000001 /* 000002 ** 2004 May 26 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** 000013 ** This file contains code use to implement APIs that are part of the 000014 ** VDBE. 000015 */ 000016 #include "sqliteInt.h" 000017 #include "vdbeInt.h" 000018 #include "opcodes.h" 000019 000020 #ifndef SQLITE_OMIT_DEPRECATED 000021 /* 000022 ** Return TRUE (non-zero) of the statement supplied as an argument needs 000023 ** to be recompiled. A statement needs to be recompiled whenever the 000024 ** execution environment changes in a way that would alter the program 000025 ** that sqlite3_prepare() generates. For example, if new functions or 000026 ** collating sequences are registered or if an authorizer function is 000027 ** added or changed. 000028 */ 000029 int sqlite3_expired(sqlite3_stmt *pStmt){ 000030 Vdbe *p = (Vdbe*)pStmt; 000031 return p==0 || p->expired; 000032 } 000033 #endif 000034 000035 /* 000036 ** Check on a Vdbe to make sure it has not been finalized. Log 000037 ** an error and return true if it has been finalized (or is otherwise 000038 ** invalid). Return false if it is ok. 000039 */ 000040 static int vdbeSafety(Vdbe *p){ 000041 if( p->db==0 ){ 000042 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 000043 return 1; 000044 }else{ 000045 return 0; 000046 } 000047 } 000048 static int vdbeSafetyNotNull(Vdbe *p){ 000049 if( p==0 ){ 000050 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 000051 return 1; 000052 }else{ 000053 return vdbeSafety(p); 000054 } 000055 } 000056 000057 #ifndef SQLITE_OMIT_TRACE 000058 /* 000059 ** Invoke the profile callback. This routine is only called if we already 000060 ** know that the profile callback is defined and needs to be invoked. 000061 */ 000062 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 000063 sqlite3_int64 iNow; 000064 sqlite3_int64 iElapse; 000065 assert( p->startTime>0 ); 000066 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); 000067 assert( db->init.busy==0 ); 000068 assert( p->zSql!=0 ); 000069 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 000070 iElapse = (iNow - p->startTime)*1000000; 000071 #ifndef SQLITE_OMIT_DEPRECATED 000072 if( db->xProfile ){ 000073 db->xProfile(db->pProfileArg, p->zSql, iElapse); 000074 } 000075 #endif 000076 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 000077 db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 000078 } 000079 p->startTime = 0; 000080 } 000081 /* 000082 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 000083 ** is needed, and it invokes the callback if it is needed. 000084 */ 000085 # define checkProfileCallback(DB,P) \ 000086 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 000087 #else 000088 # define checkProfileCallback(DB,P) /*no-op*/ 000089 #endif 000090 000091 /* 000092 ** The following routine destroys a virtual machine that is created by 000093 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 000094 ** success/failure code that describes the result of executing the virtual 000095 ** machine. 000096 ** 000097 ** This routine sets the error code and string returned by 000098 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 000099 */ 000100 int sqlite3_finalize(sqlite3_stmt *pStmt){ 000101 int rc; 000102 if( pStmt==0 ){ 000103 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 000104 ** pointer is a harmless no-op. */ 000105 rc = SQLITE_OK; 000106 }else{ 000107 Vdbe *v = (Vdbe*)pStmt; 000108 sqlite3 *db = v->db; 000109 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 000110 sqlite3_mutex_enter(db->mutex); 000111 checkProfileCallback(db, v); 000112 assert( v->eVdbeState>=VDBE_READY_STATE ); 000113 rc = sqlite3VdbeReset(v); 000114 sqlite3VdbeDelete(v); 000115 rc = sqlite3ApiExit(db, rc); 000116 sqlite3LeaveMutexAndCloseZombie(db); 000117 } 000118 return rc; 000119 } 000120 000121 /* 000122 ** Terminate the current execution of an SQL statement and reset it 000123 ** back to its starting state so that it can be reused. A success code from 000124 ** the prior execution is returned. 000125 ** 000126 ** This routine sets the error code and string returned by 000127 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 000128 */ 000129 int sqlite3_reset(sqlite3_stmt *pStmt){ 000130 int rc; 000131 if( pStmt==0 ){ 000132 rc = SQLITE_OK; 000133 }else{ 000134 Vdbe *v = (Vdbe*)pStmt; 000135 sqlite3 *db = v->db; 000136 sqlite3_mutex_enter(db->mutex); 000137 checkProfileCallback(db, v); 000138 rc = sqlite3VdbeReset(v); 000139 sqlite3VdbeRewind(v); 000140 assert( (rc & (db->errMask))==rc ); 000141 rc = sqlite3ApiExit(db, rc); 000142 sqlite3_mutex_leave(db->mutex); 000143 } 000144 return rc; 000145 } 000146 000147 /* 000148 ** Set all the parameters in the compiled SQL statement to NULL. 000149 */ 000150 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 000151 int i; 000152 int rc = SQLITE_OK; 000153 Vdbe *p = (Vdbe*)pStmt; 000154 #if SQLITE_THREADSAFE 000155 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 000156 #endif 000157 sqlite3_mutex_enter(mutex); 000158 for(i=0; i<p->nVar; i++){ 000159 sqlite3VdbeMemRelease(&p->aVar[i]); 000160 p->aVar[i].flags = MEM_Null; 000161 } 000162 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 000163 if( p->expmask ){ 000164 p->expired = 1; 000165 } 000166 sqlite3_mutex_leave(mutex); 000167 return rc; 000168 } 000169 000170 000171 /**************************** sqlite3_value_ ******************************* 000172 ** The following routines extract information from a Mem or sqlite3_value 000173 ** structure. 000174 */ 000175 const void *sqlite3_value_blob(sqlite3_value *pVal){ 000176 Mem *p = (Mem*)pVal; 000177 if( p->flags & (MEM_Blob|MEM_Str) ){ 000178 if( ExpandBlob(p)!=SQLITE_OK ){ 000179 assert( p->flags==MEM_Null && p->z==0 ); 000180 return 0; 000181 } 000182 p->flags |= MEM_Blob; 000183 return p->n ? p->z : 0; 000184 }else{ 000185 return sqlite3_value_text(pVal); 000186 } 000187 } 000188 int sqlite3_value_bytes(sqlite3_value *pVal){ 000189 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 000190 } 000191 int sqlite3_value_bytes16(sqlite3_value *pVal){ 000192 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 000193 } 000194 double sqlite3_value_double(sqlite3_value *pVal){ 000195 return sqlite3VdbeRealValue((Mem*)pVal); 000196 } 000197 int sqlite3_value_int(sqlite3_value *pVal){ 000198 return (int)sqlite3VdbeIntValue((Mem*)pVal); 000199 } 000200 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 000201 return sqlite3VdbeIntValue((Mem*)pVal); 000202 } 000203 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 000204 Mem *pMem = (Mem*)pVal; 000205 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 000206 } 000207 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 000208 Mem *p = (Mem*)pVal; 000209 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 000210 (MEM_Null|MEM_Term|MEM_Subtype) 000211 && zPType!=0 000212 && p->eSubtype=='p' 000213 && strcmp(p->u.zPType, zPType)==0 000214 ){ 000215 return (void*)p->z; 000216 }else{ 000217 return 0; 000218 } 000219 } 000220 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 000221 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 000222 } 000223 #ifndef SQLITE_OMIT_UTF16 000224 const void *sqlite3_value_text16(sqlite3_value* pVal){ 000225 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 000226 } 000227 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 000228 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 000229 } 000230 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 000231 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 000232 } 000233 #endif /* SQLITE_OMIT_UTF16 */ 000234 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 000235 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 000236 ** point number string BLOB NULL 000237 */ 000238 int sqlite3_value_type(sqlite3_value* pVal){ 000239 static const u8 aType[] = { 000240 SQLITE_BLOB, /* 0x00 (not possible) */ 000241 SQLITE_NULL, /* 0x01 NULL */ 000242 SQLITE_TEXT, /* 0x02 TEXT */ 000243 SQLITE_NULL, /* 0x03 (not possible) */ 000244 SQLITE_INTEGER, /* 0x04 INTEGER */ 000245 SQLITE_NULL, /* 0x05 (not possible) */ 000246 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ 000247 SQLITE_NULL, /* 0x07 (not possible) */ 000248 SQLITE_FLOAT, /* 0x08 FLOAT */ 000249 SQLITE_NULL, /* 0x09 (not possible) */ 000250 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ 000251 SQLITE_NULL, /* 0x0b (not possible) */ 000252 SQLITE_INTEGER, /* 0x0c (not possible) */ 000253 SQLITE_NULL, /* 0x0d (not possible) */ 000254 SQLITE_INTEGER, /* 0x0e (not possible) */ 000255 SQLITE_NULL, /* 0x0f (not possible) */ 000256 SQLITE_BLOB, /* 0x10 BLOB */ 000257 SQLITE_NULL, /* 0x11 (not possible) */ 000258 SQLITE_TEXT, /* 0x12 (not possible) */ 000259 SQLITE_NULL, /* 0x13 (not possible) */ 000260 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ 000261 SQLITE_NULL, /* 0x15 (not possible) */ 000262 SQLITE_INTEGER, /* 0x16 (not possible) */ 000263 SQLITE_NULL, /* 0x17 (not possible) */ 000264 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ 000265 SQLITE_NULL, /* 0x19 (not possible) */ 000266 SQLITE_FLOAT, /* 0x1a (not possible) */ 000267 SQLITE_NULL, /* 0x1b (not possible) */ 000268 SQLITE_INTEGER, /* 0x1c (not possible) */ 000269 SQLITE_NULL, /* 0x1d (not possible) */ 000270 SQLITE_INTEGER, /* 0x1e (not possible) */ 000271 SQLITE_NULL, /* 0x1f (not possible) */ 000272 SQLITE_FLOAT, /* 0x20 INTREAL */ 000273 SQLITE_NULL, /* 0x21 (not possible) */ 000274 SQLITE_FLOAT, /* 0x22 INTREAL + TEXT */ 000275 SQLITE_NULL, /* 0x23 (not possible) */ 000276 SQLITE_FLOAT, /* 0x24 (not possible) */ 000277 SQLITE_NULL, /* 0x25 (not possible) */ 000278 SQLITE_FLOAT, /* 0x26 (not possible) */ 000279 SQLITE_NULL, /* 0x27 (not possible) */ 000280 SQLITE_FLOAT, /* 0x28 (not possible) */ 000281 SQLITE_NULL, /* 0x29 (not possible) */ 000282 SQLITE_FLOAT, /* 0x2a (not possible) */ 000283 SQLITE_NULL, /* 0x2b (not possible) */ 000284 SQLITE_FLOAT, /* 0x2c (not possible) */ 000285 SQLITE_NULL, /* 0x2d (not possible) */ 000286 SQLITE_FLOAT, /* 0x2e (not possible) */ 000287 SQLITE_NULL, /* 0x2f (not possible) */ 000288 SQLITE_BLOB, /* 0x30 (not