000001 /* 000002 ** 2010 February 1 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** 000013 ** This file contains the implementation of a write-ahead log (WAL) used in 000014 ** "journal_mode=WAL" mode. 000015 ** 000016 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 000017 ** 000018 ** A WAL file consists of a header followed by zero or more "frames". 000019 ** Each frame records the revised content of a single page from the 000020 ** database file. All changes to the database are recorded by writing 000021 ** frames into the WAL. Transactions commit when a frame is written that 000022 ** contains a commit marker. A single WAL can and usually does record 000023 ** multiple transactions. Periodically, the content of the WAL is 000024 ** transferred back into the database file in an operation called a 000025 ** "checkpoint". 000026 ** 000027 ** A single WAL file can be used multiple times. In other words, the 000028 ** WAL can fill up with frames and then be checkpointed and then new 000029 ** frames can overwrite the old ones. A WAL always grows from beginning 000030 ** toward the end. Checksums and counters attached to each frame are 000031 ** used to determine which frames within the WAL are valid and which 000032 ** are leftovers from prior checkpoints. 000033 ** 000034 ** The WAL header is 32 bytes in size and consists of the following eight 000035 ** big-endian 32-bit unsigned integer values: 000036 ** 000037 ** 0: Magic number. 0x377f0682 or 0x377f0683 000038 ** 4: File format version. Currently 3007000 000039 ** 8: Database page size. Example: 1024 000040 ** 12: Checkpoint sequence number 000041 ** 16: Salt-1, random integer incremented with each checkpoint 000042 ** 20: Salt-2, a different random integer changing with each ckpt 000043 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 000044 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 000045 ** 000046 ** Immediately following the wal-header are zero or more frames. Each 000047 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 000048 ** of page data. The frame-header is six big-endian 32-bit unsigned 000049 ** integer values, as follows: 000050 ** 000051 ** 0: Page number. 000052 ** 4: For commit records, the size of the database image in pages 000053 ** after the commit. For all other records, zero. 000054 ** 8: Salt-1 (copied from the header) 000055 ** 12: Salt-2 (copied from the header) 000056 ** 16: Checksum-1. 000057 ** 20: Checksum-2. 000058 ** 000059 ** A frame is considered valid if and only if the following conditions are 000060 ** true: 000061 ** 000062 ** (1) The salt-1 and salt-2 values in the frame-header match 000063 ** salt values in the wal-header 000064 ** 000065 ** (2) The checksum values in the final 8 bytes of the frame-header 000066 ** exactly match the checksum computed consecutively on the 000067 ** WAL header and the first 8 bytes and the content of all frames 000068 ** up to and including the current frame. 000069 ** 000070 ** The checksum is computed using 32-bit big-endian integers if the 000071 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 000072 ** is computed using little-endian if the magic number is 0x377f0682. 000073 ** The checksum values are always stored in the frame header in a 000074 ** big-endian format regardless of which byte order is used to compute 000075 ** the checksum. The checksum is computed by interpreting the input as 000076 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 000077 ** algorithm used for the checksum is as follows: 000078 ** 000079 ** for i from 0 to n-1 step 2: 000080 ** s0 += x[i] + s1; 000081 ** s1 += x[i+1] + s0; 000082 ** endfor 000083 ** 000084 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 000085 ** in reverse order (the largest fibonacci weight occurs on the first element 000086 ** of the sequence being summed.) The s1 value spans all 32-bit 000087 ** terms of the sequence whereas s0 omits the final term. 000088 ** 000089 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 000090 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 000091 ** The VFS.xSync operations serve as write barriers - all writes launched 000092 ** before the xSync must complete before any write that launches after the 000093 ** xSync begins. 000094 ** 000095 ** After each checkpoint, the salt-1 value is incremented and the salt-2 000096 ** value is randomized. This prevents old and new frames in the WAL from 000097 ** being considered valid at the same time and being checkpointing together 000098 ** following a crash. 000099 ** 000100 ** READER ALGORITHM 000101 ** 000102 ** To read a page from the database (call it page number P), a reader 000103 ** first checks the WAL to see if it contains page P. If so, then the 000104 ** last valid instance of page P that is a followed by a commit frame 000105 ** or is a commit frame itself becomes the value read. If the WAL 000106 ** contains no copies of page P that are valid and which are a commit 000107 ** frame or are followed by a commit frame, then page P is read from 000108 ** the database file. 000109 ** 000110 ** To start a read transaction, the reader records the index of the last 000111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 000112 ** for all subsequent read operations. New transactions can be appended 000113 ** to the WAL, but as long as the reader uses its original mxFrame value 000114 ** and ignores the newly appended content, it will see a consistent snapshot 000115 ** of the database from a single point in time. This technique allows 000116 ** multiple concurrent readers to view different versions of the database 000117 ** content simultaneously. 000118 ** 000119 ** The reader algorithm in the previous paragraphs works correctly, but 000120 ** because frames for page P can appear anywhere within the WAL, the 000121 ** reader has to scan the entire WAL looking for page P frames. If the 000122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 000123 ** and read performance suffers. To overcome this problem, a separate 000124 ** data structure called the wal-index is maintained to expedite the 000125 ** search for frames of a particular page. 000126 ** 000127 ** WAL-INDEX FORMAT 000128 ** 000129 ** Conceptually, the wal-index is shared memory, though VFS implementations 000130 ** might choose to implement the wal-index using a mmapped file. Because 000131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 000132 ** on a network filesystem. All users of the database must be able to 000133 ** share memory. 000134 ** 000135 ** In the default unix and windows implementation, the wal-index is a mmapped 000136 ** file whose name is the database name with a "-shm" suffix added. For that 000137 ** reason, the wal-index is sometimes called the "shm" file. 000138 ** 000139 ** The wal-index is transient. After a crash, the wal-index can (and should 000140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 000141 ** to either truncate or zero the header of the wal-index when the last 000142 ** connection to it closes. Because the wal-index is transient, it can 000143 ** use an architecture-specific format; it does not have to be cross-platform. 000144 ** Hence, unlike the database and WAL file formats which store all values 000145 ** as big endian, the wal-index can store multi-byte values in the native 000146 ** byte order of the host computer. 000147 ** 000148 ** The purpose of the wal-index is to answer this question quickly: Given 000149 ** a page number P and a maximum frame index M, return the index of the 000150 ** last frame in the wal before frame M for page P in the WAL, or return 000151 ** NULL if there are no frames for page P in the WAL prior to M. 000152 ** 000153 ** The wal-index consists of a header region, followed by an one or 000154 ** more index blocks. 000155 ** 000156 ** The wal-index header contains the total number of frames within the WAL 000157 ** in the mxFrame field. 000158 ** 000159 ** Each index block except for the first contains information on 000160 ** HASHTABLE_NPAGE frames. The first index block contains information on 000161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 000162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 000163 ** first index block are the same size as all other index blocks in the 000164 ** wal-index. The values are: 000165 ** 000166 ** HASHTABLE_NPAGE 4096 000167 ** HASHTABLE_NPAGE_ONE 4062 000168 ** 000169 ** Each index block contains two sections, a page-mapping that contains the 000170 ** database page number associated with each wal frame, and a hash-table 000171 ** that allows readers to query an index block for a specific page number. 000172 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 000173 ** for the first index block) 32-bit page numbers. The first entry in the 000174 ** first index-block contains the database page number corresponding to the 000175 ** first frame in the WAL file. The first entry in the second index block 000176 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 000177 ** the log, and so on. 000178 ** 000179 ** The last index block in a wal-index usually contains less than the full 000180 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 000181 ** depending on the contents of the WAL file. This does not change the 000182 ** allocated size of the page-mapping array - the page-mapping array merely 000183 ** contains unused entries. 000184 ** 000185 ** Even without using the hash table, the last frame for page P 000186 ** can be found by scanning the page-mapping sections of each index block 000187 ** starting with the last index block and moving toward the first, and 000188 ** within each index block, starting at the end and moving toward the 000189 ** beginning. The first entry that equals P corresponds to the frame 000190 ** holding the content for that page. 000191 ** 000192 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 000193 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 000194 ** hash table for each page number in the mapping section, so the hash 000195 ** table is never more than half full. The expected number of collisions 000196 ** prior to finding a match is 1. Each entry of the hash table is an 000197 ** 1-based index of an entry in the mapping section of the same 000198 ** index block. Let K be the 1-based index of the largest entry in 000199 ** the mapping section. (For index blocks other than the last, K will 000200 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 000201 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 000202 ** contain a value of 0. 000203 ** 000204 ** To look for page P in the hash table, first compute a hash iKey on 000205 ** P as follows: 000206 ** 000207 ** iKey = (P * 383) % HASHTABLE_NSLOT 000208 ** 000209 ** Then start scanning entries of the hash table, starting with iKey 000210 ** (wrapping around to the beginning when the end of the hash table is 000211 ** reached) until an unused hash slot is found. Let the first unused slot 000212 ** be at index iUnused. (iUnused might be less than iKey if there was 000213 ** wrap-around.) Because the hash table is never more than half full, 000214 ** the search is guaranteed to eventually hit an unused entry. Let 000215 ** iMax be the value between iKey and iUnused, closest to iUnused, 000216 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 000217 ** no hash slot such that aHash[i]==p) then page P is not in the 000218 ** current index block. Otherwise the iMax-th mapping entry of the 000219 ** current index block corresponds to the last entry that references 000220 ** page P. 000221 ** 000222 ** A hash search begins with the last index block and moves toward the 000223 ** first index block, looking for entries corresponding to page P. On 000224 ** average, only two or three slots in each index block need to be 000225 ** examined in order to either find the last entry for page P, or to 000226 ** establish that no such entry exists in the block. Each index block 000227 ** holds over 4000 entries. So two or three index blocks are sufficient 000228 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 000229 ** comparisons (on average) suffice to either locate a frame in the 000230 ** WAL or to establish that the frame does not exist in the WAL. This 000231 ** is much faster than scanning the entire 10MB WAL. 000232 ** 000233 ** Note that entries are added in order of increasing K. Hence, one 000234 ** reader might be using some value K0 and a second reader that started 000235 ** at a later time (after additional transactions were added to the WAL 000236 ** and to the wal-index) might be using a different value K1, where K1>K0. 000237 ** Both readers can use the same hash table and mapping section to get 000238 ** the correct result. There may be entries in the hash table with 000239 ** K>K0 but to the first reader, those entries will appear to be unused 000240 ** slots in the hash table and so the first reader will get an answer as 000241 ** if no values greater than K0 had ever been inserted into the hash table 000242 ** in the first place - which is what reader one wants. Meanwhile, the 000243 ** second reader using K1 will see additional values that were inserted 000244 ** later, which is exactly what reader two wants. 000245 ** 000246 ** When a rollback occurs, the value of K is decreased. Hash table entries 000247 ** that correspond to frames greater than the new K value are removed 000248 ** from the hash table at this point. 000249 */ 000250 #ifndef SQLITE_OMIT_WAL 000251 000252 #include "wal.h" 000253 000254 /* 000255 ** Trace output macros 000256 */ 000257 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 000258 int sqlite3WalTrace = 0; 000259 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 000260 #else 000261 # define WALTRACE(X) 000262 #endif 000263 000264 /* 000265 ** The maximum (and only) versions of the wal and wal-index formats 000266 ** that may be interpreted by this version of SQLite. 000267 ** 000268 ** If a client begins recovering a WAL file and finds that (a) the checksum 000269 ** values in the wal-header are correct and (b) the version field is not 000270 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 000271 ** 000272 ** Similarly, if a client successfully reads a wal-index header (i.e. the 000273 ** checksum test is successful) and finds that the version field is not 000274 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 000275 ** returns SQLITE_CANTOPEN. 000276 */ 000277 #define WAL_MAX_VERSION 3007000 000278 #define WALINDEX_MAX_VERSION 3007000 000279 000280 /* 000281 ** Index numbers for various locking bytes. WAL_NREADER is the number 000282 ** of available reader locks and should be at least 3. The default 000283 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 000284 ** 000285 ** Technically, the various VFSes are free to implement these locks however 000286 ** they see fit. However, compatibility is encouraged so that VFSes can 000287 ** interoperate. The standard implementation used on both unix and windows 000288 ** is for the index number to indicate a byte offset into the 000289 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 000290 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 000291 ** should be 120) is the location in the shm file for the first locking 000292 ** byte. 000293 */ 000294 #define WAL_WRITE_LOCK 0 000295 #define WAL_ALL_BUT_WRITE 1 000296 #define WAL_CKPT_LOCK 1 000297 #define WAL_RECOVER_LOCK 2 000298 #define WAL_READ_LOCK(I) (3+(I)) 000299 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 000300 000301 000302 /* Object declarations */ 000303 typedef struct WalIndexHdr WalIndexHdr; 000304 typedef struct WalIterator WalIterator; 000305 typedef struct WalCkptInfo WalCkptInfo; 000306 000307 000308 /* 000309 ** The following object holds a copy of the wal-index header content. 000310 ** 000311 ** The actual header in the wal-index consists of two copies of this 000312 ** object followed by one instance of the WalCkptInfo object. 000313 ** For all versions of SQLite through 3.10.0 and probably beyond, 000314 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 000315 ** the total header size is 136 bytes. 000316 ** 000317 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 000318 ** Or it can be 1 to represent a 65536-byte page. The latter case was 000319 ** added in 3.7.1 when support for 64K pages was added. 000320 */ 000321 struct WalIndexHdr { 000322 u32 iVersion; /* Wal-index version */ 000323 u32 unused; /* Unused (padding) field */ 000324 u32 iChange; /* Counter incremented each transaction */ 000325 u8 isInit; /* 1 when initialized */ 000326 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 000327 u16 szPage; /* Database page size in bytes. 1==64K */ 000328 u32 mxFrame; /* Index of last valid frame in the WAL */ 000329 u32 nPage; /* Size of database in pages */ 000330 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 000331 u32 aSalt[2]; /* Two salt values copied from WAL header */ 000332 u32 aCksum[2]; /* Checksum over all prior fields */ 000333 }; 000334 000335 /* 000336 ** A copy of the following object occurs in the wal-index immediately 000337 ** following the second copy of the WalIndexHdr. This object stores 000338 ** information used by checkpoint. 000339 ** 000340 ** nBackfill is the number of frames in the WAL that have been written 000341 ** back into the database. (We call the act of moving content from WAL to 000342 ** database "backfilling".) The nBackfill number is never greater than 000343 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 000344 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 000345 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 000346 ** mxFrame back to zero when the WAL is reset. 000347 ** 000348 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 000349 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 000350 ** the nBackfillAttempted is set before any backfilling is done and the 000351 ** nBackfill is only set after all backfilling completes. So if a checkpoint 000352 ** crashes, nBackfillAttempted might be larger than nBackfill. The 000353 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 000354 ** 000355 ** The aLock[] field is a set of bytes used for locking. These bytes should 000356 ** never be read or written. 000357 ** 000358 ** There is one entry in aReadMark[] for each reader lock. If a reader 000359 ** holds read-lock K, then the value in aReadMark[K] is no greater than 000360 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 000361 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 000362 ** a special case; its value is never used and it exists as a place-holder 000363 ** to avoid having to offset aReadMark[] indexes by one. Readers holding 000364 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 000365 ** directly from the database. 000366 ** 000367 ** The value of aReadMark[K] may only be changed by a thread that 000368 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 000369 ** aReadMark[K] cannot changed while there is a reader is using that mark 000370 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 000371 ** 000372 ** The checkpointer may only transfer frames from WAL to database where 000373 ** the frame numbers are less than or equal to every aReadMark[] that is 000374 ** in use (that is, every aReadMark[j] for which there is a corresponding 000375 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 000376 ** largest value and will increase an unused aReadMark[] to mxFrame if there 000377 ** is not already an aReadMark[] equal to mxFrame. The exception to the 000378 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 000379 ** in the WAL has been backfilled into the database) then new readers 000380 ** will choose aReadMark[0] which has value 0 and hence such reader will 000381 ** get all their all content directly from the database file and ignore 000382 ** the WAL. 000383 ** 000384 ** Writers normally append new frames to the end of the WAL. However, 000385 ** if nBackfill equals mxFrame (meaning that all WAL content has been 000386 ** written back into the database) and if no readers are using the WAL 000387 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 000388 ** the writer will first "reset" the WAL back to the beginning and start 000389 ** writing new content beginning at frame 1. 000390 ** 000391 ** We assume that 32-bit loads are atomic and so no locks are needed in 000392 ** order to read from any aReadMark[] entries. 000393 */ 000394 struct WalCkptInfo { 000395 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 000396 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 000397 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 000398 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 000399 u32 notUsed0; /* Available for future enhancements */ 000400 }; 000401 #define READMARK_NOT_USED 0xffffffff 000402 000403 /* 000404 ** This is a schematic view of the complete 136-byte header of the 000405 ** wal-index file (also known as the -shm file): 000406 ** 000407 ** +-----------------------------+ 000408 ** 0: | iVersion | \ 000409 ** +-----------------------------+ | 000410 ** 4: | (unused padding) | | 000411 ** +-----------------------------+ | 000412 ** 8: | iChange | | 000413 ** +-------+-------+-------------+ | 000414 ** 12: | bInit | bBig | szPage | | 000415 ** +-------+-------+-------------+ | 000416 ** 16: | mxFrame | | First copy of the 000417 ** +-----------------------------+ | WalIndexHdr object 000418 ** 20: | nPage | | 000419 ** +-----------------------------+ | 000420 ** 24: | aFrameCksum | | 000421 ** | | | 000422 ** +-----------------------------+ | 000423 ** 32: | aSalt | | 000424 ** | | | 000425 ** +-----------------------------+ | 000426 ** 40: | aCksum | | 000427 ** | | / 000428 ** +-----------------------------+ 000429 ** 48: | iVersion | \ 000430 ** +-----------------------------+ | 000431 ** 52: | (unused padding) | | 000432 ** +-----------------------------+ | 000433 ** 56: | iChange | | 000434 ** +-------+-------+-------------+ | 000435 ** 60: | bInit | bBig | szPage | | 000436 ** +-------+-------+-------------+ | Second copy of the 000437 ** 64: | mxFrame | | WalIndexHdr 000438 ** +-----------------------------+ | 000439 ** 68: | nPage | | 000440 ** +-----------------------------+ | 000441 ** 72: | aFrameCksum | | 000442 ** | | | 000443 ** +-----------------------------+ | 000444 ** 80: | aSalt | | 000445 ** | | | 000446 ** +-----------------------------+ | 000447 ** 88: | aCksum | | 000448 ** | | / 000449 ** +-----------------------------+ 000450 ** 96: | nBackfill | 000451 ** +-----------------------------+ 000452 ** 100: | 5 read marks | 000453 ** | | 000454 ** | | 000455 ** | | 000456 ** | | 000457 ** +-------+-------+------+------+ 000458 ** 120: | Write | Ckpt | Rcvr | Rd0 | \ 000459 ** +-------+-------+------+------+ ) 8 lock bytes 000460 ** | Read1 | Read2 | Rd3 | Rd4 | / 000461 ** +-------+-------+------+------+ 000462 ** 128: | nBackfillAttempted | 000463 ** +-----------------------------+ 000464 ** 132: | (unused padding) | 000465 ** +-----------------------------+ 000466 */ 000467 000468 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 000469 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 000470 ** only support mandatory file-locks, we do not read or write data 000471 ** from the region of the file on which locks are applied. 