000001 /* 000002 ** 2004 May 26 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** 000013 ** This file contains code use to manipulate "Mem" structure. A "Mem" 000014 ** stores a single value in the VDBE. Mem is an opaque structure visible 000015 ** only within the VDBE. Interface routines refer to a Mem using the 000016 ** name sqlite_value 000017 */ 000018 #include "sqliteInt.h" 000019 #include "vdbeInt.h" 000020 000021 /* True if X is a power of two. 0 is considered a power of two here. 000022 ** In other words, return true if X has at most one bit set. 000023 */ 000024 #define ISPOWEROF2(X) (((X)&((X)-1))==0) 000025 000026 #ifdef SQLITE_DEBUG 000027 /* 000028 ** Check invariants on a Mem object. 000029 ** 000030 ** This routine is intended for use inside of assert() statements, like 000031 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 000032 */ 000033 int sqlite3VdbeCheckMemInvariants(Mem *p){ 000034 /* If MEM_Dyn is set then Mem.xDel!=0. 000035 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 000036 */ 000037 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 000038 000039 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 000040 ** ensure that if Mem.szMalloc>0 then it is safe to do 000041 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 000042 ** That saves a few cycles in inner loops. */ 000043 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 000044 000045 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ 000046 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); 000047 000048 if( p->flags & MEM_Null ){ 000049 /* Cannot be both MEM_Null and some other type */ 000050 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); 000051 000052 /* If MEM_Null is set, then either the value is a pure NULL (the usual 000053 ** case) or it is a pointer set using sqlite3_bind_pointer() or 000054 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 000055 ** set. 000056 */ 000057 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 000058 /* This is a pointer type. There may be a flag to indicate what to 000059 ** do with the pointer. */ 000060 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 000061 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 000062 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 000063 000064 /* No other bits set */ 000065 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind 000066 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 000067 }else{ 000068 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 000069 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 000070 } 000071 }else{ 000072 /* The MEM_Cleared bit is only allowed on NULLs */ 000073 assert( (p->flags & MEM_Cleared)==0 ); 000074 } 000075 000076 /* The szMalloc field holds the correct memory allocation size */ 000077 assert( p->szMalloc==0 000078 || (p->flags==MEM_Undefined 000079 && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc)) 000080 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc)); 000081 000082 /* If p holds a string or blob, the Mem.z must point to exactly 000083 ** one of the following: 000084 ** 000085 ** (1) Memory in Mem.zMalloc and managed by the Mem object 000086 ** (2) Memory to be freed using Mem.xDel 000087 ** (3) An ephemeral string or blob 000088 ** (4) A static string or blob 000089 */ 000090 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 000091 assert( 000092 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 000093 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 000094 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 000095 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 000096 ); 000097 } 000098 return 1; 000099 } 000100 #endif 000101 000102 /* 000103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal 000104 ** into a buffer. 000105 */ 000106 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ 000107 StrAccum acc; 000108 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); 000109 assert( sz>22 ); 000110 if( p->flags & MEM_Int ){ 000111 #if GCC_VERSION>=7000000 000112 /* Work-around for GCC bug 000113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */ 000114 i64 x; 000115 assert( (p->flags&MEM_Int)*2==sizeof(x) ); 000116 memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2); 000117 p->n = sqlite3Int64ToText(x, zBuf); 000118 #else 000119 p->n = sqlite3Int64ToText(p->u.i, zBuf); 000120 #endif 000121 }else{ 000122 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); 000123 sqlite3_str_appendf(&acc, "%!.15g", 000124 (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r); 000125 assert( acc.zText==zBuf && acc.mxAlloc<=0 ); 000126 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ 000127 p->n = acc.nChar; 000128 } 000129 } 000130 000131 #ifdef SQLITE_DEBUG 000132 /* 000133 ** Validity checks on pMem. pMem holds a string. 000134 ** 000135 ** (1) Check that string value of pMem agrees with its integer or real value. 000136 ** (2) Check that the string is correctly zero terminated 000137 ** 000138 ** A single int or real value always converts to the same strings. But 000139 ** many different strings can be converted into the same int or real. 000140 ** If a table contains a numeric value and an index is based on the 000141 ** corresponding string value, then it is important that the string be 000142 ** derived from the numeric value, not the other way around, to ensure 000143 ** that the index and table are consistent. See ticket 000144 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for 000145 ** an example. 000146 ** 000147 ** This routine looks at pMem to verify that if it has both a numeric 000148 ** representation and a string representation then the string rep has 000149 ** been derived from the numeric and not the other way around. It returns 000150 ** true if everything is ok and false if there is a problem. 000151 ** 000152 ** This routine is for use inside of assert() statements only. 000153 */ 000154 int sqlite3VdbeMemValidStrRep(Mem *p){ 000155 Mem tmp; 000156 char zBuf[100]; 000157 char *z; 000158 int i, j, incr; 000159 if( (p->flags & MEM_Str)==0 ) return 1; 000160 if( p->db && p->db->mallocFailed ) return 1; 000161 if( p->flags & MEM_Term ){ 000162 /* Insure that the string is properly zero-terminated. Pay particular 000163 ** attention to the case where p->n is odd */ 000164 if( p->szMalloc>0 && p->z==p->zMalloc ){ 000165 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); 000166 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); 000167 } 000168 assert( p->z[p->n]==0 ); 000169 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); 000170 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); 000171 } 000172 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; 000173 memcpy(&tmp, p, sizeof(tmp)); 000174 vdbeMemRenderNum(sizeof(zBuf), zBuf, &tmp); 000175 z = p->z; 000176 i = j = 0; 000177 incr = 1; 000178 if( p->enc!=SQLITE_UTF8 ){ 000179 incr = 2; 000180 if( p->enc==SQLITE_UTF16BE ) z++; 000181 } 000182 while( zBuf[j] ){ 000183 if( zBuf[j++]!=z[i] ) return 0; 000184 i += incr; 000185 } 000186 return 1; 000187 } 000188 #endif /* SQLITE_DEBUG */ 000189 000190 /* 000191 ** If pMem is an object with a valid string representation, this routine 000192 ** ensures the internal encoding for the string representation is 000193 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 000194 ** 000195 ** If pMem is not a string object, or the encoding of the string 000196 ** representation is already stored using the requested encoding, then this 000197 ** routine is a no-op. 000198 ** 000199 ** SQLITE_OK is returned if the conversion is successful (or not required). 000200 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 000201 ** between formats. 000202 */ 000203 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 000204 #ifndef SQLITE_OMIT_UTF16 000205 int rc; 000206 #endif 000207 assert( pMem!=0 ); 000208 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 000209 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 000210 || desiredEnc==SQLITE_UTF16BE ); 000211 if( !(pMem->flags&MEM_Str) ){ 000212 pMem->enc = desiredEnc; 000213 return SQLITE_OK; 000214 } 000215 if( pMem->enc==desiredEnc ){ 000216 return SQLITE_OK; 000217 } 000218 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 000219 #ifdef SQLITE_OMIT_UTF16 000220 return SQLITE_ERROR; 000221 #else 000222 000223 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 000224 ** then the encoding of the value may not have changed. 000225 */ 000226 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 000227 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 000228 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 000229 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 000230 return rc; 000231 #endif 000232 } 000233 000234 /* 000235 ** Make sure pMem->z points to a writable allocation of at least n bytes. 000236 ** 000237 ** If the bPreserve argument is true, then copy of the content of 000238 ** pMem->z into the new allocation. pMem must be either a string or 000239 ** blob if bPreserve is true. If bPreserve is false, any prior content 000240 ** in pMem->z is discarded. 