possible) */ 000289 SQLITE_NULL, /* 0x31 (not possible) */ 000290 SQLITE_TEXT, /* 0x32 (not possible) */ 000291 SQLITE_NULL, /* 0x33 (not possible) */ 000292 SQLITE_FLOAT, /* 0x34 (not possible) */ 000293 SQLITE_NULL, /* 0x35 (not possible) */ 000294 SQLITE_FLOAT, /* 0x36 (not possible) */ 000295 SQLITE_NULL, /* 0x37 (not possible) */ 000296 SQLITE_FLOAT, /* 0x38 (not possible) */ 000297 SQLITE_NULL, /* 0x39 (not possible) */ 000298 SQLITE_FLOAT, /* 0x3a (not possible) */ 000299 SQLITE_NULL, /* 0x3b (not possible) */ 000300 SQLITE_FLOAT, /* 0x3c (not possible) */ 000301 SQLITE_NULL, /* 0x3d (not possible) */ 000302 SQLITE_FLOAT, /* 0x3e (not possible) */ 000303 SQLITE_NULL, /* 0x3f (not possible) */ 000304 }; 000305 #ifdef SQLITE_DEBUG 000306 { 000307 int eType = SQLITE_BLOB; 000308 if( pVal->flags & MEM_Null ){ 000309 eType = SQLITE_NULL; 000310 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ 000311 eType = SQLITE_FLOAT; 000312 }else if( pVal->flags & MEM_Int ){ 000313 eType = SQLITE_INTEGER; 000314 }else if( pVal->flags & MEM_Str ){ 000315 eType = SQLITE_TEXT; 000316 } 000317 assert( eType == aType[pVal->flags&MEM_AffMask] ); 000318 } 000319 #endif 000320 return aType[pVal->flags&MEM_AffMask]; 000321 } 000322 int sqlite3_value_encoding(sqlite3_value *pVal){ 000323 return pVal->enc; 000324 } 000325 000326 /* Return true if a parameter to xUpdate represents an unchanged column */ 000327 int sqlite3_value_nochange(sqlite3_value *pVal){ 000328 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 000329 } 000330 000331 /* Return true if a parameter value originated from an sqlite3_bind() */ 000332 int sqlite3_value_frombind(sqlite3_value *pVal){ 000333 return (pVal->flags&MEM_FromBind)!=0; 000334 } 000335 000336 /* Make a copy of an sqlite3_value object 000337 */ 000338 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 000339 sqlite3_value *pNew; 000340 if( pOrig==0 ) return 0; 000341 pNew = sqlite3_malloc( sizeof(*pNew) ); 000342 if( pNew==0 ) return 0; 000343 memset(pNew, 0, sizeof(*pNew)); 000344 memcpy(pNew, pOrig, MEMCELLSIZE); 000345 pNew->flags &= ~MEM_Dyn; 000346 pNew->db = 0; 000347 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 000348 pNew->flags &= ~(MEM_Static|MEM_Dyn); 000349 pNew->flags |= MEM_Ephem; 000350 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 000351 sqlite3ValueFree(pNew); 000352 pNew = 0; 000353 } 000354 }else if( pNew->flags & MEM_Null ){ 000355 /* Do not duplicate pointer values */ 000356 pNew->flags &= ~(MEM_Term|MEM_Subtype); 000357 } 000358 return pNew; 000359 } 000360 000361 /* Destroy an sqlite3_value object previously obtained from 000362 ** sqlite3_value_dup(). 000363 */ 000364 void sqlite3_value_free(sqlite3_value *pOld){ 000365 sqlite3ValueFree(pOld); 000366 } 000367 000368 000369 /**************************** sqlite3_result_ ******************************* 000370 ** The following routines are used by user-defined functions to specify 000371 ** the function result. 000372 ** 000373 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 000374 ** result as a string or blob. Appropriate errors are set if the string/blob 000375 ** is too big or if an OOM occurs. 000376 ** 000377 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 000378 ** on value P is not going to be used and need to be destroyed. 000379 */ 000380 static void setResultStrOrError( 000381 sqlite3_context *pCtx, /* Function context */ 000382 const char *z, /* String pointer */ 000383 int n, /* Bytes in string, or negative */ 000384 u8 enc, /* Encoding of z. 0 for BLOBs */ 000385 void (*xDel)(void*) /* Destructor function */ 000386 ){ 000387 Mem *pOut = pCtx->pOut; 000388 int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel); 000389 if( rc ){ 000390 if( rc==SQLITE_TOOBIG ){ 000391 sqlite3_result_error_toobig(pCtx); 000392 }else{ 000393 /* The only errors possible from sqlite3VdbeMemSetStr are 000394 ** SQLITE_TOOBIG and SQLITE_NOMEM */ 000395 assert( rc==SQLITE_NOMEM ); 000396 sqlite3_result_error_nomem(pCtx); 000397 } 000398 return; 000399 } 000400 sqlite3VdbeChangeEncoding(pOut, pCtx->enc); 000401 if( sqlite3VdbeMemTooBig(pOut) ){ 000402 sqlite3_result_error_toobig(pCtx); 000403 } 000404 } 000405 static int invokeValueDestructor( 000406 const void *p, /* Value to destroy */ 000407 void (*xDel)(void*), /* The destructor */ 000408 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 000409 ){ 000410 assert( xDel!=SQLITE_DYNAMIC ); 000411 if( xDel==0 ){ 000412 /* noop */ 000413 }else if( xDel==SQLITE_TRANSIENT ){ 000414 /* noop */ 000415 }else{ 000416 xDel((void*)p); 000417 } 000418 sqlite3_result_error_toobig(pCtx); 000419 return SQLITE_TOOBIG; 000420 } 000421 void sqlite3_result_blob( 000422 sqlite3_context *pCtx, 000423 const void *z, 000424 int n, 000425 void (*xDel)(void *) 000426 ){ 000427 assert( n>=0 ); 000428 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000429 setResultStrOrError(pCtx, z, n, 0, xDel); 000430 } 000431 void sqlite3_result_blob64( 000432 sqlite3_context *pCtx, 000433 const void *z, 000434 sqlite3_uint64 n, 000435 void (*xDel)(void *) 000436 ){ 000437 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000438 assert( xDel!=SQLITE_DYNAMIC ); 000439 if( n>0x7fffffff ){ 000440 (void)invokeValueDestructor(z, xDel, pCtx); 000441 }else{ 000442 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 000443 } 000444 } 000445 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 000446 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000447 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 000448 } 000449 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 000450 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000451 pCtx->isError = SQLITE_ERROR; 000452 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 000453 } 000454 #ifndef SQLITE_OMIT_UTF16 000455 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 000456 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000457 pCtx->isError = SQLITE_ERROR; 000458 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 000459 } 000460 #endif 000461 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 000462 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000463 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 000464 } 000465 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 000466 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000467 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 000468 } 000469 void sqlite3_result_null(sqlite3_context *pCtx){ 000470 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000471 sqlite3VdbeMemSetNull(pCtx->pOut); 000472 } 000473 void sqlite3_result_pointer( 000474 sqlite3_context *pCtx, 000475 void *pPtr, 000476 const char *zPType, 000477 void (*xDestructor)(void*) 000478 ){ 000479 Mem *pOut = pCtx->pOut; 000480 assert( sqlite3_mutex_held(pOut->db->mutex) ); 000481 sqlite3VdbeMemRelease(pOut); 000482 pOut->flags = MEM_Null; 000483 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 000484 } 000485 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 000486 Mem *pOut = pCtx->pOut; 000487 assert( sqlite3_mutex_held(pOut->db->mutex) ); 000488 pOut->eSubtype = eSubtype & 0xff; 000489 pOut->flags |= MEM_Subtype; 000490 } 000491 void sqlite3_result_text( 000492 sqlite3_context *pCtx, 000493 const char *z, 000494 int n, 000495 void (*xDel)(void *) 000496 ){ 000497 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000498 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 000499 } 000500 void sqlite3_result_text64( 000501 sqlite3_context *pCtx, 000502 const char *z, 000503 sqlite3_uint64 n, 000504 void (*xDel)(void *), 000505 unsigned char enc 000506 ){ 000507 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000508 assert( xDel!=SQLITE_DYNAMIC ); 000509 if( enc!=SQLITE_UTF8 ){ 000510 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 000511 n &= ~(u64)1; 000512 } 000513 if( n>0x7fffffff ){ 000514 (void)invokeValueDestructor(z, xDel, pCtx); 000515 }else{ 000516 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 000517 sqlite3VdbeMemZeroTerminateIfAble(pCtx->pOut); 000518 } 000519 } 000520 #ifndef SQLITE_OMIT_UTF16 000521 void sqlite3_result_text16( 000522 sqlite3_context *pCtx, 000523 const void *z, 000524 int n, 000525 void (*xDel)(void *) 000526 ){ 000527 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000528 setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16NATIVE, xDel); 000529 } 000530 void sqlite3_result_text16be( 000531 sqlite3_context *pCtx, 000532 const void *z, 000533 int n, 000534 void (*xDel)(void *) 000535 ){ 000536 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000537 setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16BE, xDel); 000538 } 000539 void sqlite3_result_text16le( 000540 sqlite3_context *pCtx, 000541 const void *z, 000542 int n, 000543 void (*xDel)(void *) 000544 ){ 000545 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000546 setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16LE, xDel); 000547 } 000548 #endif /* SQLITE_OMIT_UTF16 */ 000549 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 000550 Mem *pOut = pCtx->pOut; 000551 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000552 sqlite3VdbeMemCopy(pOut, pValue); 000553 sqlite3VdbeChangeEncoding(pOut, pCtx->enc); 000554 if( sqlite3VdbeMemTooBig(pOut) ){ 000555 sqlite3_result_error_toobig(pCtx); 000556 } 000557 } 000558 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 000559 sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0); 000560 } 000561 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 000562 Mem *pOut = pCtx->pOut; 000563 assert( sqlite3_mutex_held(pOut->db->mutex) ); 000564 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 000565 sqlite3_result_error_toobig(pCtx); 000566 return SQLITE_TOOBIG; 000567 } 000568 #ifndef SQLITE_OMIT_INCRBLOB 000569 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 000570 return SQLITE_OK; 000571 #else 000572 return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 000573 #endif 000574 } 000575 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 000576 pCtx->isError = errCode ? errCode : -1; 000577 #ifdef SQLITE_DEBUG 000578 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 000579 #endif 000580 if( pCtx->pOut->flags & MEM_Null ){ 000581 setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8, 000582 SQLITE_STATIC); 000583 } 000584 } 000585 000586 /* Force an SQLITE_TOOBIG error. */ 000587 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 000588 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000589 pCtx->isError = SQLITE_TOOBIG; 000590 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 000591 SQLITE_UTF8, SQLITE_STATIC); 000592 } 000593 000594 /* An SQLITE_NOMEM error. */ 000595 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 000596 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000597 sqlite3VdbeMemSetNull(pCtx->pOut); 000598 pCtx->isError = SQLITE_NOMEM_BKPT; 000599 sqlite3OomFault(pCtx->pOut->db); 000600 } 000601 000602 #ifndef SQLITE_UNTESTABLE 000603 /* Force the INT64 value currently stored as the result to be 000604 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL 000605 ** test-control. 