000472 */ 000473 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 000474 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 000475 000476 /* Size of header before each frame in wal */ 000477 #define WAL_FRAME_HDRSIZE 24 000478 000479 /* Size of write ahead log header, including checksum. */ 000480 #define WAL_HDRSIZE 32 000481 000482 /* WAL magic value. Either this value, or the same value with the least 000483 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 000484 ** big-endian format in the first 4 bytes of a WAL file. 000485 ** 000486 ** If the LSB is set, then the checksums for each frame within the WAL 000487 ** file are calculated by treating all data as an array of 32-bit 000488 ** big-endian words. Otherwise, they are calculated by interpreting 000489 ** all data as 32-bit little-endian words. 000490 */ 000491 #define WAL_MAGIC 0x377f0682 000492 000493 /* 000494 ** Return the offset of frame iFrame in the write-ahead log file, 000495 ** assuming a database page size of szPage bytes. The offset returned 000496 ** is to the start of the write-ahead log frame-header. 000497 */ 000498 #define walFrameOffset(iFrame, szPage) ( \ 000499 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 000500 ) 000501 000502 /* 000503 ** An open write-ahead log file is represented by an instance of the 000504 ** following object. 000505 */ 000506 struct Wal { 000507 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 000508 sqlite3_file *pDbFd; /* File handle for the database file */ 000509 sqlite3_file *pWalFd; /* File handle for WAL file */ 000510 u32 iCallback; /* Value to pass to log callback (or 0) */ 000511 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 000512 int nWiData; /* Size of array apWiData */ 000513 int szFirstBlock; /* Size of first block written to WAL file */ 000514 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 000515 u32 szPage; /* Database page size */ 000516 i16 readLock; /* Which read lock is being held. -1 for none */ 000517 u8 syncFlags; /* Flags to use to sync header writes */ 000518 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 000519 u8 writeLock; /* True if in a write transaction */ 000520 u8 ckptLock; /* True if holding a checkpoint lock */ 000521 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 000522 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 000523 u8 syncHeader; /* Fsync the WAL header if true */ 000524 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 000525 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 000526 WalIndexHdr hdr; /* Wal-index header for current transaction */ 000527 u32 minFrame; /* Ignore wal frames before this one */ 000528 u32 iReCksum; /* On commit, recalculate checksums from here */ 000529 const char *zWalName; /* Name of WAL file */ 000530 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 000531 #ifdef SQLITE_USE_SEH 000532 u32 lockMask; /* Mask of locks held */ 000533 void *pFree; /* Pointer to sqlite3_free() if exception thrown */ 000534 u32 *pWiValue; /* Value to write into apWiData[iWiPg] */ 000535 int iWiPg; /* Write pWiValue into apWiData[iWiPg] */ 000536 int iSysErrno; /* System error code following exception */ 000537 #endif 000538 #ifdef SQLITE_DEBUG 000539 int nSehTry; /* Number of nested SEH_TRY{} blocks */ 000540 u8 lockError; /* True if a locking error has occurred */ 000541 #endif 000542 #ifdef SQLITE_ENABLE_SNAPSHOT 000543 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 000544 #endif 000545 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 000546 sqlite3 *db; 000547 #endif 000548 }; 000549 000550 /* 000551 ** Candidate values for Wal.exclusiveMode. 000552 */ 000553 #define WAL_NORMAL_MODE 0 000554 #define WAL_EXCLUSIVE_MODE 1 000555 #define WAL_HEAPMEMORY_MODE 2 000556 000557 /* 000558 ** Possible values for WAL.readOnly 000559 */ 000560 #define WAL_RDWR 0 /* Normal read/write connection */ 000561 #define WAL_RDONLY 1 /* The WAL file is readonly */ 000562 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 000563 000564 /* 000565 ** Each page of the wal-index mapping contains a hash-table made up of 000566 ** an array of HASHTABLE_NSLOT elements of the following type. 000567 */ 000568 typedef u16 ht_slot; 000569 000570 /* 000571 ** This structure is used to implement an iterator that loops through 000572 ** all frames in the WAL in database page order. Where two or more frames 000573 ** correspond to the same database page, the iterator visits only the 000574 ** frame most recently written to the WAL (in other words, the frame with 000575 ** the largest index). 000576 ** 000577 ** The internals of this structure are only accessed by: 000578 ** 000579 ** walIteratorInit() - Create a new iterator, 000580 ** walIteratorNext() - Step an iterator, 000581 ** walIteratorFree() - Free an iterator. 000582 ** 000583 ** This functionality is used by the checkpoint code (see walCheckpoint()). 000584 */ 000585 struct WalIterator { 000586 u32 iPrior; /* Last result returned from the iterator */ 000587 int nSegment; /* Number of entries in aSegment[] */ 000588 struct WalSegment { 000589 int iNext; /* Next slot in aIndex[] not yet returned */ 000590 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 000591 u32 *aPgno; /* Array of page numbers. */ 000592 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 000593 int iZero; /* Frame number associated with aPgno[0] */ 000594 } aSegment[1]; /* One for every 32KB page in the wal-index */ 000595 }; 000596 000597 /* 000598 ** Define the parameters of the hash tables in the wal-index file. There 000599 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 000600 ** wal-index. 000601 ** 000602 ** Changing any of these constants will alter the wal-index format and 000603 ** create incompatibilities. 000604 */ 000605 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 000606 #define HASHTABLE_HASH_1 383 /* Should be prime */ 000607 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 000608 000609 /* 000610 ** The block of page numbers associated with the first hash-table in a 000611 ** wal-index is smaller than usual. This is so that there is a complete 000612 ** hash-table on each aligned 32KB page of the wal-index. 000613 */ 000614 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 000615 000616 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 000617 #define WALINDEX_PGSZ ( \ 000618 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 000619 ) 000620 000621 /* 000622 ** Structured Exception Handling (SEH) is a Windows-specific technique 000623 ** for catching exceptions raised while accessing memory-mapped files. 000624 ** 000625 ** The -DSQLITE_USE_SEH compile-time option means to use SEH to catch and 000626 ** deal with system-level errors that arise during WAL -shm file processing. 000627 ** Without this compile-time option, any system-level faults that appear 000628 ** while accessing the memory-mapped -shm file will cause a process-wide 000629 ** signal to be deliver, which will more than likely cause the entire 000630 ** process to exit. 000631 */ 000632 #ifdef SQLITE_USE_SEH 000633 #include <Windows.h> 000634 000635 /* Beginning of a block of code in which an exception might occur */ 000636 # define SEH_TRY __try { \ 000637 assert( walAssertLockmask(pWal) && pWal->nSehTry==0 ); \ 000638 VVA_ONLY(pWal->nSehTry++); 000639 000640 /* The end of a block of code in which an exception might occur */ 000641 # define SEH_EXCEPT(X) \ 000642 VVA_ONLY(pWal->nSehTry--); \ 000643 assert( pWal->nSehTry==0 ); \ 000644 } __except( sehExceptionFilter(pWal, GetExceptionCode(), GetExceptionInformation() ) ){ X } 000645 000646 /* Simulate a memory-mapping fault in the -shm file for testing purposes */ 000647 # define SEH_INJECT_FAULT sehInjectFault(pWal) 000648 000649 /* 000650 ** The second argument is the return value of GetExceptionCode() for the 000651 ** current exception. Return EXCEPTION_EXECUTE_HANDLER if the exception code 000652 ** indicates that the exception may have been caused by accessing the *-shm 000653 ** file mapping. Or EXCEPTION_CONTINUE_SEARCH otherwise. 000654 */ 000655 static int sehExceptionFilter(Wal *pWal, int eCode, EXCEPTION_POINTERS *p){ 000656 VVA_ONLY(pWal->nSehTry--); 000657 if( eCode==EXCEPTION_IN_PAGE_ERROR ){ 000658 if( p && p->ExceptionRecord && p->ExceptionRecord->NumberParameters>=3 ){ 000659 /* From MSDN: For this type of exception, the first element of the 000660 ** ExceptionInformation[] array is a read-write flag - 0 if the exception 000661 ** was thrown while reading, 1 if while writing. The second element is 000662 ** the virtual address being accessed. The "third array element specifies 000663 ** the underlying NTSTATUS code that resulted in the exception". */ 000664 pWal->iSysErrno = (int)p->ExceptionRecord->ExceptionInformation[2]; 000665 } 000666 return EXCEPTION_EXECUTE_HANDLER; 000667 } 000668 return EXCEPTION_CONTINUE_SEARCH; 000669 } 000670 000671 /* 000672 ** If one is configured, invoke the xTestCallback callback with 650 as 000673 ** the argument. If it returns true, throw the same exception that is 000674 ** thrown by the system if the *-shm file mapping is accessed after it 000675 ** has been invalidated. 000676 */ 000677 static void sehInjectFault(Wal *pWal){ 000678 int res; 000679 assert( pWal->nSehTry>0 ); 000680 000681 res = sqlite3FaultSim(650); 000682 if( res!=0 ){ 000683 ULONG_PTR aArg[3]; 000684 aArg[0] = 0; 000685 aArg[1] = 0; 000686 aArg[2] = (ULONG_PTR)res; 000687 RaiseException(EXCEPTION_IN_PAGE_ERROR, 0, 3, (const ULONG_PTR*)aArg); 000688 } 000689 } 000690 000691 /* 000692 ** There are two ways to use this macro. To set a pointer to be freed 000693 ** if an exception is thrown: 000694 ** 000695 ** SEH_FREE_ON_ERROR(0, pPtr); 000696 ** 000697 ** and to cancel the same: 000698 ** 000699 ** SEH_FREE_ON_ERROR(pPtr, 0); 000700 ** 000701 ** In the first case, there must not already be a pointer registered to 000702 ** be freed. In the second case, pPtr must be the registered pointer. 000703 */ 000704 #define SEH_FREE_ON_ERROR(X,Y) \ 000705 assert( (X==0 || Y==0) && pWal->pFree==X ); pWal->pFree = Y 000706 000707 /* 000708 ** There are two ways to use this macro. To arrange for pWal->apWiData[iPg] 000709 ** to be set to pValue if an exception is thrown: 000710 ** 000711 ** SEH_SET_ON_ERROR(iPg, pValue); 000712 ** 000713 ** and to cancel the same: 000714 ** 000715 ** SEH_SET_ON_ERROR(0, 0); 000716 */ 000717 #define SEH_SET_ON_ERROR(X,Y) pWal->iWiPg = X; pWal->pWiValue = Y 000718 000719 #else 000720 # define SEH_TRY VVA_ONLY(pWal->nSehTry++); 000721 # define SEH_EXCEPT(X) VVA_ONLY(pWal->nSehTry--); assert( pWal->nSehTry==0 ); 000722 # define SEH_INJECT_FAULT assert( pWal->nSehTry>0 ); 000723 # define SEH_FREE_ON_ERROR(X,Y) 000724 # define SEH_SET_ON_ERROR(X,Y) 000725 #endif /* ifdef SQLITE_USE_SEH */ 000726 000727 000728 /* 000729 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 000730 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 000731 ** numbered from zero. 000732 ** 000733 ** If the wal-index is currently smaller the iPage pages then the size 000734 ** of the wal-index might be increased, but only if it is safe to do 000735 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 000736 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 000737 ** 000738 ** Three possible result scenarios: 000739 ** 000740 ** (1) rc==SQLITE_OK and *ppPage==Requested-Wal-Index-Page 000741 ** (2) rc>=SQLITE_ERROR and *ppPage==NULL 000742 ** (3) rc==SQLITE_OK and *ppPage==NULL // only if iPage==0 000743 ** 000744 ** Scenario (3) can only occur when pWal->writeLock is false and iPage==0 000745 */ 000746 static SQLITE_NOINLINE int walIndexPageRealloc( 000747 Wal *pWal, /* The WAL context */ 000748 int iPage, /* The page we seek */ 000749 volatile u32 **ppPage /* Write the page pointer here */ 000750 ){ 000751 int rc = SQLITE_OK; 000752 000753 /* Enlarge the pWal->apWiData[] array if required */ 000754 if( pWal->nWiData<=iPage ){ 000755 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); 000756 volatile u32 **apNew; 000757 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte); 000758 if( !apNew ){ 000759 *ppPage = 0; 000760 return SQLITE_NOMEM_BKPT; 000761 } 000762 memset((void*)&apNew[pWal->nWiData], 0, 000763 sizeof(u32*)*(iPage+1-pWal->nWiData)); 000764 pWal->apWiData = apNew; 000765 pWal->nWiData = iPage+1; 000766 } 000767 000768 /* Request a pointer to the required page from the VFS */ 000769 assert( pWal->apWiData[iPage]==0 ); 000770 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 000771 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 000772 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 000773 }else{ 000774 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 000775 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 000776 ); 000777 assert( pWal->apWiData[iPage]!=0 000778 || rc!=SQLITE_OK 000779 || (pWal->writeLock==0 && iPage==0) ); 000780 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 000781 if( rc==SQLITE_OK ){ 000782 if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM; 000783 }else if( (rc&0xff)==SQLITE_READONLY ){ 000784 pWal->readOnly |= WAL_SHM_RDONLY; 000785 if( rc==SQLITE_READONLY ){ 000786 rc = SQLITE_OK; 000787 } 000788 } 000789 } 000790 000791 *ppPage = pWal->apWiData[iPage]; 000792 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 000793 return rc; 000794 } 000795 static int walIndexPage( 000796 Wal *pWal, /* The WAL context */ 000797 int iPage, /* The page we seek */ 000798 volatile u32 **ppPage /* Write the page pointer here */ 000799 ){ 000800 SEH_INJECT_FAULT; 000801 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 000802 return walIndexPageRealloc(pWal, iPage, ppPage); 000803 } 000804 return SQLITE_OK; 000805 } 000806 000807 /* 000808 ** Return a pointer to the WalCkptInfo structure in the wal-index. 000809 */ 000810 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 000811 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 000812 SEH_INJECT_FAULT; 000813 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 000814 } 000815 000816 /* 000817 ** Return a pointer to the WalIndexHdr structure in the wal-index. 000818 */ 000819 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 000820 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 000821 SEH_INJECT_FAULT; 000822 return (volatile WalIndexHdr*)pWal->apWiData[0]; 000823 } 000824 000825 /* 000826 ** The argument to this macro must be of type u32. On a little-endian 000827 ** architecture, it returns the u32 value that results from interpreting 000828 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 000829 ** returns the value that would be produced by interpreting the 4 bytes 000830 ** of the input value as a little-endian integer. 000831 */ 000832 #define BYTESWAP32(x) ( \ 000833 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 000834 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 000835 ) 000836 000837 /* 000838 ** Generate or extend an 8 byte checksum based on the data in 000839 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 000840 ** initial values of 0 and 0 if aIn==NULL). 000841 ** 000842 ** The checksum is written back into aOut[] before returning. 000843 ** 000844 ** nByte must be a positive multiple of 8. 000845 */ 000846 static void walChecksumBytes( 000847 int nativeCksum, /* True for native byte-order, false for non-native */ 000848 u8 *a, /* Content to be checksummed */ 000849 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 000850 const u32 *aIn, /* Initial checksum value input */ 000851 u32 *aOut /* OUT: Final checksum value output */ 000852 ){ 000853 u32 s1, s2; 000854 u32 *aData = (u32 *)a; 000855 u32 *aEnd = (u32 *)&a[nByte]; 000856 000857 if( aIn ){ 000858 s1 = aIn[0]; 000859 s2 = aIn[1]; 000860 }else{ 000861 s1 = s2 = 0; 000862 } 000863 000864 assert( nByte>=8 ); 000865 assert( (nByte&0x00000007)==0 ); 000866 assert( nByte<=65536 ); 000867 assert( nByte%4==0 ); 000868 000869 if( !nativeCksum ){ 000870 do { 000871 s1 += BYTESWAP32(aData[0]) + s2; 000872 s2 += BYTESWAP32(aData[1]) + s1; 000873 aData += 2; 000874 }while( aData<aEnd ); 000875 }else if( nByte%64==0 ){ 000876 do { 000877 s1 += *aData++ + s2; 000878 s2 += *aData++ + s1; 000879 s1 += *aData++ + s2; 000880 s2 += *aData++ + s1; 000881 s1 += *aData++ + s2; 000882 s2 += *aData++ + s1; 000883 s1 += *aData++ + s2; 000884 s2 += *aData++ + s1; 000885 s1 += *aData++ + s2; 000886 s2 += *aData++ + s1; 000887 s1 += *aData++ + s2; 000888 s2 += *aData++ + s1; 000889 s1 += *aData++ + s2; 000890 s2 += *aData++ + s1; 000891 s1 += *aData++ + s2; 000892 s2 += *aData++ + s1; 000893 }while( aData<aEnd ); 000894 }else{ 000895 do { 000896 s1 += *aData++ + s2; 000897 s2 += *aData++ + s1; 000898 }while( aData<aEnd ); 000899 } 000900 assert( aData==aEnd ); 000901 000902 aOut[0] = s1; 000903 aOut[1] = s2; 000904 } 000905 000906 /* 000907 ** If there is the possibility of concurrent access to the SHM file 000908 ** from multiple threads and/or processes, then do a memory barrier. 000909 */ 000910 static void walShmBarrier(Wal *pWal){ 000911 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 000912 sqlite3OsShmBarrier(pWal->pDbFd); 000913 } 000914 } 000915 000916 /* 000917 ** Add the SQLITE_NO_TSAN as part of the return-type of a function 000918 ** definition as a hint that the function contains constructs that 000919 ** might give false-positive TSAN warnings. 000920 ** 000921 ** See tag-20200519-1. 000922 */ 000923 #if defined(__clang__) && !defined(SQLITE_NO_TSAN) 000924 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread)) 000925 #else 000926 # define SQLITE_NO_TSAN 000927 #endif 000928 000929 /* 000930 ** Write the header information in pWal->hdr into the wal-index. 000931 ** 000932 ** The checksum on pWal->hdr is updated before it is written. 000933 */ 000934 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ 000935 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 000936 const int nCksum = offsetof(WalIndexHdr, aCksum); 000937 000938 assert( pWal->writeLock ); 000939 pWal->hdr.isInit = 1; 000940 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 000941 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 000942 /* Possible TSAN false-positive. See tag-20200519-1 */ 000943 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 000944 walShmBarrier(pWal); 000945 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 000946 } 000947 000948 /* 000949 ** This function encodes a single frame header and writes it to a buffer 000950 ** supplied by the caller. A frame-header is made up of a series of 000951 ** 4-byte big-endian integers, as follows: 000952 ** 000953 ** 0: Page number. 000954 ** 4: For commit records, the size of the database image in pages 000955 ** after the commit. For all other records, zero. 000956 ** 8: Salt-1 (copied from the wal-header) 000957 ** 12: Salt-2 (copied from the wal-header) 000958 ** 16: Checksum-1. 000959 ** 20: Checksum-2. 000960 */ 000961 static void walEncodeFrame( 000962 Wal *pWal, /* The write-ahead log */ 000963 u32 iPage, /* Database page number for frame */ 000964 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 000965 u8 *aData, /* Pointer to page data */ 000966 u8 *aFrame /* OUT: Write encoded frame here */ 000967 ){ 000968 int nativeCksum; /* True for native byte-order checksums */ 000969 u32 *aCksum = pWal->hdr.aFrameCksum; 000970 assert( WAL_FRAME_HDRSIZE==24 ); 000971 sqlite3Put4byte(&aFrame[0], iPage); 000972 sqlite3Put4byte(&aFrame[4], nTruncate); 000973 if( pWal->iReCksum==0 ){ 000974 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 000975 000976 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 000977 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 000978 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 000979 000980 sqlite3Put4byte(&aFrame[16], aCksum[0]); 000981 sqlite3Put4byte(&aFrame[20], aCksum[1]); 000982 }else{ 000983 memset(&aFrame[8], 0, 16); 000984 } 000985 } 000986 000987 /* 000988 ** Check to see if the frame with header in aFrame[] and content 000989 ** in aData[] is valid. If it is a valid frame, fill *piPage and 000990 ** *pnTruncate and return true. Return if the frame is not valid. 000991 */ 000992 static int walDecodeFrame( 000993 Wal *pWal, /* The write-ahead log */ 000994 u32 *piPage, /* OUT: Database page number for frame */ 000995 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 000996 u8 *aData, /* Pointer to page data (for checksum) */ 000997 u8 *aFrame /* Frame data */ 000998 ){ 000999 int nativeCksum; /* True for native byte-order checksums */ 001000 u32 *aCksum = pWal->hdr.aFrameCksum; 001001 u32 pgno; /* Page number of the frame */ 001002 assert( WAL_FRAME_HDRSIZE==24 ); 001003 001004 /* A frame is only valid if the salt values in the frame-header 001005 ** match the salt values in the wal-header. 001006 */ 001007 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 001008 return 0; 001009 } 001010 001011 /* A frame is only valid if the page number is greater than zero. 001012 */ 001013 pgno = sqlite3Get4byte(&aFrame[0]); 001014 if( pgno==0 ){ 001015 return 0; 001016 } 001017 001018 /* A frame is only valid if a checksum of the WAL header, 001019 ** all prior frames, the first 16 bytes of this frame-header, 001020 ** and the frame-data matches the checksum in the last 8 001021 ** bytes of this frame-header. 001022 */ 001023 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 001024 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 001025 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 001026 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 001027 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 001028 ){ 001029 /* Checksum failed. */ 001030 return 0; 001031 } 001032 001033 /* If we reach this point, the frame is valid. Return the page number 001034 ** and the new database size. 001035 */ 001036 *piPage = pgno; 001037 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 001038 return 1; 001039 } 001040 001041 001042 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 001043 /* 001044 ** Names of locks. This routine is used to provide debugging output and is not 001045 ** a part of an ordinary build. 