000241 */ 000242 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 000243 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 000244 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 000245 testcase( pMem->db==0 ); 000246 000247 /* If the bPreserve flag is set to true, then the memory cell must already 000248 ** contain a valid string or blob value. */ 000249 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 000250 testcase( bPreserve && pMem->z==0 ); 000251 000252 assert( pMem->szMalloc==0 000253 || (pMem->flags==MEM_Undefined 000254 && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc)) 000255 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc)); 000256 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 000257 if( pMem->db ){ 000258 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 000259 }else{ 000260 pMem->zMalloc = sqlite3Realloc(pMem->z, n); 000261 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z); 000262 pMem->z = pMem->zMalloc; 000263 } 000264 bPreserve = 0; 000265 }else{ 000266 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 000267 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 000268 } 000269 if( pMem->zMalloc==0 ){ 000270 sqlite3VdbeMemSetNull(pMem); 000271 pMem->z = 0; 000272 pMem->szMalloc = 0; 000273 return SQLITE_NOMEM_BKPT; 000274 }else{ 000275 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 000276 } 000277 000278 if( bPreserve && pMem->z ){ 000279 assert( pMem->z!=pMem->zMalloc ); 000280 memcpy(pMem->zMalloc, pMem->z, pMem->n); 000281 } 000282 if( (pMem->flags&MEM_Dyn)!=0 ){ 000283 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 000284 pMem->xDel((void *)(pMem->z)); 000285 } 000286 000287 pMem->z = pMem->zMalloc; 000288 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 000289 return SQLITE_OK; 000290 } 000291 000292 /* 000293 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 000294 ** If pMem->zMalloc already meets or exceeds the requested size, this 000295 ** routine is a no-op. 000296 ** 000297 ** Any prior string or blob content in the pMem object may be discarded. 000298 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 000299 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, 000300 ** and MEM_Null values are preserved. 000301 ** 000302 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 000303 ** if unable to complete the resizing. 000304 */ 000305 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 000306 assert( CORRUPT_DB || szNew>0 ); 000307 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 000308 if( pMem->szMalloc<szNew ){ 000309 return sqlite3VdbeMemGrow(pMem, szNew, 0); 000310 } 000311 assert( (pMem->flags & MEM_Dyn)==0 ); 000312 pMem->z = pMem->zMalloc; 000313 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); 000314 return SQLITE_OK; 000315 } 000316 000317 /* 000318 ** If pMem is already a string, detect if it is a zero-terminated 000319 ** string, or make it into one if possible, and mark it as such. 000320 ** 000321 ** This is an optimization. Correct operation continues even if 000322 ** this routine is a no-op. 000323 */ 000324 void sqlite3VdbeMemZeroTerminateIfAble(Mem *pMem){ 000325 if( (pMem->flags & (MEM_Str|MEM_Term|MEM_Ephem|MEM_Static))!=MEM_Str ){ 000326 /* pMem must be a string, and it cannot be an ephemeral or static string */ 000327 return; 000328 } 000329 if( pMem->enc!=SQLITE_UTF8 ) return; 000330 if( NEVER(pMem->z==0) ) return; 000331 if( pMem->flags & MEM_Dyn ){ 000332 if( pMem->xDel==sqlite3_free 000333 && sqlite3_msize(pMem->z) >= (u64)(pMem->n+1) 000334 ){ 000335 pMem->z[pMem->n] = 0; 000336 pMem->flags |= MEM_Term; 000337 return; 000338 } 000339 if( pMem->xDel==(void(*)(void*))sqlite3RCStrUnref ){ 000340 /* Blindly assume that all RCStr objects are zero-terminated */ 000341 pMem->flags |= MEM_Term; 000342 return; 000343 } 000344 }else if( pMem->szMalloc >= pMem->n+1 ){ 000345 pMem->z[pMem->n] = 0; 000346 pMem->flags |= MEM_Term; 000347 return; 000348 } 000349 } 000350 000351 /* 000352 ** It is already known that pMem contains an unterminated string. 000353 ** Add the zero terminator. 000354 ** 000355 ** Three bytes of zero are added. In this way, there is guaranteed 000356 ** to be a double-zero byte at an even byte boundary in order to 000357 ** terminate a UTF16 string, even if the initial size of the buffer 000358 ** is an odd number of bytes. 000359 */ 000360 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 000361 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ 000362 return SQLITE_NOMEM_BKPT; 000363 } 000364 pMem->z[pMem->n] = 0; 000365 pMem->z[pMem->n+1] = 0; 000366 pMem->z[pMem->n+2] = 0; 000367 pMem->flags |= MEM_Term; 000368 return SQLITE_OK; 000369 } 000370 000371 /* 000372 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 000373 ** MEM.zMalloc, where it can be safely written. 000374 ** 000375 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 000376 */ 000377 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 000378 assert( pMem!=0 ); 000379 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 000380 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 000381 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 000382 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 000383 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 000384 int rc = vdbeMemAddTerminator(pMem); 000385 if( rc ) return rc; 000386 } 000387 } 000388 pMem->flags &= ~MEM_Ephem; 000389 #ifdef SQLITE_DEBUG 000390 pMem->pScopyFrom = 0; 000391 #endif 000392 000393 return SQLITE_OK; 000394 } 000395 000396 /* 000397 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 000398 ** blob stored in dynamically allocated space. 000399 */ 000400 #ifndef SQLITE_OMIT_INCRBLOB 000401 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 000402 int nByte; 000403 assert( pMem!=0 ); 000404 assert( pMem->flags & MEM_Zero ); 000405 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); 000406 testcase( sqlite3_value_nochange(pMem) ); 000407 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 000408 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 000409 000410 /* Set nByte to the number of bytes required to store the expanded blob. */ 000411 nByte = pMem->n + pMem->u.nZero; 000412 if( nByte<=0 ){ 000413 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; 000414 nByte = 1; 000415 } 000416 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 000417 return SQLITE_NOMEM_BKPT; 000418 } 000419 assert( pMem->z!=0 ); 000420 assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte ); 000421 000422 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 000423 pMem->n += pMem->u.nZero; 000424 pMem->flags &= ~(MEM_Zero|MEM_Term); 000425 return SQLITE_OK; 000426 } 000427 #endif 000428 000429 /* 000430 ** Make sure the given Mem is \u0000 terminated. 000431 */ 000432 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 000433 assert( pMem!=0 ); 000434 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 000435 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 000436 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 000437 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 000438 return SQLITE_OK; /* Nothing to do */ 000439 }else{ 000440 return vdbeMemAddTerminator(pMem); 000441 } 000442 } 000443 000444 /* 000445 ** Add MEM_Str to the set of representations for the given Mem. This 000446 ** routine is only called if pMem is a number of some kind, not a NULL 000447 ** or a BLOB. 000448 ** 000449 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated 000450 ** if bForce is true but are retained if bForce is false. 000451 ** 000452 ** A MEM_Null value will never be passed to this function. This function is 000453 ** used for converting values to text for returning to the user (i.e. via 000454 ** sqlite3_value_text()), or for ensuring that values to be used as btree 000455 ** keys are strings. In the former case a NULL pointer is returned the 000456 ** user and the latter is an internal programming error. 000457 */ 000458 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 000459 const int nByte = 32; 000460 000461 assert( pMem!=0 ); 000462 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 000463 assert( !(pMem->flags&MEM_Zero) ); 000464 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); 000465 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); 000466 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 000467 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 000468 000469 000470 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 000471 pMem->enc = 0; 000472 return SQLITE_NOMEM_BKPT; 000473 } 000474 000475 vdbeMemRenderNum(nByte, pMem->z, pMem); 000476 assert( pMem->z!=0 ); 000477 assert( pMem->n==(int)sqlite3Strlen30NN(pMem->z) ); 000478 pMem->enc = SQLITE_UTF8; 000479 pMem->flags |= MEM_Str|MEM_Term; 000480 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 000481 sqlite3VdbeChangeEncoding(pMem, enc); 000482 return SQLITE_OK; 000483 } 000484 000485 /* 000486 ** Memory cell pMem contains the context of an aggregate function. 000487 ** This routine calls the finalize method for that function. The 000488 ** result of the aggregate is stored back into pMem. 000489 ** 000490 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 000491 ** otherwise. 