000606 */ 000607 void sqlite3ResultIntReal(sqlite3_context *pCtx){ 000608 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 000609 if( pCtx->pOut->flags & MEM_Int ){ 000610 pCtx->pOut->flags &= ~MEM_Int; 000611 pCtx->pOut->flags |= MEM_IntReal; 000612 } 000613 } 000614 #endif 000615 000616 000617 /* 000618 ** This function is called after a transaction has been committed. It 000619 ** invokes callbacks registered with sqlite3_wal_hook() as required. 000620 */ 000621 static int doWalCallbacks(sqlite3 *db){ 000622 int rc = SQLITE_OK; 000623 #ifndef SQLITE_OMIT_WAL 000624 int i; 000625 for(i=0; i<db->nDb; i++){ 000626 Btree *pBt = db->aDb[i].pBt; 000627 if( pBt ){ 000628 int nEntry; 000629 sqlite3BtreeEnter(pBt); 000630 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 000631 sqlite3BtreeLeave(pBt); 000632 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 000633 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 000634 } 000635 } 000636 } 000637 #endif 000638 return rc; 000639 } 000640 000641 000642 /* 000643 ** Execute the statement pStmt, either until a row of data is ready, the 000644 ** statement is completely executed or an error occurs. 000645 ** 000646 ** This routine implements the bulk of the logic behind the sqlite_step() 000647 ** API. The only thing omitted is the automatic recompile if a 000648 ** schema change has occurred. That detail is handled by the 000649 ** outer sqlite3_step() wrapper procedure. 000650 */ 000651 static int sqlite3Step(Vdbe *p){ 000652 sqlite3 *db; 000653 int rc; 000654 000655 assert(p); 000656 db = p->db; 000657 if( p->eVdbeState!=VDBE_RUN_STATE ){ 000658 restart_step: 000659 if( p->eVdbeState==VDBE_READY_STATE ){ 000660 if( p->expired ){ 000661 p->rc = SQLITE_SCHEMA; 000662 rc = SQLITE_ERROR; 000663 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 000664 /* If this statement was prepared using saved SQL and an 000665 ** error has occurred, then return the error code in p->rc to the 000666 ** caller. Set the error code in the database handle to the same 000667 ** value. 000668 */ 000669 rc = sqlite3VdbeTransferError(p); 000670 } 000671 goto end_of_step; 000672 } 000673 000674 /* If there are no other statements currently running, then 000675 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 000676 ** from interrupting a statement that has not yet started. 000677 */ 000678 if( db->nVdbeActive==0 ){ 000679 AtomicStore(&db->u1.isInterrupted, 0); 000680 } 000681 000682 assert( db->nVdbeWrite>0 || db->autoCommit==0 000683 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 000684 ); 000685 000686 #ifndef SQLITE_OMIT_TRACE 000687 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 000688 && !db->init.busy && p->zSql ){ 000689 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 000690 }else{ 000691 assert( p->startTime==0 ); 000692 } 000693 #endif 000694 000695 db->nVdbeActive++; 000696 if( p->readOnly==0 ) db->nVdbeWrite++; 000697 if( p->bIsReader ) db->nVdbeRead++; 000698 p->pc = 0; 000699 p->eVdbeState = VDBE_RUN_STATE; 000700 }else 000701 000702 if( ALWAYS(p->eVdbeState==VDBE_HALT_STATE) ){ 000703 /* We used to require that sqlite3_reset() be called before retrying 000704 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 000705 ** with version 3.7.0, we changed this so that sqlite3_reset() would 000706 ** be called automatically instead of throwing the SQLITE_MISUSE error. 000707 ** This "automatic-reset" change is not technically an incompatibility, 000708 ** since any application that receives an SQLITE_MISUSE is broken by 000709 ** definition. 000710 ** 000711 ** Nevertheless, some published applications that were originally written 000712 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 000713 ** returns, and those were broken by the automatic-reset change. As a 000714 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 000715 ** legacy behavior of returning SQLITE_MISUSE for cases where the 000716 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 000717 ** or SQLITE_BUSY error. 000718 */ 000719 #ifdef SQLITE_OMIT_AUTORESET 000720 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 000721 sqlite3_reset((sqlite3_stmt*)p); 000722 }else{ 000723 return SQLITE_MISUSE_BKPT; 000724 } 000725 #else 000726 sqlite3_reset((sqlite3_stmt*)p); 000727 #endif 000728 assert( p->eVdbeState==VDBE_READY_STATE ); 000729 goto restart_step; 000730 } 000731 } 000732 000733 #ifdef SQLITE_DEBUG 000734 p->rcApp = SQLITE_OK; 000735 #endif 000736 #ifndef SQLITE_OMIT_EXPLAIN 000737 if( p->explain ){ 000738 rc = sqlite3VdbeList(p); 000739 }else 000740 #endif /* SQLITE_OMIT_EXPLAIN */ 000741 { 000742 db->nVdbeExec++; 000743 rc = sqlite3VdbeExec(p); 000744 db->nVdbeExec--; 000745 } 000746 000747 if( rc==SQLITE_ROW ){ 000748 assert( p->rc==SQLITE_OK ); 000749 assert( db->mallocFailed==0 ); 000750 db->errCode = SQLITE_ROW; 000751 return SQLITE_ROW; 000752 }else{ 000753 #ifndef SQLITE_OMIT_TRACE 000754 /* If the statement completed successfully, invoke the profile callback */ 000755 checkProfileCallback(db, p); 000756 #endif 000757 p->pResultRow = 0; 000758 if( rc==SQLITE_DONE && db->autoCommit ){ 000759 assert( p->rc==SQLITE_OK ); 000760 p->rc = doWalCallbacks(db); 000761 if( p->rc!=SQLITE_OK ){ 000762 rc = SQLITE_ERROR; 000763 } 000764 }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 000765 /* If this statement was prepared using saved SQL and an 000766 ** error has occurred, then return the error code in p->rc to the 000767 ** caller. Set the error code in the database handle to the same value. 000768 */ 000769 rc = sqlite3VdbeTransferError(p); 000770 } 000771 } 000772 000773 db->errCode = rc; 000774 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 000775 p->rc = SQLITE_NOMEM_BKPT; 000776 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc; 000777 } 000778 end_of_step: 000779 /* There are only a limited number of result codes allowed from the 000780 ** statements prepared using the legacy sqlite3_prepare() interface */ 000781 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 000782 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 000783 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 000784 ); 000785 return (rc&db->errMask); 000786 } 000787 000788 /* 000789 ** This is the top-level implementation of sqlite3_step(). Call 000790 ** sqlite3Step() to do most of the work. If a schema error occurs, 000791 ** call sqlite3Reprepare() and try again. 000792 */ 000793 int sqlite3_step(sqlite3_stmt *pStmt){ 000794 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 000795 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 000796 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 000797 sqlite3 *db; /* The database connection */ 000798 000799 if( vdbeSafetyNotNull(v) ){ 000800 return SQLITE_MISUSE_BKPT; 000801 } 000802 db = v->db; 000803 sqlite3_mutex_enter(db->mutex); 000804 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 000805 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 000806 int savedPc = v->pc; 000807 rc = sqlite3Reprepare(v); 000808 if( rc!=SQLITE_OK ){ 000809 /* This case occurs after failing to recompile an sql statement. 000810 ** The error message from the SQL compiler has already been loaded 000811 ** into the database handle. This block copies the error message 000812 ** from the database handle into the statement and sets the statement 000813 ** program counter to 0 to ensure that when the statement is 000814 ** finalized or reset the parser error message is available via 000815 ** sqlite3_errmsg() and sqlite3_errcode(). 000816 */ 000817 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 000818 sqlite3DbFree(db, v->zErrMsg); 000819 if( !db->mallocFailed ){ 000820 v->zErrMsg = sqlite3DbStrDup(db, zErr); 000821 v->rc = rc = sqlite3ApiExit(db, rc); 000822 } else { 000823 v->zErrMsg = 0; 000824 v->rc = rc = SQLITE_NOMEM_BKPT; 000825 } 000826 break; 000827 } 000828 sqlite3_reset(pStmt); 000829 if( savedPc>=0 ){ 000830 /* Setting minWriteFileFormat to 254 is a signal to the OP_Init and 000831 ** OP_Trace opcodes to *not* perform SQLITE_TRACE_STMT because it has 000832 ** already been done once on a prior invocation that failed due to 000833 ** SQLITE_SCHEMA. tag-20220401a */ 000834 v->minWriteFileFormat = 254; 000835 } 000836 assert( v->expired==0 ); 000837 } 000838 sqlite3_mutex_leave(db->mutex); 000839 return rc; 000840 } 000841 000842 000843 /* 000844 ** Extract the user data from a sqlite3_context structure and return a 000845 ** pointer to it. 000846 */ 000847 void *sqlite3_user_data(sqlite3_context *p){ 000848 assert( p && p->pFunc ); 000849 return p->pFunc->pUserData; 000850 } 000851 000852 /* 000853 ** Extract the user data from a sqlite3_context structure and return a 000854 ** pointer to it. 000855 ** 000856 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 000857 ** returns a copy of the pointer to the database connection (the 1st 000858 ** parameter) of the sqlite3_create_function() and 000859 ** sqlite3_create_function16() routines that originally registered the 000860 ** application defined function. 