001046 */ 001047 static const char *walLockName(int lockIdx){ 001048 if( lockIdx==WAL_WRITE_LOCK ){ 001049 return "WRITE-LOCK"; 001050 }else if( lockIdx==WAL_CKPT_LOCK ){ 001051 return "CKPT-LOCK"; 001052 }else if( lockIdx==WAL_RECOVER_LOCK ){ 001053 return "RECOVER-LOCK"; 001054 }else{ 001055 static char zName[15]; 001056 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 001057 lockIdx-WAL_READ_LOCK(0)); 001058 return zName; 001059 } 001060 } 001061 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 001062 001063 001064 /* 001065 ** Set or release locks on the WAL. Locks are either shared or exclusive. 001066 ** A lock cannot be moved directly between shared and exclusive - it must go 001067 ** through the unlocked state first. 001068 ** 001069 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 001070 */ 001071 static int walLockShared(Wal *pWal, int lockIdx){ 001072 int rc; 001073 if( pWal->exclusiveMode ) return SQLITE_OK; 001074 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 001075 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 001076 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 001077 walLockName(lockIdx), rc ? "failed" : "ok")); 001078 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 001079 #ifdef SQLITE_USE_SEH 001080 if( rc==SQLITE_OK ) pWal->lockMask |= (1 << lockIdx); 001081 #endif 001082 return rc; 001083 } 001084 static void walUnlockShared(Wal *pWal, int lockIdx){ 001085 if( pWal->exclusiveMode ) return; 001086 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 001087 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 001088 #ifdef SQLITE_USE_SEH 001089 pWal->lockMask &= ~(1 << lockIdx); 001090 #endif 001091 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 001092 } 001093 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 001094 int rc; 001095 if( pWal->exclusiveMode ) return SQLITE_OK; 001096 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 001097 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 001098 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 001099 walLockName(lockIdx), n, rc ? "failed" : "ok")); 001100 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 001101 #ifdef SQLITE_USE_SEH 001102 if( rc==SQLITE_OK ){ 001103 pWal->lockMask |= (((1<<n)-1) << (SQLITE_SHM_NLOCK+lockIdx)); 001104 } 001105 #endif 001106 return rc; 001107 } 001108 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 001109 if( pWal->exclusiveMode ) return; 001110 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 001111 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 001112 #ifdef SQLITE_USE_SEH 001113 pWal->lockMask &= ~(((1<<n)-1) << (SQLITE_SHM_NLOCK+lockIdx)); 001114 #endif 001115 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 001116 walLockName(lockIdx), n)); 001117 } 001118 001119 /* 001120 ** Compute a hash on a page number. The resulting hash value must land 001121 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 001122 ** the hash to the next value in the event of a collision. 001123 */ 001124 static int walHash(u32 iPage){ 001125 assert( iPage>0 ); 001126 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 001127 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 001128 } 001129 static int walNextHash(int iPriorHash){ 001130 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 001131 } 001132 001133 /* 001134 ** An instance of the WalHashLoc object is used to describe the location 001135 ** of a page hash table in the wal-index. This becomes the return value 001136 ** from walHashGet(). 001137 */ 001138 typedef struct WalHashLoc WalHashLoc; 001139 struct WalHashLoc { 001140 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 001141 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 001142 u32 iZero; /* One less than the frame number of first indexed*/ 001143 }; 001144 001145 /* 001146 ** Return pointers to the hash table and page number array stored on 001147 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 001148 ** numbered starting from 0. 001149 ** 001150 ** Set output variable pLoc->aHash to point to the start of the hash table 001151 ** in the wal-index file. Set pLoc->iZero to one less than the frame 001152 ** number of the first frame indexed by this hash table. If a 001153 ** slot in the hash table is set to N, it refers to frame number 001154 ** (pLoc->iZero+N) in the log. 001155 ** 001156 ** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the 001157 ** first frame indexed by the hash table, frame (pLoc->iZero). 001158 */ 001159 static int walHashGet( 001160 Wal *pWal, /* WAL handle */ 001161 int iHash, /* Find the iHash'th table */ 001162 WalHashLoc *pLoc /* OUT: Hash table location */ 001163 ){ 001164 int rc; /* Return code */ 001165 001166 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 001167 assert( rc==SQLITE_OK || iHash>0 ); 001168 001169 if( pLoc->aPgno ){ 001170 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 001171 if( iHash==0 ){ 001172 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 001173 pLoc->iZero = 0; 001174 }else{ 001175 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 001176 } 001177 }else if( NEVER(rc==SQLITE_OK) ){ 001178 rc = SQLITE_ERROR; 001179 } 001180 return rc; 001181 } 001182 001183 /* 001184 ** Return the number of the wal-index page that contains the hash-table 001185 ** and page-number array that contain entries corresponding to WAL frame 001186 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 001187 ** are numbered starting from 0. 001188 */ 001189 static int walFramePage(u32 iFrame){ 001190 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 001191 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 001192 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 001193 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 001194 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 001195 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 001196 ); 001197 assert( iHash>=0 ); 001198 return iHash; 001199 } 001200 001201 /* 001202 ** Return the page number associated with frame iFrame in this WAL. 001203 */ 001204 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 001205 int iHash = walFramePage(iFrame); 001206 SEH_INJECT_FAULT; 001207 if( iHash==0 ){ 001208 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 001209 } 001210 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 001211 } 001212 001213 /* 001214 ** Remove entries from the hash table that point to WAL slots greater 001215 ** than pWal->hdr.mxFrame. 001216 ** 001217 ** This function is called whenever pWal->hdr.mxFrame is decreased due 001218 ** to a rollback or savepoint. 001219 ** 001220 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 001221 ** updated. Any later hash tables will be automatically cleared when 001222 ** pWal->hdr.mxFrame advances to the point where those hash tables are 001223 ** actually needed. 001224 */ 001225 static void walCleanupHash(Wal *pWal){ 001226 WalHashLoc sLoc; /* Hash table location */ 001227 int iLimit = 0; /* Zero values greater than this */ 001228 int nByte; /* Number of bytes to zero in aPgno[] */ 001229 int i; /* Used to iterate through aHash[] */ 001230 001231 assert( pWal->writeLock ); 001232 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 001233 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 001234 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 001235 001236 if( pWal->hdr.mxFrame==0 ) return; 001237 001238 /* Obtain pointers to the hash-table and page-number array containing 001239 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 001240 ** that the page said hash-table and array reside on is already mapped.(1) 001241 */ 001242 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 001243 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 001244 i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 001245 if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */ 001246 001247 /* Zero all hash-table entries that correspond to frame numbers greater 001248 ** than pWal->hdr.mxFrame. 001249 */ 001250 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 001251 assert( iLimit>0 ); 001252 for(i=0; i<HASHTABLE_NSLOT; i++){ 001253 if( sLoc.aHash[i]>iLimit ){ 001254 sLoc.aHash[i] = 0; 001255 } 001256 } 001257 001258 /* Zero the entries in the aPgno array that correspond to frames with 001259 ** frame numbers greater than pWal->hdr.mxFrame. 001260 */ 001261 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]); 001262 assert( nByte>=0 ); 001263 memset((void *)&sLoc.aPgno[iLimit], 0, nByte); 001264 001265 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 001266 /* Verify that the every entry in the mapping region is still reachable 001267 ** via the hash table even after the cleanup. 001268 */ 001269 if( iLimit ){ 001270 int j; /* Loop counter */ 001271 int iKey; /* Hash key */ 001272 for(j=0; j<iLimit; j++){ 001273 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 001274 if( sLoc.aHash[iKey]==j+1 ) break; 001275 } 001276 assert( sLoc.aHash[iKey]==j+1 ); 001277 } 001278 } 001279 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 001280 } 001281 001282 001283 /* 001284 ** Set an entry in the wal-index that will map database page number 001285 ** pPage into WAL frame iFrame. 001286 */ 001287 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 001288 int rc; /* Return code */ 001289 WalHashLoc sLoc; /* Wal-index hash table location */ 001290 001291 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 001292 001293 /* Assuming the wal-index file was successfully mapped, populate the 001294 ** page number array and hash table entry. 001295 */ 001296 if( rc==SQLITE_OK ){ 001297 int iKey; /* Hash table key */ 001298 int idx; /* Value to write to hash-table slot */ 001299 int nCollide; /* Number of hash collisions */ 001300 001301 idx = iFrame - sLoc.iZero; 001302 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 001303 001304 /* If this is the first entry to be added to this hash-table, zero the 001305 ** entire hash table and aPgno[] array before proceeding. 001306 */ 001307 if( idx==1 ){ 001308 int nByte = (int)((u8*)&sLoc.aHash[HASHTABLE_NSLOT] - (u8*)sLoc.aPgno); 001309 assert( nByte>=0 ); 001310 memset((void*)sLoc.aPgno, 0, nByte); 001311 } 001312 001313 /* If the entry in aPgno[] is already set, then the previous writer 001314 ** must have exited unexpectedly in the middle of a transaction (after 001315 ** writing one or more dirty pages to the WAL to free up memory). 001316 ** Remove the remnants of that writers uncommitted transaction from 001317 ** the hash-table before writing any new entries. 001318 */ 001319 if( sLoc.aPgno[idx-1] ){ 001320 walCleanupHash(pWal); 001321 assert( !sLoc.aPgno[idx-1] ); 001322 } 001323 001324 /* Write the aPgno[] array entry and the hash-table slot. */ 001325 nCollide = idx; 001326 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 001327 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 001328 } 001329 sLoc.aPgno[idx-1] = iPage; 001330 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx); 001331 001332 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 001333 /* Verify that the number of entries in the hash table exactly equals 001334 ** the number of entries in the mapping region. 001335 */ 001336 { 001337 int i; /* Loop counter */ 001338 int nEntry = 0; /* Number of entries in the hash table */ 001339 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 001340 assert( nEntry==idx ); 001341 } 001342 001343 /* Verify that the every entry in the mapping region is reachable 001344 ** via the hash table. This turns out to be a really, really expensive 001345 ** thing to check, so only do this occasionally - not on every 001346 ** iteration. 001347 */ 001348 if( (idx&0x3ff)==0 ){ 001349 int i; /* Loop counter */ 001350 for(i=0; i<idx; i++){ 001351 for(iKey=walHash(sLoc.aPgno[i]); 001352 sLoc.aHash[iKey]; 001353 iKey=walNextHash(iKey)){ 001354 if( sLoc.aHash[iKey]==i+1 ) break; 001355 } 001356 assert( sLoc.aHash[iKey]==i+1 ); 001357 } 001358 } 001359 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 001360 } 001361 001362 return rc; 001363 } 001364 001365 001366 /* 001367 ** Recover the wal-index by reading the write-ahead log file. 001368 ** 001369 ** This routine first tries to establish an exclusive lock on the 001370 ** wal-index to prevent other threads/processes from doing anything 001371 ** with the WAL or wal-index while recovery is running. The 001372 ** WAL_RECOVER_LOCK is also held so that other threads will know 001373 ** that this thread is running recovery. If unable to establish 001374 ** the necessary locks, this routine returns SQLITE_BUSY. 001375 */ 001376 static int walIndexRecover(Wal *pWal){ 001377 int rc; /* Return Code */ 001378 i64 nSize; /* Size of log file */ 001379 u32 aFrameCksum[2] = {0, 0}; 001380 int iLock; /* Lock offset to lock for checkpoint */ 001381 001382 /* Obtain an exclusive lock on all byte in the locking range not already 001383 ** locked by the caller. The caller is guaranteed to have locked the 001384 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 001385 ** If successful, the same bytes that are locked here are unlocked before 001386 ** this function returns. 001387 */ 001388 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 001389 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 001390 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 001391 assert( pWal->writeLock ); 001392 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 001393 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 001394 if( rc ){ 001395 return rc; 001396 } 001397 001398 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 001399 001400 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 001401 001402 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 001403 if( rc!=SQLITE_OK ){ 001404 goto recovery_error; 001405 } 001406 001407 if( nSize>WAL_HDRSIZE ){ 001408 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 001409 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */ 001410 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 001411 int szFrame; /* Number of bytes in buffer aFrame[] */ 001412 u8 *aData; /* Pointer to data part of aFrame buffer */ 001413 int szPage; /* Page size according to the log */ 001414 u32 magic; /* Magic value read from WAL header */ 001415 u32 version; /* Magic value read from WAL header */ 001416 int isValid; /* True if this frame is valid */ 001417 u32 iPg; /* Current 32KB wal-index page */ 001418 u32 iLastFrame; /* Last frame in wal, based on nSize alone */ 001419 001420 /* Read in the WAL header. */ 001421 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 001422 if( rc!=SQLITE_OK ){ 001423 goto recovery_error; 001424 } 001425 001426 /* If the database page size is not a power of two, or is greater than 001427 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 001428 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 001429 ** WAL file. 001430 */ 001431 magic = sqlite3Get4byte(&aBuf[0]); 001432 szPage = sqlite3Get4byte(&aBuf[8]); 001433 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 001434 || szPage&(szPage-1) 001435 || szPage>SQLITE_MAX_PAGE_SIZE 001436 || szPage<512 001437 ){ 001438 goto finished; 001439 } 001440 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 001441 pWal->szPage = szPage; 001442 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 001443 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 001444 001445 /* Verify that the WAL header checksum is correct */ 001446 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 001447 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 001448 ); 001449 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 001450 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 001451 ){ 001452 goto finished; 001453 } 001454 001455 /* Verify that the version number on the WAL format is one that 001456 ** are able to understand */ 001457 version = sqlite3Get4byte(&aBuf[4]); 001458 if( version!=WAL_MAX_VERSION ){ 001459 rc = SQLITE_CANTOPEN_BKPT; 001460 goto finished; 001461 } 001462 001463 /* Malloc a buffer to read frames into. */ 001464 szFrame = szPage + WAL_FRAME_HDRSIZE; 001465 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); 001466 SEH_FREE_ON_ERROR(0, aFrame); 001467 if( !aFrame ){ 001468 rc = SQLITE_NOMEM_BKPT; 001469 goto recovery_error; 001470 } 001471 aData = &aFrame[WAL_FRAME_HDRSIZE]; 001472 aPrivate = (u32*)&aData[szPage]; 001473 001474 /* Read all frames from the log file. */ 001475 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; 001476 for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){ 001477 u32 *aShare; 001478 u32 iFrame; /* Index of last frame read */ 001479 u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE); 001480 u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE); 001481 u32 nHdr, nHdr32; 001482 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); 001483 assert( aShare!=0 || rc!=SQLITE_OK ); 001484 if( aShare==0 ) break; 001485 SEH_SET_ON_ERROR(iPg, aShare); 001486 pWal->apWiData[iPg] = aPrivate; 001487 001488 for(iFrame=iFirst; iFrame<=iLast; iFrame++){ 001489 i64 iOffset = walFrameOffset(iFrame, szPage); 001490 u32 pgno; /* Database page number for frame */ 001491 u32 nTruncate; /* dbsize field from frame header */ 001492 001493 /* Read and decode the next log frame. */ 001494 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 001495 if( rc!=SQLITE_OK ) break; 001496 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 001497 if( !isValid ) break; 001498 rc = walIndexAppend(pWal, iFrame, pgno); 001499 if( NEVER(rc!=SQLITE_OK) ) break; 001500 001501 /* If nTruncate is non-zero, this is a commit record. */ 001502 if( nTruncate ){ 001503 pWal->hdr.mxFrame = iFrame; 001504 pWal->hdr.nPage = nTruncate; 001505 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 001506 testcase( szPage<=32768 ); 001507 testcase( szPage>=65536 ); 001508 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 001509 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 001510 } 001511 } 001512 pWal->apWiData[iPg] = aShare; 001513 SEH_SET_ON_ERROR(0,0); 001514 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); 001515 nHdr32 = nHdr / sizeof(u32); 001516 #ifndef SQLITE_SAFER_WALINDEX_RECOVERY 001517 /* Memcpy() should work fine here, on all reasonable implementations. 001518 ** Technically, memcpy() might change the destination to some 001519 ** intermediate value before setting to the final value, and that might 001520 ** cause a concurrent reader to malfunction. Memcpy() is allowed to 001521 ** do that, according to the spec, but no memcpy() implementation that 001522 ** we know of actually does that, which is why we say that memcpy() 001523 ** is safe for this. Memcpy() is certainly a lot faster. 001524 */ 001525 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr); 001526 #else 001527 /* In the event that some platform is found for which memcpy() 001528 ** changes the destination to some intermediate value before 001529 ** setting the final value, this alternative copy routine is 001530 ** provided. 001531 */ 001532 { 001533 int i; 001534 for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){ 001535 if( aShare[i]!=aPrivate[i] ){ 001536 /* Atomic memory operations are not required here because if 001537 ** the value needs to be changed, that means it is not being 001538 ** accessed concurrently. */ 001539 aShare[i] = aPrivate[i]; 001540 } 001541 } 001542 } 001543 #endif 001544 SEH_INJECT_FAULT; 001545 if( iFrame<=iLast ) break; 001546 } 001547 001548 SEH_FREE_ON_ERROR(aFrame, 0); 001549 sqlite3_free(aFrame); 001550 } 001551 001552 finished: 001553 if( rc==SQLITE_OK ){ 001554 volatile WalCkptInfo *pInfo; 001555 int i; 001556 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 001557 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 001558 walIndexWriteHdr(pWal); 001559 001560 /* Reset the checkpoint-header. This is safe because this thread is 001561 ** currently holding locks that exclude all other writers and 001562 ** checkpointers. Then set the values of read-mark slots 1 through N. 001563 */ 001564 pInfo = walCkptInfo(pWal); 001565 pInfo->nBackfill = 0; 001566 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 001567 pInfo->aReadMark[0] = 0; 001568 for(i=1; i<WAL_NREADER; i++){ 001569 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 001570 if( rc==SQLITE_OK ){ 001571 if( i==1 && pWal->hdr.mxFrame ){ 001572 pInfo->aReadMark[i] = pWal->hdr.mxFrame; 001573 }else{ 001574 pInfo->aReadMark[i] = READMARK_NOT_USED; 001575 } 001576 SEH_INJECT_FAULT; 001577 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 001578 }else if( rc!=SQLITE_BUSY ){ 001579 goto recovery_error; 001580 } 001581 } 001582 001583 /* If more than one frame was recovered from the log file, report an 001584 ** event via sqlite3_log(). This is to help with identifying performance 001585 ** problems caused by applications routinely shutting down without 001586 ** checkpointing the log file. 001587 */ 001588 if( pWal->hdr.nPage ){ 001589 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 001590 "recovered %d frames from WAL file %s", 001591 pWal->hdr.mxFrame, pWal->zWalName 001592 ); 001593 } 001594 } 001595 001596 recovery_error: 001597 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 001598 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 001599 return rc; 001600 } 001601 001602 /* 001603 ** Close an open wal-index. 001604 */ 001605 static void walIndexClose(Wal *pWal, int isDelete){ 001606 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 001607 int i; 001608 for(i=0; i<pWal->nWiData; i++){ 001609 sqlite3_free((void *)pWal->apWiData[i]); 001610 pWal->apWiData[i] = 0; 001611 } 001612 } 001613 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 001614 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 001615 } 001616 } 001617 001618 /* 001619 ** Open a connection to the WAL file zWalName. The database file must 001620 ** already be opened on connection pDbFd. The buffer that zWalName points 001621 ** to must remain valid for the lifetime of the returned Wal* handle. 001622 ** 001623 ** A SHARED lock should be held on the database file when this function 001624 ** is called. The purpose of this SHARED lock is to prevent any other 001625 ** client from unlinking the WAL or wal-index file. If another process 001626 ** were to do this just after this client opened one of these files, the 001627 ** system would be badly broken. 