000001  /*
000002  ** 2001 September 15
000003  **
000004  ** The author disclaims copyright to this source code.  In place of
000005  ** a legal notice, here is a blessing:
000006  **
000007  **    May you do good and not evil.
000008  **    May you find forgiveness for yourself and forgive others.
000009  **    May you share freely, never taking more than you give.
000010  **
000011  *************************************************************************
000012  ** The code in this file implements the function that runs the
000013  ** bytecode of a prepared statement.
000014  **
000015  ** Various scripts scan this source file in order to generate HTML
000016  ** documentation, headers files, or other derived files.  The formatting
000017  ** of the code in this file is, therefore, important.  See other comments
000018  ** in this file for details.  If in doubt, do not deviate from existing
000019  ** commenting and indentation practices when changing or adding code.
000020  */
000021  #include "sqliteInt.h"
000022  #include "vdbeInt.h"
000023  
000024  /*
000025  ** Invoke this macro on memory cells just prior to changing the
000026  ** value of the cell.  This macro verifies that shallow copies are
000027  ** not misused.  A shallow copy of a string or blob just copies a
000028  ** pointer to the string or blob, not the content.  If the original
000029  ** is changed while the copy is still in use, the string or blob might
000030  ** be changed out from under the copy.  This macro verifies that nothing
000031  ** like that ever happens.
000032  */
000033  #ifdef SQLITE_DEBUG
000034  # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
000035  #else
000036  # define memAboutToChange(P,M)
000037  #endif
000038  
000039  /*
000040  ** The following global variable is incremented every time a cursor
000041  ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
000042  ** procedures use this information to make sure that indices are
000043  ** working correctly.  This variable has no function other than to
000044  ** help verify the correct operation of the library.
000045  */
000046  #ifdef SQLITE_TEST
000047  int sqlite3_search_count = 0;
000048  #endif
000049  
000050  /*
000051  ** When this global variable is positive, it gets decremented once before
000052  ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
000053  ** field of the sqlite3 structure is set in order to simulate an interrupt.
000054  **
000055  ** This facility is used for testing purposes only.  It does not function
000056  ** in an ordinary build.
000057  */
000058  #ifdef SQLITE_TEST
000059  int sqlite3_interrupt_count = 0;
000060  #endif
000061  
000062  /*
000063  ** The next global variable is incremented each type the OP_Sort opcode
000064  ** is executed.  The test procedures use this information to make sure that
000065  ** sorting is occurring or not occurring at appropriate times.   This variable
000066  ** has no function other than to help verify the correct operation of the
000067  ** library.
000068  */
000069  #ifdef SQLITE_TEST
000070  int sqlite3_sort_count = 0;
000071  #endif
000072  
000073  /*
000074  ** The next global variable records the size of the largest MEM_Blob
000075  ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
000076  ** use this information to make sure that the zero-blob functionality
000077  ** is working correctly.   This variable has no function other than to
000078  ** help verify the correct operation of the library.
000079  */
000080  #ifdef SQLITE_TEST
000081  int sqlite3_max_blobsize = 0;
000082  static void updateMaxBlobsize(Mem *p){
000083    if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
000084      sqlite3_max_blobsize = p->n;
000085    }
000086  }
000087  #endif
000088  
000089  /*
000090  ** This macro evaluates to true if either the update hook or the preupdate
000091  ** hook are enabled for database connect DB.
000092  */
000093  #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
000094  # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
000095  #else
000096  # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
000097  #endif
000098  
000099  /*
000100  ** The next global variable is incremented each time the OP_Found opcode
000101  ** is executed. This is used to test whether or not the foreign key
000102  ** operation implemented using OP_FkIsZero is working. This variable
000103  ** has no function other than to help verify the correct operation of the
000104  ** library.
000105  */
000106  #ifdef SQLITE_TEST
000107  int sqlite3_found_count = 0;
000108  #endif
000109  
000110  /*
000111  ** Test a register to see if it exceeds the current maximum blob size.
000112  ** If it does, record the new maximum blob size.
000113  */
000114  #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
000115  # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
000116  #else
000117  # define UPDATE_MAX_BLOBSIZE(P)
000118  #endif
000119  
000120  #ifdef SQLITE_DEBUG
000121  /* This routine provides a convenient place to set a breakpoint during
000122  ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
000123  ** each opcode is printed.  Variables "pc" (program counter) and pOp are
000124  ** available to add conditionals to the breakpoint.  GDB example:
000125  **
000126  **         break test_trace_breakpoint if pc=22
000127  **
000128  ** Other useful labels for breakpoints include:
000129  **   test_addop_breakpoint(pc,pOp)
000130  **   sqlite3CorruptError(lineno)
000131  **   sqlite3MisuseError(lineno)
000132  **   sqlite3CantopenError(lineno)
000133  */
000134  static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
000135    static int n = 0;
000136    (void)pc;
000137    (void)pOp;
000138    (void)v;
000139    n++;
000140  }
000141  #endif
000142  
000143  /*
000144  ** Invoke the VDBE coverage callback, if that callback is defined.  This
000145  ** feature is used for test suite validation only and does not appear an
000146  ** production builds.
000147  **
000148  ** M is the type of branch.  I is the direction taken for this instance of
000149  ** the branch.
000150  **
000151  **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
000152  **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
000153  **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
000154  **
000155  ** In other words, if M is 2, then I is either 0 (for fall-through) or
000156  ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
000157  ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
000158  ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
000159  ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
000160  ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
000161  ** depending on if the operands are less than, equal, or greater than.
000162  **
000163  ** iSrcLine is the source code line (from the __LINE__ macro) that
000164  ** generated the VDBE instruction combined with flag bits.  The source
000165  ** code line number is in the lower 24 bits of iSrcLine and the upper
000166  ** 8 bytes are flags.  The lower three bits of the flags indicate
000167  ** values for I that should never occur.  For example, if the branch is
000168  ** always taken, the flags should be 0x05 since the fall-through and
000169  ** alternate branch are never taken.  If a branch is never taken then
000170  ** flags should be 0x06 since only the fall-through approach is allowed.
000171  **
000172  ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
000173  ** interested in equal or not-equal.  In other words, I==0 and I==2
000174  ** should be treated as equivalent
000175  **
000176  ** Since only a line number is retained, not the filename, this macro
000177  ** only works for amalgamation builds.  But that is ok, since these macros
000178  ** should be no-ops except for special builds used to measure test coverage.
000179  */
000180  #if !defined(SQLITE_VDBE_COVERAGE)
000181  # define VdbeBranchTaken(I,M)
000182  #else
000183  # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
000184    static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
000185      u8 mNever;
000186      assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
000187      assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
000188      assert( I<M );   /* I can only be 2 if M is 3 or 4 */
000189      /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
000190      I = 1<<I;
000191      /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
000192      ** the flags indicate directions that the branch can never go.  If
000193      ** a branch really does go in one of those directions, assert right
000194      ** away. */
000195      mNever = iSrcLine >> 24;
000196      assert( (I & mNever)==0 );
000197      if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
000198      /* Invoke the branch coverage callback with three arguments:
000199      **    iSrcLine - the line number of the VdbeCoverage() macro, with
000200      **               flags removed.
000201      **    I        - Mask of bits 0x07 indicating which cases are are
000202      **               fulfilled by this instance of the jump.  0x01 means
000203      **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
000204      **               impossible cases (ex: if the comparison is never NULL)
000205      **               are filled in automatically so that the coverage
000206      **               measurement logic does not flag those impossible cases
000207      **               as missed coverage.
000208      **    M        - Type of jump.  Same as M argument above
000209      */
000210      I |= mNever;
000211      if( M==2 ) I |= 0x04;
000212      if( M==4 ){
000213        I |= 0x08;
000214        if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
000215      }
000216      sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
000217                                      iSrcLine&0xffffff, I, M);
000218    }
000219  #endif
000220  
000221  /*
000222  ** An ephemeral string value (signified by the MEM_Ephem flag) contains
000223  ** a pointer to a dynamically allocated string where some other entity
000224  ** is responsible for deallocating that string.  Because the register
000225  ** does not control the string, it might be deleted without the register
000226  ** knowing it.
000227  **
000228  ** This routine converts an ephemeral string into a dynamically allocated
000229  ** string that the register itself controls.  In other words, it
000230  ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
000231  */
000232  #define Deephemeralize(P) \
000233     if( ((P)->flags&MEM_Ephem)!=0 \
000234         && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
000235  
000236  /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
000237  #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
000238  
000239  /*
000240  ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
000241  ** if we run out of memory.
000242  */
000243  static VdbeCursor *allocateCursor(
000244    Vdbe *p,              /* The virtual machine */
000245    int iCur,             /* Index of the new VdbeCursor */
000246    int nField,           /* Number of fields in the table or index */
000247    u8 eCurType           /* Type of the new cursor */
000248  ){
000249    /* Find the memory cell that will be used to store the blob of memory
000250    ** required for this VdbeCursor structure. It is convenient to use a
000251    ** vdbe memory cell to manage the memory allocation required for a
000252    ** VdbeCursor structure for the following reasons:
000253    **
000254    **   * Sometimes cursor numbers are used for a couple of different
000255    **     purposes in a vdbe program. The different uses might require
000256    **     different sized allocations. Memory cells provide growable
000257    **     allocations.
000258    **
000259    **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
000260    **     be freed lazily via the sqlite3_release_memory() API. This
000261    **     minimizes the number of malloc calls made by the system.
000262    **
000263    ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
000264    ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
000265    ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
000266    */
000267    Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
000268  
000269    int nByte;
000270    VdbeCursor *pCx = 0;
000271    nByte =
000272        ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
000273        (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
000274  
000275    assert( iCur>=0 && iCur<p->nCursor );
000276    if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
000277      sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
000278      p->apCsr[iCur] = 0;
000279    }
000280  
000281    /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
000282    ** the pMem used to hold space for the cursor has enough storage available
000283    ** in pMem->zMalloc.  But for the special case of the aMem[] entries used
000284    ** to hold cursors, it is faster to in-line the logic. */
000285    assert( pMem->flags==MEM_Undefined );
000286    assert( (pMem->flags & MEM_Dyn)==0 );
000287    assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
000288    if( pMem->szMalloc<nByte ){
000289      if( pMem->szMalloc>0 ){
000290        sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
000291      }
000292      pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
000293      if( pMem->zMalloc==0 ){
000294        pMem->szMalloc = 0;
000295        return 0;
000296      }
000297      pMem->szMalloc = nByte;
000298    }
000299  
000300    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
000301    memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
000302    pCx->eCurType = eCurType;
000303    pCx->nField = nField;
000304    pCx->aOffset = &pCx->aType[nField];
000305    if( eCurType==CURTYPE_BTREE ){
000306      pCx->uc.pCursor = (BtCursor*)
000307          &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
000308      sqlite3BtreeCursorZero(pCx->uc.pCursor);
000309    }
000310    return pCx;
000311  }
000312  
000313  /*
000314  ** The string in pRec is known to look like an integer and to have a
000315  ** floating point value of rValue.  Return true and set *piValue to the
000316  ** integer value if the string is in range to be an integer.  Otherwise,
000317  ** return false.