000861 */ 000862 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 000863 assert( p && p->pOut ); 000864 return p->pOut->db; 000865 } 000866 000867 /* 000868 ** If this routine is invoked from within an xColumn method of a virtual 000869 ** table, then it returns true if and only if the the call is during an 000870 ** UPDATE operation and the value of the column will not be modified 000871 ** by the UPDATE. 000872 ** 000873 ** If this routine is called from any context other than within the 000874 ** xColumn method of a virtual table, then the return value is meaningless 000875 ** and arbitrary. 000876 ** 000877 ** Virtual table implements might use this routine to optimize their 000878 ** performance by substituting a NULL result, or some other light-weight 000879 ** value, as a signal to the xUpdate routine that the column is unchanged. 000880 */ 000881 int sqlite3_vtab_nochange(sqlite3_context *p){ 000882 assert( p ); 000883 return sqlite3_value_nochange(p->pOut); 000884 } 000885 000886 /* 000887 ** The destructor function for a ValueList object. This needs to be 000888 ** a separate function, unknowable to the application, to ensure that 000889 ** calls to sqlite3_vtab_in_first()/sqlite3_vtab_in_next() that are not 000890 ** preceded by activation of IN processing via sqlite3_vtab_int() do not 000891 ** try to access a fake ValueList object inserted by a hostile extension. 000892 */ 000893 void sqlite3VdbeValueListFree(void *pToDelete){ 000894 sqlite3_free(pToDelete); 000895 } 000896 000897 /* 000898 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and 000899 ** sqlite3_vtab_in_next() (if bNext!=0). 000900 */ 000901 static int valueFromValueList( 000902 sqlite3_value *pVal, /* Pointer to the ValueList object */ 000903 sqlite3_value **ppOut, /* Store the next value from the list here */ 000904 int bNext /* 1 for _next(). 0 for _first() */ 000905 ){ 000906 int rc; 000907 ValueList *pRhs; 000908 000909 *ppOut = 0; 000910 if( pVal==0 ) return SQLITE_MISUSE; 000911 if( (pVal->flags & MEM_Dyn)==0 || pVal->xDel!=sqlite3VdbeValueListFree ){ 000912 return SQLITE_ERROR; 000913 }else{ 000914 assert( (pVal->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 000915 (MEM_Null|MEM_Term|MEM_Subtype) ); 000916 assert( pVal->eSubtype=='p' ); 000917 assert( pVal->u.zPType!=0 && strcmp(pVal->u.zPType,"ValueList")==0 ); 000918 pRhs = (ValueList*)pVal->z; 000919 } 000920 if( bNext ){ 000921 rc = sqlite3BtreeNext(pRhs->pCsr, 0); 000922 }else{ 000923 int dummy = 0; 000924 rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy); 000925 assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) ); 000926 if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE; 000927 } 000928 if( rc==SQLITE_OK ){ 000929 u32 sz; /* Size of current row in bytes */ 000930 Mem sMem; /* Raw content of current row */ 000931 memset(&sMem, 0, sizeof(sMem)); 000932 sz = sqlite3BtreePayloadSize(pRhs->pCsr); 000933 rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem); 000934 if( rc==SQLITE_OK ){ 000935 u8 *zBuf = (u8*)sMem.z; 000936 u32 iSerial; 000937 sqlite3_value *pOut = pRhs->pOut; 000938 int iOff = 1 + getVarint32(&zBuf[1], iSerial); 000939 sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut); 000940 pOut->enc = ENC(pOut->db); 000941 if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){ 000942 rc = SQLITE_NOMEM; 000943 }else{ 000944 *ppOut = pOut; 000945 } 000946 } 000947 sqlite3VdbeMemRelease(&sMem); 000948 } 000949 return rc; 000950 } 000951 000952 /* 000953 ** Set the iterator value pVal to point to the first value in the set. 000954 ** Set (*ppOut) to point to this value before returning. 000955 */ 000956 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){ 000957 return valueFromValueList(pVal, ppOut, 0); 000958 } 000959 000960 /* 000961 ** Set the iterator value pVal to point to the next value in the set. 000962 ** Set (*ppOut) to point to this value before returning. 000963 */ 000964 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){ 000965 return valueFromValueList(pVal, ppOut, 1); 000966 } 000967 000968 /* 000969 ** Return the current time for a statement. If the current time 000970 ** is requested more than once within the same run of a single prepared 000971 ** statement, the exact same time is returned for each invocation regardless 000972 ** of the amount of time that elapses between invocations. In other words, 000973 ** the time returned is always the time of the first call. 000974 */ 000975 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 000976 int rc; 000977 #ifndef SQLITE_ENABLE_STAT4 000978 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 000979 assert( p->pVdbe!=0 ); 000980 #else 000981 sqlite3_int64 iTime = 0; 000982 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 000983 #endif 000984 if( *piTime==0 ){ 000985 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 000986 if( rc ) *piTime = 0; 000987 } 000988 return *piTime; 000989 } 000990 000991 /* 000992 ** Create a new aggregate context for p and return a pointer to 000993 ** its pMem->z element. 000994 */ 000995 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 000996 Mem *pMem = p->pMem; 000997 assert( (pMem->flags & MEM_Agg)==0 ); 000998 if( nByte<=0 ){ 000999 sqlite3VdbeMemSetNull(pMem); 001000 pMem->z = 0; 001001 }else{ 001002 sqlite3VdbeMemClearAndResize(pMem, nByte); 001003 pMem->flags = MEM_Agg; 001004 pMem->u.pDef = p->pFunc; 001005 if( pMem->z ){ 001006 memset(pMem->z, 0, nByte); 001007 } 001008 } 001009 return (void*)pMem->z; 001010 } 001011 001012 /* 001013 ** Allocate or return the aggregate context for a user function. A new 001014 ** context is allocated on the first call. Subsequent calls return the 001015 ** same context that was returned on prior calls. 001016 */ 001017 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 001018 assert( p && p->pFunc && p->pFunc->xFinalize ); 001019 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 001020 testcase( nByte<0 ); 001021 if( (p->pMem->flags & MEM_Agg)==0 ){ 001022 return createAggContext(p, nByte); 001023 }else{ 001024 return (void*)p->pMem->z; 001025 } 001026 } 001027 001028 /* 001029 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 001030 ** the user-function defined by pCtx. 001031 ** 001032 ** The left-most argument is 0. 001033 ** 001034 ** Undocumented behavior: If iArg is negative then access a cache of 001035 ** auxiliary data pointers that is available to all functions within a 001036 ** single prepared statement. The iArg values must match. 001037 */ 001038 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 001039 AuxData *pAuxData; 001040 001041 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 001042 #if SQLITE_ENABLE_STAT4 001043 if( pCtx->pVdbe==0 ) return 0; 001044 #else 001045 assert( pCtx->pVdbe!=0 ); 001046 #endif 001047 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 001048 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 001049 return pAuxData->pAux; 001050 } 001051 } 001052 return 0; 001053 } 001054 001055 /* 001056 ** Set the auxiliary data pointer and delete function, for the iArg'th 001057 ** argument to the user-function defined by pCtx. Any previous value is 001058 ** deleted by calling the delete function specified when it was set. 001059 ** 001060 ** The left-most argument is 0. 001061 ** 001062 ** Undocumented behavior: If iArg is negative then make the data available 001063 ** to all functions within the current prepared statement using iArg as an 001064 ** access code. 001065 */ 001066 void sqlite3_set_auxdata( 001067 sqlite3_context *pCtx, 001068 int iArg, 001069 void *pAux, 001070 void (*xDelete)(void*) 001071 ){ 001072 AuxData *pAuxData; 001073 Vdbe *pVdbe = pCtx->pVdbe; 001074 001075 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 001076 #ifdef SQLITE_ENABLE_STAT4 001077 if( pVdbe==0 ) goto failed; 001078 #else 001079 assert( pVdbe!=0 ); 001080 #endif 001081 001082 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 001083 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 001084 break; 001085 } 001086 } 001087 if( pAuxData==0 ){ 001088 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 001089 if( !pAuxData ) goto failed; 001090 pAuxData->iAuxOp = pCtx->iOp; 001091 pAuxData->iAuxArg = iArg; 001092 pAuxData->pNextAux = pVdbe->pAuxData; 001093 pVdbe->pAuxData = pAuxData; 001094 if( pCtx->isError==0 ) pCtx->isError = -1; 001095 }else if( pAuxData->xDeleteAux ){ 001096 pAuxData->xDeleteAux(pAuxData->pAux); 001097 } 001098 001099 pAuxData->pAux = pAux; 001100 pAuxData->xDeleteAux = xDelete; 001101 return; 001102 001103 failed: 001104 if( xDelete ){ 001105 xDelete(pAux); 001106 } 001107 } 001108 001109 #ifndef SQLITE_OMIT_DEPRECATED 001110 /* 001111 ** Return the number of times the Step function of an aggregate has been 001112 ** called. 001113 ** 001114 ** This function is deprecated. Do not use it for new code. It is 001115 ** provide only to avoid breaking legacy code. New aggregate function 001116 ** implementations should keep their own counts within their aggregate 001117 ** context. 001118 */ 001119 int sqlite3_aggregate_count(sqlite3_context *p){ 001120 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 001121 return p->pMem->n; 001122 } 001123 #endif 001124 001125 /* 001126 ** Return the number of columns in the result set for the statement pStmt. 001127 */ 001128 int sqlite3_column_count(sqlite3_stmt *pStmt){ 001129 Vdbe *pVm = (Vdbe *)pStmt; 001130 if( pVm==0 ) return 0; 001131 return pVm->nResColumn; 001132 } 001133 001134 /* 001135 ** Return the number of values available from the current row of the 001136 ** currently executing statement pStmt. 001137 */ 001138 int sqlite3_data_count(sqlite3_stmt *pStmt){ 001139 Vdbe *pVm = (Vdbe *)pStmt; 001140 if( pVm==0 || pVm->pResultRow==0 ) return 0; 001141 return pVm->nResColumn; 001142 } 001143 001144 /* 001145 ** Return a pointer to static memory containing an SQL NULL value. 