001628 ** 001629 ** If the log file is successfully opened, SQLITE_OK is returned and 001630 ** *ppWal is set to point to a new WAL handle. If an error occurs, 001631 ** an SQLite error code is returned and *ppWal is left unmodified. 001632 */ 001633 int sqlite3WalOpen( 001634 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 001635 sqlite3_file *pDbFd, /* The open database file */ 001636 const char *zWalName, /* Name of the WAL file */ 001637 int bNoShm, /* True to run in heap-memory mode */ 001638 i64 mxWalSize, /* Truncate WAL to this size on reset */ 001639 Wal **ppWal /* OUT: Allocated Wal handle */ 001640 ){ 001641 int rc; /* Return Code */ 001642 Wal *pRet; /* Object to allocate and return */ 001643 int flags; /* Flags passed to OsOpen() */ 001644 001645 assert( zWalName && zWalName[0] ); 001646 assert( pDbFd ); 001647 001648 /* Verify the values of various constants. Any changes to the values 001649 ** of these constants would result in an incompatible on-disk format 001650 ** for the -shm file. Any change that causes one of these asserts to 001651 ** fail is a backward compatibility problem, even if the change otherwise 001652 ** works. 001653 ** 001654 ** This table also serves as a helpful cross-reference when trying to 001655 ** interpret hex dumps of the -shm file. 001656 */ 001657 assert( 48 == sizeof(WalIndexHdr) ); 001658 assert( 40 == sizeof(WalCkptInfo) ); 001659 assert( 120 == WALINDEX_LOCK_OFFSET ); 001660 assert( 136 == WALINDEX_HDR_SIZE ); 001661 assert( 4096 == HASHTABLE_NPAGE ); 001662 assert( 4062 == HASHTABLE_NPAGE_ONE ); 001663 assert( 8192 == HASHTABLE_NSLOT ); 001664 assert( 383 == HASHTABLE_HASH_1 ); 001665 assert( 32768 == WALINDEX_PGSZ ); 001666 assert( 8 == SQLITE_SHM_NLOCK ); 001667 assert( 5 == WAL_NREADER ); 001668 assert( 24 == WAL_FRAME_HDRSIZE ); 001669 assert( 32 == WAL_HDRSIZE ); 001670 assert( 120 == WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK ); 001671 assert( 121 == WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK ); 001672 assert( 122 == WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK ); 001673 assert( 123 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) ); 001674 assert( 124 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) ); 001675 assert( 125 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) ); 001676 assert( 126 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) ); 001677 assert( 127 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) ); 001678 001679 /* In the amalgamation, the os_unix.c and os_win.c source files come before 001680 ** this source file. Verify that the #defines of the locking byte offsets 001681 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 001682 ** For that matter, if the lock offset ever changes from its initial design 001683 ** value of 120, we need to know that so there is an assert() to check it. 001684 */ 001685 #ifdef WIN_SHM_BASE 001686 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 001687 #endif 001688 #ifdef UNIX_SHM_BASE 001689 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 001690 #endif 001691 001692 001693 /* Allocate an instance of struct Wal to return. */ 001694 *ppWal = 0; 001695 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 001696 if( !pRet ){ 001697 return SQLITE_NOMEM_BKPT; 001698 } 001699 001700 pRet->pVfs = pVfs; 001701 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 001702 pRet->pDbFd = pDbFd; 001703 pRet->readLock = -1; 001704 pRet->mxWalSize = mxWalSize; 001705 pRet->zWalName = zWalName; 001706 pRet->syncHeader = 1; 001707 pRet->padToSectorBoundary = 1; 001708 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 001709 001710 /* Open file handle on the write-ahead log file. */ 001711 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 001712 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 001713 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 001714 pRet->readOnly = WAL_RDONLY; 001715 } 001716 001717 if( rc!=SQLITE_OK ){ 001718 walIndexClose(pRet, 0); 001719 sqlite3OsClose(pRet->pWalFd); 001720 sqlite3_free(pRet); 001721 }else{ 001722 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 001723 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 001724 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 001725 pRet->padToSectorBoundary = 0; 001726 } 001727 *ppWal = pRet; 001728 WALTRACE(("WAL%d: opened\n", pRet)); 001729 } 001730 return rc; 001731 } 001732 001733 /* 001734 ** Change the size to which the WAL file is truncated on each reset. 001735 */ 001736 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 001737 if( pWal ) pWal->mxWalSize = iLimit; 001738 } 001739 001740 /* 001741 ** Find the smallest page number out of all pages held in the WAL that 001742 ** has not been returned by any prior invocation of this method on the 001743 ** same WalIterator object. Write into *piFrame the frame index where 001744 ** that page was last written into the WAL. Write into *piPage the page 001745 ** number. 001746 ** 001747 ** Return 0 on success. If there are no pages in the WAL with a page 001748 ** number larger than *piPage, then return 1. 001749 */ 001750 static int walIteratorNext( 001751 WalIterator *p, /* Iterator */ 001752 u32 *piPage, /* OUT: The page number of the next page */ 001753 u32 *piFrame /* OUT: Wal frame index of next page */ 001754 ){ 001755 u32 iMin; /* Result pgno must be greater than iMin */ 001756 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 001757 int i; /* For looping through segments */ 001758 001759 iMin = p->iPrior; 001760 assert( iMin<0xffffffff ); 001761 for(i=p->nSegment-1; i>=0; i--){ 001762 struct WalSegment *pSegment = &p->aSegment[i]; 001763 while( pSegment->iNext<pSegment->nEntry ){ 001764 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 001765 if( iPg>iMin ){ 001766 if( iPg<iRet ){ 001767 iRet = iPg; 001768 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 001769 } 001770 break; 001771 } 001772 pSegment->iNext++; 001773 } 001774 } 001775 001776 *piPage = p->iPrior = iRet; 001777 return (iRet==0xFFFFFFFF); 001778 } 001779 001780 /* 001781 ** This function merges two sorted lists into a single sorted list. 001782 ** 001783 ** aLeft[] and aRight[] are arrays of indices. The sort key is 001784 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 001785 ** is guaranteed for all J<K: 001786 ** 001787 ** aContent[aLeft[J]] < aContent[aLeft[K]] 001788 ** aContent[aRight[J]] < aContent[aRight[K]] 001789 ** 001790 ** This routine overwrites aRight[] with a new (probably longer) sequence 001791 ** of indices such that the aRight[] contains every index that appears in 001792 ** either aLeft[] or the old aRight[] and such that the second condition 001793 ** above is still met. 001794 ** 001795 ** The aContent[aLeft[X]] values will be unique for all X. And the 001796 ** aContent[aRight[X]] values will be unique too. But there might be 001797 ** one or more combinations of X and Y such that 001798 ** 001799 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 001800 ** 001801 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 001802 */ 001803 static void walMerge( 001804 const u32 *aContent, /* Pages in wal - keys for the sort */ 001805 ht_slot *aLeft, /* IN: Left hand input list */ 001806 int nLeft, /* IN: Elements in array *paLeft */ 001807 ht_slot **paRight, /* IN/OUT: Right hand input list */ 001808 int *pnRight, /* IN/OUT: Elements in *paRight */ 001809 ht_slot *aTmp /* Temporary buffer */ 001810 ){ 001811 int iLeft = 0; /* Current index in aLeft */ 001812 int iRight = 0; /* Current index in aRight */ 001813 int iOut = 0; /* Current index in output buffer */ 001814 int nRight = *pnRight; 001815 ht_slot *aRight = *paRight; 001816 001817 assert( nLeft>0 && nRight>0 ); 001818 while( iRight<nRight || iLeft<nLeft ){ 001819 ht_slot logpage; 001820 Pgno dbpage; 001821 001822 if( (iLeft<nLeft) 001823 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 001824 ){ 001825 logpage = aLeft[iLeft++]; 001826 }else{ 001827 logpage = aRight[iRight++]; 001828 } 001829 dbpage = aContent[logpage]; 001830 001831 aTmp[iOut++] = logpage; 001832 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 001833 001834 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 001835 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 001836 } 001837 001838 *paRight = aLeft; 001839 *pnRight = iOut; 001840 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 001841 } 001842 001843 /* 001844 ** Sort the elements in list aList using aContent[] as the sort key. 001845 ** Remove elements with duplicate keys, preferring to keep the 001846 ** larger aList[] values. 001847 ** 001848 ** The aList[] entries are indices into aContent[]. The values in 001849 ** aList[] are to be sorted so that for all J<K: 001850 ** 001851 ** aContent[aList[J]] < aContent[aList[K]] 001852 ** 001853 ** For any X and Y such that 001854 ** 001855 ** aContent[aList[X]] == aContent[aList[Y]] 001856 ** 001857 ** Keep the larger of the two values aList[X] and aList[Y] and discard 001858 ** the smaller. 001859 */ 001860 static void walMergesort( 001861 const u32 *aContent, /* Pages in wal */ 001862 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 001863 ht_slot *aList, /* IN/OUT: List to sort */ 001864 int *pnList /* IN/OUT: Number of elements in aList[] */ 001865 ){ 001866 struct Sublist { 001867 int nList; /* Number of elements in aList */ 001868 ht_slot *aList; /* Pointer to sub-list content */ 001869 }; 001870 001871 const int nList = *pnList; /* Size of input list */ 001872 int nMerge = 0; /* Number of elements in list aMerge */ 001873 ht_slot *aMerge = 0; /* List to be merged */ 001874 int iList; /* Index into input list */ 001875 u32 iSub = 0; /* Index into aSub array */ 001876 struct Sublist aSub[13]; /* Array of sub-lists */ 001877 001878 memset(aSub, 0, sizeof(aSub)); 001879 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 001880 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 001881 001882 for(iList=0; iList<nList; iList++){ 001883 nMerge = 1; 001884 aMerge = &aList[iList]; 001885 for(iSub=0; iList & (1<<iSub); iSub++){ 001886 struct Sublist *p; 001887 assert( iSub<ArraySize(aSub) ); 001888 p = &aSub[iSub]; 001889 assert( p->aList && p->nList<=(1<<iSub) ); 001890 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 001891 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 001892 } 001893 aSub[iSub].aList = aMerge; 001894 aSub[iSub].nList = nMerge; 001895 } 001896 001897 for(iSub++; iSub<ArraySize(aSub); iSub++){ 001898 if( nList & (1<<iSub) ){ 001899 struct Sublist *p; 001900 assert( iSub<ArraySize(aSub) ); 001901 p = &aSub[iSub]; 001902 assert( p->nList<=(1<<iSub) ); 001903 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 001904 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 001905 } 001906 } 001907 assert( aMerge==aList ); 001908 *pnList = nMerge; 001909 001910 #ifdef SQLITE_DEBUG 001911 { 001912 int i; 001913 for(i=1; i<*pnList; i++){ 001914 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 001915 } 001916 } 001917 #endif 001918 } 001919 001920 /* 001921 ** Free an iterator allocated by walIteratorInit(). 001922 */ 001923 static void walIteratorFree(WalIterator *p){ 001924 sqlite3_free(p); 001925 } 001926 001927 /* 001928 ** Construct a WalInterator object that can be used to loop over all 001929 ** pages in the WAL following frame nBackfill in ascending order. Frames 001930 ** nBackfill or earlier may be included - excluding them is an optimization 001931 ** only. The caller must hold the checkpoint lock. 001932 ** 001933 ** On success, make *pp point to the newly allocated WalInterator object 001934 ** return SQLITE_OK. Otherwise, return an error code. If this routine 001935 ** returns an error, the value of *pp is undefined. 001936 ** 001937 ** The calling routine should invoke walIteratorFree() to destroy the 001938 ** WalIterator object when it has finished with it. 001939 */ 001940 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 001941 WalIterator *p; /* Return value */ 001942 int nSegment; /* Number of segments to merge */ 001943 u32 iLast; /* Last frame in log */ 001944 sqlite3_int64 nByte; /* Number of bytes to allocate */ 001945 int i; /* Iterator variable */ 001946 ht_slot *aTmp; /* Temp space used by merge-sort */ 001947 int rc = SQLITE_OK; /* Return Code */ 001948 001949 /* This routine only runs while holding the checkpoint lock. And 001950 ** it only runs if there is actually content in the log (mxFrame>0). 001951 */ 001952 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 001953 iLast = pWal->hdr.mxFrame; 001954 001955 /* Allocate space for the WalIterator object. */ 001956 nSegment = walFramePage(iLast) + 1; 001957 nByte = sizeof(WalIterator) 001958 + (nSegment-1)*sizeof(struct WalSegment) 001959 + iLast*sizeof(ht_slot); 001960 p = (WalIterator *)sqlite3_malloc64(nByte 001961 + sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 001962 ); 001963 if( !p ){ 001964 return SQLITE_NOMEM_BKPT; 001965 } 001966 memset(p, 0, nByte); 001967 p->nSegment = nSegment; 001968 aTmp = (ht_slot*)&(((u8*)p)[nByte]); 001969 SEH_FREE_ON_ERROR(0, p); 001970 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 001971 WalHashLoc sLoc; 001972 001973 rc = walHashGet(pWal, i, &sLoc); 001974 if( rc==SQLITE_OK ){ 001975 int j; /* Counter variable */ 001976 int nEntry; /* Number of entries in this segment */ 001977 ht_slot *aIndex; /* Sorted index for this segment */ 001978 001979 if( (i+1)==nSegment ){ 001980 nEntry = (int)(iLast - sLoc.iZero); 001981 }else{ 001982 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 001983 } 001984 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 001985 sLoc.iZero++; 001986 001987 for(j=0; j<nEntry; j++){ 001988 aIndex[j] = (ht_slot)j; 001989 } 001990 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 001991 p->aSegment[i].iZero = sLoc.iZero; 001992 p->aSegment[i].nEntry = nEntry; 001993 p->aSegment[i].aIndex = aIndex; 001994 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 001995 } 001996 } 001997 if( rc!=SQLITE_OK ){ 001998 SEH_FREE_ON_ERROR(p, 0); 001999 walIteratorFree(p); 002000 p = 0; 002001 } 002002 *pp = p; 002003 return rc; 002004 } 002005 002006 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 002007 /* 002008 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) 002009 ** they are supported by the VFS, and (b) the database handle is configured 002010 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled, 002011 ** or 0 otherwise. 002012 */ 002013 static int walEnableBlocking(Wal *pWal){ 002014 int res = 0; 002015 if( pWal->db ){ 002016 int tmout = pWal->db->busyTimeout; 002017 if( tmout ){ 002018 int rc; 002019 rc = sqlite3OsFileControl( 002020 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout 002021 ); 002022 res = (rc==SQLITE_OK); 002023 } 002024 } 002025 return res; 002026 } 002027 002028 /* 002029 ** Disable blocking locks. 002030 */ 002031 static void walDisableBlocking(Wal *pWal){ 002032 int tmout = 0; 002033 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout); 002034 } 002035 002036 /* 002037 ** If parameter bLock is true, attempt to enable blocking locks, take 002038 ** the WRITER lock, and then disable blocking locks. If blocking locks 002039 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return 002040 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not 002041 ** an error if blocking locks can not be enabled. 002042 ** 002043 ** If the bLock parameter is false and the WRITER lock is held, release it. 002044 */ 002045 int sqlite3WalWriteLock(Wal *pWal, int bLock){ 002046 int rc = SQLITE_OK; 002047 assert( pWal->readLock<0 || bLock==0 ); 002048 if( bLock ){ 002049 assert( pWal->db ); 002050 if( walEnableBlocking(pWal) ){ 002051 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 002052 if( rc==SQLITE_OK ){ 002053 pWal->writeLock = 1; 002054 } 002055 walDisableBlocking(pWal); 002056 } 002057 }else if( pWal->writeLock ){ 002058 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 002059 pWal->writeLock = 0; 002060 } 002061 return rc; 002062 } 002063 002064 /* 002065 ** Set the database handle used to determine if blocking locks are required. 002066 */ 002067 void sqlite3WalDb(Wal *pWal, sqlite3 *db){ 002068 pWal->db = db; 002069 } 002070 002071 /* 002072 ** Take an exclusive WRITE lock. Blocking if so configured. 002073 */ 002074 static int walLockWriter(Wal *pWal){ 002075 int rc; 002076 walEnableBlocking(pWal); 002077 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 002078 walDisableBlocking(pWal); 002079 return rc; 002080 } 002081 #else 002082 # define walEnableBlocking(x) 0 002083 # define walDisableBlocking(x) 002084 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1) 002085 # define sqlite3WalDb(pWal, db) 002086 #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */ 002087 002088 002089 /* 002090 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 002091 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 002092 ** busy-handler function. Invoke it and retry the lock until either the 002093 ** lock is successfully obtained or the busy-handler returns 0. 002094 */ 002095 static int walBusyLock( 002096 Wal *pWal, /* WAL connection */ 002097 int (*xBusy)(void*), /* Function to call when busy */ 002098 void *pBusyArg, /* Context argument for xBusyHandler */ 002099 int lockIdx, /* Offset of first byte to lock */ 002100 int n /* Number of bytes to lock */ 002101 ){ 002102 int rc; 002103 do { 002104 rc = walLockExclusive(pWal, lockIdx, n); 002105 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 002106 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 002107 if( rc==SQLITE_BUSY_TIMEOUT ){ 002108 walDisableBlocking(pWal); 002109 rc = SQLITE_BUSY; 002110 } 002111 #endif 002112 return rc; 002113 } 002114 002115 /* 002116 ** The cache of the wal-index header must be valid to call this function. 002117 ** Return the page-size in bytes used by the database. 002118 */ 002119 static int walPagesize(Wal *pWal){ 002120 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 002121 } 002122 002123 /* 002124 ** The following is guaranteed when this function is called: 002125 ** 002126 ** a) the WRITER lock is held, 002127 ** b) the entire log file has been checkpointed, and 002128 ** c) any existing readers are reading exclusively from the database 002129 ** file - there are no readers that may attempt to read a frame from 002130 ** the log file. 002131 ** 002132 ** This function updates the shared-memory structures so that the next 002133 ** client to write to the database (which may be this one) does so by 002134 ** writing frames into the start of the log file. 002135 ** 002136 ** The value of parameter salt1 is used as the aSalt[1] value in the 002137 ** new wal-index header. It should be passed a pseudo-random value (i.e. 002138 ** one obtained from sqlite3_randomness()). 002139 */ 002140 static void walRestartHdr(Wal *pWal, u32 salt1){ 002141 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 002142 int i; /* Loop counter */ 002143 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 002144 pWal->nCkpt++; 002145 pWal->hdr.mxFrame = 0; 002146 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 002147 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 002148 walIndexWriteHdr(pWal); 002149 AtomicStore(&pInfo->nBackfill, 0); 002150 pInfo->nBackfillAttempted = 0; 002151 pInfo->aReadMark[1] = 0; 002152 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 002153 assert( pInfo->aReadMark[0]==0 ); 002154 } 002155 002156 /* 002157 ** Copy as much content as we can from the WAL back into the database file 002158 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 002159 ** 002160 ** The amount of information copies from WAL to database might be limited 002161 ** by active readers. This routine will never overwrite a database page 002162 ** that a concurrent reader might be using. 002163 ** 002164 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 002165 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 002166 ** checkpoints are always run by a background thread or background 002167 ** process, foreground threads will never block on a lengthy fsync call. 002168 ** 002169 ** Fsync is called on the WAL before writing content out of the WAL and 002170 ** into the database. This ensures that if the new content is persistent 002171 ** in the WAL and can be recovered following a power-loss or hard reset. 002172 ** 002173 ** Fsync is also called on the database file if (and only if) the entire 002174 ** WAL content is copied into the database file. This second fsync makes 002175 ** it safe to delete the WAL since the new content will persist in the 002176 ** database file. 002177 ** 002178 ** This routine uses and updates the nBackfill field of the wal-index header. 002179 ** This is the only routine that will increase the value of nBackfill. 002180 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 002181 ** its value.) 002182 ** 002183 ** The caller must be holding sufficient locks to ensure that no other 002184 ** checkpoint is running (in any other thread or process) at the same 002185 ** time. 002186 */ 002187 static int walCheckpoint( 002188 Wal *pWal, /* Wal connection */ 002189 sqlite3 *db, /* Check for interrupts on this handle */ 002190 int eMode, /* One of PASSIVE, FULL or RESTART */ 002191 int (*xBusy)(void*), /* Function to call when busy */ 002192 void *pBusyArg, /* Context argument for xBusyHandler */ 002193 int sync_flags, /* Flags for OsSync() (or 0) */ 002194 u8 *zBuf /* Temporary buffer to use */ 002195 ){ 002196 int rc = SQLITE_OK; /* Return code */ 002197 int szPage; /* Database page-size */ 002198 WalIterator *pIter = 0; /* Wal iterator context */ 002199 u32 iDbpage = 0; /* Next database page to write */ 002200 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 002201 u32 mxSafeFrame; /* Max frame that can be backfilled */ 002202 u32 mxPage; /* Max database page to write */ 002203 int i; /* Loop counter */ 002204 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 002205 002206 szPage = walPagesize(pWal); 002207 testcase( szPage<=32768 ); 002208 testcase( szPage>=65536 ); 002209 pInfo = walCkptInfo(pWal); 002210 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 002211 002212 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 002213 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 002214 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 002215 002216 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 002217 ** safe to write into the database. Frames beyond mxSafeFrame might 002218 ** overwrite database pages that are in use by active readers and thus 002219 ** cannot be backfilled from the WAL. 002220 */ 002221 mxSafeFrame = pWal->hdr.mxFrame; 002222 mxPage = pWal->hdr.nPage; 002223 for(i=1; i<WAL_NREADER; i++){ 002224 u32 y = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT; 002225 if( mxSafeFrame>y ){ 002226 assert( y<=pWal->hdr.mxFrame ); 002227 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 002228 if( rc==SQLITE_OK ){ 002229 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 002230 AtomicStore(pInfo->aReadMark+i, iMark); SEH_INJECT_FAULT; 002231 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 002232 }else if( rc==SQLITE_BUSY ){ 002233 mxSafeFrame = y; 002234 xBusy = 0; 002235 }else{ 002236 goto walcheckpoint_out; 002237 } 002238 } 002239 } 002240 002241 /* Allocate the iterator */ 002242 if( pInfo->nBackfill<mxSafeFrame ){ 002243 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 002244 assert( rc==SQLITE_OK || pIter==0 ); 002245 } 002246 002247 if( pIter 002248 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK 002249 ){ 002250 u32 nBackfill = pInfo->nBackfill; 002251 pInfo->nBackfillAttempted = mxSafeFrame; SEH_INJECT_FAULT; 002252 002253 /* Sync the WAL to disk */ 002254 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 002255 002256 /* If the database may grow as a result of this checkpoint, hint 002257 ** about the eventual size of the db file to the VFS layer. 