000492 */ 000493 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 000494 sqlite3_context ctx; 000495 Mem t; 000496 assert( pFunc!=0 ); 000497 assert( pMem!=0 ); 000498 assert( pMem->db!=0 ); 000499 assert( pFunc->xFinalize!=0 ); 000500 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 000501 assert( sqlite3_mutex_held(pMem->db->mutex) ); 000502 memset(&ctx, 0, sizeof(ctx)); 000503 memset(&t, 0, sizeof(t)); 000504 t.flags = MEM_Null; 000505 t.db = pMem->db; 000506 ctx.pOut = &t; 000507 ctx.pMem = pMem; 000508 ctx.pFunc = pFunc; 000509 ctx.enc = ENC(t.db); 000510 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 000511 assert( (pMem->flags & MEM_Dyn)==0 ); 000512 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 000513 memcpy(pMem, &t, sizeof(t)); 000514 return ctx.isError; 000515 } 000516 000517 /* 000518 ** Memory cell pAccum contains the context of an aggregate function. 000519 ** This routine calls the xValue method for that function and stores 000520 ** the results in memory cell pMem. 000521 ** 000522 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK 000523 ** otherwise. 000524 */ 000525 #ifndef SQLITE_OMIT_WINDOWFUNC 000526 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ 000527 sqlite3_context ctx; 000528 assert( pFunc!=0 ); 000529 assert( pFunc->xValue!=0 ); 000530 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); 000531 assert( pAccum->db!=0 ); 000532 assert( sqlite3_mutex_held(pAccum->db->mutex) ); 000533 memset(&ctx, 0, sizeof(ctx)); 000534 sqlite3VdbeMemSetNull(pOut); 000535 ctx.pOut = pOut; 000536 ctx.pMem = pAccum; 000537 ctx.pFunc = pFunc; 000538 ctx.enc = ENC(pAccum->db); 000539 pFunc->xValue(&ctx); 000540 return ctx.isError; 000541 } 000542 #endif /* SQLITE_OMIT_WINDOWFUNC */ 000543 000544 /* 000545 ** If the memory cell contains a value that must be freed by 000546 ** invoking the external callback in Mem.xDel, then this routine 000547 ** will free that value. It also sets Mem.flags to MEM_Null. 000548 ** 000549 ** This is a helper routine for sqlite3VdbeMemSetNull() and 000550 ** for sqlite3VdbeMemRelease(). Use those other routines as the 000551 ** entry point for releasing Mem resources. 000552 */ 000553 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 000554 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 000555 assert( VdbeMemDynamic(p) ); 000556 if( p->flags&MEM_Agg ){ 000557 sqlite3VdbeMemFinalize(p, p->u.pDef); 000558 assert( (p->flags & MEM_Agg)==0 ); 000559 testcase( p->flags & MEM_Dyn ); 000560 } 000561 if( p->flags&MEM_Dyn ){ 000562 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 000563 p->xDel((void *)p->z); 000564 } 000565 p->flags = MEM_Null; 000566 } 000567 000568 /* 000569 ** Release memory held by the Mem p, both external memory cleared 000570 ** by p->xDel and memory in p->zMalloc. 000571 ** 000572 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 000573 ** the unusual case where there really is memory in p that needs 000574 ** to be freed. 000575 */ 000576 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 000577 if( VdbeMemDynamic(p) ){ 000578 vdbeMemClearExternAndSetNull(p); 000579 } 000580 if( p->szMalloc ){ 000581 sqlite3DbFreeNN(p->db, p->zMalloc); 000582 p->szMalloc = 0; 000583 } 000584 p->z = 0; 000585 } 000586 000587 /* 000588 ** Release any memory resources held by the Mem. Both the memory that is 000589 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 000590 ** 000591 ** Use this routine prior to clean up prior to abandoning a Mem, or to 000592 ** reset a Mem back to its minimum memory utilization. 000593 ** 000594 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 000595 ** prior to inserting new content into the Mem. 000596 */ 000597 void sqlite3VdbeMemRelease(Mem *p){ 000598 assert( sqlite3VdbeCheckMemInvariants(p) ); 000599 if( VdbeMemDynamic(p) || p->szMalloc ){ 000600 vdbeMemClear(p); 000601 } 000602 } 000603 000604 /* Like sqlite3VdbeMemRelease() but faster for cases where we 000605 ** know in advance that the Mem is not MEM_Dyn or MEM_Agg. 000606 */ 000607 void sqlite3VdbeMemReleaseMalloc(Mem *p){ 000608 assert( !VdbeMemDynamic(p) ); 000609 if( p->szMalloc ) vdbeMemClear(p); 000610 } 000611 000612 /* 000613 ** Return some kind of integer value which is the best we can do 000614 ** at representing the value that *pMem describes as an integer. 000615 ** If pMem is an integer, then the value is exact. If pMem is 000616 ** a floating-point then the value returned is the integer part. 000617 ** If pMem is a string or blob, then we make an attempt to convert 000618 ** it into an integer and return that. If pMem represents an 000619 ** an SQL-NULL value, return 0. 000620 ** 000621 ** If pMem represents a string value, its encoding might be changed. 000622 */ 000623 static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){ 000624 i64 value = 0; 000625 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 000626 return value; 000627 } 000628 i64 sqlite3VdbeIntValue(const Mem *pMem){ 000629 int flags; 000630 assert( pMem!=0 ); 000631 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 000632 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 000633 flags = pMem->flags; 000634 if( flags & (MEM_Int|MEM_IntReal) ){ 000635 testcase( flags & MEM_IntReal ); 000636 return pMem->u.i; 000637 }else if( flags & MEM_Real ){ 000638 return sqlite3RealToI64(pMem->u.r); 000639 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ 000640 return memIntValue(pMem); 000641 }else{ 000642 return 0; 000643 } 000644 } 000645 000646 /* 000647 ** Return the best representation of pMem that we can get into a 000648 ** double. If pMem is already a double or an integer, return its 000649 ** value. If it is a string or blob, try to convert it to a double. 000650 ** If it is a NULL, return 0.0. 000651 */ 000652 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 000653 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 000654 double val = (double)0; 000655 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 000656 return val; 000657 } 000658 double sqlite3VdbeRealValue(Mem *pMem){ 000659 assert( pMem!=0 ); 000660 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 000661 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 000662 if( pMem->flags & MEM_Real ){ 000663 return pMem->u.r; 000664 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 000665 testcase( pMem->flags & MEM_IntReal ); 000666 return (double)pMem->u.i; 000667 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 000668 return memRealValue(pMem); 000669 }else{ 000670 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 000671 return (double)0; 000672 } 000673 } 000674 000675 /* 000676 ** Return 1 if pMem represents true, and return 0 if pMem represents false. 000677 ** Return the value ifNull if pMem is NULL. 000678 */ 000679 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ 000680 testcase( pMem->flags & MEM_IntReal ); 000681 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; 000682 if( pMem->flags & MEM_Null ) return ifNull; 000683 return sqlite3VdbeRealValue(pMem)!=0.0; 000684 } 000685 000686 /* 000687 ** The MEM structure is already a MEM_Real or MEM_IntReal. Try to 000688 ** make it a MEM_Int if we can. 000689 */ 000690 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 000691 assert( pMem!=0 ); 000692 assert( pMem->flags & (MEM_Real|MEM_IntReal) ); 000693 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 000694 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 000695 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 000696 000697 if( pMem->flags & MEM_IntReal ){ 000698 MemSetTypeFlag(pMem, MEM_Int); 000699 }else{ 000700 i64 ix = sqlite3RealToI64(pMem->u.r); 000701 000702 /* Only mark the value as an integer if 000703 ** 000704 ** (1) the round-trip conversion real->int->real is a no-op, and 000705 ** (2) The integer is neither the largest nor the smallest 000706 ** possible integer (ticket #3922) 000707 ** 000708 ** The second and third terms in the following conditional enforces 000709 ** the second condition under the assumption that addition overflow causes 000710 ** values to wrap around. 000711 */ 000712 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 000713 pMem->u.i = ix; 000714 MemSetTypeFlag(pMem, MEM_Int); 000715 } 000716 } 000717 } 000718 000719 /* 000720 ** Convert pMem to type integer. Invalidate any prior representations. 000721 */ 000722 int sqlite3VdbeMemIntegerify(Mem *pMem){ 000723 assert( pMem!=0 ); 000724 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 000725 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 000726 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 000727 000728 pMem->u.i = sqlite3VdbeIntValue(pMem); 000729 MemSetTypeFlag(pMem, MEM_Int); 000730 return SQLITE_OK; 000731 } 000732 000733 /* 000734 ** Convert pMem so that it is of type MEM_Real. 000735 ** Invalidate any prior representations. 000736 */ 000737 int sqlite3VdbeMemRealify(Mem *pMem){ 000738 assert( pMem!