001146 */ 001147 static const Mem *columnNullValue(void){ 001148 /* Even though the Mem structure contains an element 001149 ** of type i64, on certain architectures (x86) with certain compiler 001150 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 001151 ** instead of an 8-byte one. This all works fine, except that when 001152 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 001153 ** that a Mem structure is located on an 8-byte boundary. To prevent 001154 ** these assert()s from failing, when building with SQLITE_DEBUG defined 001155 ** using gcc, we force nullMem to be 8-byte aligned using the magical 001156 ** __attribute__((aligned(8))) macro. */ 001157 static const Mem nullMem 001158 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 001159 __attribute__((aligned(8))) 001160 #endif 001161 = { 001162 /* .u = */ {0}, 001163 /* .z = */ (char*)0, 001164 /* .n = */ (int)0, 001165 /* .flags = */ (u16)MEM_Null, 001166 /* .enc = */ (u8)0, 001167 /* .eSubtype = */ (u8)0, 001168 /* .db = */ (sqlite3*)0, 001169 /* .szMalloc = */ (int)0, 001170 /* .uTemp = */ (u32)0, 001171 /* .zMalloc = */ (char*)0, 001172 /* .xDel = */ (void(*)(void*))0, 001173 #ifdef SQLITE_DEBUG 001174 /* .pScopyFrom = */ (Mem*)0, 001175 /* .mScopyFlags= */ 0, 001176 #endif 001177 }; 001178 return &nullMem; 001179 } 001180 001181 /* 001182 ** Check to see if column iCol of the given statement is valid. If 001183 ** it is, return a pointer to the Mem for the value of that column. 001184 ** If iCol is not valid, return a pointer to a Mem which has a value 001185 ** of NULL. 001186 */ 001187 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 001188 Vdbe *pVm; 001189 Mem *pOut; 001190 001191 pVm = (Vdbe *)pStmt; 001192 if( pVm==0 ) return (Mem*)columnNullValue(); 001193 assert( pVm->db ); 001194 sqlite3_mutex_enter(pVm->db->mutex); 001195 if( pVm->pResultRow!=0 && i<pVm->nResColumn && i>=0 ){ 001196 pOut = &pVm->pResultRow[i]; 001197 }else{ 001198 sqlite3Error(pVm->db, SQLITE_RANGE); 001199 pOut = (Mem*)columnNullValue(); 001200 } 001201 return pOut; 001202 } 001203 001204 /* 001205 ** This function is called after invoking an sqlite3_value_XXX function on a 001206 ** column value (i.e. a value returned by evaluating an SQL expression in the 001207 ** select list of a SELECT statement) that may cause a malloc() failure. If 001208 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 001209 ** code of statement pStmt set to SQLITE_NOMEM. 001210 ** 001211 ** Specifically, this is called from within: 001212 ** 001213 ** sqlite3_column_int() 001214 ** sqlite3_column_int64() 001215 ** sqlite3_column_text() 001216 ** sqlite3_column_text16() 001217 ** sqlite3_column_real() 001218 ** sqlite3_column_bytes() 001219 ** sqlite3_column_bytes16() 001220 ** sqlite3_column_blob() 001221 */ 001222 static void columnMallocFailure(sqlite3_stmt *pStmt) 001223 { 001224 /* If malloc() failed during an encoding conversion within an 001225 ** sqlite3_column_XXX API, then set the return code of the statement to 001226 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 001227 ** and _finalize() will return NOMEM. 001228 */ 001229 Vdbe *p = (Vdbe *)pStmt; 001230 if( p ){ 001231 assert( p->db!=0 ); 001232 assert( sqlite3_mutex_held(p->db->mutex) ); 001233 p->rc = sqlite3ApiExit(p->db, p->rc); 001234 sqlite3_mutex_leave(p->db->mutex); 001235 } 001236 } 001237 001238 /**************************** sqlite3_column_ ******************************* 001239 ** The following routines are used to access elements of the current row 001240 ** in the result set. 001241 */ 001242 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 001243 const void *val; 001244 val = sqlite3_value_blob( columnMem(pStmt,i) ); 001245 /* Even though there is no encoding conversion, value_blob() might 001246 ** need to call malloc() to expand the result of a zeroblob() 001247 ** expression. 001248 */ 001249 columnMallocFailure(pStmt); 001250 return val; 001251 } 001252 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 001253 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 001254 columnMallocFailure(pStmt); 001255 return val; 001256 } 001257 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 001258 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 001259 columnMallocFailure(pStmt); 001260 return val; 001261 } 001262 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 001263 double val = sqlite3_value_double( columnMem(pStmt,i) ); 001264 columnMallocFailure(pStmt); 001265 return val; 001266 } 001267 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 001268 int val = sqlite3_value_int( columnMem(pStmt,i) ); 001269 columnMallocFailure(pStmt); 001270 return val; 001271 } 001272 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 001273 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 001274 columnMallocFailure(pStmt); 001275 return val; 001276 } 001277 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 001278 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 001279 columnMallocFailure(pStmt); 001280 return val; 001281 } 001282 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 001283 Mem *pOut = columnMem(pStmt, i); 001284 if( pOut->flags&MEM_Static ){ 001285 pOut->flags &= ~MEM_Static; 001286 pOut->flags |= MEM_Ephem; 001287 } 001288 columnMallocFailure(pStmt); 001289 return (sqlite3_value *)pOut; 001290 } 001291 #ifndef SQLITE_OMIT_UTF16 001292 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 001293 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 001294 columnMallocFailure(pStmt); 001295 return val; 001296 } 001297 #endif /* SQLITE_OMIT_UTF16 */ 001298 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 001299 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 001300 columnMallocFailure(pStmt); 001301 return iType; 001302 } 001303 001304 /* 001305 ** Column names appropriate for EXPLAIN or EXPLAIN QUERY PLAN. 001306 */ 001307 static const char * const azExplainColNames8[] = { 001308 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", /* EXPLAIN */ 001309 "id", "parent", "notused", "detail" /* EQP */ 001310 }; 001311 static const u16 azExplainColNames16data[] = { 001312 /* 0 */ 'a', 'd', 'd', 'r', 0, 001313 /* 5 */ 'o', 'p', 'c', 'o', 'd', 'e', 0, 001314 /* 12 */ 'p', '1', 0, 001315 /* 15 */ 'p', '2', 0, 001316 /* 18 */ 'p', '3', 0, 001317 /* 21 */ 'p', '4', 0, 001318 /* 24 */ 'p', '5', 0, 001319 /* 27 */ 'c', 'o', 'm', 'm', 'e', 'n', 't', 0, 001320 /* 35 */ 'i', 'd', 0, 001321 /* 38 */ 'p', 'a', 'r', 'e', 'n', 't', 0, 001322 /* 45 */ 'n', 'o', 't', 'u', 's', 'e', 'd', 0, 001323 /* 53 */ 'd', 'e', 't', 'a', 'i', 'l', 0 001324 }; 001325 static const u8 iExplainColNames16[] = { 001326 0, 5, 12, 15, 18, 21, 24, 27, 001327 35, 38, 45, 53 001328 }; 001329 001330 /* 001331 ** Convert the N-th element of pStmt->pColName[] into a string using 001332 ** xFunc() then return that string. If N is out of range, return 0. 001333 ** 001334 ** There are up to 5 names for each column. useType determines which 001335 ** name is returned. Here are the names: 001336 ** 001337 ** 0 The column name as it should be displayed for output 001338 ** 1 The datatype name for the column 001339 ** 2 The name of the database that the column derives from 001340 ** 3 The name of the table that the column derives from 001341 ** 4 The name of the table column that the result column derives from 001342 ** 001343 ** If the result is not a simple column reference (if it is an expression 001344 ** or a constant) then useTypes 2, 3, and 4 return NULL. 001345 */ 001346 static const void *columnName( 001347 sqlite3_stmt *pStmt, /* The statement */ 001348 int N, /* Which column to get the name for */ 001349 int useUtf16, /* True to return the name as UTF16 */ 001350 int useType /* What type of name */ 001351 ){ 001352 const void *ret; 001353 Vdbe *p; 001354 int n; 001355 sqlite3 *db; 001356 #ifdef SQLITE_ENABLE_API_ARMOR 001357 if( pStmt==0 ){ 001358 (void)SQLITE_MISUSE_BKPT; 001359 return 0; 001360 } 001361 #endif 001362 if( N<0 ) return 0; 001363 ret = 0; 001364 p = (Vdbe *)pStmt; 001365 db = p->db; 001366 assert( db!=0 ); 001367 sqlite3_mutex_enter(db->mutex); 001368 001369 if( p->explain ){ 001370 if( useType>0 ) goto columnName_end; 001371 n = p->explain==1 ? 8 : 4; 001372 if( N>=n ) goto columnName_end; 001373 if( useUtf16 ){ 001374 int i = iExplainColNames16[N + 8*p->explain - 8]; 001375 ret = (void*)&azExplainColNames16data[i]; 001376 }else{ 001377 ret = (void*)azExplainColNames8[N + 8*p->explain - 8]; 001378 } 001379 goto columnName_end; 001380 } 001381 n = p->nResColumn; 001382 if( N<n ){ 001383 u8 prior_mallocFailed = db->mallocFailed; 001384 N += useType*n; 001385 #ifndef SQLITE_OMIT_UTF16 001386 if( useUtf16 ){ 001387 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); 001388 }else 001389 #endif 001390 { 001391 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); 001392 } 001393 /* A malloc may have failed inside of the _text() call. If this 001394 ** is the case, clear the mallocFailed flag and return NULL. 001395 */ 001396 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 001397 if( db->mallocFailed > prior_mallocFailed ){ 001398 sqlite3OomClear(db); 001399 ret = 0; 001400 } 001401 } 001402 columnName_end: 001403 sqlite3_mutex_leave(db->mutex); 001404 return ret; 001405 } 001406 001407 /* 001408 ** Return the name of the Nth column of the result set returned by SQL 001409 ** statement pStmt. 001410 */ 001411 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 001412 return columnName(pStmt, N, 0, COLNAME_NAME); 001413 } 001414 #ifndef SQLITE_OMIT_UTF16 001415 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 001416 return columnName(pStmt, N, 1, COLNAME_NAME); 001417 } 001418 #endif 001419 001420 /* 001421 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 001422 ** not define OMIT_DECLTYPE. 001423 */ 001424 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 001425 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 001426 and SQLITE_ENABLE_COLUMN_METADATA" 001427 #endif 001428 001429 #ifndef SQLITE_OMIT_DECLTYPE 001430 /* 001431 ** Return the column declaration type (if applicable) of the 'i'th column 001432 ** of the result set of SQL statement pStmt. 