002258 */ 002259 if( rc==SQLITE_OK ){ 002260 i64 nReq = ((i64)mxPage * szPage); 002261 i64 nSize; /* Current size of database file */ 002262 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); 002263 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 002264 if( rc==SQLITE_OK && nSize<nReq ){ 002265 if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){ 002266 /* If the size of the final database is larger than the current 002267 ** database plus the amount of data in the wal file, plus the 002268 ** maximum size of the pending-byte page (65536 bytes), then 002269 ** must be corruption somewhere. */ 002270 rc = SQLITE_CORRUPT_BKPT; 002271 }else{ 002272 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq); 002273 } 002274 } 002275 002276 } 002277 002278 /* Iterate through the contents of the WAL, copying data to the db file */ 002279 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 002280 i64 iOffset; 002281 assert( walFramePgno(pWal, iFrame)==iDbpage ); 002282 SEH_INJECT_FAULT; 002283 if( AtomicLoad(&db->u1.isInterrupted) ){ 002284 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 002285 break; 002286 } 002287 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 002288 continue; 002289 } 002290 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 002291 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 002292 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 002293 if( rc!=SQLITE_OK ) break; 002294 iOffset = (iDbpage-1)*(i64)szPage; 002295 testcase( IS_BIG_INT(iOffset) ); 002296 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 002297 if( rc!=SQLITE_OK ) break; 002298 } 002299 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); 002300 002301 /* If work was actually accomplished... */ 002302 if( rc==SQLITE_OK ){ 002303 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 002304 i64 szDb = pWal->hdr.nPage*(i64)szPage; 002305 testcase( IS_BIG_INT(szDb) ); 002306 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 002307 if( rc==SQLITE_OK ){ 002308 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 002309 } 002310 } 002311 if( rc==SQLITE_OK ){ 002312 AtomicStore(&pInfo->nBackfill, mxSafeFrame); SEH_INJECT_FAULT; 002313 } 002314 } 002315 002316 /* Release the reader lock held while backfilling */ 002317 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 002318 } 002319 002320 if( rc==SQLITE_BUSY ){ 002321 /* Reset the return code so as not to report a checkpoint failure 002322 ** just because there are active readers. */ 002323 rc = SQLITE_OK; 002324 } 002325 } 002326 002327 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 002328 ** entire wal file has been copied into the database file, then block 002329 ** until all readers have finished using the wal file. This ensures that 002330 ** the next process to write to the database restarts the wal file. 002331 */ 002332 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 002333 assert( pWal->writeLock ); 002334 SEH_INJECT_FAULT; 002335 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 002336 rc = SQLITE_BUSY; 002337 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 002338 u32 salt1; 002339 sqlite3_randomness(4, &salt1); 002340 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 002341 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 002342 if( rc==SQLITE_OK ){ 002343 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 002344 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 002345 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 002346 ** truncates the log file to zero bytes just prior to a 002347 ** successful return. 002348 ** 002349 ** In theory, it might be safe to do this without updating the 002350 ** wal-index header in shared memory, as all subsequent reader or 002351 ** writer clients should see that the entire log file has been 002352 ** checkpointed and behave accordingly. This seems unsafe though, 002353 ** as it would leave the system in a state where the contents of 002354 ** the wal-index header do not match the contents of the 002355 ** file-system. To avoid this, update the wal-index header to 002356 ** indicate that the log file contains zero valid frames. */ 002357 walRestartHdr(pWal, salt1); 002358 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 002359 } 002360 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 002361 } 002362 } 002363 } 002364 002365 walcheckpoint_out: 002366 SEH_FREE_ON_ERROR(pIter, 0); 002367 walIteratorFree(pIter); 002368 return rc; 002369 } 002370 002371 /* 002372 ** If the WAL file is currently larger than nMax bytes in size, truncate 002373 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 002374 */ 002375 static void walLimitSize(Wal *pWal, i64 nMax){ 002376 i64 sz; 002377 int rx; 002378 sqlite3BeginBenignMalloc(); 002379 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 002380 if( rx==SQLITE_OK && (sz > nMax ) ){ 002381 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 002382 } 002383 sqlite3EndBenignMalloc(); 002384 if( rx ){ 002385 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 002386 } 002387 } 002388 002389 #ifdef SQLITE_USE_SEH 002390 /* 002391 ** This is the "standard" exception handler used in a few places to handle 002392 ** an exception thrown by reading from the *-shm mapping after it has become 002393 ** invalid in SQLITE_USE_SEH builds. It is used as follows: 002394 ** 002395 ** SEH_TRY { ... } 002396 ** SEH_EXCEPT( rc = walHandleException(pWal); ) 002397 ** 002398 ** This function does three things: 002399 ** 002400 ** 1) Determines the locks that should be held, based on the contents of 002401 ** the Wal.readLock, Wal.writeLock and Wal.ckptLock variables. All other 002402 ** held locks are assumed to be transient locks that would have been 002403 ** released had the exception not been thrown and are dropped. 002404 ** 002405 ** 2) Frees the pointer at Wal.pFree, if any, using sqlite3_free(). 002406 ** 002407 ** 3) Set pWal->apWiData[pWal->iWiPg] to pWal->pWiValue if not NULL 002408 ** 002409 ** 4) Returns SQLITE_IOERR. 002410 */ 002411 static int walHandleException(Wal *pWal){ 002412 if( pWal->exclusiveMode==0 ){ 002413 static const int S = 1; 002414 static const int E = (1<<SQLITE_SHM_NLOCK); 002415 int ii; 002416 u32 mUnlock = pWal->lockMask & ~( 002417 (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock))) 002418 | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0) 002419 | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0) 002420 ); 002421 for(ii=0; ii<SQLITE_SHM_NLOCK; ii++){ 002422 if( (S<<ii) & mUnlock ) walUnlockShared(pWal, ii); 002423 if( (E<<ii) & mUnlock ) walUnlockExclusive(pWal, ii, 1); 002424 } 002425 } 002426 sqlite3_free(pWal->pFree); 002427 pWal->pFree = 0; 002428 if( pWal->pWiValue ){ 002429 pWal->apWiData[pWal->iWiPg] = pWal->pWiValue; 002430 pWal->pWiValue = 0; 002431 } 002432 return SQLITE_IOERR_IN_PAGE; 002433 } 002434 002435 /* 002436 ** Assert that the Wal.lockMask mask, which indicates the locks held 002437 ** by the connenction, is consistent with the Wal.readLock, Wal.writeLock 002438 ** and Wal.ckptLock variables. To be used as: 002439 ** 002440 ** assert( walAssertLockmask(pWal) ); 002441 */ 002442 static int walAssertLockmask(Wal *pWal){ 002443 if( pWal->exclusiveMode==0 ){ 002444 static const int S = 1; 002445 static const int E = (1<<SQLITE_SHM_NLOCK); 002446 u32 mExpect = ( 002447 (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock))) 002448 | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0) 002449 | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0) 002450 #ifdef SQLITE_ENABLE_SNAPSHOT 002451 | (pWal->pSnapshot ? (pWal->lockMask & (1 << WAL_CKPT_LOCK)) : 0) 002452 #endif 002453 ); 002454 assert( mExpect==pWal->lockMask ); 002455 } 002456 return 1; 002457 } 002458 002459 /* 002460 ** Return and zero the "system error" field set when an 002461 ** EXCEPTION_IN_PAGE_ERROR exception is caught. 002462 */ 002463 int sqlite3WalSystemErrno(Wal *pWal){ 002464 int iRet = 0; 002465 if( pWal ){ 002466 iRet = pWal->iSysErrno; 002467 pWal->iSysErrno = 0; 002468 } 002469 return iRet; 002470 } 002471 002472 #else 002473 # define walAssertLockmask(x) 1 002474 #endif /* ifdef SQLITE_USE_SEH */ 002475 002476 /* 002477 ** Close a connection to a log file. 002478 */ 002479 int sqlite3WalClose( 002480 Wal *pWal, /* Wal to close */ 002481 sqlite3 *db, /* For interrupt flag */ 002482 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 002483 int nBuf, 002484 u8 *zBuf /* Buffer of at least nBuf bytes */ 002485 ){ 002486 int rc = SQLITE_OK; 002487 if( pWal ){ 002488 int isDelete = 0; /* True to unlink wal and wal-index files */ 002489 002490 assert( walAssertLockmask(pWal) ); 002491 002492 /* If an EXCLUSIVE lock can be obtained on the database file (using the 002493 ** ordinary, rollback-mode locking methods, this guarantees that the 002494 ** connection associated with this log file is the only connection to 002495 ** the database. In this case checkpoint the database and unlink both 002496 ** the wal and wal-index files. 002497 ** 002498 ** The EXCLUSIVE lock is not released before returning. 002499 */ 002500 if( zBuf!=0 002501 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 002502 ){ 002503 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 002504 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 002505 } 002506 rc = sqlite3WalCheckpoint(pWal, db, 002507 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 002508 ); 002509 if( rc==SQLITE_OK ){ 002510 int bPersist = -1; 002511 sqlite3OsFileControlHint( 002512 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 002513 ); 002514 if( bPersist!=1 ){ 002515 /* Try to delete the WAL file if the checkpoint completed and 002516 ** fsynced (rc==SQLITE_OK) and if we are not in persistent-wal 002517 ** mode (!bPersist) */ 002518 isDelete = 1; 002519 }else if( pWal->mxWalSize>=0 ){ 002520 /* Try to truncate the WAL file to zero bytes if the checkpoint 002521 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 002522 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 002523 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 002524 ** to zero bytes as truncating to the journal_size_limit might 002525 ** leave a corrupt WAL file on disk. */ 002526 walLimitSize(pWal, 0); 002527 } 002528 } 002529 } 002530 002531 walIndexClose(pWal, isDelete); 002532 sqlite3OsClose(pWal->pWalFd); 002533 if( isDelete ){ 002534 sqlite3BeginBenignMalloc(); 002535 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 002536 sqlite3EndBenignMalloc(); 002537 } 002538 WALTRACE(("WAL%p: closed\n", pWal)); 002539 sqlite3_free((void *)pWal->apWiData); 002540 sqlite3_free(pWal); 002541 } 002542 return rc; 002543 } 002544 002545 /* 002546 ** Try to read the wal-index header. Return 0 on success and 1 if 002547 ** there is a problem. 002548 ** 002549 ** The wal-index is in shared memory. Another thread or process might 002550 ** be writing the header at the same time this procedure is trying to 002551 ** read it, which might result in inconsistency. A dirty read is detected 002552 ** by verifying that both copies of the header are the same and also by 002553 ** a checksum on the header. 002554 ** 002555 ** If and only if the read is consistent and the header is different from 002556 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 002557 ** and *pChanged is set to 1. 002558 ** 002559 ** If the checksum cannot be verified return non-zero. If the header 002560 ** is read successfully and the checksum verified, return zero. 002561 */ 002562 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){ 002563 u32 aCksum[2]; /* Checksum on the header content */ 002564 WalIndexHdr h1, h2; /* Two copies of the header content */ 002565 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 002566 002567 /* The first page of the wal-index must be mapped at this point. */ 002568 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 002569 002570 /* Read the header. This might happen concurrently with a write to the 002571 ** same area of shared memory on a different CPU in a SMP, 002572 ** meaning it is possible that an inconsistent snapshot is read 002573 ** from the file. If this happens, return non-zero. 002574 ** 002575 ** tag-20200519-1: 002576 ** There are two copies of the header at the beginning of the wal-index. 002577 ** When reading, read [0] first then [1]. Writes are in the reverse order. 002578 ** Memory barriers are used to prevent the compiler or the hardware from 002579 ** reordering the reads and writes. TSAN and similar tools can sometimes 002580 ** give false-positive warnings about these accesses because the tools do not 002581 ** account for the double-read and the memory barrier. The use of mutexes 002582 ** here would be problematic as the memory being accessed is potentially 002583 ** shared among multiple processes and not all mutex implementations work 002584 ** reliably in that environment. 002585 */ 002586 aHdr = walIndexHdr(pWal); 002587 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */ 002588 walShmBarrier(pWal); 002589 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 002590 002591 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 002592 return 1; /* Dirty read */ 002593 } 002594 if( h1.isInit==0 ){ 002595 return 1; /* Malformed header - probably all zeros */ 002596 } 002597 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 002598 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 002599 return 1; /* Checksum does not match */ 002600 } 002601 002602 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 002603 *pChanged = 1; 002604 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 002605 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 002606 testcase( pWal->szPage<=32768 ); 002607 testcase( pWal->szPage>=65536 ); 002608 } 002609 002610 /* The header was successfully read. Return zero. */ 002611 return 0; 002612 } 002613 002614 /* 002615 ** This is the value that walTryBeginRead returns when it needs to 002616 ** be retried. 002617 */ 002618 #define WAL_RETRY (-1) 002619 002620 /* 002621 ** Read the wal-index header from the wal-index and into pWal->hdr. 002622 ** If the wal-header appears to be corrupt, try to reconstruct the 002623 ** wal-index from the WAL before returning. 002624 ** 002625 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 002626 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 002627 ** to 0. 002628 ** 002629 ** If the wal-index header is successfully read, return SQLITE_OK. 002630 ** Otherwise an SQLite error code. 002631 */ 002632 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 002633 int rc; /* Return code */ 002634 int badHdr; /* True if a header read failed */ 002635 volatile u32 *page0; /* Chunk of wal-index containing header */ 002636 002637 /* Ensure that page 0 of the wal-index (the page that contains the 002638 ** wal-index header) is mapped. Return early if an error occurs here. 002639 */ 002640 assert( pChanged ); 002641 rc = walIndexPage(pWal, 0, &page0); 002642 if( rc!=SQLITE_OK ){ 002643 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 002644 if( rc==SQLITE_READONLY_CANTINIT ){ 002645 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 002646 ** was openable but is not writable, and this thread is unable to 002647 ** confirm that another write-capable connection has the shared-memory 002648 ** open, and hence the content of the shared-memory is unreliable, 002649 ** since the shared-memory might be inconsistent with the WAL file 002650 ** and there is no writer on hand to fix it. */ 002651 assert( page0==0 ); 002652 assert( pWal->writeLock==0 ); 002653 assert( pWal->readOnly & WAL_SHM_RDONLY ); 002654 pWal->bShmUnreliable = 1; 002655 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 002656 *pChanged = 1; 002657 }else{ 002658 return rc; /* Any other non-OK return is just an error */ 002659 } 002660 }else{ 002661 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 002662 ** is zero, which prevents the SHM from growing */ 002663 testcase( page0!=0 ); 002664 } 002665 assert( page0!=0 || pWal->writeLock==0 ); 002666 002667 /* If the first page of the wal-index has been mapped, try to read the 002668 ** wal-index header immediately, without holding any lock. This usually 002669 ** works, but may fail if the wal-index header is corrupt or currently 002670 ** being modified by another thread or process. 002671 */ 002672 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 002673 002674 /* If the first attempt failed, it might have been due to a race 002675 ** with a writer. So get a WRITE lock and try again. 002676 */ 002677 if( badHdr ){ 002678 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 002679 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 002680 walUnlockShared(pWal, WAL_WRITE_LOCK); 002681 rc = SQLITE_READONLY_RECOVERY; 002682 } 002683 }else{ 002684 int bWriteLock = pWal->writeLock; 002685 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){ 002686 pWal->writeLock = 1; 002687 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 002688 badHdr = walIndexTryHdr(pWal, pChanged); 002689 if( badHdr ){ 002690 /* If the wal-index header is still malformed even while holding 002691 ** a WRITE lock, it can only mean that the header is corrupted and 002692 ** needs to be reconstructed. So run recovery to do exactly that. 002693 */ 002694 rc = walIndexRecover(pWal); 002695 *pChanged = 1; 002696 } 002697 } 002698 if( bWriteLock==0 ){ 002699 pWal->writeLock = 0; 002700 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 002701 } 002702 } 002703 } 002704 } 002705 002706 /* If the header is read successfully, check the version number to make 002707 ** sure the wal-index was not constructed with some future format that 002708 ** this version of SQLite cannot understand. 002709 */ 002710 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 002711 rc = SQLITE_CANTOPEN_BKPT; 002712 } 002713 if( pWal->bShmUnreliable ){ 002714 if( rc!=SQLITE_OK ){ 002715 walIndexClose(pWal, 0); 002716 pWal->bShmUnreliable = 0; 002717 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 002718 /* walIndexRecover() might have returned SHORT_READ if a concurrent 002719 ** writer truncated the WAL out from under it. If that happens, it 002720 ** indicates that a writer has fixed the SHM file for us, so retry */ 002721 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 002722 } 002723 pWal->exclusiveMode = WAL_NORMAL_MODE; 002724 } 002725 002726 return rc; 002727 } 002728 002729 /* 002730 ** Open a transaction in a connection where the shared-memory is read-only 002731 ** and where we cannot verify that there is a separate write-capable connection 002732 ** on hand to keep the shared-memory up-to-date with the WAL file. 002733 ** 002734 ** This can happen, for example, when the shared-memory is implemented by 002735 ** memory-mapping a *-shm file, where a prior writer has shut down and 002736 ** left the *-shm file on disk, and now the present connection is trying 002737 ** to use that database but lacks write permission on the *-shm file. 002738 ** Other scenarios are also possible, depending on the VFS implementation. 002739 ** 002740 ** Precondition: 002741 ** 002742 ** The *-wal file has been read and an appropriate wal-index has been 002743 ** constructed in pWal->apWiData[] using heap memory instead of shared 002744 ** memory. 002745 ** 002746 ** If this function returns SQLITE_OK, then the read transaction has 002747 ** been successfully opened. In this case output variable (*pChanged) 002748 ** is set to true before returning if the caller should discard the 002749 ** contents of the page cache before proceeding. Or, if it returns 002750 ** WAL_RETRY, then the heap memory wal-index has been discarded and 002751 ** the caller should retry opening the read transaction from the 002752 ** beginning (including attempting to map the *-shm file). 002753 ** 002754 ** If an error occurs, an SQLite error code is returned. 002755 */ 002756 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 002757 i64 szWal; /* Size of wal file on disk in bytes */ 002758 i64 iOffset; /* Current offset when reading wal file */ 002759 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 002760 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 002761 int szFrame; /* Number of bytes in buffer aFrame[] */ 002762 u8 *aData; /* Pointer to data part of aFrame buffer */ 002763 volatile void *pDummy; /* Dummy argument for xShmMap */ 002764 int rc; /* Return code */ 002765 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 002766 002767 assert( pWal->bShmUnreliable ); 002768 assert( pWal->readOnly & WAL_SHM_RDONLY ); 002769 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 002770 002771 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 002772 ** writers from running a checkpoint, but does not stop them 002773 ** from running recovery. */ 002774 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 002775 if( rc!=SQLITE_OK ){ 002776 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 002777 goto begin_unreliable_shm_out; 002778 } 002779 pWal->readLock = 0; 002780 002781 /* Check to see if a separate writer has attached to the shared-memory area, 002782 ** thus making the shared-memory "reliable" again. Do this by invoking 002783 ** the xShmMap() routine of the VFS and looking to see if the return 002784 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 002785 ** 002786 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 002787 ** cause the heap-memory WAL-index to be discarded and the actual 002788 ** shared memory to be used in its place. 