=0 ); 000739 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 000740 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 000741 000742 pMem->u.r = sqlite3VdbeRealValue(pMem); 000743 MemSetTypeFlag(pMem, MEM_Real); 000744 return SQLITE_OK; 000745 } 000746 000747 /* Compare a floating point value to an integer. Return true if the two 000748 ** values are the same within the precision of the floating point value. 000749 ** 000750 ** This function assumes that i was obtained by assignment from r1. 000751 ** 000752 ** For some versions of GCC on 32-bit machines, if you do the more obvious 000753 ** comparison of "r1==(double)i" you sometimes get an answer of false even 000754 ** though the r1 and (double)i values are bit-for-bit the same. 000755 */ 000756 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ 000757 double r2 = (double)i; 000758 return r1==0.0 000759 || (memcmp(&r1, &r2, sizeof(r1))==0 000760 && i >= -2251799813685248LL && i < 2251799813685248LL); 000761 } 000762 000763 /* Convert a floating point value to its closest integer. Do so in 000764 ** a way that avoids 'outside the range of representable values' warnings 000765 ** from UBSAN. 000766 */ 000767 i64 sqlite3RealToI64(double r){ 000768 if( r<-9223372036854774784.0 ) return SMALLEST_INT64; 000769 if( r>+9223372036854774784.0 ) return LARGEST_INT64; 000770 return (i64)r; 000771 } 000772 000773 /* 000774 ** Convert pMem so that it has type MEM_Real or MEM_Int. 000775 ** Invalidate any prior representations. 000776 ** 000777 ** Every effort is made to force the conversion, even if the input 000778 ** is a string that does not look completely like a number. Convert 000779 ** as much of the string as we can and ignore the rest. 000780 */ 000781 int sqlite3VdbeMemNumerify(Mem *pMem){ 000782 assert( pMem!=0 ); 000783 testcase( pMem->flags & MEM_Int ); 000784 testcase( pMem->flags & MEM_Real ); 000785 testcase( pMem->flags & MEM_IntReal ); 000786 testcase( pMem->flags & MEM_Null ); 000787 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ 000788 int rc; 000789 sqlite3_int64 ix; 000790 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 000791 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 000792 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 000793 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) 000794 || sqlite3RealSameAsInt(pMem->u.r, (ix = sqlite3RealToI64(pMem->u.r))) 000795 ){ 000796 pMem->u.i = ix; 000797 MemSetTypeFlag(pMem, MEM_Int); 000798 }else{ 000799 MemSetTypeFlag(pMem, MEM_Real); 000800 } 000801 } 000802 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); 000803 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 000804 return SQLITE_OK; 000805 } 000806 000807 /* 000808 ** Cast the datatype of the value in pMem according to the affinity 000809 ** "aff". Casting is different from applying affinity in that a cast 000810 ** is forced. In other words, the value is converted into the desired 000811 ** affinity even if that results in loss of data. This routine is 000812 ** used (for example) to implement the SQL "cast()" operator. 000813 */ 000814 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 000815 if( pMem->flags & MEM_Null ) return SQLITE_OK; 000816 switch( aff ){ 000817 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 000818 if( (pMem->flags & MEM_Blob)==0 ){ 000819 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 000820 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 000821 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 000822 }else{ 000823 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 000824 } 000825 break; 000826 } 000827 case SQLITE_AFF_NUMERIC: { 000828 sqlite3VdbeMemNumerify(pMem); 000829 break; 000830 } 000831 case SQLITE_AFF_INTEGER: { 000832 sqlite3VdbeMemIntegerify(pMem); 000833 break; 000834 } 000835 case SQLITE_AFF_REAL: { 000836 sqlite3VdbeMemRealify(pMem); 000837 break; 000838 } 000839 default: { 000840 int rc; 000841 assert( aff==SQLITE_AFF_TEXT ); 000842 assert( MEM_Str==(MEM_Blob>>3) ); 000843 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 000844 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 000845 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 000846 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); 000847 if( encoding!=SQLITE_UTF8 ) pMem->n &= ~1; 000848 rc = sqlite3VdbeChangeEncoding(pMem, encoding); 000849 if( rc ) return rc; 000850 sqlite3VdbeMemZeroTerminateIfAble(pMem); 000851 } 000852 } 000853 return SQLITE_OK; 000854 } 000855 000856 /* 000857 ** Initialize bulk memory to be a consistent Mem object. 000858 ** 000859 ** The minimum amount of initialization feasible is performed. 000860 */ 000861 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 000862 assert( (flags & ~MEM_TypeMask)==0 ); 000863 pMem->flags = flags; 000864 pMem->db = db; 000865 pMem->szMalloc = 0; 000866 } 000867 000868 000869 /* 000870 ** Delete any previous value and set the value stored in *pMem to NULL. 000871 ** 000872 ** This routine calls the Mem.xDel destructor to dispose of values that 000873 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 000874 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 000875 ** routine to invoke the destructor and deallocates Mem.zMalloc. 000876 ** 000877 ** Use this routine to reset the Mem prior to insert a new value. 000878 ** 000879 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 000880 */ 000881 void sqlite3VdbeMemSetNull(Mem *pMem){ 000882 if( VdbeMemDynamic(pMem) ){ 000883 vdbeMemClearExternAndSetNull(pMem); 000884 }else{ 000885 pMem->flags = MEM_Null; 000886 } 000887 } 000888 void sqlite3ValueSetNull(sqlite3_value *p){ 000889 sqlite3VdbeMemSetNull((Mem*)p); 000890 } 000891 000892 /* 000893 ** Delete any previous value and set the value to be a BLOB of length 000894 ** n containing all zeros. 000895 */ 000896 #ifndef SQLITE_OMIT_INCRBLOB 000897 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 000898 sqlite3VdbeMemRelease(pMem); 000899 pMem->flags = MEM_Blob|MEM_Zero; 000900 pMem->n = 0; 000901 if( n<0 ) n = 0; 000902 pMem->u.nZero = n; 000903 pMem->enc = SQLITE_UTF8; 000904 pMem->z = 0; 000905 } 000906 #else 000907 int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 000908 int nByte = n>0?n:1; 000909 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 000910 return SQLITE_NOMEM_BKPT; 000911 } 000912 assert( pMem->z!=0 ); 000913 assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte ); 000914 memset(pMem->z, 0, nByte); 000915 pMem->n = n>0?n:0; 000916 pMem->flags = MEM_Blob; 000917 pMem->enc = SQLITE_UTF8; 000918 return SQLITE_OK; 000919 } 000920 #endif 000921 000922 /* 000923 ** The pMem is known to contain content that needs to be destroyed prior 000924 ** to a value change. So invoke the destructor, then set the value to 000925 ** a 64-bit integer. 000926 */ 000927 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 000928 sqlite3VdbeMemSetNull(pMem); 000929 pMem->u.i = val; 000930 pMem->flags = MEM_Int; 000931 } 000932 000933 /* 000934 ** Delete any previous value and set the value stored in *pMem to val, 000935 ** manifest type INTEGER. 000936 */ 000937 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 000938 if( VdbeMemDynamic(pMem) ){ 000939 vdbeReleaseAndSetInt64(pMem, val); 000940 }else{ 000941 pMem->u.i = val; 000942 pMem->flags = MEM_Int; 000943 } 000944 } 000945 000946 /* A no-op destructor */ 000947 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 000948 000949 /* 000950 ** Set the value stored in *pMem should already be a NULL. 000951 ** Also store a pointer to go with it. 000952 */ 000953 void sqlite3VdbeMemSetPointer( 000954 Mem *pMem, 000955 void *pPtr, 000956 const char *zPType, 000957 void (*xDestructor)(void*) 000958 ){ 000959 assert( pMem->flags==MEM_Null ); 000960 vdbeMemClear(pMem); 000961 pMem->u.zPType = zPType ? zPType : ""; 000962 pMem->z = pPtr; 000963 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 000964 pMem->eSubtype = 'p'; 000965 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 000966 } 000967 000968 #ifndef SQLITE_OMIT_FLOATING_POINT 000969 /* 000970 ** Delete any previous value and set the value stored in *pMem to val, 000971 ** manifest type REAL. 000972 */ 000973 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 000974 sqlite3VdbeMemSetNull(pMem); 000975 if( !sqlite3IsNaN(val) ){ 000976 pMem->u.r = val; 000977 pMem->flags = MEM_Real; 000978 } 000979 } 000980 #endif 000981 000982 #ifdef SQLITE_DEBUG 000983 /* 000984 ** Return true if the Mem holds a RowSet object. This routine is intended 000985 ** for use inside of assert() statements. 000986 */ 000987 int sqlite3VdbeMemIsRowSet(const Mem *pMem){ 000988 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) 000989 && pMem->xDel==sqlite3RowSetDelete; 000990 } 000991 #endif 000992 000993 /* 000994 ** Delete any previous value and set the value of pMem to be an 000995 ** empty boolean index. 000996 ** 000997 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation 000998 ** error occurs. 000999 */ 001000 int sqlite3VdbeMemSetRowSet(Mem *pMem){ 001001 sqlite3 *db = pMem->db; 001002 RowSet *p; 001003 assert( db!