001433 */ 001434 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 001435 return columnName(pStmt, N, 0, COLNAME_DECLTYPE); 001436 } 001437 #ifndef SQLITE_OMIT_UTF16 001438 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 001439 return columnName(pStmt, N, 1, COLNAME_DECLTYPE); 001440 } 001441 #endif /* SQLITE_OMIT_UTF16 */ 001442 #endif /* SQLITE_OMIT_DECLTYPE */ 001443 001444 #ifdef SQLITE_ENABLE_COLUMN_METADATA 001445 /* 001446 ** Return the name of the database from which a result column derives. 001447 ** NULL is returned if the result column is an expression or constant or 001448 ** anything else which is not an unambiguous reference to a database column. 001449 */ 001450 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 001451 return columnName(pStmt, N, 0, COLNAME_DATABASE); 001452 } 001453 #ifndef SQLITE_OMIT_UTF16 001454 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 001455 return columnName(pStmt, N, 1, COLNAME_DATABASE); 001456 } 001457 #endif /* SQLITE_OMIT_UTF16 */ 001458 001459 /* 001460 ** Return the name of the table from which a result column derives. 001461 ** NULL is returned if the result column is an expression or constant or 001462 ** anything else which is not an unambiguous reference to a database column. 001463 */ 001464 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 001465 return columnName(pStmt, N, 0, COLNAME_TABLE); 001466 } 001467 #ifndef SQLITE_OMIT_UTF16 001468 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 001469 return columnName(pStmt, N, 1, COLNAME_TABLE); 001470 } 001471 #endif /* SQLITE_OMIT_UTF16 */ 001472 001473 /* 001474 ** Return the name of the table column from which a result column derives. 001475 ** NULL is returned if the result column is an expression or constant or 001476 ** anything else which is not an unambiguous reference to a database column. 001477 */ 001478 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 001479 return columnName(pStmt, N, 0, COLNAME_COLUMN); 001480 } 001481 #ifndef SQLITE_OMIT_UTF16 001482 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 001483 return columnName(pStmt, N, 1, COLNAME_COLUMN); 001484 } 001485 #endif /* SQLITE_OMIT_UTF16 */ 001486 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 001487 001488 001489 /******************************* sqlite3_bind_ *************************** 001490 ** 001491 ** Routines used to attach values to wildcards in a compiled SQL statement. 001492 */ 001493 /* 001494 ** Unbind the value bound to variable i in virtual machine p. This is the 001495 ** the same as binding a NULL value to the column. If the "i" parameter is 001496 ** out of range, then SQLITE_RANGE is returned. Otherwise SQLITE_OK. 001497 ** 001498 ** A successful evaluation of this routine acquires the mutex on p. 001499 ** the mutex is released if any kind of error occurs. 001500 ** 001501 ** The error code stored in database p->db is overwritten with the return 001502 ** value in any case. 001503 */ 001504 static int vdbeUnbind(Vdbe *p, unsigned int i){ 001505 Mem *pVar; 001506 if( vdbeSafetyNotNull(p) ){ 001507 return SQLITE_MISUSE_BKPT; 001508 } 001509 sqlite3_mutex_enter(p->db->mutex); 001510 if( p->eVdbeState!=VDBE_READY_STATE ){ 001511 sqlite3Error(p->db, SQLITE_MISUSE); 001512 sqlite3_mutex_leave(p->db->mutex); 001513 sqlite3_log(SQLITE_MISUSE, 001514 "bind on a busy prepared statement: [%s]", p->zSql); 001515 return SQLITE_MISUSE_BKPT; 001516 } 001517 if( i>=(unsigned int)p->nVar ){ 001518 sqlite3Error(p->db, SQLITE_RANGE); 001519 sqlite3_mutex_leave(p->db->mutex); 001520 return SQLITE_RANGE; 001521 } 001522 pVar = &p->aVar[i]; 001523 sqlite3VdbeMemRelease(pVar); 001524 pVar->flags = MEM_Null; 001525 p->db->errCode = SQLITE_OK; 001526 001527 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 001528 ** binding a new value to this variable invalidates the current query plan. 001529 ** 001530 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host 001531 ** parameter in the WHERE clause might influence the choice of query plan 001532 ** for a statement, then the statement will be automatically recompiled, 001533 ** as if there had been a schema change, on the first sqlite3_step() call 001534 ** following any change to the bindings of that parameter. 001535 */ 001536 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 001537 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 001538 p->expired = 1; 001539 } 001540 return SQLITE_OK; 001541 } 001542 001543 /* 001544 ** Bind a text or BLOB value. 001545 */ 001546 static int bindText( 001547 sqlite3_stmt *pStmt, /* The statement to bind against */ 001548 int i, /* Index of the parameter to bind */ 001549 const void *zData, /* Pointer to the data to be bound */ 001550 i64 nData, /* Number of bytes of data to be bound */ 001551 void (*xDel)(void*), /* Destructor for the data */ 001552 u8 encoding /* Encoding for the data */ 001553 ){ 001554 Vdbe *p = (Vdbe *)pStmt; 001555 Mem *pVar; 001556 int rc; 001557 001558 rc = vdbeUnbind(p, (u32)(i-1)); 001559 if( rc==SQLITE_OK ){ 001560 if( zData!=0 ){ 001561 pVar = &p->aVar[i-1]; 001562 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 001563 if( rc==SQLITE_OK && encoding!=0 ){ 001564 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 001565 } 001566 if( rc ){ 001567 sqlite3Error(p->db, rc); 001568 rc = sqlite3ApiExit(p->db, rc); 001569 } 001570 } 001571 sqlite3_mutex_leave(p->db->mutex); 001572 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 001573 xDel((void*)zData); 001574 } 001575 return rc; 001576 } 001577 001578 001579 /* 001580 ** Bind a blob value to an SQL statement variable. 001581 */ 001582 int sqlite3_bind_blob( 001583 sqlite3_stmt *pStmt, 001584 int i, 001585 const void *zData, 001586 int nData, 001587 void (*xDel)(void*) 001588 ){ 001589 #ifdef SQLITE_ENABLE_API_ARMOR 001590 if( nData<0 ) return SQLITE_MISUSE_BKPT; 001591 #endif 001592 return bindText(pStmt, i, zData, nData, xDel, 0); 001593 } 001594 int sqlite3_bind_blob64( 001595 sqlite3_stmt *pStmt, 001596 int i, 001597 const void *zData, 001598 sqlite3_uint64 nData, 001599 void (*xDel)(void*) 001600 ){ 001601 assert( xDel!=SQLITE_DYNAMIC ); 001602 return bindText(pStmt, i, zData, nData, xDel, 0); 001603 } 001604 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 001605 int rc; 001606 Vdbe *p = (Vdbe *)pStmt; 001607 rc = vdbeUnbind(p, (u32)(i-1)); 001608 if( rc==SQLITE_OK ){ 001609 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 001610 sqlite3_mutex_leave(p->db->mutex); 001611 } 001612 return rc; 001613 } 001614 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 001615 return sqlite3_bind_int64(p, i, (i64)iValue); 001616 } 001617 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 001618 int rc; 001619 Vdbe *p = (Vdbe *)pStmt; 001620 rc = vdbeUnbind(p, (u32)(i-1)); 001621 if( rc==SQLITE_OK ){ 001622 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 001623 sqlite3_mutex_leave(p->db->mutex); 001624 } 001625 return rc; 001626 } 001627 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 001628 int rc; 001629 Vdbe *p = (Vdbe*)pStmt; 001630 rc = vdbeUnbind(p, (u32)(i-1)); 001631 if( rc==SQLITE_OK ){ 001632 sqlite3_mutex_leave(p->db->mutex); 001633 } 001634 return rc; 001635 } 001636 int sqlite3_bind_pointer( 001637 sqlite3_stmt *pStmt, 001638 int i, 001639 void *pPtr, 001640 const char *zPTtype, 001641 void (*xDestructor)(void*) 001642 ){ 001643 int rc; 001644 Vdbe *p = (Vdbe*)pStmt; 001645 rc = vdbeUnbind(p, (u32)(i-1)); 001646 if( rc==SQLITE_OK ){ 001647 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 001648 sqlite3_mutex_leave(p->db->mutex); 001649 }else if( xDestructor ){ 001650 xDestructor(pPtr); 001651 } 001652 return rc; 001653 } 001654 int sqlite3_bind_text( 001655 sqlite3_stmt *pStmt, 001656 int i, 001657 const char *zData, 001658 int nData, 001659 void (*xDel)(void*) 001660 ){ 001661 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 001662 } 001663 int sqlite3_bind_text64( 001664 sqlite3_stmt *pStmt, 001665 int i, 001666 const char *zData, 001667 sqlite3_uint64 nData, 001668 void (*xDel)(void*), 001669 unsigned char enc 001670 ){ 001671 assert( xDel!=SQLITE_DYNAMIC ); 001672 if( enc!=SQLITE_UTF8 ){ 001673 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 001674 nData &= ~(u16)1; 001675 } 001676 return bindText(pStmt, i, zData, nData, xDel, enc); 001677 } 001678 #ifndef SQLITE_OMIT_UTF16 001679 int sqlite3_bind_text16( 001680 sqlite3_stmt *pStmt, 001681 int i, 001682 const void *zData, 001683 int n, 001684 void (*xDel)(void*) 001685 ){ 001686 return bindText(pStmt, i, zData, n & ~(u64)1, xDel, SQLITE_UTF16NATIVE); 001687 } 001688 #endif /* SQLITE_OMIT_UTF16 */ 001689 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 001690 int rc; 001691 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 001692 case SQLITE_INTEGER: { 001693 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 001694 break; 001695 } 001696 case SQLITE_FLOAT: { 001697 assert( pValue->flags & (MEM_Real|MEM_IntReal) ); 001698 rc = sqlite3_bind_double(pStmt, i, 001699 (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i 001700 ); 001701 break; 001702 } 001703 case SQLITE_BLOB: { 001704 if( pValue->flags & MEM_Zero ){ 001705 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 001706 }else{ 001707 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 001708 } 001709 break; 001710 } 001711 case SQLITE_TEXT: { 001712 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 001713 pValue->enc); 001714 break; 001715 } 001716 default: { 001717 rc = sqlite3_bind_null(pStmt, i); 001718 break; 001719 } 001720 } 001721 return rc; 001722 } 001723 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 001724 int rc; 001725 Vdbe *p = (Vdbe *)pStmt; 001726 rc = vdbeUnbind(p, (u32)(i-1)); 001727 if( rc==SQLITE_OK ){ 001728 #ifndef SQLITE_OMIT_INCRBLOB 001729 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 001730 #else 001731 rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 001732 #endif 001733 sqlite3_mutex_leave(p->db->mutex); 001734 } 001735 return rc; 001736 } 001737 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 001738 int rc; 001739 Vdbe *p = (Vdbe *)pStmt; 001740 sqlite3_mutex_enter(p->db->mutex); 001741 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 001742 rc = SQLITE_TOOBIG; 001743 }else{ 001744 assert( (n & 0x7FFFFFFF)==n ); 001745 rc = sqlite3_bind_zeroblob(pStmt, i, n); 001746 } 001747 rc = sqlite3ApiExit(p->db, rc); 001748 sqlite3_mutex_leave(p->db->mutex); 001749 return rc; 001750 } 001751 001752 /* 001753 ** Return the number of wildcards that can be potentially bound to. 001754 ** This routine is added to support DBD::SQLite. 