002789 ** 002790 ** This step is important because, even though this connection is holding 002791 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 002792 ** have already checkpointed the WAL file and, while the current 002793 ** is active, wrap the WAL and start overwriting frames that this 002794 ** process wants to use. 002795 ** 002796 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 002797 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 002798 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 002799 ** even if some external agent does a "chmod" to make the shared-memory 002800 ** writable by us, until sqlite3OsShmUnmap() has been called. 002801 ** This is a requirement on the VFS implementation. 002802 */ 002803 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 002804 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 002805 if( rc!=SQLITE_READONLY_CANTINIT ){ 002806 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 002807 goto begin_unreliable_shm_out; 002808 } 002809 002810 /* We reach this point only if the real shared-memory is still unreliable. 002811 ** Assume the in-memory WAL-index substitute is correct and load it 002812 ** into pWal->hdr. 002813 */ 002814 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 002815 002816 /* Make sure some writer hasn't come in and changed the WAL file out 002817 ** from under us, then disconnected, while we were not looking. 002818 */ 002819 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 002820 if( rc!=SQLITE_OK ){ 002821 goto begin_unreliable_shm_out; 002822 } 002823 if( szWal<WAL_HDRSIZE ){ 002824 /* If the wal file is too small to contain a wal-header and the 002825 ** wal-index header has mxFrame==0, then it must be safe to proceed 002826 ** reading the database file only. However, the page cache cannot 002827 ** be trusted, as a read/write connection may have connected, written 002828 ** the db, run a checkpoint, truncated the wal file and disconnected 002829 ** since this client's last read transaction. */ 002830 *pChanged = 1; 002831 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 002832 goto begin_unreliable_shm_out; 002833 } 002834 002835 /* Check the salt keys at the start of the wal file still match. */ 002836 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 002837 if( rc!=SQLITE_OK ){ 002838 goto begin_unreliable_shm_out; 002839 } 002840 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 002841 /* Some writer has wrapped the WAL file while we were not looking. 002842 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 002843 ** rebuilt. */ 002844 rc = WAL_RETRY; 002845 goto begin_unreliable_shm_out; 002846 } 002847 002848 /* Allocate a buffer to read frames into */ 002849 assert( (pWal->szPage & (pWal->szPage-1))==0 ); 002850 assert( pWal->szPage>=512 && pWal->szPage<=65536 ); 002851 szFrame = pWal->szPage + WAL_FRAME_HDRSIZE; 002852 aFrame = (u8 *)sqlite3_malloc64(szFrame); 002853 if( aFrame==0 ){ 002854 rc = SQLITE_NOMEM_BKPT; 002855 goto begin_unreliable_shm_out; 002856 } 002857 aData = &aFrame[WAL_FRAME_HDRSIZE]; 002858 002859 /* Check to see if a complete transaction has been appended to the 002860 ** wal file since the heap-memory wal-index was created. If so, the 002861 ** heap-memory wal-index is discarded and WAL_RETRY returned to 002862 ** the caller. */ 002863 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 002864 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 002865 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->szPage); 002866 iOffset+szFrame<=szWal; 002867 iOffset+=szFrame 002868 ){ 002869 u32 pgno; /* Database page number for frame */ 002870 u32 nTruncate; /* dbsize field from frame header */ 002871 002872 /* Read and decode the next log frame. */ 002873 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 002874 if( rc!=SQLITE_OK ) break; 002875 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 002876 002877 /* If nTruncate is non-zero, then a complete transaction has been 002878 ** appended to this wal file. Set rc to WAL_RETRY and break out of 002879 ** the loop. */ 002880 if( nTruncate ){ 002881 rc = WAL_RETRY; 002882 break; 002883 } 002884 } 002885 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 002886 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 002887 002888 begin_unreliable_shm_out: 002889 sqlite3_free(aFrame); 002890 if( rc!=SQLITE_OK ){ 002891 int i; 002892 for(i=0; i<pWal->nWiData; i++){ 002893 sqlite3_free((void*)pWal->apWiData[i]); 002894 pWal->apWiData[i] = 0; 002895 } 002896 pWal->bShmUnreliable = 0; 002897 sqlite3WalEndReadTransaction(pWal); 002898 *pChanged = 1; 002899 } 002900 return rc; 002901 } 002902 002903 /* 002904 ** Attempt to start a read transaction. This might fail due to a race or 002905 ** other transient condition. When that happens, it returns WAL_RETRY to 002906 ** indicate to the caller that it is safe to retry immediately. 002907 ** 002908 ** On success return SQLITE_OK. On a permanent failure (such an 002909 ** I/O error or an SQLITE_BUSY because another process is running 002910 ** recovery) return a positive error code. 002911 ** 002912 ** The useWal parameter is true to force the use of the WAL and disable 002913 ** the case where the WAL is bypassed because it has been completely 002914 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 002915 ** to make a copy of the wal-index header into pWal->hdr. If the 002916 ** wal-index header has changed, *pChanged is set to 1 (as an indication 002917 ** to the caller that the local page cache is obsolete and needs to be 002918 ** flushed.) When useWal==1, the wal-index header is assumed to already 002919 ** be loaded and the pChanged parameter is unused. 002920 ** 002921 ** The caller must set the cnt parameter to the number of prior calls to 002922 ** this routine during the current read attempt that returned WAL_RETRY. 002923 ** This routine will start taking more aggressive measures to clear the 002924 ** race conditions after multiple WAL_RETRY returns, and after an excessive 002925 ** number of errors will ultimately return SQLITE_PROTOCOL. The 002926 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 002927 ** and is not honoring the locking protocol. There is a vanishingly small 002928 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 002929 ** bad luck when there is lots of contention for the wal-index, but that 002930 ** possibility is so small that it can be safely neglected, we believe. 002931 ** 002932 ** On success, this routine obtains a read lock on 002933 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 002934 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 002935 ** that means the Wal does not hold any read lock. The reader must not 002936 ** access any database page that is modified by a WAL frame up to and 002937 ** including frame number aReadMark[pWal->readLock]. The reader will 002938 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 002939 ** Or if pWal->readLock==0, then the reader will ignore the WAL 002940 ** completely and get all content directly from the database file. 002941 ** If the useWal parameter is 1 then the WAL will never be ignored and 002942 ** this routine will always set pWal->readLock>0 on success. 002943 ** When the read transaction is completed, the caller must release the 002944 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 002945 ** 002946 ** This routine uses the nBackfill and aReadMark[] fields of the header 002947 ** to select a particular WAL_READ_LOCK() that strives to let the 002948 ** checkpoint process do as much work as possible. This routine might 002949 ** update values of the aReadMark[] array in the header, but if it does 002950 ** so it takes care to hold an exclusive lock on the corresponding 002951 ** WAL_READ_LOCK() while changing values. 002952 */ 002953 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 002954 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 002955 u32 mxReadMark; /* Largest aReadMark[] value */ 002956 int mxI; /* Index of largest aReadMark[] value */ 002957 int i; /* Loop counter */ 002958 int rc = SQLITE_OK; /* Return code */ 002959 u32 mxFrame; /* Wal frame to lock to */ 002960 002961 assert( pWal->readLock<0 ); /* Not currently locked */ 002962 002963 /* useWal may only be set for read/write connections */ 002964 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 002965 002966 /* Take steps to avoid spinning forever if there is a protocol error. 002967 ** 002968 ** Circumstances that cause a RETRY should only last for the briefest 002969 ** instances of time. No I/O or other system calls are done while the 002970 ** locks are held, so the locks should not be held for very long. But 002971 ** if we are unlucky, another process that is holding a lock might get 002972 ** paged out or take a page-fault that is time-consuming to resolve, 002973 ** during the few nanoseconds that it is holding the lock. In that case, 002974 ** it might take longer than normal for the lock to free. 002975 ** 002976 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 002977 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 002978 ** is more of a scheduler yield than an actual delay. But on the 10th 002979 ** an subsequent retries, the delays start becoming longer and longer, 002980 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 002981 ** The total delay time before giving up is less than 10 seconds. 002982 */ 002983 if( cnt>5 ){ 002984 int nDelay = 1; /* Pause time in microseconds */ 002985 if( cnt>100 ){ 002986 VVA_ONLY( pWal->lockError = 1; ) 002987 return SQLITE_PROTOCOL; 002988 } 002989 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 002990 sqlite3OsSleep(pWal->pVfs, nDelay); 002991 } 002992 002993 if( !useWal ){ 002994 assert( rc==SQLITE_OK ); 002995 if( pWal->bShmUnreliable==0 ){ 002996 rc = walIndexReadHdr(pWal, pChanged); 002997 } 002998 if( rc==SQLITE_BUSY ){ 002999 /* If there is not a recovery running in another thread or process 003000 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 003001 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 003002 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 003003 ** would be technically correct. But the race is benign since with 003004 ** WAL_RETRY this routine will be called again and will probably be 003005 ** right on the second iteration. 003006 */ 003007 if( pWal->apWiData[0]==0 ){ 003008 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 003009 ** We assume this is a transient condition, so return WAL_RETRY. The 003010 ** xShmMap() implementation used by the default unix and win32 VFS 003011 ** modules may return SQLITE_BUSY due to a race condition in the 003012 ** code that determines whether or not the shared-memory region 003013 ** must be zeroed before the requested page is returned. 003014 */ 003015 rc = WAL_RETRY; 003016 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 003017 walUnlockShared(pWal, WAL_RECOVER_LOCK); 003018 rc = WAL_RETRY; 003019 }else if( rc==SQLITE_BUSY ){ 003020 rc = SQLITE_BUSY_RECOVERY; 003021 } 003022 } 003023 if( rc!=SQLITE_OK ){ 003024 return rc; 003025 } 003026 else if( pWal->bShmUnreliable ){ 003027 return walBeginShmUnreliable(pWal, pChanged); 003028 } 003029 } 003030 003031 assert( pWal->nWiData>0 ); 003032 assert( pWal->apWiData[0]!=0 ); 003033 pInfo = walCkptInfo(pWal); 003034 SEH_INJECT_FAULT; 003035 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame 003036 #ifdef SQLITE_ENABLE_SNAPSHOT 003037 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) 003038 #endif 003039 ){ 003040 /* The WAL has been completely backfilled (or it is empty). 003041 ** and can be safely ignored. 003042 */ 003043 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 003044 walShmBarrier(pWal); 003045 if( rc==SQLITE_OK ){ 003046 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 003047 /* It is not safe to allow the reader to continue here if frames 003048 ** may have been appended to the log before READ_LOCK(0) was obtained. 003049 ** When holding READ_LOCK(0), the reader ignores the entire log file, 003050 ** which implies that the database file contains a trustworthy 003051 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 003052 ** happening, this is usually correct. 003053 ** 003054 ** However, if frames have been appended to the log (or if the log 003055 ** is wrapped and written for that matter) before the READ_LOCK(0) 003056 ** is obtained, that is not necessarily true. A checkpointer may 003057 ** have started to backfill the appended frames but crashed before 003058 ** it finished. Leaving a corrupt image in the database file. 003059 */ 003060 walUnlockShared(pWal, WAL_READ_LOCK(0)); 003061 return WAL_RETRY; 003062 } 003063 pWal->readLock = 0; 003064 return SQLITE_OK; 003065 }else if( rc!=SQLITE_BUSY ){ 003066 return rc; 003067 } 003068 } 003069 003070 /* If we get this far, it means that the reader will want to use 003071 ** the WAL to get at content from recent commits. The job now is 003072 ** to select one of the aReadMark[] entries that is closest to 003073 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 003074 */ 003075 mxReadMark = 0; 003076 mxI = 0; 003077 mxFrame = pWal->hdr.mxFrame; 003078 #ifdef SQLITE_ENABLE_SNAPSHOT 003079 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 003080 mxFrame = pWal->pSnapshot->mxFrame; 003081 } 003082 #endif 003083 for(i=1; i<WAL_NREADER; i++){ 003084 u32 thisMark = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT; 003085 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 003086 assert( thisMark!=READMARK_NOT_USED ); 003087 mxReadMark = thisMark; 003088 mxI = i; 003089 } 003090 } 003091 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 003092 && (mxReadMark<mxFrame || mxI==0) 003093 ){ 003094 for(i=1; i<WAL_NREADER; i++){ 003095 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 003096 if( rc==SQLITE_OK ){ 003097 AtomicStore(pInfo->aReadMark+i,mxFrame); 003098 mxReadMark = mxFrame; 003099 mxI = i; 003100 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 003101 break; 003102 }else if( rc!=SQLITE_BUSY ){ 003103 return rc; 003104 } 003105 } 003106 } 003107 if( mxI==0 ){ 003108 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 003109 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 003110 } 003111 003112 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 003113 if( rc ){ 003114 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 003115 } 003116 /* Now that the read-lock has been obtained, check that neither the 003117 ** value in the aReadMark[] array or the contents of the wal-index 003118 ** header have changed. 003119 ** 003120 ** It is necessary to check that the wal-index header did not change 003121 ** between the time it was read and when the shared-lock was obtained 003122 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 003123 ** that the log file may have been wrapped by a writer, or that frames 003124 ** that occur later in the log than pWal->hdr.mxFrame may have been 003125 ** copied into the database by a checkpointer. If either of these things 003126 ** happened, then reading the database with the current value of 003127 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 003128 ** instead. 003129 ** 003130 ** Before checking that the live wal-index header has not changed 003131 ** since it was read, set Wal.minFrame to the first frame in the wal 003132 ** file that has not yet been checkpointed. This client will not need 003133 ** to read any frames earlier than minFrame from the wal file - they 003134 ** can be safely read directly from the database file. 003135 ** 003136 ** Because a ShmBarrier() call is made between taking the copy of 003137 ** nBackfill and checking that the wal-header in shared-memory still 003138 ** matches the one cached in pWal->hdr, it is guaranteed that the 003139 ** checkpointer that set nBackfill was not working with a wal-index 003140 ** header newer than that cached in pWal->hdr. If it were, that could 003141 ** cause a problem. The checkpointer could omit to checkpoint 003142 ** a version of page X that lies before pWal->minFrame (call that version 003143 ** A) on the basis that there is a newer version (version B) of the same 003144 ** page later in the wal file. But if version B happens to like past 003145 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 003146 ** that it can read version A from the database file. However, since 003147 ** we can guarantee that the checkpointer that set nBackfill could not 003148 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 003149 */ 003150 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; SEH_INJECT_FAULT; 003151 walShmBarrier(pWal); 003152 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark 003153 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 003154 ){ 003155 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 003156 return WAL_RETRY; 003157 }else{ 003158 assert( mxReadMark<=pWal->hdr.mxFrame ); 003159 pWal->readLock = (i16)mxI; 003160 } 003161 return rc; 003162 } 003163 003164 #ifdef SQLITE_ENABLE_SNAPSHOT 003165 /* 003166 ** This function does the work of sqlite3WalSnapshotRecover(). 003167 */ 003168 static int walSnapshotRecover( 003169 Wal *pWal, /* WAL handle */ 003170 void *pBuf1, /* Temp buffer pWal->szPage bytes in size */ 003171 void *pBuf2 /* Temp buffer pWal->szPage bytes in size */ 003172 ){ 003173 int szPage = (int)pWal->szPage; 003174 int rc; 003175 i64 szDb; /* Size of db file in bytes */ 003176 003177 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 003178 if( rc==SQLITE_OK ){ 003179 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 003180 u32 i = pInfo->nBackfillAttempted; 003181 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ 003182 WalHashLoc sLoc; /* Hash table location */ 003183 u32 pgno; /* Page number in db file */ 003184 i64 iDbOff; /* Offset of db file entry */ 003185 i64 iWalOff; /* Offset of wal file entry */ 003186 003187 rc = walHashGet(pWal, walFramePage(i), &sLoc); 003188 if( rc!=SQLITE_OK ) break; 003189 assert( i - sLoc.iZero - 1 >=0 ); 003190 pgno = sLoc.aPgno[i-sLoc.iZero-1]; 003191 iDbOff = (i64)(pgno-1) * szPage; 003192 003193 if( iDbOff+szPage<=szDb ){ 003194 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 003195 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 003196 003197 if( rc==SQLITE_OK ){ 003198 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 003199 } 003200 003201 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 003202 break; 003203 } 003204 } 003205 003206 pInfo->nBackfillAttempted = i-1; 003207 } 003208 } 003209 003210 return rc; 003211 } 003212 003213 /* 003214 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 003215 ** variable so that older snapshots can be accessed. To do this, loop 003216 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 003217 ** comparing their content to the corresponding page with the database 003218 ** file, if any. Set nBackfillAttempted to the frame number of the 003219 ** first frame for which the wal file content matches the db file. 003220 ** 003221 ** This is only really safe if the file-system is such that any page 003222 ** writes made by earlier checkpointers were atomic operations, which 003223 ** is not always true. It is also possible that nBackfillAttempted 003224 ** may be left set to a value larger than expected, if a wal frame 003225 ** contains content that duplicate of an earlier version of the same 003226 ** page. 003227 ** 003228 ** SQLITE_OK is returned if successful, or an SQLite error code if an 003229 ** error occurs. It is not an error if nBackfillAttempted cannot be 003230 ** decreased at all. 003231 */ 003232 int sqlite3WalSnapshotRecover(Wal *pWal){ 003233 int rc; 003234 003235 assert( pWal->readLock>=0 ); 003236 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 003237 if( rc==SQLITE_OK ){ 003238 void *pBuf1 = sqlite3_malloc(pWal->szPage); 003239 void *pBuf2 = sqlite3_malloc(pWal->szPage); 003240 if( pBuf1==0 || pBuf2==0 ){ 003241 rc = SQLITE_NOMEM; 003242 }else{ 003243 pWal->ckptLock = 1; 003244 SEH_TRY { 003245 rc = walSnapshotRecover(pWal, pBuf1, pBuf2); 003246 } 003247 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003248 pWal->ckptLock = 0; 003249 } 003250 003251 sqlite3_free(pBuf1); 003252 sqlite3_free(pBuf2); 003253 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 003254 } 003255 003256 return rc; 003257 } 003258 #endif /* SQLITE_ENABLE_SNAPSHOT */ 003259 003260 /* 003261 ** This function does the work of sqlite3WalBeginReadTransaction() (see 003262 ** below). That function simply calls this one inside an SEH_TRY{...} block. 003263 */ 003264 static int walBeginReadTransaction(Wal *pWal, int *pChanged){ 003265 int rc; /* Return code */ 003266 int cnt = 0; /* Number of TryBeginRead attempts */ 003267 #ifdef SQLITE_ENABLE_SNAPSHOT 003268 int ckptLock = 0; 003269 int bChanged = 0; 003270 WalIndexHdr *pSnapshot = pWal->pSnapshot; 003271 #endif 003272 003273 assert( pWal->ckptLock==0 ); 003274 assert( pWal->nSehTry>0 ); 003275 003276 #ifdef SQLITE_ENABLE_SNAPSHOT 003277 if( pSnapshot ){ 003278 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 003279 bChanged = 1; 003280 } 003281 003282 /* It is possible that there is a checkpointer thread running 003283 ** concurrent with this code. If this is the case, it may be that the 003284 ** checkpointer has already determined that it will checkpoint 003285 ** snapshot X, where X is later in the wal file than pSnapshot, but 003286 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 003287 ** its intent. To avoid the race condition this leads to, ensure that 003288 ** there is no checkpointer process by taking a shared CKPT lock 003289 ** before checking pInfo->nBackfillAttempted. */ 003290 (void)walEnableBlocking(pWal); 003291 rc = walLockShared(pWal, WAL_CKPT_LOCK); 003292 walDisableBlocking(pWal); 003293 003294 if( rc!=SQLITE_OK ){ 003295 return rc; 003296 } 003297 ckptLock = 1; 003298 } 003299 #endif 003300 003301 do{ 003302 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 003303 }while( rc==WAL_RETRY ); 003304 testcase( (rc&0xff)==SQLITE_BUSY ); 003305 testcase( (rc&0xff)==SQLITE_IOERR ); 003306 testcase( rc==SQLITE_PROTOCOL ); 003307 testcase( rc==SQLITE_OK ); 003308 003309 #ifdef SQLITE_ENABLE_SNAPSHOT 003310 if( rc==SQLITE_OK ){ 003311 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 003312 /* At this point the client has a lock on an aReadMark[] slot holding 003313 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 003314 ** is populated with the wal-index header corresponding to the head 003315 ** of the wal file. Verify that pSnapshot is still valid before 003316 ** continuing. Reasons why pSnapshot might no longer be valid: 003317 ** 003318 ** (1) The WAL file has been reset since the snapshot was taken. 