=0 ); 001004 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 001005 sqlite3VdbeMemRelease(pMem); 001006 p = sqlite3RowSetInit(db); 001007 if( p==0 ) return SQLITE_NOMEM; 001008 pMem->z = (char*)p; 001009 pMem->flags = MEM_Blob|MEM_Dyn; 001010 pMem->xDel = sqlite3RowSetDelete; 001011 return SQLITE_OK; 001012 } 001013 001014 /* 001015 ** Return true if the Mem object contains a TEXT or BLOB that is 001016 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 001017 */ 001018 int sqlite3VdbeMemTooBig(Mem *p){ 001019 assert( p->db!=0 ); 001020 if( p->flags & (MEM_Str|MEM_Blob) ){ 001021 int n = p->n; 001022 if( p->flags & MEM_Zero ){ 001023 n += p->u.nZero; 001024 } 001025 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 001026 } 001027 return 0; 001028 } 001029 001030 #ifdef SQLITE_DEBUG 001031 /* 001032 ** This routine prepares a memory cell for modification by breaking 001033 ** its link to a shallow copy and by marking any current shallow 001034 ** copies of this cell as invalid. 001035 ** 001036 ** This is used for testing and debugging only - to help ensure that shallow 001037 ** copies (created by OP_SCopy) are not misused. 001038 */ 001039 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 001040 int i; 001041 Mem *pX; 001042 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){ 001043 if( pX->pScopyFrom==pMem ){ 001044 u16 mFlags; 001045 if( pVdbe->db->flags & SQLITE_VdbeTrace ){ 001046 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n", 001047 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem)); 001048 } 001049 /* If pX is marked as a shallow copy of pMem, then try to verify that 001050 ** no significant changes have been made to pX since the OP_SCopy. 001051 ** A significant change would indicated a missed call to this 001052 ** function for pX. Minor changes, such as adding or removing a 001053 ** dual type, are allowed, as long as the underlying value is the 001054 ** same. */ 001055 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; 001056 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); 001057 001058 /* pMem is the register that is changing. But also mark pX as 001059 ** undefined so that we can quickly detect the shallow-copy error */ 001060 pX->flags = MEM_Undefined; 001061 pX->pScopyFrom = 0; 001062 } 001063 } 001064 pMem->pScopyFrom = 0; 001065 } 001066 #endif /* SQLITE_DEBUG */ 001067 001068 /* 001069 ** Make an shallow copy of pFrom into pTo. Prior contents of 001070 ** pTo are freed. The pFrom->z field is not duplicated. If 001071 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 001072 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 001073 */ 001074 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 001075 vdbeMemClearExternAndSetNull(pTo); 001076 assert( !VdbeMemDynamic(pTo) ); 001077 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 001078 } 001079 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 001080 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 001081 assert( pTo->db==pFrom->db ); 001082 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 001083 memcpy(pTo, pFrom, MEMCELLSIZE); 001084 if( (pFrom->flags&MEM_Static)==0 ){ 001085 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 001086 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 001087 pTo->flags |= srcType; 001088 } 001089 } 001090 001091 /* 001092 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 001093 ** freed before the copy is made. 001094 */ 001095 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 001096 int rc = SQLITE_OK; 001097 001098 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 001099 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 001100 memcpy(pTo, pFrom, MEMCELLSIZE); 001101 pTo->flags &= ~MEM_Dyn; 001102 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 001103 if( 0==(pFrom->flags&MEM_Static) ){ 001104 pTo->flags |= MEM_Ephem; 001105 rc = sqlite3VdbeMemMakeWriteable(pTo); 001106 } 001107 } 001108 001109 return rc; 001110 } 001111 001112 /* 001113 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 001114 ** freed. If pFrom contains ephemeral data, a copy is made. 001115 ** 001116 ** pFrom contains an SQL NULL when this routine returns. 001117 */ 001118 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 001119 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 001120 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 001121 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 001122 001123 sqlite3VdbeMemRelease(pTo); 001124 memcpy(pTo, pFrom, sizeof(Mem)); 001125 pFrom->flags = MEM_Null; 001126 pFrom->szMalloc = 0; 001127 } 001128 001129 /* 001130 ** Change the value of a Mem to be a string or a BLOB. 001131 ** 001132 ** The memory management strategy depends on the value of the xDel 001133 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 001134 ** string is copied into a (possibly existing) buffer managed by the 001135 ** Mem structure. Otherwise, any existing buffer is freed and the 001136 ** pointer copied. 001137 ** 001138 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 001139 ** size limit) then no memory allocation occurs. If the string can be 001140 ** stored without allocating memory, then it is. If a memory allocation 001141 ** is required to store the string, then value of pMem is unchanged. In 001142 ** either case, SQLITE_TOOBIG is returned. 001143 ** 001144 ** The "enc" parameter is the text encoding for the string, or zero 001145 ** to store a blob. 001146 ** 001147 ** If n is negative, then the string consists of all bytes up to but 001148 ** excluding the first zero character. The n parameter must be 001149 ** non-negative for blobs. 001150 */ 001151 int sqlite3VdbeMemSetStr( 001152 Mem *pMem, /* Memory cell to set to string value */ 001153 const char *z, /* String pointer */ 001154 i64 n, /* Bytes in string, or negative */ 001155 u8 enc, /* Encoding of z. 0 for BLOBs */ 001156 void (*xDel)(void*) /* Destructor function */ 001157 ){ 001158 i64 nByte = n; /* New value for pMem->n */ 001159 int iLimit; /* Maximum allowed string or blob size */ 001160 u16 flags; /* New value for pMem->flags */ 001161 001162 assert( pMem!=0 ); 001163 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 001164 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 001165 assert( enc!=0 || n>=0 ); 001166 001167 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 001168 if( !z ){ 001169 sqlite3VdbeMemSetNull(pMem); 001170 return SQLITE_OK; 001171 } 001172 001173 if( pMem->db ){ 001174 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 001175 }else{ 001176 iLimit = SQLITE_MAX_LENGTH; 001177 } 001178 if( nByte<0 ){ 001179 assert( enc!=0 ); 001180 if( enc==SQLITE_UTF8 ){ 001181 nByte = strlen(z); 001182 }else{ 001183 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 001184 } 001185 flags= MEM_Str|MEM_Term; 001186 }else if( enc==0 ){ 001187 flags = MEM_Blob; 001188 enc = SQLITE_UTF8; 001189 }else{ 001190 flags = MEM_Str; 001191 } 001192 if( nByte>iLimit ){ 001193 if( xDel && xDel!=SQLITE_TRANSIENT ){ 001194 if( xDel==SQLITE_DYNAMIC ){ 001195 sqlite3DbFree(pMem->db, (void*)z); 001196 }else{ 001197 xDel((void*)z); 001198 } 001199 } 001200 sqlite3VdbeMemSetNull(pMem); 001201 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); 001202 } 001203 001204 /* The following block sets the new values of Mem.z and Mem.xDel. It 001205 ** also sets a flag in local variable "flags" to indicate the memory 001206 ** management (one of MEM_Dyn or MEM_Static). 001207 */ 001208 if( xDel==SQLITE_TRANSIENT ){ 001209 i64 nAlloc = nByte; 001210 if( flags&MEM_Term ){ 001211 nAlloc += (enc==SQLITE_UTF8?1:2); 001212 } 001213 testcase( nAlloc==0 ); 001214 testcase( nAlloc==31 ); 001215 testcase( nAlloc==32 ); 001216 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ 001217 return SQLITE_NOMEM_BKPT; 001218 } 001219 memcpy(pMem->z, z, nAlloc); 001220 }else{ 001221 sqlite3VdbeMemRelease(pMem); 001222 pMem->z = (char *)z; 001223 if( xDel==SQLITE_DYNAMIC ){ 001224 pMem->zMalloc = pMem->z; 001225 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 001226 }else{ 001227 pMem->xDel = xDel; 001228 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 001229 } 001230 } 001231 001232 pMem->n = (int)(nByte & 0x7fffffff); 001233 pMem->flags = flags; 001234 pMem->enc = enc; 001235 001236 #ifndef SQLITE_OMIT_UTF16 001237 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 001238 return SQLITE_NOMEM_BKPT; 001239 } 001240 #endif 001241 001242 001243 return SQLITE_OK; 001244 } 001245 001246 /* 001247 ** Move data out of a btree key or data field and into a Mem structure. 001248 ** The data is payload from the entry that pCur is currently pointing 001249 ** to. offset and amt determine what portion of the data or key to retrieve. 001250 ** The result is written into the pMem element. 001251 ** 001252 ** The pMem object must have been initialized. This routine will use 001253 ** pMem->zMalloc to hold the content from the btree, if possible. New 001254 ** pMem->zMalloc space will be allocated if necessary. The calling routine 001255 ** is responsible for making sure that the pMem object is eventually 001256 ** destroyed. 001257 ** 001258 ** If this routine fails for any reason (malloc returns NULL or unable 001259 ** to read from the disk) then the pMem is left in an inconsistent state. 