001755 */ 001756 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 001757 Vdbe *p = (Vdbe*)pStmt; 001758 return p ? p->nVar : 0; 001759 } 001760 001761 /* 001762 ** Return the name of a wildcard parameter. Return NULL if the index 001763 ** is out of range or if the wildcard is unnamed. 001764 ** 001765 ** The result is always UTF-8. 001766 */ 001767 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 001768 Vdbe *p = (Vdbe*)pStmt; 001769 if( p==0 ) return 0; 001770 return sqlite3VListNumToName(p->pVList, i); 001771 } 001772 001773 /* 001774 ** Given a wildcard parameter name, return the index of the variable 001775 ** with that name. If there is no variable with the given name, 001776 ** return 0. 001777 */ 001778 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 001779 if( p==0 || zName==0 ) return 0; 001780 return sqlite3VListNameToNum(p->pVList, zName, nName); 001781 } 001782 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 001783 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 001784 } 001785 001786 /* 001787 ** Transfer all bindings from the first statement over to the second. 001788 */ 001789 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 001790 Vdbe *pFrom = (Vdbe*)pFromStmt; 001791 Vdbe *pTo = (Vdbe*)pToStmt; 001792 int i; 001793 assert( pTo->db==pFrom->db ); 001794 assert( pTo->nVar==pFrom->nVar ); 001795 sqlite3_mutex_enter(pTo->db->mutex); 001796 for(i=0; i<pFrom->nVar; i++){ 001797 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 001798 } 001799 sqlite3_mutex_leave(pTo->db->mutex); 001800 return SQLITE_OK; 001801 } 001802 001803 #ifndef SQLITE_OMIT_DEPRECATED 001804 /* 001805 ** Deprecated external interface. Internal/core SQLite code 001806 ** should call sqlite3TransferBindings. 001807 ** 001808 ** It is misuse to call this routine with statements from different 001809 ** database connections. But as this is a deprecated interface, we 001810 ** will not bother to check for that condition. 001811 ** 001812 ** If the two statements contain a different number of bindings, then 001813 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 001814 ** SQLITE_OK is returned. 001815 */ 001816 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 001817 Vdbe *pFrom = (Vdbe*)pFromStmt; 001818 Vdbe *pTo = (Vdbe*)pToStmt; 001819 if( pFrom->nVar!=pTo->nVar ){ 001820 return SQLITE_ERROR; 001821 } 001822 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 001823 if( pTo->expmask ){ 001824 pTo->expired = 1; 001825 } 001826 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 001827 if( pFrom->expmask ){ 001828 pFrom->expired = 1; 001829 } 001830 return sqlite3TransferBindings(pFromStmt, pToStmt); 001831 } 001832 #endif 001833 001834 /* 001835 ** Return the sqlite3* database handle to which the prepared statement given 001836 ** in the argument belongs. This is the same database handle that was 001837 ** the first argument to the sqlite3_prepare() that was used to create 001838 ** the statement in the first place. 001839 */ 001840 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 001841 return pStmt ? ((Vdbe*)pStmt)->db : 0; 001842 } 001843 001844 /* 001845 ** Return true if the prepared statement is guaranteed to not modify the 001846 ** database. 001847 */ 001848 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 001849 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 001850 } 001851 001852 /* 001853 ** Return 1 if the statement is an EXPLAIN and return 2 if the 001854 ** statement is an EXPLAIN QUERY PLAN 001855 */ 001856 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ 001857 return pStmt ? ((Vdbe*)pStmt)->explain : 0; 001858 } 001859 001860 /* 001861 ** Set the explain mode for a statement. 001862 */ 001863 int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode){ 001864 Vdbe *v = (Vdbe*)pStmt; 001865 int rc; 001866 sqlite3_mutex_enter(v->db->mutex); 001867 if( ((int)v->explain)==eMode ){ 001868 rc = SQLITE_OK; 001869 }else if( eMode<0 || eMode>2 ){ 001870 rc = SQLITE_ERROR; 001871 }else if( (v->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 001872 rc = SQLITE_ERROR; 001873 }else if( v->eVdbeState!=VDBE_READY_STATE ){ 001874 rc = SQLITE_BUSY; 001875 }else if( v->nMem>=10 && (eMode!=2 || v->haveEqpOps) ){ 001876 /* No reprepare necessary */ 001877 v->explain = eMode; 001878 rc = SQLITE_OK; 001879 }else{ 001880 v->explain = eMode; 001881 rc = sqlite3Reprepare(v); 001882 v->haveEqpOps = eMode==2; 001883 } 001884 if( v->explain ){ 001885 v->nResColumn = 12 - 4*v->explain; 001886 }else{ 001887 v->nResColumn = v->nResAlloc; 001888 } 001889 sqlite3_mutex_leave(v->db->mutex); 001890 return rc; 001891 } 001892 001893 /* 001894 ** Return true if the prepared statement is in need of being reset. 001895 */ 001896 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 001897 Vdbe *v = (Vdbe*)pStmt; 001898 return v!=0 && v->eVdbeState==VDBE_RUN_STATE; 001899 } 001900 001901 /* 001902 ** Return a pointer to the next prepared statement after pStmt associated 001903 ** with database connection pDb. If pStmt is NULL, return the first 001904 ** prepared statement for the database connection. Return NULL if there 001905 ** are no more. 001906 */ 001907 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 001908 sqlite3_stmt *pNext; 001909 #ifdef SQLITE_ENABLE_API_ARMOR 001910 if( !sqlite3SafetyCheckOk(pDb) ){ 001911 (void)SQLITE_MISUSE_BKPT; 001912 return 0; 001913 } 001914 #endif 001915 sqlite3_mutex_enter(pDb->mutex); 001916 if( pStmt==0 ){ 001917 pNext = (sqlite3_stmt*)pDb->pVdbe; 001918 }else{ 001919 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pVNext; 001920 } 001921 sqlite3_mutex_leave(pDb->mutex); 001922 return pNext; 001923 } 001924 001925 /* 001926 ** Return the value of a status counter for a prepared statement 001927 */ 001928 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 001929 Vdbe *pVdbe = (Vdbe*)pStmt; 001930 u32 v; 001931 #ifdef SQLITE_ENABLE_API_ARMOR 001932 if( !pStmt 001933 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 001934 ){ 001935 (void)SQLITE_MISUSE_BKPT; 001936 return 0; 001937 } 001938 #endif 001939 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 001940 sqlite3 *db = pVdbe->db; 001941 sqlite3_mutex_enter(db->mutex); 001942 v = 0; 001943 db->pnBytesFreed = (int*)&v; 001944 assert( db->lookaside.pEnd==db->lookaside.pTrueEnd ); 001945 db->lookaside.pEnd = db->lookaside.pStart; 001946 sqlite3VdbeDelete(pVdbe); 001947 db->pnBytesFreed = 0; 001948 db->lookaside.pEnd = db->lookaside.pTrueEnd; 001949 sqlite3_mutex_leave(db->mutex); 001950 }else{ 001951 v = pVdbe->aCounter[op]; 001952 if( resetFlag ) pVdbe->aCounter[op] = 0; 001953 } 001954 return (int)v; 001955 } 001956 001957 /* 001958 ** Return the SQL associated with a prepared statement 001959 */ 001960 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 001961 Vdbe *p = (Vdbe *)pStmt; 001962 return p ? p->zSql : 0; 001963 } 001964 001965 /* 001966 ** Return the SQL associated with a prepared statement with 001967 ** bound parameters expanded. Space to hold the returned string is 001968 ** obtained from sqlite3_malloc(). The caller is responsible for 001969 ** freeing the returned string by passing it to sqlite3_free(). 001970 ** 001971 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 001972 ** expanded bound parameters. 001973 */ 001974 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 001975 #ifdef SQLITE_OMIT_TRACE 001976 return 0; 001977 #else 001978 char *z = 0; 001979 const char *zSql = sqlite3_sql(pStmt); 001980 if( zSql ){ 001981 Vdbe *p = (Vdbe *)pStmt; 001982 sqlite3_mutex_enter(p->db->mutex); 001983 z = sqlite3VdbeExpandSql(p, zSql); 001984 sqlite3_mutex_leave(p->db->mutex); 001985 } 001986 return z; 001987 #endif 001988 } 001989 001990 #ifdef SQLITE_ENABLE_NORMALIZE 001991 /* 001992 ** Return the normalized SQL associated with a prepared statement. 001993 */ 001994 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ 001995 Vdbe *p = (Vdbe *)pStmt; 001996 if( p==0 ) return 0; 001997 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ 001998 sqlite3_mutex_enter(p->db->mutex); 001999 p->zNormSql = sqlite3Normalize(p, p->zSql); 002000 sqlite3_mutex_leave(p->db->mutex); 002001 } 002002 return p->zNormSql; 002003 } 002004 #endif /* SQLITE_ENABLE_NORMALIZE */ 002005 002006 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002007 /* 002008 ** Allocate and populate an UnpackedRecord structure based on the serialized 002009 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 002010 ** if successful, or a NULL pointer if an OOM error is encountered. 002011 */ 002012 static UnpackedRecord *vdbeUnpackRecord( 002013 KeyInfo *pKeyInfo, 002014 int nKey, 002015 const void *pKey 002016 ){ 002017 UnpackedRecord *pRet; /* Return value */ 002018 002019 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 002020 if( pRet ){ 002021 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 002022 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 002023 } 002024 return pRet; 002025 } 002026 002027 /* 002028 ** This function is called from within a pre-update callback to retrieve 002029 ** a field of the row currently being updated or deleted. 002030 */ 002031 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 002032 PreUpdate *p = db->pPreUpdate; 002033 Mem *pMem; 002034 int rc = SQLITE_OK; 002035 002036 /* Test that this call is being made from within an SQLITE_DELETE or 002037 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 002038 if( !p || p->op==SQLITE_INSERT ){ 002039 rc = SQLITE_MISUSE_BKPT; 002040 goto preupdate_old_out; 002041 } 002042 if( p->pPk ){ 002043 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 002044 } 002045 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 002046 rc = SQLITE_RANGE; 002047 goto preupdate_old_out; 002048 } 002049 002050 /* If the old.