003319 ** In this case, the salt will have changed. 003320 ** 003321 ** (2) A checkpoint as been attempted that wrote frames past 003322 ** pSnapshot->mxFrame into the database file. Note that the 003323 ** checkpoint need not have completed for this to cause problems. 003324 */ 003325 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 003326 003327 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 003328 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 003329 003330 /* Check that the wal file has not been wrapped. Assuming that it has 003331 ** not, also check that no checkpointer has attempted to checkpoint any 003332 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 003333 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr 003334 ** with *pSnapshot and set *pChanged as appropriate for opening the 003335 ** snapshot. */ 003336 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 003337 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 003338 ){ 003339 assert( pWal->readLock>0 ); 003340 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 003341 *pChanged = bChanged; 003342 }else{ 003343 rc = SQLITE_ERROR_SNAPSHOT; 003344 } 003345 003346 /* A client using a non-current snapshot may not ignore any frames 003347 ** from the start of the wal file. This is because, for a system 003348 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may 003349 ** have omitted to checkpoint a frame earlier than minFrame in 003350 ** the file because there exists a frame after iSnapshot that 003351 ** is the same database page. */ 003352 pWal->minFrame = 1; 003353 003354 if( rc!=SQLITE_OK ){ 003355 sqlite3WalEndReadTransaction(pWal); 003356 } 003357 } 003358 } 003359 003360 /* Release the shared CKPT lock obtained above. */ 003361 if( ckptLock ){ 003362 assert( pSnapshot ); 003363 walUnlockShared(pWal, WAL_CKPT_LOCK); 003364 } 003365 #endif 003366 return rc; 003367 } 003368 003369 /* 003370 ** Begin a read transaction on the database. 003371 ** 003372 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 003373 ** it takes a snapshot of the state of the WAL and wal-index for the current 003374 ** instant in time. The current thread will continue to use this snapshot. 003375 ** Other threads might append new content to the WAL and wal-index but 003376 ** that extra content is ignored by the current thread. 003377 ** 003378 ** If the database contents have changes since the previous read 003379 ** transaction, then *pChanged is set to 1 before returning. The 003380 ** Pager layer will use this to know that its cache is stale and 003381 ** needs to be flushed. 003382 */ 003383 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 003384 int rc; 003385 SEH_TRY { 003386 rc = walBeginReadTransaction(pWal, pChanged); 003387 } 003388 SEH_EXCEPT( rc = walHandleException(pWal); ) 003389 return rc; 003390 } 003391 003392 /* 003393 ** Finish with a read transaction. All this does is release the 003394 ** read-lock. 003395 */ 003396 void sqlite3WalEndReadTransaction(Wal *pWal){ 003397 sqlite3WalEndWriteTransaction(pWal); 003398 if( pWal->readLock>=0 ){ 003399 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 003400 pWal->readLock = -1; 003401 } 003402 } 003403 003404 /* 003405 ** Search the wal file for page pgno. If found, set *piRead to the frame that 003406 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 003407 ** to zero. 003408 ** 003409 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 003410 ** error does occur, the final value of *piRead is undefined. 003411 */ 003412 static int walFindFrame( 003413 Wal *pWal, /* WAL handle */ 003414 Pgno pgno, /* Database page number to read data for */ 003415 u32 *piRead /* OUT: Frame number (or zero) */ 003416 ){ 003417 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 003418 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 003419 int iHash; /* Used to loop through N hash tables */ 003420 int iMinHash; 003421 003422 /* This routine is only be called from within a read transaction. */ 003423 assert( pWal->readLock>=0 || pWal->lockError ); 003424 003425 /* If the "last page" field of the wal-index header snapshot is 0, then 003426 ** no data will be read from the wal under any circumstances. Return early 003427 ** in this case as an optimization. Likewise, if pWal->readLock==0, 003428 ** then the WAL is ignored by the reader so return early, as if the 003429 ** WAL were empty. 003430 */ 003431 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 003432 *piRead = 0; 003433 return SQLITE_OK; 003434 } 003435 003436 /* Search the hash table or tables for an entry matching page number 003437 ** pgno. Each iteration of the following for() loop searches one 003438 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 003439 ** 003440 ** This code might run concurrently to the code in walIndexAppend() 003441 ** that adds entries to the wal-index (and possibly to this hash 003442 ** table). This means the value just read from the hash 003443 ** slot (aHash[iKey]) may have been added before or after the 003444 ** current read transaction was opened. Values added after the 003445 ** read transaction was opened may have been written incorrectly - 003446 ** i.e. these slots may contain garbage data. However, we assume 003447 ** that any slots written before the current read transaction was 003448 ** opened remain unmodified. 003449 ** 003450 ** For the reasons above, the if(...) condition featured in the inner 003451 ** loop of the following block is more stringent that would be required 003452 ** if we had exclusive access to the hash-table: 003453 ** 003454 ** (aPgno[iFrame]==pgno): 003455 ** This condition filters out normal hash-table collisions. 003456 ** 003457 ** (iFrame<=iLast): 003458 ** This condition filters out entries that were added to the hash 003459 ** table after the current read-transaction had started. 003460 */ 003461 iMinHash = walFramePage(pWal->minFrame); 003462 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 003463 WalHashLoc sLoc; /* Hash table location */ 003464 int iKey; /* Hash slot index */ 003465 int nCollide; /* Number of hash collisions remaining */ 003466 int rc; /* Error code */ 003467 u32 iH; 003468 003469 rc = walHashGet(pWal, iHash, &sLoc); 003470 if( rc!=SQLITE_OK ){ 003471 return rc; 003472 } 003473 nCollide = HASHTABLE_NSLOT; 003474 iKey = walHash(pgno); 003475 SEH_INJECT_FAULT; 003476 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ 003477 u32 iFrame = iH + sLoc.iZero; 003478 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){ 003479 assert( iFrame>iRead || CORRUPT_DB ); 003480 iRead = iFrame; 003481 } 003482 if( (nCollide--)==0 ){ 003483 return SQLITE_CORRUPT_BKPT; 003484 } 003485 iKey = walNextHash(iKey); 003486 } 003487 if( iRead ) break; 003488 } 003489 003490 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 003491 /* If expensive assert() statements are available, do a linear search 003492 ** of the wal-index file content. Make sure the results agree with the 003493 ** result obtained using the hash indexes above. */ 003494 { 003495 u32 iRead2 = 0; 003496 u32 iTest; 003497 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 003498 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 003499 if( walFramePgno(pWal, iTest)==pgno ){ 003500 iRead2 = iTest; 003501 break; 003502 } 003503 } 003504 assert( iRead==iRead2 ); 003505 } 003506 #endif 003507 003508 *piRead = iRead; 003509 return SQLITE_OK; 003510 } 003511 003512 /* 003513 ** Search the wal file for page pgno. If found, set *piRead to the frame that 003514 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 003515 ** to zero. 003516 ** 003517 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 003518 ** error does occur, the final value of *piRead is undefined. 003519 ** 003520 ** The difference between this function and walFindFrame() is that this 003521 ** function wraps walFindFrame() in an SEH_TRY{...} block. 003522 */ 003523 int sqlite3WalFindFrame( 003524 Wal *pWal, /* WAL handle */ 003525 Pgno pgno, /* Database page number to read data for */ 003526 u32 *piRead /* OUT: Frame number (or zero) */ 003527 ){ 003528 int rc; 003529 SEH_TRY { 003530 rc = walFindFrame(pWal, pgno, piRead); 003531 } 003532 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003533 return rc; 003534 } 003535 003536 /* 003537 ** Read the contents of frame iRead from the wal file into buffer pOut 003538 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 003539 ** error code otherwise. 003540 */ 003541 int sqlite3WalReadFrame( 003542 Wal *pWal, /* WAL handle */ 003543 u32 iRead, /* Frame to read */ 003544 int nOut, /* Size of buffer pOut in bytes */ 003545 u8 *pOut /* Buffer to write page data to */ 003546 ){ 003547 int sz; 003548 i64 iOffset; 003549 sz = pWal->hdr.szPage; 003550 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 003551 testcase( sz<=32768 ); 003552 testcase( sz>=65536 ); 003553 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 003554 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 003555 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 003556 } 003557 003558 /* 003559 ** Return the size of the database in pages (or zero, if unknown). 003560 */ 003561 Pgno sqlite3WalDbsize(Wal *pWal){ 003562 if( pWal && ALWAYS(pWal->readLock>=0) ){ 003563 return pWal->hdr.nPage; 003564 } 003565 return 0; 003566 } 003567 003568 003569 /* 003570 ** This function starts a write transaction on the WAL. 003571 ** 003572 ** A read transaction must have already been started by a prior call 003573 ** to sqlite3WalBeginReadTransaction(). 003574 ** 003575 ** If another thread or process has written into the database since 003576 ** the read transaction was started, then it is not possible for this 003577 ** thread to write as doing so would cause a fork. So this routine 003578 ** returns SQLITE_BUSY in that case and no write transaction is started. 003579 ** 003580 ** There can only be a single writer active at a time. 003581 */ 003582 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 003583 int rc; 003584 003585 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 003586 /* If the write-lock is already held, then it was obtained before the 003587 ** read-transaction was even opened, making this call a no-op. 003588 ** Return early. */ 003589 if( pWal->writeLock ){ 003590 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) ); 003591 return SQLITE_OK; 003592 } 003593 #endif 003594 003595 /* Cannot start a write transaction without first holding a read 003596 ** transaction. */ 003597 assert( pWal->readLock>=0 ); 003598 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 003599 003600 if( pWal->readOnly ){ 003601 return SQLITE_READONLY; 003602 } 003603 003604 /* Only one writer allowed at a time. Get the write lock. Return 003605 ** SQLITE_BUSY if unable. 003606 */ 003607 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 003608 if( rc ){ 003609 return rc; 003610 } 003611 pWal->writeLock = 1; 003612 003613 /* If another connection has written to the database file since the 003614 ** time the read transaction on this connection was started, then 003615 ** the write is disallowed. 003616 */ 003617 SEH_TRY { 003618 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 003619 rc = SQLITE_BUSY_SNAPSHOT; 003620 } 003621 } 003622 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003623 003624 if( rc!=SQLITE_OK ){ 003625 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 003626 pWal->writeLock = 0; 003627 } 003628 return rc; 003629 } 003630 003631 /* 003632 ** End a write transaction. The commit has already been done. This 003633 ** routine merely releases the lock. 003634 */ 003635 int sqlite3WalEndWriteTransaction(Wal *pWal){ 003636 if( pWal->writeLock ){ 003637 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 003638 pWal->writeLock = 0; 003639 pWal->iReCksum = 0; 003640 pWal->truncateOnCommit = 0; 003641 } 003642 return SQLITE_OK; 003643 } 003644 003645 /* 003646 ** If any data has been written (but not committed) to the log file, this 003647 ** function moves the write-pointer back to the start of the transaction. 003648 ** 003649 ** Additionally, the callback function is invoked for each frame written 003650 ** to the WAL since the start of the transaction. If the callback returns 003651 ** other than SQLITE_OK, it is not invoked again and the error code is 003652 ** returned to the caller. 003653 ** 003654 ** Otherwise, if the callback function does not return an error, this 003655 ** function returns SQLITE_OK. 003656 */ 003657 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 003658 int rc = SQLITE_OK; 003659 if( ALWAYS(pWal->writeLock) ){ 003660 Pgno iMax = pWal->hdr.mxFrame; 003661 Pgno iFrame; 003662 003663 SEH_TRY { 003664 /* Restore the clients cache of the wal-index header to the state it 003665 ** was in before the client began writing to the database. 003666 */ 003667 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 003668 003669 for(iFrame=pWal->hdr.mxFrame+1; 003670 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 003671 iFrame++ 003672 ){ 003673 /* This call cannot fail. Unless the page for which the page number 003674 ** is passed as the second argument is (a) in the cache and 003675 ** (b) has an outstanding reference, then xUndo is either a no-op 003676 ** (if (a) is false) or simply expels the page from the cache (if (b) 003677 ** is false). 003678 ** 003679 ** If the upper layer is doing a rollback, it is guaranteed that there 003680 ** are no outstanding references to any page other than page 1. And 003681 ** page 1 is never written to the log until the transaction is 003682 ** committed. As a result, the call to xUndo may not fail. 003683 */ 003684 assert( walFramePgno(pWal, iFrame)!=1 ); 003685 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 003686 } 003687 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 003688 } 003689 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003690 } 003691 return rc; 003692 } 003693 003694 /* 003695 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 003696 ** values. This function populates the array with values required to 003697 ** "rollback" the write position of the WAL handle back to the current 003698 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 003699 */ 003700 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 003701 assert( pWal->writeLock ); 003702 aWalData[0] = pWal->hdr.mxFrame; 003703 aWalData[1] = pWal->hdr.aFrameCksum[0]; 003704 aWalData[2] = pWal->hdr.aFrameCksum[1]; 003705 aWalData[3] = pWal->nCkpt; 003706 } 003707 003708 /* 003709 ** Move the write position of the WAL back to the point identified by 003710 ** the values in the aWalData[] array. aWalData must point to an array 003711 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 003712 ** by a call to WalSavepoint(). 003713 */ 003714 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 003715 int rc = SQLITE_OK; 003716 003717 assert( pWal->writeLock ); 003718 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 003719 003720 if( aWalData[3]!=pWal->nCkpt ){ 003721 /* This savepoint was opened immediately after the write-transaction 003722 ** was started. Right after that, the writer decided to wrap around 003723 ** to the start of the log. Update the savepoint values to match. 003724 */ 003725 aWalData[0] = 0; 003726 aWalData[3] = pWal->nCkpt; 003727 } 003728 003729 if( aWalData[0]<pWal->hdr.mxFrame ){ 003730 pWal->hdr.mxFrame = aWalData[0]; 003731 pWal->hdr.aFrameCksum[0] = aWalData[1]; 003732 pWal->hdr.aFrameCksum[1] = aWalData[2]; 003733 SEH_TRY { 003734 walCleanupHash(pWal); 003735 } 003736 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003737 } 003738 003739 return rc; 003740 } 003741 003742 /* 003743 ** This function is called just before writing a set of frames to the log 003744 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 003745 ** to the current log file, it is possible to overwrite the start of the 003746 ** existing log file with the new frames (i.e. "reset" the log). If so, 003747 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 003748 ** unchanged. 003749 ** 003750 ** SQLITE_OK is returned if no error is encountered (regardless of whether 003751 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 003752 ** if an error occurs. 003753 */ 003754 static int walRestartLog(Wal *pWal){ 003755 int rc = SQLITE_OK; 003756 int cnt; 003757 003758 if( pWal->readLock==0 ){ 003759 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 003760 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 003761 if( pInfo->nBackfill>0 ){ 003762 u32 salt1; 003763 sqlite3_randomness(4, &salt1); 003764 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 003765 if( rc==SQLITE_OK ){ 003766 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 003767 ** readers are currently using the WAL), then the transactions 003768 ** frames will overwrite the start of the existing log. Update the 003769 ** wal-index header to reflect this. 003770 ** 003771 ** In theory it would be Ok to update the cache of the header only 003772 ** at this point. But updating the actual wal-index header is also 003773 ** safe and means there is no special case for sqlite3WalUndo() 003774 ** to handle if this transaction is rolled back. */ 003775 walRestartHdr(pWal, salt1); 003776 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 003777 }else if( rc!=SQLITE_BUSY ){ 003778 return rc; 003779 } 003780 } 003781 walUnlockShared(pWal, WAL_READ_LOCK(0)); 003782 pWal->readLock = -1; 003783 cnt = 0; 003784 do{ 003785 int notUsed; 003786 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 003787 }while( rc==WAL_RETRY ); 003788 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 003789 testcase( (rc&0xff)==SQLITE_IOERR ); 003790 testcase( rc==SQLITE_PROTOCOL ); 003791 testcase( rc==SQLITE_OK ); 003792 } 003793 return rc; 003794 } 003795 003796 /* 003797 ** Information about the current state of the WAL file and where 003798 ** the next fsync should occur - passed from sqlite3WalFrames() into 003799 ** walWriteToLog(). 003800 */ 003801 typedef struct WalWriter { 003802 Wal *pWal; /* The complete WAL information */ 003803 sqlite3_file *pFd; /* The WAL file to which we write */ 003804 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 003805 int syncFlags; /* Flags for the fsync */ 003806 int szPage; /* Size of one page */ 003807 } WalWriter; 003808 003809 /* 003810 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 003811 ** Do a sync when crossing the p->iSyncPoint boundary. 003812 ** 003813 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 003814 ** first write the part before iSyncPoint, then sync, then write the 003815 ** rest. 003816 */ 003817 static int walWriteToLog( 003818 WalWriter *p, /* WAL to write to */ 003819 void *pContent, /* Content to be written */ 003820 int iAmt, /* Number of bytes to write */ 003821 sqlite3_int64 iOffset /* Start writing at this offset */ 003822 ){ 003823 int rc; 003824 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 003825 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 003826 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 003827 if( rc ) return rc; 003828 iOffset += iFirstAmt; 003829 iAmt -= iFirstAmt; 003830 pContent = (void*)(iFirstAmt + (char*)pContent); 003831 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 003832 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 003833 if( iAmt==0 || rc ) return rc; 003834 } 003835 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 003836 return rc; 003837 } 003838 003839 /* 003840 ** Write out a single frame of the WAL 003841 */ 003842 static int walWriteOneFrame( 003843 WalWriter *p, /* Where to write the frame */ 003844 PgHdr *pPage, /* The page of the frame to be written */ 003845 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 003846 sqlite3_int64 iOffset /* Byte offset at which to write */ 003847 ){ 003848 int rc; /* Result code from subfunctions */ 003849 void *pData; /* Data actually written */ 003850 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 003851 pData = pPage->pData; 003852 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 003853 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 003854 if( rc ) return rc; 003855 /* Write the page data */ 003856 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 003857 return rc; 003858 } 003859 003860 /* 003861 ** This function is called as part of committing a transaction within which 003862 ** one or more frames have been overwritten. It updates the checksums for 003863 ** all frames written to the wal file by the current transaction starting 003864 ** with the earliest to have been overwritten. 003865 ** 003866 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 003867 */ 003868 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 003869 const int szPage = pWal->szPage;/* Database page size */ 003870 int rc = SQLITE_OK; /* Return code */ 003871 u8 *aBuf; /* Buffer to load data from wal file into */ 003872 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 003873 u32 iRead; /* Next frame to read from wal file */ 003874 i64 iCksumOff; 003875 003876 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 003877 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 003878 003879 /* Find the checksum values to use as input for the recalculating the 003880 ** first checksum. If the first frame is frame 1 (implying that the current 003881 ** transaction restarted the wal file), these values must be read from the 003882 ** wal-file header. Otherwise, read them from the frame header of the 003883 ** previous frame. */ 003884 assert( pWal->iReCksum>0 ); 003885 if( pWal->iReCksum==1 ){ 003886 iCksumOff = 24; 003887 }else{ 003888 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 003889 } 003890 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 003891 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 003892 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 003893 003894 iRead = pWal->iReCksum; 003895 pWal->iReCksum = 0; 003896 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 003897 i64 iOff = walFrameOffset(iRead, szPage); 003898 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 003899 if( rc==SQLITE_OK ){ 003900 u32 iPgno, nDbSize; 003901 iPgno = sqlite3Get4byte(aBuf); 003902 nDbSize = sqlite3Get4byte(&aBuf[4]); 003903 003904 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 003905 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 003906 } 003907 } 003908 003909 sqlite3_free(aBuf); 003910 return rc; 003911 } 003912 003913 /* 003914 ** Write a set of frames to the log. The caller must hold the write-lock 003915 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 003916 */ 003917 static int walFrames( 003918 Wal *pWal, /* Wal handle to write to */ 003919 int szPage, /* Database page-size in bytes */ 003920 PgHdr *pList, /* List of dirty pages to write */ 003921 Pgno nTruncate, /* Database size after this commit */ 003922 int isCommit, /* True if this is a commit */ 003923 int sync_flags /* Flags to pass to OsSync() (or 0) */ 003924 ){ 003925 int rc; /* Used to catch return codes */ 003926 u32 iFrame; /* Next frame address */ 003927 PgHdr *p; /* Iterator to run through pList with. */ 003928 PgHdr *pLast = 0; /* Last frame in list */ 003929 int nExtra = 0; /* Number of extra copies of last page */ 003930 int szFrame; /* The size of a single frame */ 003931 i64 iOffset; /* Next byte to write in WAL file */ 003932 WalWriter w; /* The writer */ 003933 u32 iFirst = 0; /* First frame that may be overwritten */ 003934 WalIndexHdr *pLive; /* Pointer to shared header */ 003935 003936 assert( pList ); 003937 assert( pWal->writeLock ); 003938 003939 /* If this frame set completes a transaction, then nTruncate>0. If 003940 ** nTruncate==0 then this frame set does not complete the transaction. */ 003941 assert( (isCommit!=0)==(nTruncate!=0) ); 003942 003943 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 003944 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 003945 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 003946 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 003947 } 003948 #endif 003949 003950 pLive = (WalIndexHdr*)walIndexHdr(pWal); 003951 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 003952 iFirst = pLive->mxFrame+1; 003953 } 003954 003955 /* See if it is possible to write these frames into the start of the 003956 ** log file, instead of appending to it at pWal->hdr.mxFrame. 003957 */ 003958 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 003959 return rc; 003960 } 003961 003962 /* If this is the first frame written into the log, write the WAL 003963 ** header to the start of the WAL file. See comments at the top of 003964 ** this source file for a description of the WAL header format. 003965 */ 003966 iFrame = pWal->hdr.mxFrame; 003967 if( iFrame==0 ){ 003968 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 003969 u32 aCksum[2]; /* Checksum for wal-header */ 003970 003971 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 003972 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 003973 sqlite3Put4byte(&aWalHdr[8], szPage); 003974 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 003975 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 003976 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 003977 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 003978 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 003979 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 003980 003981 pWal->szPage = szPage; 003982 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 003983 pWal->hdr.aFrameCksum[0] = aCksum[0]; 003984 pWal->hdr.aFrameCksum[1] = aCksum[1]; 003985 pWal->truncateOnCommit = 1; 003986 003987 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 003988 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 003989 if( rc!=SQLITE_OK ){ 003990 return rc; 003991 } 003992 003993 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 003994 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 003995 ** an out-of-order write following a WAL restart could result in 003996 ** database corruption. See the ticket: 003997 ** 003998 ** https://sqlite.org/src/info/ff5be73dee 003999 */ 004000 if( pWal->syncHeader ){ 004001 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 004002 if( rc ) return rc; 004003 } 004004 } 004005 if( (int)pWal->szPage!=szPage ){ 004006 return SQLITE_CORRUPT_BKPT; /* TH3 test case: cov1/corrupt155.test */ 004007 } 004008 004009 /* Setup information needed to write frames into the WAL */ 004010 w.pWal = pWal; 004011 w.pFd = pWal->pWalFd; 004012 w.iSyncPoint = 0; 004013 w.syncFlags = sync_flags; 004014 w.szPage = szPage; 004015 iOffset = walFrameOffset(iFrame+1, szPage); 004016 szFrame = szPage + WAL_FRAME_HDRSIZE; 004017 004018 /* Write all frames into the log file exactly once */ 004019 for(p=pList; p; p=p->pDirty){ 004020 int nDbSize; /* 0 normally. Positive == commit flag */ 004021 004022 /* Check if this page has already been written into the wal file by 004023 ** the current transaction. If so, overwrite the existing frame and 004024 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 004025 ** checksums must be recomputed when the transaction is committed. */ 004026 if( iFirst && (p->pDirty || isCommit==0) ){ 004027 u32 iWrite = 0; 004028 VVA_ONLY(rc =) walFindFrame(pWal, p->pgno, &iWrite); 004029 assert( rc==SQLITE_OK || iWrite==0 ); 004030 if( iWrite>=iFirst ){ 004031 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 004032 void *pData; 004033 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 004034 pWal->iReCksum = iWrite; 004035 } 004036 pData = p->pData; 004037 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 004038 if( rc ) return rc; 004039 p->flags &= ~PGHDR_WAL_APPEND; 004040 continue; 004041 } 004042 } 004043 004044 iFrame++; 004045 assert( iOffset==walFrameOffset(iFrame, szPage) ); 004046 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 004047 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 004048 if( rc ) return rc; 004049 pLast = p; 004050 iOffset += szFrame; 004051 p->flags |= PGHDR_WAL_APPEND; 004052 } 004053 004054 /* Recalculate checksums within the wal file if required. */ 004055 if( isCommit && pWal->iReCksum ){ 004056 rc = walRewriteChecksums(pWal, iFrame); 004057 if( rc ) return rc; 004058 } 004059 004060 /* If this is the end of a transaction, then we might need to pad 004061 ** the transaction and/or sync the WAL file. 004062 ** 004063 ** Padding and syncing only occur if this set of frames complete a 004064 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 004065 ** or synchronous==OFF, then no padding or syncing are needed. 004066 ** 004067 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 004068 ** needed and only the sync is done. If padding is needed, then the 004069 ** final frame is repeated (with its commit mark) until the next sector 004070 ** boundary is crossed. Only the part of the WAL prior to the last 004071 ** sector boundary is synced; the part of the last frame that extends 004072 ** past the sector boundary is written after the sync. 004073 */ 004074 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 004075 int bSync = 1; 004076 if( pWal->padToSectorBoundary ){ 004077 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 004078 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 004079 bSync = (w.iSyncPoint==iOffset); 004080 testcase( bSync ); 004081 while( iOffset<w.iSyncPoint ){ 004082 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 004083 if( rc ) return rc; 004084 iOffset += szFrame; 004085 nExtra++; 004086 assert( pLast!=0 ); 004087 } 004088 } 004089 if( bSync ){ 004090 assert( rc==SQLITE_OK ); 004091 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 004092 } 004093 } 004094 004095 /* If this frame set completes the first transaction in the WAL and 004096 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 004097 ** journal size limit, if possible. 004098 */ 004099 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 004100 i64 sz = pWal->mxWalSize; 004101 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 004102 sz = walFrameOffset(iFrame+nExtra+1, szPage); 004103 } 004104 walLimitSize(pWal, sz); 004105 pWal->truncateOnCommit = 0; 004106 } 004107 004108 /* Append data to the wal-index. It is not necessary to lock the 004109 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 004110 ** guarantees that there are no other writers, and no data that may 004111 ** be in use by existing readers is being overwritten. 004112 */ 004113 iFrame = pWal->hdr.mxFrame; 004114 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 004115 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 004116 iFrame++; 004117 rc = walIndexAppend(pWal, iFrame, p->pgno); 004118 } 004119 assert( pLast!=0 || nExtra==0 ); 004120 while( rc==SQLITE_OK && nExtra>0 ){ 004121 iFrame++; 004122 nExtra--; 004123 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 004124 } 004125 004126 if( rc==SQLITE_OK ){ 004127 /* Update the private copy of the header. */ 004128 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 004129 testcase( szPage<=32768 ); 004130 testcase( szPage>=65536 ); 004131 pWal->hdr.mxFrame = iFrame; 004132 if( isCommit ){ 004133 pWal->hdr.iChange++; 004134 pWal->hdr.nPage = nTruncate; 004135 } 004136 /* If this is a commit, update the wal-index header too. */ 004137 if( isCommit ){ 004138 walIndexWriteHdr(pWal); 004139 pWal->iCallback = iFrame; 004140 } 004141 } 004142 004143 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 004144 return rc; 004145 } 004146 004147 /* 004148 ** Write a set of frames to the log. The caller must hold the write-lock 004149 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 004150 ** 004151 ** The difference between this function and walFrames() is that this 004152 ** function wraps walFrames() in an SEH_TRY{...} block. 004153 */ 004154 int sqlite3WalFrames( 004155 Wal *pWal, /* Wal handle to write to */ 004156 int szPage, /* Database page-size in bytes */ 004157 PgHdr *pList, /* List of dirty pages to write */ 004158 Pgno nTruncate, /* Database size after this commit */ 004159 int isCommit, /* True if this is a commit */ 004160 int sync_flags /* Flags to pass to OsSync() (or 0) */ 004161 ){ 004162 int rc; 004163 SEH_TRY { 004164 rc = walFrames(pWal, szPage, pList, nTruncate, isCommit, sync_flags); 004165 } 004166 SEH_EXCEPT( rc = walHandleException(pWal); ) 004167 return rc; 004168 } 004169 004170 /* 004171 ** This routine is called to implement sqlite3_wal_checkpoint() and 004172 ** related interfaces. 004173 ** 004174 ** Obtain a CHECKPOINT lock and then backfill as much information as 004175 ** we can from WAL into the database. 004176 ** 004177 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 004178 ** callback. In this case this function runs a blocking checkpoint. 004179 */ 004180 int sqlite3WalCheckpoint( 004181 Wal *pWal, /* Wal connection */ 004182 sqlite3 *db, /* Check this handle's interrupt flag */ 004183 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 004184 int (*xBusy)(void*), /* Function to call when busy */ 004185 void *pBusyArg, /* Context argument for xBusyHandler */ 004186 int sync_flags, /* Flags to sync db file with (or 0) */ 004187 int nBuf, /* Size of temporary buffer */ 004188 u8 *zBuf, /* Temporary buffer to use */ 004189 int *pnLog, /* OUT: Number of frames in WAL */ 004190 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 004191 ){ 004192 int rc; /* Return code */ 004193 int isChanged = 0; /* True if a new wal-index header is loaded */ 004194 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 004195 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 004196 004197 assert( pWal->ckptLock==0 ); 004198 assert( pWal->writeLock==0 ); 004199 004200 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 004201 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 004202 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 004203 004204 if( pWal->readOnly ) return SQLITE_READONLY; 004205 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 004206 004207 /* Enable blocking locks, if possible. If blocking locks are successfully 004208 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */ 004209 sqlite3WalDb(pWal, db); 004210 (void)walEnableBlocking(pWal); 004211 004212 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 004213 ** "checkpoint" lock on the database file. 004214 ** EVIDENCE-OF: R-10421-19736 If any other process is running a 004215 ** checkpoint operation at the same time, the lock cannot be obtained and 004216 ** SQLITE_BUSY is returned. 004217 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 004218 ** it will not be invoked in this case. 004219 */ 004220 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 004221 testcase( rc==SQLITE_BUSY ); 004222 testcase( rc!=SQLITE_OK && xBusy2!=0 ); 004223 if( rc==SQLITE_OK ){ 004224 pWal->ckptLock = 1; 004225 004226 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 004227 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 004228 ** file. 004229 ** 004230 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 004231 ** immediately, and a busy-handler is configured, it is invoked and the 004232 ** writer lock retried until either the busy-handler returns 0 or the 004233 ** lock is successfully obtained. 004234 */ 004235 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 004236 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); 004237 if( rc==SQLITE_OK ){ 004238 pWal->writeLock = 1; 004239 }else if( rc==SQLITE_BUSY ){ 004240 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 004241 xBusy2 = 0; 004242 rc = SQLITE_OK; 004243 } 004244 } 004245 } 004246 004247 004248 /* Read the wal-index header. */ 004249 SEH_TRY { 004250 if( rc==SQLITE_OK ){ 004251 walDisableBlocking(pWal); 004252 rc = walIndexReadHdr(pWal, &isChanged); 004253 (void)walEnableBlocking(pWal); 004254 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 004255 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 004256 } 004257 } 004258 004259 /* Copy data from the log to the database file. */ 004260 if( rc==SQLITE_OK ){ 004261 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 004262 rc = SQLITE_CORRUPT_BKPT; 004263 }else{ 004264 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags,zBuf); 004265 } 004266 004267 /* If no error occurred, set the output variables. */ 004268 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 004269 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 004270 SEH_INJECT_FAULT; 004271 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 004272 } 004273 } 004274 } 004275 SEH_EXCEPT( rc = walHandleException(pWal); ) 004276 004277 if( isChanged ){ 004278 /* If a new wal-index header was loaded before the checkpoint was 004279 ** performed, then the pager-cache associated with pWal is now 004280 ** out of date. So zero the cached wal-index header to ensure that 004281 ** next time the pager opens a snapshot on this database it knows that 004282 ** the cache needs to be reset. 004283 */ 004284 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 004285 } 004286 004287 walDisableBlocking(pWal); 004288 sqlite3WalDb(pWal, 0); 004289 004290 /* Release the locks. */ 004291 sqlite3WalEndWriteTransaction(pWal); 004292 if( pWal->ckptLock ){ 004293 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 004294 pWal->ckptLock = 0; 004295 } 004296 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 004297 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 004298 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 004299 #endif 004300 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 004301 } 004302 004303 /* Return the value to pass to a sqlite3_wal_hook callback, the 004304 ** number of frames in the WAL at the point of the last commit since 004305 ** sqlite3WalCallback() was called. If no commits have occurred since 004306 ** the last call, then return 0. 004307 */ 004308 int sqlite3WalCallback(Wal *pWal){ 004309 u32 ret = 0; 004310 if( pWal ){ 004311 ret = pWal->iCallback; 004312 pWal->iCallback = 0; 004313 } 004314 return (int)ret; 004315 } 004316 004317 /* 004318 ** This function is called to change the WAL subsystem into or out 004319 ** of locking_mode=EXCLUSIVE. 004320 ** 004321 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 004322 ** into locking_mode=NORMAL. This means that we must acquire a lock 004323 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 004324 ** or if the acquisition of the lock fails, then return 0. If the 004325 ** transition out of exclusive-mode is successful, return 1. This 004326 ** operation must occur while the pager is still holding the exclusive 004327 ** lock on the main database file. 004328 ** 004329 ** If op is one, then change from locking_mode=NORMAL into 004330 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 004331 ** be released. Return 1 if the transition is made and 0 if the 004332 ** WAL is already in exclusive-locking mode - meaning that this 004333 ** routine is a no-op. The pager must already hold the exclusive lock 004334 ** on the main database file before invoking this operation. 004335 ** 004336 ** If op is negative, then do a dry-run of the op==1 case but do 004337 ** not actually change anything. The pager uses this to see if it 004338 ** should acquire the database exclusive lock prior to invoking 004339 ** the op==1 case. 004340 */ 004341 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 004342 int rc; 004343 assert( pWal->writeLock==0 ); 004344 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 004345 004346 /* pWal->readLock is usually set, but might be -1 if there was a 004347 ** prior error while attempting to acquire are read-lock. This cannot 004348 ** happen if the connection is actually in exclusive mode (as no xShmLock 004349 ** locks are taken in this case). Nor should the pager attempt to 004350 ** upgrade to exclusive-mode following such an error. 004351 */ 004352 #ifndef SQLITE_USE_SEH 004353 assert( pWal->readLock>=0 || pWal->lockError ); 004354 #endif 004355 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 004356 004357 if( op==0 ){ 004358 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 004359 pWal->exclusiveMode = WAL_NORMAL_MODE; 004360 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 004361 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 004362 } 004363 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 004364 }else{ 004365 /* Already in locking_mode=NORMAL */ 004366 rc = 0; 004367 } 004368 }else if( op>0 ){ 004369 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 004370 assert( pWal->readLock>=0 ); 004371 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 004372 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 004373 rc = 1; 004374 }else{ 004375 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 004376 } 004377 return rc; 004378 } 004379 004380 /* 004381 ** Return true if the argument is non-NULL and the WAL module is using 004382 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 004383 ** WAL module is using shared-memory, return false. 004384 */ 004385 int sqlite3WalHeapMemory(Wal *pWal){ 004386 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 004387 } 004388 004389 #ifdef SQLITE_ENABLE_SNAPSHOT 004390 /* Create a snapshot object. The content of a snapshot is opaque to 004391 ** every other subsystem, so the WAL module can put whatever it needs 004392 ** in the object. 004393 */ 004394 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 004395 int rc = SQLITE_OK; 004396 WalIndexHdr *pRet; 004397 static const u32 aZero[4] = { 0, 0, 0, 0 }; 004398 004399 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 004400 004401 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 004402 *ppSnapshot = 0; 004403 return SQLITE_ERROR; 004404 } 004405 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 004406 if( pRet==0 ){ 004407 rc = SQLITE_NOMEM_BKPT; 004408 }else{ 004409 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 004410 *ppSnapshot = (sqlite3_snapshot*)pRet; 004411 } 004412 004413 return rc; 004414 } 004415 004416 /* Try to open on pSnapshot when the next read-transaction starts 004417 */ 004418 void sqlite3WalSnapshotOpen( 004419 Wal *pWal, 004420 sqlite3_snapshot *pSnapshot 004421 ){ 004422 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 004423 } 004424 004425 /* 004426 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 004427 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 004428 */ 004429 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 004430 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 004431 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 004432 004433 /* aSalt[0] is a copy of the value stored in the wal file header. It 004434 ** is incremented each time the wal file is restarted. */ 004435 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 004436 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 004437 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 004438 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 004439 return 0; 004440 } 004441 004442 /* 004443 ** The caller currently has a read transaction open on the database. 004444 ** This function takes a SHARED lock on the CHECKPOINTER slot and then 004445 ** checks if the snapshot passed as the second argument is still 004446 ** available. If so, SQLITE_OK is returned. 004447 ** 004448 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 004449 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 004450 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 004451 ** lock is released before returning. 004452 */ 004453 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ 004454 int rc; 004455 SEH_TRY { 004456 rc = walLockShared(pWal, WAL_CKPT_LOCK); 004457 if( rc==SQLITE_OK ){ 004458 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; 004459 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 004460 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted 004461 ){ 004462 rc = SQLITE_ERROR_SNAPSHOT; 004463 walUnlockShared(pWal, WAL_CKPT_LOCK); 004464 } 004465 } 004466 } 004467 SEH_EXCEPT( rc = walHandleException(pWal); ) 004468 return rc; 004469 } 004470 004471 /* 004472 ** Release a lock obtained by an earlier successful call to 004473 ** sqlite3WalSnapshotCheck(). 004474 */ 004475 void sqlite3WalSnapshotUnlock(Wal *pWal){ 004476 assert( pWal ); 004477 walUnlockShared(pWal, WAL_CKPT_LOCK); 004478 } 004479 004480 004481 #endif /* SQLITE_ENABLE_SNAPSHOT */ 004482 004483 #ifdef SQLITE_ENABLE_ZIPVFS 004484 /* 004485 ** If the argument is not NULL, it points to a Wal object that holds a 004486 ** read-lock. This function returns the database page-size if it is known, 004487 ** or zero if it is not (or if pWal is NULL). 004488 */ 004489 int sqlite3WalFramesize(Wal *pWal){ 004490 assert( pWal==0 || pWal->readLock>=0 ); 004491 return (pWal ? pWal->szPage : 0); 004492 } 004493 #endif 004494 004495 /* Return the sqlite3_file object for the WAL file 004496 */ 004497 sqlite3_file *sqlite3WalFile(Wal *pWal){ 004498 return pWal->pWalFd; 004499 } 004500 004501 #endif /* #ifndef SQLITE_OMIT_WAL */