001260 */ 001261 int sqlite3VdbeMemFromBtree( 001262 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 001263 u32 offset, /* Offset from the start of data to return bytes from. */ 001264 u32 amt, /* Number of bytes to return. */ 001265 Mem *pMem /* OUT: Return data in this Mem structure. */ 001266 ){ 001267 int rc; 001268 pMem->flags = MEM_Null; 001269 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){ 001270 return SQLITE_CORRUPT_BKPT; 001271 } 001272 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 001273 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 001274 if( rc==SQLITE_OK ){ 001275 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 001276 pMem->flags = MEM_Blob; 001277 pMem->n = (int)amt; 001278 }else{ 001279 sqlite3VdbeMemRelease(pMem); 001280 } 001281 } 001282 return rc; 001283 } 001284 int sqlite3VdbeMemFromBtreeZeroOffset( 001285 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 001286 u32 amt, /* Number of bytes to return. */ 001287 Mem *pMem /* OUT: Return data in this Mem structure. */ 001288 ){ 001289 u32 available = 0; /* Number of bytes available on the local btree page */ 001290 int rc = SQLITE_OK; /* Return code */ 001291 001292 assert( sqlite3BtreeCursorIsValid(pCur) ); 001293 assert( !VdbeMemDynamic(pMem) ); 001294 001295 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 001296 ** that both the BtShared and database handle mutexes are held. */ 001297 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 001298 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available); 001299 assert( pMem->z!=0 ); 001300 001301 if( amt<=available ){ 001302 pMem->flags = MEM_Blob|MEM_Ephem; 001303 pMem->n = (int)amt; 001304 }else{ 001305 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem); 001306 } 001307 001308 return rc; 001309 } 001310 001311 /* 001312 ** The pVal argument is known to be a value other than NULL. 001313 ** Convert it into a string with encoding enc and return a pointer 001314 ** to a zero-terminated version of that string. 001315 */ 001316 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 001317 assert( pVal!=0 ); 001318 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 001319 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 001320 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 001321 assert( (pVal->flags & (MEM_Null))==0 ); 001322 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 001323 if( ExpandBlob(pVal) ) return 0; 001324 pVal->flags |= MEM_Str; 001325 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 001326 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 001327 } 001328 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 001329 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 001330 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 001331 return 0; 001332 } 001333 } 001334 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 001335 }else{ 001336 sqlite3VdbeMemStringify(pVal, enc, 0); 001337 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 001338 } 001339 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 001340 || pVal->db->mallocFailed ); 001341 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 001342 assert( sqlite3VdbeMemValidStrRep(pVal) ); 001343 return pVal->z; 001344 }else{ 001345 return 0; 001346 } 001347 } 001348 001349 /* This function is only available internally, it is not part of the 001350 ** external API. It works in a similar way to sqlite3_value_text(), 001351 ** except the data returned is in the encoding specified by the second 001352 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 001353 ** SQLITE_UTF8. 001354 ** 001355 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 001356 ** If that is the case, then the result must be aligned on an even byte 001357 ** boundary. 001358 */ 001359 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 001360 if( !pVal ) return 0; 001361 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 001362 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 001363 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 001364 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 001365 assert( sqlite3VdbeMemValidStrRep(pVal) ); 001366 return pVal->z; 001367 } 001368 if( pVal->flags&MEM_Null ){ 001369 return 0; 001370 } 001371 return valueToText(pVal, enc); 001372 } 001373 001374 /* Return true if sqlit3_value object pVal is a string or blob value 001375 ** that uses the destructor specified in the second argument. 001376 ** 001377 ** TODO: Maybe someday promote this interface into a published API so 001378 ** that third-party extensions can get access to it? 001379 */ 001380 int sqlite3ValueIsOfClass(const sqlite3_value *pVal, void(*xFree)(void*)){ 001381 if( ALWAYS(pVal!=0) 001382 && ALWAYS((pVal->flags & (MEM_Str|MEM_Blob))!=0) 001383 && (pVal->flags & MEM_Dyn)!=0 001384 && pVal->xDel==xFree 001385 ){ 001386 return 1; 001387 }else{ 001388 return 0; 001389 } 001390 } 001391 001392 /* 001393 ** Create a new sqlite3_value object. 001394 */ 001395 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 001396 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 001397 if( p ){ 001398 p->flags = MEM_Null; 001399 p->db = db; 001400 } 001401 return p; 001402 } 001403 001404 /* 001405 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 001406 ** valueNew(). See comments above valueNew() for details. 001407 */ 001408 struct ValueNewStat4Ctx { 001409 Parse *pParse; 001410 Index *pIdx; 001411 UnpackedRecord **ppRec; 001412 int iVal; 001413 }; 001414 001415 /* 001416 ** Allocate and return a pointer to a new sqlite3_value object. If 001417 ** the second argument to this function is NULL, the object is allocated 001418 ** by calling sqlite3ValueNew(). 001419 ** 001420 ** Otherwise, if the second argument is non-zero, then this function is 001421 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 001422 ** already been allocated, allocate the UnpackedRecord structure that 001423 ** that function will return to its caller here. Then return a pointer to 001424 ** an sqlite3_value within the UnpackedRecord.a[] array. 001425 */ 001426 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 001427 #ifdef SQLITE_ENABLE_STAT4 001428 if( p ){ 001429 UnpackedRecord *pRec = p->ppRec[0]; 001430 001431 if( pRec==0 ){ 001432 Index *pIdx = p->pIdx; /* Index being probed */ 001433 int nByte; /* Bytes of space to allocate */ 001434 int i; /* Counter variable */ 001435 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 001436 001437 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 001438 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 001439 if( pRec ){ 001440 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 001441 if( pRec->pKeyInfo ){ 001442 assert( pRec->pKeyInfo->nAllField==nCol ); 001443 assert( pRec->pKeyInfo->enc==ENC(db) ); 001444 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 001445 for(i=0; i<nCol; i++){ 001446 pRec->aMem[i].flags = MEM_Null; 001447 pRec->aMem[i].db = db; 001448 } 001449 }else{ 001450 sqlite3DbFreeNN(db, pRec); 001451 pRec = 0; 001452 } 001453 } 001454 if( pRec==0 ) return 0; 001455 p->ppRec[0] = pRec; 001456 } 001457 001458 pRec->nField = p->iVal+1; 001459 sqlite3VdbeMemSetNull(&pRec->aMem[p->iVal]); 001460 return &pRec->aMem[p->iVal]; 001461 } 001462 #else 001463 UNUSED_PARAMETER(p); 001464 #endif /* defined(SQLITE_ENABLE_STAT4) */ 001465 return sqlite3ValueNew(db); 001466 } 001467 001468 /* 001469 ** The expression object indicated by the second argument is guaranteed 001470 ** to be a scalar SQL function. If 001471 ** 001472 ** * all function arguments are SQL literals, 001473 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 001474 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 001475 ** 001476 ** then this routine attempts to invoke the SQL function. Assuming no 001477 ** error occurs, output parameter (*ppVal) is set to point to a value 001478 ** object containing the result before returning SQLITE_OK. 001479 ** 001480 ** Affinity aff is applied to the result of the function before returning. 001481 ** If the result is a text value, the sqlite3_value object uses encoding 001482 ** enc. 001483 ** 001484 ** If the conditions above are not met, this function returns SQLITE_OK 001485 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 001486 ** NULL and an SQLite error code returned. 001487 */ 001488 #ifdef SQLITE_ENABLE_STAT4 001489 static int valueFromFunction( 001490 sqlite3 *db, /* The database connection */ 001491 const Expr *p, /* The expression to evaluate */ 001492 u8 enc, /* Encoding to use */ 001493 u8 aff, /* Affinity to use */ 001494 sqlite3_value **ppVal, /* Write the new value here */ 001495 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 001496 ){ 001497 sqlite3_context ctx; /* Context object for function invocation */ 001498 sqlite3_value **apVal = 0; /* Function arguments */ 001499 int nVal = 0; /* Size of apVal[] array */ 001500 FuncDef *pFunc = 0; /* Function definition */ 001501 sqlite3_value *pVal = 0; /* New value */ 001502 int rc = SQLITE_OK; /* Return code */ 001503 ExprList *pList = 0; /* Function arguments */ 001504 int i; /* Iterator variable */ 001505 001506 assert( pCtx!=0 ); 001507 assert( (p->flags & EP_TokenOnly)==0 ); 001508 assert( ExprUseXList(p) ); 001509 pList = p->x.pList; 001510 if( pList ) nVal = pList->nExpr; 001511 assert( !ExprHasProperty(p, EP_IntValue) ); 001512 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 001513 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 001514 if( pFunc==0 ) return SQLITE_OK; 001515 #endif 001516 assert( pFunc ); 001517 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 001518 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 001519 ){ 001520 return SQLITE_OK; 001521 } 001522 001523 if( pList ){ 001524 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 001525 if( apVal==0 ){ 001526 rc = SQLITE_NOMEM_BKPT; 001527 goto value_from_function_out; 001528 } 001529 for(i=0; i<nVal; i++){ 001530 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 001531 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 001532 } 001533 } 001534 001535 pVal = valueNew(db, pCtx); 001536 if( pVal==0 ){ 001537 rc = SQLITE_NOMEM_BKPT; 001538 goto value_from_function_out; 001539 } 001540 001541 memset(&ctx, 0, sizeof(ctx)); 001542 ctx.pOut = pVal; 001543 ctx.pFunc = pFunc; 001544 ctx.enc = ENC(db); 001545 pFunc->xSFunc(&ctx, nVal, apVal); 001546 if( ctx.isError ){ 001547 rc = ctx.isError; 001548 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 001549 }else{ 001550 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 001551 assert( rc==SQLITE_OK ); 001552 rc = sqlite3VdbeChangeEncoding(pVal, enc); 001553 if( NEVER(rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal)) ){ 001554 rc = SQLITE_TOOBIG; 001555 pCtx->pParse->nErr++; 001556 } 001557 } 001558 001559 value_from_function_out: 001560 if( rc!=SQLITE_OK ){ 001561 pVal = 0; 001562 pCtx->pParse->rc = rc; 001563 } 001564 if( apVal ){ 001565 for(i=0; i<nVal; i++){ 001566 sqlite3ValueFree(apVal[i]); 001567 } 001568 sqlite3DbFreeNN(db, apVal); 001569 } 001570 001571 *ppVal = pVal; 001572 return rc; 001573 } 001574 #else 001575 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 001576 #endif /* defined(SQLITE_ENABLE_STAT4) */ 001577 001578 /* 001579 ** Extract a value from the supplied expression in the manner described 001580 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 001581 ** using valueNew(). 001582 ** 001583 ** If pCtx is NULL and an error occurs after the sqlite3_value object 001584 ** has been allocated, it is freed before returning. Or, if pCtx is not 001585 ** NULL, it is assumed that the caller will free any allocated object 001586 ** in all cases. 001587 */ 001588 static int valueFromExpr( 001589 sqlite3 *db, /* The database connection */ 001590 const Expr *pExpr, /* The expression to evaluate */ 001591 u8 enc, /* Encoding to use */ 001592 u8 affinity, /* Affinity to use */ 001593 sqlite3_value **ppVal, /* Write the new value here */ 001594 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 001595 ){ 001596 int op; 001597 char *zVal = 0; 001598 sqlite3_value *pVal = 0; 001599 int negInt = 1; 001600 const char *zNeg = ""; 001601 int rc = SQLITE_OK; 001602 001603 assert( pExpr!=0 ); 001604 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 001605 if( op==TK_REGISTER ) op = pExpr->op2; 001606 001607 /* Compressed expressions only appear when parsing the DEFAULT clause 001608 ** on a table column definition, and hence only when pCtx==0. This 001609 ** check ensures that an EP_TokenOnly expression is never passed down 001610 ** into valueFromFunction(). */ 001611 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 001612 001613 if( op==TK_CAST ){ 001614 u8 aff; 001615 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 001616 aff = sqlite3AffinityType(pExpr->u.zToken,0); 001617 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 001618 testcase( rc!=SQLITE_OK ); 001619 if( *ppVal ){ 001620 #ifdef SQLITE_ENABLE_STAT4 001621 rc = ExpandBlob(*ppVal); 001622 #else 001623 /* zero-blobs only come from functions, not literal values. And 001624 ** functions are only processed under STAT4 */ 001625 assert( (ppVal[0][0].flags & MEM_Zero)==0 ); 001626 #endif 001627 sqlite3VdbeMemCast(*ppVal, aff, enc); 001628 sqlite3ValueApplyAffinity(*ppVal, affinity, enc); 001629 } 001630 return rc; 001631 } 001632 001633 /* Handle negative integers in a single step. This is needed in the 001634 ** case when the value is -9223372036854775808. 001635 */ 001636 if( op==TK_UMINUS 001637 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 001638 pExpr = pExpr->pLeft; 001639 op = pExpr->op; 001640 negInt = -1; 001641 zNeg = "-"; 001642 } 001643 001644 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 001645 pVal = valueNew(db, pCtx); 001646 if( pVal==0 ) goto no_mem; 001647 if( ExprHasProperty(pExpr, EP_IntValue) ){ 001648 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 001649 }else{ 001650 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 001651 if( zVal==0 ) goto no_mem; 001652 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 001653 } 001654 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 001655 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 001656 }else{ 001657 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 001658 } 001659 assert( (pVal->flags & MEM_IntReal)==0 ); 001660 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ 001661 testcase( pVal->flags & MEM_Int ); 001662 testcase( pVal->flags & MEM_Real ); 001663 pVal->flags &= ~MEM_Str; 001664 } 001665 if( enc!=SQLITE_UTF8 ){ 001666 rc = sqlite3VdbeChangeEncoding(pVal, enc); 001667 } 001668 }else if( op==TK_UMINUS ) { 001669 /* This branch happens for multiple negative signs. Ex: -(-5) */ 001670 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 001671 && pVal!=0 001672 ){ 001673 sqlite3VdbeMemNumerify(pVal); 001674 if( pVal->flags & MEM_Real ){ 001675 pVal->u.r = -pVal->u.r; 001676 }else if( pVal->u.i==SMALLEST_INT64 ){ 001677 #ifndef SQLITE_OMIT_FLOATING_POINT 001678 pVal->u.r = -(double)SMALLEST_INT64; 001679 #else 001680 pVal->u.r = LARGEST_INT64; 001681 #endif 001682 MemSetTypeFlag(pVal, MEM_Real); 001683 }else{ 001684 pVal->u.i = -pVal->u.i; 001685 } 001686 sqlite3ValueApplyAffinity(pVal, affinity, enc); 001687 } 001688 }else if( op==TK_NULL ){ 001689 pVal = valueNew(db, pCtx); 001690 if( pVal==0 ) goto no_mem; 001691 sqlite3VdbeMemSetNull(pVal); 001692 } 001693 #ifndef SQLITE_OMIT_BLOB_LITERAL 001694 else if( op==TK_BLOB ){ 001695 int nVal; 001696 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 001697 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 001698 assert( pExpr->u.zToken[1]=='\'' ); 001699 pVal = valueNew(db, pCtx); 001700 if( !pVal ) goto no_mem; 001701 zVal = &pExpr->u.zToken[2]; 001702 nVal = sqlite3Strlen30(zVal)-1; 001703 assert( zVal[nVal]=='\'' ); 001704 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 001705 0, SQLITE_DYNAMIC); 001706 } 001707 #endif 001708 #ifdef SQLITE_ENABLE_STAT4 001709 else if( op==TK_FUNCTION && pCtx!=0 ){ 001710 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 001711 } 001712 #endif 001713 else if( op==TK_TRUEFALSE ){ 001714 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 001715 pVal = valueNew(db, pCtx); 001716 if( pVal ){ 001717 pVal->flags = MEM_Int; 001718 pVal->u.i = pExpr->u.zToken[4]==0; 001719 } 001720 } 001721 001722 *ppVal = pVal; 001723 return rc; 001724 001725 no_mem: 001726 #ifdef SQLITE_ENABLE_STAT4 001727 if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) ) 001728 #endif 001729 sqlite3OomFault(db); 001730 sqlite3DbFree(db, zVal); 001731 assert( *ppVal==0 ); 001732 #ifdef SQLITE_ENABLE_STAT4 001733 if( pCtx==0 ) sqlite3ValueFree(pVal); 001734 #else 001735 assert( pCtx==0 ); sqlite3ValueFree(pVal); 001736 #endif 001737 return SQLITE_NOMEM_BKPT; 001738 } 001739 001740 /* 001741 ** Create a new sqlite3_value object, containing the value of pExpr. 001742 ** 001743 ** This only works for very simple expressions that consist of one constant 001744 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 001745 ** be converted directly into a value, then the value is allocated and 001746 ** a pointer written to *ppVal. The caller is responsible for deallocating 001747 ** the value by passing it to sqlite3ValueFree() later on. If the expression 001748 ** cannot be converted to a value, then *ppVal is set to NULL. 001749 */ 001750 int sqlite3ValueFromExpr( 001751 sqlite3 *db, /* The database connection */ 001752 const Expr *pExpr, /* The expression to evaluate */ 001753 u8 enc, /* Encoding to use */ 001754 u8 affinity, /* Affinity to use */ 001755 sqlite3_value **ppVal /* Write the new value here */ 001756 ){ 001757 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 001758 } 001759 001760 #ifdef SQLITE_ENABLE_STAT4 001761 /* 001762 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 001763 ** 001764 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 001765 ** pAlloc if one does not exist and the new value is added to the 001766 ** UnpackedRecord object. 001767 ** 001768 ** A value is extracted in the following cases: 001769 ** 001770 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 001771 ** 001772 ** * The expression is a bound variable, and this is a reprepare, or 001773 ** 001774 ** * The expression is a literal value. 001775 ** 001776 ** On success, *ppVal is made to point to the extracted value. The caller 001777 ** is responsible for ensuring that the value is eventually freed. 001778 */ 001779 static int stat4ValueFromExpr( 001780 Parse *pParse, /* Parse context */ 001781 Expr *pExpr, /* The expression to extract a value from */ 001782 u8 affinity, /* Affinity to use */ 001783 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 001784 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 001785 ){ 001786 int rc = SQLITE_OK; 001787 sqlite3_value *pVal = 0; 001788 sqlite3 *db = pParse->db; 001789 001790 /* Skip over any TK_COLLATE nodes */ 001791 pExpr = sqlite3ExprSkipCollate(pExpr); 001792 001793 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 001794 if( !pExpr ){ 001795 pVal = valueNew(db, pAlloc); 001796 if( pVal ){ 001797 sqlite3VdbeMemSetNull((Mem*)pVal); 001798 } 001799 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 001800 Vdbe *v; 001801 int iBindVar = pExpr->iColumn; 001802 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 001803 if( (v = pParse->pReprepare)!=0 ){ 001804 pVal = valueNew(db, pAlloc); 001805 if( pVal ){ 001806 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 001807 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 001808 pVal->db = pParse->db; 001809 } 001810 } 001811 }else{ 001812 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 001813 } 001814 001815 assert( pVal==0 || pVal->db==db ); 001816 *ppVal = pVal; 001817 return rc; 001818 } 001819 001820 /* 001821 ** This function is used to allocate and populate UnpackedRecord 001822 ** structures intended to be compared against sample index keys stored 001823 ** in the sqlite_stat4 table. 001824 ** 001825 ** A single call to this function populates zero or more fields of the 001826 ** record starting with field iVal (fields are numbered from left to 001827 ** right starting with 0). A single field is populated if: 001828 ** 001829 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 001830 ** 001831 ** * The expression is a bound variable, and this is a reprepare, or 001832 ** 001833 ** * The sqlite3ValueFromExpr() function is able to extract a value 001834 ** from the expression (i.e. the expression is a literal value). 001835 ** 001836 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 001837 ** vector components that match either of the two latter criteria listed 001838 ** above. 001839 ** 001840 ** Before any value is appended to the record, the affinity of the 001841 ** corresponding column within index pIdx is applied to it. Before 001842 ** this function returns, output parameter *pnExtract is set to the 001843 ** number of values appended to the record. 001844 ** 001845 ** When this function is called, *ppRec must either point to an object 001846 ** allocated by an earlier call to this function, or must be NULL. If it 001847 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 001848 ** is allocated (and *ppRec set to point to it) before returning. 001849 ** 001850 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 001851 ** error if a value cannot be extracted from pExpr. If an error does 001852 ** occur, an SQLite error code is returned. 001853 */ 001854 int sqlite3Stat4ProbeSetValue( 001855 Parse *pParse, /* Parse context */ 001856 Index *pIdx, /* Index being probed */ 001857 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 001858 Expr *pExpr, /* The expression to extract a value from */ 001859 int nElem, /* Maximum number of values to append */ 001860 int iVal, /* Array element to populate */ 001861 int *pnExtract /* OUT: Values appended to the record */ 001862 ){ 001863 int rc = SQLITE_OK; 001864 int nExtract = 0; 001865 001866 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 001867 int i; 001868 struct ValueNewStat4Ctx alloc; 001869 001870 alloc.pParse = pParse; 001871 alloc.pIdx = pIdx; 001872 alloc.ppRec = ppRec; 001873 001874 for(i=0; i<nElem; i++){ 001875 sqlite3_value *pVal = 0; 001876 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 001877 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 001878 alloc.iVal = iVal+i; 001879 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 001880 if( !pVal ) break; 001881 nExtract++; 001882 } 001883 } 001884 001885 *pnExtract = nExtract; 001886 return rc; 001887 } 001888 001889 /* 001890 ** Attempt to extract a value from expression pExpr using the methods 001891 ** as described for sqlite3Stat4ProbeSetValue() above. 001892 ** 001893 ** If successful, set *ppVal to point to a new value object and return 001894 ** SQLITE_OK. If no value can be extracted, but no other error occurs 001895 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 001896 ** does occur, return an SQLite error code. The final value of *ppVal 001897 ** is undefined in this case. 001898 */ 001899 int sqlite3Stat4ValueFromExpr( 001900 Parse *pParse, /* Parse context */ 001901 Expr *pExpr, /* The expression to extract a value from */ 001902 u8 affinity, /* Affinity to use */ 001903 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 001904 ){ 001905 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 001906 } 001907 001908 /* 001909 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 001910 ** the column value into *ppVal. If *ppVal is initially NULL then a new 001911 ** sqlite3_value object is allocated. 001912 ** 001913 ** If *ppVal is initially NULL then the caller is responsible for 001914 ** ensuring that the value written into *ppVal is eventually freed. 001915 */ 001916 int sqlite3Stat4Column( 001917 sqlite3 *db, /* Database handle */ 001918 const void *pRec, /* Pointer to buffer containing record */ 001919 int nRec, /* Size of buffer pRec in bytes */ 001920 int iCol, /* Column to extract */ 001921 sqlite3_value **ppVal /* OUT: Extracted value */ 001922 ){ 001923 u32 t = 0; /* a column type code */ 001924 int nHdr; /* Size of the header in the record */ 001925 int iHdr; /* Next unread header byte */ 001926 int iField; /* Next unread data byte */ 001927 int szField = 0; /* Size of the current data field */ 001928 int i; /* Column index */ 001929 u8 *a = (u8*)pRec; /* Typecast byte array */ 001930 Mem *pMem = *ppVal; /* Write result into this Mem object */ 001931 001932 assert( iCol>0 ); 001933 iHdr = getVarint32(a, nHdr); 001934 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 001935 iField = nHdr; 001936 for(i=0; i<=iCol; i++){ 001937 iHdr += getVarint32(&a[iHdr], t); 001938 testcase( iHdr==nHdr ); 001939 testcase( iHdr==nHdr+1 ); 001940 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 001941 szField = sqlite3VdbeSerialTypeLen(t); 001942 iField += szField; 001943 } 001944 testcase( iField==nRec ); 001945 testcase( iField==nRec+1 ); 001946 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 001947 if( pMem==0 ){ 001948 pMem = *ppVal = sqlite3ValueNew(db); 001949 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 001950 } 001951 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 001952 pMem->enc = ENC(db); 001953 return SQLITE_OK; 001954 } 001955 001956 /* 001957 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 001958 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 001959 ** the object. 001960 */ 001961 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 001962 if( pRec ){ 001963 int i; 001964 int nCol = pRec->pKeyInfo->nAllField; 001965 Mem *aMem = pRec->aMem; 001966 sqlite3 *db = aMem[0].db; 001967 for(i=0; i<nCol; i++){ 001968 sqlite3VdbeMemRelease(&aMem[i]); 001969 } 001970 sqlite3KeyInfoUnref(pRec->pKeyInfo); 001971 sqlite3DbFreeNN(db, pRec); 001972 } 001973 } 001974 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 001975 001976 /* 001977 ** Change the string value of an sqlite3_value object 001978 */ 001979 void sqlite3ValueSetStr( 001980 sqlite3_value *v, /* Value to be set */ 001981 int n, /* Length of string z */ 001982 const void *z, /* Text of the new string */ 001983 u8 enc, /* Encoding to use */ 001984 void (*xDel)(void*) /* Destructor for the string */ 001985 ){ 001986 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 001987 } 001988 001989 /* 001990 ** Free an sqlite3_value object 001991 */ 001992 void sqlite3ValueFree(sqlite3_value *v){ 001993 if( !v ) return; 001994 sqlite3VdbeMemRelease((Mem *)v); 001995 sqlite3DbFreeNN(((Mem*)v)->db, v); 001996 } 001997 001998 /* 001999 ** The sqlite3ValueBytes() routine returns the number of bytes in the 002000 ** sqlite3_value object assuming that it uses the encoding "enc". 002001 ** The valueBytes() routine is a helper function. 002002 */ 002003 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 002004 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 002005 } 002006 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 002007 Mem *p = (Mem*)pVal; 002008 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 002009 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 002010 return p->n; 002011 } 002012 if( (p->flags & MEM_Str)!=0 && enc!=SQLITE_UTF8 && pVal->enc!=SQLITE_UTF8 ){ 002013 return p->n; 002014 } 002015 if( (p->flags & MEM_Blob)!=0 ){ 002016 if( p->flags & MEM_Zero ){ 002017 return p->n + p->u.nZero; 002018 }else{ 002019 return p->n; 002020 } 002021 } 002022 if( p->flags & MEM_Null ) return 0; 002023 return valueBytes(pVal, enc); 002024 }