* record has not yet been loaded into memory, do so now. */ 002051 if( p->pUnpacked==0 ){ 002052 u32 nRec; 002053 u8 *aRec; 002054 002055 assert( p->pCsr->eCurType==CURTYPE_BTREE ); 002056 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 002057 aRec = sqlite3DbMallocRaw(db, nRec); 002058 if( !aRec ) goto preupdate_old_out; 002059 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 002060 if( rc==SQLITE_OK ){ 002061 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 002062 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 002063 } 002064 if( rc!=SQLITE_OK ){ 002065 sqlite3DbFree(db, aRec); 002066 goto preupdate_old_out; 002067 } 002068 p->aRecord = aRec; 002069 } 002070 002071 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 002072 if( iIdx==p->pTab->iPKey ){ 002073 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 002074 }else if( iIdx>=p->pUnpacked->nField ){ 002075 *ppValue = (sqlite3_value *)columnNullValue(); 002076 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 002077 if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 002078 testcase( pMem->flags & MEM_Int ); 002079 testcase( pMem->flags & MEM_IntReal ); 002080 sqlite3VdbeMemRealify(pMem); 002081 } 002082 } 002083 002084 preupdate_old_out: 002085 sqlite3Error(db, rc); 002086 return sqlite3ApiExit(db, rc); 002087 } 002088 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002089 002090 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002091 /* 002092 ** This function is called from within a pre-update callback to retrieve 002093 ** the number of columns in the row being updated, deleted or inserted. 002094 */ 002095 int sqlite3_preupdate_count(sqlite3 *db){ 002096 PreUpdate *p = db->pPreUpdate; 002097 return (p ? p->keyinfo.nKeyField : 0); 002098 } 002099 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002100 002101 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002102 /* 002103 ** This function is designed to be called from within a pre-update callback 002104 ** only. It returns zero if the change that caused the callback was made 002105 ** immediately by a user SQL statement. Or, if the change was made by a 002106 ** trigger program, it returns the number of trigger programs currently 002107 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 002108 ** top-level trigger etc.). 002109 ** 002110 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 002111 ** or SET DEFAULT action is considered a trigger. 002112 */ 002113 int sqlite3_preupdate_depth(sqlite3 *db){ 002114 PreUpdate *p = db->pPreUpdate; 002115 return (p ? p->v->nFrame : 0); 002116 } 002117 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002118 002119 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002120 /* 002121 ** This function is designed to be called from within a pre-update callback 002122 ** only. 002123 */ 002124 int sqlite3_preupdate_blobwrite(sqlite3 *db){ 002125 PreUpdate *p = db->pPreUpdate; 002126 return (p ? p->iBlobWrite : -1); 002127 } 002128 #endif 002129 002130 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002131 /* 002132 ** This function is called from within a pre-update callback to retrieve 002133 ** a field of the row currently being updated or inserted. 002134 */ 002135 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 002136 PreUpdate *p = db->pPreUpdate; 002137 int rc = SQLITE_OK; 002138 Mem *pMem; 002139 002140 if( !p || p->op==SQLITE_DELETE ){ 002141 rc = SQLITE_MISUSE_BKPT; 002142 goto preupdate_new_out; 002143 } 002144 if( p->pPk && p->op!=SQLITE_UPDATE ){ 002145 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 002146 } 002147 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 002148 rc = SQLITE_RANGE; 002149 goto preupdate_new_out; 002150 } 002151 002152 if( p->op==SQLITE_INSERT ){ 002153 /* For an INSERT, memory cell p->iNewReg contains the serialized record 002154 ** that is being inserted. Deserialize it. */ 002155 UnpackedRecord *pUnpack = p->pNewUnpacked; 002156 if( !pUnpack ){ 002157 Mem *pData = &p->v->aMem[p->iNewReg]; 002158 rc = ExpandBlob(pData); 002159 if( rc!=SQLITE_OK ) goto preupdate_new_out; 002160 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 002161 if( !pUnpack ){ 002162 rc = SQLITE_NOMEM; 002163 goto preupdate_new_out; 002164 } 002165 p->pNewUnpacked = pUnpack; 002166 } 002167 pMem = &pUnpack->aMem[iIdx]; 002168 if( iIdx==p->pTab->iPKey ){ 002169 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 002170 }else if( iIdx>=pUnpack->nField ){ 002171 pMem = (sqlite3_value *)columnNullValue(); 002172 } 002173 }else{ 002174 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 002175 ** value. Make a copy of the cell contents and return a pointer to it. 002176 ** It is not safe to return a pointer to the memory cell itself as the 002177 ** caller may modify the value text encoding. 002178 */ 002179 assert( p->op==SQLITE_UPDATE ); 002180 if( !p->aNew ){ 002181 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 002182 if( !p->aNew ){ 002183 rc = SQLITE_NOMEM; 002184 goto preupdate_new_out; 002185 } 002186 } 002187 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 002188 pMem = &p->aNew[iIdx]; 002189 if( pMem->flags==0 ){ 002190 if( iIdx==p->pTab->iPKey ){ 002191 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 002192 }else{ 002193 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 002194 if( rc!=SQLITE_OK ) goto preupdate_new_out; 002195 } 002196 } 002197 } 002198 *ppValue = pMem; 002199 002200 preupdate_new_out: 002201 sqlite3Error(db, rc); 002202 return sqlite3ApiExit(db, rc); 002203 } 002204 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002205 002206 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 002207 /* 002208 ** Return status data for a single loop within query pStmt. 002209 */ 002210 int sqlite3_stmt_scanstatus_v2( 002211 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 002212 int iScan, /* Index of loop to report on */ 002213 int iScanStatusOp, /* Which metric to return */ 002214 int flags, 002215 void *pOut /* OUT: Write the answer here */ 002216 ){ 002217 Vdbe *p = (Vdbe*)pStmt; 002218 VdbeOp *aOp = p->aOp; 002219 int nOp = p->nOp; 002220 ScanStatus *pScan = 0; 002221 int idx; 002222 002223 if( p->pFrame ){ 002224 VdbeFrame *pFrame; 002225 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 002226 aOp = pFrame->aOp; 002227 nOp = pFrame->nOp; 002228 } 002229 002230 if( iScan<0 ){ 002231 int ii; 002232 if( iScanStatusOp==SQLITE_SCANSTAT_NCYCLE ){ 002233 i64 res = 0; 002234 for(ii=0; ii<nOp; ii++){ 002235 res += aOp[ii].nCycle; 002236 } 002237 *(i64*)pOut = res; 002238 return 0; 002239 } 002240 return 1; 002241 } 002242 if( flags & SQLITE_SCANSTAT_COMPLEX ){ 002243 idx = iScan; 002244 pScan = &p->aScan[idx]; 002245 }else{ 002246 /* If the COMPLEX flag is clear, then this function must ignore any 002247 ** ScanStatus structures with ScanStatus.addrLoop set to 0. */ 002248 for(idx=0; idx<p->nScan; idx++){ 002249 pScan = &p->aScan[idx]; 002250 if( pScan->zName ){ 002251 iScan--; 002252 if( iScan<0 ) break; 002253 } 002254 } 002255 } 002256 if( idx>=p->nScan ) return 1; 002257 002258 switch( iScanStatusOp ){ 002259 case SQLITE_SCANSTAT_NLOOP: { 002260 if( pScan->addrLoop>0 ){ 002261 *(sqlite3_int64*)pOut = aOp[pScan->addrLoop].nExec; 002262 }else{ 002263 *(sqlite3_int64*)pOut = -1; 002264 } 002265 break; 002266 } 002267 case SQLITE_SCANSTAT_NVISIT: { 002268 if( pScan->addrVisit>0 ){ 002269 *(sqlite3_int64*)pOut = aOp[pScan->addrVisit].nExec; 002270 }else{ 002271 *(sqlite3_int64*)pOut = -1; 002272 } 002273 break; 002274 } 002275 case SQLITE_SCANSTAT_EST: { 002276 double r = 1.0; 002277 LogEst x = pScan->nEst; 002278 while( x<100 ){ 002279 x += 10; 002280 r *= 0.5; 002281 } 002282 *(double*)pOut = r*sqlite3LogEstToInt(x); 002283 break; 002284 } 002285 case SQLITE_SCANSTAT_NAME: { 002286 *(const char**)pOut = pScan->zName; 002287 break; 002288 } 002289 case SQLITE_SCANSTAT_EXPLAIN: { 002290 if( pScan->addrExplain ){ 002291 *(const char**)pOut = aOp[ pScan->addrExplain ].p4.z; 002292 }else{ 002293 *(const char**)pOut = 0; 002294 } 002295 break; 002296 } 002297 case SQLITE_SCANSTAT_SELECTID: { 002298 if( pScan->addrExplain ){ 002299 *(int*)pOut = aOp[ pScan->addrExplain ].p1; 002300 }else{ 002301 *(int*)pOut = -1; 002302 } 002303 break; 002304 } 002305 case SQLITE_SCANSTAT_PARENTID: { 002306 if( pScan->addrExplain ){ 002307 *(int*)pOut = aOp[ pScan->addrExplain ].p2; 002308 }else{ 002309 *(int*)pOut = -1; 002310 } 002311 break; 002312 } 002313 case SQLITE_SCANSTAT_NCYCLE: { 002314 i64 res = 0; 002315 if( pScan->aAddrRange[0]==0 ){ 002316 res = -1; 002317 }else{ 002318 int ii; 002319 for(ii=0; ii<ArraySize(pScan->aAddrRange); ii+=2){ 002320 int iIns = pScan->aAddrRange[ii]; 002321 int iEnd = pScan->aAddrRange[ii+1]; 002322 if( iIns==0 ) break; 002323 if( iIns>0 ){ 002324 while( iIns<=iEnd ){ 002325 res += aOp[iIns].nCycle; 002326 iIns++; 002327 } 002328 }else{ 002329 int iOp; 002330 for(iOp=0; iOp<nOp; iOp++){ 002331 Op *pOp = &aOp[iOp]; 002332 if( pOp->p1!=iEnd ) continue; 002333 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_NCYCLE)==0 ){ 002334 continue; 002335 } 002336 res += aOp[iOp].nCycle; 002337 } 002338 } 002339 } 002340 } 002341 *(i64*)pOut = res; 002342 break; 002343 } 002344 default: { 002345 return 1; 002346 } 002347 } 002348 return 0; 002349 } 002350 002351 /* 002352 ** Return status data for a single loop within query pStmt. 002353 */ 002354 int sqlite3_stmt_scanstatus( 002355 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 002356 int iScan, /* Index of loop to report on */ 002357 int iScanStatusOp, /* Which metric to return */ 002358 void *pOut /* OUT: Write the answer here */ 002359 ){ 002360 return sqlite3_stmt_scanstatus_v2(pStmt, iScan, iScanStatusOp, 0, pOut); 002361 } 002362 002363 /* 002364 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 002365 */ 002366 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 002367 Vdbe *p = (Vdbe*)pStmt; 002368 int ii; 002369 for(ii=0; ii<p->nOp; ii++){ 002370 Op *pOp = &p->aOp[ii]; 002371 pOp->nExec = 0; 002372 pOp->nCycle = 0; 002373 } 002374 } 002375 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */