a block of memory ** before calling sqlite3_initialize() from which allocations ** are made and returned by the xMalloc() and xRealloc() ** implementations. Once sqlite3_initialize() has been called, ** the amount of memory available to SQLite is fixed and cannot ** be changed. ** ** This version of the memory allocation subsystem is included ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. ** ** This memory allocator uses the following algorithm: ** ** 1. All memory allocations sizes are rounded up to a power of 2. ** ** 2. If two adjacent free blocks are the halves of a larger block, ** then the two blocks are coalesed into the single larger block. ** ** 3. New memory is allocated from the first available free block. ** ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions ** Concerning Dynamic Storage Allocation". Journal of the Association for ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499. ** ** Let n be the size of the largest allocation divided by the minimum ** allocation size (after rounding all sizes up to a power of 2.) Let M ** be the maximum amount of memory ever outstanding at one time. Let ** N be the total amount of memory available for allocation. Robson ** proved that this memory allocator will never breakdown due to ** fragmentation as long as the following constraint holds: ** ** N >= M*(1 + log2(n)/2) - n + 1 ** ** The sqlite3_status() logic tracks the maximum values of n and M so ** that an application can, at any time, verify this constraint. */ /* ** This version of the memory allocator is used only when ** SQLITE_ENABLE_MEMSYS5 is defined. */ #ifdef SQLITE_ENABLE_MEMSYS5 /* ** A minimum allocation is an instance of the following structure. ** Larger allocations are an array of these structures where the ** size of the array is a power of 2. ** ** The size of this object must be a power of two. That fact is ** verified in memsys5Init(). */ typedef struct Mem5Link Mem5Link; struct Mem5Link { int next; /* Index of next free chunk */ int prev; /* Index of previous free chunk */ }; /* ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since ** mem5.szAtom is always at least 8 and 32-bit integers are used, ** it is not actually possible to reach this limit. */ #define LOGMAX 30 /* ** Masks used for mem5.aCtrl[] elements. */ #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */ #define CTRL_FREE 0x20 /* True if not checked out */ /* ** All of the static variables used by this module are collected ** into a single structure named "mem5". This is to keep the ** static variables organized and to reduce namespace pollution ** when this module is combined with other in the amalgamation. */ static SQLITE_WSD struct Mem5Global { /* ** Memory available for allocation */ int szAtom; /* Smallest possible allocation in bytes */ int nBlock; /* Number of szAtom sized blocks in zPool */ u8 *zPool; /* Memory available to be allocated */ /* ** Mutex to control access to the memory allocation subsystem. */ sqlite3_mutex *mutex; /* ** Performance statistics */ u64 nAlloc; /* Total number of calls to malloc */ u64 totalAlloc; /* Total of all malloc calls - includes internal frag */ u64 totalExcess; /* Total internal fragmentation */ u32 currentOut; /* Current checkout, including internal fragmentation */ u32 currentCount; /* Current number of distinct checkouts */ u32 maxOut; /* Maximum instantaneous currentOut */ u32 maxCount; /* Maximum instantaneous currentCount */ u32 maxRequest; /* Largest allocation (exclusive of internal frag) */ /* ** Lists of free blocks. aiFreelist[0] is a list of free blocks of ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2. ** and so forth. */ int aiFreelist[LOGMAX+1]; /* ** Space for tracking which blocks are checked out and the size ** of each block. One byte per block. */ u8 *aCtrl; } mem5 = { 0 }; /* ** Access the static variable through a macro for SQLITE_OMIT_WSD */ #define mem5 GLOBAL(struct Mem5Global, mem5) /* ** Assuming mem5.zPool is divided up into an array of Mem5Link ** structures, return a pointer to the idx-th such lik. */ #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom])) /* ** Unlink the chunk at mem5.aPool[i] from list it is currently ** on. It should be found on mem5.aiFreelist[iLogsize]. */ static void memsys5Unlink(int i, int iLogsize){ int next, prev; |
︙ | ︙ | |||
13720 13721 13722 13723 13724 13725 13726 | /* ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex ** will already be held (obtained by code in malloc.c) if ** sqlite3GlobalConfig.bMemStat is true. */ static void memsys5Enter(void){ | < < < | | | 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 | /* ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex ** will already be held (obtained by code in malloc.c) if ** sqlite3GlobalConfig.bMemStat is true. */ static void memsys5Enter(void){ sqlite3_mutex_enter(mem5.mutex); } static void memsys5Leave(void){ sqlite3_mutex_leave(mem5.mutex); } /* ** Return the size of an outstanding allocation, in bytes. The ** size returned omits the 8-byte header overhead. This only ** works for chunks that are currently checked out. */ static int memsys5Size(void *p){ int iSize = 0; if( p ){ int i = ((u8 *)p-mem5.zPool)/mem5.szAtom; assert( i>=0 && i<mem5.nBlock ); iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE)); } return iSize; } /* ** Find the first entry on the freelist iLogsize. Unlink that ** entry and return its index. |
︙ | ︙ | |||
13765 13766 13767 13768 13769 13770 13771 | } memsys5Unlink(iFirst, iLogsize); return iFirst; } /* ** Return a block of memory of at least nBytes in size. | | > > > > > > > > > > > > > > > > | | 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 | } memsys5Unlink(iFirst, iLogsize); return iFirst; } /* ** Return a block of memory of at least nBytes in size. ** Return NULL if unable. Return NULL if nBytes==0. ** ** The caller guarantees that nByte positive. ** ** The caller has obtained a mutex prior to invoking this ** routine so there is never any chance that two or more ** threads can be in this routine at the same time. */ static void *memsys5MallocUnsafe(int nByte){ int i; /* Index of a mem5.aPool[] slot */ int iBin; /* Index into mem5.aiFreelist[] */ int iFullSz; /* Size of allocation rounded up to power of 2 */ int iLogsize; /* Log2 of iFullSz/POW2_MIN */ /* nByte must be a positive */ assert( nByte>0 ); /* Keep track of the maximum allocation request. Even unfulfilled ** requests are counted */ if( (u32)nByte>mem5.maxRequest ){ mem5.maxRequest = nByte; } /* Abort if the requested allocation size is larger than the largest ** power of two that we can represent using 32-bit signed integers. */ if( nByte > 0x40000000 ){ return 0; } /* Round nByte up to the next valid power of two */ for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){} /* Make sure mem5.aiFreelist[iLogsize] contains at least one free ** block. If not, then split a block of the next larger power of ** two in order to create a new free block of size iLogsize. */ for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){} if( iBin>LOGMAX ) return 0; |
︙ | ︙ | |||
13809 13810 13811 13812 13813 13814 13815 | mem5.totalExcess += iFullSz - nByte; mem5.currentCount++; mem5.currentOut += iFullSz; if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; /* Return a pointer to the allocated memory. */ | | | | | | | | | | 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 | mem5.totalExcess += iFullSz - nByte; mem5.currentCount++; mem5.currentOut += iFullSz; if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; /* Return a pointer to the allocated memory. */ return (void*)&mem5.zPool[i*mem5.szAtom]; } /* ** Free an outstanding memory allocation. */ static void memsys5FreeUnsafe(void *pOld){ u32 size, iLogsize; int iBlock; /* Set iBlock to the index of the block pointed to by pOld in ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool. */ iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom; /* Check that the pointer pOld points to a valid, non-free block. */ assert( iBlock>=0 && iBlock<mem5.nBlock ); assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 ); assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 ); iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE; size = 1<<iLogsize; assert( iBlock+size-1<(u32)mem5.nBlock ); mem5.aCtrl[iBlock] |= CTRL_FREE; mem5.aCtrl[iBlock+size-1] |= CTRL_FREE; assert( mem5.currentCount>0 ); assert( mem5.currentOut>=(size*mem5.szAtom) ); mem5.currentCount--; mem5.currentOut -= size*mem5.szAtom; assert( mem5.currentOut>0 || mem5.currentCount==0 ); assert( mem5.currentCount>0 || mem5.currentOut==0 ); mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; while( ALWAYS(iLogsize<LOGMAX) ){ int iBuddy; if( (iBlock>>iLogsize) & 1 ){ iBuddy = iBlock - size; }else{ iBuddy = iBlock + size; } assert( iBuddy>=0 ); |
︙ | ︙ | |||
13883 13884 13885 13886 13887 13888 13889 13890 13891 | memsys5Leave(); } return (void*)p; } /* ** Free memory. */ static void memsys5Free(void *pPrior){ | > > > < | < < | > > > > > > > > > | > | < | < | > > > > > > > | > > > > > > > > > > | > > > | | | | | > | | > > > > | > > > | | | | | > > > > > > > < | | < < < > | 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 | memsys5Leave(); } return (void*)p; } /* ** Free memory. ** ** The outer layer memory allocator prevents this routine from ** being called with pPrior==0. */ static void memsys5Free(void *pPrior){ assert( pPrior!=0 ); memsys5Enter(); memsys5FreeUnsafe(pPrior); memsys5Leave(); } /* ** Change the size of an existing memory allocation. ** ** The outer layer memory allocator prevents this routine from ** being called with pPrior==0. ** ** nBytes is always a value obtained from a prior call to ** memsys5Round(). Hence nBytes is always a non-negative power ** of two. If nBytes==0 that means that an oversize allocation ** (an allocation larger than 0x40000000) was requested and this ** routine should return 0 without freeing pPrior. */ static void *memsys5Realloc(void *pPrior, int nBytes){ int nOld; void *p; assert( pPrior!=0 ); assert( (nBytes&(nBytes-1))==0 ); assert( nBytes>=0 ); if( nBytes==0 ){ return 0; } nOld = memsys5Size(pPrior); if( nBytes<=nOld ){ return pPrior; } memsys5Enter(); p = memsys5MallocUnsafe(nBytes); if( p ){ memcpy(p, pPrior, nOld); memsys5FreeUnsafe(pPrior); } memsys5Leave(); return p; } /* ** Round up a request size to the next valid allocation size. If ** the allocation is too large to be handled by this allocation system, ** return 0. ** ** All allocations must be a power of two and must be expressed by a ** 32-bit signed integer. Hence the largest allocation is 0x40000000 ** or 1073741824 bytes. */ static int memsys5Roundup(int n){ int iFullSz; if( n > 0x40000000 ) return 0; for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2); return iFullSz; } /* ** Return the ceiling of the logarithm base 2 of iValue. ** ** Examples: memsys5Log(1) -> 0 ** memsys5Log(2) -> 1 ** memsys5Log(4) -> 2 ** memsys5Log(5) -> 3 ** memsys5Log(8) -> 3 ** memsys5Log(9) -> 4 */ static int memsys5Log(int iValue){ int iLog; for(iLog=0; (1<<iLog)<iValue; iLog++); return iLog; } /* ** Initialize the memory allocator. ** ** This routine is not threadsafe. The caller must be holding a mutex ** to prevent multiple threads from entering at the same time. */ static int memsys5Init(void *NotUsed){ int ii; /* Loop counter */ int nByte; /* Number of bytes of memory available to this allocator */ u8 *zByte; /* Memory usable by this allocator */ int nMinLog; /* Log base 2 of minimum allocation size in bytes */ int iOffset; /* An offset into mem5.aCtrl[] */ UNUSED_PARAMETER(NotUsed); /* For the purposes of this routine, disable the mutex */ mem5.mutex = 0; /* The size of a Mem5Link object must be a power of two. Verify that ** this is case. */ assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 ); nByte = sqlite3GlobalConfig.nHeap; zByte = (u8*)sqlite3GlobalConfig.pHeap; assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */ nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq); mem5.szAtom = (1<<nMinLog); while( (int)sizeof(Mem5Link)>mem5.szAtom ){ mem5.szAtom = mem5.szAtom << 1; } mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); mem5.zPool = zByte; mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom]; for(ii=0; ii<=LOGMAX; ii++){ mem5.aiFreelist[ii] = -1; } iOffset = 0; for(ii=LOGMAX; ii>=0; ii--){ int nAlloc = (1<<ii); if( (iOffset+nAlloc)<=mem5.nBlock ){ mem5.aCtrl[iOffset] = ii | CTRL_FREE; memsys5Link(iOffset, ii); iOffset += nAlloc; } assert((iOffset+nAlloc)>mem5.nBlock); } /* If a mutex is required for normal operation, allocate one */ if( sqlite3GlobalConfig.bMemstat==0 ){ mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); } return SQLITE_OK; } /* ** Deinitialize this module. */ static void memsys5Shutdown(void *NotUsed){ UNUSED_PARAMETER(NotUsed); mem5.mutex = 0; return; } #ifdef SQLITE_TEST /* ** Open the file indicated and write a log of all unfreed memory ** allocations into that log. */ SQLITE_PRIVATE void sqlite3Memsys5Dump(const char *zFilename){ FILE *out; int i, j, n; int nMinLog; if( zFilename==0 || zFilename[0]==0 ){ out = stdout; }else{ out = fopen(zFilename, "w"); if( out==0 ){ fprintf(stderr, "** Unable to output memory debug output log: %s **\n", zFilename); return; } } memsys5Enter(); nMinLog = memsys5Log(mem5.szAtom); for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n); } fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); memsys5Leave(); if( out==stdout ){ fflush(stdout); }else{ fclose(out); } } #endif /* ** This routine is the only routine in this file with external ** linkage. It returns a pointer to a static sqlite3_mem_methods ** struct populated with the memsys5 methods. */ SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ |
︙ | ︙ | |||
14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 | ** This file contains the C functions that implement mutexes. ** ** This file contains code that is common across all mutex implementations. ** ** $Id: mutex.c,v 1.31 2009/07/16 18:21:18 drh Exp $ */ #ifndef SQLITE_MUTEX_OMIT /* ** Initialize the mutex system. */ SQLITE_PRIVATE int sqlite3MutexInit(void){ int rc = SQLITE_OK; | > > > > > > > > > > | 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 | ** This file contains the C functions that implement mutexes. ** ** This file contains code that is common across all mutex implementations. ** ** $Id: mutex.c,v 1.31 2009/07/16 18:21:18 drh Exp $ */ #if defined(SQLITE_DEBUG) && !defined(SQLITE_MUTEX_OMIT) /* ** For debugging purposes, record when the mutex subsystem is initialized ** and uninitialized so that we can assert() if there is an attempt to ** allocate a mutex while the system is uninitialized. */ static SQLITE_WSD int mutexIsInit = 0; #endif /* SQLITE_DEBUG */ #ifndef SQLITE_MUTEX_OMIT /* ** Initialize the mutex system. */ SQLITE_PRIVATE int sqlite3MutexInit(void){ int rc = SQLITE_OK; |
︙ | ︙ | |||
14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 | memcpy(pTo, pFrom, offsetof(sqlite3_mutex_methods, xMutexAlloc)); memcpy(&pTo->xMutexFree, &pFrom->xMutexFree, sizeof(*pTo) - offsetof(sqlite3_mutex_methods, xMutexFree)); pTo->xMutexAlloc = pFrom->xMutexAlloc; } rc = sqlite3GlobalConfig.mutex.xMutexInit(); } return rc; } /* ** Shutdown the mutex system. This call frees resources allocated by ** sqlite3MutexInit(). */ SQLITE_PRIVATE int sqlite3MutexEnd(void){ int rc = SQLITE_OK; if( sqlite3GlobalConfig.mutex.xMutexEnd ){ rc = sqlite3GlobalConfig.mutex.xMutexEnd(); } return rc; } /* ** Retrieve a pointer to a static mutex or allocate a new dynamic one. */ SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return sqlite3GlobalConfig.mutex.xMutexAlloc(id); } SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){ if( !sqlite3GlobalConfig.bCoreMutex ){ return 0; } return sqlite3GlobalConfig.mutex.xMutexAlloc(id); } /* ** Free a dynamic mutex. */ SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){ | > > > > > > > > > > | 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 | memcpy(pTo, pFrom, offsetof(sqlite3_mutex_methods, xMutexAlloc)); memcpy(&pTo->xMutexFree, &pFrom->xMutexFree, sizeof(*pTo) - offsetof(sqlite3_mutex_methods, xMutexFree)); pTo->xMutexAlloc = pFrom->xMutexAlloc; } rc = sqlite3GlobalConfig.mutex.xMutexInit(); } #ifdef SQLITE_DEBUG GLOBAL(int, mutexIsInit) = 1; #endif return rc; } /* ** Shutdown the mutex system. This call frees resources allocated by ** sqlite3MutexInit(). */ SQLITE_PRIVATE int sqlite3MutexEnd(void){ int rc = SQLITE_OK; if( sqlite3GlobalConfig.mutex.xMutexEnd ){ rc = sqlite3GlobalConfig.mutex.xMutexEnd(); } #ifdef SQLITE_DEBUG GLOBAL(int, mutexIsInit) = 0; #endif return rc; } /* ** Retrieve a pointer to a static mutex or allocate a new dynamic one. */ SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return sqlite3GlobalConfig.mutex.xMutexAlloc(id); } SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){ if( !sqlite3GlobalConfig.bCoreMutex ){ return 0; } assert( GLOBAL(int, mutexIsInit) ); return sqlite3GlobalConfig.mutex.xMutexAlloc(id); } /* ** Free a dynamic mutex. */ SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){ |
︙ | ︙ | |||
14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 | ** <li> SQLITE_MUTEX_FAST ** <li> SQLITE_MUTEX_RECURSIVE ** <li> SQLITE_MUTEX_STATIC_MASTER ** <li> SQLITE_MUTEX_STATIC_MEM ** <li> SQLITE_MUTEX_STATIC_MEM2 ** <li> SQLITE_MUTEX_STATIC_PRNG ** <li> SQLITE_MUTEX_STATIC_LRU ** </ul> ** ** The first two constants cause sqlite3_mutex_alloc() to create ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. But SQLite will only request a recursive mutex in ** cases where it really needs one. If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** The other allowed parameters to sqlite3_mutex_alloc() each return | > | | 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 | ** <li> SQLITE_MUTEX_FAST ** <li> SQLITE_MUTEX_RECURSIVE ** <li> SQLITE_MUTEX_STATIC_MASTER ** <li> SQLITE_MUTEX_STATIC_MEM ** <li> SQLITE_MUTEX_STATIC_MEM2 ** <li> SQLITE_MUTEX_STATIC_PRNG ** <li> SQLITE_MUTEX_STATIC_LRU ** <li> SQLITE_MUTEX_STATIC_LRU2 ** </ul> ** ** The first two constants cause sqlite3_mutex_alloc() to create ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. But SQLite will only request a recursive mutex in ** cases where it really needs one. If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** The other allowed parameters to sqlite3_mutex_alloc() each return ** a pointer to a static preexisting mutex. Six static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST |
︙ | ︙ | |||
15080 15081 15082 15083 15084 15085 15086 | */ static long winMutex_lock = 0; static int winMutexInit(void){ /* The first to increment to 1 does actual initialization */ if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){ int i; | | | | | | | | > > > | | 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 | */ static long winMutex_lock = 0; static int winMutexInit(void){ /* The first to increment to 1 does actual initialization */ if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){ int i; for(i=0; i<ArraySize(winMutex_staticMutexes); i++){ InitializeCriticalSection(&winMutex_staticMutexes[i].mutex); } winMutex_isInit = 1; }else{ /* Someone else is in the process of initing the static mutexes */ while( !winMutex_isInit ){ Sleep(1); } } return SQLITE_OK; } static int winMutexEnd(void){ /* The first to decrement to 0 does actual shutdown ** (which should be the last to shutdown.) */ if( InterlockedCompareExchange(&winMutex_lock, 0, 1)==1 ){ if( winMutex_isInit==1 ){ int i; for(i=0; i<ArraySize(winMutex_staticMutexes); i++){ DeleteCriticalSection(&winMutex_staticMutexes[i].mutex); } winMutex_isInit = 0; } } return SQLITE_OK; } /* ** The sqlite3_mutex_alloc() routine allocates a new ** mutex and returns a pointer to it. If it returns NULL ** that means that a mutex could not be allocated. SQLite ** will unwind its stack and return an error. The argument ** to sqlite3_mutex_alloc() is one of these integer constants: ** ** <ul> ** <li> SQLITE_MUTEX_FAST ** <li> SQLITE_MUTEX_RECURSIVE ** <li> SQLITE_MUTEX_STATIC_MASTER ** <li> SQLITE_MUTEX_STATIC_MEM ** <li> SQLITE_MUTEX_STATIC_MEM2 ** <li> SQLITE_MUTEX_STATIC_PRNG ** <li> SQLITE_MUTEX_STATIC_LRU ** <li> SQLITE_MUTEX_STATIC_LRU2 ** </ul> ** ** The first two constants cause sqlite3_mutex_alloc() to create ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. But SQLite will only request a recursive mutex in ** cases where it really needs one. If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** The other allowed parameters to sqlite3_mutex_alloc() each return ** a pointer to a static preexisting mutex. Six static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST |
︙ | ︙ | |||
15163 15164 15165 15166 15167 15168 15169 | InitializeCriticalSection(&p->mutex); } break; } default: { assert( winMutex_isInit==1 ); assert( iType-2 >= 0 ); | | | 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 | InitializeCriticalSection(&p->mutex); } break; } default: { assert( winMutex_isInit==1 ); assert( iType-2 >= 0 ); assert( iType-2 < ArraySize(winMutex_staticMutexes) ); p = &winMutex_staticMutexes[iType-2]; p->id = iType; break; } } return p; } |
︙ | ︙ | |||
15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 | sqlite3_uint64 iLimit; int overage; if( n<0 ){ iLimit = 0; }else{ iLimit = n; } sqlite3_initialize(); if( iLimit>0 ){ sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit); }else{ sqlite3MemoryAlarm(0, 0, 0); } overage = (int)(sqlite3_memory_used() - (i64)n); if( overage>0 ){ | > > | 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 | sqlite3_uint64 iLimit; int overage; if( n<0 ){ iLimit = 0; }else{ iLimit = n; } #ifndef SQLITE_OMIT_AUTOINIT sqlite3_initialize(); #endif if( iLimit>0 ){ sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit); }else{ sqlite3MemoryAlarm(0, 0, 0); } overage = (int)(sqlite3_memory_used() - (i64)n); if( overage>0 ){ |
︙ | ︙ | |||
15746 15747 15748 15749 15750 15751 15752 | return 0; } if( nBytes>=0x7fffff00 ){ /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ return 0; } nOld = sqlite3MallocSize(pOld); | < < < | | | | > > | | | | | | | | | | | | | < | | 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 | return 0; } if( nBytes>=0x7fffff00 ){ /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ return 0; } nOld = sqlite3MallocSize(pOld); nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); if( nOld==nNew ){ pNew = pOld; }else if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= mem0.alarmThreshold ){ sqlite3MallocAlarm(nNew-nOld); } pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); if( pNew==0 && mem0.alarmCallback ){ sqlite3MallocAlarm(nBytes); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } if( pNew ){ nNew = sqlite3MallocSize(pNew); sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); } sqlite3_mutex_leave(mem0.mutex); }else{ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } return pNew; } /* ** The public interface to sqlite3Realloc. Make sure that the memory ** subsystem is initialized prior to invoking sqliteRealloc. |
︙ | ︙ | |||
17189 17190 17191 17192 17193 17194 17195 | int iDb; /* Index of cursor database in db->aDb[] (or -1) */ i64 lastRowid; /* Last rowid from a Next or NextIdx operation */ Bool zeroed; /* True if zeroed out and ready for reuse */ Bool rowidIsValid; /* True if lastRowid is valid */ Bool atFirst; /* True if pointing to first entry */ Bool useRandomRowid; /* Generate new record numbers semi-randomly */ Bool nullRow; /* True if pointing to a row with no data */ | < < < | < | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 | int iDb; /* Index of cursor database in db->aDb[] (or -1) */ i64 lastRowid; /* Last rowid from a Next or NextIdx operation */ Bool zeroed; /* True if zeroed out and ready for reuse */ Bool rowidIsValid; /* True if lastRowid is valid */ Bool atFirst; /* True if pointing to first entry */ Bool useRandomRowid; /* Generate new record numbers semi-randomly */ Bool nullRow; /* True if pointing to a row with no data */ Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */ Bool isTable; /* True if a table requiring integer keys */ Bool isIndex; /* True if an index containing keys only - no data */ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */ Btree *pBt; /* Separate file holding temporary table */ int pseudoTableReg; /* Register holding pseudotable content. */ KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */ int nField; /* Number of fields in the header */ i64 seqCount; /* Sequence counter */ sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */ const sqlite3_module *pModule; /* Module for cursor pVtabCursor */ /* Result of last sqlite3BtreeMoveto() done by an OP_NotExists or ** OP_IsUnique opcode on this cursor. */ int seekResult; /* Cached information about the header for the data record that the ** cursor is currently pointing to. Only valid if cacheStatus matches ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that ** the cache is out of date. ** ** aRow might point to (ephemeral) data for the current row, or it might ** be NULL. */ u32 cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */ int payloadSize; /* Total number of bytes in the record */ u32 *aType; /* Type values for all entries in the record */ u32 *aOffset; /* Cached offsets to the start of each columns data */ u8 *aRow; /* Data for the current row, if all on one page */ }; typedef struct VdbeCursor VdbeCursor; /* ** When a sub-program is executed (OP_Program), a structure of this type ** is allocated to store the current value of the program counter, as ** well as the current memory cell array and various other frame specific ** values stored in the Vdbe struct. When the sub-program is finished, ** these values are copied back to the Vdbe from the VdbeFrame structure, ** restoring the state of the VM to as it was before the sub-program ** began executing. ** ** Frames are stored in a linked list headed at Vdbe.pParent. Vdbe.pParent ** is the parent of the current frame, or zero if the current frame ** is the main Vdbe program. */ typedef struct VdbeFrame VdbeFrame; struct VdbeFrame { Vdbe *v; /* VM this frame belongs to */ int pc; /* Program Counter */ Op *aOp; /* Program instructions */ int nOp; /* Size of aOp array */ Mem *aMem; /* Array of memory cells */ int nMem; /* Number of entries in aMem */ VdbeCursor **apCsr; /* Element of Vdbe cursors */ u16 nCursor; /* Number of entries in apCsr */ void *token; /* Copy of SubProgram.token */ int nChildMem; /* Number of memory cells for child frame */ int nChildCsr; /* Number of cursors for child frame */ i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */ int nChange; /* Statement changes (Vdbe.nChanges) */ VdbeFrame *pParent; /* Parent of this frame */ }; #define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))]) /* ** A value for VdbeCursor.cacheValid that means the cache is always invalid. */ #define CACHE_STALE 0 /* ** Internally, the vdbe manipulates nearly all SQL values as Mem |
︙ | ︙ | |||
17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 | */ struct Mem { union { i64 i; /* Integer value. */ int nZero; /* Used when bit MEM_Zero is set in flags */ FuncDef *pDef; /* Used only when flags==MEM_Agg */ RowSet *pRowSet; /* Used only when flags==MEM_RowSet */ } u; double r; /* Real value */ sqlite3 *db; /* The associated database connection */ char *z; /* String or BLOB value */ int n; /* Number of characters in string value, excluding '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ | > | 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 | */ struct Mem { union { i64 i; /* Integer value. */ int nZero; /* Used when bit MEM_Zero is set in flags */ FuncDef *pDef; /* Used only when flags==MEM_Agg */ RowSet *pRowSet; /* Used only when flags==MEM_RowSet */ VdbeFrame *pFrame; /* Used when flags==MEM_Frame */ } u; double r; /* Real value */ sqlite3 *db; /* The associated database connection */ char *z; /* String or BLOB value */ int n; /* Number of characters in string value, excluding '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ |
︙ | ︙ | |||
17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 | */ #define MEM_Null 0x0001 /* Value is NULL */ #define MEM_Str 0x0002 /* Value is a string */ #define MEM_Int 0x0004 /* Value is an integer */ #define MEM_Real 0x0008 /* Value is a real number */ #define MEM_Blob 0x0010 /* Value is a BLOB */ #define MEM_RowSet 0x0020 /* Value is a RowSet object */ #define MEM_TypeMask 0x00ff /* Mask of type bits */ /* Whenever Mem contains a valid string or blob representation, one of ** the following flags must be set to determine the memory management ** policy for Mem.z. The MEM_Term flag tells us whether or not the ** string is \000 or \u0000 terminated */ | > | 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 | */ #define MEM_Null 0x0001 /* Value is NULL */ #define MEM_Str 0x0002 /* Value is a string */ #define MEM_Int 0x0004 /* Value is an integer */ #define MEM_Real 0x0008 /* Value is a real number */ #define MEM_Blob 0x0010 /* Value is a BLOB */ #define MEM_RowSet 0x0020 /* Value is a RowSet object */ #define MEM_Frame 0x0040 /* Value is a VdbeFrame object */ #define MEM_TypeMask 0x00ff /* Mask of type bits */ /* Whenever Mem contains a valid string or blob representation, one of ** the following flags must be set to determine the memory management ** policy for Mem.z. The MEM_Term flag tells us whether or not the ** string is \000 or \u0000 terminated */ |
︙ | ︙ | |||
17356 17357 17358 17359 17360 17361 17362 | */ typedef struct Set Set; struct Set { Hash hash; /* A set is just a hash table */ HashElem *prev; /* Previously accessed hash elemen */ }; | < < < < < < < < < < < < < < < | 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 | */ typedef struct Set Set; struct Set { Hash hash; /* A set is just a hash table */ HashElem *prev; /* Previously accessed hash elemen */ }; /* ** An instance of the virtual machine. This structure contains the complete ** state of the virtual machine. ** ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile() ** is really a pointer to an instance of this structure. ** |
︙ | ︙ | |||
17409 17410 17411 17412 17413 17414 17415 | u8 okVar; /* True if azVar[] has been initialized */ u16 nVar; /* Number of entries in aVar[] */ Mem *aVar; /* Values for the OP_Variable opcode. */ char **azVar; /* Name of variables */ u32 magic; /* Magic number for sanity checking */ int nMem; /* Number of memory locations currently allocated */ Mem *aMem; /* The memory locations */ | | < < < | 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 | u8 okVar; /* True if azVar[] has been initialized */ u16 nVar; /* Number of entries in aVar[] */ Mem *aVar; /* Values for the OP_Variable opcode. */ char **azVar; /* Name of variables */ u32 magic; /* Magic number for sanity checking */ int nMem; /* Number of memory locations currently allocated */ Mem *aMem; /* The memory locations */ u32 cacheCtr; /* VdbeCursor row cache generation counter */ int pc; /* The program counter */ int rc; /* Value to return */ char *zErrMsg; /* Error message written here */ u8 explain; /* True if EXPLAIN present on SQL command */ u8 changeCntOn; /* True to update the change-counter */ u8 expired; /* True if the VM needs to be recompiled */ u8 minWriteFileFormat; /* Minimum file format for writable database files */ |
︙ | ︙ | |||
17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 | int aCounter[2]; /* Counters used by sqlite3_stmt_status() */ char *zSql; /* Text of the SQL statement that generated this */ void *pFree; /* Free this when deleting the vdbe */ int iStatement; /* Statement number (or 0 if has not opened stmt) */ #ifdef SQLITE_DEBUG FILE *trace; /* Write an execution trace here, if not NULL */ #endif }; /* ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ | > > | 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 | int aCounter[2]; /* Counters used by sqlite3_stmt_status() */ char *zSql; /* Text of the SQL statement that generated this */ void *pFree; /* Free this when deleting the vdbe */ int iStatement; /* Statement number (or 0 if has not opened stmt) */ #ifdef SQLITE_DEBUG FILE *trace; /* Write an execution trace here, if not NULL */ #endif VdbeFrame *pFrame; /* Parent frame */ int nFrame; /* Number of frames in pFrame list */ }; /* ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ |
︙ | ︙ | |||
17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 | SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p); SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p); SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*); SQLITE_PRIVATE const char *sqlite3OpcodeName(int); SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int, int); SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p); #endif #ifndef SQLITE_OMIT_SHARED_CACHE SQLITE_PRIVATE void sqlite3VdbeMutexArrayEnter(Vdbe *p); #else | > > | 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 | SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p); SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p); SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*); SQLITE_PRIVATE const char *sqlite3OpcodeName(int); SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int, int); SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int); SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*); SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p); #endif #ifndef SQLITE_OMIT_SHARED_CACHE SQLITE_PRIVATE void sqlite3VdbeMutexArrayEnter(Vdbe *p); #else |
︙ | ︙ | |||
17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 | m.z = 0; } assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z); } /* ** pZ is a UTF-16 encoded unicode string at least nChar characters long. ** Return the number of bytes in the first nChar unicode characters ** in pZ. nChar must be non-negative. */ SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){ int c; | > > > > > > > > > > > > > > > > > > > > > > > > > > | 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 | m.z = 0; } assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z); } /* ** Convert a UTF-8 string to the UTF-16 encoding specified by parameter ** enc. A pointer to the new string is returned, and the value of *pnOut ** is set to the length of the returned string in bytes. The call should ** arrange to call sqlite3DbFree() on the returned pointer when it is ** no longer required. ** ** If a malloc failure occurs, NULL is returned and the db.mallocFailed ** flag set. */ #ifdef SQLITE_ENABLE_STAT2 SQLITE_PRIVATE char *sqlite3Utf8to16(sqlite3 *db, u8 enc, char *z, int n, int *pnOut){ Mem m; memset(&m, 0, sizeof(m)); m.db = db; sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC); if( sqlite3VdbeMemTranslate(&m, enc) ){ assert( db->mallocFailed ); return 0; } assert( m.z==m.zMalloc ); *pnOut = m.n; return m.z; } #endif /* ** pZ is a UTF-16 encoded unicode string at least nChar characters long. ** Return the number of bytes in the first nChar unicode characters ** in pZ. nChar must be non-negative. */ SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){ int c; |
︙ | ︙ | |||
18043 18044 18045 18046 18047 18048 18049 | ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** | < | 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 | ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** */ #ifdef SQLITE_HAVE_ISNAN # include <math.h> #endif /* ** Routine needed to support the testcase() macro. |
︙ | ︙ | |||
18300 18301 18302 18303 18304 18305 18306 | while( sqlite3Isdigit(*z) ){ z += incr; } *realnum = 1; } return *z==0; } /* | | < > > > > > > > | | > > > | < | > | | | > | > > | > < | < < < < < > | < | < | | > | | < | > < < < > > | > | > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > | > | | | | | | > > > > > > | > > | 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 | while( sqlite3Isdigit(*z) ){ z += incr; } *realnum = 1; } return *z==0; } /* ** The string z[] is an ASCII representation of a real number. ** Convert this string to a double. ** ** This routine assumes that z[] really is a valid number. If it ** is not, the result is undefined. ** ** This routine is used instead of the library atof() function because ** the library atof() might want to use "," as the decimal point instead ** of "." depending on how locale is set. But that would cause problems ** for SQL. So this routine always uses "." regardless of locale. */ SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult){ #ifndef SQLITE_OMIT_FLOATING_POINT const char *zBegin = z; /* sign * significand * (10 ^ (esign * exponent)) */ int sign = 1; /* sign of significand */ i64 s = 0; /* significand */ int d = 0; /* adjust exponent for shifting decimal point */ int esign = 1; /* sign of exponent */ int e = 0; /* exponent */ double result; int nDigits = 0; /* skip leading spaces */ while( sqlite3Isspace(*z) ) z++; /* get sign of significand */ if( *z=='-' ){ sign = -1; z++; }else if( *z=='+' ){ z++; } /* skip leading zeroes */ while( z[0]=='0' ) z++, nDigits++; /* copy max significant digits to significand */ while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ s = s*10 + (*z - '0'); z++, nDigits++; } /* skip non-significant significand digits ** (increase exponent by d to shift decimal left) */ while( sqlite3Isdigit(*z) ) z++, nDigits++, d++; /* if decimal point is present */ if( *z=='.' ){ z++; /* copy digits from after decimal to significand ** (decrease exponent by d to shift decimal right) */ while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ s = s*10 + (*z - '0'); z++, nDigits++, d--; } /* skip non-significant digits */ while( sqlite3Isdigit(*z) ) z++, nDigits++; } /* if exponent is present */ if( *z=='e' || *z=='E' ){ z++; /* get sign of exponent */ if( *z=='-' ){ esign = -1; z++; }else if( *z=='+' ){ z++; } /* copy digits to exponent */ while( sqlite3Isdigit(*z) ){ e = e*10 + (*z - '0'); z++; } } /* adjust exponent by d, and update sign */ e = (e*esign) + d; if( e<0 ) { esign = -1; e *= -1; } else { esign = 1; } /* if 0 significand */ if( !s ) { /* In the IEEE 754 standard, zero is signed. ** Add the sign if we've seen at least one digit */ result = (sign<0 && nDigits) ? -(double)0 : (double)0; } else { /* attempt to reduce exponent */ if( esign>0 ){ while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; }else{ while( !(s%10) && e>0 ) e--,s/=10; } /* adjust the sign of significand */ s = sign<0 ? -s : s; /* if exponent, scale significand as appropriate ** and store in result. */ if( e ){ double scale = 1.0; /* attempt to handle extremely small/large numbers better */ if( e>307 && e<342 ){ while( e%308 ) { scale *= 1.0e+1; e -= 1; } if( esign<0 ){ result = s / scale; result /= 1.0e+308; }else{ result = s * scale; result *= 1.0e+308; } }else{ /* 1.0e+22 is the largest power of 10 than can be ** represented exactly. */ while( e%22 ) { scale *= 1.0e+1; e -= 1; } while( e>0 ) { scale *= 1.0e+22; e -= 22; } if( esign<0 ){ result = s / scale; }else{ result = s * scale; } } } else { result = (double)s; } } /* store the result */ *pResult = result; /* return number of characters used */ return (int)(z - zBegin); #else return sqlite3Atoi64(z, pResult); #endif /* SQLITE_OMIT_FLOATING_POINT */ } /* |
︙ | ︙ | |||
18931 18932 18933 18934 18935 18936 18937 | } #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) /* ** Translate a single byte of Hex into an integer. | | | 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 | } #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) /* ** Translate a single byte of Hex into an integer. ** This routine only works if h really is a valid hexadecimal ** character: 0..9a..fA..F */ static u8 hexToInt(int h){ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); #ifdef SQLITE_ASCII h += 9*(1&(h>>6)); #endif |
︙ | ︙ | |||
19376 19377 19378 19379 19380 19381 19382 | /* 18 */ "Sort", /* 19 */ "Not", /* 20 */ "Copy", /* 21 */ "Trace", /* 22 */ "Function", /* 23 */ "IfNeg", /* 24 */ "Noop", | | | | | | | | | | | | | | | | | | | | | | | | | 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 | /* 18 */ "Sort", /* 19 */ "Not", /* 20 */ "Copy", /* 21 */ "Trace", /* 22 */ "Function", /* 23 */ "IfNeg", /* 24 */ "Noop", /* 25 */ "Program", /* 26 */ "Return", /* 27 */ "NewRowid", /* 28 */ "Variable", /* 29 */ "String", /* 30 */ "RealAffinity", /* 31 */ "VRename", /* 32 */ "ParseSchema", /* 33 */ "VOpen", /* 34 */ "Close", /* 35 */ "CreateIndex", /* 36 */ "IsUnique", /* 37 */ "NotFound", /* 38 */ "Int64", /* 39 */ "MustBeInt", /* 40 */ "Halt", /* 41 */ "Rowid", /* 42 */ "IdxLT", /* 43 */ "AddImm", /* 44 */ "RowData", /* 45 */ "MemMax", /* 46 */ "NotExists", /* 47 */ "Gosub", /* 48 */ "Integer", /* 49 */ "Prev", /* 50 */ "RowSetRead", /* 51 */ "RowSetAdd", /* 52 */ "VColumn", /* 53 */ "CreateTable", /* 54 */ "Last", /* 55 */ "SeekLe", /* 56 */ "IncrVacuum", /* 57 */ "IdxRowid", /* 58 */ "ResetCount", /* 59 */ "Yield", /* 60 */ "DropTrigger", /* 61 */ "DropIndex", /* 62 */ "Param", /* 63 */ "IdxGE", /* 64 */ "IdxDelete", /* 65 */ "Vacuum", /* 66 */ "Or", /* 67 */ "And", /* 68 */ "IfNot", /* 69 */ "DropTable", |
︙ | ︙ | |||
19452 19453 19454 19455 19456 19457 19458 | /* 94 */ "String8", /* 95 */ "Compare", /* 96 */ "Goto", /* 97 */ "TableLock", /* 98 */ "Clear", /* 99 */ "VerifyCookie", /* 100 */ "AggStep", | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 | /* 94 */ "String8", /* 95 */ "Compare", /* 96 */ "Goto", /* 97 */ "TableLock", /* 98 */ "Clear", /* 99 */ "VerifyCookie", /* 100 */ "AggStep", /* 101 */ "Transaction", /* 102 */ "VFilter", /* 103 */ "VDestroy", /* 104 */ "Next", /* 105 */ "Count", /* 106 */ "IdxInsert", /* 107 */ "SeekGe", /* 108 */ "Insert", /* 109 */ "Destroy", /* 110 */ "ReadCookie", /* 111 */ "RowSetTest", /* 112 */ "LoadAnalysis", /* 113 */ "Explain", /* 114 */ "HaltIfNull", /* 115 */ "OpenPseudo", /* 116 */ "OpenEphemeral", /* 117 */ "Null", /* 118 */ "Move", /* 119 */ "Blob", /* 120 */ "Rewind", /* 121 */ "SeekGt", /* 122 */ "VBegin", /* 123 */ "VUpdate", /* 124 */ "IfZero", /* 125 */ "VCreate", /* 126 */ "Found", /* 127 */ "IfPos", /* 128 */ "NullRow", /* 129 */ "Jump", /* 130 */ "Real", /* 131 */ "Permutation", /* 132 */ "NotUsed_132", /* 133 */ "NotUsed_133", /* 134 */ "NotUsed_134", /* 135 */ "NotUsed_135", /* 136 */ "NotUsed_136", /* 137 */ "NotUsed_137", /* 138 */ "NotUsed_138", /* 139 */ "ToText", /* 140 */ "ToBlob", |
︙ | ︙ | |||
20898 20899 20900 20901 20902 20903 20904 | ** * sqlite3_file methods not associated with locking. ** * Definitions of sqlite3_io_methods objects for all locking ** methods plus "finder" functions for each locking method. ** * sqlite3_vfs method implementations. ** * Locking primitives for the proxy uber-locking-method. (MacOSX only) ** * Definitions of sqlite3_vfs objects for all locking methods ** plus implementations of sqlite3_os_init() and sqlite3_os_end(). | < < | 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 | ** * sqlite3_file methods not associated with locking. ** * Definitions of sqlite3_io_methods objects for all locking ** methods plus "finder" functions for each locking method. ** * sqlite3_vfs method implementations. ** * Locking primitives for the proxy uber-locking-method. (MacOSX only) ** * Definitions of sqlite3_vfs objects for all locking methods ** plus implementations of sqlite3_os_init() and sqlite3_os_end(). */ #if SQLITE_OS_UNIX /* This file is used on unix only */ /* ** There are various methods for file locking used for concurrency ** control: ** |
︙ | ︙ | |||
21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 | /* ** Only set the lastErrno if the error code is a real error and not ** a normal expected return code of SQLITE_BUSY or SQLITE_OK */ #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) /* ** The unixFile structure is subclass of sqlite3_file specific to the unix ** VFS implementations. */ typedef struct unixFile unixFile; struct unixFile { sqlite3_io_methods const *pMethod; /* Always the first entry */ struct unixOpenCnt *pOpen; /* Info about all open fd's on this inode */ struct unixLockInfo *pLock; /* Info about locks on this inode */ int h; /* The file descriptor */ int dirfd; /* File descriptor for the directory */ unsigned char locktype; /* The type of lock held on this fd */ int lastErrno; /* The unix errno from the last I/O error */ void *lockingContext; /* Locking style specific state */ #if SQLITE_ENABLE_LOCKING_STYLE int openFlags; /* The flags specified at open() */ #endif #if SQLITE_THREADSAFE && defined(__linux__) pthread_t tid; /* The thread that "owns" this unixFile */ #endif #if OS_VXWORKS | > > > > > > > > > > > > > > > | 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 | /* ** Only set the lastErrno if the error code is a real error and not ** a normal expected return code of SQLITE_BUSY or SQLITE_OK */ #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) /* ** Sometimes, after a file handle is closed by SQLite, the file descriptor ** cannot be closed immediately. In these cases, instances of the following ** structure are used to store the file descriptor while waiting for an ** opportunity to either close or reuse it. */ typedef struct UnixUnusedFd UnixUnusedFd; struct UnixUnusedFd { int fd; /* File descriptor to close */ int flags; /* Flags this file descriptor was opened with */ UnixUnusedFd *pNext; /* Next unused file descriptor on same file */ }; /* ** The unixFile structure is subclass of sqlite3_file specific to the unix ** VFS implementations. */ typedef struct unixFile unixFile; struct unixFile { sqlite3_io_methods const *pMethod; /* Always the first entry */ struct unixOpenCnt *pOpen; /* Info about all open fd's on this inode */ struct unixLockInfo *pLock; /* Info about locks on this inode */ int h; /* The file descriptor */ int dirfd; /* File descriptor for the directory */ unsigned char locktype; /* The type of lock held on this fd */ int lastErrno; /* The unix errno from the last I/O error */ void *lockingContext; /* Locking style specific state */ UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ int fileFlags; /* Miscellanous flags */ #if SQLITE_ENABLE_LOCKING_STYLE int openFlags; /* The flags specified at open() */ #endif #if SQLITE_THREADSAFE && defined(__linux__) pthread_t tid; /* The thread that "owns" this unixFile */ #endif #if OS_VXWORKS |
︙ | ︙ | |||
21057 21058 21059 21060 21061 21062 21063 | ** occur if a file is updated without also updating the transaction ** counter. This test is made to avoid new problems similar to the ** one described by ticket #3584. */ unsigned char transCntrChng; /* True if the transaction counter changed */ unsigned char dbUpdate; /* True if any part of database file changed */ unsigned char inNormalWrite; /* True if in a normal write operation */ | < < < < < > > > > > | 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 | ** occur if a file is updated without also updating the transaction ** counter. This test is made to avoid new problems similar to the ** one described by ticket #3584. */ unsigned char transCntrChng; /* True if the transaction counter changed */ unsigned char dbUpdate; /* True if any part of database file changed */ unsigned char inNormalWrite; /* True if in a normal write operation */ #endif #ifdef SQLITE_TEST /* In test mode, increase the size of this structure a bit so that ** it is larger than the struct CrashFile defined in test6.c. */ char aPadding[32]; #endif }; /* ** The following macros define bits in unixFile.fileFlags */ #define SQLITE_WHOLE_FILE_LOCKING 0x0001 /* Use whole-file locking */ /* ** Include code that is common to all os_*.c files */ /************** Include os_common.h in the middle of os_unix.c ***************/ /************** Begin file os_common.h ***************************************/ /* ** 2004 May 22 |
︙ | ︙ | |||
21338 21339 21340 21341 21342 21343 21344 | #define threadid pthread_self() #else #define threadid 0 #endif /* | | > > > > > > > > > > > > > > > > | | | | | | 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 | #define threadid pthread_self() #else #define threadid 0 #endif /* ** Helper functions to obtain and relinquish the global mutex. The ** global mutex is used to protect the unixOpenCnt, unixLockInfo and ** vxworksFileId objects used by this file, all of which may be ** shared by multiple threads. ** ** Function unixMutexHeld() is used to assert() that the global mutex ** is held when required. This function is only used as part of assert() ** statements. e.g. ** ** unixEnterMutex() ** assert( unixMutexHeld() ); ** unixEnterLeave() */ static void unixEnterMutex(void){ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); } static void unixLeaveMutex(void){ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); } #ifdef SQLITE_DEBUG static int unixMutexHeld(void) { return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); } #endif #ifdef SQLITE_DEBUG /* ** Helper function for printing out trace information from debugging ** binaries. This returns the string represetation of the supplied ** integer lock-type. */ static const char *locktypeName(int locktype){ switch( locktype ){ case NO_LOCK: return "NONE"; case SHARED_LOCK: return "SHARED"; case RESERVED_LOCK: return "RESERVED"; case PENDING_LOCK: return "PENDING"; case EXCLUSIVE_LOCK: return "EXCLUSIVE"; } return "ERROR"; } #endif #ifdef SQLITE_LOCK_TRACE /* |
︙ | ︙ | |||
21814 21815 21816 21817 21818 21819 21820 | ** The close() system call would only occur when the last database ** using the file closes. */ struct unixOpenCnt { struct unixFileId fileId; /* The lookup key */ int nRef; /* Number of pointers to this structure */ int nLock; /* Number of outstanding locks */ | | < | | 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 | ** The close() system call would only occur when the last database ** using the file closes. */ struct unixOpenCnt { struct unixFileId fileId; /* The lookup key */ int nRef; /* Number of pointers to this structure */ int nLock; /* Number of outstanding locks */ UnixUnusedFd *pUnused; /* Unused file descriptors to close */ #if OS_VXWORKS sem_t *pSem; /* Named POSIX semaphore */ char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ #endif struct unixOpenCnt *pNext, *pPrev; /* List of all unixOpenCnt objects */ }; /* ** Lists of all unixLockInfo and unixOpenCnt objects. These used to be hash ** tables. But the number of objects is rarely more than a dozen and |
︙ | ︙ | |||
21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 | if( d.result!=0 ) return; threadsOverrideEachOthersLocks = (d.lock.l_type==F_UNLCK); } #endif /* SQLITE_THREADSAFE && defined(__linux__) */ /* ** Release a unixLockInfo structure previously allocated by findLockInfo(). */ static void releaseLockInfo(struct unixLockInfo *pLock){ if( pLock ){ pLock->nRef--; if( pLock->nRef==0 ){ if( pLock->pPrev ){ assert( pLock->pPrev->pNext==pLock ); pLock->pPrev->pNext = pLock->pNext; }else{ | > > > > | 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 | if( d.result!=0 ) return; threadsOverrideEachOthersLocks = (d.lock.l_type==F_UNLCK); } #endif /* SQLITE_THREADSAFE && defined(__linux__) */ /* ** Release a unixLockInfo structure previously allocated by findLockInfo(). ** ** The mutex entered using the unixEnterMutex() function must be held ** when this function is called. */ static void releaseLockInfo(struct unixLockInfo *pLock){ assert( unixMutexHeld() ); if( pLock ){ pLock->nRef--; if( pLock->nRef==0 ){ if( pLock->pPrev ){ assert( pLock->pPrev->pNext==pLock ); pLock->pPrev->pNext = pLock->pNext; }else{ |
︙ | ︙ | |||
21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 | sqlite3_free(pLock); } } } /* ** Release a unixOpenCnt structure previously allocated by findLockInfo(). */ static void releaseOpenCnt(struct unixOpenCnt *pOpen){ if( pOpen ){ pOpen->nRef--; if( pOpen->nRef==0 ){ if( pOpen->pPrev ){ assert( pOpen->pPrev->pNext==pOpen ); pOpen->pPrev->pNext = pOpen->pNext; }else{ assert( openList==pOpen ); openList = pOpen->pNext; } if( pOpen->pNext ){ assert( pOpen->pNext->pPrev==pOpen ); pOpen->pNext->pPrev = pOpen->pPrev; } | > > > > > > > | > > > > > > > > > > > > | 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 | sqlite3_free(pLock); } } } /* ** Release a unixOpenCnt structure previously allocated by findLockInfo(). ** ** The mutex entered using the unixEnterMutex() function must be held ** when this function is called. */ static void releaseOpenCnt(struct unixOpenCnt *pOpen){ assert( unixMutexHeld() ); if( pOpen ){ pOpen->nRef--; if( pOpen->nRef==0 ){ if( pOpen->pPrev ){ assert( pOpen->pPrev->pNext==pOpen ); pOpen->pPrev->pNext = pOpen->pNext; }else{ assert( openList==pOpen ); openList = pOpen->pNext; } if( pOpen->pNext ){ assert( pOpen->pNext->pPrev==pOpen ); pOpen->pNext->pPrev = pOpen->pPrev; } #if SQLITE_THREADSAFE && defined(__linux__) assert( !pOpen->pUnused || threadsOverrideEachOthersLocks==0 ); #endif /* If pOpen->pUnused is not null, then memory and file-descriptors ** are leaked. ** ** This will only happen if, under Linuxthreads, the user has opened ** a transaction in one thread, then attempts to close the database ** handle from another thread (without first unlocking the db file). ** This is a misuse. */ sqlite3_free(pOpen); } } } /* ** Given a file descriptor, locate unixLockInfo and unixOpenCnt structures that ** describes that file descriptor. Create new ones if necessary. The ** return values might be uninitialized if an error occurs. ** ** The mutex entered using the unixEnterMutex() function must be held ** when this function is called. ** ** Return an appropriate error code. */ static int findLockInfo( unixFile *pFile, /* Unix file with file desc used in the key */ struct unixLockInfo **ppLock, /* Return the unixLockInfo structure here */ struct unixOpenCnt **ppOpen /* Return the unixOpenCnt structure here */ ){ int rc; /* System call return code */ int fd; /* The file descriptor for pFile */ struct unixLockKey lockKey; /* Lookup key for the unixLockInfo structure */ struct unixFileId fileId; /* Lookup key for the unixOpenCnt struct */ struct stat statbuf; /* Low-level file information */ struct unixLockInfo *pLock = 0;/* Candidate unixLockInfo object */ struct unixOpenCnt *pOpen; /* Candidate unixOpenCnt object */ assert( unixMutexHeld() ); /* Get low-level information about the file that we can used to ** create a unique name for the file. */ fd = pFile->h; rc = fstat(fd, &statbuf); if( rc!=0 ){ |
︙ | ︙ | |||
22078 22079 22080 22081 22082 22083 22084 22085 22086 | if( pOpen==0 ){ pOpen = sqlite3_malloc( sizeof(*pOpen) ); if( pOpen==0 ){ releaseLockInfo(pLock); rc = SQLITE_NOMEM; goto exit_findlockinfo; } pOpen->fileId = fileId; pOpen->nRef = 1; | > < < < < < < < < | 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 | if( pOpen==0 ){ pOpen = sqlite3_malloc( sizeof(*pOpen) ); if( pOpen==0 ){ releaseLockInfo(pLock); rc = SQLITE_NOMEM; goto exit_findlockinfo; } memset(pOpen, 0, sizeof(*pOpen)); pOpen->fileId = fileId; pOpen->nRef = 1; pOpen->pNext = openList; if( openList ) openList->pPrev = pOpen; openList = pOpen; }else{ pOpen->nRef++; } *ppOpen = pOpen; } exit_findlockinfo: |
︙ | ︙ | |||
22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 | unixLeaveMutex(); OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved); *pResOut = reserved; return rc; } /* ** Lock the file with the lock specified by parameter locktype - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 | unixLeaveMutex(); OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved); *pResOut = reserved; return rc; } /* ** Perform a file locking operation on a range of bytes in a file. ** The "op" parameter should be one of F_RDLCK, F_WRLCK, or F_UNLCK. ** Return 0 on success or -1 for failure. On failure, write the error ** code into *pErrcode. ** ** If the SQLITE_WHOLE_FILE_LOCKING bit is clear, then only lock ** the range of bytes on the locking page between SHARED_FIRST and ** SHARED_SIZE. If SQLITE_WHOLE_FILE_LOCKING is set, then lock all ** bytes from 0 up to but not including PENDING_BYTE, and all bytes ** that follow SHARED_FIRST. ** ** In other words, of SQLITE_WHOLE_FILE_LOCKING if false (the historical ** default case) then only lock a small range of bytes from SHARED_FIRST ** through SHARED_FIRST+SHARED_SIZE-1. But if SQLITE_WHOLE_FILE_LOCKING is ** true then lock every byte in the file except for PENDING_BYTE and ** RESERVED_BYTE. ** ** SQLITE_WHOLE_FILE_LOCKING=true overlaps SQLITE_WHOLE_FILE_LOCKING=false ** and so the locking schemes are compatible. One type of lock will ** effectively exclude the other type. The reason for using the ** SQLITE_WHOLE_FILE_LOCKING=true is that by indicating the full range ** of bytes to be read or written, we give hints to NFS to help it ** maintain cache coherency. On the other hand, whole file locking ** is slower, so we don't want to use it except for NFS. */ static int rangeLock(unixFile *pFile, int op, int *pErrcode){ struct flock lock; int rc; lock.l_type = op; lock.l_start = SHARED_FIRST; lock.l_whence = SEEK_SET; if( (pFile->fileFlags & SQLITE_WHOLE_FILE_LOCKING)==0 ){ lock.l_len = SHARED_SIZE; rc = fcntl(pFile->h, F_SETLK, &lock); *pErrcode = errno; }else{ lock.l_len = 0; rc = fcntl(pFile->h, F_SETLK, &lock); *pErrcode = errno; if( NEVER(op==F_UNLCK) || rc!=(-1) ){ lock.l_start = 0; lock.l_len = PENDING_BYTE; rc = fcntl(pFile->h, F_SETLK, &lock); if( ALWAYS(op!=F_UNLCK) && rc==(-1) ){ *pErrcode = errno; lock.l_type = F_UNLCK; lock.l_start = SHARED_FIRST; lock.l_len = 0; fcntl(pFile->h, F_SETLK, &lock); } } } return rc; } /* ** Lock the file with the lock specified by parameter locktype - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK |
︙ | ︙ | |||
22264 22265 22266 22267 22268 22269 22270 | ** locking a random byte from a range, concurrent SHARED locks may exist ** even if the locking primitive used is always a write-lock. */ int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; struct unixLockInfo *pLock = pFile->pLock; struct flock lock; | | > | > > > | 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 | ** locking a random byte from a range, concurrent SHARED locks may exist ** even if the locking primitive used is always a write-lock. */ int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; struct unixLockInfo *pLock = pFile->pLock; struct flock lock; int s = 0; int tErrno; assert( pFile ); OSTRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h, locktypeName(locktype), locktypeName(pFile->locktype), locktypeName(pLock->locktype), pLock->cnt , getpid()); /* If there is already a lock of this type or more restrictive on the ** unixFile, do nothing. Don't use the end_lock: exit path, as ** unixEnterMutex() hasn't been called yet. */ if( pFile->locktype>=locktype ){ OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h, locktypeName(locktype)); return SQLITE_OK; } /* Make sure the locking sequence is correct. ** (1) We never move from unlocked to anything higher than shared lock. ** (2) SQLite never explicitly requests a pendig lock. ** (3) A shared lock is always held when a reserve lock is requested. */ assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); assert( locktype!=PENDING_LOCK ); assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); /* This mutex is needed because pFile->pLock is shared across threads */ |
︙ | ︙ | |||
22325 22326 22327 22328 22329 22330 22331 | assert( pLock->cnt>0 ); pFile->locktype = SHARED_LOCK; pLock->cnt++; pFile->pOpen->nLock++; goto end_lock; } | < < < > > | < < < < | | | 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 | assert( pLock->cnt>0 ); pFile->locktype = SHARED_LOCK; pLock->cnt++; pFile->pOpen->nLock++; goto end_lock; } /* A PENDING lock is needed before acquiring a SHARED lock and before ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will ** be released. */ lock.l_len = 1L; lock.l_whence = SEEK_SET; if( locktype==SHARED_LOCK || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK) ){ lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK); lock.l_start = PENDING_BYTE; s = fcntl(pFile->h, F_SETLK, &lock); if( s==(-1) ){ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( IS_LOCK_ERROR(rc) ){ pFile->lastErrno = tErrno; } goto end_lock; } } /* If control gets to this point, then actually go ahead and make ** operating system calls for the specified lock. */ if( locktype==SHARED_LOCK ){ assert( pLock->cnt==0 ); assert( pLock->locktype==0 ); /* Now get the read-lock */ s = rangeLock(pFile, F_RDLCK, &tErrno); /* Drop the temporary PENDING lock */ lock.l_start = PENDING_BYTE; lock.l_len = 1L; lock.l_type = F_UNLCK; if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){ if( s != -1 ){ /* This could happen with a network mount */ |
︙ | ︙ | |||
22403 22404 22405 22406 22407 22408 22409 22410 22411 | ** already. */ assert( 0!=pFile->locktype ); lock.l_type = F_WRLCK; switch( locktype ){ case RESERVED_LOCK: lock.l_start = RESERVED_BYTE; break; case EXCLUSIVE_LOCK: | > > < < > < < | 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 | ** already. */ assert( 0!=pFile->locktype ); lock.l_type = F_WRLCK; switch( locktype ){ case RESERVED_LOCK: lock.l_start = RESERVED_BYTE; s = fcntl(pFile->h, F_SETLK, &lock); tErrno = errno; break; case EXCLUSIVE_LOCK: s = rangeLock(pFile, F_WRLCK, &tErrno); break; default: assert(0); } if( s==(-1) ){ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( IS_LOCK_ERROR(rc) ){ pFile->lastErrno = tErrno; } } } |
︙ | ︙ | |||
22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 | end_lock: unixLeaveMutex(); OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype), rc==SQLITE_OK ? "ok" : "failed"); return rc; } /* ** Lower the locking level on file descriptor pFile to locktype. locktype ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int unixUnlock(sqlite3_file *id, int locktype){ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | < | > | 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 | end_lock: unixLeaveMutex(); OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype), rc==SQLITE_OK ? "ok" : "failed"); return rc; } /* ** Close all file descriptors accumuated in the unixOpenCnt->pUnused list. ** If all such file descriptors are closed without error, the list is ** cleared and SQLITE_OK returned. ** ** Otherwise, if an error occurs, then successfully closed file descriptor ** entries are removed from the list, and SQLITE_IOERR_CLOSE returned. ** not deleted and SQLITE_IOERR_CLOSE returned. */ static int closePendingFds(unixFile *pFile){ int rc = SQLITE_OK; struct unixOpenCnt *pOpen = pFile->pOpen; UnixUnusedFd *pError = 0; UnixUnusedFd *p; UnixUnusedFd *pNext; for(p=pOpen->pUnused; p; p=pNext){ pNext = p->pNext; if( close(p->fd) ){ pFile->lastErrno = errno; rc = SQLITE_IOERR_CLOSE; p->pNext = pError; pError = p; }else{ sqlite3_free(p); } } pOpen->pUnused = pError; return rc; } /* ** Add the file descriptor used by file handle pFile to the corresponding ** pUnused list. */ static void setPendingFd(unixFile *pFile){ struct unixOpenCnt *pOpen = pFile->pOpen; UnixUnusedFd *p = pFile->pUnused; p->pNext = pOpen->pUnused; pOpen->pUnused = p; pFile->h = -1; pFile->pUnused = 0; } /* ** Lower the locking level on file descriptor pFile to locktype. locktype ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int unixUnlock(sqlite3_file *id, int locktype){ unixFile *pFile = (unixFile*)id; /* The open file */ struct unixLockInfo *pLock; /* Structure describing current lock state */ struct flock lock; /* Information passed into fcntl() */ int rc = SQLITE_OK; /* Return code from this interface */ int h; /* The underlying file descriptor */ int tErrno; /* Error code from system call errors */ assert( pFile ); OSTRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype, pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid()); assert( locktype<=SHARED_LOCK ); if( pFile->locktype<=locktype ){ |
︙ | ︙ | |||
22506 22507 22508 22509 22510 22511 22512 | || pFile->dbUpdate==0 || pFile->transCntrChng==1 ); pFile->inNormalWrite = 0; #endif if( locktype==SHARED_LOCK ){ | < < < < | < | < | | < < < < < < < < < < < < < < < | < < < | | > | 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 | || pFile->dbUpdate==0 || pFile->transCntrChng==1 ); pFile->inNormalWrite = 0; #endif if( locktype==SHARED_LOCK ){ if( rangeLock(pFile, F_RDLCK, &tErrno)==(-1) ){ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); if( IS_LOCK_ERROR(rc) ){ pFile->lastErrno = tErrno; } goto end_unlock; } } lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = PENDING_BYTE; lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); if( fcntl(h, F_SETLK, &lock)!=(-1) ){ pLock->locktype = SHARED_LOCK; }else{ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); if( IS_LOCK_ERROR(rc) ){ pFile->lastErrno = tErrno; } goto end_unlock; } } if( locktype==NO_LOCK ){ struct unixOpenCnt *pOpen; /* Decrement the shared lock counter. Release the lock using an ** OS call only when all threads in this same process have released ** the lock. */ pLock->cnt--; if( pLock->cnt==0 ){ lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = lock.l_len = 0L; SimulateIOErrorBenign(1); SimulateIOError( h=(-1) ) SimulateIOErrorBenign(0); if( fcntl(h, F_SETLK, &lock)!=(-1) ){ pLock->locktype = NO_LOCK; }else{ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); if( IS_LOCK_ERROR(rc) ){ pFile->lastErrno = tErrno; } pLock->locktype = NO_LOCK; pFile->locktype = NO_LOCK; } } /* Decrement the count of locks against this same file. When the ** count reaches zero, close any other file descriptors whose close ** was deferred because of outstanding locks. */ pOpen = pFile->pOpen; pOpen->nLock--; assert( pOpen->nLock>=0 ); if( pOpen->nLock==0 ){ int rc2 = closePendingFds(pFile); if( rc==SQLITE_OK ){ rc = rc2; } } } end_unlock: unixLeaveMutex(); if( rc==SQLITE_OK ) pFile->locktype = locktype; return rc; |
︙ | ︙ | |||
22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 | } vxworksReleaseFileId(pFile->pId); pFile->pId = 0; } #endif OSTRACE2("CLOSE %-3d\n", pFile->h); OpenCounter(-1); memset(pFile, 0, sizeof(unixFile)); } return SQLITE_OK; } /* ** Close a file. */ static int unixClose(sqlite3_file *id){ int rc = SQLITE_OK; if( id ){ unixFile *pFile = (unixFile *)id; unixUnlock(id, NO_LOCK); unixEnterMutex(); if( pFile->pOpen && pFile->pOpen->nLock ){ /* If there are outstanding locks, do not actually close the file just ** yet because that would clear those locks. Instead, add the file | > | | < < < < < < < < | < < | 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 | } vxworksReleaseFileId(pFile->pId); pFile->pId = 0; } #endif OSTRACE2("CLOSE %-3d\n", pFile->h); OpenCounter(-1); sqlite3_free(pFile->pUnused); memset(pFile, 0, sizeof(unixFile)); } return SQLITE_OK; } /* ** Close a file. */ static int unixClose(sqlite3_file *id){ int rc = SQLITE_OK; if( id ){ unixFile *pFile = (unixFile *)id; unixUnlock(id, NO_LOCK); unixEnterMutex(); if( pFile->pOpen && pFile->pOpen->nLock ){ /* If there are outstanding locks, do not actually close the file just ** yet because that would clear those locks. Instead, add the file ** descriptor to pOpen->pUnused list. It will be automatically closed ** when the last lock is cleared. */ setPendingFd(pFile); } releaseLockInfo(pFile->pLock); releaseOpenCnt(pFile->pOpen); rc = closeUnixFile(id); unixLeaveMutex(); } return rc; |
︙ | ︙ | |||
22728 22729 22730 22731 22732 22733 22734 | /******************* End of the no-op lock implementation ********************* ******************************************************************************/ /****************************************************************************** ************************* Begin dot-file Locking ****************************** ** | | | 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 | /******************* End of the no-op lock implementation ********************* ******************************************************************************/ /****************************************************************************** ************************* Begin dot-file Locking ****************************** ** ** The dotfile locking implementation uses the existance of separate lock ** files in order to control access to the database. This works on just ** about every filesystem imaginable. But there are serious downsides: ** ** (1) There is zero concurrency. A single reader blocks all other ** connections from reading or writing the database. ** ** (2) An application crash or power loss can leave stale lock files |
︙ | ︙ | |||
23640 23641 23642 23643 23644 23645 23646 | } if( rc==SQLITE_OK ){ if( locktype==NO_LOCK ){ struct unixOpenCnt *pOpen = pFile->pOpen; pOpen->nLock--; assert( pOpen->nLock>=0 ); | | < < < < < < < < < < < < | < < | > > < < < < < < < < | < < | 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 | } if( rc==SQLITE_OK ){ if( locktype==NO_LOCK ){ struct unixOpenCnt *pOpen = pFile->pOpen; pOpen->nLock--; assert( pOpen->nLock>=0 ); if( pOpen->nLock==0 ){ rc = closePendingFds(pFile); } } } unixLeaveMutex(); if( rc==SQLITE_OK ){ pFile->locktype = locktype; } return rc; } /* ** Close a file & cleanup AFP specific locking context */ static int afpClose(sqlite3_file *id) { if( id ){ unixFile *pFile = (unixFile*)id; afpUnlock(id, NO_LOCK); unixEnterMutex(); if( pFile->pOpen && pFile->pOpen->nLock ){ /* If there are outstanding locks, do not actually close the file just ** yet because that would clear those locks. Instead, add the file ** descriptor to pOpen->aPending. It will be automatically closed when ** the last lock is cleared. */ setPendingFd(pFile); } releaseOpenCnt(pFile->pOpen); sqlite3_free(pFile->lockingContext); closeUnixFile(id); unixLeaveMutex(); } return SQLITE_OK; |
︙ | ︙ | |||
23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 | */ static int unixRead( sqlite3_file *id, void *pBuf, int amt, sqlite3_int64 offset ){ int got; assert( id ); | > > | | | | > | | | 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 | */ static int unixRead( sqlite3_file *id, void *pBuf, int amt, sqlite3_int64 offset ){ unixFile *pFile = (unixFile *)id; int got; assert( id ); /* If this is a database file (not a journal, master-journal or temp ** file), the bytes in the locking range should never be read or written. */ assert( pFile->pUnused==0 || offset>=PENDING_BYTE+512 || offset+amt<=PENDING_BYTE ); got = seekAndRead(pFile, offset, pBuf, amt); if( got==amt ){ return SQLITE_OK; }else if( got<0 ){ /* lastErrno set by seekAndRead */ return SQLITE_IOERR_READ; }else{ pFile->lastErrno = 0; /* not a system error */ /* Unread parts of the buffer must be zero-filled */ memset(&((char*)pBuf)[got], 0, amt-got); return SQLITE_IOERR_SHORT_READ; } } /* |
︙ | ︙ | |||
23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 | */ static int unixWrite( sqlite3_file *id, const void *pBuf, int amt, sqlite3_int64 offset ){ int wrote = 0; assert( id ); assert( amt>0 ); | > > | | | | > | < | | | 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 | */ static int unixWrite( sqlite3_file *id, const void *pBuf, int amt, sqlite3_int64 offset ){ unixFile *pFile = (unixFile*)id; int wrote = 0; assert( id ); assert( amt>0 ); /* If this is a database file (not a journal, master-journal or temp ** file), the bytes in the locking range should never be read or written. */ assert( pFile->pUnused==0 || offset>=PENDING_BYTE+512 || offset+amt<=PENDING_BYTE ); #ifndef NDEBUG /* If we are doing a normal write to a database file (as opposed to ** doing a hot-journal rollback or a write to some file other than a ** normal database file) then record the fact that the database ** has changed. If the transaction counter is modified, record that ** fact too. */ if( pFile->inNormalWrite ){ pFile->dbUpdate = 1; /* The database has been modified */ if( offset<=24 && offset+amt>=27 ){ int rc; char oldCntr[4]; SimulateIOErrorBenign(1); rc = seekAndRead(pFile, 24, oldCntr, 4); SimulateIOErrorBenign(0); if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){ pFile->transCntrChng = 1; /* The transaction counter has changed */ } } } #endif while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){ amt -= wrote; offset += wrote; pBuf = &((char*)pBuf)[wrote]; } SimulateIOError(( wrote=(-1), amt=1 )); SimulateDiskfullError(( wrote=0, amt=1 )); if( amt>0 ){ if( wrote<0 ){ /* lastErrno set by seekAndWrite */ return SQLITE_IOERR_WRITE; }else{ pFile->lastErrno = 0; /* not a system error */ return SQLITE_FULL; } } return SQLITE_OK; } #ifdef SQLITE_TEST |
︙ | ︙ | |||
24215 24216 24217 24218 24219 24220 24221 | ** looks at the filesystem type and tries to guess the best locking ** strategy from that. ** ** For finder-funtion F, two objects are created: ** ** (1) The real finder-function named "FImpt()". ** | | | 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 | ** looks at the filesystem type and tries to guess the best locking ** strategy from that. ** ** For finder-funtion F, two objects are created: ** ** (1) The real finder-function named "FImpt()". ** ** (2) A constant pointer to this function named just "F". ** ** ** A pointer to the F pointer is used as the pAppData value for VFS ** objects. We have to do this instead of letting pAppData point ** directly at the finder-function since C90 rules prevent a void* ** from be cast into a function pointer. ** |
︙ | ︙ | |||
24248 24249 24250 24251 24252 24253 24254 | LOCK, /* xLock */ \ UNLOCK, /* xUnlock */ \ CKLOCK, /* xCheckReservedLock */ \ unixFileControl, /* xFileControl */ \ unixSectorSize, /* xSectorSize */ \ unixDeviceCharacteristics /* xDeviceCapabilities */ \ }; \ | | | | | 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 | LOCK, /* xLock */ \ UNLOCK, /* xUnlock */ \ CKLOCK, /* xCheckReservedLock */ \ unixFileControl, /* xFileControl */ \ unixSectorSize, /* xSectorSize */ \ unixDeviceCharacteristics /* xDeviceCapabilities */ \ }; \ static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \ UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \ return &METHOD; \ } \ static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \ = FINDER##Impl; /* ** Here are all of the sqlite3_io_methods objects for each of the ** locking strategies. Functions that return pointers to these methods ** are also created. */ |
︙ | ︙ | |||
24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 | afpClose, /* xClose method */ afpLock, /* xLock method */ afpUnlock, /* xUnlock method */ afpCheckReservedLock /* xCheckReservedLock method */ ) #endif /* ** The proxy locking method is a "super-method" in the sense that it ** opens secondary file descriptors for the conch and lock files and ** it uses proxy, dot-file, AFP, and flock() locking methods on those ** secondary files. For this reason, the division that implements ** proxy locking is located much further down in the file. But we need ** to go ahead and define the sqlite3_io_methods and finder function | > > > > > > > > > > > > > > > > > | 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 | afpClose, /* xClose method */ afpLock, /* xLock method */ afpUnlock, /* xUnlock method */ afpCheckReservedLock /* xCheckReservedLock method */ ) #endif /* ** The "Whole File Locking" finder returns the same set of methods as ** the posix locking finder. But it also sets the SQLITE_WHOLE_FILE_LOCKING ** flag to force the posix advisory locks to cover the whole file instead ** of just a small span of bytes near the 1GiB boundary. Whole File Locking ** is useful on NFS-mounted files since it helps NFS to maintain cache ** coherency. But it is a detriment to other filesystems since it runs ** slower. */ static const sqlite3_io_methods *posixWflIoFinderImpl(const char*z, unixFile*p){ UNUSED_PARAMETER(z); p->fileFlags = SQLITE_WHOLE_FILE_LOCKING; return &posixIoMethods; } static const sqlite3_io_methods *(*const posixWflIoFinder)(const char*,unixFile *p) = posixWflIoFinderImpl; /* ** The proxy locking method is a "super-method" in the sense that it ** opens secondary file descriptors for the conch and lock files and ** it uses proxy, dot-file, AFP, and flock() locking methods on those ** secondary files. For this reason, the division that implements ** proxy locking is located much further down in the file. But we need ** to go ahead and define the sqlite3_io_methods and finder function |
︙ | ︙ | |||
24353 24354 24355 24356 24357 24358 24359 | ** for the database file "filePath". It then returns the sqlite3_io_methods ** object that implements that strategy. ** ** This is for MacOSX only. */ static const sqlite3_io_methods *autolockIoFinderImpl( const char *filePath, /* name of the database file */ | | | 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 | ** for the database file "filePath". It then returns the sqlite3_io_methods ** object that implements that strategy. ** ** This is for MacOSX only. */ static const sqlite3_io_methods *autolockIoFinderImpl( const char *filePath, /* name of the database file */ unixFile *pNew /* open file object for the database file */ ){ static const struct Mapping { const char *zFilesystem; /* Filesystem type name */ const sqlite3_io_methods *pMethods; /* Appropriate locking method */ } aMap[] = { { "hfs", &posixIoMethods }, { "ufs", &posixIoMethods }, |
︙ | ︙ | |||
24398 24399 24400 24401 24402 24403 24404 | ** Test byte-range lock using fcntl(). If the call succeeds, ** assume that the file-system supports POSIX style locks. */ lockInfo.l_len = 1; lockInfo.l_start = 0; lockInfo.l_whence = SEEK_SET; lockInfo.l_type = F_RDLCK; | | > | | | | | | | | 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 | ** Test byte-range lock using fcntl(). If the call succeeds, ** assume that the file-system supports POSIX style locks. */ lockInfo.l_len = 1; lockInfo.l_start = 0; lockInfo.l_whence = SEEK_SET; lockInfo.l_type = F_RDLCK; if( fcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { pNew->fileFlags = SQLITE_WHOLE_FILE_LOCKING; return &posixIoMethods; }else{ return &dotlockIoMethods; } } static const sqlite3_io_methods *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE /* ** This "finder" function attempts to determine the best locking strategy ** for the database file "filePath". It then returns the sqlite3_io_methods ** object that implements that strategy. ** ** This is for VXWorks only. */ static const sqlite3_io_methods *autolockIoFinderImpl( const char *filePath, /* name of the database file */ unixFile *pNew /* the open file object */ ){ struct flock lockInfo; if( !filePath ){ /* If filePath==NULL that means we are dealing with a transient file ** that does not need to be locked. */ return &nolockIoMethods; } /* Test if fcntl() is supported and use POSIX style locks. ** Otherwise fall back to the named semaphore method. */ lockInfo.l_len = 1; lockInfo.l_start = 0; lockInfo.l_whence = SEEK_SET; lockInfo.l_type = F_RDLCK; if( fcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { return &posixIoMethods; }else{ return &semIoMethods; } } static const sqlite3_io_methods *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */ /* ** An abstract type for a pointer to a IO method finder function: */ typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); /**************************************************************************** **************************** sqlite3_vfs methods **************************** ** ** This division contains the implementation of methods on the ** sqlite3_vfs object. |
︙ | ︙ | |||
24479 24480 24481 24482 24483 24484 24485 | const sqlite3_io_methods *pLockingStyle; unixFile *pNew = (unixFile *)pId; int rc = SQLITE_OK; assert( pNew->pLock==NULL ); assert( pNew->pOpen==NULL ); | | | < < < > | > > > > > > > > > > > > > > > > > > > > > > | 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 | const sqlite3_io_methods *pLockingStyle; unixFile *pNew = (unixFile *)pId; int rc = SQLITE_OK; assert( pNew->pLock==NULL ); assert( pNew->pOpen==NULL ); /* Parameter isDelete is only used on vxworks. Express this explicitly ** here to prevent compiler warnings about unused parameters. */ UNUSED_PARAMETER(isDelete); OSTRACE3("OPEN %-3d %s\n", h, zFilename); pNew->h = h; pNew->dirfd = dirfd; SET_THREADID(pNew); pNew->fileFlags = 0; #if OS_VXWORKS pNew->pId = vxworksFindFileId(zFilename); if( pNew->pId==0 ){ noLock = 1; rc = SQLITE_NOMEM; } #endif if( noLock ){ pLockingStyle = &nolockIoMethods; }else{ pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew); #if SQLITE_ENABLE_LOCKING_STYLE /* Cache zFilename in the locking context (AFP and dotlock override) for ** proxyLock activation is possible (remote proxy is based on db name) ** zFilename remains valid until file is closed, to support */ pNew->lockingContext = (void*)zFilename; #endif } if( pLockingStyle == &posixIoMethods ){ unixEnterMutex(); rc = findLockInfo(pNew, &pNew->pLock, &pNew->pOpen); if( rc!=SQLITE_OK ){ /* If an error occured in findLockInfo(), close the file descriptor ** immediately, before releasing the mutex. findLockInfo() may fail ** in two scenarios: ** ** (a) A call to fstat() failed. ** (b) A malloc failed. ** ** Scenario (b) may only occur if the process is holding no other ** file descriptors open on the same file. If there were other file ** descriptors on this file, then no malloc would be required by ** findLockInfo(). If this is the case, it is quite safe to close ** handle h - as it is guaranteed that no posix locks will be released ** by doing so. ** ** If scenario (a) caused the error then things are not so safe. The ** implicit assumption here is that if fstat() fails, things are in ** such bad shape that dropping a lock or two doesn't matter much. */ close(h); h = -1; } unixLeaveMutex(); } #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) else if( pLockingStyle == &afpIoMethods ){ /* AFP locking uses the file path so it needs to be included in ** the afpLockingContext. |
︙ | ︙ | |||
24566 24567 24568 24569 24570 24571 24572 | ** included in the semLockingContext */ unixEnterMutex(); rc = findLockInfo(pNew, &pNew->pLock, &pNew->pOpen); if( (rc==SQLITE_OK) && (pNew->pOpen->pSem==NULL) ){ char *zSemName = pNew->pOpen->aSemName; int n; | | | | 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 | ** included in the semLockingContext */ unixEnterMutex(); rc = findLockInfo(pNew, &pNew->pLock, &pNew->pOpen); if( (rc==SQLITE_OK) && (pNew->pOpen->pSem==NULL) ){ char *zSemName = pNew->pOpen->aSemName; int n; sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem", pNew->pId->zCanonicalName); for( n=1; zSemName[n]; n++ ) if( zSemName[n]=='/' ) zSemName[n] = '_'; pNew->pOpen->pSem = sem_open(zSemName, O_CREAT, 0666, 1); if( pNew->pOpen->pSem == SEM_FAILED ){ rc = SQLITE_NOMEM; pNew->pOpen->aSemName[0] = '\0'; } } |
︙ | ︙ | |||
24590 24591 24592 24593 24594 24595 24596 | unlink(zFilename); isDelete = 0; } pNew->isDelete = isDelete; #endif if( rc!=SQLITE_OK ){ if( dirfd>=0 ) close(dirfd); /* silent leak if fail, already in error */ | | | 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 | unlink(zFilename); isDelete = 0; } pNew->isDelete = isDelete; #endif if( rc!=SQLITE_OK ){ if( dirfd>=0 ) close(dirfd); /* silent leak if fail, already in error */ if( h>=0 ) close(h); }else{ pNew->pMethod = pLockingStyle; OpenCounter(+1); } return rc; } |
︙ | ︙ | |||
24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 | ** Routine to transform a unixFile into a proxy-locking unixFile. ** Implementation in the proxy-lock division, but used by unixOpen() ** if SQLITE_PREFER_PROXY_LOCKING is defined. */ static int proxyTransformUnixFile(unixFile*, const char*); #endif /* ** Open the file zPath. ** ** Previously, the SQLite OS layer used three functions in place of this ** one: ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 | ** Routine to transform a unixFile into a proxy-locking unixFile. ** Implementation in the proxy-lock division, but used by unixOpen() ** if SQLITE_PREFER_PROXY_LOCKING is defined. */ static int proxyTransformUnixFile(unixFile*, const char*); #endif /* ** Search for an unused file descriptor that was opened on the database ** file (not a journal or master-journal file) identified by pathname ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second ** argument to this function. ** ** Such a file descriptor may exist if a database connection was closed ** but the associated file descriptor could not be closed because some ** other file descriptor open on the same file is holding a file-lock. ** Refer to comments in the unixClose() function and the lengthy comment ** describing "Posix Advisory Locking" at the start of this file for ** further details. Also, ticket #4018. ** ** If a suitable file descriptor is found, then it is returned. If no ** such file descriptor is located, -1 is returned. */ static UnixUnusedFd *findReusableFd(const char *zPath, int flags){ UnixUnusedFd *pUnused = 0; /* Do not search for an unused file descriptor on vxworks. Not because ** vxworks would not benefit from the change (it might, we're not sure), ** but because no way to test it is currently available. It is better ** not to risk breaking vxworks support for the sake of such an obscure ** feature. */ #if !OS_VXWORKS struct stat sStat; /* Results of stat() call */ /* A stat() call may fail for various reasons. If this happens, it is ** almost certain that an open() call on the same path will also fail. ** For this reason, if an error occurs in the stat() call here, it is ** ignored and -1 is returned. The caller will try to open a new file ** descriptor on the same path, fail, and return an error to SQLite. ** ** Even if a subsequent open() call does succeed, the consequences of ** not searching for a resusable file descriptor are not dire. */ if( 0==stat(zPath, &sStat) ){ struct unixOpenCnt *pO; struct unixFileId id; id.dev = sStat.st_dev; id.ino = sStat.st_ino; unixEnterMutex(); for(pO=openList; pO && memcmp(&id, &pO->fileId, sizeof(id)); pO=pO->pNext); if( pO ){ UnixUnusedFd **pp; for(pp=&pO->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); pUnused = *pp; if( pUnused ){ *pp = pUnused->pNext; } } unixLeaveMutex(); } #endif /* if !OS_VXWORKS */ return pUnused; } /* ** Open the file zPath. ** ** Previously, the SQLite OS layer used three functions in place of this ** one: ** |
︙ | ︙ | |||
24729 24730 24731 24732 24733 24734 24735 | static int unixOpen( sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */ const char *zPath, /* Pathname of file to be opened */ sqlite3_file *pFile, /* The file descriptor to be filled in */ int flags, /* Input flags to control the opening */ int *pOutFlags /* Output flags returned to SQLite core */ ){ | > | | | 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 | static int unixOpen( sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */ const char *zPath, /* Pathname of file to be opened */ sqlite3_file *pFile, /* The file descriptor to be filled in */ int flags, /* Input flags to control the opening */ int *pOutFlags /* Output flags returned to SQLite core */ ){ unixFile *p = (unixFile *)pFile; int fd = -1; /* File descriptor returned by open() */ int dirfd = -1; /* Directory file descriptor */ int openFlags = 0; /* Flags to pass to open() */ int eType = flags&0xFFFFFF00; /* Type of file to open */ int noLock; /* True to omit locking primitives */ int rc = SQLITE_OK; /* Function Return Code */ int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); int isCreate = (flags & SQLITE_OPEN_CREATE); int isReadonly = (flags & SQLITE_OPEN_READONLY); int isReadWrite = (flags & SQLITE_OPEN_READWRITE); |
︙ | ︙ | |||
24769 24770 24771 24772 24773 24774 24775 | */ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); assert(isCreate==0 || isReadWrite); assert(isExclusive==0 || isCreate); assert(isDelete==0 || isCreate); /* The main DB, main journal, and master journal are never automatically | | < | | | | > > > > > > > > > > > > | > > > > > > > | | | | | > | | > | | | > | > > > > > > > > > > > | < < < < < < < < < < > > > > > | < > | | | < < > > > > > > > | > | > | > | | > > > | > > > | 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 | */ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); assert(isCreate==0 || isReadWrite); assert(isExclusive==0 || isCreate); assert(isDelete==0 || isCreate); /* The main DB, main journal, and master journal are never automatically ** deleted. Nor are they ever temporary files. */ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL ); /* Assert that the upper layer has set one of the "file-type" flags. */ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_TRANSIENT_DB ); memset(p, 0, sizeof(unixFile)); if( eType==SQLITE_OPEN_MAIN_DB ){ UnixUnusedFd *pUnused; pUnused = findReusableFd(zName, flags); if( pUnused ){ fd = pUnused->fd; }else{ pUnused = sqlite3_malloc(sizeof(*pUnused)); if( !pUnused ){ return SQLITE_NOMEM; } } p->pUnused = pUnused; }else if( !zName ){ /* If zName is NULL, the upper layer is requesting a temp file. */ assert(isDelete && !isOpenDirectory); rc = getTempname(MAX_PATHNAME+1, zTmpname); if( rc!=SQLITE_OK ){ return rc; } zName = zTmpname; } /* Determine the value of the flags parameter passed to POSIX function ** open(). These must be calculated even if open() is not called, as ** they may be stored as part of the file handle and used by the ** 'conch file' locking functions later on. */ if( isReadonly ) openFlags |= O_RDONLY; if( isReadWrite ) openFlags |= O_RDWR; if( isCreate ) openFlags |= O_CREAT; if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW); openFlags |= (O_LARGEFILE|O_BINARY); if( fd<0 ){ mode_t openMode = (isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS); fd = open(zName, openFlags, openMode); OSTRACE4("OPENX %-3d %s 0%o\n", fd, zName, openFlags); if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){ /* Failed to open the file for read/write access. Try read-only. */ flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); openFlags &= ~(O_RDWR|O_CREAT); flags |= SQLITE_OPEN_READONLY; openFlags |= O_RDONLY; fd = open(zName, openFlags, openMode); } if( fd<0 ){ rc = SQLITE_CANTOPEN; goto open_finished; } } assert( fd>=0 ); if( pOutFlags ){ *pOutFlags = flags; } if( p->pUnused ){ p->pUnused->fd = fd; p->pUnused->flags = flags; } if( isDelete ){ #if OS_VXWORKS zPath = zName; #else unlink(zName); #endif } #if SQLITE_ENABLE_LOCKING_STYLE else{ p->openFlags = openFlags; } #endif if( isOpenDirectory ){ rc = openDirectory(zPath, &dirfd); if( rc!=SQLITE_OK ){ /* It is safe to close fd at this point, because it is guaranteed not ** to be open on a database file. If it were open on a database file, ** it would not be safe to close as this would release any locks held ** on the file by this process. */ assert( eType!=SQLITE_OPEN_MAIN_DB ); close(fd); /* silently leak if fail, already in error */ goto open_finished; } } #ifdef FD_CLOEXEC fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC); #endif noLock = eType!=SQLITE_OPEN_MAIN_DB; #if SQLITE_PREFER_PROXY_LOCKING if( zPath!=NULL && !noLock && pVfs->xOpen ){ char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING"); int useProxy = 0; /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means ** never use proxy, NULL means use proxy for non-local files only. */ if( envforce!=NULL ){ useProxy = atoi(envforce)>0; }else{ struct statfs fsInfo; if( statfs(zPath, &fsInfo) == -1 ){ /* In theory, the close(fd) call is sub-optimal. If the file opened ** with fd is a database file, and there are other connections open ** on that file that are currently holding advisory locks on it, ** then the call to close() will cancel those locks. In practice, ** we're assuming that statfs() doesn't fail very often. At least ** not while other file descriptors opened by the same process on ** the same file are working. */ p->lastErrno = errno; if( dirfd>=0 ){ close(dirfd); /* silently leak if fail, in error */ } close(fd); /* silently leak if fail, in error */ rc = SQLITE_IOERR_ACCESS; goto open_finished; } useProxy = !(fsInfo.f_flags&MNT_LOCAL); } if( useProxy ){ rc = fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete); if( rc==SQLITE_OK ){ rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:"); } goto open_finished; } } #endif rc = fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete); open_finished: if( rc!=SQLITE_OK ){ sqlite3_free(p->pUnused); } return rc; } /* ** Delete the file at zPath. If the dirSync argument is true, fsync() ** the directory after deleting the file. */ static int unixDelete( sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */ |
︙ | ︙ | |||
25549 25550 25551 25552 25553 25554 25555 | ** Create a new VFS file descriptor (stored in memory obtained from ** sqlite3_malloc) and open the file named "path" in the file descriptor. ** ** The caller is responsible not only for closing the file descriptor ** but also for freeing the memory associated with the file descriptor. */ static int proxyCreateUnixFile(const char *path, unixFile **ppFile) { | < < > < < < < < | | < > > > > > > > > > > > > | > | | | | < > | > > > > | 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 | ** Create a new VFS file descriptor (stored in memory obtained from ** sqlite3_malloc) and open the file named "path" in the file descriptor. ** ** The caller is responsible not only for closing the file descriptor ** but also for freeing the memory associated with the file descriptor. */ static int proxyCreateUnixFile(const char *path, unixFile **ppFile) { unixFile *pNew; int flags = SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE; int rc = SQLITE_OK; sqlite3_vfs dummyVfs; pNew = (unixFile *)sqlite3_malloc(sizeof(unixFile)); if( !pNew ){ return SQLITE_NOMEM; } memset(pNew, 0, sizeof(unixFile)); /* Call unixOpen() to open the proxy file. The flags passed to unixOpen() ** suggest that the file being opened is a "main database". This is ** necessary as other file types do not necessarily support locking. It ** is better to use unixOpen() instead of opening the file directly with ** open(), as unixOpen() sets up the various mechanisms required to ** make sure a call to close() does not cause the system to discard ** POSIX locks prematurely. ** ** It is important that the xOpen member of the VFS object passed to ** unixOpen() is NULL. This tells unixOpen() may try to open a proxy-file ** for the proxy-file (creating a potential infinite loop). */ dummyVfs.pAppData = (void*)&autolockIoFinder; dummyVfs.xOpen = 0; rc = unixOpen(&dummyVfs, path, (sqlite3_file *)pNew, flags, &flags); if( rc==SQLITE_OK && (flags&SQLITE_OPEN_READONLY) ){ pNew->pMethod->xClose((sqlite3_file *)pNew); rc = SQLITE_CANTOPEN; } if( rc!=SQLITE_OK ){ sqlite3_free(pNew); pNew = 0; } *ppFile = pNew; return rc; } /* takes the conch by taking a shared lock and read the contents conch, if ** lockPath is non-NULL, the host ID and lock file path must match. A NULL ** lockPath means that the lockPath in the conch file will be used if the ** host IDs match, or a new lock path will be generated automatically |
︙ | ︙ | |||
26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 | #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__)) UNIXVFS("unix", autolockIoFinder ), #else UNIXVFS("unix", posixIoFinder ), #endif UNIXVFS("unix-none", nolockIoFinder ), UNIXVFS("unix-dotfile", dotlockIoFinder ), #if OS_VXWORKS UNIXVFS("unix-namedsem", semIoFinder ), #endif #if SQLITE_ENABLE_LOCKING_STYLE UNIXVFS("unix-posix", posixIoFinder ), #if !OS_VXWORKS UNIXVFS("unix-flock", flockIoFinder ), | > | 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 | #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__)) UNIXVFS("unix", autolockIoFinder ), #else UNIXVFS("unix", posixIoFinder ), #endif UNIXVFS("unix-none", nolockIoFinder ), UNIXVFS("unix-dotfile", dotlockIoFinder ), UNIXVFS("unix-wfl", posixWflIoFinder ), #if OS_VXWORKS UNIXVFS("unix-namedsem", semIoFinder ), #endif #if SQLITE_ENABLE_LOCKING_STYLE UNIXVFS("unix-posix", posixIoFinder ), #if !OS_VXWORKS UNIXVFS("unix-flock", flockIoFinder ), |
︙ | ︙ | |||
26239 26240 26241 26242 26243 26244 26245 | ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code that is specific to windows. | < < | 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 | ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code that is specific to windows. */ #if SQLITE_OS_WIN /* This file is used for windows only */ /* ** A Note About Memory Allocation: ** |
︙ | ︙ | |||
26758 26759 26760 26761 26762 26763 26764 | { static struct tm y; FILETIME uTm, lTm; SYSTEMTIME pTm; sqlite3_int64 t64; t64 = *t; t64 = (t64 + 11644473600)*10000000; | | | | | 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 | { static struct tm y; FILETIME uTm, lTm; SYSTEMTIME pTm; sqlite3_int64 t64; t64 = *t; t64 = (t64 + 11644473600)*10000000; uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF); uTm.dwHighDateTime= (DWORD)(t64 >> 32); FileTimeToLocalFileTime(&uTm,&lTm); FileTimeToSystemTime(&lTm,&pTm); y.tm_year = pTm.wYear - 1900; y.tm_mon = pTm.wMonth - 1; y.tm_wday = pTm.wDayOfWeek; y.tm_mday = pTm.wDay; y.tm_hour = pTm.wHour; y.tm_min = pTm.wMinute; y.tm_sec = pTm.wSecond; return &y; } /* This will never be called, but defined to make the code compile */ #define GetTempPathA(a,b) #define LockFile(a,b,c,d,e) winceLockFile(&a, b, c, d, e) #define UnlockFile(a,b,c,d,e) winceUnlockFile(&a, b, c, d, e) #define LockFileEx(a,b,c,d,e,f) winceLockFileEx(&a, b, c, d, e, f) #define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)] /* ** Acquire a lock on the handle h */ static void winceMutexAcquire(HANDLE h){ DWORD dwErr; do { |
︙ | ︙ | |||
26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 | DWORD dwFileOffsetHigh, DWORD nNumberOfBytesToLockLow, DWORD nNumberOfBytesToLockHigh ){ winFile *pFile = HANDLE_TO_WINFILE(phFile); BOOL bReturn = FALSE; if (!pFile->hMutex) return TRUE; winceMutexAcquire(pFile->hMutex); /* Wanting an exclusive lock? */ | > > > | | | | | | 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 | DWORD dwFileOffsetHigh, DWORD nNumberOfBytesToLockLow, DWORD nNumberOfBytesToLockHigh ){ winFile *pFile = HANDLE_TO_WINFILE(phFile); BOOL bReturn = FALSE; UNUSED_PARAMETER(dwFileOffsetHigh); UNUSED_PARAMETER(nNumberOfBytesToLockHigh); if (!pFile->hMutex) return TRUE; winceMutexAcquire(pFile->hMutex); /* Wanting an exclusive lock? */ if (dwFileOffsetLow == (DWORD)SHARED_FIRST && nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){ if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){ pFile->shared->bExclusive = TRUE; pFile->local.bExclusive = TRUE; bReturn = TRUE; } } /* Want a read-only lock? */ else if (dwFileOffsetLow == (DWORD)SHARED_FIRST && nNumberOfBytesToLockLow == 1){ if (pFile->shared->bExclusive == 0){ pFile->local.nReaders ++; if (pFile->local.nReaders == 1){ pFile->shared->nReaders ++; } bReturn = TRUE; } } /* Want a pending lock? */ else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToLockLow == 1){ /* If no pending lock has been acquired, then acquire it */ if (pFile->shared->bPending == 0) { pFile->shared->bPending = TRUE; pFile->local.bPending = TRUE; bReturn = TRUE; } } /* Want a reserved lock? */ else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToLockLow == 1){ if (pFile->shared->bReserved == 0) { pFile->shared->bReserved = TRUE; pFile->local.bReserved = TRUE; bReturn = TRUE; } } |
︙ | ︙ | |||
26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 | DWORD dwFileOffsetHigh, DWORD nNumberOfBytesToUnlockLow, DWORD nNumberOfBytesToUnlockHigh ){ winFile *pFile = HANDLE_TO_WINFILE(phFile); BOOL bReturn = FALSE; if (!pFile->hMutex) return TRUE; winceMutexAcquire(pFile->hMutex); /* Releasing a reader lock or an exclusive lock */ | > > > | < > > | | | 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 | DWORD dwFileOffsetHigh, DWORD nNumberOfBytesToUnlockLow, DWORD nNumberOfBytesToUnlockHigh ){ winFile *pFile = HANDLE_TO_WINFILE(phFile); BOOL bReturn = FALSE; UNUSED_PARAMETER(dwFileOffsetHigh); UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh); if (!pFile->hMutex) return TRUE; winceMutexAcquire(pFile->hMutex); /* Releasing a reader lock or an exclusive lock */ if (dwFileOffsetLow == (DWORD)SHARED_FIRST){ /* Did we have an exclusive lock? */ if (pFile->local.bExclusive){ assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE); pFile->local.bExclusive = FALSE; pFile->shared->bExclusive = FALSE; bReturn = TRUE; } /* Did we just have a reader lock? */ else if (pFile->local.nReaders){ assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE || nNumberOfBytesToUnlockLow == 1); pFile->local.nReaders --; if (pFile->local.nReaders == 0) { pFile->shared->nReaders --; } bReturn = TRUE; } } /* Releasing a pending lock */ else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){ if (pFile->local.bPending){ pFile->local.bPending = FALSE; pFile->shared->bPending = FALSE; bReturn = TRUE; } } /* Releasing a reserved lock */ else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){ if (pFile->local.bReserved) { pFile->local.bReserved = FALSE; pFile->shared->bReserved = FALSE; bReturn = TRUE; } } |
︙ | ︙ | |||
27035 27036 27037 27038 27039 27040 27041 27042 27043 | HANDLE *phFile, DWORD dwFlags, DWORD dwReserved, DWORD nNumberOfBytesToLockLow, DWORD nNumberOfBytesToLockHigh, LPOVERLAPPED lpOverlapped ){ /* If the caller wants a shared read lock, forward this call ** to winceLockFile */ | > > > | | | 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 | HANDLE *phFile, DWORD dwFlags, DWORD dwReserved, DWORD nNumberOfBytesToLockLow, DWORD nNumberOfBytesToLockHigh, LPOVERLAPPED lpOverlapped ){ UNUSED_PARAMETER(dwReserved); UNUSED_PARAMETER(nNumberOfBytesToLockHigh); /* If the caller wants a shared read lock, forward this call ** to winceLockFile */ if (lpOverlapped->Offset == (DWORD)SHARED_FIRST && dwFlags == 1 && nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){ return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0); } return FALSE; } /* ** End of the special code for wince *****************************************************************************/ |
︙ | ︙ | |||
28041 28042 28043 28044 28045 28046 28047 28048 28049 | ** file. */ static int getSectorSize( sqlite3_vfs *pVfs, const char *zRelative /* UTF-8 file name */ ){ DWORD bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE; char zFullpath[MAX_PATH+1]; int rc; | > > > > > | > | 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 | ** file. */ static int getSectorSize( sqlite3_vfs *pVfs, const char *zRelative /* UTF-8 file name */ ){ DWORD bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE; /* GetDiskFreeSpace is not supported under WINCE */ #if SQLITE_OS_WINCE UNUSED_PARAMETER(pVfs); UNUSED_PARAMETER(zRelative); #else char zFullpath[MAX_PATH+1]; int rc; DWORD dwRet = 0; DWORD dwDummy; /* ** We need to get the full path name of the file ** to get the drive letter to look up the sector ** size. */ rc = winFullPathname(pVfs, zRelative, MAX_PATH, zFullpath); |
︙ | ︙ | |||
28069 28070 28071 28072 28073 28074 28075 | } } dwRet = GetDiskFreeSpaceW((WCHAR*)zConverted, &dwDummy, &bytesPerSector, &dwDummy, &dwDummy); | < < > | 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 | } } dwRet = GetDiskFreeSpaceW((WCHAR*)zConverted, &dwDummy, &bytesPerSector, &dwDummy, &dwDummy); }else{ /* trim path to just drive reference */ CHAR *p = (CHAR *)zConverted; for(;*p;p++){ if( *p == '\\' ){ *p = '\0'; break; } } dwRet = GetDiskFreeSpaceA((CHAR*)zConverted, &dwDummy, &bytesPerSector, &dwDummy, &dwDummy); } free(zConverted); } if( !dwRet ){ bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE; } } #endif return (int) bytesPerSector; } #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. |
︙ | ︙ | |||
28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 | winDlSym, /* xDlSym */ winDlClose, /* xDlClose */ winRandomness, /* xRandomness */ winSleep, /* xSleep */ winCurrentTime, /* xCurrentTime */ winGetLastError /* xGetLastError */ }; sqlite3_vfs_register(&winVfs, 1); return SQLITE_OK; } SQLITE_API int sqlite3_os_end(void){ return SQLITE_OK; } | > | 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 | winDlSym, /* xDlSym */ winDlClose, /* xDlClose */ winRandomness, /* xRandomness */ winSleep, /* xSleep */ winCurrentTime, /* xCurrentTime */ winGetLastError /* xGetLastError */ }; sqlite3_vfs_register(&winVfs, 1); return SQLITE_OK; } SQLITE_API int sqlite3_os_end(void){ return SQLITE_OK; } |
︙ | ︙ | |||
28369 28370 28371 28372 28373 28374 28375 | ** start of a transaction, and is thus usually less than a few thousand, ** but can be as large as 2 billion for a really big database. ** ** @(#) $Id: bitvec.c,v 1.17 2009/07/25 17:33:26 drh Exp $ */ /* Size of the Bitvec structure in bytes. */ | | | 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 | ** start of a transaction, and is thus usually less than a few thousand, ** but can be as large as 2 billion for a really big database. ** ** @(#) $Id: bitvec.c,v 1.17 2009/07/25 17:33:26 drh Exp $ */ /* Size of the Bitvec structure in bytes. */ #define BITVEC_SZ (sizeof(void*)*128) /* 512 on 32bit. 1024 on 64bit */ /* Round the union size down to the nearest pointer boundary, since that's how ** it will be aligned within the Bitvec struct. */ #define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) /* Type of the array "element" for the bitmap representation. ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. |
︙ | ︙ | |||
29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 | } pcache1.isInit = 1; return SQLITE_OK; } /* ** Implementation of the sqlite3_pcache.xShutdown method. */ static void pcache1Shutdown(void *NotUsed){ UNUSED_PARAMETER(NotUsed); assert( pcache1.isInit!=0 ); memset(&pcache1, 0, sizeof(pcache1)); } | > > | 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 | } pcache1.isInit = 1; return SQLITE_OK; } /* ** Implementation of the sqlite3_pcache.xShutdown method. ** Note that the static mutex allocated in xInit does ** not need to be freed. */ static void pcache1Shutdown(void *NotUsed){ UNUSED_PARAMETER(NotUsed); assert( pcache1.isInit!=0 ); memset(&pcache1, 0, sizeof(pcache1)); } |
︙ | ︙ | |||
30554 30555 30556 30557 30558 30559 30560 | ** The pager is used to access a database disk file. It implements ** atomic commit and rollback through the use of a journal file that ** is separate from the database file. The pager also implements file ** locking to prevent two processes from writing the same database ** file simultaneously, or one process from reading the database while ** another is writing. ** | | | 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 | ** The pager is used to access a database disk file. It implements ** atomic commit and rollback through the use of a journal file that ** is separate from the database file. The pager also implements file ** locking to prevent two processes from writing the same database ** file simultaneously, or one process from reading the database while ** another is writing. ** ** @(#) $Id: pager.c,v 1.629 2009/08/10 17:48:57 drh Exp $ */ #ifndef SQLITE_OMIT_DISKIO /* ** Macros for troubleshooting. Normally turned off */ #if 0 |
︙ | ︙ | |||
30649 30650 30651 30652 30653 30654 30655 | if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; } #else # define CODEC1(P,D,N,X,E) /* NO-OP */ # define CODEC2(P,D,N,X,E,O) O=(char*)D #endif /* | | | | 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 | if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; } #else # define CODEC1(P,D,N,X,E) /* NO-OP */ # define CODEC2(P,D,N,X,E,O) O=(char*)D #endif /* ** The maximum allowed sector size. 64KiB. If the xSectorsize() method ** returns a value larger than this, then MAX_SECTOR_SIZE is used instead. ** This could conceivably cause corruption following a power failure on ** such a system. This is currently an undocumented limit. */ #define MAX_SECTOR_SIZE 0x10000 /* ** An instance of the following structure is allocated for each active ** savepoint and statement transaction in the system. All such structures ** are stored in the Pager.aSavepoint[] array, which is allocated and ** resized using sqlite3Realloc(). ** |
︙ | ︙ | |||
31320 31321 31322 31323 31324 31325 31326 | assert( isOpen(pPager->fd) || pPager->noSync ); if( (pPager->noSync) || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) ){ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); }else{ | < | | 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 | assert( isOpen(pPager->fd) || pPager->noSync ); if( (pPager->noSync) || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) ){ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); }else{ memset(zHeader, 0, sizeof(aJournalMagic)+4); } /* The random check-hash initialiser */ sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); /* The initial database size */ put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize); |
︙ | ︙ | |||
38281 38282 38283 38284 38285 38286 38287 | /* Compute the total free space on the page */ pc = get2byte(&data[hdr+1]); nFree = data[hdr+7] + top; while( pc>0 ){ u16 next, size; if( pc<iCellFirst || pc>iCellLast ){ | | | | > | 38954 38955 38956 38957 38958 38959 38960 38961 38962 38963 38964 38965 38966 38967 38968 38969 38970 38971 38972 38973 38974 38975 | /* Compute the total free space on the page */ pc = get2byte(&data[hdr+1]); nFree = data[hdr+7] + top; while( pc>0 ){ u16 next, size; if( pc<iCellFirst || pc>iCellLast ){ /* Start of free block is off the page */ return SQLITE_CORRUPT_BKPT; } next = get2byte(&data[pc]); size = get2byte(&data[pc+2]); if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){ /* Free blocks must be in ascending order. And the last byte of ** the free-block must lie on the database page. */ return SQLITE_CORRUPT_BKPT; } nFree = nFree + size; pc = next; } /* At this point, nFree contains the sum of the offset to the start |
︙ | ︙ | |||
38565 38566 38567 38568 38569 38570 38571 | #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) /* ** If this Btree is a candidate for shared cache, try to find an ** existing BtShared object that we can share with */ if( isMemdb==0 && zFilename && zFilename[0] ){ | | | 39239 39240 39241 39242 39243 39244 39245 39246 39247 39248 39249 39250 39251 39252 39253 | #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) /* ** If this Btree is a candidate for shared cache, try to find an ** existing BtShared object that we can share with */ if( isMemdb==0 && zFilename && zFilename[0] ){ if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ int nFullPathname = pVfs->mxPathname+1; char *zFullPathname = sqlite3Malloc(nFullPathname); sqlite3_mutex *mutexShared; p->sharable = 1; if( !zFullPathname ){ sqlite3_free(p); return SQLITE_NOMEM; |
︙ | ︙ | |||
41217 41218 41219 41220 41221 41222 41223 41224 41225 | nCell = (int)pCur->info.nKey; pCellKey = sqlite3Malloc( nCell ); if( pCellKey==0 ){ rc = SQLITE_NOMEM; goto moveto_finish; } rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); sqlite3_free(pCellKey); | > > > > < | 41891 41892 41893 41894 41895 41896 41897 41898 41899 41900 41901 41902 41903 41904 41905 41906 41907 41908 41909 41910 | nCell = (int)pCur->info.nKey; pCellKey = sqlite3Malloc( nCell ); if( pCellKey==0 ){ rc = SQLITE_NOMEM; goto moveto_finish; } rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); if( rc ){ sqlite3_free(pCellKey); goto moveto_finish; } c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); sqlite3_free(pCellKey); } } if( c==0 ){ if( pPage->intKey && !pPage->leaf ){ lwr = idx; upr = lwr - 1; break; |
︙ | ︙ | |||
43288 43289 43290 43291 43292 43293 43294 | ** If the seekResult parameter is non-zero, then a successful call to ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already ** been performed. seekResult is the search result returned (a negative ** number if pCur points at an entry that is smaller than (pKey, nKey), or ** a positive value if pCur points at an etry that is larger than ** (pKey, nKey)). ** | > > | | | | 43965 43966 43967 43968 43969 43970 43971 43972 43973 43974 43975 43976 43977 43978 43979 43980 43981 43982 43983 43984 43985 43986 43987 43988 43989 43990 43991 43992 43993 43994 | ** If the seekResult parameter is non-zero, then a successful call to ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already ** been performed. seekResult is the search result returned (a negative ** number if pCur points at an entry that is smaller than (pKey, nKey), or ** a positive value if pCur points at an etry that is larger than ** (pKey, nKey)). ** ** If the seekResult parameter is non-zero, then the caller guarantees that ** cursor pCur is pointing at the existing copy of a row that is to be ** overwritten. If the seekResult parameter is 0, then cursor pCur may ** point to any entry or to no entry at all and so this function has to seek ** the cursor before the new key can be inserted. */ SQLITE_PRIVATE int sqlite3BtreeInsert( BtCursor *pCur, /* Insert data into the table of this cursor */ const void *pKey, i64 nKey, /* The key of the new record */ const void *pData, int nData, /* The data of the new record */ int nZero, /* Number of extra 0 bytes to append to data */ int appendBias, /* True if this is likely an append */ int seekResult /* Result of prior MovetoUnpacked() call */ ){ int rc; int loc = seekResult; /* -1: before desired location +1: after */ int szNew; int idx; MemPage *pPage; Btree *p = pCur->pBtree; BtShared *pBt = p->pBt; unsigned char *oldCell; unsigned char *newCell = 0; |
︙ | ︙ | |||
45575 45576 45577 45578 45579 45580 45581 | /* ** If the memory cell contains a string value that must be freed by ** invoking an external callback, free it now. Calling this function ** does not free any Mem.zMalloc buffer. */ SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); | > > > > | > > | 46254 46255 46256 46257 46258 46259 46260 46261 46262 46263 46264 46265 46266 46267 46268 46269 46270 46271 46272 46273 46274 46275 46276 46277 46278 46279 46280 46281 46282 46283 46284 | /* ** If the memory cell contains a string value that must be freed by ** invoking an external callback, free it now. Calling this function ** does not free any Mem.zMalloc buffer. */ SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); testcase( p->flags & MEM_Agg ); testcase( p->flags & MEM_Dyn ); testcase( p->flags & MEM_RowSet ); testcase( p->flags & MEM_Frame ); if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){ if( p->flags&MEM_Agg ){ sqlite3VdbeMemFinalize(p, p->u.pDef); assert( (p->flags & MEM_Agg)==0 ); sqlite3VdbeMemRelease(p); }else if( p->flags&MEM_Dyn && p->xDel ){ assert( (p->flags&MEM_RowSet)==0 ); p->xDel((void *)p->z); p->xDel = 0; }else if( p->flags&MEM_RowSet ){ sqlite3RowSetClear(p->u.pRowSet); }else if( p->flags&MEM_Frame ){ sqlite3VdbeMemSetNull(p); } } } /* ** Release any memory held by the Mem. This may leave the Mem in an ** inconsistent state, for example with (Mem.z==0) and |
︙ | ︙ | |||
45723 45724 45725 45726 45727 45728 45729 | /* Only mark the value as an integer if ** ** (1) the round-trip conversion real->int->real is a no-op, and ** (2) The integer is neither the largest nor the smallest ** possible integer (ticket #3922) ** | | | | > > | > | 46408 46409 46410 46411 46412 46413 46414 46415 46416 46417 46418 46419 46420 46421 46422 46423 46424 46425 46426 46427 46428 46429 | /* Only mark the value as an integer if ** ** (1) the round-trip conversion real->int->real is a no-op, and ** (2) The integer is neither the largest nor the smallest ** possible integer (ticket #3922) ** ** The second and third terms in the following conditional enforces ** the second condition under the assumption that addition overflow causes ** values to wrap around. On x86 hardware, the third term is always ** true and could be omitted. But we leave it in because other ** architectures might behave differently. */ if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64 && ALWAYS(pMem->u.i<LARGEST_INT64) ){ pMem->flags |= MEM_Int; } } /* ** Convert pMem to type integer. Invalidate any prior representations. */ |
︙ | ︙ | |||
45784 45785 45786 45787 45788 45789 45790 45791 45792 45793 45794 45795 45796 45797 | return SQLITE_OK; } /* ** Delete any previous value and set the value stored in *pMem to NULL. */ SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){ if( pMem->flags & MEM_RowSet ){ sqlite3RowSetClear(pMem->u.pRowSet); } MemSetTypeFlag(pMem, MEM_Null); pMem->type = SQLITE_NULL; } | > > > | 46472 46473 46474 46475 46476 46477 46478 46479 46480 46481 46482 46483 46484 46485 46486 46487 46488 | return SQLITE_OK; } /* ** Delete any previous value and set the value stored in *pMem to NULL. */ SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){ if( pMem->flags & MEM_Frame ){ sqlite3VdbeFrameDelete(pMem->u.pFrame); } if( pMem->flags & MEM_RowSet ){ sqlite3RowSetClear(pMem->u.pRowSet); } MemSetTypeFlag(pMem, MEM_Null); pMem->type = SQLITE_NULL; } |
︙ | ︙ | |||
46301 46302 46303 46304 46305 46306 46307 46308 46309 46310 46311 46312 46313 46314 46315 46316 46317 46318 46319 46320 46321 46322 46323 46324 | sqlite3_value *pVal = 0; if( !pExpr ){ *ppVal = 0; return SQLITE_OK; } op = pExpr->op; if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ pVal = sqlite3ValueNew(db); if( pVal==0 ) goto no_mem; if( ExprHasProperty(pExpr, EP_IntValue) ){ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue); }else{ zVal = sqlite3DbStrDup(db, pExpr->u.zToken); if( zVal==0 ) goto no_mem; sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); } if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); }else{ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); } if( enc!=SQLITE_UTF8 ){ | > > > > | 46992 46993 46994 46995 46996 46997 46998 46999 47000 47001 47002 47003 47004 47005 47006 47007 47008 47009 47010 47011 47012 47013 47014 47015 47016 47017 47018 47019 | sqlite3_value *pVal = 0; if( !pExpr ){ *ppVal = 0; return SQLITE_OK; } op = pExpr->op; if( op==TK_REGISTER ){ op = pExpr->op2; } if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ pVal = sqlite3ValueNew(db); if( pVal==0 ) goto no_mem; if( ExprHasProperty(pExpr, EP_IntValue) ){ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue); }else{ zVal = sqlite3DbStrDup(db, pExpr->u.zToken); if( zVal==0 ) goto no_mem; sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT; } if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); }else{ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); } if( enc!=SQLITE_UTF8 ){ |
︙ | ︙ | |||
46633 46634 46635 46636 46637 46638 46639 46640 46641 46642 46643 46644 46645 46646 46647 46648 46649 | assert( p->magic==VDBE_MAGIC_INIT ); assert( j>=0 && j<p->nLabel ); if( p->aLabel ){ p->aLabel[j] = p->nOp; } } /* ** Loop through the program looking for P2 values that are negative ** on jump instructions. Each such value is a label. Resolve the ** label by setting the P2 value to its correct non-zero value. ** ** This routine is called once after all opcodes have been inserted. ** ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < < < < < < < < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < > > > > > > > > > > > > > > > > > > > > > > > > | 47328 47329 47330 47331 47332 47333 47334 47335 47336 47337 47338 47339 47340 47341 47342 47343 47344 47345 47346 47347 47348 47349 47350 47351 47352 47353 47354 47355 47356 47357 47358 47359 47360 47361 47362 47363 47364 47365 47366 47367 47368 47369 47370 47371 47372 47373 47374 47375 47376 47377 47378 47379 47380 47381 47382 47383 47384 47385 47386 47387 47388 47389 47390 47391 47392 47393 47394 47395 47396 47397 47398 47399 47400 47401 47402 47403 47404 47405 47406 47407 47408 47409 47410 47411 47412 47413 47414 47415 47416 47417 47418 47419 47420 47421 47422 47423 47424 47425 47426 47427 47428 47429 47430 47431 47432 47433 47434 47435 47436 47437 47438 47439 47440 47441 47442 47443 47444 47445 47446 47447 47448 47449 47450 47451 47452 47453 47454 47455 47456 47457 47458 47459 47460 47461 47462 47463 47464 47465 47466 47467 47468 47469 47470 47471 47472 47473 47474 47475 47476 47477 47478 47479 47480 47481 47482 47483 47484 47485 47486 47487 47488 47489 47490 47491 47492 47493 47494 47495 47496 47497 47498 47499 47500 47501 47502 47503 47504 47505 47506 47507 47508 47509 47510 47511 47512 47513 47514 47515 47516 47517 47518 47519 47520 47521 47522 47523 47524 47525 47526 47527 47528 47529 47530 47531 47532 47533 47534 47535 47536 47537 47538 | assert( p->magic==VDBE_MAGIC_INIT ); assert( j>=0 && j<p->nLabel ); if( p->aLabel ){ p->aLabel[j] = p->nOp; } } #ifdef SQLITE_DEBUG /* ** The following type and function are used to iterate through all opcodes ** in a Vdbe main program and each of the sub-programs (triggers) it may ** invoke directly or indirectly. It should be used as follows: ** ** Op *pOp; ** VdbeOpIter sIter; ** ** memset(&sIter, 0, sizeof(sIter)); ** sIter.v = v; // v is of type Vdbe* ** while( (pOp = opIterNext(&sIter)) ){ ** // Do something with pOp ** } ** sqlite3DbFree(v->db, sIter.apSub); ** */ typedef struct VdbeOpIter VdbeOpIter; struct VdbeOpIter { Vdbe *v; /* Vdbe to iterate through the opcodes of */ SubProgram **apSub; /* Array of subprograms */ int nSub; /* Number of entries in apSub */ int iAddr; /* Address of next instruction to return */ int iSub; /* 0 = main program, 1 = first sub-program etc. */ }; static Op *opIterNext(VdbeOpIter *p){ Vdbe *v = p->v; Op *pRet = 0; Op *aOp; int nOp; if( p->iSub<=p->nSub ){ if( p->iSub==0 ){ aOp = v->aOp; nOp = v->nOp; }else{ aOp = p->apSub[p->iSub-1]->aOp; nOp = p->apSub[p->iSub-1]->nOp; } assert( p->iAddr<nOp ); pRet = &aOp[p->iAddr]; p->iAddr++; if( p->iAddr==nOp ){ p->iSub++; p->iAddr = 0; } if( pRet->p4type==P4_SUBPROGRAM ){ int nByte = (p->nSub+1)*sizeof(SubProgram*); int j; for(j=0; j<p->nSub; j++){ if( p->apSub[j]==pRet->p4.pProgram ) break; } if( j==p->nSub ){ p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); if( !p->apSub ){ pRet = 0; }else{ p->apSub[p->nSub++] = pRet->p4.pProgram; } } } } return pRet; } /* ** Check if the program stored in the VM associated with pParse may ** throw an ABORT exception (causing the statement, but not transaction ** to be rolled back). This condition is true if the main program or any ** sub-programs contains any of the following: ** ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_Destroy ** * OP_VUpdate ** * OP_VRename ** ** Then check that the value of Parse.mayAbort is true if an ** ABORT may be thrown, or false otherwise. Return true if it does ** match, or false otherwise. This function is intended to be used as ** part of an assert statement in the compiler. Similar to: ** ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); */ SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ int hasAbort = 0; Op *pOp; VdbeOpIter sIter; memset(&sIter, 0, sizeof(sIter)); sIter.v = v; while( (pOp = opIterNext(&sIter))!=0 ){ int opcode = pOp->opcode; if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename || ((opcode==OP_Halt || opcode==OP_HaltIfNull) && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) ){ hasAbort = 1; break; } } sqlite3DbFree(v->db, sIter.apSub); /* Return true if hasAbort==mayAbort. Or if a malloc failure occured. ** If malloc failed, then the while() loop above may not have iterated ** through all opcodes and hasAbort may be set incorrectly. Return ** true for this case to prevent the assert() in the callers frame ** from failing. */ return ( v->db->mallocFailed || hasAbort==mayAbort ); } #endif /* ** Loop through the program looking for P2 values that are negative ** on jump instructions. Each such value is a label. Resolve the ** label by setting the P2 value to its correct non-zero value. ** ** This routine is called once after all opcodes have been inserted. ** ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. */ static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ int i; int nMaxArgs = *pMaxFuncArgs; Op *pOp; int *aLabel = p->aLabel; p->readOnly = 1; for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ u8 opcode = pOp->opcode; if( opcode==OP_Function || opcode==OP_AggStep ){ if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( opcode==OP_VUpdate ){ if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; #endif }else if( opcode==OP_Transaction && pOp->p2!=0 ){ p->readOnly = 0; #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( opcode==OP_VFilter ){ int n; assert( p->nOp - i >= 3 ); assert( pOp[-1].opcode==OP_Integer ); n = pOp[-1].p1; if( n>nMaxArgs ) nMaxArgs = n; #endif } if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){ assert( -1-pOp->p2<p->nLabel ); pOp->p2 = aLabel[-1-pOp->p2]; } } sqlite3DbFree(p->db, p->aLabel); p->aLabel = 0; *pMaxFuncArgs = nMaxArgs; } /* ** Return the address of the next instruction to be inserted. */ SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){ assert( p->magic==VDBE_MAGIC_INIT ); return p->nOp; } /* ** This function returns a pointer to the array of opcodes associated with ** the Vdbe passed as the first argument. It is the callers responsibility ** to arrange for the returned array to be eventually freed using the ** vdbeFreeOpArray() function. ** ** Before returning, *pnOp is set to the number of entries in the returned ** array. Also, *pnMaxArg is set to the larger of its current value and ** the number of entries in the Vdbe.apArg[] array required to execute the ** returned program. */ SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ VdbeOp *aOp = p->aOp; assert( aOp && !p->db->mallocFailed ); /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ assert( p->aMutex.nMutex==0 ); resolveP2Values(p, pnMaxArg); *pnOp = p->nOp; p->aOp = 0; return aOp; } /* ** Add a whole list of operations to the operation stack. Return the ** address of the first operation added. */ SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ int addr; |
︙ | ︙ | |||
46875 46876 46877 46878 46879 46880 46881 46882 46883 46884 46885 46886 46887 46888 | sqlite3ValueFree((sqlite3_value*)p4); break; } case P4_VTAB : { sqlite3VtabUnlock((VTable *)p4); break; } } } } /* ** Change N opcodes starting at addr to No-ops. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 47669 47670 47671 47672 47673 47674 47675 47676 47677 47678 47679 47680 47681 47682 47683 47684 47685 47686 47687 47688 47689 47690 47691 47692 47693 47694 47695 47696 47697 47698 47699 47700 47701 47702 47703 47704 47705 47706 47707 47708 47709 47710 47711 47712 47713 47714 47715 47716 47717 47718 47719 47720 47721 47722 47723 47724 47725 47726 47727 47728 47729 47730 47731 47732 47733 | sqlite3ValueFree((sqlite3_value*)p4); break; } case P4_VTAB : { sqlite3VtabUnlock((VTable *)p4); break; } case P4_SUBPROGRAM : { sqlite3VdbeProgramDelete(db, (SubProgram *)p4, 1); break; } } } } /* ** Free the space allocated for aOp and any p4 values allocated for the ** opcodes contained within. If aOp is not NULL it is assumed to contain ** nOp entries. */ static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ if( aOp ){ Op *pOp; for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ freeP4(db, pOp->p4type, pOp->p4.p); #ifdef SQLITE_DEBUG sqlite3DbFree(db, pOp->zComment); #endif } } sqlite3DbFree(db, aOp); } /* ** Decrement the ref-count on the SubProgram structure passed as the ** second argument. If the ref-count reaches zero, free the structure. ** ** The array of VDBE opcodes stored as SubProgram.aOp is freed if ** either the ref-count reaches zero or parameter freeop is non-zero. ** ** Since the array of opcodes pointed to by SubProgram.aOp may directly ** or indirectly contain a reference to the SubProgram structure itself. ** By passing a non-zero freeop parameter, the caller may ensure that all ** SubProgram structures and their aOp arrays are freed, even when there ** are such circular references. */ SQLITE_PRIVATE void sqlite3VdbeProgramDelete(sqlite3 *db, SubProgram *p, int freeop){ if( p ){ assert( p->nRef>0 ); if( freeop || p->nRef==1 ){ Op *aOp = p->aOp; p->aOp = 0; vdbeFreeOpArray(db, aOp, p->nOp); p->nOp = 0; } p->nRef--; if( p->nRef==0 ){ sqlite3DbFree(db, p); } } } /* ** Change N opcodes starting at addr to No-ops. |
︙ | ︙ | |||
46997 46998 46999 47000 47001 47002 47003 47004 47005 47006 47007 47008 47009 47010 47011 47012 47013 47014 47015 47016 47017 47018 47019 47020 47021 47022 | ** Change the comment on the the most recently coded instruction. Or ** insert a No-op and add the comment to that new instruction. This ** makes the code easier to read during debugging. None of this happens ** in a production build. */ SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ va_list ap; assert( p->nOp>0 || p->aOp==0 ); assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); if( p->nOp ){ char **pz = &p->aOp[p->nOp-1].zComment; va_start(ap, zFormat); sqlite3DbFree(p->db, *pz); *pz = sqlite3VMPrintf(p->db, zFormat, ap); va_end(ap); } } SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ va_list ap; sqlite3VdbeAddOp0(p, OP_Noop); assert( p->nOp>0 || p->aOp==0 ); assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); if( p->nOp ){ char **pz = &p->aOp[p->nOp-1].zComment; va_start(ap, zFormat); sqlite3DbFree(p->db, *pz); | > > | 47842 47843 47844 47845 47846 47847 47848 47849 47850 47851 47852 47853 47854 47855 47856 47857 47858 47859 47860 47861 47862 47863 47864 47865 47866 47867 47868 47869 | ** Change the comment on the the most recently coded instruction. Or ** insert a No-op and add the comment to that new instruction. This ** makes the code easier to read during debugging. None of this happens ** in a production build. */ SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ va_list ap; if( !p ) return; assert( p->nOp>0 || p->aOp==0 ); assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); if( p->nOp ){ char **pz = &p->aOp[p->nOp-1].zComment; va_start(ap, zFormat); sqlite3DbFree(p->db, *pz); *pz = sqlite3VMPrintf(p->db, zFormat, ap); va_end(ap); } } SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ va_list ap; if( !p ) return; sqlite3VdbeAddOp0(p, OP_Noop); assert( p->nOp>0 || p->aOp==0 ); assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); if( p->nOp ){ char **pz = &p->aOp[p->nOp-1].zComment; va_start(ap, zFormat); sqlite3DbFree(p->db, *pz); |
︙ | ︙ | |||
47128 47129 47130 47131 47132 47133 47134 47135 47136 47137 47138 47139 47140 47141 47142 47143 47144 47145 47146 47147 47148 47149 47150 47151 47152 47153 47154 47155 47156 47157 47158 47159 47160 47161 47162 47163 | assert( (pMem->flags & MEM_Null)==0 ); if( pMem->flags & MEM_Str ){ zP4 = pMem->z; }else if( pMem->flags & MEM_Int ){ sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); }else if( pMem->flags & MEM_Real ){ sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); } break; } #ifndef SQLITE_OMIT_VIRTUALTABLE case P4_VTAB: { sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); break; } #endif case P4_INTARRAY: { sqlite3_snprintf(nTemp, zTemp, "intarray"); break; } default: { zP4 = pOp->p4.z; if( zP4==0 ){ zP4 = zTemp; zTemp[0] = 0; } } } assert( zP4!=0 ); return zP4; } #endif /* ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. | > > > > > > > < | 47975 47976 47977 47978 47979 47980 47981 47982 47983 47984 47985 47986 47987 47988 47989 47990 47991 47992 47993 47994 47995 47996 47997 47998 47999 48000 48001 48002 48003 48004 48005 48006 48007 48008 48009 48010 48011 48012 48013 48014 48015 48016 48017 48018 48019 48020 48021 48022 48023 48024 | assert( (pMem->flags & MEM_Null)==0 ); if( pMem->flags & MEM_Str ){ zP4 = pMem->z; }else if( pMem->flags & MEM_Int ){ sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); }else if( pMem->flags & MEM_Real ){ sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); }else{ assert( pMem->flags & MEM_Blob ); zP4 = "(blob)"; } break; } #ifndef SQLITE_OMIT_VIRTUALTABLE case P4_VTAB: { sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); break; } #endif case P4_INTARRAY: { sqlite3_snprintf(nTemp, zTemp, "intarray"); break; } case P4_SUBPROGRAM: { sqlite3_snprintf(nTemp, zTemp, "program"); break; } default: { zP4 = pOp->p4.z; if( zP4==0 ){ zP4 = zTemp; zTemp[0] = 0; } } } assert( zP4!=0 ); return zP4; } #endif /* ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. */ SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){ int mask; assert( i>=0 && i<p->db->nDb && i<sizeof(u32)*8 ); assert( i<(int)sizeof(p->btreeMask)*8 ); mask = ((u32)1)<<i; if( (p->btreeMask & mask)==0 ){ |
︙ | ︙ | |||
47216 47217 47218 47219 47220 47221 47222 | ** callgrind, this causes a certain test case to hit the CPU 4.7 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if ** sqlite3MemRelease() were called from here. With -O2, this jumps ** to 6.6 percent. The test case is inserting 1000 rows into a table ** with no indexes using a single prepared INSERT statement, bind() ** and reset(). Inserts are grouped into a transaction. */ | | > > > > > > > > > > > > > > > > | 48069 48070 48071 48072 48073 48074 48075 48076 48077 48078 48079 48080 48081 48082 48083 48084 48085 48086 48087 48088 48089 48090 48091 48092 48093 48094 48095 48096 48097 48098 48099 48100 48101 48102 48103 48104 48105 48106 48107 48108 48109 48110 | ** callgrind, this causes a certain test case to hit the CPU 4.7 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if ** sqlite3MemRelease() were called from here. With -O2, this jumps ** to 6.6 percent. The test case is inserting 1000 rows into a table ** with no indexes using a single prepared INSERT statement, bind() ** and reset(). Inserts are grouped into a transaction. */ if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ sqlite3VdbeMemRelease(p); }else if( p->zMalloc ){ sqlite3DbFree(db, p->zMalloc); p->zMalloc = 0; } p->flags = MEM_Null; } db->mallocFailed = malloc_failed; } } /* ** Delete a VdbeFrame object and its contents. VdbeFrame objects are ** allocated by the OP_Program opcode in sqlite3VdbeExec(). */ SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame *p){ int i; Mem *aMem = VdbeFrameMem(p); VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; for(i=0; i<p->nChildCsr; i++){ sqlite3VdbeFreeCursor(p->v, apCsr[i]); } releaseMemArray(aMem, p->nChildMem); sqlite3DbFree(p->v->db, p); } #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p){ int ii; int nFree = 0; assert( sqlite3_mutex_held(p->db->mutex) ); for(ii=1; ii<=p->nMem; ii++){ |
︙ | ︙ | |||
47265 47266 47267 47268 47269 47270 47271 47272 47273 47274 47275 47276 47277 47278 47279 47280 47281 47282 47283 47284 47285 | ** p->explain==2, only OP_Explain instructions are listed and these ** are shown in a different format. p->explain==2 is used to implement ** EXPLAIN QUERY PLAN. */ SQLITE_PRIVATE int sqlite3VdbeList( Vdbe *p /* The VDBE */ ){ sqlite3 *db = p->db; int i; int rc = SQLITE_OK; Mem *pMem = p->pResultSet = &p->aMem[1]; assert( p->explain ); assert( p->magic==VDBE_MAGIC_RUN ); assert( db->magic==SQLITE_MAGIC_BUSY ); assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); /* Even though this opcode does not use dynamic strings for ** the result, result columns may become dynamic if the user calls ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. */ | > > > > | > > > > > > > > > > > > > > | | > > | > > > > > > > > > > > > > > > > > > > > > > | 48134 48135 48136 48137 48138 48139 48140 48141 48142 48143 48144 48145 48146 48147 48148 48149 48150 48151 48152 48153 48154 48155 48156 48157 48158 48159 48160 48161 48162 48163 48164 48165 48166 48167 48168 48169 48170 48171 48172 48173 48174 48175 48176 48177 48178 48179 48180 48181 48182 48183 48184 48185 48186 48187 48188 48189 48190 48191 48192 48193 48194 48195 48196 48197 48198 48199 48200 48201 48202 48203 48204 48205 48206 48207 48208 48209 48210 48211 48212 48213 48214 48215 48216 48217 48218 48219 48220 48221 48222 48223 48224 48225 48226 48227 48228 48229 48230 48231 48232 48233 48234 48235 48236 48237 48238 | ** p->explain==2, only OP_Explain instructions are listed and these ** are shown in a different format. p->explain==2 is used to implement ** EXPLAIN QUERY PLAN. */ SQLITE_PRIVATE int sqlite3VdbeList( Vdbe *p /* The VDBE */ ){ int nRow; /* Total number of rows to return */ int nSub = 0; /* Number of sub-vdbes seen so far */ SubProgram **apSub = 0; /* Array of sub-vdbes */ Mem *pSub = 0; sqlite3 *db = p->db; int i; int rc = SQLITE_OK; Mem *pMem = p->pResultSet = &p->aMem[1]; assert( p->explain ); assert( p->magic==VDBE_MAGIC_RUN ); assert( db->magic==SQLITE_MAGIC_BUSY ); assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); /* Even though this opcode does not use dynamic strings for ** the result, result columns may become dynamic if the user calls ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. */ releaseMemArray(pMem, 8); if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ db->mallocFailed = 1; return SQLITE_ERROR; } /* Figure out total number of rows that will be returned by this ** EXPLAIN program. */ nRow = p->nOp; if( p->explain==1 ){ pSub = &p->aMem[9]; if( pSub->flags&MEM_Blob ){ nSub = pSub->n/sizeof(Vdbe*); apSub = (SubProgram **)pSub->z; } for(i=0; i<nSub; i++){ nRow += apSub[i]->nOp; } } do{ i = p->pc++; }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); if( i>=nRow ){ p->rc = SQLITE_OK; rc = SQLITE_DONE; }else if( db->u1.isInterrupted ){ p->rc = SQLITE_INTERRUPT; rc = SQLITE_ERROR; sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); }else{ char *z; Op *pOp; if( i<p->nOp ){ pOp = &p->aOp[i]; }else{ int j; i -= p->nOp; for(j=0; i>=apSub[j]->nOp; j++){ i -= apSub[j]->nOp; } pOp = &apSub[j]->aOp[i]; } if( p->explain==1 ){ pMem->flags = MEM_Int; pMem->type = SQLITE_INTEGER; pMem->u.i = i; /* Program counter */ pMem++; pMem->flags = MEM_Static|MEM_Str|MEM_Term; pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ assert( pMem->z!=0 ); pMem->n = sqlite3Strlen30(pMem->z); pMem->type = SQLITE_TEXT; pMem->enc = SQLITE_UTF8; pMem++; if( pOp->p4type==P4_SUBPROGRAM ){ int nByte = (nSub+1)*sizeof(SubProgram*); int j; for(j=0; j<nSub; j++){ if( apSub[j]==pOp->p4.pProgram ) break; } if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){ apSub = (SubProgram **)pSub->z; apSub[nSub++] = pOp->p4.pProgram; pSub->flags |= MEM_Blob; pSub->n = nSub*sizeof(SubProgram*); } } } pMem->flags = MEM_Int; pMem->u.i = pOp->p1; /* P1 */ pMem->type = SQLITE_INTEGER; pMem++; |
︙ | ︙ | |||
47488 47489 47490 47491 47492 47493 47494 | ** is passed -1 and nMem, nCursor and isExplain are all passed zero. */ SQLITE_PRIVATE void sqlite3VdbeMakeReady( Vdbe *p, /* The VDBE */ int nVar, /* Number of '?' see in the SQL statement */ int nMem, /* Number of memory cells to allocate */ int nCursor, /* Number of cursors to allocate */ | > | > | 48399 48400 48401 48402 48403 48404 48405 48406 48407 48408 48409 48410 48411 48412 48413 48414 48415 | ** is passed -1 and nMem, nCursor and isExplain are all passed zero. */ SQLITE_PRIVATE void sqlite3VdbeMakeReady( Vdbe *p, /* The VDBE */ int nVar, /* Number of '?' see in the SQL statement */ int nMem, /* Number of memory cells to allocate */ int nCursor, /* Number of cursors to allocate */ int nArg, /* Maximum number of args in SubPrograms */ int isExplain, /* True if the EXPLAIN keywords is present */ int usesStmtJournal /* True to set Vdbe.usesStmtJournal */ ){ int n; sqlite3 *db = p->db; assert( p!=0 ); assert( p->magic==VDBE_MAGIC_INIT ); |
︙ | ︙ | |||
47523 47524 47525 47526 47527 47528 47529 | ** first time this function is called for a given VDBE, not when it is ** being called from sqlite3_reset() to reset the virtual machine. */ if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){ u8 *zCsr = (u8 *)&p->aOp[p->nOp]; u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc]; int nByte; | < > | 48436 48437 48438 48439 48440 48441 48442 48443 48444 48445 48446 48447 48448 48449 48450 48451 | ** first time this function is called for a given VDBE, not when it is ** being called from sqlite3_reset() to reset the virtual machine. */ if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){ u8 *zCsr = (u8 *)&p->aOp[p->nOp]; u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc]; int nByte; resolveP2Values(p, &nArg); p->usesStmtJournal = (u8)usesStmtJournal; if( isExplain && nMem<10 ){ nMem = 10; } memset(zCsr, 0, zEnd-zCsr); zCsr += (zCsr - (u8*)0)&7; assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); |
︙ | ︙ | |||
47617 47618 47619 47620 47621 47622 47623 | p->inVtabMethod = 1; (void)sqlite3SafetyOff(p->db); pModule->xClose(pVtabCursor); (void)sqlite3SafetyOn(p->db); p->inVtabMethod = 0; } #endif | < < | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > | | | | | | > > > > < < < < < < | < < > > > > > | | < | < < < | 48530 48531 48532 48533 48534 48535 48536 48537 48538 48539 48540 48541 48542 48543 48544 48545 48546 48547 48548 48549 48550 48551 48552 48553 48554 48555 48556 48557 48558 48559 48560 48561 48562 48563 48564 48565 48566 48567 48568 48569 48570 48571 48572 48573 48574 48575 48576 48577 48578 48579 48580 48581 48582 48583 48584 48585 48586 48587 48588 48589 48590 48591 48592 48593 48594 48595 48596 48597 48598 48599 48600 48601 48602 48603 48604 48605 48606 48607 48608 48609 48610 48611 48612 48613 | p->inVtabMethod = 1; (void)sqlite3SafetyOff(p->db); pModule->xClose(pVtabCursor); (void)sqlite3SafetyOn(p->db); p->inVtabMethod = 0; } #endif } /* ** Copy the values stored in the VdbeFrame structure to its Vdbe. This ** is used, for example, when a trigger sub-program is halted to restore ** control to the main program. */ SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ Vdbe *v = pFrame->v; v->aOp = pFrame->aOp; v->nOp = pFrame->nOp; v->aMem = pFrame->aMem; v->nMem = pFrame->nMem; v->apCsr = pFrame->apCsr; v->nCursor = pFrame->nCursor; v->db->lastRowid = pFrame->lastRowid; v->nChange = pFrame->nChange; return pFrame->pc; } /* ** Close all cursors. ** ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory ** cell array. This is necessary as the memory cell array may contain ** pointers to VdbeFrame objects, which may in turn contain pointers to ** open cursors. */ static void closeAllCursors(Vdbe *p){ if( p->pFrame ){ VdbeFrame *pFrame = p->pFrame; for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); sqlite3VdbeFrameRestore(pFrame); } p->pFrame = 0; p->nFrame = 0; if( p->apCsr ){ int i; for(i=0; i<p->nCursor; i++){ VdbeCursor *pC = p->apCsr[i]; if( pC ){ sqlite3VdbeFreeCursor(p, pC); p->apCsr[i] = 0; } } } if( p->aMem ){ releaseMemArray(&p->aMem[1], p->nMem); } } /* ** Clean up the VM after execution. ** ** This routine will automatically close any cursors, lists, and/or ** sorters that were left open. It also deletes the values of ** variables in the aVar[] array. */ static void Cleanup(Vdbe *p){ sqlite3 *db = p->db; #ifdef SQLITE_DEBUG /* Execute assert() statements to ensure that the Vdbe.apCsr[] and ** Vdbe.aMem[] arrays have already been cleaned up. */ int i; for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 ); for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null ); #endif sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; p->pResultSet = 0; } /* ** Set the number of result columns that will be returned by this SQL |
︙ | ︙ | |||
48386 48387 48388 48389 48390 48391 48392 | } } /* ** Delete an entire VDBE. */ SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){ | < < < < < < < < < < < > > < | 49324 49325 49326 49327 49328 49329 49330 49331 49332 49333 49334 49335 49336 49337 49338 49339 49340 49341 49342 49343 49344 49345 49346 49347 49348 49349 49350 49351 49352 49353 49354 49355 49356 49357 | } } /* ** Delete an entire VDBE. */ SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){ sqlite3 *db; if( NEVER(p==0) ) return; db = p->db; if( p->pPrev ){ p->pPrev->pNext = p->pNext; }else{ assert( db->pVdbe==p ); db->pVdbe = p->pNext; } if( p->pNext ){ p->pNext->pPrev = p->pPrev; } releaseMemArray(p->aVar, p->nVar); releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); vdbeFreeOpArray(db, p->aOp, p->nOp); sqlite3DbFree(db, p->aLabel); sqlite3DbFree(db, p->aColName); sqlite3DbFree(db, p->zSql); p->magic = VDBE_MAGIC_DEAD; sqlite3DbFree(db, p->pFree); sqlite3DbFree(db, p); } /* ** Make sure the cursor p is ready to read or write the row to which it ** was last positioned. Return an error code if an OOM fault or I/O error |
︙ | ︙ | |||
48994 48995 48996 48997 48998 48999 49000 49001 49002 49003 49004 49005 49006 49007 49008 49009 49010 49011 49012 | SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ i64 nCellKey = 0; int rc; u32 szHdr; /* Size of the header */ u32 typeRowid; /* Serial type of the rowid */ u32 lenRowid; /* Size of the rowid */ Mem m, v; /* Get the size of the index entry. Only indices entries of less ** than 2GiB are support - anything large must be database corruption. ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so ** this code can safely assume that nCellKey is 32-bits */ assert( sqlite3BtreeCursorIsValid(pCur) ); rc = sqlite3BtreeKeySize(pCur, &nCellKey); assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); /* Read in the complete content of the index entry */ | > > | < < | 49922 49923 49924 49925 49926 49927 49928 49929 49930 49931 49932 49933 49934 49935 49936 49937 49938 49939 49940 49941 49942 49943 49944 49945 49946 49947 49948 49949 49950 | SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ i64 nCellKey = 0; int rc; u32 szHdr; /* Size of the header */ u32 typeRowid; /* Serial type of the rowid */ u32 lenRowid; /* Size of the rowid */ Mem m, v; UNUSED_PARAMETER(db); /* Get the size of the index entry. Only indices entries of less ** than 2GiB are support - anything large must be database corruption. ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so ** this code can safely assume that nCellKey is 32-bits */ assert( sqlite3BtreeCursorIsValid(pCur) ); rc = sqlite3BtreeKeySize(pCur, &nCellKey); assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); /* Read in the complete content of the index entry */ memset(&m, 0, sizeof(m)); rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m); if( rc ){ return rc; } /* The index entry must begin with a header size */ (void)getVarint32((u8*)m.z, szHdr); |
︙ | ︙ | |||
49086 49087 49088 49089 49090 49091 49092 | assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ /* nCellKey will always be between 0 and 0xffffffff because of the say ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ *res = 0; return SQLITE_CORRUPT; } | | < < | 50014 50015 50016 50017 50018 50019 50020 50021 50022 50023 50024 50025 50026 50027 50028 | assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ /* nCellKey will always be between 0 and 0xffffffff because of the say ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ *res = 0; return SQLITE_CORRUPT; } memset(&m, 0, sizeof(m)); rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m); if( rc ){ return rc; } assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID ); *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); sqlite3VdbeMemRelease(&m); |
︙ | ︙ | |||
49219 49220 49221 49222 49223 49224 49225 | int rc; if( pStmt==0 ){ rc = SQLITE_OK; }else{ Vdbe *v = (Vdbe*)pStmt; sqlite3_mutex_enter(v->db->mutex); rc = sqlite3VdbeReset(v); | | | 50145 50146 50147 50148 50149 50150 50151 50152 50153 50154 50155 50156 50157 50158 50159 | int rc; if( pStmt==0 ){ rc = SQLITE_OK; }else{ Vdbe *v = (Vdbe*)pStmt; sqlite3_mutex_enter(v->db->mutex); rc = sqlite3VdbeReset(v); sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0); assert( (rc & (v->db->errMask))==rc ); rc = sqlite3ApiExit(v->db, rc); sqlite3_mutex_leave(v->db->mutex); } return rc; } |
︙ | ︙ | |||
50538 50539 50540 50541 50542 50543 50544 | ** if we run out of memory. */ static VdbeCursor *allocateCursor( Vdbe *p, /* The virtual machine */ int iCur, /* Index of the new VdbeCursor */ int nField, /* Number of fields in the table or index */ int iDb, /* When database the cursor belongs to, or -1 */ | | | 51464 51465 51466 51467 51468 51469 51470 51471 51472 51473 51474 51475 51476 51477 51478 | ** if we run out of memory. */ static VdbeCursor *allocateCursor( Vdbe *p, /* The virtual machine */ int iCur, /* Index of the new VdbeCursor */ int nField, /* Number of fields in the table or index */ int iDb, /* When database the cursor belongs to, or -1 */ int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ ){ /* Find the memory cell that will be used to store the blob of memory ** required for this VdbeCursor structure. It is convenient to use a ** vdbe memory cell to manage the memory allocation required for a ** VdbeCursor structure for the following reasons: ** ** * Sometimes cursor numbers are used for a couple of different |
︙ | ︙ | |||
51099 51100 51101 51102 51103 51104 51105 51106 51107 51108 51109 51110 51111 51112 | Mem sMem; /* For storing the record being decoded */ u8 *zIdx; /* Index into header */ u8 *zEndHdr; /* Pointer to first byte after the header */ u32 offset; /* Offset into the data */ u64 offset64; /* 64-bit offset. 64 bits needed to catch overflow */ int szHdr; /* Size of the header size field at start of record */ int avail; /* Number of bytes of available data */ } am; struct OP_Affinity_stack_vars { char *zAffinity; /* The affinity to be applied */ Mem *pData0; /* First register to which to apply affinity */ Mem *pLast; /* Last register to which to apply affinity */ Mem *pRec; /* Current register */ } an; | > | 52025 52026 52027 52028 52029 52030 52031 52032 52033 52034 52035 52036 52037 52038 52039 | Mem sMem; /* For storing the record being decoded */ u8 *zIdx; /* Index into header */ u8 *zEndHdr; /* Pointer to first byte after the header */ u32 offset; /* Offset into the data */ u64 offset64; /* 64-bit offset. 64 bits needed to catch overflow */ int szHdr; /* Size of the header size field at start of record */ int avail; /* Number of bytes of available data */ Mem *pReg; /* PseudoTable input register */ } am; struct OP_Affinity_stack_vars { char *zAffinity; /* The affinity to be applied */ Mem *pData0; /* First register to which to apply affinity */ Mem *pLast; /* Last register to which to apply affinity */ Mem *pRec; /* Current register */ } an; |
︙ | ︙ | |||
51127 51128 51129 51130 51131 51132 51133 | int i; /* Space used in zNewRecord[] */ int len; /* Length of a field */ } ao; struct OP_Count_stack_vars { i64 nEntry; BtCursor *pCrsr; } ap; | < < < | | | | | | | | | | | | | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > > > > > > > | < > | | | > | 52054 52055 52056 52057 52058 52059 52060 52061 52062 52063 52064 52065 52066 52067 52068 52069 52070 52071 52072 52073 52074 52075 52076 52077 52078 52079 52080 52081 52082 52083 52084 52085 52086 52087 52088 52089 52090 52091 52092 52093 52094 52095 52096 52097 52098 52099 52100 52101 52102 52103 52104 52105 52106 52107 52108 52109 52110 52111 52112 52113 52114 52115 52116 52117 52118 52119 52120 52121 52122 52123 52124 52125 52126 52127 52128 52129 52130 52131 52132 52133 52134 52135 52136 52137 52138 52139 52140 52141 52142 52143 52144 52145 52146 52147 52148 52149 52150 52151 52152 52153 52154 52155 52156 52157 52158 52159 52160 52161 52162 52163 52164 52165 52166 52167 52168 52169 52170 52171 52172 52173 52174 52175 52176 52177 52178 52179 52180 52181 52182 52183 52184 52185 52186 52187 52188 52189 52190 52191 52192 52193 52194 52195 52196 52197 52198 52199 52200 52201 52202 52203 52204 52205 52206 52207 52208 52209 52210 52211 52212 52213 52214 52215 52216 52217 52218 52219 52220 52221 52222 52223 52224 52225 52226 52227 52228 52229 52230 52231 52232 52233 52234 52235 52236 52237 52238 52239 52240 52241 52242 52243 52244 52245 52246 52247 52248 52249 52250 52251 52252 52253 52254 52255 52256 52257 52258 52259 52260 52261 52262 52263 52264 52265 52266 52267 52268 52269 52270 52271 52272 52273 52274 52275 52276 52277 52278 | int i; /* Space used in zNewRecord[] */ int len; /* Length of a field */ } ao; struct OP_Count_stack_vars { i64 nEntry; BtCursor *pCrsr; } ap; struct OP_Savepoint_stack_vars { int p1; /* Value of P1 operand */ char *zName; /* Name of savepoint */ int nName; Savepoint *pNew; Savepoint *pSavepoint; Savepoint *pTmp; int iSavepoint; int ii; } aq; struct OP_AutoCommit_stack_vars { int desiredAutoCommit; int iRollback; int turnOnAC; } ar; struct OP_Transaction_stack_vars { Btree *pBt; } as; struct OP_ReadCookie_stack_vars { int iMeta; int iDb; int iCookie; } at; struct OP_SetCookie_stack_vars { Db *pDb; } au; struct OP_VerifyCookie_stack_vars { int iMeta; Btree *pBt; } av; struct OP_OpenWrite_stack_vars { int nField; KeyInfo *pKeyInfo; int p2; int iDb; int wrFlag; Btree *pX; VdbeCursor *pCur; Db *pDb; } aw; struct OP_OpenEphemeral_stack_vars { VdbeCursor *pCx; } ax; struct OP_OpenPseudo_stack_vars { VdbeCursor *pCx; } ay; struct OP_SeekGt_stack_vars { int res; int oc; VdbeCursor *pC; UnpackedRecord r; int nField; i64 iKey; /* The rowid we are to seek to */ } az; struct OP_Seek_stack_vars { VdbeCursor *pC; } ba; struct OP_Found_stack_vars { int alreadyExists; VdbeCursor *pC; int res; UnpackedRecord *pIdxKey; char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7]; } bb; struct OP_IsUnique_stack_vars { u16 ii; VdbeCursor *pCx; BtCursor *pCrsr; u16 nField; Mem *aMem; UnpackedRecord r; /* B-Tree index search key */ i64 R; /* Rowid stored in register P3 */ } bc; struct OP_NotExists_stack_vars { VdbeCursor *pC; BtCursor *pCrsr; int res; u64 iKey; } bd; struct OP_NewRowid_stack_vars { i64 v; /* The new rowid */ VdbeCursor *pC; /* Cursor of table to get the new rowid */ int res; /* Result of an sqlite3BtreeLast() */ int cnt; /* Counter to limit the number of searches */ Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ VdbeFrame *pFrame; /* Root frame of VDBE */ } be; struct OP_Insert_stack_vars { Mem *pData; /* MEM cell holding data for the record to be inserted */ Mem *pKey; /* MEM cell holding key for the record */ i64 iKey; /* The integer ROWID or key for the record to be inserted */ VdbeCursor *pC; /* Cursor to table into which insert is written */ int nZero; /* Number of zero-bytes to append */ int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ const char *zDb; /* database name - used by the update hook */ const char *zTbl; /* Table name - used by the opdate hook */ int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ } bf; struct OP_Delete_stack_vars { i64 iKey; VdbeCursor *pC; } bg; struct OP_RowData_stack_vars { VdbeCursor *pC; BtCursor *pCrsr; u32 n; i64 n64; } bh; struct OP_Rowid_stack_vars { VdbeCursor *pC; i64 v; sqlite3_vtab *pVtab; const sqlite3_module *pModule; } bi; struct OP_NullRow_stack_vars { VdbeCursor *pC; } bj; struct OP_Last_stack_vars { VdbeCursor *pC; BtCursor *pCrsr; int res; } bk; struct OP_Rewind_stack_vars { VdbeCursor *pC; BtCursor *pCrsr; int res; } bl; struct OP_Next_stack_vars { VdbeCursor *pC; BtCursor *pCrsr; int res; } bm; struct OP_IdxInsert_stack_vars { VdbeCursor *pC; BtCursor *pCrsr; int nKey; const char *zKey; } bn; struct OP_IdxDelete_stack_vars { VdbeCursor *pC; BtCursor *pCrsr; int res; UnpackedRecord r; } bo; struct OP_IdxRowid_stack_vars { BtCursor *pCrsr; VdbeCursor *pC; i64 rowid; } bp; struct OP_IdxGE_stack_vars { VdbeCursor *pC; int res; UnpackedRecord r; } bq; struct OP_Destroy_stack_vars { int iMoved; int iCnt; Vdbe *pVdbe; int iDb; } br; struct OP_Clear_stack_vars { int nChange; } bs; struct OP_CreateTable_stack_vars { int pgno; int flags; Db *pDb; } bt; struct OP_ParseSchema_stack_vars { int iDb; const char *zMaster; char *zSql; InitData initData; } bu; struct OP_IntegrityCk_stack_vars { int nRoot; /* Number of tables to check. (Number of root pages.) */ int *aRoot; /* Array of rootpage numbers for tables to be checked */ int j; /* Loop counter */ int nErr; /* Number of errors reported */ char *z; /* Text of the error report */ Mem *pnErr; /* Register keeping track of errors remaining */ } bv; struct OP_RowSetAdd_stack_vars { Mem *pIdx; Mem *pVal; } bw; struct OP_RowSetRead_stack_vars { Mem *pIdx; i64 val; } bx; struct OP_RowSetTest_stack_vars { int iSet; int exists; } by; struct OP_Program_stack_vars { int nMem; /* Number of memory registers for sub-program */ int nByte; /* Bytes of runtime space required for sub-program */ Mem *pRt; /* Register to allocate runtime space */ Mem *pMem; /* Used to iterate through memory cells */ Mem *pEnd; /* Last memory cell in new array */ VdbeFrame *pFrame; /* New vdbe frame to execute in */ SubProgram *pProgram; /* Sub-program to execute */ void *t; /* Token identifying trigger */ } bz; struct OP_Param_stack_vars { VdbeFrame *pFrame; Mem *pIn; } ca; struct OP_MemMax_stack_vars { Mem *pIn1; VdbeFrame *pFrame; } cb; struct OP_AggStep_stack_vars { int n; int i; Mem *pMem; Mem *pRec; sqlite3_context ctx; |
︙ | ︙ | |||
51535 51536 51537 51538 51539 51540 51541 | pIn1 = &p->aMem[pOp->p1]; REGISTER_TRACE(pOp->p1, pIn1); if( (opProperty & OPFLG_IN2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=p->nMem ); pIn2 = &p->aMem[pOp->p2]; REGISTER_TRACE(pOp->p2, pIn2); | > > | | | | < | 52471 52472 52473 52474 52475 52476 52477 52478 52479 52480 52481 52482 52483 52484 52485 52486 52487 52488 52489 52490 | pIn1 = &p->aMem[pOp->p1]; REGISTER_TRACE(pOp->p1, pIn1); if( (opProperty & OPFLG_IN2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=p->nMem ); pIn2 = &p->aMem[pOp->p2]; REGISTER_TRACE(pOp->p2, pIn2); /* As currently implemented, in2 implies out3. There is no reason ** why this has to be, it just worked out that way. */ assert( (opProperty & OPFLG_OUT3)!=0 ); assert( pOp->p3>0 ); assert( pOp->p3<=p->nMem ); pOut = &p->aMem[pOp->p3]; }else if( (opProperty & OPFLG_IN3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=p->nMem ); pIn3 = &p->aMem[pOp->p3]; REGISTER_TRACE(pOp->p3, pIn3); } }else if( (opProperty & OPFLG_IN2)!=0 ){ |
︙ | ︙ | |||
51683 51684 51685 51686 51687 51688 51689 51690 | ** If P4 is not null then it is an error message string. ** ** There is an implied "Halt 0 0 0" instruction inserted at the very end of ** every program. So a jump past the last instruction of the program ** is the same as executing Halt. */ case OP_Halt: { p->rc = pOp->p1; | > > > > > > > > > > > > > > > > > > < > | 52620 52621 52622 52623 52624 52625 52626 52627 52628 52629 52630 52631 52632 52633 52634 52635 52636 52637 52638 52639 52640 52641 52642 52643 52644 52645 52646 52647 52648 52649 52650 52651 52652 52653 52654 | ** If P4 is not null then it is an error message string. ** ** There is an implied "Halt 0 0 0" instruction inserted at the very end of ** every program. So a jump past the last instruction of the program ** is the same as executing Halt. */ case OP_Halt: { if( pOp->p1==SQLITE_OK && p->pFrame ){ /* Halt the sub-program. Return control to the parent frame. */ VdbeFrame *pFrame = p->pFrame; p->pFrame = pFrame->pParent; p->nFrame--; sqlite3VdbeSetChanges(db, p->nChange); pc = sqlite3VdbeFrameRestore(pFrame); if( pOp->p2==OE_Ignore ){ /* Instruction pc is the OP_Program that invoked the sub-program ** currently being halted. If the p2 instruction of this OP_Halt ** instruction is set to OE_Ignore, then the sub-program is throwing ** an IGNORE exception. In this case jump to the address specified ** as the p2 of the calling OP_Program. */ pc = p->aOp[pc].p2-1; } break; } p->rc = pOp->p1; p->errorAction = (u8)pOp->p2; p->pc = pc; if( pOp->p4.z ){ sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); } rc = sqlite3VdbeHalt(p); assert( rc==SQLITE_BUSY || rc==SQLITE_OK ); if( rc==SQLITE_BUSY ){ p->rc = rc = SQLITE_BUSY; |
︙ | ︙ | |||
52050 52051 52052 52053 52054 52055 52056 | ** Subtract the value in register P1 from the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Divide P1 P2 P3 * * ** ** Divide the value in register P1 by the value in register P2 | | | | | 53005 53006 53007 53008 53009 53010 53011 53012 53013 53014 53015 53016 53017 53018 53019 53020 53021 | ** Subtract the value in register P1 from the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Divide P1 P2 P3 * * ** ** Divide the value in register P1 by the value in register P2 ** and store the result in register P3 (P3=P2/P1). If the value in ** register P1 is zero, then the result is NULL. If either input is ** NULL, the result is NULL. */ /* Opcode: Remainder P1 P2 P3 * * ** ** Compute the remainder after integer division of the value in ** register P1 by the value in register P2 and store the result in P3. ** If the value in register P2 is zero the result is NULL. ** If either operand is NULL, the result is NULL. |
︙ | ︙ | |||
52816 52817 52818 52819 52820 52821 52822 | case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ if( (pIn1->flags & MEM_Null)==0 ){ pc = pOp->p2 - 1; } break; } | < < < < < < < < < < < < < < < < < < < < < < | > > > > > | 53771 53772 53773 53774 53775 53776 53777 53778 53779 53780 53781 53782 53783 53784 53785 53786 53787 53788 53789 53790 53791 53792 53793 53794 53795 53796 53797 53798 53799 53800 53801 53802 | case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ if( (pIn1->flags & MEM_Null)==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: Column P1 P2 P3 P4 P5 ** ** Interpret the data that cursor P1 points to as a structure built using ** the MakeRecord instruction. (See the MakeRecord opcode for additional ** information about the format of the data.) Extract the P2-th column ** from this record. If there are less that (P2+1) ** values in the record, extract a NULL. ** ** The value extracted is stored in register P3. ** ** If the column contains fewer than P2 fields, then extract a NULL. Or, ** if the P4 argument is a P4_MEM use the value of the P4 argument as ** the result. ** ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, ** then the cache of the cursor is reset prior to extracting the column. ** The first OP_Column against a pseudo-table after the value of the content ** register has changed should have this bit set. */ case OP_Column: { #if 0 /* local variables moved into u.am */ u32 payloadSize; /* Number of bytes in the record */ i64 payloadSize64; /* Number of bytes in the record */ int p1; /* P1 value of the opcode */ int p2; /* column number to retrieve */ |
︙ | ︙ | |||
52875 52876 52877 52878 52879 52880 52881 52882 52883 52884 52885 52886 52887 52888 | Mem sMem; /* For storing the record being decoded */ u8 *zIdx; /* Index into header */ u8 *zEndHdr; /* Pointer to first byte after the header */ u32 offset; /* Offset into the data */ u64 offset64; /* 64-bit offset. 64 bits needed to catch overflow */ int szHdr; /* Size of the header size field at start of record */ int avail; /* Number of bytes of available data */ #endif /* local variables moved into u.am */ u.am.p1 = pOp->p1; u.am.p2 = pOp->p2; u.am.pC = 0; memset(&u.am.sMem, 0, sizeof(u.am.sMem)); | > | 53813 53814 53815 53816 53817 53818 53819 53820 53821 53822 53823 53824 53825 53826 53827 | Mem sMem; /* For storing the record being decoded */ u8 *zIdx; /* Index into header */ u8 *zEndHdr; /* Pointer to first byte after the header */ u32 offset; /* Offset into the data */ u64 offset64; /* 64-bit offset. 64 bits needed to catch overflow */ int szHdr; /* Size of the header size field at start of record */ int avail; /* Number of bytes of available data */ Mem *pReg; /* PseudoTable input register */ #endif /* local variables moved into u.am */ u.am.p1 = pOp->p1; u.am.p2 = pOp->p2; u.am.pC = 0; memset(&u.am.sMem, 0, sizeof(u.am.sMem)); |
︙ | ︙ | |||
52929 52930 52931 52932 52933 52934 52935 | assert( (u.am.payloadSize64 & SQLITE_MAX_U32)==(u64)u.am.payloadSize64 ); u.am.payloadSize = (u32)u.am.payloadSize64; }else{ assert( sqlite3BtreeCursorIsValid(u.am.pCrsr) ); rc = sqlite3BtreeDataSize(u.am.pCrsr, &u.am.payloadSize); assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ } | | | > | | | | 53868 53869 53870 53871 53872 53873 53874 53875 53876 53877 53878 53879 53880 53881 53882 53883 53884 53885 53886 53887 | assert( (u.am.payloadSize64 & SQLITE_MAX_U32)==(u64)u.am.payloadSize64 ); u.am.payloadSize = (u32)u.am.payloadSize64; }else{ assert( sqlite3BtreeCursorIsValid(u.am.pCrsr) ); rc = sqlite3BtreeDataSize(u.am.pCrsr, &u.am.payloadSize); assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ } }else if( u.am.pC->pseudoTableReg>0 ){ u.am.pReg = &p->aMem[u.am.pC->pseudoTableReg]; assert( u.am.pReg->flags & MEM_Blob ); u.am.payloadSize = u.am.pReg->n; u.am.zRec = u.am.pReg->z; u.am.pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr; assert( u.am.payloadSize==0 || u.am.zRec!=0 ); }else{ /* Consider the row to be NULL */ u.am.payloadSize = 0; } /* If u.am.payloadSize is 0, then just store a NULL */ |
︙ | ︙ | |||
53315 53316 53317 53318 53319 53320 53321 | } pOut->flags = MEM_Int; pOut->u.i = u.ap.nEntry; break; } #endif | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 54255 54256 54257 54258 54259 54260 54261 54262 54263 54264 54265 54266 54267 54268 54269 54270 54271 54272 54273 54274 54275 54276 54277 54278 54279 54280 54281 54282 54283 54284 54285 54286 54287 54288 54289 54290 54291 54292 54293 54294 54295 54296 54297 54298 54299 54300 54301 54302 54303 54304 54305 54306 54307 54308 54309 54310 54311 54312 54313 54314 54315 54316 54317 54318 54319 54320 54321 54322 54323 54324 54325 54326 54327 54328 54329 54330 54331 54332 54333 54334 54335 54336 54337 54338 54339 54340 54341 54342 54343 54344 54345 54346 54347 54348 54349 54350 54351 54352 54353 54354 54355 54356 54357 54358 54359 54360 54361 54362 54363 54364 54365 54366 54367 54368 54369 54370 54371 54372 54373 54374 54375 54376 54377 54378 54379 54380 54381 54382 54383 54384 54385 54386 54387 54388 54389 54390 54391 54392 54393 54394 54395 54396 54397 54398 54399 54400 54401 54402 54403 54404 54405 54406 54407 54408 54409 54410 54411 54412 54413 54414 54415 54416 54417 54418 54419 54420 54421 54422 54423 54424 54425 54426 54427 54428 54429 54430 54431 54432 54433 54434 54435 54436 54437 54438 54439 54440 54441 54442 54443 54444 54445 54446 54447 54448 54449 54450 54451 54452 54453 54454 54455 54456 54457 54458 54459 54460 54461 54462 54463 54464 54465 54466 54467 54468 54469 54470 54471 54472 54473 54474 | } pOut->flags = MEM_Int; pOut->u.i = u.ap.nEntry; break; } #endif /* Opcode: Savepoint P1 * * P4 * ** ** Open, release or rollback the savepoint named by parameter P4, depending ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. */ case OP_Savepoint: { #if 0 /* local variables moved into u.aq */ int p1; /* Value of P1 operand */ char *zName; /* Name of savepoint */ int nName; Savepoint *pNew; Savepoint *pSavepoint; Savepoint *pTmp; int iSavepoint; int ii; #endif /* local variables moved into u.aq */ u.aq.p1 = pOp->p1; u.aq.zName = pOp->p4.z; /* Assert that the u.aq.p1 parameter is valid. Also that if there is no open ** transaction, then there cannot be any savepoints. */ assert( db->pSavepoint==0 || db->autoCommit==0 ); assert( u.aq.p1==SAVEPOINT_BEGIN||u.aq.p1==SAVEPOINT_RELEASE||u.aq.p1==SAVEPOINT_ROLLBACK ); assert( db->pSavepoint || db->isTransactionSavepoint==0 ); assert( checkSavepointCount(db) ); if( u.aq.p1==SAVEPOINT_BEGIN ){ if( db->writeVdbeCnt>0 ){ /* A new savepoint cannot be created if there are active write ** statements (i.e. open read/write incremental blob handles). */ sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " "SQL statements in progress"); rc = SQLITE_BUSY; }else{ u.aq.nName = sqlite3Strlen30(u.aq.zName); /* Create a new savepoint structure. */ u.aq.pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+u.aq.nName+1); if( u.aq.pNew ){ u.aq.pNew->zName = (char *)&u.aq.pNew[1]; memcpy(u.aq.pNew->zName, u.aq.zName, u.aq.nName+1); /* If there is no open transaction, then mark this as a special ** "transaction savepoint". */ if( db->autoCommit ){ db->autoCommit = 0; db->isTransactionSavepoint = 1; }else{ db->nSavepoint++; } /* Link the new savepoint into the database handle's list. */ u.aq.pNew->pNext = db->pSavepoint; db->pSavepoint = u.aq.pNew; } } }else{ u.aq.iSavepoint = 0; /* Find the named savepoint. If there is no such savepoint, then an ** an error is returned to the user. */ for( u.aq.pSavepoint = db->pSavepoint; u.aq.pSavepoint && sqlite3StrICmp(u.aq.pSavepoint->zName, u.aq.zName); u.aq.pSavepoint = u.aq.pSavepoint->pNext ){ u.aq.iSavepoint++; } if( !u.aq.pSavepoint ){ sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", u.aq.zName); rc = SQLITE_ERROR; }else if( db->writeVdbeCnt>0 || (u.aq.p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1) ){ /* It is not possible to release (commit) a savepoint if there are ** active write statements. It is not possible to rollback a savepoint ** if there are any active statements at all. */ sqlite3SetString(&p->zErrMsg, db, "cannot %s savepoint - SQL statements in progress", (u.aq.p1==SAVEPOINT_ROLLBACK ? "rollback": "release") ); rc = SQLITE_BUSY; }else{ /* Determine whether or not this is a transaction savepoint. If so, ** and this is a RELEASE command, then the current transaction ** is committed. */ int isTransaction = u.aq.pSavepoint->pNext==0 && db->isTransactionSavepoint; if( isTransaction && u.aq.p1==SAVEPOINT_RELEASE ){ db->autoCommit = 1; if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ p->pc = pc; db->autoCommit = 0; p->rc = rc = SQLITE_BUSY; goto vdbe_return; } db->isTransactionSavepoint = 0; rc = p->rc; }else{ u.aq.iSavepoint = db->nSavepoint - u.aq.iSavepoint - 1; for(u.aq.ii=0; u.aq.ii<db->nDb; u.aq.ii++){ rc = sqlite3BtreeSavepoint(db->aDb[u.aq.ii].pBt, u.aq.p1, u.aq.iSavepoint); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } } if( u.aq.p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ sqlite3ExpirePreparedStatements(db); sqlite3ResetInternalSchema(db, 0); } } /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all ** savepoints nested inside of the savepoint being operated on. */ while( db->pSavepoint!=u.aq.pSavepoint ){ u.aq.pTmp = db->pSavepoint; db->pSavepoint = u.aq.pTmp->pNext; sqlite3DbFree(db, u.aq.pTmp); db->nSavepoint--; } /* If it is a RELEASE, then destroy the savepoint being operated on too */ if( u.aq.p1==SAVEPOINT_RELEASE ){ assert( u.aq.pSavepoint==db->pSavepoint ); db->pSavepoint = u.aq.pSavepoint->pNext; sqlite3DbFree(db, u.aq.pSavepoint); if( !isTransaction ){ db->nSavepoint--; } } } } break; } /* Opcode: AutoCommit P1 P2 * * * ** ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll ** back any currently active btree transactions. If there are any active ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if ** there are active writing VMs or active VMs that use shared cache. ** ** This instruction causes the VM to halt. */ case OP_AutoCommit: { #if 0 /* local variables moved into u.ar */ int desiredAutoCommit; int iRollback; int turnOnAC; #endif /* local variables moved into u.ar */ u.ar.desiredAutoCommit = pOp->p1; u.ar.iRollback = pOp->p2; u.ar.turnOnAC = u.ar.desiredAutoCommit && !db->autoCommit; assert( u.ar.desiredAutoCommit==1 || u.ar.desiredAutoCommit==0 ); assert( u.ar.desiredAutoCommit==1 || u.ar.iRollback==0 ); assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ if( u.ar.turnOnAC && u.ar.iRollback && db->activeVdbeCnt>1 ){ /* If this instruction implements a ROLLBACK and other VMs are ** still running, and a transaction is active, return an error indicating ** that the other VMs must complete first. */ sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " "SQL statements in progress"); rc = SQLITE_BUSY; }else if( u.ar.turnOnAC && !u.ar.iRollback && db->writeVdbeCnt>0 ){ /* If this instruction implements a COMMIT and other VMs are writing ** return an error indicating that the other VMs must complete first. */ sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " "SQL statements in progress"); rc = SQLITE_BUSY; }else if( u.ar.desiredAutoCommit!=db->autoCommit ){ if( u.ar.iRollback ){ assert( u.ar.desiredAutoCommit==1 ); sqlite3RollbackAll(db); db->autoCommit = 1; }else{ db->autoCommit = (u8)u.ar.desiredAutoCommit; if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ p->pc = pc; db->autoCommit = (u8)(1-u.ar.desiredAutoCommit); p->rc = rc = SQLITE_BUSY; goto vdbe_return; } } assert( db->nStatement==0 ); sqlite3CloseSavepoints(db); if( p->rc==SQLITE_OK ){ rc = SQLITE_DONE; }else{ rc = SQLITE_ERROR; } goto vdbe_return; }else{ sqlite3SetString(&p->zErrMsg, db, (!u.ar.desiredAutoCommit)?"cannot start a transaction within a transaction":( (u.ar.iRollback)?"cannot rollback - no transaction is active": "cannot commit - no transaction is active")); rc = SQLITE_ERROR; } break; } |
︙ | ︙ | |||
53588 53589 53590 53591 53592 53593 53594 53595 53596 53597 53598 | ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is ** obtained on the database file when a write-transaction is started. No ** other process can start another write transaction while this transaction is ** underway. Starting a write transaction also creates a rollback journal. A ** write transaction must be started before any changes can be made to the ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained ** on the file. ** ** If P2 is zero, then a read-lock is obtained on the database file. */ case OP_Transaction: { | > > > > > > > > > > | | | | | > > > > > > > > > > > > | | | | | | | | | | | | | | | | | 54486 54487 54488 54489 54490 54491 54492 54493 54494 54495 54496 54497 54498 54499 54500 54501 54502 54503 54504 54505 54506 54507 54508 54509 54510 54511 54512 54513 54514 54515 54516 54517 54518 54519 54520 54521 54522 54523 54524 54525 54526 54527 54528 54529 54530 54531 54532 54533 54534 54535 54536 54537 54538 54539 54540 54541 54542 54543 54544 54545 54546 54547 54548 54549 54550 54551 54552 54553 54554 54555 54556 54557 54558 54559 54560 54561 54562 54563 54564 54565 54566 54567 54568 54569 54570 54571 54572 54573 54574 54575 54576 54577 54578 54579 54580 54581 54582 54583 54584 54585 54586 54587 54588 54589 54590 54591 54592 54593 54594 54595 54596 54597 54598 54599 54600 54601 54602 54603 54604 54605 54606 54607 54608 | ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is ** obtained on the database file when a write-transaction is started. No ** other process can start another write transaction while this transaction is ** underway. Starting a write transaction also creates a rollback journal. A ** write transaction must be started before any changes can be made to the ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained ** on the file. ** ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is ** true (this flag is set if the Vdbe may modify more than one row and may ** throw an ABORT exception), a statement transaction may also be opened. ** More specifically, a statement transaction is opened iff the database ** connection is currently not in autocommit mode, or if there are other ** active statements. A statement transaction allows the affects of this ** VDBE to be rolled back after an error without having to roll back the ** entire transaction. If no error is encountered, the statement transaction ** will automatically commit when the VDBE halts. ** ** If P2 is zero, then a read-lock is obtained on the database file. */ case OP_Transaction: { #if 0 /* local variables moved into u.as */ Btree *pBt; #endif /* local variables moved into u.as */ assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (1<<pOp->p1))!=0 ); u.as.pBt = db->aDb[pOp->p1].pBt; if( u.as.pBt ){ rc = sqlite3BtreeBeginTrans(u.as.pBt, pOp->p2); if( rc==SQLITE_BUSY ){ p->pc = pc; p->rc = rc = SQLITE_BUSY; goto vdbe_return; } if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){ goto abort_due_to_error; } if( pOp->p2 && p->usesStmtJournal && (db->autoCommit==0 || db->activeVdbeCnt>1) ){ assert( sqlite3BtreeIsInTrans(u.as.pBt) ); if( p->iStatement==0 ){ assert( db->nStatement>=0 && db->nSavepoint>=0 ); db->nStatement++; p->iStatement = db->nSavepoint + db->nStatement; } rc = sqlite3BtreeBeginStmt(u.as.pBt, p->iStatement); } } break; } /* Opcode: ReadCookie P1 P2 P3 * * ** ** Read cookie number P3 from database P1 and write it into register P2. ** P3==1 is the schema version. P3==2 is the database format. ** P3==3 is the recommended pager cache size, and so forth. P1==0 is ** the main database file and P1==1 is the database file used to store ** temporary tables. ** ** There must be a read-lock on the database (either a transaction ** must be started or there must be an open cursor) before ** executing this instruction. */ case OP_ReadCookie: { /* out2-prerelease */ #if 0 /* local variables moved into u.at */ int iMeta; int iDb; int iCookie; #endif /* local variables moved into u.at */ u.at.iDb = pOp->p1; u.at.iCookie = pOp->p3; assert( pOp->p3<SQLITE_N_BTREE_META ); assert( u.at.iDb>=0 && u.at.iDb<db->nDb ); assert( db->aDb[u.at.iDb].pBt!=0 ); assert( (p->btreeMask & (1<<u.at.iDb))!=0 ); sqlite3BtreeGetMeta(db->aDb[u.at.iDb].pBt, u.at.iCookie, (u32 *)&u.at.iMeta); pOut->u.i = u.at.iMeta; MemSetTypeFlag(pOut, MEM_Int); break; } /* Opcode: SetCookie P1 P2 P3 * * ** ** Write the content of register P3 (interpreted as an integer) ** into cookie number P2 of database P1. P2==1 is the schema version. ** P2==2 is the database format. P2==3 is the recommended pager cache ** size, and so forth. P1==0 is the main database file and P1==1 is the ** database file used to store temporary tables. ** ** A transaction must be started before executing this opcode. */ case OP_SetCookie: { /* in3 */ #if 0 /* local variables moved into u.au */ Db *pDb; #endif /* local variables moved into u.au */ assert( pOp->p2<SQLITE_N_BTREE_META ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (1<<pOp->p1))!=0 ); u.au.pDb = &db->aDb[pOp->p1]; assert( u.au.pDb->pBt!=0 ); sqlite3VdbeMemIntegerify(pIn3); /* See note about index shifting on OP_ReadCookie */ rc = sqlite3BtreeUpdateMeta(u.au.pDb->pBt, pOp->p2, (int)pIn3->u.i); if( pOp->p2==BTREE_SCHEMA_VERSION ){ /* When the schema cookie changes, record the new cookie internally */ u.au.pDb->pSchema->schema_cookie = (int)pIn3->u.i; db->flags |= SQLITE_InternChanges; }else if( pOp->p2==BTREE_FILE_FORMAT ){ /* Record changes in the file format */ u.au.pDb->pSchema->file_format = (u8)pIn3->u.i; } if( pOp->p1==1 ){ /* Invalidate all prepared statements whenever the TEMP database ** schema is changed. Ticket #1644 */ sqlite3ExpirePreparedStatements(db); } break; |
︙ | ︙ | |||
53701 53702 53703 53704 53705 53706 53707 | ** and that the current process needs to reread the schema. ** ** Either a transaction needs to have been started or an OP_Open needs ** to be executed (to establish a read lock) before this opcode is ** invoked. */ case OP_VerifyCookie: { | | | | | | | | | | 54621 54622 54623 54624 54625 54626 54627 54628 54629 54630 54631 54632 54633 54634 54635 54636 54637 54638 54639 54640 54641 54642 54643 54644 54645 54646 54647 54648 54649 54650 54651 54652 54653 54654 54655 54656 54657 54658 54659 54660 54661 54662 54663 | ** and that the current process needs to reread the schema. ** ** Either a transaction needs to have been started or an OP_Open needs ** to be executed (to establish a read lock) before this opcode is ** invoked. */ case OP_VerifyCookie: { #if 0 /* local variables moved into u.av */ int iMeta; Btree *pBt; #endif /* local variables moved into u.av */ assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (1<<pOp->p1))!=0 ); u.av.pBt = db->aDb[pOp->p1].pBt; if( u.av.pBt ){ sqlite3BtreeGetMeta(u.av.pBt, BTREE_SCHEMA_VERSION, (u32 *)&u.av.iMeta); }else{ u.av.iMeta = 0; } if( u.av.iMeta!=pOp->p2 ){ sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); /* If the schema-cookie from the database file matches the cookie ** stored with the in-memory representation of the schema, do ** not reload the schema from the database file. ** ** If virtual-tables are in use, this is not just an optimization. ** Often, v-tables store their data in other SQLite tables, which ** are queried from within xNext() and other v-table methods using ** prepared queries. If such a query is out-of-date, we do not want to ** discard the database schema, as the user code implementing the ** v-table would have to be ready for the sqlite3_vtab structure itself ** to be invalidated whenever sqlite3_step() is called from within ** a v-table method. */ if( db->aDb[pOp->p1].pSchema->schema_cookie!=u.av.iMeta ){ sqlite3ResetInternalSchema(db, pOp->p1); } sqlite3ExpirePreparedStatements(db); rc = SQLITE_SCHEMA; } break; |
︙ | ︙ | |||
53790 53791 53792 53793 53794 53795 53796 | ** in read/write mode. For a given table, there can be one or more read-only ** cursors or a single read/write cursor but not both. ** ** See also OpenRead. */ case OP_OpenRead: case OP_OpenWrite: { | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 54710 54711 54712 54713 54714 54715 54716 54717 54718 54719 54720 54721 54722 54723 54724 54725 54726 54727 54728 54729 54730 54731 54732 54733 54734 54735 54736 54737 54738 54739 54740 54741 54742 54743 54744 54745 54746 54747 54748 54749 54750 54751 54752 54753 54754 54755 54756 54757 54758 54759 54760 54761 54762 54763 54764 54765 54766 54767 54768 54769 54770 54771 54772 54773 54774 54775 54776 54777 54778 54779 54780 54781 54782 54783 54784 54785 54786 54787 54788 54789 54790 54791 54792 54793 54794 54795 54796 | ** in read/write mode. For a given table, there can be one or more read-only ** cursors or a single read/write cursor but not both. ** ** See also OpenRead. */ case OP_OpenRead: case OP_OpenWrite: { #if 0 /* local variables moved into u.aw */ int nField; KeyInfo *pKeyInfo; int p2; int iDb; int wrFlag; Btree *pX; VdbeCursor *pCur; Db *pDb; #endif /* local variables moved into u.aw */ u.aw.nField = 0; u.aw.pKeyInfo = 0; u.aw.p2 = pOp->p2; u.aw.iDb = pOp->p3; assert( u.aw.iDb>=0 && u.aw.iDb<db->nDb ); assert( (p->btreeMask & (1<<u.aw.iDb))!=0 ); u.aw.pDb = &db->aDb[u.aw.iDb]; u.aw.pX = u.aw.pDb->pBt; assert( u.aw.pX!=0 ); if( pOp->opcode==OP_OpenWrite ){ u.aw.wrFlag = 1; if( u.aw.pDb->pSchema->file_format < p->minWriteFileFormat ){ p->minWriteFileFormat = u.aw.pDb->pSchema->file_format; } }else{ u.aw.wrFlag = 0; } if( pOp->p5 ){ assert( u.aw.p2>0 ); assert( u.aw.p2<=p->nMem ); pIn2 = &p->aMem[u.aw.p2]; sqlite3VdbeMemIntegerify(pIn2); u.aw.p2 = (int)pIn2->u.i; /* The u.aw.p2 value always comes from a prior OP_CreateTable opcode and ** that opcode will always set the u.aw.p2 value to 2 or more or else fail. ** If there were a failure, the prepared statement would have halted ** before reaching this instruction. */ if( NEVER(u.aw.p2<2) ) { rc = SQLITE_CORRUPT_BKPT; goto abort_due_to_error; } } if( pOp->p4type==P4_KEYINFO ){ u.aw.pKeyInfo = pOp->p4.pKeyInfo; u.aw.pKeyInfo->enc = ENC(p->db); u.aw.nField = u.aw.pKeyInfo->nField+1; }else if( pOp->p4type==P4_INT32 ){ u.aw.nField = pOp->p4.i; } assert( pOp->p1>=0 ); u.aw.pCur = allocateCursor(p, pOp->p1, u.aw.nField, u.aw.iDb, 1); if( u.aw.pCur==0 ) goto no_mem; u.aw.pCur->nullRow = 1; rc = sqlite3BtreeCursor(u.aw.pX, u.aw.p2, u.aw.wrFlag, u.aw.pKeyInfo, u.aw.pCur->pCursor); u.aw.pCur->pKeyInfo = u.aw.pKeyInfo; /* Since it performs no memory allocation or IO, the only values that ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK. ** SQLITE_EMPTY is only returned when attempting to open the table ** rooted at page 1 of a zero-byte database. */ assert( rc==SQLITE_EMPTY || rc==SQLITE_OK ); if( rc==SQLITE_EMPTY ){ u.aw.pCur->pCursor = 0; rc = SQLITE_OK; } /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of ** SQLite used to check if the root-page flags were sane at this point ** and report database corruption if they were not, but this check has ** since moved into the btree layer. */ u.aw.pCur->isTable = pOp->p4type!=P4_KEYINFO; u.aw.pCur->isIndex = !u.aw.pCur->isTable; break; } /* Opcode: OpenEphemeral P1 P2 * P4 * ** ** Open a new cursor P1 to a transient table. ** The cursor is always opened read/write even if |
︙ | ︙ | |||
53885 53886 53887 53888 53889 53890 53891 | ** This opcode was once called OpenTemp. But that created ** confusion because the term "temp table", might refer either ** to a TEMP table at the SQL level, or to a table opened by ** this opcode. Then this opcode was call OpenVirtual. But ** that created confusion with the whole virtual-table idea. */ case OP_OpenEphemeral: { | | | | | | | | | | | | | | | | | | | | | < | < < | < < < < < | | | | | | < | | | 54805 54806 54807 54808 54809 54810 54811 54812 54813 54814 54815 54816 54817 54818 54819 54820 54821 54822 54823 54824 54825 54826 54827 54828 54829 54830 54831 54832 54833 54834 54835 54836 54837 54838 54839 54840 54841 54842 54843 54844 54845 54846 54847 54848 54849 54850 54851 54852 54853 54854 54855 54856 54857 54858 54859 54860 54861 54862 54863 54864 54865 54866 54867 54868 54869 54870 54871 54872 54873 54874 54875 54876 54877 54878 54879 54880 54881 54882 54883 54884 54885 54886 54887 54888 54889 54890 54891 | ** This opcode was once called OpenTemp. But that created ** confusion because the term "temp table", might refer either ** to a TEMP table at the SQL level, or to a table opened by ** this opcode. Then this opcode was call OpenVirtual. But ** that created confusion with the whole virtual-table idea. */ case OP_OpenEphemeral: { #if 0 /* local variables moved into u.ax */ VdbeCursor *pCx; #endif /* local variables moved into u.ax */ static const int openFlags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TRANSIENT_DB; assert( pOp->p1>=0 ); u.ax.pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); if( u.ax.pCx==0 ) goto no_mem; u.ax.pCx->nullRow = 1; rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags, &u.ax.pCx->pBt); if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginTrans(u.ax.pCx->pBt, 1); } if( rc==SQLITE_OK ){ /* If a transient index is required, create it by calling ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before ** opening it. If a transient table is required, just use the ** automatically created table with root-page 1 (an INTKEY table). */ if( pOp->p4.pKeyInfo ){ int pgno; assert( pOp->p4type==P4_KEYINFO ); rc = sqlite3BtreeCreateTable(u.ax.pCx->pBt, &pgno, BTREE_ZERODATA); if( rc==SQLITE_OK ){ assert( pgno==MASTER_ROOT+1 ); rc = sqlite3BtreeCursor(u.ax.pCx->pBt, pgno, 1, (KeyInfo*)pOp->p4.z, u.ax.pCx->pCursor); u.ax.pCx->pKeyInfo = pOp->p4.pKeyInfo; u.ax.pCx->pKeyInfo->enc = ENC(p->db); } u.ax.pCx->isTable = 0; }else{ rc = sqlite3BtreeCursor(u.ax.pCx->pBt, MASTER_ROOT, 1, 0, u.ax.pCx->pCursor); u.ax.pCx->isTable = 1; } } u.ax.pCx->isIndex = !u.ax.pCx->isTable; break; } /* Opcode: OpenPseudo P1 P2 P3 * * ** ** Open a new cursor that points to a fake table that contains a single ** row of data. The content of that one row in the content of memory ** register P2. In other words, cursor P1 becomes an alias for the ** MEM_Blob content contained in register P2. ** ** A pseudo-table created by this opcode is used to hold the a single ** row output from the sorter so that the row can be decomposed into ** individual columns using the OP_Column opcode. The OP_Column opcode ** is the only cursor opcode that works with a pseudo-table. ** ** P3 is the number of fields in the records that will be stored by ** the pseudo-table. */ case OP_OpenPseudo: { #if 0 /* local variables moved into u.ay */ VdbeCursor *pCx; #endif /* local variables moved into u.ay */ assert( pOp->p1>=0 ); u.ay.pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); if( u.ay.pCx==0 ) goto no_mem; u.ay.pCx->nullRow = 1; u.ay.pCx->pseudoTableReg = pOp->p2; u.ay.pCx->isTable = 1; u.ay.pCx->isIndex = 0; break; } /* Opcode: Close P1 * * * * ** ** Close a cursor previously opened as P1. If P1 is not ** currently open, this instruction is a no-op. |
︙ | ︙ | |||
54038 54039 54040 54041 54042 54043 54044 | ** ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt */ case OP_SeekLt: /* jump, in3 */ case OP_SeekLe: /* jump, in3 */ case OP_SeekGe: /* jump, in3 */ case OP_SeekGt: { /* jump, in3 */ | | | | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < | | | | | | | | | | | 54949 54950 54951 54952 54953 54954 54955 54956 54957 54958 54959 54960 54961 54962 54963 54964 54965 54966 54967 54968 54969 54970 54971 54972 54973 54974 54975 54976 54977 54978 54979 54980 54981 54982 54983 54984 54985 54986 54987 54988 54989 54990 54991 54992 54993 54994 54995 54996 54997 54998 54999 55000 55001 55002 55003 55004 55005 55006 55007 55008 55009 55010 55011 55012 55013 55014 55015 55016 55017 55018 55019 55020 55021 55022 55023 55024 55025 55026 55027 55028 55029 55030 55031 55032 55033 55034 55035 55036 55037 55038 55039 55040 55041 55042 55043 55044 55045 55046 55047 55048 55049 55050 55051 55052 55053 55054 55055 55056 55057 55058 55059 55060 55061 55062 55063 55064 55065 55066 55067 55068 55069 55070 55071 55072 55073 55074 55075 55076 55077 55078 55079 55080 55081 55082 55083 55084 55085 55086 55087 55088 55089 55090 55091 55092 55093 55094 55095 55096 55097 55098 55099 55100 55101 55102 55103 55104 55105 55106 55107 55108 55109 55110 55111 55112 55113 55114 55115 55116 55117 | ** ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt */ case OP_SeekLt: /* jump, in3 */ case OP_SeekLe: /* jump, in3 */ case OP_SeekGe: /* jump, in3 */ case OP_SeekGt: { /* jump, in3 */ #if 0 /* local variables moved into u.az */ int res; int oc; VdbeCursor *pC; UnpackedRecord r; int nField; i64 iKey; /* The rowid we are to seek to */ #endif /* local variables moved into u.az */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( pOp->p2!=0 ); u.az.pC = p->apCsr[pOp->p1]; assert( u.az.pC!=0 ); assert( u.az.pC->pseudoTableReg==0 ); if( u.az.pC->pCursor!=0 ){ u.az.oc = pOp->opcode; u.az.pC->nullRow = 0; if( u.az.pC->isTable ){ /* The input value in P3 might be of any type: integer, real, string, ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so covert it. */ applyNumericAffinity(pIn3); u.az.iKey = sqlite3VdbeIntValue(pIn3); u.az.pC->rowidIsValid = 0; /* If the P3 value could not be converted into an integer without ** loss of information, then special processing is required... */ if( (pIn3->flags & MEM_Int)==0 ){ if( (pIn3->flags & MEM_Real)==0 ){ /* If the P3 value cannot be converted into any kind of a number, ** then the seek is not possible, so jump to P2 */ pc = pOp->p2 - 1; break; } /* If we reach this point, then the P3 value must be a floating ** point number. */ assert( (pIn3->flags & MEM_Real)!=0 ); if( u.az.iKey==SMALLEST_INT64 && (pIn3->r<(double)u.az.iKey || pIn3->r>0) ){ /* The P3 value is too large in magnitude to be expressed as an ** integer. */ u.az.res = 1; if( pIn3->r<0 ){ if( u.az.oc==OP_SeekGt || u.az.oc==OP_SeekGe ){ rc = sqlite3BtreeFirst(u.az.pC->pCursor, &u.az.res); if( rc!=SQLITE_OK ) goto abort_due_to_error; } }else{ if( u.az.oc==OP_SeekLt || u.az.oc==OP_SeekLe ){ rc = sqlite3BtreeLast(u.az.pC->pCursor, &u.az.res); if( rc!=SQLITE_OK ) goto abort_due_to_error; } } if( u.az.res ){ pc = pOp->p2 - 1; } break; }else if( u.az.oc==OP_SeekLt || u.az.oc==OP_SeekGe ){ /* Use the ceiling() function to convert real->int */ if( pIn3->r > (double)u.az.iKey ) u.az.iKey++; }else{ /* Use the floor() function to convert real->int */ assert( u.az.oc==OP_SeekLe || u.az.oc==OP_SeekGt ); if( pIn3->r < (double)u.az.iKey ) u.az.iKey--; } } rc = sqlite3BtreeMovetoUnpacked(u.az.pC->pCursor, 0, (u64)u.az.iKey, 0, &u.az.res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( u.az.res==0 ){ u.az.pC->rowidIsValid = 1; u.az.pC->lastRowid = u.az.iKey; } }else{ u.az.nField = pOp->p4.i; assert( pOp->p4type==P4_INT32 ); assert( u.az.nField>0 ); u.az.r.pKeyInfo = u.az.pC->pKeyInfo; u.az.r.nField = (u16)u.az.nField; if( u.az.oc==OP_SeekGt || u.az.oc==OP_SeekLe ){ u.az.r.flags = UNPACKED_INCRKEY; }else{ u.az.r.flags = 0; } u.az.r.aMem = &p->aMem[pOp->p3]; rc = sqlite3BtreeMovetoUnpacked(u.az.pC->pCursor, &u.az.r, 0, 0, &u.az.res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } u.az.pC->rowidIsValid = 0; } u.az.pC->deferredMoveto = 0; u.az.pC->cacheStatus = CACHE_STALE; #ifdef SQLITE_TEST sqlite3_search_count++; #endif if( u.az.oc==OP_SeekGe || u.az.oc==OP_SeekGt ){ if( u.az.res<0 || (u.az.res==0 && u.az.oc==OP_SeekGt) ){ rc = sqlite3BtreeNext(u.az.pC->pCursor, &u.az.res); if( rc!=SQLITE_OK ) goto abort_due_to_error; u.az.pC->rowidIsValid = 0; }else{ u.az.res = 0; } }else{ assert( u.az.oc==OP_SeekLt || u.az.oc==OP_SeekLe ); if( u.az.res>0 || (u.az.res==0 && u.az.oc==OP_SeekLt) ){ rc = sqlite3BtreePrevious(u.az.pC->pCursor, &u.az.res); if( rc!=SQLITE_OK ) goto abort_due_to_error; u.az.pC->rowidIsValid = 0; }else{ /* u.az.res might be negative because the table is empty. Check to ** see if this is the case. */ u.az.res = sqlite3BtreeEof(u.az.pC->pCursor); } } assert( pOp->p2>0 ); if( u.az.res ){ pc = pOp->p2 - 1; } }else{ /* This happens when attempting to open the sqlite3_master table ** for read access returns SQLITE_EMPTY. In this case always ** take the jump (since there are no records in the table). */ pc = pOp->p2 - 1; } break; } /* Opcode: Seek P1 P2 * * * ** ** P1 is an open table cursor and P2 is a rowid integer. Arrange ** for P1 to move so that it points to the rowid given by P2. ** ** This is actually a deferred seek. Nothing actually happens until ** the cursor is used to read a record. That way, if no reads ** occur, no unnecessary I/O happens. */ case OP_Seek: { /* in2 */ #if 0 /* local variables moved into u.ba */ VdbeCursor *pC; #endif /* local variables moved into u.ba */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.ba.pC = p->apCsr[pOp->p1]; assert( u.ba.pC!=0 ); if( ALWAYS(u.ba.pC->pCursor!=0) ){ assert( u.ba.pC->isTable ); u.ba.pC->nullRow = 0; u.ba.pC->movetoTarget = sqlite3VdbeIntValue(pIn2); u.ba.pC->rowidIsValid = 0; u.ba.pC->deferredMoveto = 1; } break; } /* Opcode: Found P1 P2 P3 * * ** |
︙ | ︙ | |||
54230 54231 54232 54233 54234 54235 54236 | ** to P2. If an entry does existing, fall through. The cursor is left ** pointing to the entry that matches. ** ** See also: Found, NotExists, IsUnique */ case OP_NotFound: /* jump, in3 */ case OP_Found: { /* jump, in3 */ | | | | | | | | | | | | | | | | | | | | 55141 55142 55143 55144 55145 55146 55147 55148 55149 55150 55151 55152 55153 55154 55155 55156 55157 55158 55159 55160 55161 55162 55163 55164 55165 55166 55167 55168 55169 55170 55171 55172 55173 55174 55175 55176 55177 55178 55179 55180 55181 55182 55183 55184 55185 55186 55187 55188 55189 55190 55191 55192 | ** to P2. If an entry does existing, fall through. The cursor is left ** pointing to the entry that matches. ** ** See also: Found, NotExists, IsUnique */ case OP_NotFound: /* jump, in3 */ case OP_Found: { /* jump, in3 */ #if 0 /* local variables moved into u.bb */ int alreadyExists; VdbeCursor *pC; int res; UnpackedRecord *pIdxKey; char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7]; #endif /* local variables moved into u.bb */ u.bb.alreadyExists = 0; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bb.pC = p->apCsr[pOp->p1]; assert( u.bb.pC!=0 ); if( ALWAYS(u.bb.pC->pCursor!=0) ){ assert( u.bb.pC->isTable==0 ); assert( pIn3->flags & MEM_Blob ); ExpandBlob(pIn3); u.bb.pIdxKey = sqlite3VdbeRecordUnpack(u.bb.pC->pKeyInfo, pIn3->n, pIn3->z, u.bb.aTempRec, sizeof(u.bb.aTempRec)); if( u.bb.pIdxKey==0 ){ goto no_mem; } if( pOp->opcode==OP_Found ){ u.bb.pIdxKey->flags |= UNPACKED_PREFIX_MATCH; } rc = sqlite3BtreeMovetoUnpacked(u.bb.pC->pCursor, u.bb.pIdxKey, 0, 0, &u.bb.res); sqlite3VdbeDeleteUnpackedRecord(u.bb.pIdxKey); if( rc!=SQLITE_OK ){ break; } u.bb.alreadyExists = (u.bb.res==0); u.bb.pC->deferredMoveto = 0; u.bb.pC->cacheStatus = CACHE_STALE; } if( pOp->opcode==OP_Found ){ if( u.bb.alreadyExists ) pc = pOp->p2 - 1; }else{ if( !u.bb.alreadyExists ) pc = pOp->p2 - 1; } break; } /* Opcode: IsUnique P1 P2 P3 P4 * ** ** Cursor P1 is open on an index. So it has no data and its key consists |
︙ | ︙ | |||
54298 54299 54300 54301 54302 54303 54304 | ** to instruction P2. Otherwise, the rowid of the conflicting index ** entry is copied to register P3 and control falls through to the next ** instruction. ** ** See also: NotFound, NotExists, Found */ case OP_IsUnique: { /* jump, in3 */ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | | | | | | | | | | | | < < | | | 55209 55210 55211 55212 55213 55214 55215 55216 55217 55218 55219 55220 55221 55222 55223 55224 55225 55226 55227 55228 55229 55230 55231 55232 55233 55234 55235 55236 55237 55238 55239 55240 55241 55242 55243 55244 55245 55246 55247 55248 55249 55250 55251 55252 55253 55254 55255 55256 55257 55258 55259 55260 55261 55262 55263 55264 55265 55266 55267 55268 55269 55270 55271 55272 55273 55274 55275 55276 55277 55278 55279 55280 55281 55282 55283 55284 55285 55286 55287 55288 55289 55290 55291 55292 55293 55294 55295 55296 55297 55298 55299 55300 55301 55302 55303 55304 55305 55306 55307 55308 55309 55310 55311 55312 55313 55314 55315 55316 55317 55318 55319 55320 55321 55322 55323 55324 55325 55326 55327 55328 55329 55330 | ** to instruction P2. Otherwise, the rowid of the conflicting index ** entry is copied to register P3 and control falls through to the next ** instruction. ** ** See also: NotFound, NotExists, Found */ case OP_IsUnique: { /* jump, in3 */ #if 0 /* local variables moved into u.bc */ u16 ii; VdbeCursor *pCx; BtCursor *pCrsr; u16 nField; Mem *aMem; UnpackedRecord r; /* B-Tree index search key */ i64 R; /* Rowid stored in register P3 */ #endif /* local variables moved into u.bc */ u.bc.aMem = &p->aMem[pOp->p4.i]; /* Assert that the values of parameters P1 and P4 are in range. */ assert( pOp->p4type==P4_INT32 ); assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem ); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); /* Find the index cursor. */ u.bc.pCx = p->apCsr[pOp->p1]; assert( u.bc.pCx->deferredMoveto==0 ); u.bc.pCx->seekResult = 0; u.bc.pCx->cacheStatus = CACHE_STALE; u.bc.pCrsr = u.bc.pCx->pCursor; /* If any of the values are NULL, take the jump. */ u.bc.nField = u.bc.pCx->pKeyInfo->nField; for(u.bc.ii=0; u.bc.ii<u.bc.nField; u.bc.ii++){ if( u.bc.aMem[u.bc.ii].flags & MEM_Null ){ pc = pOp->p2 - 1; u.bc.pCrsr = 0; break; } } assert( (u.bc.aMem[u.bc.nField].flags & MEM_Null)==0 ); if( u.bc.pCrsr!=0 ){ /* Populate the index search key. */ u.bc.r.pKeyInfo = u.bc.pCx->pKeyInfo; u.bc.r.nField = u.bc.nField + 1; u.bc.r.flags = UNPACKED_PREFIX_SEARCH; u.bc.r.aMem = u.bc.aMem; /* Extract the value of u.bc.R from register P3. */ sqlite3VdbeMemIntegerify(pIn3); u.bc.R = pIn3->u.i; /* Search the B-Tree index. If no conflicting record is found, jump ** to P2. Otherwise, copy the rowid of the conflicting record to ** register P3 and fall through to the next instruction. */ rc = sqlite3BtreeMovetoUnpacked(u.bc.pCrsr, &u.bc.r, 0, 0, &u.bc.pCx->seekResult); if( (u.bc.r.flags & UNPACKED_PREFIX_SEARCH) || u.bc.r.rowid==u.bc.R ){ pc = pOp->p2 - 1; }else{ pIn3->u.i = u.bc.r.rowid; } } break; } /* Opcode: NotExists P1 P2 P3 * * ** ** Use the content of register P3 as a integer key. If a record ** with that key does not exist in table of P1, then jump to P2. ** If the record does exist, then fall thru. The cursor is left ** pointing to the record if it exists. ** ** The difference between this operation and NotFound is that this ** operation assumes the key is an integer and that P1 is a table whereas ** NotFound assumes key is a blob constructed from MakeRecord and ** P1 is an index. ** ** See also: Found, NotFound, IsUnique */ case OP_NotExists: { /* jump, in3 */ #if 0 /* local variables moved into u.bd */ VdbeCursor *pC; BtCursor *pCrsr; int res; u64 iKey; #endif /* local variables moved into u.bd */ assert( pIn3->flags & MEM_Int ); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bd.pC = p->apCsr[pOp->p1]; assert( u.bd.pC!=0 ); assert( u.bd.pC->isTable ); assert( u.bd.pC->pseudoTableReg==0 ); u.bd.pCrsr = u.bd.pC->pCursor; if( u.bd.pCrsr!=0 ){ u.bd.res = 0; u.bd.iKey = pIn3->u.i; rc = sqlite3BtreeMovetoUnpacked(u.bd.pCrsr, 0, u.bd.iKey, 0, &u.bd.res); u.bd.pC->lastRowid = pIn3->u.i; u.bd.pC->rowidIsValid = u.bd.res==0 ?1:0; u.bd.pC->nullRow = 0; u.bd.pC->cacheStatus = CACHE_STALE; u.bd.pC->deferredMoveto = 0; if( u.bd.res!=0 ){ pc = pOp->p2 - 1; assert( u.bd.pC->rowidIsValid==0 ); } u.bd.pC->seekResult = u.bd.res; }else{ /* This happens when an attempt to open a read cursor on the ** sqlite_master table returns SQLITE_EMPTY. */ pc = pOp->p2 - 1; assert( u.bd.pC->rowidIsValid==0 ); u.bd.pC->seekResult = 0; } break; } /* Opcode: Sequence P1 P2 * * * ** ** Find the next available sequence number for cursor P1. |
︙ | ︙ | |||
54434 54435 54436 54437 54438 54439 54440 | /* Opcode: NewRowid P1 P2 P3 * * ** ** Get a new integer record number (a.k.a "rowid") used as the key to a table. ** The record number is not previously used as a key in the database ** table that cursor P1 points to. The new record number is written ** written to register P2. ** | | | | | | | > | | | | | | | | | | | | | | | | | | | > | > > > > > > > > | > > | | | | | | | | | | | | | | | | | | | | | | | | | > > > > > > > > > > > > > | | | | | | | | | | | | | | | | > | | | | | | | | | | < < < < < < < < < < < < < < < < < < < < < < | | | | | | | | | | | < < | | | | | | | | | | 55344 55345 55346 55347 55348 55349 55350 55351 55352 55353 55354 55355 55356 55357 55358 55359 55360 55361 55362 55363 55364 55365 55366 55367 55368 55369 55370 55371 55372 55373 55374 55375 55376 55377 55378 55379 55380 55381 55382 55383 55384 55385 55386 55387 55388 55389 55390 55391 55392 55393 55394 55395 55396 55397 55398 55399 55400 55401 55402 55403 55404 55405 55406 55407 55408 55409 55410 55411 55412 55413 55414 55415 55416 55417 55418 55419 55420 55421 55422 55423 55424 55425 55426 55427 55428 55429 55430 55431 55432 55433 55434 55435 55436 55437 55438 55439 55440 55441 55442 55443 55444 55445 55446 55447 55448 55449 55450 55451 55452 55453 55454 55455 55456 55457 55458 55459 55460 55461 55462 55463 55464 55465 55466 55467 55468 55469 55470 55471 55472 55473 55474 55475 55476 55477 55478 55479 55480 55481 55482 55483 55484 55485 55486 55487 55488 55489 55490 55491 55492 55493 55494 55495 55496 55497 55498 55499 55500 55501 55502 55503 55504 55505 55506 55507 55508 55509 55510 55511 55512 55513 55514 55515 55516 55517 55518 55519 55520 55521 55522 55523 55524 55525 55526 55527 55528 55529 55530 55531 55532 55533 55534 55535 55536 55537 55538 55539 55540 55541 55542 55543 55544 55545 55546 55547 55548 55549 55550 55551 55552 55553 55554 55555 55556 55557 55558 55559 55560 55561 55562 55563 55564 55565 55566 55567 55568 55569 55570 55571 55572 55573 55574 55575 55576 55577 55578 55579 55580 55581 55582 55583 55584 55585 | /* Opcode: NewRowid P1 P2 P3 * * ** ** Get a new integer record number (a.k.a "rowid") used as the key to a table. ** The record number is not previously used as a key in the database ** table that cursor P1 points to. The new record number is written ** written to register P2. ** ** If P3>0 then P3 is a register in the root frame of this VDBE that holds ** the largest previously generated record number. No new record numbers are ** allowed to be less than this value. When this value reaches its maximum, ** a SQLITE_FULL error is generated. The P3 register is updated with the ' ** generated record number. This P3 mechanism is used to help implement the ** AUTOINCREMENT feature. */ case OP_NewRowid: { /* out2-prerelease */ #if 0 /* local variables moved into u.be */ i64 v; /* The new rowid */ VdbeCursor *pC; /* Cursor of table to get the new rowid */ int res; /* Result of an sqlite3BtreeLast() */ int cnt; /* Counter to limit the number of searches */ Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ VdbeFrame *pFrame; /* Root frame of VDBE */ #endif /* local variables moved into u.be */ u.be.v = 0; u.be.res = 0; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.be.pC = p->apCsr[pOp->p1]; assert( u.be.pC!=0 ); if( NEVER(u.be.pC->pCursor==0) ){ /* The zero initialization above is all that is needed */ }else{ /* The next rowid or record number (different terms for the same ** thing) is obtained in a two-step algorithm. ** ** First we attempt to find the largest existing rowid and add one ** to that. But if the largest existing rowid is already the maximum ** positive integer, we have to fall through to the second ** probabilistic algorithm ** ** The second algorithm is to select a rowid at random and see if ** it already exists in the table. If it does not exist, we have ** succeeded. If the random rowid does exist, we select a new one ** and try again, up to 100 times. */ assert( u.be.pC->isTable ); u.be.cnt = 0; #ifdef SQLITE_32BIT_ROWID # define MAX_ROWID 0x7fffffff #else /* Some compilers complain about constants of the form 0x7fffffffffffffff. ** Others complain about 0x7ffffffffffffffffLL. The following macro seems ** to provide the constant while making all compilers happy. */ # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) #endif if( !u.be.pC->useRandomRowid ){ u.be.v = sqlite3BtreeGetCachedRowid(u.be.pC->pCursor); if( u.be.v==0 ){ rc = sqlite3BtreeLast(u.be.pC->pCursor, &u.be.res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( u.be.res ){ u.be.v = 1; }else{ assert( sqlite3BtreeCursorIsValid(u.be.pC->pCursor) ); rc = sqlite3BtreeKeySize(u.be.pC->pCursor, &u.be.v); assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ if( u.be.v==MAX_ROWID ){ u.be.pC->useRandomRowid = 1; }else{ u.be.v++; } } } #ifndef SQLITE_OMIT_AUTOINCREMENT if( pOp->p3 ){ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3>0 ); if( p->pFrame ){ for(u.be.pFrame=p->pFrame; u.be.pFrame->pParent; u.be.pFrame=u.be.pFrame->pParent); /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=u.be.pFrame->nMem ); u.be.pMem = &u.be.pFrame->aMem[pOp->p3]; }else{ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=p->nMem ); u.be.pMem = &p->aMem[pOp->p3]; } REGISTER_TRACE(pOp->p3, u.be.pMem); sqlite3VdbeMemIntegerify(u.be.pMem); assert( (u.be.pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ if( u.be.pMem->u.i==MAX_ROWID || u.be.pC->useRandomRowid ){ rc = SQLITE_FULL; goto abort_due_to_error; } if( u.be.v<u.be.pMem->u.i+1 ){ u.be.v = u.be.pMem->u.i + 1; } u.be.pMem->u.i = u.be.v; } #endif sqlite3BtreeSetCachedRowid(u.be.pC->pCursor, u.be.v<MAX_ROWID ? u.be.v+1 : 0); } if( u.be.pC->useRandomRowid ){ assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is ** an AUTOINCREMENT table. */ u.be.v = db->lastRowid; u.be.cnt = 0; do{ if( u.be.cnt==0 && (u.be.v&0xffffff)==u.be.v ){ u.be.v++; }else{ sqlite3_randomness(sizeof(u.be.v), &u.be.v); if( u.be.cnt<5 ) u.be.v &= 0xffffff; } rc = sqlite3BtreeMovetoUnpacked(u.be.pC->pCursor, 0, (u64)u.be.v, 0, &u.be.res); u.be.cnt++; }while( u.be.cnt<100 && rc==SQLITE_OK && u.be.res==0 ); if( rc==SQLITE_OK && u.be.res==0 ){ rc = SQLITE_FULL; goto abort_due_to_error; } } u.be.pC->rowidIsValid = 0; u.be.pC->deferredMoveto = 0; u.be.pC->cacheStatus = CACHE_STALE; } MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = u.be.v; break; } /* Opcode: Insert P1 P2 P3 P4 P5 ** ** Write an entry into the table of cursor P1. A new entry is ** created if it doesn't already exist or the data for an existing ** entry is overwritten. The data is the value MEM_Blob stored in register ** number P2. The key is stored in register P3. The key must ** be a MEM_Int. ** ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, ** then rowid is stored for subsequent return by the ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). ** ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of ** the last seek operation (OP_NotExists) was a success, then this ** operation will not attempt to find the appropriate row before doing ** the insert but will instead overwrite the row that the cursor is ** currently pointing to. Presumably, the prior OP_NotExists opcode ** has already positioned the cursor correctly. This is an optimization ** that boosts performance by avoiding redundant seeks. ** ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an ** UPDATE operation. Otherwise (if the flag is clear) then this opcode ** is part of an INSERT operation. The difference is only important to ** the update hook. ** ** Parameter P4 may point to a string containing the table-name, or ** may be NULL. If it is not NULL, then the update-hook ** (sqlite3.xUpdateCallback) is invoked following a successful insert. ** ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically ** allocated, then ownership of P2 is transferred to the pseudo-cursor ** and register P2 becomes ephemeral. If the cursor is changed, the ** value of register P2 will then change. Make sure this does not ** cause any problems.) ** ** This instruction only works on tables. The equivalent instruction ** for indices is OP_IdxInsert. */ case OP_Insert: { #if 0 /* local variables moved into u.bf */ Mem *pData; /* MEM cell holding data for the record to be inserted */ Mem *pKey; /* MEM cell holding key for the record */ i64 iKey; /* The integer ROWID or key for the record to be inserted */ VdbeCursor *pC; /* Cursor to table into which insert is written */ int nZero; /* Number of zero-bytes to append */ int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ const char *zDb; /* database name - used by the update hook */ const char *zTbl; /* Table name - used by the opdate hook */ int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ #endif /* local variables moved into u.bf */ u.bf.pData = &p->aMem[pOp->p2]; u.bf.pKey = &p->aMem[pOp->p3]; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bf.pC = p->apCsr[pOp->p1]; assert( u.bf.pC!=0 ); assert( u.bf.pC->pCursor!=0 ); assert( u.bf.pC->pseudoTableReg==0 ); assert( u.bf.pKey->flags & MEM_Int ); assert( u.bf.pC->isTable ); REGISTER_TRACE(pOp->p2, u.bf.pData); REGISTER_TRACE(pOp->p3, u.bf.pKey); u.bf.iKey = u.bf.pKey->u.i; if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = u.bf.pKey->u.i; if( u.bf.pData->flags & MEM_Null ){ u.bf.pData->z = 0; u.bf.pData->n = 0; }else{ assert( u.bf.pData->flags & (MEM_Blob|MEM_Str) ); } u.bf.seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? u.bf.pC->seekResult : 0); if( u.bf.pData->flags & MEM_Zero ){ u.bf.nZero = u.bf.pData->u.nZero; }else{ u.bf.nZero = 0; } sqlite3BtreeSetCachedRowid(u.bf.pC->pCursor, 0); rc = sqlite3BtreeInsert(u.bf.pC->pCursor, 0, u.bf.iKey, u.bf.pData->z, u.bf.pData->n, u.bf.nZero, pOp->p5 & OPFLAG_APPEND, u.bf.seekResult ); u.bf.pC->rowidIsValid = 0; u.bf.pC->deferredMoveto = 0; u.bf.pC->cacheStatus = CACHE_STALE; /* Invoke the update-hook if required. */ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ u.bf.zDb = db->aDb[u.bf.pC->iDb].zName; u.bf.zTbl = pOp->p4.z; u.bf.op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); assert( u.bf.pC->isTable ); db->xUpdateCallback(db->pUpdateArg, u.bf.op, u.bf.zDb, u.bf.zTbl, u.bf.iKey); assert( u.bf.pC->iDb>=0 ); } break; } /* Opcode: Delete P1 P2 * P4 * ** ** Delete the record at which the P1 cursor is currently pointing. |
︙ | ︙ | |||
54685 54686 54687 54688 54689 54690 54691 | ** ** If P4 is not NULL, then it is the name of the table that P1 is ** pointing to. The update hook will be invoked, if it exists. ** If P4 is not NULL then the P1 cursor must have been positioned ** using OP_NotFound prior to invoking this opcode. */ case OP_Delete: { | | | | | | | | | | | | | | | | | | | | < | < | | > | < | < | 55597 55598 55599 55600 55601 55602 55603 55604 55605 55606 55607 55608 55609 55610 55611 55612 55613 55614 55615 55616 55617 55618 55619 55620 55621 55622 55623 55624 55625 55626 55627 55628 55629 55630 55631 55632 55633 55634 55635 55636 55637 55638 55639 55640 55641 55642 55643 55644 55645 55646 55647 55648 55649 55650 55651 55652 55653 55654 55655 55656 55657 55658 55659 55660 55661 55662 55663 55664 | ** ** If P4 is not NULL, then it is the name of the table that P1 is ** pointing to. The update hook will be invoked, if it exists. ** If P4 is not NULL then the P1 cursor must have been positioned ** using OP_NotFound prior to invoking this opcode. */ case OP_Delete: { #if 0 /* local variables moved into u.bg */ i64 iKey; VdbeCursor *pC; #endif /* local variables moved into u.bg */ u.bg.iKey = 0; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bg.pC = p->apCsr[pOp->p1]; assert( u.bg.pC!=0 ); assert( u.bg.pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ /* If the update-hook will be invoked, set u.bg.iKey to the rowid of the ** row being deleted. */ if( db->xUpdateCallback && pOp->p4.z ){ assert( u.bg.pC->isTable ); assert( u.bg.pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */ u.bg.iKey = u.bg.pC->lastRowid; } /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or ** OP_Column on the same table without any intervening operations that ** might move or invalidate the cursor. Hence cursor u.bg.pC is always pointing ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation ** below is always a no-op and cannot fail. We will run it anyhow, though, ** to guard against future changes to the code generator. **/ assert( u.bg.pC->deferredMoveto==0 ); rc = sqlite3VdbeCursorMoveto(u.bg.pC); if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; sqlite3BtreeSetCachedRowid(u.bg.pC->pCursor, 0); rc = sqlite3BtreeDelete(u.bg.pC->pCursor); u.bg.pC->cacheStatus = CACHE_STALE; /* Invoke the update-hook if required. */ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ const char *zDb = db->aDb[u.bg.pC->iDb].zName; const char *zTbl = pOp->p4.z; db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, u.bg.iKey); assert( u.bg.pC->iDb>=0 ); } if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; break; } /* Opcode: ResetCount * * * * * ** ** The value of the change counter is copied to the database handle ** change counter (returned by subsequent calls to sqlite3_changes()). ** Then the VMs internal change counter resets to 0. ** This is used by trigger programs. */ case OP_ResetCount: { sqlite3VdbeSetChanges(db, p->nChange); p->nChange = 0; break; } /* Opcode: RowData P1 P2 * * * ** ** Write into register P2 the complete row data for cursor P1. |
︙ | ︙ | |||
54768 54769 54770 54771 54772 54773 54774 | ** it is found in the database file. ** ** If the P1 cursor must be pointing to a valid row (not a NULL row) ** of a real table, not a pseudo-table. */ case OP_RowKey: case OP_RowData: { | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | | < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 55677 55678 55679 55680 55681 55682 55683 55684 55685 55686 55687 55688 55689 55690 55691 55692 55693 55694 55695 55696 55697 55698 55699 55700 55701 55702 55703 55704 55705 55706 55707 55708 55709 55710 55711 55712 55713 55714 55715 55716 55717 55718 55719 55720 55721 55722 55723 55724 55725 55726 55727 55728 55729 55730 55731 55732 55733 55734 55735 55736 55737 55738 55739 55740 55741 55742 55743 55744 55745 55746 55747 55748 55749 55750 55751 55752 55753 55754 55755 55756 55757 55758 55759 55760 55761 55762 55763 55764 55765 55766 55767 55768 55769 55770 55771 55772 55773 55774 55775 55776 55777 55778 55779 55780 55781 55782 55783 55784 55785 55786 55787 55788 55789 55790 55791 55792 55793 55794 55795 55796 55797 55798 55799 55800 55801 55802 55803 55804 55805 55806 55807 55808 55809 55810 55811 55812 55813 55814 55815 55816 55817 55818 55819 55820 55821 55822 55823 55824 55825 55826 55827 55828 55829 55830 55831 55832 55833 55834 55835 55836 55837 55838 55839 55840 55841 55842 55843 55844 55845 55846 55847 55848 55849 55850 55851 55852 55853 55854 55855 | ** it is found in the database file. ** ** If the P1 cursor must be pointing to a valid row (not a NULL row) ** of a real table, not a pseudo-table. */ case OP_RowKey: case OP_RowData: { #if 0 /* local variables moved into u.bh */ VdbeCursor *pC; BtCursor *pCrsr; u32 n; i64 n64; #endif /* local variables moved into u.bh */ pOut = &p->aMem[pOp->p2]; /* Note that RowKey and RowData are really exactly the same instruction */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bh.pC = p->apCsr[pOp->p1]; assert( u.bh.pC->isTable || pOp->opcode==OP_RowKey ); assert( u.bh.pC->isIndex || pOp->opcode==OP_RowData ); assert( u.bh.pC!=0 ); assert( u.bh.pC->nullRow==0 ); assert( u.bh.pC->pseudoTableReg==0 ); assert( u.bh.pC->pCursor!=0 ); u.bh.pCrsr = u.bh.pC->pCursor; assert( sqlite3BtreeCursorIsValid(u.bh.pCrsr) ); /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or ** OP_Rewind/Op_Next with no intervening instructions that might invalidate ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always ** a no-op and can never fail. But we leave it in place as a safety. */ assert( u.bh.pC->deferredMoveto==0 ); rc = sqlite3VdbeCursorMoveto(u.bh.pC); if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; if( u.bh.pC->isIndex ){ assert( !u.bh.pC->isTable ); rc = sqlite3BtreeKeySize(u.bh.pCrsr, &u.bh.n64); assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ if( u.bh.n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } u.bh.n = (u32)u.bh.n64; }else{ rc = sqlite3BtreeDataSize(u.bh.pCrsr, &u.bh.n); assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ if( u.bh.n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } } if( sqlite3VdbeMemGrow(pOut, u.bh.n, 0) ){ goto no_mem; } pOut->n = u.bh.n; MemSetTypeFlag(pOut, MEM_Blob); if( u.bh.pC->isIndex ){ rc = sqlite3BtreeKey(u.bh.pCrsr, 0, u.bh.n, pOut->z); }else{ rc = sqlite3BtreeData(u.bh.pCrsr, 0, u.bh.n, pOut->z); } pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Rowid P1 P2 * * * ** ** Store in register P2 an integer which is the key of the table entry that ** P1 is currently point to. ** ** P1 can be either an ordinary table or a virtual table. There used to ** be a separate OP_VRowid opcode for use with virtual tables, but this ** one opcode now works for both table types. */ case OP_Rowid: { /* out2-prerelease */ #if 0 /* local variables moved into u.bi */ VdbeCursor *pC; i64 v; sqlite3_vtab *pVtab; const sqlite3_module *pModule; #endif /* local variables moved into u.bi */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bi.pC = p->apCsr[pOp->p1]; assert( u.bi.pC!=0 ); assert( u.bi.pC->pseudoTableReg==0 ); if( u.bi.pC->nullRow ){ /* Do nothing so that reg[P2] remains NULL */ break; }else if( u.bi.pC->deferredMoveto ){ u.bi.v = u.bi.pC->movetoTarget; #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( u.bi.pC->pVtabCursor ){ u.bi.pVtab = u.bi.pC->pVtabCursor->pVtab; u.bi.pModule = u.bi.pVtab->pModule; assert( u.bi.pModule->xRowid ); if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; rc = u.bi.pModule->xRowid(u.bi.pC->pVtabCursor, &u.bi.v); sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = u.bi.pVtab->zErrMsg; u.bi.pVtab->zErrMsg = 0; if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; #endif /* SQLITE_OMIT_VIRTUALTABLE */ }else{ assert( u.bi.pC->pCursor!=0 ); rc = sqlite3VdbeCursorMoveto(u.bi.pC); if( rc ) goto abort_due_to_error; if( u.bi.pC->rowidIsValid ){ u.bi.v = u.bi.pC->lastRowid; }else{ rc = sqlite3BtreeKeySize(u.bi.pC->pCursor, &u.bi.v); assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */ } } pOut->u.i = u.bi.v; MemSetTypeFlag(pOut, MEM_Int); break; } /* Opcode: NullRow P1 * * * * ** ** Move the cursor P1 to a null row. Any OP_Column operations ** that occur while the cursor is on the null row will always ** write a NULL. */ case OP_NullRow: { #if 0 /* local variables moved into u.bj */ VdbeCursor *pC; #endif /* local variables moved into u.bj */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bj.pC = p->apCsr[pOp->p1]; assert( u.bj.pC!=0 ); u.bj.pC->nullRow = 1; u.bj.pC->rowidIsValid = 0; if( u.bj.pC->pCursor ){ sqlite3BtreeClearCursor(u.bj.pC->pCursor); } break; } /* Opcode: Last P1 P2 * * * ** ** The next use of the Rowid or Column or Next instruction for P1 ** will refer to the last entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. */ case OP_Last: { /* jump */ #if 0 /* local variables moved into u.bk */ VdbeCursor *pC; BtCursor *pCrsr; int res; #endif /* local variables moved into u.bk */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bk.pC = p->apCsr[pOp->p1]; assert( u.bk.pC!=0 ); u.bk.pCrsr = u.bk.pC->pCursor; if( u.bk.pCrsr==0 ){ u.bk.res = 1; }else{ rc = sqlite3BtreeLast(u.bk.pCrsr, &u.bk.res); } u.bk.pC->nullRow = (u8)u.bk.res; u.bk.pC->deferredMoveto = 0; u.bk.pC->rowidIsValid = 0; u.bk.pC->cacheStatus = CACHE_STALE; if( pOp->p2>0 && u.bk.res ){ pc = pOp->p2 - 1; } break; } /* Opcode: Sort P1 P2 * * * |
︙ | ︙ | |||
54969 54970 54971 54972 54973 54974 54975 | ** The next use of the Rowid or Column or Next instruction for P1 ** will refer to the first entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. */ case OP_Rewind: { /* jump */ | | | | | | | | | | | | | | | 55877 55878 55879 55880 55881 55882 55883 55884 55885 55886 55887 55888 55889 55890 55891 55892 55893 55894 55895 55896 55897 55898 55899 55900 55901 55902 55903 55904 55905 55906 55907 55908 55909 55910 55911 | ** The next use of the Rowid or Column or Next instruction for P1 ** will refer to the first entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. */ case OP_Rewind: { /* jump */ #if 0 /* local variables moved into u.bl */ VdbeCursor *pC; BtCursor *pCrsr; int res; #endif /* local variables moved into u.bl */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bl.pC = p->apCsr[pOp->p1]; assert( u.bl.pC!=0 ); if( (u.bl.pCrsr = u.bl.pC->pCursor)!=0 ){ rc = sqlite3BtreeFirst(u.bl.pCrsr, &u.bl.res); u.bl.pC->atFirst = u.bl.res==0 ?1:0; u.bl.pC->deferredMoveto = 0; u.bl.pC->cacheStatus = CACHE_STALE; u.bl.pC->rowidIsValid = 0; }else{ u.bl.res = 1; } u.bl.pC->nullRow = (u8)u.bl.res; assert( pOp->p2>0 && pOp->p2<p->nOp ); if( u.bl.res ){ pc = pOp->p2 - 1; } break; } /* Opcode: Next P1 P2 * * * ** |
︙ | ︙ | |||
55017 55018 55019 55020 55021 55022 55023 | ** to the following instruction. But if the cursor backup was successful, ** jump immediately to P2. ** ** The P1 cursor must be for a real table, not a pseudo-table. */ case OP_Prev: /* jump */ case OP_Next: { /* jump */ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 55925 55926 55927 55928 55929 55930 55931 55932 55933 55934 55935 55936 55937 55938 55939 55940 55941 55942 55943 55944 55945 55946 55947 55948 55949 55950 55951 55952 55953 55954 55955 55956 55957 55958 55959 55960 55961 55962 55963 55964 55965 55966 55967 55968 55969 55970 55971 55972 55973 55974 55975 55976 55977 55978 55979 55980 55981 55982 55983 55984 55985 55986 55987 55988 55989 55990 55991 55992 55993 55994 55995 55996 55997 55998 55999 56000 56001 56002 56003 56004 56005 56006 56007 56008 56009 56010 56011 56012 56013 56014 56015 56016 56017 56018 56019 56020 56021 56022 56023 56024 56025 56026 56027 56028 56029 56030 56031 56032 56033 56034 56035 56036 56037 56038 56039 56040 56041 56042 56043 56044 56045 56046 56047 56048 56049 56050 56051 56052 56053 56054 56055 56056 56057 56058 56059 56060 56061 56062 56063 56064 56065 56066 56067 56068 56069 56070 56071 56072 56073 56074 56075 56076 56077 56078 56079 | ** to the following instruction. But if the cursor backup was successful, ** jump immediately to P2. ** ** The P1 cursor must be for a real table, not a pseudo-table. */ case OP_Prev: /* jump */ case OP_Next: { /* jump */ #if 0 /* local variables moved into u.bm */ VdbeCursor *pC; BtCursor *pCrsr; int res; #endif /* local variables moved into u.bm */ CHECK_FOR_INTERRUPT; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bm.pC = p->apCsr[pOp->p1]; if( u.bm.pC==0 ){ break; /* See ticket #2273 */ } u.bm.pCrsr = u.bm.pC->pCursor; if( u.bm.pCrsr==0 ){ u.bm.pC->nullRow = 1; break; } u.bm.res = 1; assert( u.bm.pC->deferredMoveto==0 ); rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(u.bm.pCrsr, &u.bm.res) : sqlite3BtreePrevious(u.bm.pCrsr, &u.bm.res); u.bm.pC->nullRow = (u8)u.bm.res; u.bm.pC->cacheStatus = CACHE_STALE; if( u.bm.res==0 ){ pc = pOp->p2 - 1; if( pOp->p5 ) p->aCounter[pOp->p5-1]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif } u.bm.pC->rowidIsValid = 0; break; } /* Opcode: IdxInsert P1 P2 P3 * P5 ** ** Register P2 holds a SQL index key made using the ** MakeRecord instructions. This opcode writes that key ** into the index P1. Data for the entry is nil. ** ** P3 is a flag that provides a hint to the b-tree layer that this ** insert is likely to be an append. ** ** This instruction only works for indices. The equivalent instruction ** for tables is OP_Insert. */ case OP_IdxInsert: { /* in2 */ #if 0 /* local variables moved into u.bn */ VdbeCursor *pC; BtCursor *pCrsr; int nKey; const char *zKey; #endif /* local variables moved into u.bn */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bn.pC = p->apCsr[pOp->p1]; assert( u.bn.pC!=0 ); assert( pIn2->flags & MEM_Blob ); u.bn.pCrsr = u.bn.pC->pCursor; if( ALWAYS(u.bn.pCrsr!=0) ){ assert( u.bn.pC->isTable==0 ); rc = ExpandBlob(pIn2); if( rc==SQLITE_OK ){ u.bn.nKey = pIn2->n; u.bn.zKey = pIn2->z; rc = sqlite3BtreeInsert(u.bn.pCrsr, u.bn.zKey, u.bn.nKey, "", 0, 0, pOp->p3, ((pOp->p5 & OPFLAG_USESEEKRESULT) ? u.bn.pC->seekResult : 0) ); assert( u.bn.pC->deferredMoveto==0 ); u.bn.pC->cacheStatus = CACHE_STALE; } } break; } /* Opcode: IdxDelete P1 P2 P3 * * ** ** The content of P3 registers starting at register P2 form ** an unpacked index key. This opcode removes that entry from the ** index opened by cursor P1. */ case OP_IdxDelete: { #if 0 /* local variables moved into u.bo */ VdbeCursor *pC; BtCursor *pCrsr; int res; UnpackedRecord r; #endif /* local variables moved into u.bo */ assert( pOp->p3>0 ); assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 ); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bo.pC = p->apCsr[pOp->p1]; assert( u.bo.pC!=0 ); u.bo.pCrsr = u.bo.pC->pCursor; if( ALWAYS(u.bo.pCrsr!=0) ){ u.bo.r.pKeyInfo = u.bo.pC->pKeyInfo; u.bo.r.nField = (u16)pOp->p3; u.bo.r.flags = 0; u.bo.r.aMem = &p->aMem[pOp->p2]; rc = sqlite3BtreeMovetoUnpacked(u.bo.pCrsr, &u.bo.r, 0, 0, &u.bo.res); if( rc==SQLITE_OK && u.bo.res==0 ){ rc = sqlite3BtreeDelete(u.bo.pCrsr); } assert( u.bo.pC->deferredMoveto==0 ); u.bo.pC->cacheStatus = CACHE_STALE; } break; } /* Opcode: IdxRowid P1 P2 * * * ** ** Write into register P2 an integer which is the last entry in the record at ** the end of the index key pointed to by cursor P1. This integer should be ** the rowid of the table entry to which this index entry points. ** ** See also: Rowid, MakeRecord. */ case OP_IdxRowid: { /* out2-prerelease */ #if 0 /* local variables moved into u.bp */ BtCursor *pCrsr; VdbeCursor *pC; i64 rowid; #endif /* local variables moved into u.bp */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bp.pC = p->apCsr[pOp->p1]; assert( u.bp.pC!=0 ); u.bp.pCrsr = u.bp.pC->pCursor; if( ALWAYS(u.bp.pCrsr!=0) ){ rc = sqlite3VdbeCursorMoveto(u.bp.pC); if( NEVER(rc) ) goto abort_due_to_error; assert( u.bp.pC->deferredMoveto==0 ); assert( u.bp.pC->isTable==0 ); if( !u.bp.pC->nullRow ){ rc = sqlite3VdbeIdxRowid(db, u.bp.pCrsr, &u.bp.rowid); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = u.bp.rowid; } } break; } /* Opcode: IdxGE P1 P2 P3 P4 P5 ** |
︙ | ︙ | |||
55191 55192 55193 55194 55195 55196 55197 | ** Otherwise fall through to the next instruction. ** ** If P5 is non-zero then the key value is increased by an epsilon prior ** to the comparison. This makes the opcode work like IdxLE. */ case OP_IdxLT: /* jump, in3 */ case OP_IdxGE: { /* jump, in3 */ | | | | | | | | | | | | | | | | | 56099 56100 56101 56102 56103 56104 56105 56106 56107 56108 56109 56110 56111 56112 56113 56114 56115 56116 56117 56118 56119 56120 56121 56122 56123 56124 56125 56126 56127 56128 56129 56130 56131 56132 56133 56134 56135 56136 56137 56138 56139 56140 56141 | ** Otherwise fall through to the next instruction. ** ** If P5 is non-zero then the key value is increased by an epsilon prior ** to the comparison. This makes the opcode work like IdxLE. */ case OP_IdxLT: /* jump, in3 */ case OP_IdxGE: { /* jump, in3 */ #if 0 /* local variables moved into u.bq */ VdbeCursor *pC; int res; UnpackedRecord r; #endif /* local variables moved into u.bq */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); u.bq.pC = p->apCsr[pOp->p1]; assert( u.bq.pC!=0 ); if( ALWAYS(u.bq.pC->pCursor!=0) ){ assert( u.bq.pC->deferredMoveto==0 ); assert( pOp->p5==0 || pOp->p5==1 ); assert( pOp->p4type==P4_INT32 ); u.bq.r.pKeyInfo = u.bq.pC->pKeyInfo; u.bq.r.nField = (u16)pOp->p4.i; if( pOp->p5 ){ u.bq.r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID; }else{ u.bq.r.flags = UNPACKED_IGNORE_ROWID; } u.bq.r.aMem = &p->aMem[pOp->p3]; rc = sqlite3VdbeIdxKeyCompare(u.bq.pC, &u.bq.r, &u.bq.res); if( pOp->opcode==OP_IdxLT ){ u.bq.res = -u.bq.res; }else{ assert( pOp->opcode==OP_IdxGE ); u.bq.res++; } if( u.bq.res>0 ){ pc = pOp->p2 - 1 ; } } break; } /* Opcode: Destroy P1 P2 P3 * * |
︙ | ︙ | |||
55247 55248 55249 55250 55251 55252 55253 | ** movement was required (because the table being dropped was already ** the last one in the database) then a zero is stored in register P2. ** If AUTOVACUUM is disabled then a zero is stored in register P2. ** ** See also: Clear */ case OP_Destroy: { /* out2-prerelease */ | | | | | | | | | | | | | | | | | 56155 56156 56157 56158 56159 56160 56161 56162 56163 56164 56165 56166 56167 56168 56169 56170 56171 56172 56173 56174 56175 56176 56177 56178 56179 56180 56181 56182 56183 56184 56185 56186 56187 56188 56189 56190 56191 56192 56193 56194 56195 56196 56197 | ** movement was required (because the table being dropped was already ** the last one in the database) then a zero is stored in register P2. ** If AUTOVACUUM is disabled then a zero is stored in register P2. ** ** See also: Clear */ case OP_Destroy: { /* out2-prerelease */ #if 0 /* local variables moved into u.br */ int iMoved; int iCnt; Vdbe *pVdbe; int iDb; #endif /* local variables moved into u.br */ #ifndef SQLITE_OMIT_VIRTUALTABLE u.br.iCnt = 0; for(u.br.pVdbe=db->pVdbe; u.br.pVdbe; u.br.pVdbe = u.br.pVdbe->pNext){ if( u.br.pVdbe->magic==VDBE_MAGIC_RUN && u.br.pVdbe->inVtabMethod<2 && u.br.pVdbe->pc>=0 ){ u.br.iCnt++; } } #else u.br.iCnt = db->activeVdbeCnt; #endif if( u.br.iCnt>1 ){ rc = SQLITE_LOCKED; p->errorAction = OE_Abort; }else{ u.br.iDb = pOp->p3; assert( u.br.iCnt==1 ); assert( (p->btreeMask & (1<<u.br.iDb))!=0 ); rc = sqlite3BtreeDropTable(db->aDb[u.br.iDb].pBt, pOp->p1, &u.br.iMoved); MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = u.br.iMoved; #ifndef SQLITE_OMIT_AUTOVACUUM if( rc==SQLITE_OK && u.br.iMoved!=0 ){ sqlite3RootPageMoved(&db->aDb[u.br.iDb], u.br.iMoved, pOp->p1); } #endif } break; } /* Opcode: Clear P1 P2 P3 |
︙ | ︙ | |||
55301 55302 55303 55304 55305 55306 55307 | ** count is incremented by the number of rows in the table being cleared. ** If P3 is greater than zero, then the value stored in register P3 is ** also incremented by the number of rows in the table being cleared. ** ** See also: Destroy */ case OP_Clear: { | | | | | | | | 56209 56210 56211 56212 56213 56214 56215 56216 56217 56218 56219 56220 56221 56222 56223 56224 56225 56226 56227 56228 56229 56230 56231 56232 56233 56234 56235 | ** count is incremented by the number of rows in the table being cleared. ** If P3 is greater than zero, then the value stored in register P3 is ** also incremented by the number of rows in the table being cleared. ** ** See also: Destroy */ case OP_Clear: { #if 0 /* local variables moved into u.bs */ int nChange; #endif /* local variables moved into u.bs */ u.bs.nChange = 0; assert( (p->btreeMask & (1<<pOp->p2))!=0 ); rc = sqlite3BtreeClearTable( db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &u.bs.nChange : 0) ); if( pOp->p3 ){ p->nChange += u.bs.nChange; if( pOp->p3>0 ){ p->aMem[pOp->p3].u.i += u.bs.nChange; } } break; } /* Opcode: CreateTable P1 P2 * * * ** |
︙ | ︙ | |||
55343 55344 55345 55346 55347 55348 55349 | ** P1>1. Write the root page number of the new table into ** register P2. ** ** See documentation on OP_CreateTable for additional information. */ case OP_CreateIndex: /* out2-prerelease */ case OP_CreateTable: { /* out2-prerelease */ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 56251 56252 56253 56254 56255 56256 56257 56258 56259 56260 56261 56262 56263 56264 56265 56266 56267 56268 56269 56270 56271 56272 56273 56274 56275 56276 56277 56278 56279 56280 56281 56282 56283 56284 56285 56286 56287 56288 56289 56290 56291 56292 56293 56294 56295 56296 56297 56298 56299 56300 56301 56302 56303 56304 56305 56306 56307 56308 56309 56310 56311 56312 56313 56314 56315 56316 56317 56318 56319 56320 56321 56322 56323 56324 56325 56326 56327 56328 56329 56330 56331 56332 56333 56334 56335 56336 56337 56338 56339 56340 56341 56342 56343 56344 56345 56346 56347 56348 56349 56350 56351 56352 | ** P1>1. Write the root page number of the new table into ** register P2. ** ** See documentation on OP_CreateTable for additional information. */ case OP_CreateIndex: /* out2-prerelease */ case OP_CreateTable: { /* out2-prerelease */ #if 0 /* local variables moved into u.bt */ int pgno; int flags; Db *pDb; #endif /* local variables moved into u.bt */ u.bt.pgno = 0; assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (1<<pOp->p1))!=0 ); u.bt.pDb = &db->aDb[pOp->p1]; assert( u.bt.pDb->pBt!=0 ); if( pOp->opcode==OP_CreateTable ){ /* u.bt.flags = BTREE_INTKEY; */ u.bt.flags = BTREE_LEAFDATA|BTREE_INTKEY; }else{ u.bt.flags = BTREE_ZERODATA; } rc = sqlite3BtreeCreateTable(u.bt.pDb->pBt, &u.bt.pgno, u.bt.flags); pOut->u.i = u.bt.pgno; MemSetTypeFlag(pOut, MEM_Int); break; } /* Opcode: ParseSchema P1 P2 * P4 * ** ** Read and parse all entries from the SQLITE_MASTER table of database P1 ** that match the WHERE clause P4. P2 is the "force" flag. Always do ** the parsing if P2 is true. If P2 is false, then this routine is a ** no-op if the schema is not currently loaded. In other words, if P2 ** is false, the SQLITE_MASTER table is only parsed if the rest of the ** schema is already loaded into the symbol table. ** ** This opcode invokes the parser to create a new virtual machine, ** then runs the new virtual machine. It is thus a re-entrant opcode. */ case OP_ParseSchema: { #if 0 /* local variables moved into u.bu */ int iDb; const char *zMaster; char *zSql; InitData initData; #endif /* local variables moved into u.bu */ u.bu.iDb = pOp->p1; assert( u.bu.iDb>=0 && u.bu.iDb<db->nDb ); /* If pOp->p2 is 0, then this opcode is being executed to read a ** single row, for example the row corresponding to a new index ** created by this VDBE, from the sqlite_master table. It only ** does this if the corresponding in-memory schema is currently ** loaded. Otherwise, the new index definition can be loaded along ** with the rest of the schema when it is required. ** ** Although the mutex on the BtShared object that corresponds to ** database u.bu.iDb (the database containing the sqlite_master table ** read by this instruction) is currently held, it is necessary to ** obtain the mutexes on all attached databases before checking if ** the schema of u.bu.iDb is loaded. This is because, at the start of ** the sqlite3_exec() call below, SQLite will invoke ** sqlite3BtreeEnterAll(). If all mutexes are not already held, the ** u.bu.iDb mutex may be temporarily released to avoid deadlock. If ** this happens, then some other thread may delete the in-memory ** schema of database u.bu.iDb before the SQL statement runs. The schema ** will not be reloaded becuase the db->init.busy flag is set. This ** can result in a "no such table: sqlite_master" or "malformed ** database schema" error being returned to the user. */ assert( sqlite3BtreeHoldsMutex(db->aDb[u.bu.iDb].pBt) ); sqlite3BtreeEnterAll(db); if( pOp->p2 || DbHasProperty(db, u.bu.iDb, DB_SchemaLoaded) ){ u.bu.zMaster = SCHEMA_TABLE(u.bu.iDb); u.bu.initData.db = db; u.bu.initData.iDb = pOp->p1; u.bu.initData.pzErrMsg = &p->zErrMsg; u.bu.zSql = sqlite3MPrintf(db, "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s", db->aDb[u.bu.iDb].zName, u.bu.zMaster, pOp->p4.z); if( u.bu.zSql==0 ){ rc = SQLITE_NOMEM; }else{ (void)sqlite3SafetyOff(db); assert( db->init.busy==0 ); db->init.busy = 1; u.bu.initData.rc = SQLITE_OK; assert( !db->mallocFailed ); rc = sqlite3_exec(db, u.bu.zSql, sqlite3InitCallback, &u.bu.initData, 0); if( rc==SQLITE_OK ) rc = u.bu.initData.rc; sqlite3DbFree(db, u.bu.zSql); db->init.busy = 0; (void)sqlite3SafetyOn(db); } } sqlite3BtreeLeaveAll(db); if( rc==SQLITE_NOMEM ){ goto no_mem; |
︙ | ︙ | |||
55515 55516 55517 55518 55519 55520 55521 | ** ** If P5 is not zero, the check is done on the auxiliary database ** file, not the main database file. ** ** This opcode is used to implement the integrity_check pragma. */ case OP_IntegrityCk: { | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 56423 56424 56425 56426 56427 56428 56429 56430 56431 56432 56433 56434 56435 56436 56437 56438 56439 56440 56441 56442 56443 56444 56445 56446 56447 56448 56449 56450 56451 56452 56453 56454 56455 56456 56457 56458 56459 56460 56461 56462 56463 56464 56465 56466 56467 56468 56469 56470 56471 56472 56473 56474 56475 56476 56477 56478 56479 56480 56481 56482 56483 56484 56485 56486 56487 56488 56489 56490 56491 56492 56493 56494 56495 56496 56497 56498 56499 56500 56501 56502 56503 56504 56505 56506 56507 56508 56509 56510 56511 56512 56513 56514 56515 56516 56517 56518 56519 56520 56521 56522 56523 56524 56525 56526 56527 56528 | ** ** If P5 is not zero, the check is done on the auxiliary database ** file, not the main database file. ** ** This opcode is used to implement the integrity_check pragma. */ case OP_IntegrityCk: { #if 0 /* local variables moved into u.bv */ int nRoot; /* Number of tables to check. (Number of root pages.) */ int *aRoot; /* Array of rootpage numbers for tables to be checked */ int j; /* Loop counter */ int nErr; /* Number of errors reported */ char *z; /* Text of the error report */ Mem *pnErr; /* Register keeping track of errors remaining */ #endif /* local variables moved into u.bv */ u.bv.nRoot = pOp->p2; assert( u.bv.nRoot>0 ); u.bv.aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(u.bv.nRoot+1) ); if( u.bv.aRoot==0 ) goto no_mem; assert( pOp->p3>0 && pOp->p3<=p->nMem ); u.bv.pnErr = &p->aMem[pOp->p3]; assert( (u.bv.pnErr->flags & MEM_Int)!=0 ); assert( (u.bv.pnErr->flags & (MEM_Str|MEM_Blob))==0 ); pIn1 = &p->aMem[pOp->p1]; for(u.bv.j=0; u.bv.j<u.bv.nRoot; u.bv.j++){ u.bv.aRoot[u.bv.j] = (int)sqlite3VdbeIntValue(&pIn1[u.bv.j]); } u.bv.aRoot[u.bv.j] = 0; assert( pOp->p5<db->nDb ); assert( (p->btreeMask & (1<<pOp->p5))!=0 ); u.bv.z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, u.bv.aRoot, u.bv.nRoot, (int)u.bv.pnErr->u.i, &u.bv.nErr); sqlite3DbFree(db, u.bv.aRoot); u.bv.pnErr->u.i -= u.bv.nErr; sqlite3VdbeMemSetNull(pIn1); if( u.bv.nErr==0 ){ assert( u.bv.z==0 ); }else if( u.bv.z==0 ){ goto no_mem; }else{ sqlite3VdbeMemSetStr(pIn1, u.bv.z, -1, SQLITE_UTF8, sqlite3_free); } UPDATE_MAX_BLOBSIZE(pIn1); sqlite3VdbeChangeEncoding(pIn1, encoding); break; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* Opcode: RowSetAdd P1 P2 * * * ** ** Insert the integer value held by register P2 into a boolean index ** held in register P1. ** ** An assertion fails if P2 is not an integer. */ case OP_RowSetAdd: { /* in2 */ #if 0 /* local variables moved into u.bw */ Mem *pIdx; Mem *pVal; #endif /* local variables moved into u.bw */ assert( pOp->p1>0 && pOp->p1<=p->nMem ); u.bw.pIdx = &p->aMem[pOp->p1]; assert( pOp->p2>0 && pOp->p2<=p->nMem ); u.bw.pVal = &p->aMem[pOp->p2]; assert( (u.bw.pVal->flags & MEM_Int)!=0 ); if( (u.bw.pIdx->flags & MEM_RowSet)==0 ){ sqlite3VdbeMemSetRowSet(u.bw.pIdx); if( (u.bw.pIdx->flags & MEM_RowSet)==0 ) goto no_mem; } sqlite3RowSetInsert(u.bw.pIdx->u.pRowSet, u.bw.pVal->u.i); break; } /* Opcode: RowSetRead P1 P2 P3 * * ** ** Extract the smallest value from boolean index P1 and put that value into ** register P3. Or, if boolean index P1 is initially empty, leave P3 ** unchanged and jump to instruction P2. */ case OP_RowSetRead: { /* jump, out3 */ #if 0 /* local variables moved into u.bx */ Mem *pIdx; i64 val; #endif /* local variables moved into u.bx */ assert( pOp->p1>0 && pOp->p1<=p->nMem ); CHECK_FOR_INTERRUPT; u.bx.pIdx = &p->aMem[pOp->p1]; pOut = &p->aMem[pOp->p3]; if( (u.bx.pIdx->flags & MEM_RowSet)==0 || sqlite3RowSetNext(u.bx.pIdx->u.pRowSet, &u.bx.val)==0 ){ /* The boolean index is empty */ sqlite3VdbeMemSetNull(u.bx.pIdx); pc = pOp->p2 - 1; }else{ /* A value was pulled from the index */ assert( pOp->p3>0 && pOp->p3<=p->nMem ); sqlite3VdbeMemSetInt64(pOut, u.bx.val); } break; } /* Opcode: RowSetTest P1 P2 P3 P4 ** ** Register P3 is assumed to hold a 64-bit integer value. If register P1 |
︙ | ︙ | |||
55635 55636 55637 55638 55639 55640 55641 | ** (b) when P4==-1 there is no need to insert the value, as it will ** never be tested for, and (c) when a value that is part of set X is ** inserted, there is no need to search to see if the same value was ** previously inserted as part of set X (only if it was previously ** inserted as part of some other set). */ case OP_RowSetTest: { /* jump, in1, in3 */ | | | | | | | | | | > | > > > > > > > > > > > > > > > > > > > > > > | > > > | > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > | > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | < | < < | < < < < < < < < < < < < < < < < < < < < < < < > > | | | > > > > > > > > > > | | | | 56543 56544 56545 56546 56547 56548 56549 56550 56551 56552 56553 56554 56555 56556 56557 56558 56559 56560 56561 56562 56563 56564 56565 56566 56567 56568 56569 56570 56571 56572 56573 56574 56575 56576 56577 56578 56579 56580 56581 56582 56583 56584 56585 56586 56587 56588 56589 56590 56591 56592 56593 56594 56595 56596 56597 56598 56599 56600 56601 56602 56603 56604 56605 56606 56607 56608 56609 56610 56611 56612 56613 56614 56615 56616 56617 56618 56619 56620 56621 56622 56623 56624 56625 56626 56627 56628 56629 56630 56631 56632 56633 56634 56635 56636 56637 56638 56639 56640 56641 56642 56643 56644 56645 56646 56647 56648 56649 56650 56651 56652 56653 56654 56655 56656 56657 56658 56659 56660 56661 56662 56663 56664 56665 56666 56667 56668 56669 56670 56671 56672 56673 56674 56675 56676 56677 56678 56679 56680 56681 56682 56683 56684 56685 56686 56687 56688 56689 56690 56691 56692 56693 56694 56695 56696 56697 56698 56699 56700 56701 56702 56703 56704 56705 56706 56707 56708 56709 56710 56711 56712 56713 56714 56715 56716 56717 56718 56719 56720 56721 56722 56723 56724 56725 56726 56727 56728 56729 56730 56731 56732 56733 56734 56735 56736 56737 56738 56739 56740 56741 56742 56743 56744 56745 56746 56747 56748 56749 56750 56751 56752 56753 56754 56755 56756 56757 56758 | ** (b) when P4==-1 there is no need to insert the value, as it will ** never be tested for, and (c) when a value that is part of set X is ** inserted, there is no need to search to see if the same value was ** previously inserted as part of set X (only if it was previously ** inserted as part of some other set). */ case OP_RowSetTest: { /* jump, in1, in3 */ #if 0 /* local variables moved into u.by */ int iSet; int exists; #endif /* local variables moved into u.by */ u.by.iSet = pOp->p4.i; assert( pIn3->flags&MEM_Int ); /* If there is anything other than a rowset object in memory cell P1, ** delete it now and initialize P1 with an empty rowset */ if( (pIn1->flags & MEM_RowSet)==0 ){ sqlite3VdbeMemSetRowSet(pIn1); if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; } assert( pOp->p4type==P4_INT32 ); assert( u.by.iSet==-1 || u.by.iSet>=0 ); if( u.by.iSet ){ u.by.exists = sqlite3RowSetTest(pIn1->u.pRowSet, (u8)(u.by.iSet>=0 ? u.by.iSet & 0xf : 0xff), pIn3->u.i); if( u.by.exists ){ pc = pOp->p2 - 1; break; } } if( u.by.iSet>=0 ){ sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); } break; } #ifndef SQLITE_OMIT_TRIGGER /* Opcode: Program P1 P2 P3 P4 * ** ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). ** ** P1 contains the address of the memory cell that contains the first memory ** cell in an array of values used as arguments to the sub-program. P2 ** contains the address to jump to if the sub-program throws an IGNORE ** exception using the RAISE() function. Register P3 contains the address ** of a memory cell in this (the parent) VM that is used to allocate the ** memory required by the sub-vdbe at runtime. ** ** P4 is a pointer to the VM containing the trigger program. */ case OP_Program: { /* jump */ #if 0 /* local variables moved into u.bz */ int nMem; /* Number of memory registers for sub-program */ int nByte; /* Bytes of runtime space required for sub-program */ Mem *pRt; /* Register to allocate runtime space */ Mem *pMem; /* Used to iterate through memory cells */ Mem *pEnd; /* Last memory cell in new array */ VdbeFrame *pFrame; /* New vdbe frame to execute in */ SubProgram *pProgram; /* Sub-program to execute */ void *t; /* Token identifying trigger */ #endif /* local variables moved into u.bz */ u.bz.pProgram = pOp->p4.pProgram; u.bz.pRt = &p->aMem[pOp->p3]; assert( u.bz.pProgram->nOp>0 ); /* If the SQLITE_RecTriggers flag is clear, then recursive invocation of ** triggers is disabled for backwards compatibility (flag set/cleared by ** the "PRAGMA recursive_triggers" command). ** ** It is recursive invocation of triggers, at the SQL level, that is ** disabled. In some cases a single trigger may generate more than one ** SubProgram (if the trigger may be executed with more than one different ** ON CONFLICT algorithm). SubProgram structures associated with a ** single trigger all have the same value for the SubProgram.token ** variable. */ if( 0==(db->flags&SQLITE_RecTriggers) ){ u.bz.t = u.bz.pProgram->token; for(u.bz.pFrame=p->pFrame; u.bz.pFrame && u.bz.pFrame->token!=u.bz.t; u.bz.pFrame=u.bz.pFrame->pParent); if( u.bz.pFrame ) break; } if( p->nFrame>db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ rc = SQLITE_ERROR; sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); break; } /* Register u.bz.pRt is used to store the memory required to save the state ** of the current program, and the memory required at runtime to execute ** the trigger program. If this trigger has been fired before, then u.bz.pRt ** is already allocated. Otherwise, it must be initialized. */ if( (u.bz.pRt->flags&MEM_Frame)==0 ){ /* SubProgram.nMem is set to the number of memory cells used by the ** program stored in SubProgram.aOp. As well as these, one memory ** cell is required for each cursor used by the program. Set local ** variable u.bz.nMem (and later, VdbeFrame.nChildMem) to this value. */ u.bz.nMem = u.bz.pProgram->nMem + u.bz.pProgram->nCsr; u.bz.nByte = ROUND8(sizeof(VdbeFrame)) + u.bz.nMem * sizeof(Mem) + u.bz.pProgram->nCsr * sizeof(VdbeCursor *); u.bz.pFrame = sqlite3DbMallocZero(db, u.bz.nByte); if( !u.bz.pFrame ){ goto no_mem; } sqlite3VdbeMemRelease(u.bz.pRt); u.bz.pRt->flags = MEM_Frame; u.bz.pRt->u.pFrame = u.bz.pFrame; u.bz.pFrame->v = p; u.bz.pFrame->nChildMem = u.bz.nMem; u.bz.pFrame->nChildCsr = u.bz.pProgram->nCsr; u.bz.pFrame->pc = pc; u.bz.pFrame->aMem = p->aMem; u.bz.pFrame->nMem = p->nMem; u.bz.pFrame->apCsr = p->apCsr; u.bz.pFrame->nCursor = p->nCursor; u.bz.pFrame->aOp = p->aOp; u.bz.pFrame->nOp = p->nOp; u.bz.pFrame->token = u.bz.pProgram->token; u.bz.pEnd = &VdbeFrameMem(u.bz.pFrame)[u.bz.pFrame->nChildMem]; for(u.bz.pMem=VdbeFrameMem(u.bz.pFrame); u.bz.pMem!=u.bz.pEnd; u.bz.pMem++){ u.bz.pMem->flags = MEM_Null; u.bz.pMem->db = db; } }else{ u.bz.pFrame = u.bz.pRt->u.pFrame; assert( u.bz.pProgram->nMem+u.bz.pProgram->nCsr==u.bz.pFrame->nChildMem ); assert( u.bz.pProgram->nCsr==u.bz.pFrame->nChildCsr ); assert( pc==u.bz.pFrame->pc ); } p->nFrame++; u.bz.pFrame->pParent = p->pFrame; u.bz.pFrame->lastRowid = db->lastRowid; u.bz.pFrame->nChange = p->nChange; p->nChange = 0; p->pFrame = u.bz.pFrame; p->aMem = &VdbeFrameMem(u.bz.pFrame)[-1]; p->nMem = u.bz.pFrame->nChildMem; p->nCursor = (u16)u.bz.pFrame->nChildCsr; p->apCsr = (VdbeCursor **)&p->aMem[p->nMem+1]; p->aOp = u.bz.pProgram->aOp; p->nOp = u.bz.pProgram->nOp; pc = -1; break; } /* Opcode: Param P1 P2 * * * ** ** This opcode is only ever present in sub-programs called via the ** OP_Program instruction. Copy a value currently stored in a memory ** cell of the calling (parent) frame to cell P2 in the current frames ** address space. This is used by trigger programs to access the new.* ** and old.* values. ** ** The address of the cell in the parent frame is determined by adding ** the value of the P1 argument to the value of the P1 argument to the ** calling OP_Program instruction. */ case OP_Param: { /* out2-prerelease */ #if 0 /* local variables moved into u.ca */ VdbeFrame *pFrame; Mem *pIn; #endif /* local variables moved into u.ca */ u.ca.pFrame = p->pFrame; u.ca.pIn = &u.ca.pFrame->aMem[pOp->p1 + u.ca.pFrame->aOp[u.ca.pFrame->pc].p1]; sqlite3VdbeMemShallowCopy(pOut, u.ca.pIn, MEM_Ephem); break; } #endif /* #ifndef SQLITE_OMIT_TRIGGER */ #ifndef SQLITE_OMIT_AUTOINCREMENT /* Opcode: MemMax P1 P2 * * * ** ** P1 is a register in the root frame of this VM (the root frame is ** different from the current frame if this instruction is being executed ** within a sub-program). Set the value of register P1 to the maximum of ** its current value and the value in register P2. ** ** This instruction throws an error if the memory cell is not initially ** an integer. */ case OP_MemMax: { /* in2 */ #if 0 /* local variables moved into u.cb */ Mem *pIn1; VdbeFrame *pFrame; #endif /* local variables moved into u.cb */ if( p->pFrame ){ for(u.cb.pFrame=p->pFrame; u.cb.pFrame->pParent; u.cb.pFrame=u.cb.pFrame->pParent); u.cb.pIn1 = &u.cb.pFrame->aMem[pOp->p1]; }else{ u.cb.pIn1 = &p->aMem[pOp->p1]; } sqlite3VdbeMemIntegerify(u.cb.pIn1); sqlite3VdbeMemIntegerify(pIn2); if( u.cb.pIn1->u.i<pIn2->u.i){ u.cb.pIn1->u.i = pIn2->u.i; } break; } #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Opcode: IfPos P1 P2 * * * ** |
︙ | ︙ | |||
56713 56714 56715 56716 56717 56718 56719 | ** always return an SQL NULL. This is useful because it means ** we can invoke OP_Column to fill in the vdbe cursors type ** and offset cache without causing any IO. */ sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32); sqlite3VdbeChangeP2(v, 7, pTab->nCol); if( !db->mallocFailed ){ | | | 57729 57730 57731 57732 57733 57734 57735 57736 57737 57738 57739 57740 57741 57742 57743 | ** always return an SQL NULL. This is useful because it means ** we can invoke OP_Column to fill in the vdbe cursors type ** and offset cache without causing any IO. */ sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32); sqlite3VdbeChangeP2(v, 7, pTab->nCol); if( !db->mallocFailed ){ sqlite3VdbeMakeReady(v, 1, 1, 1, 0, 0, 0); } } sqlite3BtreeLeaveAll(db); rc = sqlite3SafetyOff(db); if( NEVER(rc!=SQLITE_OK) || db->mallocFailed ){ goto blob_open_out; |
︙ | ︙ | |||
57661 57662 57663 57664 57665 57666 57667 57668 57669 57670 57671 57672 57673 57674 | int cnt = 0; /* Number of matching column names */ int cntTab = 0; /* Number of matching table names */ sqlite3 *db = pParse->db; /* The database connection */ struct SrcList_item *pItem; /* Use for looping over pSrcList items */ struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ NameContext *pTopNC = pNC; /* First namecontext in the list */ Schema *pSchema = 0; /* Schema of the expression */ assert( pNC ); /* the name context cannot be NULL. */ assert( zCol ); /* The Z in X.Y.Z cannot be NULL */ assert( ~ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); /* Initialize the node to no-match */ pExpr->iTable = -1; | > | 58677 58678 58679 58680 58681 58682 58683 58684 58685 58686 58687 58688 58689 58690 58691 | int cnt = 0; /* Number of matching column names */ int cntTab = 0; /* Number of matching table names */ sqlite3 *db = pParse->db; /* The database connection */ struct SrcList_item *pItem; /* Use for looping over pSrcList items */ struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ NameContext *pTopNC = pNC; /* First namecontext in the list */ Schema *pSchema = 0; /* Schema of the expression */ int isTrigger = 0; assert( pNC ); /* the name context cannot be NULL. */ assert( zCol ); /* The Z in X.Y.Z cannot be NULL */ assert( ~ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); /* Initialize the node to no-match */ pExpr->iTable = -1; |
︙ | ︙ | |||
57746 57747 57748 57749 57750 57751 57752 | } } #ifndef SQLITE_OMIT_TRIGGER /* If we have not already resolved the name, then maybe ** it is a new.* or old.* trigger argument reference */ | | | | | | < | < | | < | < < < > > > | > | > > > > > > > > | > | | < < < | | > > | < | 58763 58764 58765 58766 58767 58768 58769 58770 58771 58772 58773 58774 58775 58776 58777 58778 58779 58780 58781 58782 58783 58784 58785 58786 58787 58788 58789 58790 58791 58792 58793 58794 58795 58796 58797 58798 58799 58800 58801 58802 58803 58804 58805 58806 58807 58808 58809 58810 58811 58812 58813 58814 58815 58816 58817 | } } #ifndef SQLITE_OMIT_TRIGGER /* If we have not already resolved the name, then maybe ** it is a new.* or old.* trigger argument reference */ if( zDb==0 && zTab!=0 && cnt==0 && pParse->pTriggerTab!=0 ){ int op = pParse->eTriggerOp; Table *pTab = 0; assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT ); if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){ pExpr->iTable = 1; pTab = pParse->pTriggerTab; }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){ pExpr->iTable = 0; pTab = pParse->pTriggerTab; } if( pTab ){ int iCol; pSchema = pTab->pSchema; cntTab++; if( sqlite3IsRowid(zCol) ){ iCol = -1; }else{ for(iCol=0; iCol<pTab->nCol; iCol++){ Column *pCol = &pTab->aCol[iCol]; if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ if( iCol==pTab->iPKey ){ iCol = -1; } break; } } } if( iCol<pTab->nCol ){ cnt++; if( iCol<0 ){ pExpr->affinity = SQLITE_AFF_INTEGER; }else if( pExpr->iTable==0 ){ testcase( iCol==31 ); testcase( iCol==32 ); pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol)); } pExpr->iColumn = (i16)iCol; pExpr->pTab = pTab; isTrigger = 1; } } } #endif /* !defined(SQLITE_OMIT_TRIGGER) */ /* ** Perhaps the name is a reference to the ROWID |
︙ | ︙ | |||
57893 57894 57895 57896 57897 57898 57899 | /* Clean up and return */ sqlite3ExprDelete(db, pExpr->pLeft); pExpr->pLeft = 0; sqlite3ExprDelete(db, pExpr->pRight); pExpr->pRight = 0; | | | 58915 58916 58917 58918 58919 58920 58921 58922 58923 58924 58925 58926 58927 58928 58929 | /* Clean up and return */ sqlite3ExprDelete(db, pExpr->pLeft); pExpr->pLeft = 0; sqlite3ExprDelete(db, pExpr->pRight); pExpr->pRight = 0; pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN); lookupname_end: if( cnt==1 ){ assert( pNC!=0 ); sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); /* Increment the nRef value on all name contexts from TopNC up to ** the point where the name matched. */ for(;;){ |
︙ | ︙ | |||
58700 58701 58702 58703 58704 58705 58706 | ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. | < < | 59722 59723 59724 59725 59726 59727 59728 59729 59730 59731 59732 59733 59734 59735 | ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. */ /* ** Return the 'affinity' of the expression pExpr if any. ** ** If pExpr is a column, a reference to a column via an 'AS' alias, ** or a sub-select with a column as the return value, then the |
︙ | ︙ | |||
58780 58781 58782 58783 58784 58785 58786 | CollSeq *pColl = 0; Expr *p = pExpr; while( ALWAYS(p) ){ int op; pColl = p->pColl; if( pColl ) break; op = p->op; | > | > | 59800 59801 59802 59803 59804 59805 59806 59807 59808 59809 59810 59811 59812 59813 59814 59815 59816 | CollSeq *pColl = 0; Expr *p = pExpr; while( ALWAYS(p) ){ int op; pColl = p->pColl; if( pColl ) break; op = p->op; if( p->pTab!=0 && ( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER )){ /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally ** a TK_COLUMN but was previously evaluated and cached in a register */ const char *zColl; int j = p->iColumn; if( j>=0 ){ sqlite3 *db = pParse->db; zColl = p->pTab->aCol[j].zColl; |
︙ | ︙ | |||
60086 60087 60088 60089 60090 60091 60092 | ** has already been allocated. So assume sqlite3GetVdbe() is always ** successful here. */ assert(v); if( iCol<0 ){ int iMem = ++pParse->nMem; int iAddr; | < | 61108 61109 61110 61111 61112 61113 61114 61115 61116 61117 61118 61119 61120 61121 | ** has already been allocated. So assume sqlite3GetVdbe() is always ** successful here. */ assert(v); if( iCol<0 ){ int iMem = ++pParse->nMem; int iAddr; iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); eType = IN_INDEX_ROWID; |
︙ | ︙ | |||
60120 60121 60122 60123 60124 60125 60126 | && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) ){ int iMem = ++pParse->nMem; int iAddr; char *pKey; pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); | < < < | 61141 61142 61143 61144 61145 61146 61147 61148 61149 61150 61151 61152 61153 61154 | && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) ){ int iMem = ++pParse->nMem; int iAddr; char *pKey; pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, pKey,P4_KEYINFO_HANDOFF); VdbeComment((v, "%s", pIdx->zName)); eType = IN_INDEX_INDEX; |
︙ | ︙ | |||
60211 60212 60213 60214 60215 60216 60217 | ** * The right-hand side is a correlated subquery ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ | | | 61229 61230 61231 61232 61233 61234 61235 61236 61237 61238 61239 61240 61241 61242 61243 | ** * The right-hand side is a correlated subquery ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){ int mem = ++pParse->nMem; sqlite3VdbeAddOp1(v, OP_If, mem); testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); assert( testAddr>0 || pParse->db->mallocFailed ); } switch( pExpr->op ){ |
︙ | ︙ | |||
60398 60399 60400 60401 60402 60403 60404 | ** like the continuation of the number. */ static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ if( ALWAYS(z!=0) ){ double value; char *zV; sqlite3AtoF(z, &value); | | < < | | | < | 61416 61417 61418 61419 61420 61421 61422 61423 61424 61425 61426 61427 61428 61429 61430 61431 61432 61433 | ** like the continuation of the number. */ static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ if( ALWAYS(z!=0) ){ double value; char *zV; sqlite3AtoF(z, &value); assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ if( negateFlag ) value = -value; zV = dup8bytes(v, (char*)&value); sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); } } /* ** Generate an instruction that will put the integer describe by ** text z[0..n-1] into register iMem. |
︙ | ︙ | |||
61060 61061 61062 61063 61064 61065 61066 | pFarg = pExpr->x.pList; } nFarg = pFarg ? pFarg->nExpr : 0; assert( !ExprHasProperty(pExpr, EP_IntValue) ); zId = pExpr->u.zToken; nId = sqlite3Strlen30(zId); pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); | | > > > > > | 62075 62076 62077 62078 62079 62080 62081 62082 62083 62084 62085 62086 62087 62088 62089 62090 62091 62092 62093 62094 62095 62096 62097 | pFarg = pExpr->x.pList; } nFarg = pFarg ? pFarg->nExpr : 0; assert( !ExprHasProperty(pExpr, EP_IntValue) ); zId = pExpr->u.zToken; nId = sqlite3Strlen30(zId); pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); if( pDef==0 ){ sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); break; } if( pFarg ){ r1 = sqlite3GetTempRange(pParse, nFarg); sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ }else{ r1 = 0; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Possibly overload the function if the first argument is ** a virtual table column. ** |
︙ | ︙ | |||
61245 61246 61247 61248 61249 61250 61251 61252 61253 61254 61255 61256 61257 61258 | sqlite3ReleaseTempReg(pParse, r4); break; } case TK_UPLUS: { inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); break; } /* ** Form A: ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END ** ** Form B: ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 62265 62266 62267 62268 62269 62270 62271 62272 62273 62274 62275 62276 62277 62278 62279 62280 62281 62282 62283 62284 62285 62286 62287 62288 62289 62290 62291 62292 62293 62294 62295 62296 62297 62298 62299 62300 62301 62302 62303 62304 62305 62306 62307 62308 62309 62310 62311 62312 62313 62314 62315 62316 62317 62318 62319 62320 62321 62322 62323 62324 62325 62326 62327 62328 62329 62330 | sqlite3ReleaseTempReg(pParse, r4); break; } case TK_UPLUS: { inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); break; } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference ** to a column in the new.* or old.* pseudo-tables available to ** trigger programs. In this case Expr.iTable is set to 1 for the ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn ** is set to the column of the pseudo-table to read, or to -1 to ** read the rowid field. ** ** The expression is implemented using an OP_Param opcode. The p1 ** parameter is set to 0 for an old.rowid reference, or to (i+1) ** to reference another column of the old.* pseudo-table, where ** i is the index of the column. For a new.rowid reference, p1 is ** set to (n+1), where n is the number of columns in each pseudo-table. ** For a reference to any other column in the new.* pseudo-table, p1 ** is set to (n+2+i), where n and i are as defined previously. For ** example, if the table on which triggers are being fired is ** declared as: ** ** CREATE TABLE t1(a, b); ** ** Then p1 is interpreted as follows: ** ** p1==0 -> old.rowid p1==3 -> new.rowid ** p1==1 -> old.a p1==4 -> new.a ** p1==2 -> old.b p1==5 -> new.b */ Table *pTab = pExpr->pTab; int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; assert( pExpr->iTable==0 || pExpr->iTable==1 ); assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); assert( p1>=0 && p1<(pTab->nCol*2+2) ); sqlite3VdbeAddOp2(v, OP_Param, p1, target); VdbeComment((v, "%s.%s -> $%d", (pExpr->iTable ? "new" : "old"), (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), target )); /* If the column has REAL affinity, it may currently be stored as an ** integer. Use OP_RealAffinity to make sure it is really real. */ if( pExpr->iColumn>=0 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, target); } break; } /* ** Form A: ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END ** ** Form B: ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
︙ | ︙ | |||
61330 61331 61332 61333 61334 61335 61336 | assert( db->mallocFailed || pParse->nErr>0 || pParse->iCacheLevel==iCacheLevel ); sqlite3VdbeResolveLabel(v, endLabel); break; } #ifndef SQLITE_OMIT_TRIGGER case TK_RAISE: { | > > > > > | | < | < > | > | | | | < < < > | 62402 62403 62404 62405 62406 62407 62408 62409 62410 62411 62412 62413 62414 62415 62416 62417 62418 62419 62420 62421 62422 62423 62424 62425 62426 62427 62428 62429 62430 62431 62432 62433 62434 62435 62436 | assert( db->mallocFailed || pParse->nErr>0 || pParse->iCacheLevel==iCacheLevel ); sqlite3VdbeResolveLabel(v, endLabel); break; } #ifndef SQLITE_OMIT_TRIGGER case TK_RAISE: { assert( pExpr->affinity==OE_Rollback || pExpr->affinity==OE_Abort || pExpr->affinity==OE_Fail || pExpr->affinity==OE_Ignore ); if( !pParse->pTriggerTab ){ sqlite3ErrorMsg(pParse, "RAISE() may only be used within a trigger-program"); return 0; } if( pExpr->affinity==OE_Abort ){ sqlite3MayAbort(pParse); } assert( !ExprHasProperty(pExpr, EP_IntValue) ); if( pExpr->affinity==OE_Ignore ){ sqlite3VdbeAddOp4( v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); }else{ sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0); } break; } #endif } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); return inReg; |
︙ | ︙ | |||
61523 61524 61525 61526 61527 61528 61529 61530 61531 61532 61533 61534 61535 61536 | } } if( isAppropriateForFactoring(pExpr) ){ int r1 = ++pParse->nMem; int r2; r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); pExpr->op = TK_REGISTER; pExpr->iTable = r2; return WRC_Prune; } return WRC_Continue; } | > | 62598 62599 62600 62601 62602 62603 62604 62605 62606 62607 62608 62609 62610 62611 62612 | } } if( isAppropriateForFactoring(pExpr) ){ int r1 = ++pParse->nMem; int r2; r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); pExpr->op2 = pExpr->op; pExpr->op = TK_REGISTER; pExpr->iTable = r2; return WRC_Prune; } return WRC_Continue; } |
︙ | ︙ | |||
62373 62374 62375 62376 62377 62378 62379 | ** expression being built up in zWhere. */ if( pTab->pSchema!=pTempSchema ){ sqlite3 *db = pParse->db; for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){ if( pTrig->pSchema==pTempSchema ){ if( !zWhere ){ | | | | 63449 63450 63451 63452 63453 63454 63455 63456 63457 63458 63459 63460 63461 63462 63463 63464 63465 63466 | ** expression being built up in zWhere. */ if( pTab->pSchema!=pTempSchema ){ sqlite3 *db = pParse->db; for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){ if( pTrig->pSchema==pTempSchema ){ if( !zWhere ){ zWhere = sqlite3MPrintf(db, "name=%Q", pTrig->zName); }else{ tmp = zWhere; zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, pTrig->zName); sqlite3DbFree(db, tmp); } } } } return zWhere; } |
︙ | ︙ | |||
62412 62413 62414 62415 62416 62417 62418 | assert( iDb>=0 ); #ifndef SQLITE_OMIT_TRIGGER /* Drop any table triggers from the internal schema. */ for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){ int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema); assert( iTrigDb==iDb || iTrigDb==1 ); | | | 63488 63489 63490 63491 63492 63493 63494 63495 63496 63497 63498 63499 63500 63501 63502 | assert( iDb>=0 ); #ifndef SQLITE_OMIT_TRIGGER /* Drop any table triggers from the internal schema. */ for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){ int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema); assert( iTrigDb==iDb || iTrigDb==1 ); sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->zName, 0); } #endif /* Drop the table and index from the internal schema */ sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); /* Reload the table, index and permanent trigger schemas. */ |
︙ | ︙ | |||
62539 62540 62541 62542 62543 62544 62545 62546 62547 62548 62549 62550 62551 62552 | ** SQLite tables) that are identified by the name of the virtual table. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( pVTab ){ int i = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0); sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB); } #endif /* figure out how many UTF-8 characters are in zName */ zTabName = pTab->zName; nTabName = sqlite3Utf8CharLen(zTabName, -1); | > | 63615 63616 63617 63618 63619 63620 63621 63622 63623 63624 63625 63626 63627 63628 63629 | ** SQLite tables) that are identified by the name of the virtual table. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( pVTab ){ int i = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0); sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB); sqlite3MayAbort(pParse); } #endif /* figure out how many UTF-8 characters are in zName */ zTabName = pTab->zName; nTabName = sqlite3Utf8CharLen(zTabName, -1); |
︙ | ︙ | |||
62854 62855 62856 62857 62858 62859 62860 | ** This file contains code associated with the ANALYZE command. ** ** @(#) $Id: analyze.c,v 1.52 2009/04/16 17:45:48 drh Exp $ */ #ifndef SQLITE_OMIT_ANALYZE /* | | > > | > | > > | > > > > > > > > > > > > > > > > > < < < < > > > > | | | | | | | < | | | | > | | < < < < | > > > > > | | < | | | < < < < < < < > > > | | | > > | | < | | | | | | > > > > > > > > > > > > > > > | | | > | < | | < < | > | < | < | > > > > > | > | > > > | > > > | > > > > > > > > > > > > > | > > | < > | | | | > | > | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > | < < < | | | | | 63931 63932 63933 63934 63935 63936 63937 63938 63939 63940 63941 63942 63943 63944 63945 63946 63947 63948 63949 63950 63951 63952 63953 63954 63955 63956 63957 63958 63959 63960 63961 63962 63963 63964 63965 63966 63967 63968 63969 63970 63971 63972 63973 63974 63975 63976 63977 63978 63979 63980 63981 63982 63983 63984 63985 63986 63987 63988 63989 63990 63991 63992 63993 63994 63995 63996 63997 63998 63999 64000 64001 64002 64003 64004 64005 64006 64007 64008 64009 64010 64011 64012 64013 64014 64015 64016 64017 64018 64019 64020 64021 64022 64023 64024 64025 64026 64027 64028 64029 64030 64031 64032 64033 64034 64035 64036 64037 64038 64039 64040 64041 64042 64043 64044 64045 64046 64047 64048 64049 64050 64051 64052 64053 64054 64055 64056 64057 64058 64059 64060 64061 64062 64063 64064 64065 64066 64067 64068 64069 64070 64071 64072 64073 64074 64075 64076 64077 64078 64079 64080 64081 64082 64083 64084 64085 64086 64087 64088 64089 64090 64091 64092 64093 64094 64095 64096 64097 64098 64099 64100 64101 64102 64103 64104 64105 64106 64107 64108 64109 64110 64111 64112 64113 64114 64115 64116 64117 64118 64119 64120 64121 64122 64123 64124 64125 64126 64127 64128 64129 64130 64131 64132 64133 64134 64135 64136 64137 64138 64139 64140 64141 64142 64143 64144 64145 64146 64147 64148 64149 64150 64151 64152 64153 64154 64155 64156 64157 64158 64159 64160 64161 64162 64163 64164 64165 64166 64167 64168 64169 64170 64171 64172 64173 64174 64175 64176 64177 64178 64179 64180 64181 64182 64183 64184 64185 64186 64187 64188 64189 64190 64191 64192 64193 64194 64195 64196 64197 64198 64199 64200 64201 64202 64203 64204 64205 64206 64207 64208 64209 64210 64211 64212 64213 64214 64215 64216 64217 64218 64219 64220 64221 64222 64223 64224 64225 64226 64227 64228 64229 64230 64231 64232 64233 64234 64235 64236 64237 64238 64239 64240 64241 64242 64243 | ** This file contains code associated with the ANALYZE command. ** ** @(#) $Id: analyze.c,v 1.52 2009/04/16 17:45:48 drh Exp $ */ #ifndef SQLITE_OMIT_ANALYZE /* ** This routine generates code that opens the sqlite_stat1 table for ** writing with cursor iStatCur. If the library was built with the ** SQLITE_ENABLE_STAT2 macro defined, then the sqlite_stat2 table is ** opened for writing using cursor (iStatCur+1) ** ** If the sqlite_stat1 tables does not previously exist, it is created. ** Similarly, if the sqlite_stat2 table does not exist and the library ** is compiled with SQLITE_ENABLE_STAT2 defined, it is created. ** ** Argument zWhere may be a pointer to a buffer containing a table name, ** or it may be a NULL pointer. If it is not NULL, then all entries in ** the sqlite_stat1 and (if applicable) sqlite_stat2 tables associated ** with the named table are deleted. If zWhere==0, then code is generated ** to delete all stat table entries. */ static void openStatTable( Parse *pParse, /* Parsing context */ int iDb, /* The database we are looking in */ int iStatCur, /* Open the sqlite_stat1 table on this cursor */ const char *zWhere /* Delete entries associated with this table */ ){ static struct { const char *zName; const char *zCols; } aTable[] = { { "sqlite_stat1", "tbl,idx,stat" }, #ifdef SQLITE_ENABLE_STAT2 { "sqlite_stat2", "tbl,idx,sampleno,sample" }, #endif }; int aRoot[] = {0, 0}; u8 aCreateTbl[] = {0, 0}; int i; sqlite3 *db = pParse->db; Db *pDb; Vdbe *v = sqlite3GetVdbe(pParse); if( v==0 ) return; assert( sqlite3BtreeHoldsAllMutexes(db) ); assert( sqlite3VdbeDb(v)==db ); pDb = &db->aDb[iDb]; for(i=0; i<ArraySize(aTable); i++){ const char *zTab = aTable[i].zName; Table *pStat; if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){ /* The sqlite_stat[12] table does not exist. Create it. Note that a ** side-effect of the CREATE TABLE statement is to leave the rootpage ** of the new table in register pParse->regRoot. This is important ** because the OpenWrite opcode below will be needing it. */ sqlite3NestedParse(pParse, "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols ); aRoot[i] = pParse->regRoot; aCreateTbl[i] = 1; }else{ /* The table already exists. If zWhere is not NULL, delete all entries ** associated with the table zWhere. If zWhere is NULL, delete the ** entire contents of the table. */ aRoot[i] = pStat->tnum; sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); if( zWhere ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s WHERE tbl=%Q", pDb->zName, zTab, zWhere ); }else{ /* The sqlite_stat[12] table already exists. Delete all rows. */ sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); } } } /* Open the sqlite_stat[12] tables for writing. */ for(i=0; i<ArraySize(aTable); i++){ sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb); sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32); sqlite3VdbeChangeP5(v, aCreateTbl[i]); } } /* ** Generate code to do an analysis of all indices associated with ** a single table. */ static void analyzeOneTable( Parse *pParse, /* Parser context */ Table *pTab, /* Table whose indices are to be analyzed */ int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ int iMem /* Available memory locations begin here */ ){ sqlite3 *db = pParse->db; /* Database handle */ Index *pIdx; /* An index to being analyzed */ int iIdxCur; /* Cursor open on index being analyzed */ Vdbe *v; /* The virtual machine being built up */ int i; /* Loop counter */ int topOfLoop; /* The top of the loop */ int endOfLoop; /* The end of the loop */ int addr; /* The address of an instruction */ int iDb; /* Index of database containing pTab */ int regTabname = iMem++; /* Register containing table name */ int regIdxname = iMem++; /* Register containing index name */ int regSampleno = iMem++; /* Register containing next sample number */ int regCol = iMem++; /* Content of a column analyzed table */ int regRec = iMem++; /* Register holding completed record */ int regTemp = iMem++; /* Temporary use register */ int regRowid = iMem++; /* Rowid for the inserted record */ #ifdef SQLITE_ENABLE_STAT2 int regTemp2 = iMem++; /* Temporary use register */ int regSamplerecno = iMem++; /* Index of next sample to record */ int regRecno = iMem++; /* Current sample index */ int regLast = iMem++; /* Index of last sample to record */ int regFirst = iMem++; /* Index of first sample to record */ #endif v = sqlite3GetVdbe(pParse); if( v==0 || NEVER(pTab==0) || pTab->pIndex==0 ){ /* Do no analysis for tables that have no indices */ return; } assert( sqlite3BtreeHoldsAllMutexes(db) ); iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 ); #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, db->aDb[iDb].zName ) ){ return; } #endif /* Establish a read-lock on the table at the shared-cache level. */ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); iIdxCur = pParse->nTab++; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int nCol = pIdx->nColumn; KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); if( iMem+1+(nCol*2)>pParse->nMem ){ pParse->nMem = iMem+1+(nCol*2); } /* Open a cursor to the index to be analyzed. */ assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb, (char *)pKey, P4_KEYINFO_HANDOFF); VdbeComment((v, "%s", pIdx->zName)); /* Populate the registers containing the table and index names. */ if( pTab->pIndex==pIdx ){ sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); } sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0); #ifdef SQLITE_ENABLE_STAT2 /* If this iteration of the loop is generating code to analyze the ** first index in the pTab->pIndex list, then register regLast has ** not been populated. In this case populate it now. */ if( pTab->pIndex==pIdx ){ sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regSamplerecno); sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2-1, regTemp); sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2, regTemp2); sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regLast); sqlite3VdbeAddOp2(v, OP_Null, 0, regFirst); addr = sqlite3VdbeAddOp3(v, OP_Lt, regSamplerecno, 0, regLast); sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regFirst); sqlite3VdbeAddOp3(v, OP_Multiply, regLast, regTemp, regLast); sqlite3VdbeAddOp2(v, OP_AddImm, regLast, SQLITE_INDEX_SAMPLES*2-2); sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regLast); sqlite3VdbeJumpHere(v, addr); } /* Zero the regSampleno and regRecno registers. */ sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleno); sqlite3VdbeAddOp2(v, OP_Integer, 0, regRecno); sqlite3VdbeAddOp2(v, OP_Copy, regFirst, regSamplerecno); #endif /* The block of memory cells initialized here is used as follows. ** ** iMem: ** The total number of rows in the table. ** ** iMem+1 .. iMem+nCol: ** Number of distinct entries in index considering the ** left-most N columns only, where N is between 1 and nCol, ** inclusive. ** ** iMem+nCol+1 .. Mem+2*nCol: ** Previous value of indexed columns, from left to right. ** ** Cells iMem through iMem+nCol are initialized to 0. The others are ** initialized to contain an SQL NULL. */ for(i=0; i<=nCol; i++){ sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i); } for(i=0; i<nCol; i++){ sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1); } /* Start the analysis loop. This loop runs through all the entries in ** the index b-tree. */ endOfLoop = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop); topOfLoop = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1); for(i=0; i<nCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol); #ifdef SQLITE_ENABLE_STAT2 if( i==0 ){ /* Check if the record that cursor iIdxCur points to contains a ** value that should be stored in the sqlite_stat2 table. If so, ** store it. */ int ne = sqlite3VdbeAddOp3(v, OP_Ne, regRecno, 0, regSamplerecno); assert( regTabname+1==regIdxname && regTabname+2==regSampleno && regTabname+3==regCol ); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 4, regRec, "aaab", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid); /* Calculate new values for regSamplerecno and regSampleno. ** ** sampleno = sampleno + 1 ** samplerecno = samplerecno+(remaining records)/(remaining samples) */ sqlite3VdbeAddOp2(v, OP_AddImm, regSampleno, 1); sqlite3VdbeAddOp3(v, OP_Subtract, regRecno, regLast, regTemp); sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1); sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regTemp2); sqlite3VdbeAddOp3(v, OP_Subtract, regSampleno, regTemp2, regTemp2); sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regTemp, regTemp); sqlite3VdbeAddOp3(v, OP_Add, regSamplerecno, regTemp, regSamplerecno); sqlite3VdbeJumpHere(v, ne); sqlite3VdbeAddOp2(v, OP_AddImm, regRecno, 1); } #endif sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1); /**** TODO: add collating sequence *****/ sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); } if( db->mallocFailed ){ /* If a malloc failure has occurred, then the result of the expression ** passed as the second argument to the call to sqlite3VdbeJumpHere() ** below may be negative. Which causes an assert() to fail (or an ** out-of-bounds write if SQLITE_DEBUG is not defined). */ return; } sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop); for(i=0; i<nCol; i++){ sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-(nCol*2)); sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1); } /* End of the analysis loop. */ sqlite3VdbeResolveLabel(v, endOfLoop); sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop); sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); /* Store the results in sqlite_stat1. ** ** The result is a single row of the sqlite_stat1 table. The first ** two columns are the names of the table and index. The third column ** is a string composed of a list of integer statistics about the ** index. The first integer in the list is the total number of entries ** in the index. There is one additional integer in the list for each ** column of the table. This additional integer is a guess of how many ** rows of the table the index will select. If D is the count of distinct ** values and K is the total number of rows, then the integer is computed ** as: ** ** I = (K+D-1)/D ** ** If K==0 then no entry is made into the sqlite_stat1 table. ** If K>0 then it is always the case the D>0 so division by zero ** is never possible. */ addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem); sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno); for(i=0; i<nCol; i++){ sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0); sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno); sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp); sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1); sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp); sqlite3VdbeAddOp1(v, OP_ToInt, regTemp); sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno); } sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3VdbeJumpHere(v, addr); } } |
︙ | ︙ | |||
63082 63083 63084 63085 63086 63087 63088 | sqlite3 *db = pParse->db; Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ HashElem *k; int iStatCur; int iMem; sqlite3BeginWriteOperation(pParse, 0, iDb); | | > | 64259 64260 64261 64262 64263 64264 64265 64266 64267 64268 64269 64270 64271 64272 64273 64274 | sqlite3 *db = pParse->db; Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ HashElem *k; int iStatCur; int iMem; sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 2; openStatTable(pParse, iDb, iStatCur, 0); iMem = pParse->nMem+1; for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pTab = (Table*)sqliteHashData(k); analyzeOneTable(pParse, pTab, iStatCur, iMem); } loadAnalysis(pParse, iDb); |
︙ | ︙ | |||
63104 63105 63106 63107 63108 63109 63110 | int iDb; int iStatCur; assert( pTab!=0 ); assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); | | > | 64282 64283 64284 64285 64286 64287 64288 64289 64290 64291 64292 64293 64294 64295 64296 64297 | int iDb; int iStatCur; assert( pTab!=0 ); assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 2; openStatTable(pParse, iDb, iStatCur, pTab->zName); analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1); loadAnalysis(pParse, iDb); } /* ** Generate code for the ANALYZE command. The parser calls this routine |
︙ | ︙ | |||
63224 63225 63226 63227 63228 63229 63230 | pIndex->aiRowEst[i] = v; if( *z==' ' ) z++; } return 0; } /* | > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > | | < | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | 64403 64404 64405 64406 64407 64408 64409 64410 64411 64412 64413 64414 64415 64416 64417 64418 64419 64420 64421 64422 64423 64424 64425 64426 64427 64428 64429 64430 64431 64432 64433 64434 64435 64436 64437 64438 64439 64440 64441 64442 64443 64444 64445 64446 64447 64448 64449 64450 64451 64452 64453 64454 64455 64456 64457 64458 64459 64460 64461 64462 64463 64464 64465 64466 64467 64468 64469 64470 64471 64472 64473 64474 64475 64476 64477 64478 64479 64480 64481 64482 64483 64484 64485 64486 64487 64488 64489 64490 64491 64492 64493 64494 64495 64496 64497 64498 64499 64500 64501 64502 64503 64504 64505 64506 64507 64508 64509 64510 64511 64512 64513 64514 64515 64516 64517 64518 64519 64520 64521 64522 64523 64524 64525 64526 64527 64528 64529 64530 64531 64532 64533 64534 64535 64536 64537 64538 64539 64540 64541 64542 64543 64544 64545 64546 64547 64548 64549 64550 64551 64552 64553 64554 64555 64556 64557 64558 64559 64560 64561 64562 64563 64564 64565 64566 64567 64568 64569 64570 64571 64572 | pIndex->aiRowEst[i] = v; if( *z==' ' ) z++; } return 0; } /* ** If the Index.aSample variable is not NULL, delete the aSample[] array ** and its contents. */ SQLITE_PRIVATE void sqlite3DeleteIndexSamples(Index *pIdx){ #ifdef SQLITE_ENABLE_STAT2 if( pIdx->aSample ){ int j; sqlite3 *dbMem = pIdx->pTable->dbMem; for(j=0; j<SQLITE_INDEX_SAMPLES; j++){ IndexSample *p = &pIdx->aSample[j]; if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){ sqlite3DbFree(pIdx->pTable->dbMem, p->u.z); } } sqlite3DbFree(dbMem, pIdx->aSample); pIdx->aSample = 0; } #else UNUSED_PARAMETER(pIdx); #endif } /* ** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] ** arrays. The contents of sqlite_stat2 are used to populate the ** Index.aSample[] arrays. ** ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR ** is returned. In this case, even if SQLITE_ENABLE_STAT2 was defined ** during compilation and the sqlite_stat2 table is present, no data is ** read from it. ** ** If SQLITE_ENABLE_STAT2 was defined during compilation and the ** sqlite_stat2 table is not present in the database, SQLITE_ERROR is ** returned. However, in this case, data is read from the sqlite_stat1 ** table (if it is present) before returning. ** ** If an OOM error occurs, this function always sets db->mallocFailed. ** This means if the caller does not care about other errors, the return ** code may be ignored. */ SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ analysisInfo sInfo; HashElem *i; char *zSql; int rc; assert( iDb>=0 && iDb<db->nDb ); assert( db->aDb[iDb].pBt!=0 ); assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); /* Clear any prior statistics */ for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); sqlite3DefaultRowEst(pIdx); sqlite3DeleteIndexSamples(pIdx); } /* Check to make sure the sqlite_stat1 table exists */ sInfo.db = db; sInfo.zDatabase = db->aDb[iDb].zName; if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ return SQLITE_ERROR; } /* Load new statistics out of the sqlite_stat1 table */ zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ (void)sqlite3SafetyOff(db); rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); (void)sqlite3SafetyOn(db); sqlite3DbFree(db, zSql); } /* Load the statistics from the sqlite_stat2 table. */ #ifdef SQLITE_ENABLE_STAT2 if( rc==SQLITE_OK && !sqlite3FindTable(db, "sqlite_stat2", sInfo.zDatabase) ){ rc = SQLITE_ERROR; } if( rc==SQLITE_OK ){ sqlite3_stmt *pStmt = 0; zSql = sqlite3MPrintf(db, "SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase); if( !zSql ){ rc = SQLITE_NOMEM; }else{ (void)sqlite3SafetyOff(db); rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); (void)sqlite3SafetyOn(db); sqlite3DbFree(db, zSql); } if( rc==SQLITE_OK ){ (void)sqlite3SafetyOff(db); while( sqlite3_step(pStmt)==SQLITE_ROW ){ char *zIndex = (char *)sqlite3_column_text(pStmt, 0); Index *pIdx = sqlite3FindIndex(db, zIndex, sInfo.zDatabase); if( pIdx ){ int iSample = sqlite3_column_int(pStmt, 1); sqlite3 *dbMem = pIdx->pTable->dbMem; assert( dbMem==db || dbMem==0 ); if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){ int eType = sqlite3_column_type(pStmt, 2); if( pIdx->aSample==0 ){ static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES; pIdx->aSample = (IndexSample *)sqlite3DbMallocZero(dbMem, sz); if( pIdx->aSample==0 ){ db->mallocFailed = 1; break; } } assert( pIdx->aSample ); { IndexSample *pSample = &pIdx->aSample[iSample]; pSample->eType = (u8)eType; if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ pSample->u.r = sqlite3_column_double(pStmt, 2); }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ const char *z = (const char *)( (eType==SQLITE_BLOB) ? sqlite3_column_blob(pStmt, 2): sqlite3_column_text(pStmt, 2) ); int n = sqlite3_column_bytes(pStmt, 2); if( n>24 ){ n = 24; } pSample->nByte = (u8)n; pSample->u.z = sqlite3DbMallocRaw(dbMem, n); if( pSample->u.z ){ memcpy(pSample->u.z, z, n); }else{ db->mallocFailed = 1; break; } } } } } } rc = sqlite3_finalize(pStmt); (void)sqlite3SafetyOn(db); } } #endif if( rc==SQLITE_NOMEM ){ db->mallocFailed = 1; } return rc; } #endif /* SQLITE_OMIT_ANALYZE */ |
︙ | ︙ | |||
63923 63924 63925 63926 63927 63928 63929 63930 63931 | sqlite3 *db = pParse->db; int rc; Table *pTab = 0; /* The table being read */ const char *zCol; /* Name of the column of the table */ int iSrc; /* Index in pTabList->a[] of table being read */ const char *zDBase; /* Name of database being accessed */ int iDb; /* The index of the database the expression refers to */ if( db->xAuth==0 ) return; | > < > > > > > | | | < < < < < | | | < < | | | | 65221 65222 65223 65224 65225 65226 65227 65228 65229 65230 65231 65232 65233 65234 65235 65236 65237 65238 65239 65240 65241 65242 65243 65244 65245 65246 65247 65248 65249 65250 65251 65252 65253 65254 65255 65256 65257 65258 65259 65260 65261 65262 | sqlite3 *db = pParse->db; int rc; Table *pTab = 0; /* The table being read */ const char *zCol; /* Name of the column of the table */ int iSrc; /* Index in pTabList->a[] of table being read */ const char *zDBase; /* Name of database being accessed */ int iDb; /* The index of the database the expression refers to */ int iCol; /* Index of column in table */ if( db->xAuth==0 ) return; iDb = sqlite3SchemaToIndex(pParse->db, pSchema); if( iDb<0 ){ /* An attempt to read a column out of a subquery or other ** temporary table. */ return; } assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER ); if( pExpr->op==TK_TRIGGER ){ pTab = pParse->pTriggerTab; }else{ assert( pTabList ); for(iSrc=0; ALWAYS(iSrc<pTabList->nSrc); iSrc++){ if( pExpr->iTable==pTabList->a[iSrc].iCursor ){ pTab = pTabList->a[iSrc].pTab; break; } } } iCol = pExpr->iColumn; if( NEVER(pTab==0) ) return; if( iCol>=0 ){ assert( iCol<pTab->nCol ); zCol = pTab->aCol[iCol].zName; }else if( pTab->iPKey>=0 ){ assert( pTab->iPKey<pTab->nCol ); zCol = pTab->aCol[pTab->iPKey].zName; }else{ zCol = "ROWID"; } assert( iDb>=0 && iDb<db->nDb ); |
︙ | ︙ | |||
64111 64112 64113 64114 64115 64116 64117 64118 64119 64120 | SQLITE_PRIVATE void sqlite3TableLock( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database containing the table to lock */ int iTab, /* Root page number of the table to be locked */ u8 isWriteLock, /* True for a write lock */ const char *zName /* Name of the table to be locked */ ){ int i; int nBytes; TableLock *p; | > < > | | | | | | | | | | 65407 65408 65409 65410 65411 65412 65413 65414 65415 65416 65417 65418 65419 65420 65421 65422 65423 65424 65425 65426 65427 65428 65429 65430 65431 65432 65433 65434 65435 65436 65437 65438 65439 65440 65441 65442 65443 65444 65445 65446 | SQLITE_PRIVATE void sqlite3TableLock( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database containing the table to lock */ int iTab, /* Root page number of the table to be locked */ u8 isWriteLock, /* True for a write lock */ const char *zName /* Name of the table to be locked */ ){ Parse *pToplevel = sqlite3ParseToplevel(pParse); int i; int nBytes; TableLock *p; assert( iDb>=0 ); for(i=0; i<pToplevel->nTableLock; i++){ p = &pToplevel->aTableLock[i]; if( p->iDb==iDb && p->iTab==iTab ){ p->isWriteLock = (p->isWriteLock || isWriteLock); return; } } nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); pToplevel->aTableLock = sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); if( pToplevel->aTableLock ){ p = &pToplevel->aTableLock[pToplevel->nTableLock++]; p->iDb = iDb; p->iTab = iTab; p->isWriteLock = isWriteLock; p->zName = zName; }else{ pToplevel->nTableLock = 0; pToplevel->db->mallocFailed = 1; } } /* ** Code an OP_TableLock instruction for each table locked by the ** statement (configured by calls to sqlite3TableLock()). */ |
︙ | ︙ | |||
64184 64185 64186 64187 64188 64189 64190 64191 64192 64193 64194 64195 64196 64197 | if( pParse->nested ) return; if( pParse->nErr ) return; /* Begin by generating some termination code at the end of the ** vdbe program */ v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp0(v, OP_Halt); /* The cookie mask contains one bit for each database file open. ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie | > > | 65481 65482 65483 65484 65485 65486 65487 65488 65489 65490 65491 65492 65493 65494 65495 65496 | if( pParse->nested ) return; if( pParse->nErr ) return; /* Begin by generating some termination code at the end of the ** vdbe program */ v = sqlite3GetVdbe(pParse); assert( !pParse->isMultiWrite || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); if( v ){ sqlite3VdbeAddOp0(v, OP_Halt); /* The cookie mask contains one bit for each database file open. ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie |
︙ | ︙ | |||
64241 64242 64243 64244 64245 64246 64247 | if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ #ifdef SQLITE_DEBUG FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; sqlite3VdbeTrace(v, trace); #endif assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem, | | > | 65540 65541 65542 65543 65544 65545 65546 65547 65548 65549 65550 65551 65552 65553 65554 65555 | if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ #ifdef SQLITE_DEBUG FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; sqlite3VdbeTrace(v, trace); #endif assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem, pParse->nTab, pParse->nMaxArg, pParse->explain, pParse->isMultiWrite && pParse->mayAbort); pParse->rc = SQLITE_DONE; pParse->colNamesSet = 0; }else if( pParse->rc==SQLITE_OK ){ pParse->rc = SQLITE_ERROR; } pParse->nTab = 0; pParse->nMem = 0; |
︙ | ︙ | |||
64390 64391 64392 64393 64394 64395 64396 64397 64398 64399 64400 64401 64402 64403 | /* ** Reclaim the memory used by an index */ static void freeIndex(Index *p){ sqlite3 *db = p->pTable->dbMem; /* testcase( db==0 ); */ sqlite3DbFree(db, p->zColAff); sqlite3DbFree(db, p); } /* ** Remove the given index from the index hash table, and free ** its memory structures. | > | 65690 65691 65692 65693 65694 65695 65696 65697 65698 65699 65700 65701 65702 65703 65704 | /* ** Reclaim the memory used by an index */ static void freeIndex(Index *p){ sqlite3 *db = p->pTable->dbMem; /* testcase( db==0 ); */ sqlite3DeleteIndexSamples(p); sqlite3DbFree(db, p->zColAff); sqlite3DbFree(db, p); } /* ** Remove the given index from the index hash table, and free ** its memory structures. |
︙ | ︙ | |||
65303 65304 65305 65306 65307 65308 65309 | sqlite3 *db = pParse->db; u8 enc = ENC(db); u8 initbusy = db->init.busy; CollSeq *pColl; pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); if( !initbusy && (!pColl || !pColl->xCmp) ){ | | | 66604 66605 66606 66607 66608 66609 66610 66611 66612 66613 66614 66615 66616 66617 66618 | sqlite3 *db = pParse->db; u8 enc = ENC(db); u8 initbusy = db->init.busy; CollSeq *pColl; pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); if( !initbusy && (!pColl || !pColl->xCmp) ){ pColl = sqlite3GetCollSeq(db, enc, pColl, zName); if( !pColl ){ sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); } } return pColl; } |
︙ | ︙ | |||
65923 65924 65925 65926 65927 65928 65929 65930 65931 65932 65933 65934 65935 65936 | ** if a root-page of another table is moved by the btree-layer whilst ** erasing iTable (this can happen with an auto-vacuum database). */ static void destroyRootPage(Parse *pParse, int iTable, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); #ifndef SQLITE_OMIT_AUTOVACUUM /* OP_Destroy stores an in integer r1. If this integer ** is non-zero, then it is the root page number of a table moved to ** location iTable. The following code modifies the sqlite_master table to ** reflect this. ** ** The "#NNN" in the SQL is a special constant that means whatever value | > | 67224 67225 67226 67227 67228 67229 67230 67231 67232 67233 67234 67235 67236 67237 67238 | ** if a root-page of another table is moved by the btree-layer whilst ** erasing iTable (this can happen with an auto-vacuum database). */ static void destroyRootPage(Parse *pParse, int iTable, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); sqlite3MayAbort(pParse); #ifndef SQLITE_OMIT_AUTOVACUUM /* OP_Destroy stores an in integer r1. If this integer ** is non-zero, then it is the root page number of a table moved to ** location iTable. The following code modifies the sqlite_master table to ** reflect this. ** ** The "#NNN" in the SQL is a special constant that means whatever value |
︙ | ︙ | |||
66364 66365 66366 66367 66368 66369 66370 | ** (made available to the compiler for reuse) using ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique ** opcode use the values stored within seems dangerous. However, since ** we can be sure that no other temp registers have been allocated ** since sqlite3ReleaseTempRange() was called, it is safe to do so. */ sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32); | | | | 67666 67667 67668 67669 67670 67671 67672 67673 67674 67675 67676 67677 67678 67679 67680 67681 | ** (made available to the compiler for reuse) using ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique ** opcode use the values stored within seems dangerous. However, since ** we can be sure that no other temp registers have been allocated ** since sqlite3ReleaseTempRange() was called, it is safe to do so. */ sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32); sqlite3HaltConstraint( pParse, OE_Abort, "indexed columns are not unique", P4_STATIC); } sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_Close, iTab); |
︙ | ︙ | |||
67468 67469 67470 67471 67472 67473 67474 | ** cookie verification subroutine code happens in sqlite3FinishCoding(). ** ** If iDb<0 then code the OP_Goto only - don't set flag to verify the ** schema on any databases. This can be used to position the OP_Goto ** early in the code, before we know if any database tables will be used. */ SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ | | < < > | | < < | > > > | | | | > | | > | > > > > > > > > | > > > > > > | > | > | 68770 68771 68772 68773 68774 68775 68776 68777 68778 68779 68780 68781 68782 68783 68784 68785 68786 68787 68788 68789 68790 68791 68792 68793 68794 68795 68796 68797 68798 68799 68800 68801 68802 68803 68804 68805 68806 68807 68808 68809 68810 68811 68812 68813 68814 68815 68816 68817 68818 68819 68820 68821 68822 68823 68824 68825 68826 68827 68828 68829 68830 68831 68832 68833 68834 68835 68836 68837 68838 68839 68840 68841 68842 68843 68844 68845 68846 68847 68848 | ** cookie verification subroutine code happens in sqlite3FinishCoding(). ** ** If iDb<0 then code the OP_Goto only - don't set flag to verify the ** schema on any databases. This can be used to position the OP_Goto ** early in the code, before we know if any database tables will be used. */ SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ Parse *pToplevel = sqlite3ParseToplevel(pParse); if( pToplevel->cookieGoto==0 ){ Vdbe *v = sqlite3GetVdbe(pToplevel); if( v==0 ) return; /* This only happens if there was a prior error */ pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; } if( iDb>=0 ){ sqlite3 *db = pToplevel->db; int mask; assert( iDb<db->nDb ); assert( db->aDb[iDb].pBt!=0 || iDb==1 ); assert( iDb<SQLITE_MAX_ATTACHED+2 ); mask = 1<<iDb; if( (pToplevel->cookieMask & mask)==0 ){ pToplevel->cookieMask |= mask; pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; if( !OMIT_TEMPDB && iDb==1 ){ sqlite3OpenTempDatabase(pToplevel); } } } } /* ** Generate VDBE code that prepares for doing an operation that ** might change the database. ** ** This routine starts a new transaction if we are not already within ** a transaction. If we are already within a transaction, then a checkpoint ** is set if the setStatement parameter is true. A checkpoint should ** be set for operations that might fail (due to a constraint) part of ** the way through and which will need to undo some writes without having to ** rollback the whole transaction. For operations where all constraints ** can be checked before any changes are made to the database, it is never ** necessary to undo a write and the checkpoint should not be set. */ SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ Parse *pToplevel = sqlite3ParseToplevel(pParse); sqlite3CodeVerifySchema(pParse, iDb); pToplevel->writeMask |= 1<<iDb; pToplevel->isMultiWrite |= setStatement; } /* ** Set the "may throw abort exception" flag for the statement currently ** being coded. */ SQLITE_PRIVATE void sqlite3MayAbort(Parse *pParse){ Parse *pToplevel = sqlite3ParseToplevel(pParse); pToplevel->mayAbort = 1; } /* ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT ** error. The onError parameter determines which (if any) of the statement ** and/or current transaction is rolled back. */ SQLITE_PRIVATE void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){ Vdbe *v = sqlite3GetVdbe(pParse); if( onError==OE_Abort ){ sqlite3MayAbort(pParse); } sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type); } /* ** Check to see if pIndex uses the collating sequence pColl. Return ** true if it does and false if it does not. */ #ifndef SQLITE_OMIT_REINDEX |
︙ | ︙ | |||
67705 67706 67707 67708 67709 67710 67711 | ** ** $Id: callback.c,v 1.42 2009/06/17 00:35:31 drh Exp $ */ /* ** Invoke the 'collation needed' callback to request a collation sequence | | < | | | 69025 69026 69027 69028 69029 69030 69031 69032 69033 69034 69035 69036 69037 69038 69039 69040 69041 69042 69043 69044 69045 69046 | ** ** $Id: callback.c,v 1.42 2009/06/17 00:35:31 drh Exp $ */ /* ** Invoke the 'collation needed' callback to request a collation sequence ** in the encoding enc of name zName, length nName. */ static void callCollNeeded(sqlite3 *db, int enc, const char *zName){ assert( !db->xCollNeeded || !db->xCollNeeded16 ); if( db->xCollNeeded ){ char *zExternal = sqlite3DbStrDup(db, zName); if( !zExternal ) return; db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal); sqlite3DbFree(db, zExternal); } #ifndef SQLITE_OMIT_UTF16 if( db->xCollNeeded16 ){ char const *zExternal; sqlite3_value *pTmp = sqlite3ValueNew(db); sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC); |
︙ | ︙ | |||
67756 67757 67758 67759 67760 67761 67762 | } return SQLITE_ERROR; } /* ** This function is responsible for invoking the collation factory callback ** or substituting a collation sequence of a different encoding when the | | < > | | | | 69075 69076 69077 69078 69079 69080 69081 69082 69083 69084 69085 69086 69087 69088 69089 69090 69091 69092 69093 69094 69095 69096 69097 69098 69099 69100 69101 69102 69103 69104 69105 69106 69107 69108 69109 69110 69111 69112 69113 69114 69115 69116 69117 | } return SQLITE_ERROR; } /* ** This function is responsible for invoking the collation factory callback ** or substituting a collation sequence of a different encoding when the ** requested collation sequence is not available in the desired encoding. ** ** If it is not NULL, then pColl must point to the database native encoding ** collation sequence with name zName, length nName. ** ** The return value is either the collation sequence to be used in database ** db for collation type name zName, length nName, or NULL, if no collation ** sequence can be found. ** ** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq() */ SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq( sqlite3* db, /* The database connection */ u8 enc, /* The desired encoding for the collating sequence */ CollSeq *pColl, /* Collating sequence with native encoding, or NULL */ const char *zName /* Collating sequence name */ ){ CollSeq *p; p = pColl; if( !p ){ p = sqlite3FindCollSeq(db, enc, zName, 0); } if( !p || !p->xCmp ){ /* No collation sequence of this type for this encoding is registered. ** Call the collation factory to see if it can supply us with one. */ callCollNeeded(db, enc, zName); p = sqlite3FindCollSeq(db, enc, zName, 0); } if( p && !p->xCmp && synthCollSeq(db, p) ){ p = 0; } assert( !p || p->xCmp ); return p; } |
︙ | ︙ | |||
67807 67808 67809 67810 67811 67812 67813 | ** request a definition of the collating sequence. If this doesn't work, ** an equivalent collating sequence that uses a text encoding different ** from the main database is substituted, if one is available. */ SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){ if( pColl ){ const char *zName = pColl->zName; | > | | 69126 69127 69128 69129 69130 69131 69132 69133 69134 69135 69136 69137 69138 69139 69140 69141 | ** request a definition of the collating sequence. If this doesn't work, ** an equivalent collating sequence that uses a text encoding different ** from the main database is substituted, if one is available. */ SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){ if( pColl ){ const char *zName = pColl->zName; sqlite3 *db = pParse->db; CollSeq *p = sqlite3GetCollSeq(db, ENC(db), pColl, zName); if( !p ){ sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); pParse->nErr++; return SQLITE_ERROR; } assert( p==pColl ); } |
︙ | ︙ | |||
68365 68366 68367 68368 68369 68370 68371 | int end, addr = 0; /* A couple addresses of generated code */ int i; /* Loop counter */ WhereInfo *pWInfo; /* Information about the WHERE clause */ Index *pIdx; /* For looping over indices of the table */ int iCur; /* VDBE Cursor number for pTab */ sqlite3 *db; /* Main database structure */ AuthContext sContext; /* Authorization context */ | < < < < < < | 69685 69686 69687 69688 69689 69690 69691 69692 69693 69694 69695 69696 69697 69698 69699 69700 69701 69702 69703 69704 69705 69706 69707 | int end, addr = 0; /* A couple addresses of generated code */ int i; /* Loop counter */ WhereInfo *pWInfo; /* Information about the WHERE clause */ Index *pIdx; /* For looping over indices of the table */ int iCur; /* VDBE Cursor number for pTab */ sqlite3 *db; /* Main database structure */ AuthContext sContext; /* Authorization context */ NameContext sNC; /* Name context to resolve expressions in */ int iDb; /* Database number */ int memCnt = -1; /* Memory cell used for change counting */ int rcauth; /* Value returned by authorization callback */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to delete from a view */ Trigger *pTrigger; /* List of table triggers, if required */ #endif memset(&sContext, 0, sizeof(sContext)); db = pParse->db; if( pParse->nErr || db->mallocFailed ){ goto delete_from_cleanup; } assert( pTabList->nSrc==1 ); |
︙ | ︙ | |||
68430 68431 68432 68433 68434 68435 68436 | rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb); assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE ); if( rcauth==SQLITE_DENY ){ goto delete_from_cleanup; } assert(!isView || pTrigger); | < < < < < < | 69744 69745 69746 69747 69748 69749 69750 69751 69752 69753 69754 69755 69756 69757 | rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb); assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE ); if( rcauth==SQLITE_DENY ){ goto delete_from_cleanup; } assert(!isView || pTrigger); /* Assign cursor number to the table and all its indices. */ assert( pTabList->nSrc==1 ); iCur = pTabList->a[0].iCursor = pParse->nTab++; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ pParse->nTab++; } |
︙ | ︙ | |||
68459 68460 68461 68462 68463 68464 68465 | v = sqlite3GetVdbe(pParse); if( v==0 ){ goto delete_from_cleanup; } if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, (pTrigger?1:0), iDb); | < < < < < < < < < < < < < < < < < < | 69767 69768 69769 69770 69771 69772 69773 69774 69775 69776 69777 69778 69779 69780 | v = sqlite3GetVdbe(pParse); if( v==0 ){ goto delete_from_cleanup; } if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, (pTrigger?1:0), iDb); /* If we are trying to delete from a view, realize that view into ** a ephemeral table. */ #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) if( isView ){ sqlite3MaterializeView(pParse, pTab, pWhere, iCur); } |
︙ | ︙ | |||
68505 68506 68507 68508 68509 68510 68511 | if( db->flags & SQLITE_CountRows ){ memCnt = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt); } #ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION /* Special case: A DELETE without a WHERE clause deletes everything. | | | | < > < < < < < < | < > > > > < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | | | | > | | > | < < < < < < < < < < | | | < | | | 69795 69796 69797 69798 69799 69800 69801 69802 69803 69804 69805 69806 69807 69808 69809 69810 69811 69812 69813 69814 69815 69816 69817 69818 69819 69820 69821 69822 69823 69824 69825 69826 69827 69828 69829 69830 69831 69832 69833 69834 69835 69836 69837 69838 69839 69840 69841 69842 69843 69844 69845 69846 69847 69848 69849 69850 69851 69852 69853 69854 69855 69856 69857 69858 69859 69860 69861 69862 69863 69864 69865 69866 69867 69868 69869 69870 69871 69872 69873 69874 69875 69876 69877 69878 69879 69880 69881 69882 69883 69884 69885 69886 69887 69888 69889 69890 69891 69892 69893 69894 69895 69896 | if( db->flags & SQLITE_CountRows ){ memCnt = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt); } #ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION /* Special case: A DELETE without a WHERE clause deletes everything. ** It is easier just to erase the whole table. Prior to version 3.6.5, ** this optimization caused the row change count (the value returned by ** API function sqlite3_count_changes) to be set incorrectly. */ if( rcauth==SQLITE_OK && pWhere==0 && !pTrigger && !IsVirtual(pTab) ){ assert( !isView ); sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt, pTab->zName, P4_STATIC); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->pSchema==pTab->pSchema ); sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb); } }else #endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */ /* The usual case: There is a WHERE clause so we have to scan through ** the table and pick which records to delete. */ { int iRowSet = ++pParse->nMem; /* Register for rowset of rows to delete */ int iRowid = ++pParse->nMem; /* Used for storing rowid values. */ int regRowid; /* Actual register containing rowids */ /* Collect rowids of every row to be deleted. */ sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0,WHERE_DUPLICATES_OK); if( pWInfo==0 ) goto delete_from_cleanup; regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid, 0); sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid); if( db->flags & SQLITE_CountRows ){ sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1); } sqlite3WhereEnd(pWInfo); /* Delete every item whose key was written to the list during the ** database scan. We have to delete items after the scan is complete ** because deleting an item can change the scan order. */ end = sqlite3VdbeMakeLabel(v); /* Unless this is a view, open cursors for the table we are ** deleting from and all its indices. If this is a view, then the ** only effect this statement has is to fire the INSTEAD OF ** triggers. */ if( !isView ){ sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite); } addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, end, iRowid); /* Delete the row */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVTab, P4_VTAB); sqlite3MayAbort(pParse); }else #endif { int count = (pParse->nested==0); /* True to count changes */ sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, count, pTrigger, OE_Default); } /* End of the delete loop */ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); sqlite3VdbeResolveLabel(v, end); /* Close the cursors open on the table and its indexes. */ if( !isView && !IsVirtual(pTab) ){ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum); } sqlite3VdbeAddOp1(v, OP_Close, iCur); } } /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 ){ sqlite3AutoincrementEnd(pParse); } /* Return the number of rows that were deleted. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC); } delete_from_cleanup: sqlite3AuthContextPop(&sContext); |
︙ | ︙ | |||
68664 68665 68666 68667 68668 68669 68670 | ** ** 2. Read/write cursors for all indices of pTab must be open as ** cursor number base+i for the i-th index. ** ** 3. The record number of the row to be deleted must be stored in ** memory cell iRowid. ** | < | | | > > > > > | > > | > > > > > | > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > | > > > > > > | | | | | > > > > > > > > > > > > | | 69911 69912 69913 69914 69915 69916 69917 69918 69919 69920 69921 69922 69923 69924 69925 69926 69927 69928 69929 69930 69931 69932 69933 69934 69935 69936 69937 69938 69939 69940 69941 69942 69943 69944 69945 69946 69947 69948 69949 69950 69951 69952 69953 69954 69955 69956 69957 69958 69959 69960 69961 69962 69963 69964 69965 69966 69967 69968 69969 69970 69971 69972 69973 69974 69975 69976 69977 69978 69979 69980 69981 69982 69983 69984 69985 69986 69987 69988 69989 69990 69991 69992 69993 69994 69995 69996 69997 69998 69999 70000 70001 70002 70003 70004 70005 70006 | ** ** 2. Read/write cursors for all indices of pTab must be open as ** cursor number base+i for the i-th index. ** ** 3. The record number of the row to be deleted must be stored in ** memory cell iRowid. ** ** This routine generates code to remove both the table record and all ** index entries that point to that record. */ SQLITE_PRIVATE void sqlite3GenerateRowDelete( Parse *pParse, /* Parsing context */ Table *pTab, /* Table containing the row to be deleted */ int iCur, /* Cursor number for the table */ int iRowid, /* Memory cell that contains the rowid to delete */ int count, /* If non-zero, increment the row change counter */ Trigger *pTrigger, /* List of triggers to (potentially) fire */ int onconf /* Default ON CONFLICT policy for triggers */ ){ Vdbe *v = pParse->pVdbe; /* Vdbe */ int iOld = 0; /* First register in OLD.* array */ int iLabel; /* Label resolved to end of generated code */ /* Vdbe is guaranteed to have been allocated by this stage. */ assert( v ); /* Seek cursor iCur to the row to delete. If this row no longer exists ** (this can happen if a trigger program has already deleted it), do ** not attempt to delete it or fire any DELETE triggers. */ iLabel = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, iLabel, iRowid); /* If there are any triggers to fire, allocate a range of registers to ** use for the old.* references in the triggers. */ if( pTrigger ){ u32 mask; /* Mask of OLD.* columns in use */ int iCol; /* Iterator used while populating OLD.* */ /* TODO: Could use temporary registers here. Also could attempt to ** avoid copying the contents of the rowid register. */ mask = sqlite3TriggerOldmask(pParse, pTrigger, TK_DELETE, 0, pTab, onconf); iOld = pParse->nMem+1; pParse->nMem += (1 + pTab->nCol); /* Populate the OLD.* pseudo-table register array. These values will be ** used by any BEFORE and AFTER triggers that exist. */ sqlite3VdbeAddOp2(v, OP_Copy, iRowid, iOld); for(iCol=0; iCol<pTab->nCol; iCol++){ if( mask==0xffffffff || mask&(1<<iCol) ){ int iTarget = iOld + iCol + 1; sqlite3VdbeAddOp3(v, OP_Column, iCur, iCol, iTarget); sqlite3ColumnDefault(v, pTab, iCol, iTarget); } } /* Invoke any BEFORE trigger programs */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_DELETE, 0, TRIGGER_BEFORE, pTab, -1, iOld, onconf, iLabel ); /* Seek the cursor to the row to be deleted again. It may be that ** the BEFORE triggers coded above have already removed the row ** being deleted. Do not attempt to delete the row a second time, and ** do not fire AFTER triggers. */ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, iLabel, iRowid); } /* Delete the index and table entries. Skip this step if pTab is really ** a view (in which case the only effect of the DELETE statement is to ** fire the INSTEAD OF triggers). */ if( pTab->pSelect==0 ){ sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0); sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0)); if( count ){ sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC); } } /* Invoke AFTER triggers. */ if( pTrigger ){ sqlite3CodeRowTrigger(pParse, pTrigger, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1, iOld, onconf, iLabel ); } /* Jump here if the row had already been deleted before any BEFORE ** trigger programs were invoked. Or if a trigger program throws a ** RAISE(IGNORE) exception. */ sqlite3VdbeResolveLabel(v, iLabel); } /* ** This routine generates VDBE code that causes the deletion of all ** index entries associated with a single row of a single table. ** ** The VDBE must be in a particular state when this routine is called. |
︙ | ︙ | |||
68759 68760 68761 68762 68763 68764 68765 | }else{ sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j); sqlite3ColumnDefault(v, pTab, idx, -1); } } if( doMakeRec ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut); | | | 70066 70067 70068 70069 70070 70071 70072 70073 70074 70075 70076 70077 70078 70079 70080 | }else{ sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j); sqlite3ColumnDefault(v, pTab, idx, -1); } } if( doMakeRec ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut); sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0); sqlite3ExprCacheAffinityChange(pParse, regBase, nCol+1); } sqlite3ReleaseTempRange(pParse, regBase, nCol+1); return regBase; } /* Make sure "isView" gets undefined in case this file becomes part of |
︙ | ︙ | |||
68790 68791 68792 68793 68794 68795 68796 | ************************************************************************* ** This file contains the C functions that implement various SQL ** functions of SQLite. ** ** There is only one exported symbol in this file - the function ** sqliteRegisterBuildinFunctions() found at the bottom of the file. ** All other code has file scope. | < < | 70097 70098 70099 70100 70101 70102 70103 70104 70105 70106 70107 70108 70109 70110 | ************************************************************************* ** This file contains the C functions that implement various SQL ** functions of SQLite. ** ** There is only one exported symbol in this file - the function ** sqliteRegisterBuildinFunctions() found at the bottom of the file. ** All other code has file scope. */ /* ** Return the collating function associated with a function. */ static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ return context->pColl; |
︙ | ︙ | |||
69473 69474 69475 69476 69477 69478 69479 | UNUSED_PARAMETER(NotUsed); if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ sqlite3_result_value(context, argv[0]); } } /* | | > > > > > > > > > > > > > > | 70778 70779 70780 70781 70782 70783 70784 70785 70786 70787 70788 70789 70790 70791 70792 70793 70794 70795 70796 70797 70798 70799 70800 70801 70802 70803 70804 70805 70806 70807 70808 70809 70810 70811 70812 70813 70814 70815 70816 | UNUSED_PARAMETER(NotUsed); if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ sqlite3_result_value(context, argv[0]); } } /* ** Implementation of the sqlite_version() function. The result is the version ** of the SQLite library that is running. */ static void versionFunc( sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC); } /* ** Implementation of the sqlite_source_id() function. The result is a string ** that identifies the particular version of the source code used to build ** SQLite. */ static void sourceidFunc( sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); sqlite3_result_text(context, SQLITE_SOURCE_ID, -1, SQLITE_STATIC); } /* Array for converting from half-bytes (nybbles) into ASCII hex ** digits. */ static const char hexdigits[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' }; |
︙ | ︙ | |||
70204 70205 70206 70207 70208 70209 70210 70211 70212 70213 70214 70215 70216 70217 | FUNCTION(coalesce, 0, 0, 0, 0 ), FUNCTION(hex, 1, 0, 0, hexFunc ), FUNCTION(ifnull, 2, 0, 1, ifnullFunc ), FUNCTION(random, 0, 0, 0, randomFunc ), FUNCTION(randomblob, 1, 0, 0, randomBlob ), FUNCTION(nullif, 2, 0, 1, nullifFunc ), FUNCTION(sqlite_version, 0, 0, 0, versionFunc ), FUNCTION(quote, 1, 0, 0, quoteFunc ), FUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), FUNCTION(changes, 0, 0, 0, changes ), FUNCTION(total_changes, 0, 0, 0, total_changes ), FUNCTION(replace, 3, 0, 0, replaceFunc ), FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), #ifdef SQLITE_SOUNDEX | > | 71523 71524 71525 71526 71527 71528 71529 71530 71531 71532 71533 71534 71535 71536 71537 | FUNCTION(coalesce, 0, 0, 0, 0 ), FUNCTION(hex, 1, 0, 0, hexFunc ), FUNCTION(ifnull, 2, 0, 1, ifnullFunc ), FUNCTION(random, 0, 0, 0, randomFunc ), FUNCTION(randomblob, 1, 0, 0, randomBlob ), FUNCTION(nullif, 2, 0, 1, nullifFunc ), FUNCTION(sqlite_version, 0, 0, 0, versionFunc ), FUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), FUNCTION(quote, 1, 0, 0, quoteFunc ), FUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), FUNCTION(changes, 0, 0, 0, changes ), FUNCTION(total_changes, 0, 0, 0, total_changes ), FUNCTION(replace, 3, 0, 0, replaceFunc ), FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), #ifdef SQLITE_SOUNDEX |
︙ | ︙ | |||
70286 70287 70288 70289 70290 70291 70292 | sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); VdbeComment((v, "%s", pTab->zName)); } /* | | | | > > > > | | | | 71606 71607 71608 71609 71610 71611 71612 71613 71614 71615 71616 71617 71618 71619 71620 71621 71622 71623 71624 71625 71626 71627 71628 71629 71630 71631 71632 71633 71634 71635 71636 71637 71638 71639 71640 71641 71642 71643 71644 71645 71646 71647 71648 71649 71650 71651 71652 71653 71654 71655 71656 71657 71658 71659 71660 71661 71662 71663 71664 | sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); VdbeComment((v, "%s", pTab->zName)); } /* ** Return a pointer to the column affinity string associated with index ** pIdx. A column affinity string has one character for each column in ** the table, according to the affinity of the column: ** ** Character Column affinity ** ------------------------------ ** 'a' TEXT ** 'b' NONE ** 'c' NUMERIC ** 'd' INTEGER ** 'e' REAL ** ** An extra 'b' is appended to the end of the string to cover the ** rowid that appears as the last column in every index. ** ** Memory for the buffer containing the column index affinity string ** is managed along with the rest of the Index structure. It will be ** released when sqlite3DeleteIndex() is called. */ SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ if( !pIdx->zColAff ){ /* The first time a column affinity string for a particular index is ** required, it is allocated and populated here. It is then stored as ** a member of the Index structure for subsequent use. ** ** The column affinity string will eventually be deleted by ** sqliteDeleteIndex() when the Index structure itself is cleaned ** up. */ int n; Table *pTab = pIdx->pTable; sqlite3 *db = sqlite3VdbeDb(v); pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2); if( !pIdx->zColAff ){ db->mallocFailed = 1; return 0; } for(n=0; n<pIdx->nColumn; n++){ pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; } pIdx->zColAff[n++] = SQLITE_AFF_NONE; pIdx->zColAff[n] = 0; } return pIdx->zColAff; } /* ** Set P4 of the most recently inserted opcode to a column affinity ** string for table pTab. A column affinity string has one character ** for each column indexed by the index, according to the affinity of the ** column: |
︙ | ︙ | |||
70442 70443 70444 70445 70446 70447 70448 70449 70450 | static int autoIncBegin( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database holding pTab */ Table *pTab /* The table we are writing to */ ){ int memId = 0; /* Register holding maximum rowid */ if( pTab->tabFlags & TF_Autoincrement ){ AutoincInfo *pInfo; | > | | | | | | > > > > > | 71766 71767 71768 71769 71770 71771 71772 71773 71774 71775 71776 71777 71778 71779 71780 71781 71782 71783 71784 71785 71786 71787 71788 71789 71790 71791 71792 71793 71794 71795 71796 71797 71798 71799 71800 71801 71802 71803 71804 71805 71806 71807 71808 71809 71810 71811 71812 71813 71814 71815 71816 | static int autoIncBegin( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database holding pTab */ Table *pTab /* The table we are writing to */ ){ int memId = 0; /* Register holding maximum rowid */ if( pTab->tabFlags & TF_Autoincrement ){ Parse *pToplevel = sqlite3ParseToplevel(pParse); AutoincInfo *pInfo; pInfo = pToplevel->pAinc; while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } if( pInfo==0 ){ pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo)); if( pInfo==0 ) return 0; pInfo->pNext = pToplevel->pAinc; pToplevel->pAinc = pInfo; pInfo->pTab = pTab; pInfo->iDb = iDb; pToplevel->nMem++; /* Register to hold name of table */ pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ pToplevel->nMem++; /* Rowid in sqlite_sequence */ } memId = pInfo->regCtr; } return memId; } /* ** This routine generates code that will initialize all of the ** register used by the autoincrement tracker. */ SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse){ AutoincInfo *p; /* Information about an AUTOINCREMENT */ sqlite3 *db = pParse->db; /* The database connection */ Db *pDb; /* Database only autoinc table */ int memId; /* Register holding max rowid */ int addr; /* A VDBE address */ Vdbe *v = pParse->pVdbe; /* VDBE under construction */ /* This routine is never called during trigger-generation. It is ** only called from the top-level */ assert( pParse->pTriggerTab==0 ); assert( pParse==sqlite3ParseToplevel(pParse) ); assert( v ); /* We failed long ago if this is not so */ for(p = pParse->pAinc; p; p = p->pNext){ pDb = &db->aDb[p->iDb]; memId = p->regCtr; sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); addr = sqlite3VdbeCurrentAddr(v); |
︙ | ︙ | |||
70695 70696 70697 70698 70699 70700 70701 | int endOfLoop; /* Label for the end of the insertion loop */ int useTempTable = 0; /* Store SELECT results in intermediate table */ int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ int addrInsTop = 0; /* Jump to label "D" */ int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ int addrSelect = 0; /* Address of coroutine that implements the SELECT */ SelectDest dest; /* Destination for SELECT on rhs of INSERT */ | < < | 72025 72026 72027 72028 72029 72030 72031 72032 72033 72034 72035 72036 72037 72038 72039 72040 72041 72042 72043 72044 72045 72046 72047 72048 72049 72050 72051 72052 | int endOfLoop; /* Label for the end of the insertion loop */ int useTempTable = 0; /* Store SELECT results in intermediate table */ int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ int addrInsTop = 0; /* Jump to label "D" */ int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ int addrSelect = 0; /* Address of coroutine that implements the SELECT */ SelectDest dest; /* Destination for SELECT on rhs of INSERT */ int iDb; /* Index of database holding TABLE */ Db *pDb; /* The database containing table being inserted into */ int appendFlag = 0; /* True if the insert is likely to be an append */ /* Register allocations */ int regFromSelect = 0;/* Base register for data coming from SELECT */ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ int regRowCount = 0; /* Memory cell used for the row counter */ int regIns; /* Block of regs holding rowid+data being inserted */ int regRowid; /* registers holding insert rowid */ int regData; /* register holding first column to insert */ int regRecord; /* Holds the assemblied row record */ int regEof = 0; /* Register recording end of SELECT data */ int *aRegIdx = 0; /* One register allocated to each index */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to insert into a view */ Trigger *pTrigger; /* List of triggers on pTab, if required */ int tmask; /* Mask of trigger times */ #endif |
︙ | ︙ | |||
70781 70782 70783 70784 70785 70786 70787 | /* Allocate a VDBE */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto insert_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); | < < < < < | 72109 72110 72111 72112 72113 72114 72115 72116 72117 72118 72119 72120 72121 72122 | /* Allocate a VDBE */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto insert_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); #ifndef SQLITE_OMIT_XFER_OPT /* If the statement is of the form ** ** INSERT INTO <table1> SELECT * FROM <table2>; ** ** Then special optimizations can be applied that make the transfer ** very fast and which reduce fragmentation of indices. |
︙ | ︙ | |||
70989 70990 70991 70992 70993 70994 70995 | /* If there is no IDLIST term but the table has an integer primary ** key, the set the keyColumn variable to the primary key column index ** in the original table definition. */ if( pColumn==0 && nColumn>0 ){ keyColumn = pTab->iPKey; } | < < < < < < | 72312 72313 72314 72315 72316 72317 72318 72319 72320 72321 72322 72323 72324 72325 | /* If there is no IDLIST term but the table has an integer primary ** key, the set the keyColumn variable to the primary key column index ** in the original table definition. */ if( pColumn==0 && nColumn>0 ){ keyColumn = pTab->iPKey; } /* Initialize the count of rows to be inserted */ if( db->flags & SQLITE_CountRows ){ regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } |
︙ | ︙ | |||
71061 71062 71063 71064 71065 71066 71067 | } regData = regRowid+1; /* Run the BEFORE and INSTEAD OF triggers, if there are any */ endOfLoop = sqlite3VdbeMakeLabel(v); if( tmask & TRIGGER_BEFORE ){ | < | < < | | | | | | | < | | | < < > < < < < | | < | > | 72378 72379 72380 72381 72382 72383 72384 72385 72386 72387 72388 72389 72390 72391 72392 72393 72394 72395 72396 72397 72398 72399 72400 72401 72402 72403 72404 72405 72406 72407 72408 72409 72410 72411 72412 72413 72414 72415 72416 72417 72418 72419 72420 72421 72422 72423 72424 72425 72426 72427 72428 72429 72430 72431 72432 72433 72434 72435 72436 72437 72438 72439 72440 72441 72442 72443 72444 72445 72446 72447 72448 72449 72450 72451 72452 72453 72454 72455 | } regData = regRowid+1; /* Run the BEFORE and INSTEAD OF triggers, if there are any */ endOfLoop = sqlite3VdbeMakeLabel(v); if( tmask & TRIGGER_BEFORE ){ int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); /* build the NEW.* reference row. Note that if there is an INTEGER ** PRIMARY KEY into which a NULL is being inserted, that NULL will be ** translated into a unique ID for the row. But on a BEFORE trigger, ** we do not know what the unique ID will be (because the insert has ** not happened yet) so we substitute a rowid of -1 */ if( keyColumn<0 ){ sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); }else{ int j1; if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols); }else{ assert( pSelect==0 ); /* Otherwise useTempTable is true */ sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols); } j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); sqlite3VdbeJumpHere(v, j1); sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); } /* Cannot have triggers on a virtual table. If it were possible, ** this block would have to account for hidden column. */ assert( !IsVirtual(pTab) ); /* Create the new column data */ for(i=0; i<pTab->nCol; i++){ if( pColumn==0 ){ j = i; }else{ for(j=0; j<pColumn->nId; j++){ if( pColumn->a[j].idx==i ) break; } } if( pColumn && j>=pColumn->nId ){ sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); }else if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); }else{ assert( pSelect==0 ); /* Otherwise useTempTable is true */ sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); } } /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, ** do not attempt any conversions before assembling the record. ** If this is a real table, attempt conversions as required by the ** table column affinities. */ if( !isView ){ sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol); sqlite3TableAffinityStr(v, pTab); } /* Fire BEFORE or INSTEAD OF triggers */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, pTab, -1, regCols-pTab->nCol-1, onError, endOfLoop); sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); } /* Push the record number for the new entry onto the stack. The ** record number is a randomly generate integer created by NewRowid ** except when the table has an INTEGER PRIMARY KEY column, in which ** case the record number is the same as that column. */ |
︙ | ︙ | |||
71232 71233 71234 71235 71236 71237 71238 71239 71240 71241 71242 71243 71244 71245 71246 | ** do the insertion. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); }else #endif { int isReplace; /* Set to true if constraints may cause a replace */ sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, keyColumn>=0, 0, onError, endOfLoop, &isReplace ); sqlite3CompleteInsertion( | > | < | | < < | 72540 72541 72542 72543 72544 72545 72546 72547 72548 72549 72550 72551 72552 72553 72554 72555 72556 72557 72558 72559 72560 72561 72562 72563 72564 72565 72566 72567 72568 72569 72570 72571 72572 72573 72574 72575 72576 72577 | ** do the insertion. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); sqlite3MayAbort(pParse); }else #endif { int isReplace; /* Set to true if constraints may cause a replace */ sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, keyColumn>=0, 0, onError, endOfLoop, &isReplace ); sqlite3CompleteInsertion( pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0 ); } } /* Update the count of rows that are inserted */ if( (db->flags & SQLITE_CountRows)!=0 ){ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); } if( pTrigger ){ /* Code AFTER triggers */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, pTab, -1, regData-2-pTab->nCol, onError, endOfLoop); } /* The bottom of the main insertion loop, if the data source ** is a SELECT statement. */ sqlite3VdbeResolveLabel(v, endOfLoop); if( useTempTable ){ |
︙ | ︙ | |||
71286 71287 71288 71289 71290 71291 71292 | } insert_end: /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ | | | < < < < | | | | > | > | | | | | 72592 72593 72594 72595 72596 72597 72598 72599 72600 72601 72602 72603 72604 72605 72606 72607 72608 72609 72610 72611 72612 72613 72614 72615 72616 72617 72618 72619 72620 72621 72622 72623 72624 72625 72626 72627 72628 72629 72630 72631 72632 72633 72634 72635 72636 72637 72638 72639 72640 72641 72642 72643 72644 72645 72646 72647 72648 72649 72650 72651 | } insert_end: /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 ){ sqlite3AutoincrementEnd(pParse); } /* ** Return the number of rows inserted. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); } insert_cleanup: sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pList); sqlite3SelectDelete(db, pSelect); sqlite3IdListDelete(db, pColumn); sqlite3DbFree(db, aRegIdx); } /* ** Generate code to do constraint checks prior to an INSERT or an UPDATE. ** ** The input is a range of consecutive registers as follows: ** ** 1. The rowid of the row after the update. ** ** 2. The data in the first column of the entry after the update. ** ** i. Data from middle columns... ** ** N. The data in the last column of the entry after the update. ** ** The regRowid parameter is the index of the register containing (1). ** ** If isUpdate is true and rowidChng is non-zero, then rowidChng contains ** the address of a register containing the rowid before the update takes ** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate ** is false, indicating an INSERT statement, then a non-zero rowidChng ** indicates that the rowid was explicitly specified as part of the ** INSERT statement. If rowidChng is false, it means that the rowid is ** computed automatically in an insert or that the rowid value is not ** modified by an update. ** ** The code generated by this routine store new index entries into ** registers identified by aRegIdx[]. No index entry is created for ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is ** the same as the order of indices on the linked list of indices ** attached to the table. ** |
︙ | ︙ | |||
71408 71409 71410 71411 71412 71413 71414 | int onError; /* Conflict resolution strategy */ int j1; /* Addresss of jump instruction */ int j2 = 0, j3; /* Addresses of jump instructions */ int regData; /* Register containing first data column */ int iCur; /* Table cursor number */ Index *pIdx; /* Pointer to one of the indices */ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ | | < | > | | 72712 72713 72714 72715 72716 72717 72718 72719 72720 72721 72722 72723 72724 72725 72726 72727 72728 72729 72730 72731 72732 72733 72734 72735 72736 72737 72738 72739 72740 72741 72742 72743 72744 72745 72746 72747 72748 72749 72750 72751 72752 72753 72754 72755 | int onError; /* Conflict resolution strategy */ int j1; /* Addresss of jump instruction */ int j2 = 0, j3; /* Addresses of jump instructions */ int regData; /* Register containing first data column */ int iCur; /* Table cursor number */ Index *pIdx; /* Pointer to one of the indices */ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid; v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ nCol = pTab->nCol; regData = regRowid + 1; /* Test all NOT NULL constraints. */ for(i=0; i<nCol; i++){ if( i==pTab->iPKey ){ continue; } onError = pTab->aCol[i].notNull; if( onError==OE_None ) continue; if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ onError = OE_Abort; } assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail || onError==OE_Ignore || onError==OE_Replace ); switch( onError ){ case OE_Abort: sqlite3MayAbort(pParse); case OE_Rollback: case OE_Fail: { char *zMsg; j1 = sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT, onError, regData+i); zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL", pTab->zName, pTab->aCol[i].zName); sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); |
︙ | ︙ | |||
71472 71473 71474 71475 71476 71477 71478 | int allOk = sqlite3VdbeMakeLabel(v); pParse->ckBase = regData; sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); onError = overrideError!=OE_Default ? overrideError : OE_Abort; if( onError==OE_Ignore ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); }else{ | | | | | > > > > > > > > > > > > > > > > > > | > | 72776 72777 72778 72779 72780 72781 72782 72783 72784 72785 72786 72787 72788 72789 72790 72791 72792 72793 72794 72795 72796 72797 72798 72799 72800 72801 72802 72803 72804 72805 72806 72807 72808 72809 72810 72811 72812 72813 72814 72815 72816 72817 72818 72819 72820 72821 72822 72823 72824 72825 72826 72827 72828 72829 72830 72831 72832 72833 72834 72835 72836 72837 72838 72839 72840 72841 72842 72843 72844 72845 | int allOk = sqlite3VdbeMakeLabel(v); pParse->ckBase = regData; sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); onError = overrideError!=OE_Default ? overrideError : OE_Abort; if( onError==OE_Ignore ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); }else{ sqlite3HaltConstraint(pParse, onError, 0, 0); } sqlite3VdbeResolveLabel(v, allOk); } #endif /* !defined(SQLITE_OMIT_CHECK) */ /* If we have an INTEGER PRIMARY KEY, make sure the primary key ** of the new record does not previously exist. Except, if this ** is an UPDATE and the primary key is not changing, that is OK. */ if( rowidChng ){ onError = pTab->keyConf; if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } if( onError!=OE_Replace || pTab->pIndex ){ if( isUpdate ){ j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng); } j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); switch( onError ){ default: { onError = OE_Abort; /* Fall thru into the next case */ } case OE_Rollback: case OE_Abort: case OE_Fail: { sqlite3HaltConstraint( pParse, onError, "PRIMARY KEY must be unique", P4_STATIC); break; } case OE_Replace: { /* If there are DELETE triggers on this table and the ** recursive-triggers flag is set, call GenerateRowDelete() to ** remove the conflicting row from the the table. This will fire ** the triggers and remove both the table and index b-tree entries. ** ** Otherwise, if there are no triggers or the recursive-triggers ** flag is not set, call GenerateRowIndexDelete(). This removes ** the index b-tree entries only. The table b-tree entry will be ** replaced by the new entry when it is inserted. */ Trigger *pTrigger = 0; if( pParse->db->flags&SQLITE_RecTriggers ){ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); } if( pTrigger ){ sqlite3GenerateRowDelete( pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace ); }else{ sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); } seenReplace = 1; break; } case OE_Ignore: { assert( seenReplace==0 ); sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); break; |
︙ | ︙ | |||
71547 71548 71549 71550 71551 71552 71553 | sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); }else{ sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); } } sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); | | < | | 72870 72871 72872 72873 72874 72875 72876 72877 72878 72879 72880 72881 72882 72883 72884 72885 72886 72887 72888 72889 72890 72891 72892 72893 72894 72895 72896 72897 72898 72899 72900 72901 72902 72903 72904 72905 | sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); }else{ sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); } } sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0); sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); /* Find out what action to take in case there is an indexing conflict */ onError = pIdx->onError; if( onError==OE_None ){ sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); continue; /* pIdx is not a UNIQUE index */ } if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } if( seenReplace ){ if( onError==OE_Ignore ) onError = OE_Replace; else if( onError==OE_Fail ) onError = OE_Abort; } /* Check to see if the new index entry will be unique */ regR = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR); j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, regR, SQLITE_INT_TO_PTR(regIdx), P4_INT32); sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); /* Generate code that executes if the new index entry is not unique */ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail |
︙ | ︙ | |||
71599 71600 71601 71602 71603 71604 71605 | sqlite3StrAccumAppend(&errMsg, zSep, -1); zSep = ", "; sqlite3StrAccumAppend(&errMsg, zCol, -1); } sqlite3StrAccumAppend(&errMsg, pIdx->nColumn>1 ? " are not unique" : " is not unique", -1); zErr = sqlite3StrAccumFinish(&errMsg); | | > > > > | > > | 72921 72922 72923 72924 72925 72926 72927 72928 72929 72930 72931 72932 72933 72934 72935 72936 72937 72938 72939 72940 72941 72942 72943 72944 72945 72946 72947 72948 72949 72950 72951 72952 | sqlite3StrAccumAppend(&errMsg, zSep, -1); zSep = ", "; sqlite3StrAccumAppend(&errMsg, zCol, -1); } sqlite3StrAccumAppend(&errMsg, pIdx->nColumn>1 ? " are not unique" : " is not unique", -1); zErr = sqlite3StrAccumFinish(&errMsg); sqlite3HaltConstraint(pParse, onError, zErr, 0); sqlite3DbFree(errMsg.db, zErr); break; } case OE_Ignore: { assert( seenReplace==0 ); sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); break; } default: { Trigger *pTrigger = 0; assert( onError==OE_Replace ); if( pParse->db->flags&SQLITE_RecTriggers ){ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); } sqlite3GenerateRowDelete( pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace ); seenReplace = 1; break; } } sqlite3VdbeJumpHere(v, j3); sqlite3ReleaseTempReg(pParse, regR); } |
︙ | ︙ | |||
71640 71641 71642 71643 71644 71645 71646 | SQLITE_PRIVATE void sqlite3CompleteInsertion( Parse *pParse, /* The parser context */ Table *pTab, /* the table into which we are inserting */ int baseCur, /* Index of a read/write cursor pointing at pTab */ int regRowid, /* Range of content */ int *aRegIdx, /* Register used by each index. 0 for unused indices */ int isUpdate, /* True for UPDATE, False for INSERT */ | < | 72968 72969 72970 72971 72972 72973 72974 72975 72976 72977 72978 72979 72980 72981 | SQLITE_PRIVATE void sqlite3CompleteInsertion( Parse *pParse, /* The parser context */ Table *pTab, /* the table into which we are inserting */ int baseCur, /* Index of a read/write cursor pointing at pTab */ int regRowid, /* Range of content */ int *aRegIdx, /* Register used by each index. 0 for unused indices */ int isUpdate, /* True for UPDATE, False for INSERT */ int appendBias, /* True if this is likely to be an append */ int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ ){ int i; Vdbe *v; int nIdx; Index *pIdx; |
︙ | ︙ | |||
71668 71669 71670 71671 71672 71673 71674 | } } regData = regRowid + 1; regRec = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); sqlite3TableAffinityStr(v, pTab); sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); | < < < < < | 72995 72996 72997 72998 72999 73000 73001 73002 73003 73004 73005 73006 73007 73008 | } } regData = regRowid + 1; regRec = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); sqlite3TableAffinityStr(v, pTab); sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); if( pParse->nested ){ pik_flags = 0; }else{ pik_flags = OPFLAG_NCHANGE; pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); } if( appendBias ){ |
︙ | ︙ | |||
71996 71997 71998 71999 72000 72001 72002 | sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); regData = sqlite3GetTempReg(pParse); regRowid = sqlite3GetTempReg(pParse); if( pDest->iPKey>=0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); | | | | 73318 73319 73320 73321 73322 73323 73324 73325 73326 73327 73328 73329 73330 73331 73332 73333 | sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); regData = sqlite3GetTempReg(pParse); regRowid = sqlite3GetTempReg(pParse); if( pDest->iPKey>=0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); sqlite3HaltConstraint( pParse, onError, "PRIMARY KEY must be unique", P4_STATIC); sqlite3VdbeJumpHere(v, addr2); autoIncStep(pParse, regAutoinc, regRowid); }else if( pDest->pIndex==0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); }else{ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); assert( (pDest->tabFlags & TF_Autoincrement)==0 ); |
︙ | ︙ | |||
73389 73390 73391 73392 73393 73394 73395 73396 73397 73398 73399 73400 73401 73402 | /* The following is VERY experimental */ { "writable_schema", SQLITE_WriteSchema|SQLITE_RecoveryMode }, { "omit_readlock", SQLITE_NoReadlock }, /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted ** flag if there are any active statements. */ { "read_uncommitted", SQLITE_ReadUncommitted }, }; int i; const struct sPragmaType *p; for(i=0, p=aPragma; i<ArraySize(aPragma); i++, p++){ if( sqlite3StrICmp(zLeft, p->zName)==0 ){ sqlite3 *db = pParse->db; Vdbe *v; | > | 74711 74712 74713 74714 74715 74716 74717 74718 74719 74720 74721 74722 74723 74724 74725 | /* The following is VERY experimental */ { "writable_schema", SQLITE_WriteSchema|SQLITE_RecoveryMode }, { "omit_readlock", SQLITE_NoReadlock }, /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted ** flag if there are any active statements. */ { "read_uncommitted", SQLITE_ReadUncommitted }, { "recursive_triggers", SQLITE_RecTriggers }, }; int i; const struct sPragmaType *p; for(i=0, p=aPragma; i<ArraySize(aPragma); i++, p++){ if( sqlite3StrICmp(zLeft, p->zName)==0 ){ sqlite3 *db = pParse->db; Vdbe *v; |
︙ | ︙ | |||
75295 75296 75297 75298 75299 75300 75301 75302 75303 75304 75305 75306 75307 75308 | if( zErrMsg ){ sqlite3Error(db, rc, "%s", zErrMsg); sqlite3DbFree(db, zErrMsg); }else{ sqlite3Error(db, rc, 0); } end_prepare: sqlite3StackFree(db, pParse); rc = sqlite3ApiExit(db, rc); assert( (rc&db->errMask)==rc ); return rc; | > > > > > > > > | 76618 76619 76620 76621 76622 76623 76624 76625 76626 76627 76628 76629 76630 76631 76632 76633 76634 76635 76636 76637 76638 76639 | if( zErrMsg ){ sqlite3Error(db, rc, "%s", zErrMsg); sqlite3DbFree(db, zErrMsg); }else{ sqlite3Error(db, rc, 0); } /* Delete any TriggerPrg structures allocated while parsing this statement. */ while( pParse->pTriggerPrg ){ TriggerPrg *pT = pParse->pTriggerPrg; pParse->pTriggerPrg = pT->pNext; sqlite3VdbeProgramDelete(db, pT->pProgram, 0); sqlite3DbFree(db, pT); } end_prepare: sqlite3StackFree(db, pParse); rc = sqlite3ApiExit(db, rc); assert( (rc&db->errMask)==rc ); return rc; |
︙ | ︙ | |||
76250 76251 76252 76253 76254 76255 76256 76257 76258 | int eDest = pDest->eDest; int iParm = pDest->iParm; int regRow; int regRowid; iTab = pOrderBy->iECursor; if( eDest==SRT_Output || eDest==SRT_Coroutine ){ pseudoTab = pParse->nTab++; | > | > > > < < | 77581 77582 77583 77584 77585 77586 77587 77588 77589 77590 77591 77592 77593 77594 77595 77596 77597 77598 77599 77600 77601 77602 77603 77604 | int eDest = pDest->eDest; int iParm = pDest->iParm; int regRow; int regRowid; iTab = pOrderBy->iECursor; regRow = sqlite3GetTempReg(pParse); if( eDest==SRT_Output || eDest==SRT_Coroutine ){ pseudoTab = pParse->nTab++; sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); regRowid = 0; }else{ regRowid = sqlite3GetTempReg(pParse); } addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); codeOffset(v, p, addrContinue); sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); switch( eDest ){ case SRT_Table: case SRT_EphemTab: { testcase( eDest==SRT_Table ); testcase( eDest==SRT_EphemTab ); sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); |
︙ | ︙ | |||
76289 76290 76291 76292 76293 76294 76295 | } #endif default: { int i; assert( eDest==SRT_Output || eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); testcase( eDest==SRT_Coroutine ); | < < > > > | 77622 77623 77624 77625 77626 77627 77628 77629 77630 77631 77632 77633 77634 77635 77636 77637 77638 77639 77640 77641 | } #endif default: { int i; assert( eDest==SRT_Output || eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); testcase( eDest==SRT_Coroutine ); for(i=0; i<nColumn; i++){ assert( regRow!=pDest->iMem+i ); sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); if( i==0 ){ sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); } } if( eDest==SRT_Output ){ sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); }else{ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); } |
︙ | ︙ | |||
76377 76378 76379 76380 76381 76382 76383 | pS = pTabList->a[j].pSelect; }else{ pNC = pNC->pNext; } } if( pTab==0 ){ | < | > | | | < > | | > > > | > | > > | | | 77711 77712 77713 77714 77715 77716 77717 77718 77719 77720 77721 77722 77723 77724 77725 77726 77727 77728 77729 77730 77731 77732 77733 77734 77735 77736 77737 77738 77739 77740 77741 77742 77743 77744 77745 77746 77747 77748 77749 77750 77751 77752 77753 77754 77755 77756 77757 77758 77759 | pS = pTabList->a[j].pSelect; }else{ pNC = pNC->pNext; } } if( pTab==0 ){ /* At one time, code such as "SELECT new.x" within a trigger would ** cause this condition to run. Since then, we have restructured how ** trigger code is generated and so this condition is no longer ** possible. However, it can still be true for statements like ** the following: ** ** CREATE TABLE t1(col INTEGER); ** SELECT (SELECT t1.col) FROM FROM t1; ** ** when columnType() is called on the expression "t1.col" in the ** sub-select. In this case, set the column type to NULL, even ** though it should really be "INTEGER". ** ** This is not a problem, as the column type of "t1.col" is never ** used. When columnType() is called on the expression ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT ** branch below. */ break; } assert( pTab && pExpr->pTab==pTab ); if( pS ){ /* The "table" is actually a sub-select or a view in the FROM clause ** of the SELECT statement. Return the declaration type and origin ** data for the result-set column of the sub-select. */ if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){ /* If iCol is less than zero, then the expression requests the ** rowid of the sub-select or view. This expression is legal (see ** test case misc2.2.2) - it always evaluates to NULL. */ NameContext sNC; Expr *p = pS->pEList->a[iCol].pExpr; sNC.pSrcList = pS->pSrc; sNC.pNext = pNC; sNC.pParse = pNC->pParse; zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); } }else if( ALWAYS(pTab->pSchema) ){ /* A real table */ assert( !pS ); if( iCol<0 ) iCol = pTab->iPKey; |
︙ | ︙ | |||
78218 78219 78220 78221 78222 78223 78224 | ** refer to the subquery even after flattening. Ticket #3346. ** ** pSubitem->pTab is always non-NULL by test restrictions and tests above. */ if( ALWAYS(pSubitem->pTab!=0) ){ Table *pTabToDel = pSubitem->pTab; if( pTabToDel->nRef==1 ){ | > | | | 79558 79559 79560 79561 79562 79563 79564 79565 79566 79567 79568 79569 79570 79571 79572 79573 79574 | ** refer to the subquery even after flattening. Ticket #3346. ** ** pSubitem->pTab is always non-NULL by test restrictions and tests above. */ if( ALWAYS(pSubitem->pTab!=0) ){ Table *pTabToDel = pSubitem->pTab; if( pTabToDel->nRef==1 ){ Parse *pToplevel = sqlite3ParseToplevel(pParse); pTabToDel->pNextZombie = pToplevel->pZombieTab; pToplevel->pZombieTab = pTabToDel; }else{ pTabToDel->nRef--; } pSubitem->pTab = 0; } /* The following loop runs once for each term in a compound-subquery |
︙ | ︙ | |||
80136 80137 80138 80139 80140 80141 80142 | if (tr_tm == TK_INSTEAD){ tr_tm = TK_BEFORE; } /* Build the Trigger object */ pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger)); if( pTrigger==0 ) goto trigger_cleanup; | | | 81477 81478 81479 81480 81481 81482 81483 81484 81485 81486 81487 81488 81489 81490 81491 | if (tr_tm == TK_INSTEAD){ tr_tm = TK_BEFORE; } /* Build the Trigger object */ pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger)); if( pTrigger==0 ) goto trigger_cleanup; pTrigger->zName = zName; zName = 0; pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName); pTrigger->pSchema = db->aDb[iDb].pSchema; pTrigger->pTabSchema = pTab->pSchema; pTrigger->op = (u8)op; pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER; pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); |
︙ | ︙ | |||
80179 80180 80181 80182 80183 80184 80185 | DbFixer sFix; int iDb; /* Database containing the trigger */ Token nameToken; /* Trigger name for error reporting */ pTrig = pParse->pNewTrigger; pParse->pNewTrigger = 0; if( NEVER(pParse->nErr) || !pTrig ) goto triggerfinish_cleanup; | | | | 81520 81521 81522 81523 81524 81525 81526 81527 81528 81529 81530 81531 81532 81533 81534 81535 81536 81537 81538 81539 81540 81541 | DbFixer sFix; int iDb; /* Database containing the trigger */ Token nameToken; /* Trigger name for error reporting */ pTrig = pParse->pNewTrigger; pParse->pNewTrigger = 0; if( NEVER(pParse->nErr) || !pTrig ) goto triggerfinish_cleanup; zName = pTrig->zName; iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema); pTrig->step_list = pStepList; while( pStepList ){ pStepList->pTrig = pTrig; pStepList = pStepList->pNext; } nameToken.z = pTrig->zName; nameToken.n = sqlite3Strlen30(nameToken.z); if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &nameToken) && sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){ goto triggerfinish_cleanup; } /* if we are not initializing, and this trigger is not on a TEMP table, |
︙ | ︙ | |||
80368 80369 80370 80371 80372 80373 80374 | /* ** Recursively delete a Trigger structure */ SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){ if( pTrigger==0 ) return; sqlite3DeleteTriggerStep(db, pTrigger->step_list); | | | 81709 81710 81711 81712 81713 81714 81715 81716 81717 81718 81719 81720 81721 81722 81723 | /* ** Recursively delete a Trigger structure */ SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){ if( pTrigger==0 ) return; sqlite3DeleteTriggerStep(db, pTrigger->step_list); sqlite3DbFree(db, pTrigger->zName); sqlite3DbFree(db, pTrigger->table); sqlite3ExprDelete(db, pTrigger->pWhen); sqlite3IdListDelete(db, pTrigger->pColumns); sqlite3DbFree(db, pTrigger); } /* |
︙ | ︙ | |||
80448 80449 80450 80451 80452 80453 80454 | assert( pTable->pSchema==pTrigger->pSchema || iDb==1 ); #ifndef SQLITE_OMIT_AUTHORIZATION { int code = SQLITE_DROP_TRIGGER; const char *zDb = db->aDb[iDb].zName; const char *zTab = SCHEMA_TABLE(iDb); if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER; | | | 81789 81790 81791 81792 81793 81794 81795 81796 81797 81798 81799 81800 81801 81802 81803 | assert( pTable->pSchema==pTrigger->pSchema || iDb==1 ); #ifndef SQLITE_OMIT_AUTHORIZATION { int code = SQLITE_DROP_TRIGGER; const char *zDb = db->aDb[iDb].zName; const char *zTab = SCHEMA_TABLE(iDb); if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER; if( sqlite3AuthCheck(pParse, code, pTrigger->zName, pTable->zName, zDb) || sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ return; } } #endif /* Generate code to destroy the database record of the trigger. |
︙ | ︙ | |||
80475 80476 80477 80478 80479 80480 80481 | { OP_Delete, 0, 0, 0}, { OP_Next, 0, ADDR(1), 0}, /* 8 */ }; sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3OpenMasterTable(pParse, iDb); base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger); | | | | 81816 81817 81818 81819 81820 81821 81822 81823 81824 81825 81826 81827 81828 81829 81830 81831 81832 81833 81834 | { OP_Delete, 0, 0, 0}, { OP_Next, 0, ADDR(1), 0}, /* 8 */ }; sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3OpenMasterTable(pParse, iDb); base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger); sqlite3VdbeChangeP4(v, base+1, pTrigger->zName, 0); sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddOp2(v, OP_Close, 0, 0); sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0); if( pParse->nMem<3 ){ pParse->nMem = 3; } } } /* |
︙ | ︙ | |||
80583 80584 80585 80586 80587 80588 80589 | pSrc->a[pSrc->nSrc-1].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName); } } return pSrc; } /* | | | | | < > | < | > > > > | < > > > > > > > > | | | < < < | > | | < > > < < < | > | | | < > > < < < | > | < > | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > | > > > > > > > > > > > | | < | > > | > | > | | > | > > > | > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 81924 81925 81926 81927 81928 81929 81930 81931 81932 81933 81934 81935 81936 81937 81938 81939 81940 81941 81942 81943 81944 81945 81946 81947 81948 81949 81950 81951 81952 81953 81954 81955 81956 81957 81958 81959 81960 81961 81962 81963 81964 81965 81966 81967 81968 81969 81970 81971 81972 81973 81974 81975 81976 81977 81978 81979 81980 81981 81982 81983 81984 81985 81986 81987 81988 81989 81990 81991 81992 81993 81994 81995 81996 81997 81998 81999 82000 82001 82002 82003 82004 82005 82006 82007 82008 82009 82010 82011 82012 82013 82014 82015 82016 82017 82018 82019 82020 82021 82022 82023 82024 82025 82026 82027 82028 82029 82030 82031 82032 82033 82034 82035 82036 82037 82038 82039 82040 82041 82042 82043 82044 82045 82046 82047 82048 82049 82050 82051 82052 82053 82054 82055 82056 82057 82058 82059 82060 82061 82062 82063 82064 82065 82066 82067 82068 82069 82070 82071 82072 82073 82074 82075 82076 82077 82078 82079 82080 82081 82082 82083 82084 82085 82086 82087 82088 82089 82090 82091 82092 82093 82094 82095 82096 82097 82098 82099 82100 82101 82102 82103 82104 82105 82106 82107 82108 82109 82110 82111 82112 82113 82114 82115 82116 82117 82118 82119 82120 82121 82122 82123 82124 82125 82126 82127 82128 82129 82130 82131 82132 82133 82134 82135 82136 82137 82138 82139 82140 82141 82142 82143 82144 82145 82146 82147 82148 82149 82150 82151 82152 82153 82154 82155 82156 82157 82158 82159 82160 82161 82162 82163 82164 82165 82166 82167 82168 82169 82170 82171 82172 82173 82174 82175 82176 82177 82178 82179 82180 82181 82182 82183 | pSrc->a[pSrc->nSrc-1].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName); } } return pSrc; } /* ** Generate VDBE code for the statements inside the body of a single ** trigger. */ static int codeTriggerProgram( Parse *pParse, /* The parser context */ TriggerStep *pStepList, /* List of statements inside the trigger body */ int orconf /* Conflict algorithm. (OE_Abort, etc) */ ){ TriggerStep *pStep; Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; assert( pParse->pTriggerTab && pParse->pToplevel ); assert( pStepList ); assert( v!=0 ); for(pStep=pStepList; pStep; pStep=pStep->pNext){ /* Figure out the ON CONFLICT policy that will be used for this step ** of the trigger program. If the statement that caused this trigger ** to fire had an explicit ON CONFLICT, then use it. Otherwise, use ** the ON CONFLICT policy that was specified as part of the trigger ** step statement. Example: ** ** CREATE TRIGGER AFTER INSERT ON t1 BEGIN; ** INSERT OR REPLACE INTO t2 VALUES(new.a, new.b); ** END; ** ** INSERT INTO t1 ... ; -- insert into t2 uses REPLACE policy ** INSERT OR IGNORE INTO t1 ... ; -- insert into t2 uses IGNORE policy */ pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf; switch( pStep->op ){ case TK_UPDATE: { sqlite3Update(pParse, targetSrcList(pParse, pStep), sqlite3ExprListDup(db, pStep->pExprList, 0), sqlite3ExprDup(db, pStep->pWhere, 0), pParse->eOrconf ); break; } case TK_INSERT: { sqlite3Insert(pParse, targetSrcList(pParse, pStep), sqlite3ExprListDup(db, pStep->pExprList, 0), sqlite3SelectDup(db, pStep->pSelect, 0), sqlite3IdListDup(db, pStep->pIdList), pParse->eOrconf ); break; } case TK_DELETE: { sqlite3DeleteFrom(pParse, targetSrcList(pParse, pStep), sqlite3ExprDup(db, pStep->pWhere, 0) ); break; } default: assert( pStep->op==TK_SELECT ); { SelectDest sDest; Select *pSelect = sqlite3SelectDup(db, pStep->pSelect, 0); sqlite3SelectDestInit(&sDest, SRT_Discard, 0); sqlite3Select(pParse, pSelect, &sDest); sqlite3SelectDelete(db, pSelect); break; } } if( pStep->op!=TK_SELECT ){ sqlite3VdbeAddOp0(v, OP_ResetCount); } } return 0; } #ifdef SQLITE_DEBUG /* ** This function is used to add VdbeComment() annotations to a VDBE ** program. It is not used in production code, only for debugging. */ static const char *onErrorText(int onError){ switch( onError ){ case OE_Abort: return "abort"; case OE_Rollback: return "rollback"; case OE_Fail: return "fail"; case OE_Replace: return "replace"; case OE_Ignore: return "ignore"; case OE_Default: return "default"; } return "n/a"; } #endif /* ** Parse context structure pFrom has just been used to create a sub-vdbe ** (trigger program). If an error has occurred, transfer error information ** from pFrom to pTo. */ static void transferParseError(Parse *pTo, Parse *pFrom){ assert( pFrom->zErrMsg==0 || pFrom->nErr ); assert( pTo->zErrMsg==0 || pTo->nErr ); if( pTo->nErr==0 ){ pTo->zErrMsg = pFrom->zErrMsg; pTo->nErr = pFrom->nErr; }else{ sqlite3DbFree(pFrom->db, pFrom->zErrMsg); } } /* ** Create and populate a new TriggerPrg object with a sub-program ** implementing trigger pTrigger with ON CONFLICT policy orconf. */ static TriggerPrg *codeRowTrigger( Parse *pParse, /* Current parse context */ Trigger *pTrigger, /* Trigger to code */ Table *pTab, /* The table pTrigger is attached to */ int orconf /* ON CONFLICT policy to code trigger program with */ ){ Parse *pTop = sqlite3ParseToplevel(pParse); sqlite3 *db = pParse->db; /* Database handle */ TriggerPrg *pPrg; /* Value to return */ Expr *pWhen = 0; /* Duplicate of trigger WHEN expression */ Vdbe *v; /* Temporary VM */ NameContext sNC; /* Name context for sub-vdbe */ SubProgram *pProgram = 0; /* Sub-vdbe for trigger program */ Parse *pSubParse; /* Parse context for sub-vdbe */ int iEndTrigger = 0; /* Label to jump to if WHEN is false */ assert( pTab==tableOfTrigger(pTrigger) ); /* Allocate the TriggerPrg and SubProgram objects. To ensure that they ** are freed if an error occurs, link them into the Parse.pTriggerPrg ** list of the top-level Parse object sooner rather than later. */ pPrg = sqlite3DbMallocZero(db, sizeof(TriggerPrg)); if( !pPrg ) return 0; pPrg->pNext = pTop->pTriggerPrg; pTop->pTriggerPrg = pPrg; pPrg->pProgram = pProgram = sqlite3DbMallocZero(db, sizeof(SubProgram)); if( !pProgram ) return 0; pProgram->nRef = 1; pPrg->pTrigger = pTrigger; pPrg->orconf = orconf; /* Allocate and populate a new Parse context to use for coding the ** trigger sub-program. */ pSubParse = sqlite3StackAllocZero(db, sizeof(Parse)); if( !pSubParse ) return 0; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pSubParse; pSubParse->db = db; pSubParse->pTriggerTab = pTab; pSubParse->pToplevel = pTop; pSubParse->zAuthContext = pTrigger->zName; pSubParse->eTriggerOp = pTrigger->op; v = sqlite3GetVdbe(pSubParse); if( v ){ VdbeComment((v, "Start: %s.%s (%s %s%s%s ON %s)", pTrigger->zName, onErrorText(orconf), (pTrigger->tr_tm==TRIGGER_BEFORE ? "BEFORE" : "AFTER"), (pTrigger->op==TK_UPDATE ? "UPDATE" : ""), (pTrigger->op==TK_INSERT ? "INSERT" : ""), (pTrigger->op==TK_DELETE ? "DELETE" : ""), pTab->zName )); #ifndef SQLITE_OMIT_TRACE sqlite3VdbeChangeP4(v, -1, sqlite3MPrintf(db, "-- TRIGGER %s", pTrigger->zName), P4_DYNAMIC ); #endif /* If one was specified, code the WHEN clause. If it evaluates to false ** (or NULL) the sub-vdbe is immediately halted by jumping to the ** OP_Halt inserted at the end of the program. */ if( pTrigger->pWhen ){ pWhen = sqlite3ExprDup(db, pTrigger->pWhen, 0); if( SQLITE_OK==sqlite3ResolveExprNames(&sNC, pWhen) && db->mallocFailed==0 ){ iEndTrigger = sqlite3VdbeMakeLabel(v); sqlite3ExprIfFalse(pSubParse, pWhen, iEndTrigger, SQLITE_JUMPIFNULL); } sqlite3ExprDelete(db, pWhen); } /* Code the trigger program into the sub-vdbe. */ codeTriggerProgram(pSubParse, pTrigger->step_list, orconf); /* Insert an OP_Halt at the end of the sub-program. */ if( iEndTrigger ){ sqlite3VdbeResolveLabel(v, iEndTrigger); } sqlite3VdbeAddOp0(v, OP_Halt); VdbeComment((v, "End: %s.%s", pTrigger->zName, onErrorText(orconf))); transferParseError(pParse, pSubParse); if( db->mallocFailed==0 ){ pProgram->aOp = sqlite3VdbeTakeOpArray(v, &pProgram->nOp, &pTop->nMaxArg); } pProgram->nMem = pSubParse->nMem; pProgram->nCsr = pSubParse->nTab; pProgram->token = (void *)pTrigger; pPrg->oldmask = pSubParse->oldmask; sqlite3VdbeDelete(v); } assert( !pSubParse->pAinc && !pSubParse->pZombieTab ); assert( !pSubParse->pTriggerPrg && !pSubParse->nMaxArg ); sqlite3StackFree(db, pSubParse); return pPrg; } /* ** Return a pointer to a TriggerPrg object containing the sub-program for ** trigger pTrigger with default ON CONFLICT algorithm orconf. If no such ** TriggerPrg object exists, a new object is allocated and populated before ** being returned. */ static TriggerPrg *getRowTrigger( Parse *pParse, /* Current parse context */ Trigger *pTrigger, /* Trigger to code */ Table *pTab, /* The table trigger pTrigger is attached to */ int orconf /* ON CONFLICT algorithm. */ ){ Parse *pRoot = sqlite3ParseToplevel(pParse); TriggerPrg *pPrg; assert( pTab==tableOfTrigger(pTrigger) ); /* It may be that this trigger has already been coded (or is in the ** process of being coded). If this is the case, then an entry with ** a matching TriggerPrg.pTrigger field will be present somewhere ** in the Parse.pTriggerPrg list. Search for such an entry. */ for(pPrg=pRoot->pTriggerPrg; pPrg && (pPrg->pTrigger!=pTrigger || pPrg->orconf!=orconf); pPrg=pPrg->pNext ); /* If an existing TriggerPrg could not be located, create a new one. */ if( !pPrg ){ pPrg = codeRowTrigger(pParse, pTrigger, pTab, orconf); } return pPrg; } /* ** This is called to code FOR EACH ROW triggers. ** ** When the code that this function generates is executed, the following ** must be true: |
︙ | ︙ | |||
80682 80683 80684 80685 80686 80687 80688 | ** are set to values that describe the columns used by the trigger program ** in the OLD.* and NEW.* tables respectively. If column N of the ** pseudo-table is read at least once, the corresponding bit of the output ** mask is set. If a column with an index greater than 32 is read, the ** output mask is set to the special value 0xffffffff. ** */ | | | < < < < < | < < < | > < | | | > | | < | | | | > | | < > > < | < < < < < | < < < < < < < > | > > | < > > > > > > > > > > < | > | < > | | | > > | | < < > | < | | > | < | | > > > | < < < | < | | < < | > | 82199 82200 82201 82202 82203 82204 82205 82206 82207 82208 82209 82210 82211 82212 82213 82214 82215 82216 82217 82218 82219 82220 82221 82222 82223 82224 82225 82226 82227 82228 82229 82230 82231 82232 82233 82234 82235 82236 82237 82238 82239 82240 82241 82242 82243 82244 82245 82246 82247 82248 82249 82250 82251 82252 82253 82254 82255 82256 82257 82258 82259 82260 82261 82262 82263 82264 82265 82266 82267 82268 82269 82270 82271 82272 82273 82274 82275 82276 82277 82278 82279 82280 82281 82282 82283 82284 82285 82286 82287 82288 82289 82290 82291 82292 82293 82294 82295 82296 82297 82298 82299 82300 82301 82302 82303 82304 82305 82306 82307 | ** are set to values that describe the columns used by the trigger program ** in the OLD.* and NEW.* tables respectively. If column N of the ** pseudo-table is read at least once, the corresponding bit of the output ** mask is set. If a column with an index greater than 32 is read, the ** output mask is set to the special value 0xffffffff. ** */ SQLITE_PRIVATE void sqlite3CodeRowTrigger( Parse *pParse, /* Parse context */ Trigger *pTrigger, /* List of triggers on table pTab */ int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */ int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ Table *pTab, /* The table to code triggers from */ int newIdx, /* The indice of the "new" row to access */ int oldIdx, /* The indice of the "old" row to access */ int orconf, /* ON CONFLICT policy */ int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */ ){ Trigger *p; UNUSED_PARAMETER(newIdx); assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE); assert(tr_tm == TRIGGER_BEFORE || tr_tm == TRIGGER_AFTER ); for(p=pTrigger; p; p=p->pNext){ /* Sanity checking: The schema for the trigger and for the table are ** always defined. The trigger must be in the same schema as the table ** or else it must be a TEMP trigger. */ assert( p->pSchema!=0 ); assert( p->pTabSchema!=0 ); assert( p->pSchema==p->pTabSchema || p->pSchema==pParse->db->aDb[1].pSchema ); /* Determine whether we should code this trigger */ if( p->op==op && p->tr_tm==tr_tm && checkColumnOverlap(p->pColumns,pChanges) ){ Vdbe *v = sqlite3GetVdbe(pParse); /* Main VM */ TriggerPrg *pPrg; pPrg = getRowTrigger(pParse, p, pTab, orconf); assert( pPrg || pParse->nErr || pParse->db->mallocFailed ); /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program ** is a pointer to the sub-vdbe containing the trigger program. */ if( pPrg ){ sqlite3VdbeAddOp3(v, OP_Program, oldIdx, ignoreJump, ++pParse->nMem); pPrg->pProgram->nRef++; sqlite3VdbeChangeP4(v, -1, (const char *)pPrg->pProgram, P4_SUBPROGRAM); VdbeComment((v, "Call: %s.%s", p->zName, onErrorText(orconf))); } } } } /* ** Triggers fired by UPDATE or DELETE statements may access values stored ** in the old.* pseudo-table. This function returns a 32-bit bitmask ** indicating which columns of the old.* table actually are used by ** triggers. This information may be used by the caller to avoid having ** to load the entire old.* record into memory when executing an UPDATE ** or DELETE command. ** ** Bit 0 of the returned mask is set if the left-most column of the ** table may be accessed using an old.<col> reference. Bit 1 is set if ** the second leftmost column value is required, and so on. If there ** are more than 32 columns in the table, and at least one of the columns ** with an index greater than 32 may be accessed, 0xffffffff is returned. ** ** It is not possible to determine if the old.rowid column is accessed ** by triggers. The caller must always assume that it is. ** ** There is no equivalent function for new.* references. */ SQLITE_PRIVATE u32 sqlite3TriggerOldmask( Parse *pParse, /* Parse context */ Trigger *pTrigger, /* List of triggers on table pTab */ int op, /* Either TK_UPDATE or TK_DELETE */ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */ Table *pTab, /* The table to code triggers from */ int orconf /* Default ON CONFLICT policy for trigger steps */ ){ u32 mask = 0; Trigger *p; assert(op==TK_UPDATE || op==TK_DELETE); for(p=pTrigger; p; p=p->pNext){ if( p->op==op && checkColumnOverlap(p->pColumns,pChanges) ){ TriggerPrg *pPrg; pPrg = getRowTrigger(pParse, p, pTab, orconf); if( pPrg ){ mask |= pPrg->oldmask; } } } return mask; } #endif /* !defined(SQLITE_OMIT_TRIGGER) */ /************** End of trigger.c *********************************************/ /************** Begin file update.c ******************************************/ /* ** 2001 September 15 ** |
︙ | ︙ | |||
80911 80912 80913 80914 80915 80916 80917 | int j1; /* Addresses of jump instructions */ int okOnePass; /* True for one-pass algorithm without the FIFO */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* Trying to update a view */ Trigger *pTrigger; /* List of triggers on pTab, if required */ #endif | < < < < | < < < < | > > | | 82419 82420 82421 82422 82423 82424 82425 82426 82427 82428 82429 82430 82431 82432 82433 82434 82435 82436 82437 82438 82439 82440 82441 82442 82443 82444 82445 82446 82447 82448 82449 82450 82451 82452 82453 82454 82455 82456 82457 82458 | int j1; /* Addresses of jump instructions */ int okOnePass; /* True for one-pass algorithm without the FIFO */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* Trying to update a view */ Trigger *pTrigger; /* List of triggers on pTab, if required */ #endif u32 oldmask = 0; /* Mask of OLD.* columns in use */ /* Register Allocations */ int regRowCount = 0; /* A count of rows changed */ int regOldRowid; /* The old rowid */ int regNewRowid; /* The new rowid */ int regNew; int regOld = 0; int regRowSet = 0; /* Rowset of rows to be updated */ int regRec; /* Register used for new table record to insert */ memset(&sContext, 0, sizeof(sContext)); db = pParse->db; if( pParse->nErr || db->mallocFailed ){ goto update_cleanup; } assert( pTabList->nSrc==1 ); /* Locate the table which we want to update. */ pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ) goto update_cleanup; iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); /* Figure out if we have any triggers and if the table being ** updated is a view. */ #ifndef SQLITE_OMIT_TRIGGER pTrigger = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges, 0); isView = pTab->pSelect!=0; #else # define pTrigger 0 # define isView 0 |
︙ | ︙ | |||
80966 80967 80968 80969 80970 80971 80972 | if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){ goto update_cleanup; } aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol ); if( aXRef==0 ) goto update_cleanup; for(i=0; i<pTab->nCol; i++) aXRef[i] = -1; | < < < < < < < < | 82468 82469 82470 82471 82472 82473 82474 82475 82476 82477 82478 82479 82480 82481 | if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){ goto update_cleanup; } aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol ); if( aXRef==0 ) goto update_cleanup; for(i=0; i<pTab->nCol; i++) aXRef[i] = -1; /* Allocate a cursors for the main database table and for all indices. ** The index cursors might not be used, but if they are used they ** need to occur right after the database cursor. So go ahead and ** allocate enough space, just in case. */ pTabList->a[0].iCursor = iCur = pParse->nTab++; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
︙ | ︙ | |||
81059 81060 81061 81062 81063 81064 81065 | break; } } } aRegIdx[j] = reg; } | < < < < < < < < < < < < < < < < | < | < < < < | < < < > > | < < < < > > | < < < | | < < > | < < > | | < < | < < | > > > | 82553 82554 82555 82556 82557 82558 82559 82560 82561 82562 82563 82564 82565 82566 82567 82568 82569 82570 82571 82572 82573 82574 82575 82576 82577 82578 82579 82580 82581 82582 82583 82584 82585 82586 82587 82588 82589 82590 82591 82592 82593 82594 82595 82596 82597 82598 82599 82600 82601 82602 82603 82604 | break; } } } aRegIdx[j] = reg; } /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto update_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, 1, iDb); #ifndef SQLITE_OMIT_VIRTUALTABLE /* Virtual tables must be handled separately */ if( IsVirtual(pTab) ){ updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef, pWhere); pWhere = 0; pTabList = 0; goto update_cleanup; } #endif /* Allocate required registers. */ regOldRowid = regNewRowid = ++pParse->nMem; if( pTrigger ){ regOld = pParse->nMem + 1; pParse->nMem += pTab->nCol; } if( chngRowid || pTrigger ){ regNewRowid = ++pParse->nMem; } regNew = pParse->nMem + 1; pParse->nMem += pTab->nCol; regRec = ++pParse->nMem; /* Start the view context. */ if( isView ){ sqlite3AuthContextPush(pParse, &sContext, pTab->zName); } /* If there are any triggers, set oldmask and new_col_mask. */ oldmask = sqlite3TriggerOldmask( pParse, pTrigger, TK_UPDATE, pChanges, pTab, onError); /* If we are trying to update a view, realize that view into ** a ephemeral table. */ #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) if( isView ){ sqlite3MaterializeView(pParse, pTab, pWhere, iCur); |
︙ | ︙ | |||
81165 81166 81167 81168 81169 81170 81171 | /* End the database scan loop. */ sqlite3WhereEnd(pWInfo); /* Initialize the count of updated rows */ | | | 82629 82630 82631 82632 82633 82634 82635 82636 82637 82638 82639 82640 82641 82642 82643 | /* End the database scan loop. */ sqlite3WhereEnd(pWInfo); /* Initialize the count of updated rows */ if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab ){ regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } if( !isView ){ /* ** Open every index that needs updating. Note that if any |
︙ | ︙ | |||
81198 81199 81200 81201 81202 81203 81204 | KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb, (char*)pKey, P4_KEYINFO_HANDOFF); assert( pParse->nTab>iCur+i+1 ); } } } | < < < < < < < < < < | < > > | > | < < < < | < < < < > > | | < < < < < | | | < < < < < | < < < < < < < | > > > > > > > > > | | | | > > > > | | | < | | | | | > | | < < | | < < < < < < < < < < < < > > | | | < | < > < < < < < | < < > > > > > | < < < | | > | < < | | < | | < | | < | < | < < < | < < < > < < < < | | | 82662 82663 82664 82665 82666 82667 82668 82669 82670 82671 82672 82673 82674 82675 82676 82677 82678 82679 82680 82681 82682 82683 82684 82685 82686 82687 82688 82689 82690 82691 82692 82693 82694 82695 82696 82697 82698 82699 82700 82701 82702 82703 82704 82705 82706 82707 82708 82709 82710 82711 82712 82713 82714 82715 82716 82717 82718 82719 82720 82721 82722 82723 82724 82725 82726 82727 82728 82729 82730 82731 82732 82733 82734 82735 82736 82737 82738 82739 82740 82741 82742 82743 82744 82745 82746 82747 82748 82749 82750 82751 82752 82753 82754 82755 82756 82757 82758 82759 82760 82761 82762 82763 82764 82765 82766 82767 82768 82769 82770 82771 82772 82773 82774 82775 82776 82777 82778 82779 82780 82781 82782 82783 82784 82785 82786 82787 82788 82789 82790 82791 82792 82793 82794 82795 82796 82797 82798 82799 82800 82801 82802 82803 82804 82805 82806 | KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb, (char*)pKey, P4_KEYINFO_HANDOFF); assert( pParse->nTab>iCur+i+1 ); } } } /* Top of the update loop */ if( okOnePass ){ int a1 = sqlite3VdbeAddOp1(v, OP_NotNull, regOldRowid); addr = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeJumpHere(v, a1); }else{ addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, 0, regOldRowid); } /* Make cursor iCur point to the record that is being updated. If ** this record does not exist for some reason (deleted by a trigger, ** for example, then jump to the next iteration of the RowSet loop. */ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid); /* If there are triggers on this table, populate an array of registers ** with the required old.* column data. */ if( pTrigger ){ for(i=0; i<pTab->nCol; i++){ if( aXRef[i]<0 || oldmask==0xffffffff || (oldmask & (1<<i)) ){ sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regOld+i); sqlite3ColumnDefault(v, pTab, i, regOld+i); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, regOld+i); } } } /* If the record number will change, set register regNewRowid to ** contain the new value. If the record number is not being modified, ** then regNewRowid is the same register as regOldRowid, which is ** already populated. */ assert( chngRowid || pTrigger || regOldRowid==regNewRowid ); if( chngRowid ){ sqlite3ExprCode(pParse, pRowidExpr, regNewRowid); sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); }else if( pTrigger ){ sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid); } /* Populate the array of registers beginning at regNew with the new ** row data. This array is used to check constaints, create the new ** table and index records, and as the values for any new.* references ** made by triggers. */ for(i=0; i<pTab->nCol; i++){ if( i==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i); }else{ j = aXRef[i]; if( j<0 ){ sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regNew+i); sqlite3ColumnDefault(v, pTab, i, regNew+i); }else{ sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regNew+i); } } } /* Fire any BEFORE UPDATE triggers. This happens before constraints are ** verified. One could argue that this is wrong. */ if( pTrigger ){ sqlite3VdbeAddOp2(v, OP_Affinity, regNew, pTab->nCol); sqlite3TableAffinityStr(v, pTab); sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab, -1, regOldRowid, onError, addr); /* The row-trigger may have deleted the row being updated. In this ** case, jump to the next row. No updates or AFTER triggers are ** required. This behaviour - what happens when the row being updated ** is deleted or renamed by a BEFORE trigger - is left undefined in the ** documentation. */ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid); } if( !isView ){ /* Do constraint checks. */ sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid, aRegIdx, (chngRowid?regOldRowid:0), 1, onError, addr, 0); /* Delete the index entries associated with the current record. */ j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid); sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx); /* If changing the record number, delete the old record. */ if( chngRowid ){ sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0); } sqlite3VdbeJumpHere(v, j1); /* Insert the new index entries and the new record. */ sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid, aRegIdx, 1, 0, 0); } /* Increment the row counter */ if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab){ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); } sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab, -1, regOldRowid, onError, addr); /* Repeat the above with the next record to be updated, until ** all record selected by the WHERE clause have been updated. */ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); sqlite3VdbeJumpHere(v, addr); /* Close all tables */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( openAll || aRegIdx[i]>0 ){ sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0); } } sqlite3VdbeAddOp2(v, OP_Close, iCur, 0); /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 ){ sqlite3AutoincrementEnd(pParse); } /* ** Return the number of rows that were changed. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ if( (db->flags&SQLITE_CountRows) && !pParse->pTriggerTab && !pParse->nested ){ sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC); } update_cleanup: sqlite3AuthContextPop(&sContext); |
︙ | ︙ | |||
81478 81479 81480 81481 81482 81483 81484 81485 81486 81487 81488 81489 81490 81491 | sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg); sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1); for(i=0; i<pTab->nCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i); } sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVTab, P4_VTAB); sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); sqlite3VdbeJumpHere(v, addr); sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0); /* Cleanup */ sqlite3SelectDelete(db, pSelect); } | > | 82892 82893 82894 82895 82896 82897 82898 82899 82900 82901 82902 82903 82904 82905 82906 | sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg); sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1); for(i=0; i<pTab->nCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i); } sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVTab, P4_VTAB); sqlite3MayAbort(pParse); sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); sqlite3VdbeJumpHere(v, addr); sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0); /* Cleanup */ sqlite3SelectDelete(db, pSelect); } |
︙ | ︙ | |||
82736 82737 82738 82739 82740 82741 82742 82743 82744 82745 82746 | /* ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] ** array so that an OP_VBegin will get generated for it. Add pTab to the ** array if it is missing. If pTab is already in the array, this routine ** is a no-op. */ SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ int i, n; Table **apVtabLock; assert( IsVirtual(pTab) ); | > | | | | | | | | 84151 84152 84153 84154 84155 84156 84157 84158 84159 84160 84161 84162 84163 84164 84165 84166 84167 84168 84169 84170 84171 84172 84173 84174 84175 84176 84177 84178 84179 | /* ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] ** array so that an OP_VBegin will get generated for it. Add pTab to the ** array if it is missing. If pTab is already in the array, this routine ** is a no-op. */ SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ Parse *pToplevel = sqlite3ParseToplevel(pParse); int i, n; Table **apVtabLock; assert( IsVirtual(pTab) ); for(i=0; i<pToplevel->nVtabLock; i++){ if( pTab==pToplevel->apVtabLock[i] ) return; } n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n); if( apVtabLock ){ pToplevel->apVtabLock = apVtabLock; pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; }else{ pToplevel->db->mallocFailed = 1; } } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /************** End of vtab.c ************************************************/ /************** Begin file where.c *******************************************/ |
︙ | ︙ | |||
82953 82954 82955 82956 82957 82958 82959 82960 82961 82962 82963 82964 82965 82966 | ** A WhereCost object records a lookup strategy and the estimated ** cost of pursuing that strategy. */ struct WhereCost { WherePlan plan; /* The lookup strategy */ double rCost; /* Overall cost of pursuing this search strategy */ double nRow; /* Estimated number of output rows */ }; /* ** Bitmasks for the operators that indices are able to exploit. An ** OR-ed combination of these values can be used when searching for ** terms in the where clause. */ | > | 84369 84370 84371 84372 84373 84374 84375 84376 84377 84378 84379 84380 84381 84382 84383 | ** A WhereCost object records a lookup strategy and the estimated ** cost of pursuing that strategy. */ struct WhereCost { WherePlan plan; /* The lookup strategy */ double rCost; /* Overall cost of pursuing this search strategy */ double nRow; /* Estimated number of output rows */ Bitmask used; /* Bitmask of cursors used by this plan */ }; /* ** Bitmasks for the operators that indices are able to exploit. An ** OR-ed combination of these values can be used when searching for ** terms in the where clause. */ |
︙ | ︙ | |||
84096 84097 84098 84099 84100 84101 84102 84103 84104 84105 84106 84107 84108 84109 | struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ sqlite3 *db = pParse->db; assert( pOrderBy!=0 ); nTerm = pOrderBy->nExpr; assert( nTerm>0 ); /* Match terms of the ORDER BY clause against columns of ** the index. ** ** Note that indices have pIdx->nColumn regular columns plus ** one additional column containing the rowid. The rowid column ** of the index is also allowed to match against the ORDER BY ** clause. | > > > > > | 85513 85514 85515 85516 85517 85518 85519 85520 85521 85522 85523 85524 85525 85526 85527 85528 85529 85530 85531 | struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ sqlite3 *db = pParse->db; assert( pOrderBy!=0 ); nTerm = pOrderBy->nExpr; assert( nTerm>0 ); /* Argument pIdx must either point to a 'real' named index structure, ** or an index structure allocated on the stack by bestBtreeIndex() to ** represent the rowid index that is part of every table. */ assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) ); /* Match terms of the ORDER BY clause against columns of ** the index. ** ** Note that indices have pIdx->nColumn regular columns plus ** one additional column containing the rowid. The rowid column ** of the index is also allowed to match against the ORDER BY ** clause. |
︙ | ︙ | |||
84122 84123 84124 84125 84126 84127 84128 | ** left-most table of the FROM clause */ break; } pColl = sqlite3ExprCollSeq(pParse, pExpr); if( !pColl ){ pColl = db->pDfltColl; } | | | 85544 85545 85546 85547 85548 85549 85550 85551 85552 85553 85554 85555 85556 85557 85558 | ** left-most table of the FROM clause */ break; } pColl = sqlite3ExprCollSeq(pParse, pExpr); if( !pColl ){ pColl = db->pDfltColl; } if( pIdx->zName && i<pIdx->nColumn ){ iColumn = pIdx->aiColumn[i]; if( iColumn==pIdx->pTable->iPKey ){ iColumn = -1; } iSortOrder = pIdx->aSortOrder[i]; zColl = pIdx->azColl[i]; }else{ |
︙ | ︙ | |||
84151 84152 84153 84154 84155 84156 84157 | }else{ /* If an index column fails to match and is not constrained by == ** then the index cannot satisfy the ORDER BY constraint. */ return 0; } } | | | 85573 85574 85575 85576 85577 85578 85579 85580 85581 85582 85583 85584 85585 85586 85587 | }else{ /* If an index column fails to match and is not constrained by == ** then the index cannot satisfy the ORDER BY constraint. */ return 0; } } assert( pIdx->aSortOrder!=0 || iColumn==-1 ); assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); assert( iSortOrder==0 || iSortOrder==1 ); termSortOrder = iSortOrder ^ pTerm->sortOrder; if( i>nEqCol ){ if( termSortOrder!=sortOrder ){ /* Indices can only be used if all ORDER BY terms past the ** equality constraints are all either DESC or ASC. */ |
︙ | ︙ | |||
84191 84192 84193 84194 84195 84196 84197 | && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ /* All terms of this index match some prefix of the ORDER BY clause ** and the index is UNIQUE and no terms on the tail of the ORDER BY ** clause reference other tables in a join. If this is all true then ** the order by clause is superfluous. */ return 1; } | < < < < < < < < < < < < < < < < < < < < < < < < | 85613 85614 85615 85616 85617 85618 85619 85620 85621 85622 85623 85624 85625 85626 | && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ /* All terms of this index match some prefix of the ORDER BY clause ** and the index is UNIQUE and no terms on the tail of the ORDER BY ** clause reference other tables in a join. If this is all true then ** the order by clause is superfluous. */ return 1; } return 0; } /* ** Prepare a crude estimate of the logarithm of the input value. ** The results need not be exact. This is only used for estimating ** the total cost of performing operations with O(logN) or O(NlogN) |
︙ | ︙ | |||
84318 84319 84320 84321 84322 84323 84324 84325 84326 84327 84328 84329 84330 84331 | ){ WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; WhereTerm *pOrTerm; int flags = WHERE_MULTI_OR; double rTotal = 0; double nRow = 0; for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ WhereCost sTermCost; WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", (pOrTerm - pOrWC->a), (pTerm - pWC->a) )); if( pOrTerm->eOperator==WO_AND ){ | > | 85716 85717 85718 85719 85720 85721 85722 85723 85724 85725 85726 85727 85728 85729 85730 | ){ WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; WhereTerm *pOrTerm; int flags = WHERE_MULTI_OR; double rTotal = 0; double nRow = 0; Bitmask used = 0; for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ WhereCost sTermCost; WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", (pOrTerm - pOrWC->a), (pTerm - pWC->a) )); if( pOrTerm->eOperator==WO_AND ){ |
︙ | ︙ | |||
84340 84341 84342 84343 84344 84345 84346 84347 84348 84349 84350 84351 84352 84353 84354 84355 84356 84357 84358 84359 84360 84361 84362 84363 84364 84365 84366 84367 84368 84369 84370 | tempWC.nTerm = 1; bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost); }else{ continue; } rTotal += sTermCost.rCost; nRow += sTermCost.nRow; if( rTotal>=pCost->rCost ) break; } /* If there is an ORDER BY clause, increase the scan cost to account ** for the cost of the sort. */ if( pOrderBy!=0 ){ rTotal += nRow*estLog(nRow); WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal)); } /* If the cost of scanning using this OR term for optimization is ** less than the current cost stored in pCost, replace the contents ** of pCost. */ WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow)); if( rTotal<pCost->rCost ){ pCost->rCost = rTotal; pCost->nRow = nRow; pCost->plan.wsFlags = flags; pCost->plan.u.pTerm = pTerm; } } } #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ } | > > | 85739 85740 85741 85742 85743 85744 85745 85746 85747 85748 85749 85750 85751 85752 85753 85754 85755 85756 85757 85758 85759 85760 85761 85762 85763 85764 85765 85766 85767 85768 85769 85770 85771 | tempWC.nTerm = 1; bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost); }else{ continue; } rTotal += sTermCost.rCost; nRow += sTermCost.nRow; used |= sTermCost.used; if( rTotal>=pCost->rCost ) break; } /* If there is an ORDER BY clause, increase the scan cost to account ** for the cost of the sort. */ if( pOrderBy!=0 ){ rTotal += nRow*estLog(nRow); WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal)); } /* If the cost of scanning using this OR term for optimization is ** less than the current cost stored in pCost, replace the contents ** of pCost. */ WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow)); if( rTotal<pCost->rCost ){ pCost->rCost = rTotal; pCost->nRow = nRow; pCost->used = used; pCost->plan.wsFlags = flags; pCost->plan.u.pTerm = pTerm; } } } #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ } |
︙ | ︙ | |||
84609 84610 84611 84612 84613 84614 84615 | ** each time. */ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; pUsage = pIdxInfo->aConstraintUsage; for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ j = pIdxCons->iTermOffset; pTerm = &pWC->a[j]; | | > > > > > > > | 86010 86011 86012 86013 86014 86015 86016 86017 86018 86019 86020 86021 86022 86023 86024 86025 86026 86027 86028 86029 86030 86031 86032 86033 86034 86035 86036 86037 86038 86039 86040 86041 86042 86043 86044 86045 86046 86047 86048 86049 86050 | ** each time. */ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; pUsage = pIdxInfo->aConstraintUsage; for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ j = pIdxCons->iTermOffset; pTerm = &pWC->a[j]; pIdxCons->usable = (pTerm->prereqRight¬Ready) ? 0 : 1; } memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); if( pIdxInfo->needToFreeIdxStr ){ sqlite3_free(pIdxInfo->idxStr); } pIdxInfo->idxStr = 0; pIdxInfo->idxNum = 0; pIdxInfo->needToFreeIdxStr = 0; pIdxInfo->orderByConsumed = 0; /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */ pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2); nOrderBy = pIdxInfo->nOrderBy; if( !pOrderBy ){ pIdxInfo->nOrderBy = 0; } if( vtabBestIndex(pParse, pTab, pIdxInfo) ){ return; } pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; for(i=0; i<pIdxInfo->nConstraint; i++){ if( pUsage[i].argvIndex>0 ){ pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight; } } /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the ** inital value of lowestCost in this loop. If it is, then the ** (cost<lowestCost) test below will never be true. ** ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT ** is defined. |
︙ | ︙ | |||
84655 84656 84657 84658 84659 84660 84661 84662 84663 84664 84665 84666 84667 84668 | /* Try to find a more efficient access pattern by using multiple indexes ** to optimize an OR expression within the WHERE clause. */ bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** Find the query plan for accessing a particular table. Write the ** best query plan and its cost into the WhereCost object supplied as the ** last parameter. ** ** The lowest cost plan wins. The cost is an estimate of the amount of | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 86063 86064 86065 86066 86067 86068 86069 86070 86071 86072 86073 86074 86075 86076 86077 86078 86079 86080 86081 86082 86083 86084 86085 86086 86087 86088 86089 86090 86091 86092 86093 86094 86095 86096 86097 86098 86099 86100 86101 86102 86103 86104 86105 86106 86107 86108 86109 86110 86111 86112 86113 86114 86115 86116 86117 86118 86119 86120 86121 86122 86123 86124 86125 86126 86127 86128 86129 86130 86131 86132 86133 86134 86135 86136 86137 86138 86139 86140 86141 86142 86143 86144 86145 86146 86147 86148 86149 86150 86151 86152 86153 86154 86155 86156 86157 86158 86159 86160 86161 86162 86163 86164 86165 86166 86167 86168 86169 86170 86171 86172 86173 86174 86175 86176 86177 86178 86179 86180 86181 86182 86183 86184 86185 86186 86187 86188 86189 86190 86191 86192 86193 86194 86195 86196 86197 86198 86199 86200 86201 86202 86203 86204 86205 86206 86207 86208 86209 86210 86211 86212 86213 86214 86215 86216 86217 86218 86219 86220 86221 86222 86223 86224 86225 86226 86227 86228 86229 86230 86231 86232 86233 86234 86235 86236 86237 86238 86239 86240 86241 86242 86243 86244 86245 86246 86247 86248 86249 86250 86251 86252 86253 86254 86255 86256 86257 86258 86259 86260 86261 86262 86263 86264 86265 86266 86267 86268 86269 86270 86271 86272 86273 86274 86275 86276 86277 86278 86279 86280 86281 86282 86283 | /* Try to find a more efficient access pattern by using multiple indexes ** to optimize an OR expression within the WHERE clause. */ bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** Argument pIdx is a pointer to an index structure that has an array of ** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column ** stored in Index.aSample. The domain of values stored in said column ** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions. ** Region 0 contains all values smaller than the first sample value. Region ** 1 contains values larger than or equal to the value of the first sample, ** but smaller than the value of the second. And so on. ** ** If successful, this function determines which of the regions value ** pVal lies in, sets *piRegion to the region index (a value between 0 ** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK. ** Or, if an OOM occurs while converting text values between encodings, ** SQLITE_NOMEM is returned and *piRegion is undefined. */ #ifdef SQLITE_ENABLE_STAT2 static int whereRangeRegion( Parse *pParse, /* Database connection */ Index *pIdx, /* Index to consider domain of */ sqlite3_value *pVal, /* Value to consider */ int *piRegion /* OUT: Region of domain in which value lies */ ){ if( ALWAYS(pVal) ){ IndexSample *aSample = pIdx->aSample; int i = 0; int eType = sqlite3_value_type(pVal); if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ double r = sqlite3_value_double(pVal); for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ if( aSample[i].eType==SQLITE_NULL ) continue; if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break; } }else{ sqlite3 *db = pParse->db; CollSeq *pColl; const u8 *z; int n; /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */ assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); if( eType==SQLITE_BLOB ){ z = (const u8 *)sqlite3_value_blob(pVal); pColl = db->pDfltColl; assert( pColl->enc==SQLITE_UTF8 ); }else{ pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl); if( pColl==0 ){ sqlite3ErrorMsg(pParse, "no such collation sequence: %s", *pIdx->azColl); return SQLITE_ERROR; } z = (const u8 *)sqlite3ValueText(pVal, pColl->enc); if( !z ){ return SQLITE_NOMEM; } assert( z && pColl && pColl->xCmp ); } n = sqlite3ValueBytes(pVal, pColl->enc); for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ int r; int eSampletype = aSample[i].eType; if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue; if( (eSampletype!=eType) ) break; if( pColl->enc==SQLITE_UTF8 ){ r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z); }else{ int nSample; char *zSample = sqlite3Utf8to16( db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample ); if( !zSample ){ assert( db->mallocFailed ); return SQLITE_NOMEM; } r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z); sqlite3DbFree(db, zSample); } if( r>0 ) break; } } assert( i>=0 && i<=SQLITE_INDEX_SAMPLES ); *piRegion = i; } return SQLITE_OK; } #endif /* #ifdef SQLITE_ENABLE_STAT2 */ /* ** This function is used to estimate the number of rows that will be visited ** by scanning an index for a range of values. The range may have an upper ** bound, a lower bound, or both. The WHERE clause terms that set the upper ** and lower bounds are represented by pLower and pUpper respectively. For ** example, assuming that index p is on t1(a): ** ** ... FROM t1 WHERE a > ? AND a < ? ... ** |_____| |_____| ** | | ** pLower pUpper ** ** If either of the upper or lower bound is not present, then NULL is passed in ** place of the corresponding WhereTerm. ** ** The nEq parameter is passed the index of the index column subject to the ** range constraint. Or, equivalently, the number of equality constraints ** optimized by the proposed index scan. For example, assuming index p is ** on t1(a, b), and the SQL query is: ** ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... ** ** then nEq should be passed the value 1 (as the range restricted column, ** b, is the second left-most column of the index). Or, if the query is: ** ** ... FROM t1 WHERE a > ? AND a < ? ... ** ** then nEq should be passed 0. ** ** The returned value is an integer between 1 and 100, inclusive. A return ** value of 1 indicates that the proposed range scan is expected to visit ** approximately 1/100th (1%) of the rows selected by the nEq equality ** constraints (if any). A return value of 100 indicates that it is expected ** that the range scan will visit every row (100%) selected by the equality ** constraints. ** ** In the absence of sqlite_stat2 ANALYZE data, each range inequality ** reduces the search space by 2/3rds. Hence a single constraint (x>?) ** results in a return of 33 and a range constraint (x>? AND x<?) results ** in a return of 11. */ static int whereRangeScanEst( Parse *pParse, /* Parsing & code generating context */ Index *p, /* The index containing the range-compared column; "x" */ int nEq, /* index into p->aCol[] of the range-compared column */ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ int *piEst /* OUT: Return value */ ){ int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_STAT2 sqlite3 *db = pParse->db; sqlite3_value *pLowerVal = 0; sqlite3_value *pUpperVal = 0; if( nEq==0 && p->aSample ){ int iEst; int iLower = 0; int iUpper = SQLITE_INDEX_SAMPLES; u8 aff = p->pTable->aCol[0].affinity; if( pLower ){ Expr *pExpr = pLower->pExpr->pRight; rc = sqlite3ValueFromExpr(db, pExpr, SQLITE_UTF8, aff, &pLowerVal); } if( rc==SQLITE_OK && pUpper ){ Expr *pExpr = pUpper->pExpr->pRight; rc = sqlite3ValueFromExpr(db, pExpr, SQLITE_UTF8, aff, &pUpperVal); } if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){ sqlite3ValueFree(pLowerVal); sqlite3ValueFree(pUpperVal); goto range_est_fallback; }else if( pLowerVal==0 ){ rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper); if( pLower ) iLower = iUpper/2; }else if( pUpperVal==0 ){ rc = whereRangeRegion(pParse, p, pLowerVal, &iLower); if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2; }else{ rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper); if( rc==SQLITE_OK ){ rc = whereRangeRegion(pParse, p, pLowerVal, &iLower); } } iEst = iUpper - iLower; testcase( iEst==SQLITE_INDEX_SAMPLES ); assert( iEst<=SQLITE_INDEX_SAMPLES ); if( iEst<1 ){ iEst = 1; } sqlite3ValueFree(pLowerVal); sqlite3ValueFree(pUpperVal); *piEst = (iEst * 100)/SQLITE_INDEX_SAMPLES; return rc; } range_est_fallback: #else UNUSED_PARAMETER(pParse); UNUSED_PARAMETER(p); UNUSED_PARAMETER(nEq); #endif assert( pLower || pUpper ); if( pLower && pUpper ){ *piEst = 11; }else{ *piEst = 33; } return rc; } /* ** Find the query plan for accessing a particular table. Write the ** best query plan and its cost into the WhereCost object supplied as the ** last parameter. ** ** The lowest cost plan wins. The cost is an estimate of the amount of |
︙ | ︙ | |||
84692 84693 84694 84695 84696 84697 84698 | Parse *pParse, /* The parsing context */ WhereClause *pWC, /* The WHERE clause */ struct SrcList_item *pSrc, /* The FROM clause term to search */ Bitmask notReady, /* Mask of cursors that are not available */ ExprList *pOrderBy, /* The ORDER BY clause */ WhereCost *pCost /* Lowest cost query plan */ ){ | < < | | | | < > | | < < < < | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | | < < > | > > > > > > > > > > > > > > > > | > > > > > > > > > > | < > > > > | | | > > > > > > > > > > > > > > | | | | | > > > > > > > | > > > > > > | > > > > > > > > | > > > > > > > | > > > > > > > > > > > > > > > > | > > > > > > | > | | | | | | > | < | < | | > > > | > > > | < > | > > > > | < < < < < < < < < > > | < < < < < < < < < < < < < < | < < | < < < | < | < | < < < < < < < < | | < > > > | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < | > | > > > > > > | > | > | < | > > > > > > > > | | > > > > | > > > > > > > > > | | > | > | | 86307 86308 86309 86310 86311 86312 86313 86314 86315 86316 86317 86318 86319 86320 86321 86322 86323 86324 86325 86326 86327 86328 86329 86330 86331 86332 86333 86334 86335 86336 86337 86338 86339 86340 86341 86342 86343 86344 86345 86346 86347 86348 86349 86350 86351 86352 86353 86354 86355 86356 86357 86358 86359 86360 86361 86362 86363 86364 86365 86366 86367 86368 86369 86370 86371 86372 86373 86374 86375 86376 86377 86378 86379 86380 86381 86382 86383 86384 86385 86386 86387 86388 86389 86390 86391 86392 86393 86394 86395 86396 86397 86398 86399 86400 86401 86402 86403 86404 86405 86406 86407 86408 86409 86410 86411 86412 86413 86414 86415 86416 86417 86418 86419 86420 86421 86422 86423 86424 86425 86426 86427 86428 86429 86430 86431 86432 86433 86434 86435 86436 86437 86438 86439 86440 86441 86442 86443 86444 86445 86446 86447 86448 86449 86450 86451 86452 86453 86454 86455 86456 86457 86458 86459 86460 86461 86462 86463 86464 86465 86466 86467 86468 86469 86470 86471 86472 86473 86474 86475 86476 86477 86478 86479 86480 86481 86482 86483 86484 86485 86486 86487 86488 86489 86490 86491 86492 86493 86494 86495 86496 86497 86498 86499 86500 86501 86502 86503 86504 86505 86506 86507 86508 86509 86510 86511 86512 86513 86514 86515 86516 86517 86518 86519 86520 86521 86522 86523 86524 86525 86526 86527 86528 86529 86530 86531 86532 86533 86534 86535 86536 86537 86538 86539 86540 86541 86542 86543 86544 86545 86546 86547 86548 86549 86550 86551 86552 86553 86554 86555 86556 86557 86558 86559 86560 86561 86562 86563 86564 86565 86566 86567 86568 86569 86570 86571 86572 86573 86574 86575 86576 86577 86578 86579 86580 86581 86582 86583 86584 86585 86586 86587 86588 86589 86590 86591 86592 86593 86594 86595 86596 86597 86598 86599 86600 86601 86602 86603 86604 86605 86606 86607 86608 86609 86610 86611 86612 86613 86614 86615 86616 86617 86618 86619 86620 86621 86622 86623 86624 86625 86626 86627 86628 | Parse *pParse, /* The parsing context */ WhereClause *pWC, /* The WHERE clause */ struct SrcList_item *pSrc, /* The FROM clause term to search */ Bitmask notReady, /* Mask of cursors that are not available */ ExprList *pOrderBy, /* The ORDER BY clause */ WhereCost *pCost /* Lowest cost query plan */ ){ int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ Index *pProbe; /* An index we are evaluating */ Index *pIdx; /* Copy of pProbe, or zero for IPK index */ int eqTermMask; /* Current mask of valid equality operators */ int idxEqTermMask; /* Index mask of valid equality operators */ Index sPk; /* A fake index object for the primary key */ unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */ int aiColumnPk = -1; /* The aColumn[] value for the sPk index */ int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */ /* Initialize the cost to a worst-case value */ memset(pCost, 0, sizeof(*pCost)); pCost->rCost = SQLITE_BIG_DBL; /* If the pSrc table is the right table of a LEFT JOIN then we may not ** use an index to satisfy IS NULL constraints on that table. This is ** because columns might end up being NULL if the table does not match - ** a circumstance which the index cannot help us discover. Ticket #2177. */ if( pSrc->jointype & JT_LEFT ){ idxEqTermMask = WO_EQ|WO_IN; }else{ idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL; } if( pSrc->pIndex ){ /* An INDEXED BY clause specifies a particular index to use */ pIdx = pProbe = pSrc->pIndex; wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); eqTermMask = idxEqTermMask; }else{ /* There is no INDEXED BY clause. Create a fake Index object to ** represent the primary key */ Index *pFirst; /* Any other index on the table */ memset(&sPk, 0, sizeof(Index)); sPk.nColumn = 1; sPk.aiColumn = &aiColumnPk; sPk.aiRowEst = aiRowEstPk; aiRowEstPk[1] = 1; sPk.onError = OE_Replace; sPk.pTable = pSrc->pTab; pFirst = pSrc->pTab->pIndex; if( pSrc->notIndexed==0 ){ sPk.pNext = pFirst; } /* The aiRowEstPk[0] is an estimate of the total number of rows in the ** table. Get this information from the ANALYZE information if it is ** available. If not available, assume the table 1 million rows in size. */ if( pFirst ){ assert( pFirst->aiRowEst!=0 ); /* Allocated together with pFirst */ aiRowEstPk[0] = pFirst->aiRowEst[0]; }else{ aiRowEstPk[0] = 1000000; } pProbe = &sPk; wsFlagMask = ~( WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE ); eqTermMask = WO_EQ|WO_IN; pIdx = 0; } /* Loop over all indices looking for the best one to use */ for(; pProbe; pIdx=pProbe=pProbe->pNext){ const unsigned int * const aiRowEst = pProbe->aiRowEst; double cost; /* Cost of using pProbe */ double nRow; /* Estimated number of rows in result set */ int rev; /* True to scan in reverse order */ int wsFlags = 0; Bitmask used = 0; /* The following variables are populated based on the properties of ** scan being evaluated. They are then used to determine the expected ** cost and number of rows returned. ** ** nEq: ** Number of equality terms that can be implemented using the index. ** ** nInMul: ** The "in-multiplier". This is an estimate of how many seek operations ** SQLite must perform on the index in question. For example, if the ** WHERE clause is: ** ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6) ** ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is ** set to 9. Given the same schema and either of the following WHERE ** clauses: ** ** WHERE a = 1 ** WHERE a >= 2 ** ** nInMul is set to 1. ** ** If there exists a WHERE term of the form "x IN (SELECT ...)", then ** the sub-select is assumed to return 25 rows for the purposes of ** determining nInMul. ** ** bInEst: ** Set to true if there was at least one "x IN (SELECT ...)" term used ** in determining the value of nInMul. ** ** nBound: ** An estimate on the amount of the table that must be searched. A ** value of 100 means the entire table is searched. Range constraints ** might reduce this to a value less than 100 to indicate that only ** a fraction of the table needs searching. In the absence of ** sqlite_stat2 ANALYZE data, a single inequality reduces the search ** space to 1/3rd its original size. So an x>? constraint reduces ** nBound to 33. Two constraints (x>? AND x<?) reduce nBound to 11. ** ** bSort: ** Boolean. True if there is an ORDER BY clause that will require an ** external sort (i.e. scanning the index being evaluated will not ** correctly order records). ** ** bLookup: ** Boolean. True if for each index entry visited a lookup on the ** corresponding table b-tree is required. This is always false ** for the rowid index. For other indexes, it is true unless all the ** columns of the table used by the SELECT statement are present in ** the index (such an index is sometimes described as a covering index). ** For example, given the index on (a, b), the second of the following ** two queries requires table b-tree lookups, but the first does not. ** ** SELECT a, b FROM tbl WHERE a = 1; ** SELECT a, b, c FROM tbl WHERE a = 1; */ int nEq; int bInEst = 0; int nInMul = 1; int nBound = 100; int bSort = 0; int bLookup = 0; /* Determine the values of nEq and nInMul */ for(nEq=0; nEq<pProbe->nColumn; nEq++){ WhereTerm *pTerm; /* A single term of the WHERE clause */ int j = pProbe->aiColumn[nEq]; pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx); if( pTerm==0 ) break; wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ); if( pTerm->eOperator & WO_IN ){ Expr *pExpr = pTerm->pExpr; wsFlags |= WHERE_COLUMN_IN; if( ExprHasProperty(pExpr, EP_xIsSelect) ){ nInMul *= 25; bInEst = 1; }else if( pExpr->x.pList ){ nInMul *= pExpr->x.pList->nExpr + 1; } }else if( pTerm->eOperator & WO_ISNULL ){ wsFlags |= WHERE_COLUMN_NULL; } used |= pTerm->prereqRight; } /* Determine the value of nBound. */ if( nEq<pProbe->nColumn ){ int j = pProbe->aiColumn[nEq]; if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx); WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx); whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &nBound); if( pTop ){ wsFlags |= WHERE_TOP_LIMIT; used |= pTop->prereqRight; } if( pBtm ){ wsFlags |= WHERE_BTM_LIMIT; used |= pBtm->prereqRight; } wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE); } }else if( pProbe->onError!=OE_None ){ testcase( wsFlags & WHERE_COLUMN_IN ); testcase( wsFlags & WHERE_COLUMN_NULL ); if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){ wsFlags |= WHERE_UNIQUE; } } /* If there is an ORDER BY clause and the index being considered will ** naturally scan rows in the required order, set the appropriate flags ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index ** will scan rows in a different order, set the bSort variable. */ if( pOrderBy ){ if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY; wsFlags |= (rev ? WHERE_REVERSE : 0); }else{ bSort = 1; } } /* If currently calculating the cost of using an index (not the IPK ** index), determine if all required column data may be obtained without ** seeking to entries in the main table (i.e. if the index is a covering ** index for this query). If it is, set the WHERE_IDX_ONLY flag in ** wsFlags. Otherwise, set the bLookup variable to true. */ if( pIdx && wsFlags ){ Bitmask m = pSrc->colUsed; int j; for(j=0; j<pIdx->nColumn; j++){ int x = pIdx->aiColumn[j]; if( x<BMS-1 ){ m &= ~(((Bitmask)1)<<x); } } if( m==0 ){ wsFlags |= WHERE_IDX_ONLY; }else{ bLookup = 1; } } /**** Begin adding up the cost of using this index (Needs improvements) ** ** Estimate the number of rows of output. For an IN operator, ** do not let the estimate exceed half the rows in the table. */ nRow = (double)(aiRowEst[nEq] * nInMul); if( bInEst && nRow*2>aiRowEst[0] ){ nRow = aiRowEst[0]/2; nInMul = (int)(nRow / aiRowEst[nEq]); } /* Assume constant cost to access a row and logarithmic cost to ** do a binary search. Hence, the initial cost is the number of output ** rows plus log2(table-size) times the number of binary searches. */ cost = nRow + nInMul*estLog(aiRowEst[0]); /* Adjust the number of rows and the cost downward to reflect rows ** that are excluded by range constraints. */ nRow = (nRow * (double)nBound) / (double)100; cost = (cost * (double)nBound) / (double)100; /* Add in the estimated cost of sorting the result */ if( bSort ){ cost += cost*estLog(cost); } /* If all information can be taken directly from the index, we avoid ** doing table lookups. This reduces the cost by half. (Not really - ** this needs to be fixed.) */ if( pIdx && bLookup==0 ){ cost /= (double)2; } /**** Cost of using this index has now been computed ****/ WHERETRACE(( "tbl=%s idx=%s nEq=%d nInMul=%d nBound=%d bSort=%d bLookup=%d" " wsFlags=%d (nRow=%.2f cost=%.2f)\n", pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), nEq, nInMul, nBound, bSort, bLookup, wsFlags, nRow, cost )); /* If this index is the best we have seen so far, then record this ** index and its cost in the pCost structure. */ if( (!pIdx || wsFlags) && cost<pCost->rCost ){ pCost->rCost = cost; pCost->nRow = nRow; pCost->used = used; pCost->plan.wsFlags = (wsFlags&wsFlagMask); pCost->plan.nEq = nEq; pCost->plan.u.pIdx = pIdx; } /* If there was an INDEXED BY clause, then only that one index is ** considered. */ if( pSrc->pIndex ) break; /* Reset masks for the next index in the loop */ wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); eqTermMask = idxEqTermMask; } /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag ** is set, then reverse the order that the index will be scanned ** in. This is used for application testing, to help find cases ** where application behaviour depends on the (undefined) order that ** SQLite outputs rows in in the absence of an ORDER BY clause. */ if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){ pCost->plan.wsFlags |= WHERE_REVERSE; } assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 ); assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 ); assert( pSrc->pIndex==0 || pCost->plan.u.pIdx==0 || pCost->plan.u.pIdx==pSrc->pIndex ); WHERETRACE(("best index is: %s\n", (pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk") )); bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); pCost->plan.wsFlags |= eqTermMask; } /* ** Find the query plan for accessing table pSrc->pTab. Write the ** best query plan and its cost into the WhereCost object supplied ** as the last parameter. This function may calculate the cost of ** both real and virtual table scans. |
︙ | ︙ | |||
85046 85047 85048 85049 85050 85051 85052 | disableTerm(pLevel, pOther); } } } } /* | | | > > > > | < | | | | | < | 86685 86686 86687 86688 86689 86690 86691 86692 86693 86694 86695 86696 86697 86698 86699 86700 86701 86702 86703 86704 86705 86706 86707 86708 86709 86710 86711 | disableTerm(pLevel, pOther); } } } } /* ** Code an OP_Affinity opcode to apply the column affinity string zAff ** to the n registers starting at base. ** ** Buffer zAff was allocated using sqlite3DbMalloc(). It is the ** responsibility of this function to arrange for it to be eventually ** freed using sqlite3DbFree(). */ static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ Vdbe *v = pParse->pVdbe; assert( v!=0 ); sqlite3VdbeAddOp2(v, OP_Affinity, base, n); sqlite3VdbeChangeP4(v, -1, zAff, P4_DYNAMIC); sqlite3ExprCacheAffinityChange(pParse, base, n); } /* ** Generate code for a single equality term of the WHERE clause. An equality ** term can be either X=expr or X IN (...). pTerm is the term to be ** coded. |
︙ | ︙ | |||
85147 85148 85149 85150 85151 85152 85153 85154 85155 85156 85157 85158 85159 | ** ** This routine always allocates at least one memory cell and returns ** the index of that memory cell. The code that ** calls this routine will use that memory cell to store the termination ** key value of the loop. If one or more IN operators appear, then ** this routine allocates an additional nEq memory cells for internal ** use. */ static int codeAllEqualityTerms( Parse *pParse, /* Parsing context */ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ WhereClause *pWC, /* The WHERE clause */ Bitmask notReady, /* Which parts of FROM have not yet been coded */ | > > > > > > > > > > > > > > > | > > > > > > > | 86788 86789 86790 86791 86792 86793 86794 86795 86796 86797 86798 86799 86800 86801 86802 86803 86804 86805 86806 86807 86808 86809 86810 86811 86812 86813 86814 86815 86816 86817 86818 86819 86820 86821 86822 86823 86824 86825 86826 86827 86828 86829 86830 86831 86832 86833 86834 86835 86836 86837 86838 86839 86840 86841 86842 86843 86844 86845 86846 86847 86848 86849 | ** ** This routine always allocates at least one memory cell and returns ** the index of that memory cell. The code that ** calls this routine will use that memory cell to store the termination ** key value of the loop. If one or more IN operators appear, then ** this routine allocates an additional nEq memory cells for internal ** use. ** ** Before returning, *pzAff is set to point to a buffer containing a ** copy of the column affinity string of the index allocated using ** sqlite3DbMalloc(). Except, entries in the copy of the string associated ** with equality constraints that use NONE affinity are set to ** SQLITE_AFF_NONE. This is to deal with SQL such as the following: ** ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; ** ** In the example above, the index on t1(a) has TEXT affinity. But since ** the right hand side of the equality constraint (t2.b) has NONE affinity, ** no conversion should be attempted before using a t2.b value as part of ** a key to search the index. Hence the first byte in the returned affinity ** string in this example would be set to SQLITE_AFF_NONE. */ static int codeAllEqualityTerms( Parse *pParse, /* Parsing context */ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ WhereClause *pWC, /* The WHERE clause */ Bitmask notReady, /* Which parts of FROM have not yet been coded */ int nExtraReg, /* Number of extra registers to allocate */ char **pzAff /* OUT: Set to point to affinity string */ ){ int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */ Vdbe *v = pParse->pVdbe; /* The vm under construction */ Index *pIdx; /* The index being used for this loop */ int iCur = pLevel->iTabCur; /* The cursor of the table */ WhereTerm *pTerm; /* A single constraint term */ int j; /* Loop counter */ int regBase; /* Base register */ int nReg; /* Number of registers to allocate */ char *zAff; /* Affinity string to return */ /* This module is only called on query plans that use an index. */ assert( pLevel->plan.wsFlags & WHERE_INDEXED ); pIdx = pLevel->plan.u.pIdx; /* Figure out how many memory cells we will need then allocate them. */ regBase = pParse->nMem + 1; nReg = pLevel->plan.nEq + nExtraReg; pParse->nMem += nReg; zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); if( !zAff ){ pParse->db->mallocFailed = 1; } /* Evaluate the equality constraints */ assert( pIdx->nColumn>=nEq ); for(j=0; j<nEq; j++){ int r1; int k = pIdx->aiColumn[j]; |
︙ | ︙ | |||
85196 85197 85198 85199 85200 85201 85202 | sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); } } testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IN ); if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); | > > > > | | > > | 86859 86860 86861 86862 86863 86864 86865 86866 86867 86868 86869 86870 86871 86872 86873 86874 86875 86876 86877 86878 86879 86880 | sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); } } testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IN ); if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); if( zAff && sqlite3CompareAffinity(pTerm->pExpr->pRight, zAff[j])==SQLITE_AFF_NONE ){ zAff[j] = SQLITE_AFF_NONE; } } } *pzAff = zAff; return regBase; } /* ** Generate code for the start of the iLevel-th loop in the WHERE clause ** implementation described by pWInfo. */ |
︙ | ︙ | |||
85453 85454 85455 85456 85457 85458 85459 85460 85461 85462 85463 85464 85465 85466 | int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ pIdx = pLevel->plan.u.pIdx; iIdxCur = pLevel->iIdxCur; k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ /* If this loop satisfies a sort order (pOrderBy) request that ** was passed to this function to implement a "SELECT min(x) ..." | > | 87122 87123 87124 87125 87126 87127 87128 87129 87130 87131 87132 87133 87134 87135 87136 | int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ char *zAff; pIdx = pLevel->plan.u.pIdx; iIdxCur = pLevel->iIdxCur; k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ /* If this loop satisfies a sort order (pOrderBy) request that ** was passed to this function to implement a "SELECT min(x) ..." |
︙ | ︙ | |||
85492 85493 85494 85495 85496 85497 85498 | nExtraReg = 1; } /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ | | > > < > | > > > > > > > > | > | > > > > > > > > > | | 87162 87163 87164 87165 87166 87167 87168 87169 87170 87171 87172 87173 87174 87175 87176 87177 87178 87179 87180 87181 87182 87183 87184 87185 87186 87187 87188 87189 87190 87191 87192 87193 87194 87195 87196 87197 87198 87199 87200 87201 87202 87203 87204 87205 87206 87207 87208 87209 87210 87211 87212 87213 87214 87215 87216 87217 87218 87219 87220 87221 87222 87223 87224 87225 87226 87227 87228 87229 87230 87231 87232 87233 87234 87235 87236 87237 87238 87239 87240 87241 87242 87243 87244 87245 87246 87247 87248 | nExtraReg = 1; } /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ regBase = codeAllEqualityTerms( pParse, pLevel, pWC, notReady, nExtraReg, &zAff ); addrNxt = pLevel->addrNxt; /* If we are doing a reverse order scan on an ascending index, or ** a forward order scan on a descending index, interchange the ** start and end terms (pRangeStart and pRangeEnd). */ if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ SWAP(WhereTerm *, pRangeEnd, pRangeStart); } testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); start_constraints = pRangeStart || nEq>0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if( pRangeStart ){ Expr *pRight = pRangeStart->pExpr->pRight; sqlite3ExprCode(pParse, pRight, regBase+nEq); sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); if( zAff && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE ){ /* Since the comparison is to be performed with no conversions applied ** to the operands, set the affinity to apply to pRight to ** SQLITE_AFF_NONE. */ zAff[nConstraint] = SQLITE_AFF_NONE; } nConstraint++; }else if( isMinQuery ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); nConstraint++; startEq = 0; start_constraints = 1; } codeApplyAffinity(pParse, regBase, nConstraint, zAff); op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; assert( op!=0 ); testcase( op==OP_Rewind ); testcase( op==OP_Last ); testcase( op==OP_SeekGt ); testcase( op==OP_SeekGe ); testcase( op==OP_SeekLe ); testcase( op==OP_SeekLt ); sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase, SQLITE_INT_TO_PTR(nConstraint), P4_INT32); /* Load the value for the inequality constraint at the end of the ** range (if any). */ nConstraint = nEq; if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; sqlite3ExprCacheRemove(pParse, regBase+nEq); sqlite3ExprCode(pParse, pRight, regBase+nEq); sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); zAff = sqlite3DbStrDup(pParse->db, zAff); if( zAff && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE ){ /* Since the comparison is to be performed with no conversions applied ** to the operands, set the affinity to apply to pRight to ** SQLITE_AFF_NONE. */ zAff[nConstraint] = SQLITE_AFF_NONE; } codeApplyAffinity(pParse, regBase, nEq+1, zAff); nConstraint++; } /* Top of the loop body */ pLevel->p2 = sqlite3VdbeCurrentAddr(v); /* Check if the index cursor is past the end of the range. */ |
︙ | ︙ | |||
86029 86030 86031 86032 86033 86034 86035 | pLevel = pWInfo->a; andFlags = ~0; WHERETRACE(("*** Optimizer Start ***\n")); for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ WhereCost bestPlan; /* Most efficient plan seen so far */ Index *pIdx; /* Index for FROM table at pTabItem */ int j; /* For looping over FROM tables */ | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | | | | | | | | | | | | | | | > > > | < > | | | | | > | | 87719 87720 87721 87722 87723 87724 87725 87726 87727 87728 87729 87730 87731 87732 87733 87734 87735 87736 87737 87738 87739 87740 87741 87742 87743 87744 87745 87746 87747 87748 87749 87750 87751 87752 87753 87754 87755 87756 87757 87758 87759 87760 87761 87762 87763 87764 87765 87766 87767 87768 87769 87770 87771 87772 87773 87774 87775 87776 87777 87778 87779 87780 87781 87782 87783 87784 87785 87786 87787 87788 87789 87790 87791 87792 87793 87794 87795 87796 87797 87798 87799 87800 87801 87802 87803 87804 87805 87806 87807 87808 87809 87810 | pLevel = pWInfo->a; andFlags = ~0; WHERETRACE(("*** Optimizer Start ***\n")); for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ WhereCost bestPlan; /* Most efficient plan seen so far */ Index *pIdx; /* Index for FROM table at pTabItem */ int j; /* For looping over FROM tables */ int bestJ = -1; /* The value of j */ Bitmask m; /* Bitmask value for j or bestJ */ int isOptimal; /* Iterator for optimal/non-optimal search */ memset(&bestPlan, 0, sizeof(bestPlan)); bestPlan.rCost = SQLITE_BIG_DBL; /* Loop through the remaining entries in the FROM clause to find the ** next nested loop. The FROM clause entries may be iterated through ** either once or twice. ** ** The first iteration, which is always performed, searches for the ** FROM clause entry that permits the lowest-cost, "optimal" scan. In ** this context an optimal scan is one that uses the same strategy ** for the given FROM clause entry as would be selected if the entry ** were used as the innermost nested loop. In other words, a table ** is chosen such that the cost of running that table cannot be reduced ** by waiting for other tables to run first. ** ** The second iteration is only performed if no optimal scan strategies ** were found by the first. This iteration is used to search for the ** lowest cost scan overall. ** ** Previous versions of SQLite performed only the second iteration - ** the next outermost loop was always that with the lowest overall ** cost. However, this meant that SQLite could select the wrong plan ** for scripts such as the following: ** ** CREATE TABLE t1(a, b); ** CREATE TABLE t2(c, d); ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a; ** ** The best strategy is to iterate through table t1 first. However it ** is not possible to determine this with a simple greedy algorithm. ** However, since the cost of a linear scan through table t2 is the same ** as the cost of a linear scan through table t1, a simple greedy ** algorithm may choose to use t2 for the outer loop, which is a much ** costlier approach. */ for(isOptimal=1; isOptimal>=0 && bestJ<0; isOptimal--){ Bitmask mask = (isOptimal ? 0 : notReady); assert( (pTabList->nSrc-iFrom)>1 || isOptimal ); for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ int doNotReorder; /* True if this table should not be reordered */ WhereCost sCost; /* Cost information from best[Virtual]Index() */ ExprList *pOrderBy; /* ORDER BY clause for index to optimize */ doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; if( j!=iFrom && doNotReorder ) break; m = getMask(pMaskSet, pTabItem->iCursor); if( (m & notReady)==0 ){ if( j==iFrom ) iFrom++; continue; } pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0); assert( pTabItem->pTab ); #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTabItem->pTab) ){ sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo; bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp); }else #endif { bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost); } assert( isOptimal || (sCost.used¬Ready)==0 ); if( (sCost.used¬Ready)==0 && (j==iFrom || sCost.rCost<bestPlan.rCost) ){ bestPlan = sCost; bestJ = j; } if( doNotReorder ) break; } } assert( bestJ>=0 ); assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ, pLevel-pWInfo->a)); if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){ *ppOrderBy = 0; } andFlags &= bestPlan.plan.wsFlags; |
︙ | ︙ | |||
89613 89614 89615 89616 89617 89618 89619 | */ /************** Include keywordhash.h in the middle of tokenize.c ************/ /************** Begin file keywordhash.h *************************************/ /***** This file contains automatically generated code ****** ** ** The code in this file has been automatically generated by ** | | | 91343 91344 91345 91346 91347 91348 91349 91350 91351 91352 91353 91354 91355 91356 91357 | */ /************** Include keywordhash.h in the middle of tokenize.c ************/ /************** Begin file keywordhash.h *************************************/ /***** This file contains automatically generated code ****** ** ** The code in this file has been automatically generated by ** ** $Header: /home/drh/sqlite/trans/cvs/sqlite/sqlite/tool/mkkeywordhash.c,v 1.38 2009/06/09 14:27:41 drh Exp $ ** ** The code in this file implements a function that determines whether ** or not a given identifier is really an SQL keyword. The same thing ** might be implemented more directly using a hand-written hash table. ** But by using this automatically generated code, the size of the code ** is substantially reduced. This is important for embedded applications ** on platforms with limited memory. |
︙ | ︙ | |||
90613 90614 90615 90616 90617 90618 90619 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. | < < | 92343 92344 92345 92346 92347 92348 92349 92350 92351 92352 92353 92354 92355 92356 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. */ #ifdef SQLITE_ENABLE_FTS3 /************** Include fts3.h in the middle of main.c ***********************/ /************** Begin file fts3.h ********************************************/ /* ** 2006 Oct 10 |
︙ | ︙ | |||
90722 90723 90724 90725 90726 90727 90728 90729 90730 90731 90732 90733 90734 90735 | /* ** The version of the library */ #ifndef SQLITE_AMALGAMATION SQLITE_API const char sqlite3_version[] = SQLITE_VERSION; #endif SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; } SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) /* ** If the following function pointer is not NULL and if ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing | > | 92450 92451 92452 92453 92454 92455 92456 92457 92458 92459 92460 92461 92462 92463 92464 | /* ** The version of the library */ #ifndef SQLITE_AMALGAMATION SQLITE_API const char sqlite3_version[] = SQLITE_VERSION; #endif SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; } SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) /* ** If the following function pointer is not NULL and if ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing |
︙ | ︙ | |||
90812 90813 90814 90815 90816 90817 90818 90819 90820 90821 90822 90823 90824 | ** This operation is protected by the STATIC_MASTER mutex. Note that ** MutexAlloc() is called for a static mutex prior to initializing the ** malloc subsystem - this implies that the allocation of a static ** mutex must not require support from the malloc subsystem. */ pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); sqlite3_mutex_enter(pMaster); if( !sqlite3GlobalConfig.isMallocInit ){ rc = sqlite3MallocInit(); } if( rc==SQLITE_OK ){ sqlite3GlobalConfig.isMallocInit = 1; if( !sqlite3GlobalConfig.pInitMutex ){ | > | > | < | < > > | > > | | 92541 92542 92543 92544 92545 92546 92547 92548 92549 92550 92551 92552 92553 92554 92555 92556 92557 92558 92559 92560 92561 92562 92563 92564 92565 92566 92567 92568 92569 92570 92571 92572 92573 92574 92575 92576 92577 92578 92579 92580 92581 92582 92583 92584 92585 92586 92587 92588 92589 92590 92591 92592 92593 92594 92595 92596 92597 92598 | ** This operation is protected by the STATIC_MASTER mutex. Note that ** MutexAlloc() is called for a static mutex prior to initializing the ** malloc subsystem - this implies that the allocation of a static ** mutex must not require support from the malloc subsystem. */ pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); sqlite3_mutex_enter(pMaster); sqlite3GlobalConfig.isMutexInit = 1; if( !sqlite3GlobalConfig.isMallocInit ){ rc = sqlite3MallocInit(); } if( rc==SQLITE_OK ){ sqlite3GlobalConfig.isMallocInit = 1; if( !sqlite3GlobalConfig.pInitMutex ){ sqlite3GlobalConfig.pInitMutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ rc = SQLITE_NOMEM; } } } if( rc==SQLITE_OK ){ sqlite3GlobalConfig.nRefInitMutex++; } sqlite3_mutex_leave(pMaster); /* If rc is not SQLITE_OK at this point, then either the malloc ** subsystem could not be initialized or the system failed to allocate ** the pInitMutex mutex. Return an error in either case. */ if( rc!=SQLITE_OK ){ return rc; } /* Do the rest of the initialization under the recursive mutex so ** that we will be able to handle recursive calls into ** sqlite3_initialize(). The recursive calls normally come through ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other ** recursive calls might also be possible. */ sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); sqlite3GlobalConfig.inProgress = 1; memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); sqlite3RegisterGlobalFunctions(); if( sqlite3GlobalConfig.isPCacheInit==0 ){ rc = sqlite3PcacheInitialize(); } if( rc==SQLITE_OK ){ sqlite3GlobalConfig.isPCacheInit = 1; rc = sqlite3OsInit(); } if( rc==SQLITE_OK ){ sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); sqlite3GlobalConfig.isInit = 1; } sqlite3GlobalConfig.inProgress = 0; |
︙ | ︙ | |||
90906 90907 90908 90909 90910 90911 90912 | ** while any part of SQLite is otherwise in use in any thread. This ** routine is not threadsafe. But it is safe to invoke this routine ** on when SQLite is already shut down. If SQLite is already shut down ** when this routine is invoked, then this routine is a harmless no-op. */ SQLITE_API int sqlite3_shutdown(void){ if( sqlite3GlobalConfig.isInit ){ | > > | > > | > | > > > | > | 92639 92640 92641 92642 92643 92644 92645 92646 92647 92648 92649 92650 92651 92652 92653 92654 92655 92656 92657 92658 92659 92660 92661 92662 92663 92664 92665 92666 92667 92668 92669 | ** while any part of SQLite is otherwise in use in any thread. This ** routine is not threadsafe. But it is safe to invoke this routine ** on when SQLite is already shut down. If SQLite is already shut down ** when this routine is invoked, then this routine is a harmless no-op. */ SQLITE_API int sqlite3_shutdown(void){ if( sqlite3GlobalConfig.isInit ){ sqlite3_os_end(); sqlite3_reset_auto_extension(); sqlite3GlobalConfig.isInit = 0; } if( sqlite3GlobalConfig.isPCacheInit ){ sqlite3PcacheShutdown(); sqlite3GlobalConfig.isPCacheInit = 0; } if( sqlite3GlobalConfig.isMallocInit ){ sqlite3MallocEnd(); sqlite3GlobalConfig.isMallocInit = 0; } if( sqlite3GlobalConfig.isMutexInit ){ sqlite3MutexEnd(); sqlite3GlobalConfig.isMutexInit = 0; } return SQLITE_OK; } /* ** This API allows applications to modify the global configuration of ** the SQLite library at run-time. ** |
︙ | ︙ | |||
92032 92033 92034 92035 92036 92037 92038 | } /* ** Create a new collating function for database "db". The name is zName ** and the encoding is enc. */ static int createCollation( | | | > | 93774 93775 93776 93777 93778 93779 93780 93781 93782 93783 93784 93785 93786 93787 93788 93789 93790 93791 | } /* ** Create a new collating function for database "db". The name is zName ** and the encoding is enc. */ static int createCollation( sqlite3* db, const char *zName, u8 enc, u8 collType, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*), void(*xDel)(void*) ){ CollSeq *pColl; int enc2; int nName = sqlite3Strlen30(zName); |
︙ | ︙ | |||
92099 92100 92101 92102 92103 92104 92105 92106 92107 92108 92109 92110 92111 92112 | pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); if( pColl ){ pColl->xCmp = xCompare; pColl->pUser = pCtx; pColl->xDel = xDel; pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); } sqlite3Error(db, SQLITE_OK, 0); return SQLITE_OK; } /* | > | 93842 93843 93844 93845 93846 93847 93848 93849 93850 93851 93852 93853 93854 93855 93856 | pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); if( pColl ){ pColl->xCmp = xCompare; pColl->pUser = pCtx; pColl->xDel = xDel; pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); pColl->type = collType; } sqlite3Error(db, SQLITE_OK, 0); return SQLITE_OK; } /* |
︙ | ︙ | |||
92121 92122 92123 92124 92125 92126 92127 92128 92129 92130 92131 92132 92133 92134 | SQLITE_MAX_EXPR_DEPTH, SQLITE_MAX_COMPOUND_SELECT, SQLITE_MAX_VDBE_OP, SQLITE_MAX_FUNCTION_ARG, SQLITE_MAX_ATTACHED, SQLITE_MAX_LIKE_PATTERN_LENGTH, SQLITE_MAX_VARIABLE_NUMBER, }; /* ** Make sure the hard limits are set to reasonable values */ #if SQLITE_MAX_LENGTH<100 # error SQLITE_MAX_LENGTH must be at least 100 | > | 93865 93866 93867 93868 93869 93870 93871 93872 93873 93874 93875 93876 93877 93878 93879 | SQLITE_MAX_EXPR_DEPTH, SQLITE_MAX_COMPOUND_SELECT, SQLITE_MAX_VDBE_OP, SQLITE_MAX_FUNCTION_ARG, SQLITE_MAX_ATTACHED, SQLITE_MAX_LIKE_PATTERN_LENGTH, SQLITE_MAX_VARIABLE_NUMBER, SQLITE_MAX_TRIGGER_DEPTH, }; /* ** Make sure the hard limits are set to reasonable values */ #if SQLITE_MAX_LENGTH<100 # error SQLITE_MAX_LENGTH must be at least 100 |
︙ | ︙ | |||
92156 92157 92158 92159 92160 92161 92162 92163 92164 92165 92166 92167 92168 92169 | #endif #if SQLITE_MAX_VARIABLE_NUMBER<1 # error SQLITE_MAX_VARIABLE_NUMBER must be at least 1 #endif #if SQLITE_MAX_COLUMN>32767 # error SQLITE_MAX_COLUMN must not exceed 32767 #endif /* ** Change the value of a limit. Report the old value. ** If an invalid limit index is supplied, report -1. ** Make no changes but still report the old value if the ** new limit is negative. | > > > | 93901 93902 93903 93904 93905 93906 93907 93908 93909 93910 93911 93912 93913 93914 93915 93916 93917 | #endif #if SQLITE_MAX_VARIABLE_NUMBER<1 # error SQLITE_MAX_VARIABLE_NUMBER must be at least 1 #endif #if SQLITE_MAX_COLUMN>32767 # error SQLITE_MAX_COLUMN must not exceed 32767 #endif #if SQLITE_MAX_TRIGGER_DEPTH<1 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 #endif /* ** Change the value of a limit. Report the old value. ** If an invalid limit index is supplied, report -1. ** Make no changes but still report the old value if the ** new limit is negative. |
︙ | ︙ | |||
92196 92197 92198 92199 92200 92201 92202 | const char *zFilename, /* Database filename UTF-8 encoded */ sqlite3 **ppDb, /* OUT: Returned database handle */ unsigned flags, /* Operational flags */ const char *zVfs /* Name of the VFS to use */ ){ sqlite3 *db; int rc; | < > > > > > | 93944 93945 93946 93947 93948 93949 93950 93951 93952 93953 93954 93955 93956 93957 93958 93959 93960 93961 93962 93963 93964 93965 93966 93967 93968 93969 93970 93971 93972 93973 93974 93975 93976 93977 93978 | const char *zFilename, /* Database filename UTF-8 encoded */ sqlite3 **ppDb, /* OUT: Returned database handle */ unsigned flags, /* Operational flags */ const char *zVfs /* Name of the VFS to use */ ){ sqlite3 *db; int rc; int isThreadsafe; *ppDb = 0; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif if( sqlite3GlobalConfig.bCoreMutex==0 ){ isThreadsafe = 0; }else if( flags & SQLITE_OPEN_NOMUTEX ){ isThreadsafe = 0; }else if( flags & SQLITE_OPEN_FULLMUTEX ){ isThreadsafe = 1; }else{ isThreadsafe = sqlite3GlobalConfig.bFullMutex; } if( flags & SQLITE_OPEN_PRIVATECACHE ){ flags &= ~SQLITE_OPEN_SHAREDCACHE; }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ flags |= SQLITE_OPEN_SHAREDCACHE; } /* Remove harmful bits from the flags parameter ** ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were ** dealt with in the previous code block. Besides these, the only ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, |
︙ | ︙ | |||
92265 92266 92267 92268 92269 92270 92271 92272 92273 92274 92275 92276 92277 92278 92279 92280 92281 92282 92283 92284 92285 92286 92287 92288 | db->flags |= SQLITE_ShortColNames #if SQLITE_DEFAULT_FILE_FORMAT<4 | SQLITE_LegacyFileFmt #endif #ifdef SQLITE_ENABLE_LOAD_EXTENSION | SQLITE_LoadExtension #endif ; sqlite3HashInit(&db->aCollSeq); #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3HashInit(&db->aModule); #endif db->pVfs = sqlite3_vfs_find(zVfs); if( !db->pVfs ){ rc = SQLITE_ERROR; sqlite3Error(db, rc, "no such vfs: %s", zVfs); goto opendb_out; } /* Add the default collation sequence BINARY. BINARY works for both UTF-8 ** and UTF-16, so add a version for each to avoid any unnecessary ** conversions. The only error that can occur here is a malloc() failure. */ | > > > | > | > | > | > | | < < < < < < | 94017 94018 94019 94020 94021 94022 94023 94024 94025 94026 94027 94028 94029 94030 94031 94032 94033 94034 94035 94036 94037 94038 94039 94040 94041 94042 94043 94044 94045 94046 94047 94048 94049 94050 94051 94052 94053 94054 94055 94056 94057 94058 94059 94060 94061 94062 94063 94064 94065 94066 94067 | db->flags |= SQLITE_ShortColNames #if SQLITE_DEFAULT_FILE_FORMAT<4 | SQLITE_LegacyFileFmt #endif #ifdef SQLITE_ENABLE_LOAD_EXTENSION | SQLITE_LoadExtension #endif #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS | SQLITE_RecTriggers #endif ; sqlite3HashInit(&db->aCollSeq); #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3HashInit(&db->aModule); #endif db->pVfs = sqlite3_vfs_find(zVfs); if( !db->pVfs ){ rc = SQLITE_ERROR; sqlite3Error(db, rc, "no such vfs: %s", zVfs); goto opendb_out; } /* Add the default collation sequence BINARY. BINARY works for both UTF-8 ** and UTF-16, so add a version for each to avoid any unnecessary ** conversions. The only error that can occur here is a malloc() failure. */ createCollation(db, "BINARY", SQLITE_UTF8, SQLITE_COLL_BINARY, 0, binCollFunc, 0); createCollation(db, "BINARY", SQLITE_UTF16BE, SQLITE_COLL_BINARY, 0, binCollFunc, 0); createCollation(db, "BINARY", SQLITE_UTF16LE, SQLITE_COLL_BINARY, 0, binCollFunc, 0); createCollation(db, "RTRIM", SQLITE_UTF8, SQLITE_COLL_USER, (void*)1, binCollFunc, 0); if( db->mallocFailed ){ goto opendb_out; } db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); assert( db->pDfltColl!=0 ); /* Also add a UTF-8 case-insensitive collation sequence. */ createCollation(db, "NOCASE", SQLITE_UTF8, SQLITE_COLL_NOCASE, 0, nocaseCollatingFunc, 0); /* Open the backend database driver */ db->openFlags = flags; rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE, flags | SQLITE_OPEN_MAIN_DB, &db->aDb[0].pBt); if( rc!=SQLITE_OK ){ |
︙ | ︙ | |||
92481 92482 92483 92484 92485 92486 92487 | int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ int rc; sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); | | | | 94234 94235 94236 94237 94238 94239 94240 94241 94242 94243 94244 94245 94246 94247 94248 94249 94250 94251 94252 94253 94254 94255 94256 94257 94258 94259 94260 94261 94262 94263 94264 94265 94266 94267 94268 | int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ int rc; sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); rc = createCollation(db, zName, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, 0); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Register a new collation sequence with the database handle db. */ SQLITE_API int sqlite3_create_collation_v2( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*), void(*xDel)(void*) ){ int rc; sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); rc = createCollation(db, zName, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, xDel); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #ifndef SQLITE_OMIT_UTF16 /* |
︙ | ︙ | |||
92524 92525 92526 92527 92528 92529 92530 | ){ int rc = SQLITE_OK; char *zName8; sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); zName8 = sqlite3Utf16to8(db, zName, -1); if( zName8 ){ | | | 94277 94278 94279 94280 94281 94282 94283 94284 94285 94286 94287 94288 94289 94290 94291 | ){ int rc = SQLITE_OK; char *zName8; sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); zName8 = sqlite3Utf16to8(db, zName, -1); if( zName8 ){ rc = createCollation(db, zName8, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, 0); sqlite3DbFree(db, zName8); } rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* SQLITE_OMIT_UTF16 */ |
︙ | ︙ |
Changes to src/sqlite3.h.
︙ | ︙ | |||
14 15 16 17 18 19 20 | ** or constant definition does not appear in this file, then it is ** not a published API of SQLite, is subject to change without ** notice, and should not be referenced by programs that use SQLite. ** ** Some of the definitions that are in this file are marked as ** "experimental". Experimental interfaces are normally new ** features recently added to SQLite. We do not anticipate changes | | | < < | 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | ** or constant definition does not appear in this file, then it is ** not a published API of SQLite, is subject to change without ** notice, and should not be referenced by programs that use SQLite. ** ** Some of the definitions that are in this file are marked as ** "experimental". Experimental interfaces are normally new ** features recently added to SQLite. We do not anticipate changes ** to experimental interfaces but reserve the right to make minor changes ** if experience from use "in the wild" suggest such changes are prudent. ** ** The official C-language API documentation for SQLite is derived ** from comments in this file. This file is the authoritative source ** on how SQLite interfaces are suppose to operate. ** ** The name of this file under configuration management is "sqlite.h.in". ** The makefile makes some minor changes to this file (such as inserting ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. */ #ifndef _SQLITE3_H_ #define _SQLITE3_H_ #include <stdarg.h> /* Needed for the definition of va_list */ /* ** Make sure we can call this stuff from C++. |
︙ | ︙ | |||
55 56 57 58 59 60 61 | # define SQLITE_API #endif /* ** These no-op macros are used in front of interfaces to mark those ** interfaces as either deprecated or experimental. New applications | | | 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | # define SQLITE_API #endif /* ** These no-op macros are used in front of interfaces to mark those ** interfaces as either deprecated or experimental. New applications ** should not use deprecated interfaces - they are support for backwards ** compatibility only. Application writers should be aware that ** experimental interfaces are subject to change in point releases. ** ** These macros used to resolve to various kinds of compiler magic that ** would generate warning messages when they were used. But that ** compiler magic ended up generating such a flurry of bug reports ** that we have taken it all out and gone back to using simple |
︙ | ︙ | |||
85 86 87 88 89 90 91 | /* ** CAPI3REF: Compile-Time Library Version Numbers {H10010} <S60100> ** ** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in ** the sqlite3.h file specify the version of SQLite with which ** that header file is associated. ** | | < | | | | | > > > > > > > > > > > > > > > > | > > | | > | | | > > | > > > | > | > | > > > > > | | | 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | /* ** CAPI3REF: Compile-Time Library Version Numbers {H10010} <S60100> ** ** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in ** the sqlite3.h file specify the version of SQLite with which ** that header file is associated. ** ** The "version" of SQLite is a string of the form "W.X.Y" or "W.X.Y.Z". ** The W value is major version number and is always 3 in SQLite3. ** The W value only changes when backwards compatibility is ** broken and we intend to never break backwards compatibility. ** The X value is the minor version number and only changes when ** there are major feature enhancements that are forwards compatible ** but not backwards compatible. ** The Y value is the release number and is incremented with ** each release but resets back to 0 whenever X is incremented. ** The Z value only appears on branch releases. ** ** The SQLITE_VERSION_NUMBER is an integer that is computed as ** follows: ** ** <blockquote><pre> ** SQLITE_VERSION_NUMBER = W*1000000 + X*1000 + Y ** </pre></blockquote> ** ** Since version 3.6.18, SQLite source code has been stored in the ** <a href="http://www.fossil-scm.org/">fossil configuration management ** system</a>. The SQLITE_SOURCE_ID ** macro is a string which identifies a particular check-in of SQLite ** within its configuration management system. The string contains the ** date and time of the check-in (UTC) and an SHA1 hash of the entire ** source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. ** ** Requirements: [H10011] [H10014] */ #define SQLITE_VERSION "3.6.18" #define SQLITE_VERSION_NUMBER 3006018 #define SQLITE_SOURCE_ID "2009-09-10 22:30:54 3ea10434434d27a1300ba2b58e2c47c54909f4ff" /* ** CAPI3REF: Run-Time Library Version Numbers {H10020} <S60100> ** KEYWORDS: sqlite3_version ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] #defines in the header, ** but are associated with the library instead of the header file. Cautious ** programmers might include assert() statements in their application to ** verify that values returned by these interfaces match the macros in ** the header, and thus insure that the application is ** compiled with matching library and header files. ** ** <blockquote><pre> ** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER ); ** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 ); ** assert( strcmp(sqlite3_libversion,SQLITE_VERSION)==0 ); ** </pre></blockquote> ** ** The sqlite3_libversion() function returns the same information as is ** in the sqlite3_version[] string constant. The function is provided ** for use in DLLs since DLL users usually do not have direct access to string ** constants within the DLL. Similarly, the sqlite3_sourceid() function ** returns the same information as is in the [SQLITE_SOURCE_ID] #define of ** the header file. ** ** See also: [sqlite_version()] and [sqlite_source_id()]. ** ** Requirements: [H10021] [H10022] [H10023] */ SQLITE_API SQLITE_EXTERN const char sqlite3_version[]; SQLITE_API const char *sqlite3_libversion(void); SQLITE_API const char *sqlite3_sourceid(void); SQLITE_API int sqlite3_libversion_number(void); /* ** CAPI3REF: Test To See If The Library Is Threadsafe {H10100} <S60100> ** ** SQLite can be compiled with or without mutexes. When ** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes ** are enabled and SQLite is threadsafe. When the ** [SQLITE_THREADSAFE] macro is 0, ** the mutexes are omitted. Without the mutexes, it is not safe ** to use SQLite concurrently from more than one thread. ** ** Enabling mutexes incurs a measurable performance penalty. ** So if speed is of utmost importance, it makes sense to disable ** the mutexes. But for maximum safety, mutexes should be enabled. ** The default behavior is for mutexes to be enabled. ** ** This interface can be used by an application to make sure that the ** version of SQLite that it is linking against was compiled with ** the desired setting of the [SQLITE_THREADSAFE] macro. ** ** This interface only reports on the compile-time mutex setting ** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with ** SQLITE_THREADSAFE=1 then mutexes are enabled by default but ** can be fully or partially disabled using a call to [sqlite3_config()] |
︙ | ︙ | |||
407 408 409 410 411 412 413 414 415 416 417 418 419 420 | #define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */ #define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */ #define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */ #define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */ #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ #define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ /* ** CAPI3REF: Device Characteristics {H10240} <H11120> ** ** The xDeviceCapabilities method of the [sqlite3_io_methods] ** object returns an integer which is a vector of the these ** bit values expressing I/O characteristics of the mass storage | > > | 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | #define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */ #define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */ #define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */ #define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */ #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ #define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */ /* ** CAPI3REF: Device Characteristics {H10240} <H11120> ** ** The xDeviceCapabilities method of the [sqlite3_io_methods] ** object returns an integer which is a vector of the these ** bit values expressing I/O characteristics of the mass storage |
︙ | ︙ | |||
474 475 476 477 478 479 480 | #define SQLITE_SYNC_NORMAL 0x00002 #define SQLITE_SYNC_FULL 0x00003 #define SQLITE_SYNC_DATAONLY 0x00010 /* ** CAPI3REF: OS Interface Open File Handle {H11110} <S20110> ** | | > | | 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 | #define SQLITE_SYNC_NORMAL 0x00002 #define SQLITE_SYNC_FULL 0x00003 #define SQLITE_SYNC_DATAONLY 0x00010 /* ** CAPI3REF: OS Interface Open File Handle {H11110} <S20110> ** ** An [sqlite3_file] object represents an open file in the ** [sqlite3_vfs | OS interface layer]. Individual OS interface ** implementations will ** want to subclass this object by appending additional fields ** for their own use. The pMethods entry is a pointer to an ** [sqlite3_io_methods] object that defines methods for performing ** I/O operations on the open file. */ typedef struct sqlite3_file sqlite3_file; struct sqlite3_file { |
︙ | ︙ | |||
851 852 853 854 855 856 857 | ** ** The application should never invoke either sqlite3_os_init() ** or sqlite3_os_end() directly. The application should only invoke ** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init() ** interface is called automatically by sqlite3_initialize() and ** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate ** implementations for sqlite3_os_init() and sqlite3_os_end() | | > | | 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 | ** ** The application should never invoke either sqlite3_os_init() ** or sqlite3_os_end() directly. The application should only invoke ** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init() ** interface is called automatically by sqlite3_initialize() and ** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate ** implementations for sqlite3_os_init() and sqlite3_os_end() ** are built into SQLite when it is compiled for Unix, Windows, or OS/2. ** When [custom builds | built for other platforms] ** (using the [SQLITE_OS_OTHER=1] compile-time ** option) the application must supply a suitable implementation for ** sqlite3_os_init() and sqlite3_os_end(). An application-supplied ** implementation of sqlite3_os_init() or sqlite3_os_end() ** must return [SQLITE_OK] on success and some other [error code] upon ** failure. */ SQLITE_API int sqlite3_initialize(void); |
︙ | ︙ | |||
933 934 935 936 937 938 939 | ** ** An instance of this object defines the interface between SQLite ** and low-level memory allocation routines. ** ** This object is used in only one place in the SQLite interface. ** A pointer to an instance of this object is the argument to ** [sqlite3_config()] when the configuration option is | > | | | > | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > | 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 | ** ** An instance of this object defines the interface between SQLite ** and low-level memory allocation routines. ** ** This object is used in only one place in the SQLite interface. ** A pointer to an instance of this object is the argument to ** [sqlite3_config()] when the configuration option is ** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC]. ** By creating an instance of this object ** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC]) ** during configuration, an application can specify an alternative ** memory allocation subsystem for SQLite to use for all of its ** dynamic memory needs. ** ** Note that SQLite comes with several [built-in memory allocators] ** that are perfectly adequate for the overwhelming majority of applications ** and that this object is only useful to a tiny minority of applications ** with specialized memory allocation requirements. This object is ** also used during testing of SQLite in order to specify an alternative ** memory allocator that simulates memory out-of-memory conditions in ** order to verify that SQLite recovers gracefully from such ** conditions. ** ** The xMalloc and xFree methods must work like the ** malloc() and free() functions from the standard C library. ** The xRealloc method must work like realloc() from the standard C library ** with the exception that if the second argument to xRealloc is zero, ** xRealloc must be a no-op - it must not perform any allocation or ** deallocation. SQLite guaranteeds that the second argument to ** xRealloc is always a value returned by a prior call to xRoundup. ** And so in cases where xRoundup always returns a positive number, ** xRealloc can perform exactly as the standard library realloc() and ** still be in compliance with this specification. ** ** xSize should return the allocated size of a memory allocation ** previously obtained from xMalloc or xRealloc. The allocated size ** is always at least as big as the requested size but may be larger. ** ** The xRoundup method returns what would be the allocated size of ** a memory allocation given a particular requested size. Most memory ** allocators round up memory allocations at least to the next multiple ** of 8. Some allocators round up to a larger multiple or to a power of 2. ** Every memory allocation request coming in through [sqlite3_malloc()] ** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0, ** that causes the corresponding memory allocation to fail. ** ** The xInit method initializes the memory allocator. (For example, ** it might allocate any require mutexes or initialize internal data ** structures. The xShutdown method is invoked (indirectly) by ** [sqlite3_shutdown()] and should deallocate any resources acquired ** by xInit. The pAppData pointer is used as the only parameter to ** xInit and xShutdown. ** ** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes ** the xInit method, so the xInit method need not be threadsafe. The ** xShutdown method is only called from [sqlite3_shutdown()] so it does ** not need to be threadsafe either. For all other methods, SQLite ** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the ** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which ** it is by default) and so the methods are automatically serialized. ** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other ** methods must be threadsafe or else make their own arrangements for ** serialization. ** ** SQLite will never invoke xInit() more than once without an intervening ** call to xShutdown(). */ typedef struct sqlite3_mem_methods sqlite3_mem_methods; struct sqlite3_mem_methods { void *(*xMalloc)(int); /* Memory allocation function */ void (*xFree)(void*); /* Free a prior allocation */ void *(*xRealloc)(void*,int); /* Resize an allocation */ int (*xSize)(void*); /* Return the size of an allocation */ |
︙ | ︙ | |||
1118 1119 1120 1121 1122 1123 1124 | ** structure is filled with the currently defined mutex routines. ** This option can be used to overload the default mutex allocation ** routines with a wrapper used to track mutex usage for performance ** profiling or testing, for example.</dd> ** ** <dt>SQLITE_CONFIG_LOOKASIDE</dt> ** <dd>This option takes two arguments that determine the default | | | > > > | 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 | ** structure is filled with the currently defined mutex routines. ** This option can be used to overload the default mutex allocation ** routines with a wrapper used to track mutex usage for performance ** profiling or testing, for example.</dd> ** ** <dt>SQLITE_CONFIG_LOOKASIDE</dt> ** <dd>This option takes two arguments that determine the default ** memory allocation lookaside optimization. The first argument is the ** size of each lookaside buffer slot and the second is the number of ** slots allocated to each database connection. This option sets the ** <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE] ** verb to [sqlite3_db_config()] can be used to change the lookaside ** configuration on individual connections.</dd> ** ** <dt>SQLITE_CONFIG_PCACHE</dt> ** <dd>This option takes a single argument which is a pointer to ** an [sqlite3_pcache_methods] object. This object specifies the interface ** to a custom page cache implementation. SQLite makes a copy of the ** object and uses it for page cache memory allocations.</dd> ** |
︙ | ︙ | |||
1170 1171 1172 1173 1174 1175 1176 | ** is invoked. ** ** <dl> ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt> ** <dd>This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** The first argument (the third parameter to [sqlite3_db_config()] is a | | | > > > | 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 | ** is invoked. ** ** <dl> ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt> ** <dd>This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** The first argument (the third parameter to [sqlite3_db_config()] is a ** pointer to an memory buffer to use for lookaside memory. ** The first argument may be NULL in which case SQLite will allocate the ** lookaside buffer itself using [sqlite3_malloc()]. The second argument is the ** size of each lookaside buffer slot and the third argument is the number of ** slots. The size of the buffer in the first argument must be greater than ** or equal to the product of the second and third arguments. The buffer ** must be aligned to an 8-byte boundary. If the second argument is not ** a multiple of 8, it is internally rounded down to the next smaller ** multiple of 8. See also: [SQLITE_CONFIG_LOOKASIDE]</dd> ** ** </dl> */ #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ /* |
︙ | ︙ | |||
1579 1580 1581 1582 1583 1584 1585 | char **pzErrmsg /* Error msg written here */ ); SQLITE_API void sqlite3_free_table(char **result); /* ** CAPI3REF: Formatted String Printing Functions {H17400} <S70000><S20000> ** | | | 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 | char **pzErrmsg /* Error msg written here */ ); SQLITE_API void sqlite3_free_table(char **result); /* ** CAPI3REF: Formatted String Printing Functions {H17400} <S70000><S20000> ** ** These routines are work-alikes of the "printf()" family of functions ** from the standard C library. ** ** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their ** results into memory obtained from [sqlite3_malloc()]. ** The strings returned by these two routines should be ** released by [sqlite3_free()]. Both routines return a ** NULL pointer if [sqlite3_malloc()] is unable to allocate enough |
︙ | ︙ | |||
1866 1867 1868 1869 1870 1871 1872 | ** ** The authorizer callback must not do anything that will modify ** the database connection that invoked the authorizer callback. ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their ** database connections for the meaning of "modify" in this paragraph. ** ** When [sqlite3_prepare_v2()] is used to prepare a statement, the | | | 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 | ** ** The authorizer callback must not do anything that will modify ** the database connection that invoked the authorizer callback. ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their ** database connections for the meaning of "modify" in this paragraph. ** ** When [sqlite3_prepare_v2()] is used to prepare a statement, the ** statement might be re-prepared during [sqlite3_step()] due to a ** schema change. Hence, the application should ensure that the ** correct authorizer callback remains in place during the [sqlite3_step()]. ** ** Note that the authorizer callback is invoked only during ** [sqlite3_prepare()] or its variants. Authorization is not ** performed during statement evaluation in [sqlite3_step()], unless ** as stated in the previous paragraph, sqlite3_step() invokes |
︙ | ︙ | |||
2033 2034 2035 2036 2037 2038 2039 | ** associated with the [database connection] handle should be released by ** passing it to [sqlite3_close()] when it is no longer required. ** ** The sqlite3_open_v2() interface works like sqlite3_open() ** except that it accepts two additional parameters for additional control ** over the new database connection. The flags parameter can take one of ** the following three values, optionally combined with the | | > | > > > > > > | 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 | ** associated with the [database connection] handle should be released by ** passing it to [sqlite3_close()] when it is no longer required. ** ** The sqlite3_open_v2() interface works like sqlite3_open() ** except that it accepts two additional parameters for additional control ** over the new database connection. The flags parameter can take one of ** the following three values, optionally combined with the ** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE], ** and/or [SQLITE_OPEN_PRIVATECACHE] flags: ** ** <dl> ** <dt>[SQLITE_OPEN_READONLY]</dt> ** <dd>The database is opened in read-only mode. If the database does not ** already exist, an error is returned.</dd> ** ** <dt>[SQLITE_OPEN_READWRITE]</dt> ** <dd>The database is opened for reading and writing if possible, or reading ** only if the file is write protected by the operating system. In either ** case the database must already exist, otherwise an error is returned.</dd> ** ** <dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt> ** <dd>The database is opened for reading and writing, and is creates it if ** it does not already exist. This is the behavior that is always used for ** sqlite3_open() and sqlite3_open16().</dd> ** </dl> ** ** If the 3rd parameter to sqlite3_open_v2() is not one of the ** combinations shown above or one of the combinations shown above combined ** with the [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], ** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_SHAREDCACHE] flags, ** then the behavior is undefined. ** ** If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection ** opens in the multi-thread [threading mode] as long as the single-thread ** mode has not been set at compile-time or start-time. If the ** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens ** in the serialized [threading mode] unless single-thread was ** previously selected at compile-time or start-time. ** The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be ** eligible to use [shared cache mode], regardless of whether or not shared ** cache is enabled using [sqlite3_enable_shared_cache()]. The ** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not ** participate in [shared cache mode] even if it is enabled. ** ** If the filename is ":memory:", then a private, temporary in-memory database ** is created for the connection. This in-memory database will vanish when ** the database connection is closed. Future versions of SQLite might ** make use of additional special filenames that begin with the ":" character. ** It is recommended that when a database filename actually does begin with ** a ":" character you should prefix the filename with a pathname such as |
︙ | ︙ | |||
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 | ** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt> ** <dd>The maximum length of the pattern argument to the [LIKE] or ** [GLOB] operators.</dd> ** ** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt> ** <dd>The maximum number of variables in an SQL statement that can ** be bound.</dd> ** </dl> */ #define SQLITE_LIMIT_LENGTH 0 #define SQLITE_LIMIT_SQL_LENGTH 1 #define SQLITE_LIMIT_COLUMN 2 #define SQLITE_LIMIT_EXPR_DEPTH 3 #define SQLITE_LIMIT_COMPOUND_SELECT 4 #define SQLITE_LIMIT_VDBE_OP 5 #define SQLITE_LIMIT_FUNCTION_ARG 6 #define SQLITE_LIMIT_ATTACHED 7 #define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 #define SQLITE_LIMIT_VARIABLE_NUMBER 9 /* ** CAPI3REF: Compiling An SQL Statement {H13010} <S10000> ** KEYWORDS: {SQL statement compiler} ** ** To execute an SQL query, it must first be compiled into a byte-code ** program using one of these routines. | > > > > | 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 | ** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt> ** <dd>The maximum length of the pattern argument to the [LIKE] or ** [GLOB] operators.</dd> ** ** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt> ** <dd>The maximum number of variables in an SQL statement that can ** be bound.</dd> ** ** <dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt> ** <dd>The maximum depth of recursion for triggers.</dd> ** </dl> */ #define SQLITE_LIMIT_LENGTH 0 #define SQLITE_LIMIT_SQL_LENGTH 1 #define SQLITE_LIMIT_COLUMN 2 #define SQLITE_LIMIT_EXPR_DEPTH 3 #define SQLITE_LIMIT_COMPOUND_SELECT 4 #define SQLITE_LIMIT_VDBE_OP 5 #define SQLITE_LIMIT_FUNCTION_ARG 6 #define SQLITE_LIMIT_ATTACHED 7 #define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 #define SQLITE_LIMIT_VARIABLE_NUMBER 9 #define SQLITE_LIMIT_TRIGGER_DEPTH 10 /* ** CAPI3REF: Compiling An SQL Statement {H13010} <S10000> ** KEYWORDS: {SQL statement compiler} ** ** To execute an SQL query, it must first be compiled into a byte-code ** program using one of these routines. |
︙ | ︙ | |||
2443 2444 2445 2446 2447 2448 2449 | /* ** CAPI3REF: Binding Values To Prepared Statements {H13500} <S70300> ** KEYWORDS: {host parameter} {host parameters} {host parameter name} ** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} ** ** In the SQL strings input to [sqlite3_prepare_v2()] and its variants, | | > | | | 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 | /* ** CAPI3REF: Binding Values To Prepared Statements {H13500} <S70300> ** KEYWORDS: {host parameter} {host parameters} {host parameter name} ** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} ** ** In the SQL strings input to [sqlite3_prepare_v2()] and its variants, ** literals may be replaced by a [parameter] that matches one of following ** templates: ** ** <ul> ** <li> ? ** <li> ?NNN ** <li> :VVV ** <li> @VVV ** <li> $VVV ** </ul> ** ** In the templates above, NNN represents an integer literal, ** and VVV represents an alphanumeric identifer. The values of these ** parameters (also called "host parameter names" or "SQL parameters") ** can be set using the sqlite3_bind_*() routines defined here. ** ** The first argument to the sqlite3_bind_*() routines is always ** a pointer to the [sqlite3_stmt] object returned from ** [sqlite3_prepare_v2()] or its variants. ** |
︙ | ︙ | |||
3106 3107 3108 3109 3110 3111 3112 | ** parameter is less than -1 or greater than 127 then the behavior is ** undefined. ** ** The fourth parameter, eTextRep, specifies what ** [SQLITE_UTF8 | text encoding] this SQL function prefers for ** its parameters. Any SQL function implementation should be able to work ** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be | | | 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 | ** parameter is less than -1 or greater than 127 then the behavior is ** undefined. ** ** The fourth parameter, eTextRep, specifies what ** [SQLITE_UTF8 | text encoding] this SQL function prefers for ** its parameters. Any SQL function implementation should be able to work ** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be ** more efficient with one encoding than another. An application may ** invoke sqlite3_create_function() or sqlite3_create_function16() multiple ** times with the same function but with different values of eTextRep. ** When multiple implementations of the same function are available, SQLite ** will pick the one that involves the least amount of data conversion. ** If there is only a single implementation which does not care what text ** encoding is used, then the fourth argument should be [SQLITE_ANY]. ** |
︙ | ︙ | |||
3128 3129 3130 3131 3132 3133 3134 | ** parameters. An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL should be passed for xFunc. To delete an existing ** SQL function or aggregate, pass NULL for all three function callbacks. ** ** It is permitted to register multiple implementations of the same ** functions with the same name but with either differing numbers of ** arguments or differing preferred text encodings. SQLite will use | | | 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 | ** parameters. An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL should be passed for xFunc. To delete an existing ** SQL function or aggregate, pass NULL for all three function callbacks. ** ** It is permitted to register multiple implementations of the same ** functions with the same name but with either differing numbers of ** arguments or differing preferred text encodings. SQLite will use ** the implementation that most closely matches the way in which the ** SQL function is used. A function implementation with a non-negative ** nArg parameter is a better match than a function implementation with ** a negative nArg. A function where the preferred text encoding ** matches the database encoding is a better ** match than a function where the encoding is different. ** A function where the encoding difference is between UTF16le and UTF16be ** is a closer match than a function where the encoding difference is |
︙ | ︙ | |||
3476 3477 3478 3479 3480 3481 3482 | ** is non-negative, then as many bytes (not characters) of the text ** pointed to by the 2nd parameter are taken as the application-defined ** function result. ** If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that ** function as the destructor on the text or BLOB result when it has ** finished using that result. | | > | | 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 | ** is non-negative, then as many bytes (not characters) of the text ** pointed to by the 2nd parameter are taken as the application-defined ** function result. ** If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that ** function as the destructor on the text or BLOB result when it has ** finished using that result. ** If the 4th parameter to the sqlite3_result_text* interfaces or to ** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite ** assumes that the text or BLOB result is in constant space and does not ** copy the content of the parameter nor call a destructor on the content ** when it has finished using that result. ** If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT ** then SQLite makes a copy of the result into space obtained from ** from [sqlite3_malloc()] before it returns. ** ** The sqlite3_result_value() interface sets the result of ** the application-defined function to be a copy the |
︙ | ︙ | |||
4458 4459 4460 4461 4462 4463 4464 | ** a expired BLOB handle fail with an return code of [SQLITE_ABORT]. ** Changes written into a BLOB prior to the BLOB expiring are not ** rollback by the expiration of the BLOB. Such changes will eventually ** commit if the transaction continues to completion. ** ** Use the [sqlite3_blob_bytes()] interface to determine the size of ** the opened blob. The size of a blob may not be changed by this | | | 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 | ** a expired BLOB handle fail with an return code of [SQLITE_ABORT]. ** Changes written into a BLOB prior to the BLOB expiring are not ** rollback by the expiration of the BLOB. Such changes will eventually ** commit if the transaction continues to completion. ** ** Use the [sqlite3_blob_bytes()] interface to determine the size of ** the opened blob. The size of a blob may not be changed by this ** interface. Use the [UPDATE] SQL command to change the size of a ** blob. ** ** The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces ** and the built-in [zeroblob] SQL function can be used, if desired, ** to create an empty, zero-filled blob in which to read or write using ** this interface. ** |
︙ | ︙ | |||
4698 4699 4700 4701 4702 4703 4704 | ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. {H17016} But SQLite will only request a recursive mutex in ** cases where it really needs one. {END} If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return | | | 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 | ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. {H17016} But SQLite will only request a recursive mutex in ** cases where it really needs one. {END} If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return ** a pointer to a static preexisting mutex. {END} Six static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** {H17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST |
︙ | ︙ | |||
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 | ** The only difference is that the public sqlite3_XXX functions enumerated ** above silently ignore any invocations that pass a NULL pointer instead ** of a valid mutex handle. The implementations of the methods defined ** by this structure are not required to handle this case, the results ** of passing a NULL pointer instead of a valid mutex handle are undefined ** (i.e. it is acceptable to provide an implementation that segfaults if ** it is passed a NULL pointer). */ typedef struct sqlite3_mutex_methods sqlite3_mutex_methods; struct sqlite3_mutex_methods { int (*xMutexInit)(void); int (*xMutexEnd)(void); sqlite3_mutex *(*xMutexAlloc)(int); void (*xMutexFree)(sqlite3_mutex *); | > > > > > > > > > > > > > > > | 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 | ** The only difference is that the public sqlite3_XXX functions enumerated ** above silently ignore any invocations that pass a NULL pointer instead ** of a valid mutex handle. The implementations of the methods defined ** by this structure are not required to handle this case, the results ** of passing a NULL pointer instead of a valid mutex handle are undefined ** (i.e. it is acceptable to provide an implementation that segfaults if ** it is passed a NULL pointer). ** ** The xMutexInit() method must be threadsafe. It must be harmless to ** invoke xMutexInit() mutiple times within the same process and without ** intervening calls to xMutexEnd(). Second and subsequent calls to ** xMutexInit() must be no-ops. ** ** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()] ** and its associates). Similarly, xMutexAlloc() must not use SQLite memory ** allocation for a static mutex. However xMutexAlloc() may use SQLite ** memory allocation for a fast or recursive mutex. ** ** SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is ** called, but only if the prior call to xMutexInit returned SQLITE_OK. ** If xMutexInit fails in any way, it is expected to clean up after itself ** prior to returning. */ typedef struct sqlite3_mutex_methods sqlite3_mutex_methods; struct sqlite3_mutex_methods { int (*xMutexInit)(void); int (*xMutexEnd)(void); sqlite3_mutex *(*xMutexAlloc)(int); void (*xMutexFree)(sqlite3_mutex *); |
︙ | ︙ | |||
4969 4970 4971 4972 4973 4974 4975 | ** nothing is written into *pHighwater and the resetFlag is ignored. ** Other parameters record only the highwater mark and not the current ** value. For these latter parameters nothing is written into *pCurrent. ** ** This routine returns SQLITE_OK on success and a non-zero ** [error code] on failure. ** | | | 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 | ** nothing is written into *pHighwater and the resetFlag is ignored. ** Other parameters record only the highwater mark and not the current ** value. For these latter parameters nothing is written into *pCurrent. ** ** This routine returns SQLITE_OK on success and a non-zero ** [error code] on failure. ** ** This routine is threadsafe but is not atomic. This routine can be ** called while other threads are running the same or different SQLite ** interfaces. However the values returned in *pCurrent and ** *pHighwater reflect the status of SQLite at different points in time ** and it is possible that another thread might change the parameter ** in between the times when *pCurrent and *pHighwater are written. ** ** See also: [sqlite3_db_status()] |
︙ | ︙ | |||
5092 5093 5094 5095 5096 5097 5098 | */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg); /* ** CAPI3REF: Status Parameters for database connections {H17520} <H17500> ** EXPERIMENTAL ** | > > > > > | > > | 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 | */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg); /* ** CAPI3REF: Status Parameters for database connections {H17520} <H17500> ** EXPERIMENTAL ** ** These constants are the available integer "verbs" that can be passed as ** the second argument to the [sqlite3_db_status()] interface. ** ** New verbs may be added in future releases of SQLite. Existing verbs ** might be discontinued. Applications should check the return code from ** [sqlite3_db_status()] to make sure that the call worked. ** The [sqlite3_db_status()] interface will return a non-zero error code ** if a discontinued or unsupported verb is invoked. ** ** <dl> ** <dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt> ** <dd>This parameter returns the number of lookaside memory slots currently ** checked out.</dd> ** </dl> */ |
︙ | ︙ | |||
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 | ** ** See [sqlite3_pcache_methods] for additional information. */ typedef struct sqlite3_pcache sqlite3_pcache; /* ** CAPI3REF: Application Defined Page Cache. ** EXPERIMENTAL ** ** The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can ** register an alternative page cache implementation by passing in an ** instance of the sqlite3_pcache_methods structure. The majority of the | > | | | | | > > | > > | | > > > > > > > > > | > > | > > > > > > | | | | > > > | | | | | | | | | | < | < < < < < < | < | < < < | < < < < | > > > > > > > | < < < | 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 | ** ** See [sqlite3_pcache_methods] for additional information. */ typedef struct sqlite3_pcache sqlite3_pcache; /* ** CAPI3REF: Application Defined Page Cache. ** KEYWORDS: {page cache} ** EXPERIMENTAL ** ** The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can ** register an alternative page cache implementation by passing in an ** instance of the sqlite3_pcache_methods structure. The majority of the ** heap memory used by SQLite is used by the page cache to cache data read ** from, or ready to be written to, the database file. By implementing a ** custom page cache using this API, an application can control more ** precisely the amount of memory consumed by SQLite, the way in which ** that memory is allocated and released, and the policies used to ** determine exactly which parts of a database file are cached and for ** how long. ** ** The contents of the sqlite3_pcache_methods structure are copied to an ** internal buffer by SQLite within the call to [sqlite3_config]. Hence ** the application may discard the parameter after the call to ** [sqlite3_config()] returns. ** ** The xInit() method is called once for each call to [sqlite3_initialize()] ** (usually only once during the lifetime of the process). It is passed ** a copy of the sqlite3_pcache_methods.pArg value. It can be used to set ** up global structures and mutexes required by the custom page cache ** implementation. ** ** The xShutdown() method is called from within [sqlite3_shutdown()], ** if the application invokes this API. It can be used to clean up ** any outstanding resources before process shutdown, if required. ** ** SQLite holds a [SQLITE_MUTEX_RECURSIVE] mutex when it invokes ** the xInit method, so the xInit method need not be threadsafe. The ** xShutdown method is only called from [sqlite3_shutdown()] so it does ** not need to be threadsafe either. All other methods must be threadsafe ** in multithreaded applications. ** ** SQLite will never invoke xInit() more than once without an intervening ** call to xShutdown(). ** ** The xCreate() method is used to construct a new cache instance. SQLite ** will typically create one cache instance for each open database file, ** though this is not guaranteed. The ** first parameter, szPage, is the size in bytes of the pages that must ** be allocated by the cache. szPage will not be a power of two. szPage ** will the page size of the database file that is to be cached plus an ** increment (here called "R") of about 100 or 200. SQLite will use the ** extra R bytes on each page to store metadata about the underlying ** database page on disk. The value of R depends ** on the SQLite version, the target platform, and how SQLite was compiled. ** R is constant for a particular build of SQLite. The second argument to ** xCreate(), bPurgeable, is true if the cache being created will ** be used to cache database pages of a file stored on disk, or ** false if it is used for an in-memory database. The cache implementation ** does not have to do anything special based with the value of bPurgeable; ** it is purely advisory. On a cache where bPurgeable is false, SQLite will ** never invoke xUnpin() except to deliberately delete a page. ** In other words, a cache created with bPurgeable set to false will ** never contain any unpinned pages. ** ** The xCachesize() method may be called at any time by SQLite to set the ** suggested maximum cache-size (number of pages stored by) the cache ** instance passed as the first argument. This is the value configured using ** the SQLite "[PRAGMA cache_size]" command. As with the bPurgeable parameter, ** the implementation is not required to do anything with this ** value; it is advisory only. ** ** The xPagecount() method should return the number of pages currently ** stored in the cache. ** ** The xFetch() method is used to fetch a page and return a pointer to it. ** A 'page', in this context, is a buffer of szPage bytes aligned at an ** 8-byte boundary. The page to be fetched is determined by the key. The ** mimimum key value is 1. After it has been retrieved using xFetch, the page ** is considered to be "pinned". ** ** If the requested page is already in the page cache, then the page cache ** implementation must return a pointer to the page buffer with its content ** intact. If the requested page is not already in the cache, then the ** behavior of the cache implementation is determined by the value of the ** createFlag parameter passed to xFetch, according to the following table: ** ** <table border=1 width=85% align=center> ** <tr><th> createFlag <th> Behaviour when page is not already in cache ** <tr><td> 0 <td> Do not allocate a new page. Return NULL. ** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so. ** Otherwise return NULL. ** <tr><td> 2 <td> Make every effort to allocate a new page. Only return ** NULL if allocating a new page is effectively impossible. ** </table> ** ** SQLite will normally invoke xFetch() with a createFlag of 0 or 1. If ** a call to xFetch() with createFlag==1 returns NULL, then SQLite will ** attempt to unpin one or more cache pages by spilling the content of ** pinned pages to disk and synching the operating system disk cache. After ** attempting to unpin pages, the xFetch() method will be invoked again with ** a createFlag of 2. ** ** xUnpin() is called by SQLite with a pointer to a currently pinned page ** as its second argument. If the third parameter, discard, is non-zero, ** then the page should be evicted from the cache. In this case SQLite ** assumes that the next time the page is retrieved from the cache using ** the xFetch() method, it will be zeroed. If the discard parameter is ** zero, then the page is considered to be unpinned. The cache implementation ** may choose to evict unpinned pages at any time. ** ** The cache is not required to perform any reference counting. A single ** call to xUnpin() unpins the page regardless of the number of prior calls ** to xFetch(). ** ** The xRekey() method is used to change the key value associated with the ** page passed as the second argument from oldKey to newKey. If the cache |
︙ | ︙ |