000318  */
000319  static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
000320    i64 iValue;
000321    iValue = sqlite3RealToI64(rValue);
000322    if( sqlite3RealSameAsInt(rValue,iValue) ){
000323      *piValue = iValue;
000324      return 1;
000325    }
000326    return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
000327  }
000328  
000329  /*
000330  ** Try to convert a value into a numeric representation if we can
000331  ** do so without loss of information.  In other words, if the string
000332  ** looks like a number, convert it into a number.  If it does not
000333  ** look like a number, leave it alone.
000334  **
000335  ** If the bTryForInt flag is true, then extra effort is made to give
000336  ** an integer representation.  Strings that look like floating point
000337  ** values but which have no fractional component (example: '48.00')
000338  ** will have a MEM_Int representation when bTryForInt is true.
000339  **
000340  ** If bTryForInt is false, then if the input string contains a decimal
000341  ** point or exponential notation, the result is only MEM_Real, even
000342  ** if there is an exact integer representation of the quantity.
000343  */
000344  static void applyNumericAffinity(Mem *pRec, int bTryForInt){
000345    double rValue;
000346    u8 enc = pRec->enc;
000347    int rc;
000348    assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
000349    rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
000350    if( rc<=0 ) return;
000351    if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
000352      pRec->flags |= MEM_Int;
000353    }else{
000354      pRec->u.r = rValue;
000355      pRec->flags |= MEM_Real;
000356      if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
000357    }
000358    /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
000359    ** string representation after computing a numeric equivalent, because the
000360    ** string representation might not be the canonical representation for the
000361    ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
000362    pRec->flags &= ~MEM_Str;
000363  }
000364  
000365  /*
000366  ** Processing is determine by the affinity parameter:
000367  **
000368  ** SQLITE_AFF_INTEGER:
000369  ** SQLITE_AFF_REAL:
000370  ** SQLITE_AFF_NUMERIC:
000371  **    Try to convert pRec to an integer representation or a
000372  **    floating-point representation if an integer representation
000373  **    is not possible.  Note that the integer representation is
000374  **    always preferred, even if the affinity is REAL, because
000375  **    an integer representation is more space efficient on disk.
000376  **
000377  ** SQLITE_AFF_FLEXNUM:
000378  **    If the value is text, then try to convert it into a number of
000379  **    some kind (integer or real) but do not make any other changes.
000380  **
000381  ** SQLITE_AFF_TEXT:
000382  **    Convert pRec to a text representation.
000383  **
000384  ** SQLITE_AFF_BLOB:
000385  ** SQLITE_AFF_NONE:
000386  **    No-op.  pRec is unchanged.
000387  */
000388  static void applyAffinity(
000389    Mem *pRec,          /* The value to apply affinity to */
000390    char affinity,      /* The affinity to be applied */
000391    u8 enc              /* Use this text encoding */
000392  ){
000393    if( affinity>=SQLITE_AFF_NUMERIC ){
000394      assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
000395               || affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM );
000396      if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
000397        if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){
000398          if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
000399        }else if( affinity<=SQLITE_AFF_REAL ){
000400          sqlite3VdbeIntegerAffinity(pRec);
000401        }
000402      }
000403    }else if( affinity==SQLITE_AFF_TEXT ){
000404      /* Only attempt the conversion to TEXT if there is an integer or real
000405      ** representation (blob and NULL do not get converted) but no string
000406      ** representation.  It would be harmless to repeat the conversion if
000407      ** there is already a string rep, but it is pointless to waste those
000408      ** CPU cycles. */
000409      if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
000410        if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
000411          testcase( pRec->flags & MEM_Int );
000412          testcase( pRec->flags & MEM_Real );
000413          testcase( pRec->flags & MEM_IntReal );
000414          sqlite3VdbeMemStringify(pRec, enc, 1);
000415        }
000416      }
000417      pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
000418    }
000419  }
000420  
000421  /*
000422  ** Try to convert the type of a function argument or a result column
000423  ** into a numeric representation.  Use either INTEGER or REAL whichever
000424  ** is appropriate.  But only do the conversion if it is possible without
000425  ** loss of information and return the revised type of the argument.
000426  */
000427  int sqlite3_value_numeric_type(sqlite3_value *pVal){
000428    int eType = sqlite3_value_type(pVal);
000429    if( eType==SQLITE_TEXT ){
000430      Mem *pMem = (Mem*)pVal;
000431      applyNumericAffinity(pMem, 0);
000432      eType = sqlite3_value_type(pVal);
000433    }
000434    return eType;
000435  }
000436  
000437  /*
000438  ** Exported version of applyAffinity(). This one works on sqlite3_value*,
000439  ** not the internal Mem* type.
000440  */
000441  void sqlite3ValueApplyAffinity(
000442    sqlite3_value *pVal,
000443    u8 affinity,
000444    u8 enc
000445  ){
000446    applyAffinity((Mem *)pVal, affinity, enc);
000447  }
000448  
000449  /*
000450  ** pMem currently only holds a string type (or maybe a BLOB that we can
000451  ** interpret as a string if we want to).  Compute its corresponding
000452  ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
000453  ** accordingly.
000454  */
000455  static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
000456    int rc;
000457    sqlite3_int64 ix;
000458    assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
000459    assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
000460    if( ExpandBlob(pMem) ){
000461      pMem->u.i = 0;
000462      return MEM_Int;
000463    }
000464    rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
000465    if( rc<=0 ){
000466      if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
000467        pMem->u.i = ix;
000468        return MEM_Int;
000469      }else{
000470        return MEM_Real;
000471      }
000472    }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
000473      pMem->u.i = ix;
000474      return MEM_Int;
000475    }
000476    return MEM_Real;
000477  }
000478  
000479  /*
000480  ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
000481  ** none. 
000482  **
000483  ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
000484  ** But it does set pMem->u.r and pMem->u.i appropriately.
000485  */
000486  static u16 numericType(Mem *pMem){
000487    assert( (pMem->flags & MEM_Null)==0
000488         || pMem->db==0 || pMem->db->mallocFailed );
000489    if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){
000490      testcase( pMem->flags & MEM_Int );
000491      testcase( pMem->flags & MEM_Real );
000492      testcase( pMem->flags & MEM_IntReal );
000493      return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null);
000494    }
000495    assert( pMem->flags & (MEM_Str|MEM_Blob) );
000496    testcase( pMem->flags & MEM_Str );
000497    testcase( pMem->flags & MEM_Blob );
000498    return computeNumericType(pMem);
000499    return 0;
000500  }
000501  
000502  #ifdef SQLITE_DEBUG
000503  /*
000504  ** Write a nice string representation of the contents of cell pMem
000505  ** into buffer zBuf, length nBuf.
000506  */
000507  void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
000508    int f = pMem->flags;
000509    static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
000510    if( f&MEM_Blob ){
000511      int i;
000512      char c;
000513      if( f & MEM_Dyn ){
000514        c = 'z';
000515        assert( (f & (MEM_Static|MEM_Ephem))==0 );
000516      }else if( f & MEM_Static ){
000517        c = 't';
000518        assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
000519      }else if( f & MEM_Ephem ){
000520        c = 'e';
000521        assert( (f & (MEM_Static|MEM_Dyn))==0 );
000522      }else{
000523        c = 's';
000524      }
000525      sqlite3_str_appendf(pStr, "%cx[", c);
000526      for(i=0; i<25 && i<pMem->n; i++){
000527        sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
000528      }
000529      sqlite3_str_appendf(pStr, "|");
000530      for(i=0; i<25 && i<pMem->n; i++){
000531        char z = pMem->z[i];
000532        sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
000533      }
000534      sqlite3_str_appendf(pStr,"]");
000535      if( f & MEM_Zero ){
000536        sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
000537      }
000538    }else if( f & MEM_Str ){
000539      int j;
000540      u8 c;
000541      if( f & MEM_Dyn ){
000542        c = 'z';
000543        assert( (f & (MEM_Static|MEM_Ephem))==0 );
000544      }else if( f & MEM_Static ){
000545        c = 't';
000546        assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
000547      }else if( f & MEM_Ephem ){
000548        c = 'e';
000549        assert( (f & (MEM_Static|MEM_Dyn))==0 );
000550      }else{
000551        c = 's';
000552      }
000553      sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
000554      for(j=0; j<25 && j<pMem->n; j++){
000555        c = pMem->z[j];
000556        sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
000557      }
000558      sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
000559      if( f & MEM_Term ){
000560        sqlite3_str_appendf(pStr, "(0-term)");
000561      }
000562    }
000563  }
000564  #endif
000565  
000566  #ifdef SQLITE_DEBUG
000567  /*
000568  ** Print the value of a register for tracing purposes:
000569  */
000570  static void memTracePrint(Mem *p){
000571    if( p->flags & MEM_Undefined ){
000572      printf(" undefined");
000573    }else if( p->flags & MEM_Null ){
000574      printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
000575    }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
000576      printf(" si:%lld", p->u.i);
000577    }else if( (p->flags & (MEM_IntReal))!=0 ){
000578      printf(" ir:%lld", p->u.i);
000579    }else if( p->flags & MEM_Int ){
000580      printf(" i:%lld", p->u.i);
000581  #ifndef SQLITE_OMIT_FLOATING_POINT
000582    }else if( p->flags & MEM_Real ){
000583      printf(" r:%.17g", p->u.r);
000584  #endif
000585    }else if( sqlite3VdbeMemIsRowSet(p) ){
000586      printf(" (rowset)");
000587    }else{
000588      StrAccum acc;
000589      char zBuf[1000];
000590      sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
000591      sqlite3VdbeMemPrettyPrint(p, &acc);
000592      printf(" %s", sqlite3StrAccumFinish(&acc));
000593    }
000594    if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
000595  }
000596  static void registerTrace(int iReg, Mem *p){
000597    printf("R[%d] = ", iReg);
000598    memTracePrint(p);
000599    if( p->pScopyFrom ){
000600      printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
000601    }
000602    printf("\n");
000603    sqlite3VdbeCheckMemInvariants(p);
000604  }
000605  /**/ void sqlite3PrintMem(Mem *pMem){
000606    memTracePrint(pMem);
000607    printf("\n");
000608    fflush(stdout);
000609  }
000610  #endif
000611  
000612  #ifdef SQLITE_DEBUG
000613  /*
000614  ** Show the values of all registers in the virtual machine.  Used for
000615  ** interactive debugging.
000616  */
000617  void sqlite3VdbeRegisterDump(Vdbe *v){
000618    int i;
000619    for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
000620  }
000621  #endif /* SQLITE_DEBUG */
000622  
000623  
000624  #ifdef SQLITE_DEBUG
000625  #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
000626  #else
000627  #  define REGISTER_TRACE(R,M)
000628  #endif
000629  
000630  #ifndef NDEBUG
000631  /*
000632  ** This function is only called from within an assert() expression. It
000633  ** checks that the sqlite3.nTransaction variable is correctly set to
000634  ** the number of non-transaction savepoints currently in the
000635  ** linked list starting at sqlite3.pSavepoint.
000636  **
000637  ** Usage:
000638  **
000639  **     assert( checkSavepointCount(db) );
000640  */
000641  static int checkSavepointCount(sqlite3 *db){
000642    int n = 0;
000643    Savepoint *p;
000644    for(p=db->pSavepoint; p; p=p->pNext) n++;
000645    assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
000646    return 1;
000647  }
000648  #endif
000649  
000650  /*
000651  ** Return the register of pOp->p2 after first preparing it to be
000652  ** overwritten with an integer value.
000653  */
000654  static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
000655    sqlite3VdbeMemSetNull(pOut);
000656    pOut->flags = MEM_Int;
000657    return pOut;
000658  }
000659  static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
000660    Mem *pOut;
000661    assert( pOp->p2>0 );
000662    assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
000663    pOut = &p->aMem[pOp->p2];
000664    memAboutToChange(p, pOut);
000665    if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
000666      return out2PrereleaseWithClear(pOut);
000667    }else{
000668      pOut->flags = MEM_Int;
000669      return pOut;
000670    }
000671  }
000672  
000673  /*
000674  ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
000675  ** with pOp->p3.  Return the hash.
000676  */
000677  static u64 filterHash(const Mem *aMem, const Op *pOp){
000678    int i, mx;
000679    u64 h = 0;
000680  
000681    assert( pOp->p4type==P4_INT32 );
000682    for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
000683      const Mem *p = &aMem[i];
000684      if( p->flags & (MEM_Int|MEM_IntReal) ){
000685        h += p->u.i;
000686      }else if( p->flags & MEM_Real ){
000687        h += sqlite3VdbeIntValue(p);
000688      }else if( p->flags & (MEM_Str|MEM_Blob) ){
000689        /* All strings have the same hash and all blobs have the same hash,
000690        ** though, at least, those hashes are different from each other and
000691        ** from NULL. */
000692        h += 4093 + (p->flags & (MEM_Str|MEM_Blob));
000693      }
000694    }
000695    return h;
000696  }
000697  
000698  
000699  /*
000700  ** For OP_Column, factor out the case where content is loaded from
000701  ** overflow pages, so that the code to implement this case is separate
000702  ** the common case where all content fits on the page.  Factoring out
000703  ** the code reduces register pressure and helps the common case
000704  ** to run faster.
000705  */
000706  static SQLITE_NOINLINE int vdbeColumnFromOverflow(
000707    VdbeCursor *pC,       /* The BTree cursor from which we are reading */
000708    int iCol,             /* The column to read */
000709    int t,                /* The serial-type code for the column value */
000710    i64 iOffset,          /* Offset to the start of the content value */
000711    u32 cacheStatus,      /* Current Vdbe.cacheCtr value */
000712    u32 colCacheCtr,      /* Current value of the column cache counter */
000713    Mem *pDest            /* Store the value into this register. */
000714  ){
000715    int rc;
000716    sqlite3 *db = pDest->db;
000717    int encoding = pDest->enc;
000718    int len = sqlite3VdbeSerialTypeLen(t);
000719    assert( pC->eCurType==CURTYPE_BTREE );
000720    if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG;
000721    if( len > 4000 && pC->pKeyInfo==0 ){
000722      /* Cache large column values that are on overflow pages using
000723      ** an RCStr (reference counted string) so that if they are reloaded,
000724      ** that do not have to be copied a second time.  The overhead of
000725      ** creating and managing the cache is such that this is only
000726      ** profitable for larger TEXT and BLOB values.
000727      **
000728      ** Only do this on table-btrees so that writes to index-btrees do not
000729      ** need to clear the cache.  This buys performance in the common case
000730      ** in exchange for generality.
000731      */
000732      VdbeTxtBlbCache *pCache;
000733      char *pBuf;
000734      if( pC->colCache==0 ){
000735        pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) );
000736        if( pC->pCache==0 ) return SQLITE_NOMEM;
000737        pC->colCache = 1;
000738      }
000739      pCache = pC->pCache;
000740      if( pCache->pCValue==0
000741       || pCache->iCol!=iCol
000742       || pCache->cacheStatus!=cacheStatus
000743       || pCache->colCacheCtr!=colCacheCtr
000744       || pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor)
000745      ){
000746        if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue);
000747        pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 );
000748        if( pBuf==0 ) return SQLITE_NOMEM;
000749        rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf);
000750        if( rc ) return rc;
000751        pBuf[len] = 0;
000752        pBuf[len+1] = 0;
000753        pBuf[len+2] = 0;
000754        pCache->iCol = iCol;
000755        pCache->cacheStatus = cacheStatus;
000756        pCache->colCacheCtr = colCacheCtr;
000757        pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor);
000758      }else{
000759        pBuf = pCache->pCValue;
000760      }
000761      assert( t>=12 );
000762      sqlite3RCStrRef(pBuf);
000763      if( t&1 ){
000764        rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding,
000765                                  (void(*)(void*))sqlite3RCStrUnref);
000766        pDest->flags |= MEM_Term;
000767      }else{
000768        rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0,
000769                                  (void(*)(void*))sqlite3RCStrUnref);
000770      }
000771    }else{
000772      rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest);
000773      if( rc ) return rc;
000774      sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
000775      if( (t&1)!=0 && encoding==SQLITE_UTF8 ){
000776        pDest->z[len] = 0;
000777        pDest->flags |= MEM_Term;
000778      }
000779    }
000780    pDest->flags &= ~MEM_Ephem;
000781    return rc;
000782  }
000783  
000784  
000785  /*
000786  ** Return the symbolic name for the data type of a pMem
000787  */
000788  static const char *vdbeMemTypeName(Mem *pMem){
000789    static const char *azTypes[] = {
000790        /* SQLITE_INTEGER */ "INT",
000791        /* SQLITE_FLOAT   */ "REAL",
000792        /* SQLITE_TEXT    */ "TEXT",
000793        /* SQLITE_BLOB    */ "BLOB",
000794        /* SQLITE_NULL    */ "NULL"
000795    };
000796    return azTypes[sqlite3_value_type(pMem)-1];
000797  }
000798  
000799  /*
000800  ** Execute as much of a VDBE program as we can.
000801  ** This is the core of sqlite3_step(). 
000802  */
000803  int sqlite3VdbeExec(
000804    Vdbe *p                    /* The VDBE */
000805  ){
000806    Op *aOp = p->aOp;          /* Copy of p->aOp */
000807    Op *pOp = aOp;             /* Current operation */
000808  #ifdef SQLITE_DEBUG
000809    Op *pOrigOp;               /* Value of pOp at the top of the loop */
000810    int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
000811    u8 iCompareIsInit = 0;     /* iCompare is initialized */
000812  #endif
000813    int rc = SQLITE_OK;        /* Value to return */
000814    sqlite3 *db = p->db;       /* The database */
000815    u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
000816    u8 encoding = ENC(db);     /* The database encoding */
000817    int iCompare = 0;          /* Result of last comparison */
000818    u64 nVmStep = 0;           /* Number of virtual machine steps */
000819  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
000820    u64 nProgressLimit;        /* Invoke xProgress() when nVmStep reaches this */
000821  #endif
000822    Mem *aMem = p->aMem;       /* Copy of p->aMem */
000823    Mem *pIn1 = 0;             /* 1st input operand */
000824    Mem *pIn2 = 0;             /* 2nd input operand */
000825    Mem *pIn3 = 0;             /* 3rd input operand */
000826    Mem *pOut = 0;             /* Output operand */
000827    u32 colCacheCtr = 0;       /* Column cache counter */
000828  #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
000829    u64 *pnCycle = 0;
000830    int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0;
000831  #endif
000832    /*** INSERT STACK UNION HERE ***/
000833  
000834    assert( p->eVdbeState==VDBE_RUN_STATE );  /* sqlite3_step() verifies this */
000835    if( DbMaskNonZero(p->lockMask) ){
000836      sqlite3VdbeEnter(p);
000837    }
000838  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
000839    if( db->xProgress ){
000840      u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
000841      assert( 0 < db->nProgressOps );
000842      nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
000843    }else{
000844      nProgressLimit = LARGEST_UINT64;
000845    }
000846  #endif
000847    if( p->rc==SQLITE_NOMEM ){
000848      /* This happens if a malloc() inside a call to sqlite3_column_text() or
000849      ** sqlite3_column_text16() failed.  */
000850      goto no_mem;
000851    }
000852    assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
000853    testcase( p->rc!=SQLITE_OK );
000854    p->rc = SQLITE_OK;
000855    assert( p->bIsReader || p->readOnly!=0 );
000856    p->iCurrentTime = 0;
000857    assert( p->explain==0 );
000858    db->busyHandler.nBusy = 0;
000859    if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
000860    sqlite3VdbeIOTraceSql(p);
000861  #ifdef SQLITE_DEBUG
000862    sqlite3BeginBenignMalloc();
000863    if( p->pc==0
000864     && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
000865    ){
000866      int i;
000867      int once = 1;
000868      sqlite3VdbePrintSql(p);
000869      if( p->db->flags & SQLITE_VdbeListing ){
000870        printf("VDBE Program Listing:\n");
000871        for(i=0; i<p->nOp; i++){
000872          sqlite3VdbePrintOp(stdout, i, &aOp[i]);
000873        }
000874      }
000875      if( p->db->flags & SQLITE_VdbeEQP ){
000876        for(i=0; i<p->nOp; i++){
000877          if( aOp[i].opcode==OP_Explain ){
000878            if( once ) printf("VDBE Query Plan:\n");
000879            printf("%s\n", aOp[i].p4.z);
000880            once = 0;
000881          }
000882        }
000883      }
000884      if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
000885    }
000886    sqlite3EndBenignMalloc();
000887  #endif
000888    for(pOp=&aOp[p->pc]; 1; pOp++){
000889      /* Errors are detected by individual opcodes, with an immediate
000890      ** jumps to abort_due_to_error. */
000891      assert( rc==SQLITE_OK );
000892  
000893      assert( pOp>=aOp && pOp<&aOp[p->nOp]);
000894      nVmStep++;
000895  
000896  #if defined(VDBE_PROFILE)
000897      pOp->nExec++;
000898      pnCycle = &pOp->nCycle;
000899      if( sqlite3NProfileCnt==0 ) *pnCycle -= sqlite3Hwtime();
000900  #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
000901      if( bStmtScanStatus ){
000902        pOp->nExec++;
000903        pnCycle = &pOp->nCycle;
000904        *pnCycle -= sqlite3Hwtime();
000905      }
000906  #endif
000907  
000908      /* Only allow tracing if SQLITE_DEBUG is defined.
000909      */
000910  #ifdef SQLITE_DEBUG
000911      if( db->flags & SQLITE_VdbeTrace ){
000912        sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
000913        test_trace_breakpoint((int)(pOp - aOp),pOp,p);
000914      }
000915  #endif
000916       
000917  
000918      /* Check to see if we need to simulate an interrupt.  This only happens
000919      ** if we have a special test build.
000920      */
000921  #ifdef SQLITE_TEST
000922      if( sqlite3_interrupt_count>0 ){
000923        sqlite3_interrupt_count--;
000924        if( sqlite3_interrupt_count==0 ){
000925          sqlite3_interrupt(db);
000926        }
000927      }
000928  #endif
000929  
000930      /* Sanity checking on other operands */
000931  #ifdef SQLITE_DEBUG
000932      {
000933        u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
000934        if( (opProperty & OPFLG_IN1)!=0 ){
000935          assert( pOp->p1>0 );
000936          assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
000937          assert( memIsValid(&aMem[pOp->p1]) );
000938          assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
000939          REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
000940        }
000941        if( (opProperty & OPFLG_IN2)!=0 ){
000942          assert( pOp->p2>0 );
000943          assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
000944          assert( memIsValid(&aMem[pOp->p2]) );
000945          assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
000946          REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
000947        }
000948        if( (opProperty & OPFLG_IN3)!=0 ){
000949          assert( pOp->p3>0 );
000950          assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
000951          assert( memIsValid(&aMem[pOp->p3]) );
000952          assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
000953          REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
000954        }
000955        if( (opProperty & OPFLG_OUT2)!=0 ){
000956          assert( pOp->p2>0 );
000957          assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
000958          memAboutToChange(p, &aMem[pOp->p2]);
000959        }
000960        if( (opProperty & OPFLG_OUT3)!=0 ){
000961          assert( pOp->p3>0 );
000962          assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
000963          memAboutToChange(p, &aMem[pOp->p3]);
000964        }
000965      }
000966  #endif
000967  #ifdef SQLITE_DEBUG
000968      pOrigOp = pOp;
000969  #endif
000970   
000971      switch( pOp->opcode ){
000972  
000973  /*****************************************************************************
000974  ** What follows is a massive switch statement where each case implements a
000975  ** separate instruction in the virtual machine.  If we follow the usual
000976  ** indentation conventions, each case should be indented by 6 spaces.  But
000977  ** that is a lot of wasted space on the left margin.  So the code within
000978  ** the switch statement will break with convention and be flush-left. Another
000979  ** big comment (similar to this one) will mark the point in the code where
000980  ** we transition back to normal indentation.
000981  **
000982  ** The formatting of each case is important.  The makefile for SQLite
000983  ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
000984  ** file looking for lines that begin with "case OP_".  The opcodes.h files
000985  ** will be filled with #defines that give unique integer values to each
000986  ** opcode and the opcodes.c file is filled with an array of strings where
000987  ** each string is the symbolic name for the corresponding opcode.  If the
000988  ** case statement is followed by a comment of the form "/# same as ... #/"
000989  ** that comment is used to determine the particular value of the opcode.
000990  **
000991  ** Other keywords in the comment that follows each case are used to
000992  ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
000993  ** Keywords include: in1, in2, in3, out2, out3.  See
000994  ** the mkopcodeh.awk script for additional information.
000995  **
000996  ** Documentation about VDBE opcodes is generated by scanning this file
000997  ** for lines of that contain "Opcode:".  That line and all subsequent
000998  ** comment lines are used in the generation of the opcode.html documentation
000999  ** file.
001000  **
001001  ** SUMMARY:
001002  **
001003  **     Formatting is important to scripts that scan this file.
001004  **     Do not deviate from the formatting style currently in use.
001005  **
001006  *****************************************************************************/
001007  
001008  /* Opcode:  Goto * P2 * * *
001009  **
001010  ** An unconditional jump to address P2.
001011  ** The next instruction executed will be
001012  ** the one at index P2 from the beginning of
001013  ** the program.
001014  **
001015  ** The P1 parameter is not actually used by this opcode.  However, it
001016  ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
001017  ** that this Goto is the bottom of a loop and that the lines from P2 down
001018  ** to the current line should be indented for EXPLAIN output.
001019  */
001020  case OP_Goto: {             /* jump */
001021  
001022  #ifdef SQLITE_DEBUG
001023    /* In debugging mode, when the p5 flags is set on an OP_Goto, that
001024    ** means we should really jump back to the preceding OP_ReleaseReg
001025    ** instruction. */
001026    if( pOp->p5 ){
001027      assert( pOp->p2 < (int)(pOp - aOp) );
001028      assert( pOp->p2 > 1 );
001029      pOp = &aOp[pOp->p2 - 2];
001030      assert( pOp[1].opcode==OP_ReleaseReg );
001031      goto check_for_interrupt;
001032    }
001033  #endif
001034  
001035  jump_to_p2_and_check_for_interrupt:
001036    pOp = &aOp[pOp->p2 - 1];
001037  
001038    /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
001039    ** OP_VNext, or OP_SorterNext) all jump here upon
001040    ** completion.  Check to see if sqlite3_interrupt() has been called
001041    ** or if the progress callback needs to be invoked.
001042    **
001043    ** This code uses unstructured "goto" statements and does not look clean.
001044    ** But that is not due to sloppy coding habits. The code is written this
001045    ** way for performance, to avoid having to run the interrupt and progress
001046    ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
001047    ** faster according to "valgrind --tool=cachegrind" */
001048  check_for_interrupt:
001049    if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
001050  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
001051    /* Call the progress callback if it is configured and the required number
001052    ** of VDBE ops have been executed (either since this invocation of
001053    ** sqlite3VdbeExec() or since last time the progress callback was called).
001054    ** If the progress callback returns non-zero, exit the virtual machine with
001055    ** a return code SQLITE_ABORT.
001056    */
001057    while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
001058      assert( db->nProgressOps!=0 );
001059      nProgressLimit += db->nProgressOps;
001060      if( db->xProgress(db->pProgressArg) ){
001061        nProgressLimit = LARGEST_UINT64;
001062        rc = SQLITE_INTERRUPT;
001063        goto abort_due_to_error;
001064      }
001065    }
001066  #endif
001067   
001068    break;
001069  }
001070  
001071  /* Opcode:  Gosub P1 P2 * * *
001072  **
001073  ** Write the current address onto register P1
001074  ** and then jump to address P2.
001075  */
001076  case OP_Gosub: {            /* jump */
001077    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
001078    pIn1 = &aMem[pOp->p1];
001079    assert( VdbeMemDynamic(pIn1)==0 );
001080    memAboutToChange(p, pIn1);
001081    pIn1->flags = MEM_Int;
001082    pIn1->u.i = (int)(pOp-aOp);
001083    REGISTER_TRACE(pOp->p1, pIn1);
001084    goto jump_to_p2_and_check_for_interrupt;
001085  }
001086  
001087  /* Opcode:  Return P1 P2 P3 * *
001088  **
001089  ** Jump to the address stored in register P1.  If P1 is a return address
001090  ** register, then this accomplishes a return from a subroutine.
001091  **
001092  ** If P3 is 1, then the jump is only taken if register P1 holds an integer
001093  ** values, otherwise execution falls through to the next opcode, and the
001094  ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
001095  ** integer or else an assert() is raised.  P3 should be set to 1 when
001096  ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
001097  ** otherwise.
001098  **
001099  ** The value in register P1 is unchanged by this opcode.
001100  **
001101  ** P2 is not used by the byte-code engine.  However, if P2 is positive
001102  ** and also less than the current address, then the "EXPLAIN" output
001103  ** formatter in the CLI will indent all opcodes from the P2 opcode up
001104  ** to be not including the current Return.   P2 should be the first opcode
001105  ** in the subroutine from which this opcode is returning.  Thus the P2
001106  ** value is a byte-code indentation hint.  See tag-20220407a in
001107  ** wherecode.c and shell.c.
001108  */
001109  case OP_Return: {           /* in1 */
001110    pIn1 = &aMem[pOp->p1];
001111    if( pIn1->flags & MEM_Int ){
001112      if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
001113      pOp = &aOp[pIn1->u.i];
001114    }else if( ALWAYS(pOp->p3) ){
001115      VdbeBranchTaken(0, 2);
001116    }
001117    break;
001118  }
001119  
001120  /* Opcode: InitCoroutine P1 P2 P3 * *
001121  **
001122  ** Set up register P1 so that it will Yield to the coroutine
001123  ** located at address P3.
001124  **
001125  ** If P2!=0 then the coroutine implementation immediately follows
001126  ** this opcode.  So jump over the coroutine implementation to
001127  ** address P2.
001128  **
001129  ** See also: EndCoroutine
001130  */
001131  case OP_InitCoroutine: {     /* jump */
001132    assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
001133    assert( pOp->p2>=0 && pOp->p2<p->nOp );
001134    assert( pOp->p3>=0 && pOp->p3<p->nOp );
001135    pOut = &aMem[pOp->p1];
001136    assert( !VdbeMemDynamic(pOut) );
001137    pOut->u.i = pOp->p3 - 1;
001138    pOut->flags = MEM_Int;
001139    if( pOp->p2==0 ) break;
001140  
001141    /* Most jump operations do a goto to this spot in order to update
001142    ** the pOp pointer. */
001143  jump_to_p2:
001144    assert( pOp->p2>0 );       /* There are never any jumps to instruction 0 */
001145    assert( pOp->p2<p->nOp );  /* Jumps must be in range */
001146    pOp = &aOp[pOp->p2 - 1];
001147    break;
001148  }
001149  
001150  /* Opcode:  EndCoroutine P1 * * * *
001151  **
001152  ** The instruction at the address in register P1 is a Yield.
001153  ** Jump to the P2 parameter of that Yield.
001154  ** After the jump, register P1 becomes undefined.
001155  **
001156  ** See also: InitCoroutine
001157  */
001158  case OP_EndCoroutine: {           /* in1 */
001159    VdbeOp *pCaller;
001160    pIn1 = &aMem[pOp->p1];
001161    assert( pIn1->flags==MEM_Int );
001162    assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
001163    pCaller = &aOp[pIn1->u.i];
001164    assert( pCaller->opcode==OP_Yield );
001165    assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
001166    pOp = &aOp[pCaller->p2 - 1];
001167    pIn1->flags = MEM_Undefined;
001168    break;
001169  }
001170  
001171  /* Opcode:  Yield P1 P2 * * *
001172  **
001173  ** Swap the program counter with the value in register P1.  This
001174  ** has the effect of yielding to a coroutine.
001175  **
001176  ** If the coroutine that is launched by this instruction ends with
001177  ** Yield or Return then continue to the next instruction.  But if
001178  ** the coroutine launched by this instruction ends with
001179  ** EndCoroutine, then jump to P2 rather than continuing with the
001180  ** next instruction.
001181  **
001182  ** See also: InitCoroutine
001183  */
001184  case OP_Yield: {            /* in1, jump */
001185    int pcDest;
001186    pIn1 = &aMem[pOp->p1];
001187    assert( VdbeMemDynamic(pIn1)==0 );
001188    pIn1->flags = MEM_Int;
001189    pcDest = (int)pIn1->u.i;
001190    pIn1->u.i = (int)(pOp - aOp);
001191    REGISTER_TRACE(pOp->p1, pIn1);
001192    pOp = &aOp[pcDest];
001193    break;
001194  }
001195  
001196  /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
001197  ** Synopsis: if r[P3]=null halt
001198  **
001199  ** Check the value in register P3.  If it is NULL then Halt using
001200  ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
001201  ** value in register P3 is not NULL, then this routine is a no-op.
001202  ** The P5 parameter should be 1.
001203  */
001204  case OP_HaltIfNull: {      /* in3 */
001205    pIn3 = &aMem[pOp->p3];
001206  #ifdef SQLITE_DEBUG
001207    if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
001208  #endif
001209    if( (pIn3->flags & MEM_Null)==0 ) break;
001210    /* Fall through into OP_Halt */
001211    /* no break */ deliberate_fall_through
001212  }
001213  
001214  /* Opcode:  Halt P1 P2 * P4 P5
001215  **
001216  ** Exit immediately.  All open cursors, etc are closed
001217  ** automatically.
001218  **
001219  ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
001220  ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
001221  ** For errors, it can be some other value.  If P1!=0 then P2 will determine
001222  ** whether or not to rollback the current transaction.  Do not rollback
001223  ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
001224  ** then back out all changes that have occurred during this execution of the
001225  ** VDBE, but do not rollback the transaction.
001226  **
001227  ** If P4 is not null then it is an error message string.
001228  **
001229  ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
001230  **
001231  **    0:  (no change)
001232  **    1:  NOT NULL constraint failed: P4
001233  **    2:  UNIQUE constraint failed: P4
001234  **    3:  CHECK constraint failed: P4
001235  **    4:  FOREIGN KEY constraint failed: P4
001236  **
001237  ** If P5 is not zero and P4 is NULL, then everything after the ":" is
001238  ** omitted.
001239  **
001240  ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
001241  ** every program.  So a jump past the last instruction of the program
001242  ** is the same as executing Halt.
001243  */
001244  case OP_Halt: {
001245    VdbeFrame *pFrame;
001246    int pcx;
001247  
001248  #ifdef SQLITE_DEBUG
001249    if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
001250  #endif
001251  
001252    /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates
001253    ** something is wrong with the code generator.  Raise an assertion in order
001254    ** to bring this to the attention of fuzzers and other testing tools. */
001255    assert( pOp->p1!=SQLITE_INTERNAL );
001256  
001257    if( p->pFrame && pOp->p1==SQLITE_OK ){
001258      /* Halt the sub-program. Return control to the parent frame. */
001259      pFrame = p->pFrame;
001260      p->pFrame = pFrame->pParent;
001261      p->nFrame--;
001262      sqlite3VdbeSetChanges(db, p->nChange);
001263      pcx = sqlite3VdbeFrameRestore(pFrame);
001264      if( pOp->p2==OE_Ignore ){
001265        /* Instruction pcx is the OP_Program that invoked the sub-program
001266        ** currently being halted. If the p2 instruction of this OP_Halt
001267        ** instruction is set to OE_Ignore, then the sub-program is throwing
001268        ** an IGNORE exception. In this case jump to the address specified
001269        ** as the p2 of the calling OP_Program.  */
001270        pcx = p->aOp[pcx].p2-1;
001271      }
001272      aOp = p->aOp;
001273      aMem = p->aMem;
001274      pOp = &aOp[pcx];
001275      break;
001276    }
001277    p->rc = pOp->p1;
001278    p->errorAction = (u8)pOp->p2;
001279    assert( pOp->p5<=4 );
001280    if( p->rc ){
001281      if( pOp->p5 ){
001282        static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
001283                                               "FOREIGN KEY" };
001284        testcase( pOp->p5==1 );
001285        testcase( pOp->p5==2 );
001286        testcase( pOp->p5==3 );
001287        testcase( pOp->p5==4 );
001288        sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
001289        if( pOp->p4.z ){
001290          p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
001291        }
001292      }else{
001293        sqlite3VdbeError(p, "%s", pOp->p4.z);
001294      }
001295      pcx = (int)(pOp - aOp);
001296      sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
001297    }
001298    rc = sqlite3VdbeHalt(p);
001299    assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
001300    if( rc==SQLITE_BUSY ){
001301      p->rc = SQLITE_BUSY;
001302    }else{
001303      assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
001304      assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
001305      rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
001306    }
001307    goto vdbe_return;
001308  }
001309  
001310  /* Opcode: Integer P1 P2 * * *
001311  ** Synopsis: r[P2]=P1
001312  **
001313  ** The 32-bit integer value P1 is written into register P2.
001314  */
001315  case OP_Integer: {         /* out2 */
001316    pOut = out2Prerelease(p, pOp);
001317    pOut->u.i = pOp->p1;
001318    break;
001319  }
001320  
001321  /* Opcode: Int64 * P2 * P4 *
001322  ** Synopsis: r[P2]=P4
001323  **
001324  ** P4 is a pointer to a 64-bit integer value.
001325  ** Write that value into register P2.
001326  */
001327  case OP_Int64: {           /* out2 */
001328    pOut = out2Prerelease(p, pOp);
001329    assert( pOp->p4.pI64!=0 );
001330    pOut->u.i = *pOp->p4.pI64;
001331    break;
001332  }
001333  
001334  #ifndef SQLITE_OMIT_FLOATING_POINT
001335  /* Opcode: Real * P2 * P4 *
001336  ** Synopsis: r[P2]=P4
001337  **
001338  ** P4 is a pointer to a 64-bit floating point value.
001339  ** Write that value into register P2.
001340  */
001341  case OP_Real: {            /* same as TK_FLOAT, out2 */
001342    pOut = out2Prerelease(p, pOp);
001343    pOut->flags = MEM_Real;
001344    assert( !sqlite3IsNaN(*pOp->p4.pReal) );
001345    pOut->u.r = *pOp->p4.pReal;
001346    break;
001347  }
001348  #endif
001349  
001350  /* Opcode: String8 * P2 * P4 *
001351  ** Synopsis: r[P2]='P4'
001352  **
001353  ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
001354  ** into a String opcode before it is executed for the first time.  During
001355  ** this transformation, the length of string P4 is computed and stored
001356  ** as the P1 parameter.
001357  */
001358  case OP_String8: {         /* same as TK_STRING, out2 */
001359    assert( pOp->p4.z!=0 );
001360    pOut = out2Prerelease(p, pOp);
001361    pOp->p1 = sqlite3Strlen30(pOp->p4.z);
001362  
001363  #ifndef SQLITE_OMIT_UTF16
001364    if( encoding!=SQLITE_UTF8 ){
001365      rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
001366      assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
001367      if( rc ) goto too_big;
001368      if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
001369      assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
001370      assert( VdbeMemDynamic(pOut)==0 );
001371      pOut->szMalloc = 0;
001372      pOut->flags |= MEM_Static;
001373      if( pOp->p4type==P4_DYNAMIC ){
001374        sqlite3DbFree(db, pOp->p4.z);
001375      }
001376      pOp->p4type = P4_DYNAMIC;
001377      pOp->p4.z = pOut->z;
001378      pOp->p1 = pOut->n;
001379    }
001380  #endif
001381    if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
001382      goto too_big;
001383    }
001384    pOp->opcode = OP_String;
001385    assert( rc==SQLITE_OK );
001386    /* Fall through to the next case, OP_String */
001387    /* no break */ deliberate_fall_through
001388  }
001389   
001390  /* Opcode: String P1 P2 P3 P4 P5
001391  ** Synopsis: r[P2]='P4' (len=P1)
001392  **
001393  ** The string value P4 of length P1 (bytes) is stored in register P2.
001394  **
001395  ** If P3 is not zero and the content of register P3 is equal to P5, then
001396  ** the datatype of the register P2 is converted to BLOB.  The content is
001397  ** the same sequence of bytes, it is merely interpreted as a BLOB instead
001398  ** of a string, as if it had been CAST.  In other words:
001399  **
001400  ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
001401  */
001402  case OP_String: {          /* out2 */
001403    assert( pOp->p4.z!=0 );
001404    pOut = out2Prerelease(p, pOp);
001405    pOut->flags = MEM_Str|MEM_Static|MEM_Term;
001406    pOut->z = pOp->p4.z;
001407    pOut->n = pOp->p1;
001408    pOut->enc = encoding;
001409    UPDATE_MAX_BLOBSIZE(pOut);
001410  #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
001411    if( pOp->p3>0 ){
001412      assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
001413      pIn3 = &aMem[pOp->p3];
001414      assert( pIn3->flags & MEM_Int );
001415      if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
001416    }
001417  #endif
001418    break;
001419  }
001420  
001421  /* Opcode: BeginSubrtn * P2 * * *
001422  ** Synopsis: r[P2]=NULL
001423  **
001424  ** Mark the beginning of a subroutine that can be entered in-line
001425  ** or that can be called using OP_Gosub.  The subroutine should
001426  ** be terminated by an OP_Return instruction that has a P1 operand that
001427  ** is the same as the P2 operand to this opcode and that has P3 set to 1.
001428  ** If the subroutine is entered in-line, then the OP_Return will simply
001429  ** fall through.  But if the subroutine is entered using OP_Gosub, then
001430  ** the OP_Return will jump back to the first instruction after the OP_Gosub.
001431  **
001432  ** This routine works by loading a NULL into the P2 register.  When the
001433  ** return address register contains a NULL, the OP_Return instruction is
001434  ** a no-op that simply falls through to the next instruction (assuming that
001435  ** the OP_Return opcode has a P3 value of 1).  Thus if the subroutine is
001436  ** entered in-line, then the OP_Return will cause in-line execution to
001437  ** continue.  But if the subroutine is entered via OP_Gosub, then the
001438  ** OP_Return will cause a return to the address following the OP_Gosub.
001439  **
001440  ** This opcode is identical to OP_Null.  It has a different name
001441  ** only to make the byte code easier to read and verify.
001442  */
001443  /* Opcode: Null P1 P2 P3 * *
001444  ** Synopsis: r[P2..P3]=NULL
001445  **
001446  ** Write a NULL into registers P2.  If P3 greater than P2, then also write
001447  ** NULL into register P3 and every register in between P2 and P3.  If P3
001448  ** is less than P2 (typically P3 is zero) then only register P2 is
001449  ** set to NULL.
001450  **
001451  ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
001452  ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
001453  ** OP_Ne or OP_Eq.
001454  */
001455  case OP_BeginSubrtn:
001456  case OP_Null: {           /* out2 */
001457    int cnt;
001458    u16 nullFlag;
001459    pOut = out2Prerelease(p, pOp);
001460    cnt = pOp->p3-pOp->p2;
001461    assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
001462    pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
001463    pOut->n = 0;
001464  #ifdef SQLITE_DEBUG
001465    pOut->uTemp = 0;
001466  #endif
001467    while( cnt>0 ){
001468      pOut++;
001469      memAboutToChange(p, pOut);
001470      sqlite3VdbeMemSetNull(pOut);
001471      pOut->flags = nullFlag;
001472      pOut->n = 0;
001473      cnt--;
001474    }
001475    break;
001476  }
001477  
001478  /* Opcode: SoftNull P1 * * * *
001479  ** Synopsis: r[P1]=NULL
001480  **
001481  ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
001482  ** instruction, but do not free any string or blob memory associated with
001483  ** the register, so that if the value was a string or blob that was
001484  ** previously copied using OP_SCopy, the copies will continue to be valid.
001485  */
001486  case OP_SoftNull: {
001487    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
001488    pOut = &aMem[pOp->p1];
001489    pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
001490    break;
001491  }
001492  
001493  /* Opcode: Blob P1 P2 * P4 *
001494  ** Synopsis: r[P2]=P4 (len=P1)
001495  **
001496  ** P4 points to a blob of data P1 bytes long.  Store this
001497  ** blob in register P2.  If P4 is a NULL pointer, then construct
001498  ** a zero-filled blob that is P1 bytes long in P2.
001499  */
001500  case OP_Blob: {                /* out2 */
001501    assert( pOp->p1 <= SQLITE_MAX_LENGTH );
001502    pOut = out2Prerelease(p, pOp);
001503    if( pOp->p4.z==0 ){
001504      sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
001505      if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
001506    }else{
001507      sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
001508    }
001509    pOut->enc = encoding;
001510    UPDATE_MAX_BLOBSIZE(pOut);
001511    break;
001512  }
001513  
001514  /* Opcode: Variable P1 P2 * P4 *
001515  ** Synopsis: r[P2]=parameter(P1,P4)
001516  **
001517  ** Transfer the values of bound parameter P1 into register P2
001518  **
001519  ** If the parameter is named, then its name appears in P4.
001520  ** The P4 value is used by sqlite3_bind_parameter_name().
001521  */
001522  case OP_Variable: {            /* out2 */
001523    Mem *pVar;       /* Value being transferred */
001524  
001525    assert( pOp->p1>0 && pOp->p1<=p->nVar );
001526    assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
001527    pVar = &p->aVar[pOp->p1 - 1];
001528    if( sqlite3VdbeMemTooBig(pVar) ){
001529      goto too_big;
001530    }
001531    pOut = &aMem[pOp->p2];
001532    if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
001533    memcpy(pOut, pVar, MEMCELLSIZE);
001534    pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
001535    pOut->flags |= MEM_Static|MEM_FromBind;
001536    UPDATE_MAX_BLOBSIZE(pOut);
001537    break;
001538  }
001539  
001540  /* Opcode: Move P1 P2 P3 * *
001541  ** Synopsis: r[P2@P3]=r[P1@P3]
001542  **
001543  ** Move the P3 values in register P1..P1+P3-1 over into
001544  ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
001545  ** left holding a NULL.  It is an error for register ranges
001546  ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
001547  ** for P3 to be less than 1.
001548  */
001549  case OP_Move: {
001550    int n;           /* Number of registers left to copy */
001551    int p1;          /* Register to copy from */
001552    int p2;          /* Register to copy to */
001553  
001554    n = pOp->p3;
001555    p1 = pOp->p1;
001556    p2 = pOp->p2;
001557    assert( n>0 && p1>0 && p2>0 );
001558    assert( p1+n<=p2 || p2+n<=p1 );
001559  
001560    pIn1 = &aMem[p1];
001561    pOut = &aMem[p2];
001562    do{
001563      assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
001564      assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
001565      assert( memIsValid(pIn1) );
001566      memAboutToChange(p, pOut);
001567      sqlite3VdbeMemMove(pOut, pIn1);
001568  #ifdef SQLITE_DEBUG
001569      pIn1->pScopyFrom = 0;
001570      { int i;
001571        for(i=1; i<p->nMem; i++){
001572          if( aMem[i].pScopyFrom==pIn1 ){
001573            aMem[i].pScopyFrom = pOut;
001574          }
001575        }
001576      }
001577  #endif
001578      Deephemeralize(pOut);
001579      REGISTER_TRACE(p2++, pOut);
001580      pIn1++;
001581      pOut++;
001582    }while( --n );
001583    break;
001584  }
001585  
001586  /* Opcode: Copy P1 P2 P3 * P5
001587  ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
001588  **
001589  ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
001590  **
001591  ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
001592  ** destination.  The 0x0001 bit of P5 indicates that this Copy opcode cannot
001593  ** be merged.  The 0x0001 bit is used by the query planner and does not
001594  ** come into play during query execution.
001595  **
001596  ** This instruction makes a deep copy of the value.  A duplicate
001597  ** is made of any string or blob constant.  See also OP_SCopy.
001598  */
001599  case OP_Copy: {
001600    int n;
001601  
001602    n = pOp->p3;
001603    pIn1 = &aMem[pOp->p1];
001604    pOut = &aMem[pOp->p2];
001605    assert( pOut!=pIn1 );
001606    while( 1 ){
001607      memAboutToChange(p, pOut);
001608      sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
001609      Deephemeralize(pOut);
001610      if( (pOut->flags & MEM_Subtype)!=0 &&  (pOp->p5 & 0x0002)!=0 ){
001611        pOut->flags &= ~MEM_Subtype;
001612      }
001613  #ifdef SQLITE_DEBUG
001614      pOut->pScopyFrom = 0;
001615  #endif
001616      REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
001617      if( (n--)==0 ) break;
001618      pOut++;
001619      pIn1++;
001620    }
001621    break;
001622  }
001623  
001624  /* Opcode: SCopy P1 P2 * * *
001625  ** Synopsis: r[P2]=r[P1]
001626  **
001627  ** Make a shallow copy of register P1 into register P2.
001628  **
001629  ** This instruction makes a shallow copy of the value.  If the value
001630  ** is a string or blob, then the copy is only a pointer to the
001631  ** original and hence if the original changes so will the copy.
001632  ** Worse, if the original is deallocated, the copy becomes invalid.
001633  ** Thus the program must guarantee that the original will not change
001634  ** during the lifetime of the copy.  Use OP_Copy to make a complete
001635  ** copy.
001636  */
001637  case OP_SCopy: {            /* out2 */
001638    pIn1 = &aMem[pOp->p1];
001639    pOut = &aMem[pOp->p2];
001640    assert( pOut!=pIn1 );
001641    sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
001642  #ifdef SQLITE_DEBUG
001643    pOut->pScopyFrom = pIn1;
001644    pOut->mScopyFlags = pIn1->flags;
001645  #endif
001646    break;
001647  }
001648  
001649  /* Opcode: IntCopy P1 P2 * * *
001650  ** Synopsis: r[P2]=r[P1]
001651  **
001652  ** Transfer the integer value held in register P1 into register P2.
001653  **
001654  ** This is an optimized version of SCopy that works only for integer
001655  ** values.
001656  */
001657  case OP_IntCopy: {            /* out2 */
001658    pIn1 = &aMem[pOp->p1];
001659    assert( (pIn1->flags & MEM_Int)!=0 );
001660    pOut = &aMem[pOp->p2];
001661    sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
001662    break;
001663  }
001664  
001665  /* Opcode: FkCheck * * * * *
001666  **
001667  ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
001668  ** foreign key constraint violations.  If there are no foreign key
001669  ** constraint violations, this is a no-op.
001670  **
001671  ** FK constraint violations are also checked when the prepared statement
001672  ** exits.  This opcode is used to raise foreign key constraint errors prior
001673  ** to returning results such as a row change count or the result of a
001674  ** RETURNING clause.
001675  */
001676  case OP_FkCheck: {
001677    if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
001678      goto abort_due_to_error;
001679    }
001680    break;
001681  }
001682  
001683  /* Opcode: ResultRow P1 P2 * * *
001684  ** Synopsis: output=r[P1@P2]
001685  **
001686  ** The registers P1 through P1+P2-1 contain a single row of
001687  ** results. This opcode causes the sqlite3_step() call to terminate
001688  ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
001689  ** structure to provide access to the r(P1)..r(P1+P2-1) values as
001690  ** the result row.
001691  */
001692  case OP_ResultRow: {
001693    assert( p->nResColumn==pOp->p2 );
001694    assert( pOp->p1>0 || CORRUPT_DB );
001695    assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
001696  
001697    p->cacheCtr = (p->cacheCtr + 2)|1;
001698    p->pResultRow = &aMem[pOp->p1];
001699  #ifdef SQLITE_DEBUG
001700    {
001701      Mem *pMem = p->pResultRow;
001702      int i;
001703      for(i=0; i<pOp->p2; i++){
001704        assert( memIsValid(&pMem[i]) );
001705        REGISTER_TRACE(pOp->p1+i, &pMem[i]);
001706        /* The registers in the result will not be used again when the
001707        ** prepared statement restarts.  This is because sqlite3_column()
001708        ** APIs might have caused type conversions of made other changes to
001709        ** the register values.  Therefore, we can go ahead and break any
001710        ** OP_SCopy dependencies. */
001711        pMem[i].pScopyFrom = 0;
001712      }
001713    }
001714  #endif
001715    if( db->mallocFailed ) goto no_mem;
001716    if( db->mTrace & SQLITE_TRACE_ROW ){
001717      db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
001718    }
001719    p->pc = (int)(pOp - aOp) + 1;
001720    rc = SQLITE_ROW;
001721    goto vdbe_return;
001722  }
001723  
001724  /* Opcode: Concat P1 P2 P3 * *
001725  ** Synopsis: r[P3]=r[P2]+r[P1]
001726  **
001727  ** Add the text in register P1 onto the end of the text in
001728  ** register P2 and store the result in register P3.
001729  ** If either the P1 or P2 text are NULL then store NULL in P3.
001730  **
001731  **   P3 = P2 || P1
001732  **
001733  ** It is illegal for P1 and P3 to be the same register. Sometimes,
001734  ** if P3 is the same register as P2, the implementation is able
001735  ** to avoid a memcpy().
001736  */
001737  case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
001738    i64 nByte;          /* Total size of the output string or blob */
001739    u16 flags1;         /* Initial flags for P1 */
001740    u16 flags2;         /* Initial flags for P2 */
001741  
001742    pIn1 = &aMem[pOp->p1];
001743    pIn2 = &aMem[pOp->p2];
001744    pOut = &aMem[pOp->p3];
001745    testcase( pOut==pIn2 );
001746    assert( pIn1!=pOut );
001747    flags1 = pIn1->flags;
001748    testcase( flags1 & MEM_Null );
001749    testcase( pIn2->flags & MEM_Null );
001750    if( (flags1 | pIn2->flags) & MEM_Null ){
001751      sqlite3VdbeMemSetNull(pOut);
001752      break;
001753    }
001754    if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
001755      if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
001756      flags1 = pIn1->flags & ~MEM_Str;
001757    }else if( (flags1 & MEM_Zero)!=0 ){
001758      if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
001759      flags1 = pIn1->flags & ~MEM_Str;
001760    }
001761    flags2 = pIn2->flags;
001762    if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
001763      if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
001764      flags2 = pIn2->flags & ~MEM_Str;
001765    }else if( (flags2 & MEM_Zero)!=0 ){
001766      if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
001767      flags2 = pIn2->flags & ~MEM_Str;
001768    }
001769    nByte = pIn1->n + pIn2->n;
001770    if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
001771      goto too_big;
001772    }
001773    if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
001774      goto no_mem;
001775    }
001776    MemSetTypeFlag(pOut, MEM_Str);
001777    if( pOut!=pIn2 ){
001778      memcpy(pOut->z, pIn2->z, pIn2->n);
001779      assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
001780      pIn2->flags = flags2;
001781    }
001782    memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
001783    assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
001784    pIn1->flags = flags1;
001785    if( encoding>SQLITE_UTF8 ) nByte &= ~1;
001786    pOut->z[nByte]=0;
001787    pOut->z[nByte+1] = 0;
001788    pOut->flags |= MEM_Term;
001789    pOut->n = (int)nByte;
001790    pOut->enc = encoding;
001791    UPDATE_MAX_BLOBSIZE(pOut);
001792    break;
001793  }
001794  
001795  /* Opcode: Add P1 P2 P3 * *
001796  ** Synopsis: r[P3]=r[P1]+r[P2]
001797  **
001798  ** Add the value in register P1 to the value in register P2
001799  ** and store the result in register P3.
001800  ** If either input is NULL, the result is NULL.
001801  */
001802  /* Opcode: Multiply P1 P2 P3 * *
001803  ** Synopsis: r[P3]=r[P1]*r[P2]
001804  **
001805  **
001806  ** Multiply the value in register P1 by the value in register P2
001807  ** and store the result in register P3.
001808  ** If either input is NULL, the result is NULL.
001809  */
001810  /* Opcode: Subtract P1 P2 P3 * *
001811  ** Synopsis: r[P3]=r[P2]-r[P1]
001812  **
001813  ** Subtract the value in register P1 from the value in register P2
001814  ** and store the result in register P3.
001815  ** If either input is NULL, the result is NULL.
001816  */
001817  /* Opcode: Divide P1 P2 P3 * *
001818  ** Synopsis: r[P3]=r[P2]/r[P1]
001819  **
001820  ** Divide the value in register P1 by the value in register P2
001821  ** and store the result in register P3 (P3=P2/P1). If the value in
001822  ** register P1 is zero, then the result is NULL. If either input is
001823  ** NULL, the result is NULL.
001824  */
001825  /* Opcode: Remainder P1 P2 P3 * *
001826  ** Synopsis: r[P3]=r[P2]%r[P1]
001827  **
001828  ** Compute the remainder after integer register P2 is divided by
001829  ** register P1 and store the result in register P3.
001830  ** If the value in register P1 is zero the result is NULL.
001831  ** If either operand is NULL, the result is NULL.
001832  */
001833  case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
001834  case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
001835  case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
001836  case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
001837  case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
001838    u16 type1;      /* Numeric type of left operand */
001839    u16 type2;      /* Numeric type of right operand */
001840    i64 iA;         /* Integer value of left operand */
001841    i64 iB;         /* Integer value of right operand */
001842    double rA;      /* Real value of left operand */
001843    double rB;      /* Real value of right operand */
001844  
001845    pIn1 = &aMem[pOp->p1];
001846    type1 = pIn1->flags;
001847    pIn2 = &aMem[pOp->p2];
001848    type2 = pIn2->flags;
001849    pOut = &aMem[pOp->p3];
001850    if( (type1 & type2 & MEM_Int)!=0 ){
001851  int_math:
001852      iA = pIn1->u.i;
001853      iB = pIn2->u.i;
001854      switch( pOp->opcode ){
001855        case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
001856        case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
001857        case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
001858        case OP_Divide: {
001859          if( iA==0 ) goto arithmetic_result_is_null;
001860          if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
001861          iB /= iA;
001862          break;
001863        }
001864        default: {
001865          if( iA==0 ) goto arithmetic_result_is_null;
001866          if( iA==-1 ) iA = 1;
001867          iB %= iA;
001868          break;
001869        }
001870      }
001871      pOut->u.i = iB;
001872      MemSetTypeFlag(pOut, MEM_Int);
001873    }else if( ((type1 | type2) & MEM_Null)!=0 ){
001874      goto arithmetic_result_is_null;
001875    }else{
001876      type1 = numericType(pIn1);
001877      type2 = numericType(pIn2);
001878      if( (type1 & type2 & MEM_Int)!=0 ) goto int_math;
001879  fp_math:
001880      rA = sqlite3VdbeRealValue(pIn1);
001881      rB = sqlite3VdbeRealValue(pIn2);
001882      switch( pOp->opcode ){
001883        case OP_Add:         rB += rA;       break;
001884        case OP_Subtract:    rB -= rA;       break;
001885        case OP_Multiply:    rB *= rA;       break;
001886        case OP_Divide: {
001887          /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
001888          if( rA==(double)0 ) goto arithmetic_result_is_null;
001889          rB /= rA;
001890          break;
001891        }
001892        default: {
001893          iA = sqlite3VdbeIntValue(pIn1);
001894          iB = sqlite3VdbeIntValue(pIn2);
001895          if( iA==0 ) goto arithmetic_result_is_null;
001896          if( iA==-1 ) iA = 1;
001897          rB = (double)(iB % iA);
001898          break;
001899        }
001900      }
001901  #ifdef SQLITE_OMIT_FLOATING_POINT
001902      pOut->u.i = rB;
001903      MemSetTypeFlag(pOut, MEM_Int);
001904  #else
001905      if( sqlite3IsNaN(rB) ){
001906        goto arithmetic_result_is_null;
001907      }
001908      pOut->u.r = rB;
001909      MemSetTypeFlag(pOut, MEM_Real);
001910  #endif
001911    }
001912    break;
001913  
001914  arithmetic_result_is_null:
001915    sqlite3VdbeMemSetNull(pOut);
001916    break;
001917  }
001918  
001919  /* Opcode: CollSeq P1 * * P4
001920  **
001921  ** P4 is a pointer to a CollSeq object. If the next call to a user function
001922  ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
001923  ** be returned. This is used by the built-in min(), max() and nullif()
001924  ** functions.
001925  **
001926  ** If P1 is not zero, then it is a register that a subsequent min() or
001927  ** max() aggregate will set to 1 if the current row is not the minimum or
001928  ** maximum.  The P1 register is initialized to 0 by this instruction.
001929  **
001930  ** The interface used by the implementation of the aforementioned functions
001931  ** to retrieve the collation sequence set by this opcode is not available
001932  ** publicly.  Only built-in functions have access to this feature.
001933  */
001934  case OP_CollSeq: {
001935    assert( pOp->p4type==P4_COLLSEQ );
001936    if( pOp->p1 ){
001937      sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
001938    }
001939    break;
001940  }
001941  
001942  /* Opcode: BitAnd P1 P2 P3 * *
001943  ** Synopsis: r[P3]=r[P1]&r[P2]
001944  **
001945  ** Take the bit-wise AND of the values in register P1 and P2 and
001946  ** store the result in register P3.
001947  ** If either input is NULL, the result is NULL.
001948  */
001949  /* Opcode: BitOr P1 P2 P3 * *
001950  ** Synopsis: r[P3]=r[P1]|r[P2]
001951  **
001952  ** Take the bit-wise OR of the values in register P1 and P2 and
001953  ** store the result in register P3.
001954  ** If either input is NULL, the result is NULL.
001955  */
001956  /* Opcode: ShiftLeft P1 P2 P3 * *
001957  ** Synopsis: r[P3]=r[P2]<<r[P1]
001958  **
001959  ** Shift the integer value in register P2 to the left by the
001960  ** number of bits specified by the integer in register P1.
001961  ** Store the result in register P3.
001962  ** If either input is NULL, the result is NULL.
001963  */
001964  /* Opcode: ShiftRight P1 P2 P3 * *
001965  ** Synopsis: r[P3]=r[P2]>>r[P1]
001966  **
001967  ** Shift the integer value in register P2 to the right by the
001968  ** number of bits specified by the integer in register P1.
001969  ** Store the result in register P3.
001970  ** If either input is NULL, the result is NULL.
001971  */
001972  case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
001973  case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
001974  case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
001975  case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
001976    i64 iA;
001977    u64 uA;
001978    i64 iB;
001979    u8 op;
001980  
001981    pIn1 = &aMem[pOp->p1];
001982    pIn2 = &aMem[pOp->p2];
001983    pOut = &aMem[pOp->p3];
001984    if( (pIn1->flags | pIn2->flags) & MEM_Null ){
001985      sqlite3VdbeMemSetNull(pOut);
001986      break;
001987    }
001988    iA = sqlite3VdbeIntValue(pIn2);
001989    iB = sqlite3VdbeIntValue(pIn1);
001990    op = pOp->opcode;
001991    if( op==OP_BitAnd ){
001992      iA &= iB;
001993    }else if( op==OP_BitOr ){
001994      iA |= iB;
001995    }else if( iB!=0 ){
001996      assert( op==OP_ShiftRight || op==OP_ShiftLeft );
001997  
001998      /* If shifting by a negative amount, shift in the other direction */
001999      if( iB<0 ){
002000        assert( OP_ShiftRight==OP_ShiftLeft+1 );
002001        op = 2*OP_ShiftLeft + 1 - op;
002002        iB = iB>(-64) ? -iB : 64;
002003      }
002004  
002005      if( iB>=64 ){
002006        iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
002007      }else{
002008        memcpy(&uA, &iA, sizeof(uA));
002009        if( op==OP_ShiftLeft ){
002010          uA <<= iB;
002011        }else{
002012          uA >>= iB;
002013          /* Sign-extend on a right shift of a negative number */
002014          if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
002015        }
002016        memcpy(&iA, &uA, sizeof(iA));
002017      }
002018    }
002019    pOut->u.i = iA;
002020    MemSetTypeFlag(pOut, MEM_Int);
002021    break;
002022  }
002023  
002024  /* Opcode: AddImm  P1 P2 * * *
002025  ** Synopsis: r[P1]=r[P1]+P2
002026  **
002027  ** Add the constant P2 to the value in register P1.
002028  ** The result is always an integer.
002029  **
002030  ** To force any register to be an integer, just add 0.
002031  */
002032  case OP_AddImm: {            /* in1 */
002033    pIn1 = &aMem[pOp->p1];
002034    memAboutToChange(p, pIn1);
002035    sqlite3VdbeMemIntegerify(pIn1);
002036    pIn1->u.i += pOp->p2;
002037    break;
002038  }
002039  
002040  /* Opcode: MustBeInt P1 P2 * * *
002041  **
002042  ** Force the value in register P1 to be an integer.  If the value
002043  ** in P1 is not an integer and cannot be converted into an integer
002044  ** without data loss, then jump immediately to P2, or if P2==0
002045  ** raise an SQLITE_MISMATCH exception.
002046  */
002047  case OP_MustBeInt: {            /* jump, in1 */
002048    pIn1 = &aMem[pOp->p1];
002049    if( (pIn1->flags & MEM_Int)==0 ){
002050      applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
002051      if( (pIn1->flags & MEM_Int)==0 ){
002052        VdbeBranchTaken(1, 2);
002053        if( pOp->p2==0 ){
002054          rc = SQLITE_MISMATCH;
002055          goto abort_due_to_error;
002056        }else{
002057          goto jump_to_p2;
002058        }
002059      }
002060    }
002061    VdbeBranchTaken(0, 2);
002062    MemSetTypeFlag(pIn1, MEM_Int);
002063    break;
002064  }
002065  
002066  #ifndef SQLITE_OMIT_FLOATING_POINT
002067  /* Opcode: RealAffinity P1 * * * *
002068  **
002069  ** If register P1 holds an integer convert it to a real value.
002070  **
002071  ** This opcode is used when extracting information from a column that
002072  ** has REAL affinity.  Such column values may still be stored as
002073  ** integers, for space efficiency, but after extraction we want them
002074  ** to have only a real value.
002075  */
002076  case OP_RealAffinity: {                  /* in1 */
002077    pIn1 = &aMem[pOp->p1];
002078    if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
002079      testcase( pIn1->flags & MEM_Int );
002080      testcase( pIn1->flags & MEM_IntReal );
002081      sqlite3VdbeMemRealify(pIn1);
002082      REGISTER_TRACE(pOp->p1, pIn1);
002083    }
002084    break;
002085  }
002086  #endif
002087  
002088  #ifndef SQLITE_OMIT_CAST
002089  /* Opcode: Cast P1 P2 * * *
002090  ** Synopsis: affinity(r[P1])
002091  **
002092  ** Force the value in register P1 to be the type defined by P2.
002093  **
002094  ** <ul>
002095  ** <li> P2=='A' &rarr; BLOB
002096  ** <li> P2=='B' &rarr; TEXT
002097  ** <li> P2=='C' &rarr; NUMERIC
002098  ** <li> P2=='D' &rarr; INTEGER
002099  ** <li> P2=='E' &rarr; REAL
002100  ** </ul>
002101  **
002102  ** A NULL value is not changed by this routine.  It remains NULL.
002103  */
002104  case OP_Cast: {                  /* in1 */
002105    assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
002106    testcase( pOp->p2==SQLITE_AFF_TEXT );
002107    testcase( pOp->p2==SQLITE_AFF_BLOB );
002108    testcase( pOp->p2==SQLITE_AFF_NUMERIC );
002109    testcase( pOp->p2==SQLITE_AFF_INTEGER );
002110    testcase( pOp->p2==SQLITE_AFF_REAL );
002111    pIn1 = &aMem[pOp->p1];
002112    memAboutToChange(p, pIn1);
002113    rc = ExpandBlob(pIn1);
002114    if( rc ) goto abort_due_to_error;
002115    rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
002116    if( rc ) goto abort_due_to_error;
002117    UPDATE_MAX_BLOBSIZE(pIn1);
002118    REGISTER_TRACE(pOp->p1, pIn1);
002119    break;
002120  }
002121  #endif /* SQLITE_OMIT_CAST */
002122  
002123  /* Opcode: Eq P1 P2 P3 P4 P5
002124  ** Synopsis: IF r[P3]==r[P1]
002125  **
002126  ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
002127  ** jump to address P2.
002128  **
002129  ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
002130  ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
002131  ** to coerce both inputs according to this affinity before the
002132  ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
002133  ** affinity is used. Note that the affinity conversions are stored
002134  ** back into the input registers P1 and P3.  So this opcode can cause
002135  ** persistent changes to registers P1 and P3.
002136  **
002137  ** Once any conversions have taken place, and neither value is NULL,
002138  ** the values are compared. If both values are blobs then memcmp() is
002139  ** used to determine the results of the comparison.  If both values
002140  ** are text, then the appropriate collating function specified in
002141  ** P4 is used to do the comparison.  If P4 is not specified then
002142  ** memcmp() is used to compare text string.  If both values are
002143  ** numeric, then a numeric comparison is used. If the two values
002144  ** are of different types, then numbers are considered less than
002145  ** strings and strings are considered less than blobs.
002146  **
002147  ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
002148  ** true or false and is never NULL.  If both operands are NULL then the result
002149  ** of comparison is true.  If either operand is NULL then the result is false.
002150  ** If neither operand is NULL the result is the same as it would be if
002151  ** the SQLITE_NULLEQ flag were omitted from P5.
002152  **
002153  ** This opcode saves the result of comparison for use by the new
002154  ** OP_Jump opcode.
002155  */
002156  /* Opcode: Ne P1 P2 P3 P4 P5
002157  ** Synopsis: IF r[P3]!=r[P1]
002158  **
002159  ** This works just like the Eq opcode except that the jump is taken if
002160  ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
002161  ** additional information.
002162  */
002163  /* Opcode: Lt P1 P2 P3 P4 P5
002164  ** Synopsis: IF r[P3]<r[P1]
002165  **
002166  ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
002167  ** jump to address P2.
002168  **
002169  ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
002170  ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
002171  ** bit is clear then fall through if either operand is NULL.
002172  **
002173  ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
002174  ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
002175  ** to coerce both inputs according to this affinity before the
002176  ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
002177  ** affinity is used. Note that the affinity conversions are stored
002178  ** back into the input registers P1 and P3.  So this opcode can cause
002179  ** persistent changes to registers P1 and P3.
002180  **
002181  ** Once any conversions have taken place, and neither value is NULL,
002182  ** the values are compared. If both values are blobs then memcmp() is
002183  ** used to determine the results of the comparison.  If both values
002184  ** are text, then the appropriate collating function specified in
002185  ** P4 is  used to do the comparison.  If P4 is not specified then
002186  ** memcmp() is used to compare text string.  If both values are
002187  ** numeric, then a numeric comparison is used. If the two values
002188  ** are of different types, then numbers are considered less than
002189  ** strings and strings are considered less than blobs.
002190  **
002191  ** This opcode saves the result of comparison for use by the new
002192  ** OP_Jump opcode.
002193  */
002194  /* Opcode: Le P1 P2 P3 P4 P5
002195  ** Synopsis: IF r[P3]<=r[P1]
002196  **
002197  ** This works just like the Lt opcode except that the jump is taken if
002198  ** the content of register P3 is less than or equal to the content of
002199  ** register P1.  See the Lt opcode for additional information.
002200  */
002201  /* Opcode: Gt P1 P2 P3 P4 P5
002202  ** Synopsis: IF r[P3]>r[P1]
002203  **
002204  ** This works just like the Lt opcode except that the jump is taken if
002205  ** the content of register P3 is greater than the content of
002206  ** register P1.  See the Lt opcode for additional information.
002207  */
002208  /* Opcode: Ge P1 P2 P3 P4 P5
002209  ** Synopsis: IF r[P3]>=r[P1]
002210  **
002211  ** This works just like the Lt opcode except that the jump is taken if
002212  ** the content of register P3 is greater than or equal to the content of
002213  ** register P1.  See the Lt opcode for additional information.
002214  */
002215  case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
002216  case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
002217  case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
002218  case OP_Le:               /* same as TK_LE, jump, in1, in3 */
002219  case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
002220  case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
002221    int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
002222    char affinity;      /* Affinity to use for comparison */
002223    u16 flags1;         /* Copy of initial value of pIn1->flags */
002224    u16 flags3;         /* Copy of initial value of pIn3->flags */
002225  
002226    pIn1 = &aMem[pOp->p1];
002227    pIn3 = &aMem[pOp->p3];
002228    flags1 = pIn1->flags;
002229    flags3 = pIn3->flags;
002230    if( (flags1 & flags3 & MEM_Int)!=0 ){
002231      /* Common case of comparison of two integers */
002232      if( pIn3->u.i > pIn1->u.i ){
002233        if( sqlite3aGTb[pOp->opcode] ){
002234          VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002235          goto jump_to_p2;
002236        }
002237        iCompare = +1;
002238        VVA_ONLY( iCompareIsInit = 1; )
002239      }else if( pIn3->u.i < pIn1->u.i ){
002240        if( sqlite3aLTb[pOp->opcode] ){
002241          VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002242          goto jump_to_p2;
002243        }
002244        iCompare = -1;
002245        VVA_ONLY( iCompareIsInit = 1; )
002246      }else{
002247        if( sqlite3aEQb[pOp->opcode] ){
002248          VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002249          goto jump_to_p2;
002250        }
002251        iCompare = 0;
002252        VVA_ONLY( iCompareIsInit = 1; )
002253      }
002254      VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002255      break;
002256    }
002257    if( (flags1 | flags3)&MEM_Null ){
002258      /* One or both operands are NULL */
002259      if( pOp->p5 & SQLITE_NULLEQ ){
002260        /* If SQLITE_NULLEQ is set (which will only happen if the operator is
002261        ** OP_Eq or OP_Ne) then take the jump or not depending on whether
002262        ** or not both operands are null.
002263        */
002264        assert( (flags1 & MEM_Cleared)==0 );
002265        assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
002266        testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
002267        if( (flags1&flags3&MEM_Null)!=0
002268         && (flags3&MEM_Cleared)==0
002269        ){
002270          res = 0;  /* Operands are equal */
002271        }else{
002272          res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
002273        }
002274      }else{
002275        /* SQLITE_NULLEQ is clear and at least one operand is NULL,
002276        ** then the result is always NULL.
002277        ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
002278        */
002279        VdbeBranchTaken(2,3);
002280        if( pOp->p5 & SQLITE_JUMPIFNULL ){
002281          goto jump_to_p2;
002282        }
002283        iCompare = 1;    /* Operands are not equal */
002284        VVA_ONLY( iCompareIsInit = 1; )
002285        break;
002286      }
002287    }else{
002288      /* Neither operand is NULL and we couldn't do the special high-speed
002289      ** integer comparison case.  So do a general-case comparison. */
002290      affinity = pOp->p5 & SQLITE_AFF_MASK;
002291      if( affinity>=SQLITE_AFF_NUMERIC ){
002292        if( (flags1 | flags3)&MEM_Str ){
002293          if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
002294            applyNumericAffinity(pIn1,0);
002295            assert( flags3==pIn3->flags || CORRUPT_DB );
002296            flags3 = pIn3->flags;
002297          }
002298          if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
002299            applyNumericAffinity(pIn3,0);
002300          }
002301        }
002302      }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){
002303        if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
002304          testcase( pIn1->flags & MEM_Int );
002305          testcase( pIn1->flags & MEM_Real );
002306          testcase( pIn1->flags & MEM_IntReal );
002307          sqlite3VdbeMemStringify(pIn1, encoding, 1);
002308          testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
002309          flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
002310          if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
002311        }
002312        if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
002313          testcase( pIn3->flags & MEM_Int );
002314          testcase( pIn3->flags & MEM_Real );
002315          testcase( pIn3->flags & MEM_IntReal );
002316          sqlite3VdbeMemStringify(pIn3, encoding, 1);
002317          testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
002318          flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
002319        }
002320      }
002321      assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
002322      res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
002323    }
002324  
002325    /* At this point, res is negative, zero, or positive if reg[P1] is
002326    ** less than, equal to, or greater than reg[P3], respectively.  Compute
002327    ** the answer to this operator in res2, depending on what the comparison
002328    ** operator actually is.  The next block of code depends on the fact
002329    ** that the 6 comparison operators are consecutive integers in this
002330    ** order:  NE, EQ, GT, LE, LT, GE */
002331    assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
002332    assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
002333    if( res<0 ){
002334      res2 = sqlite3aLTb[pOp->opcode];
002335    }else if( res==0 ){
002336      res2 = sqlite3aEQb[pOp->opcode];
002337    }else{
002338      res2 = sqlite3aGTb[pOp->opcode];
002339    }
002340    iCompare = res;
002341    VVA_ONLY( iCompareIsInit = 1; )
002342  
002343    /* Undo any changes made by applyAffinity() to the input registers. */
002344    assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
002345    pIn3->flags = flags3;
002346    assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
002347    pIn1->flags = flags1;
002348  
002349    VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002350    if( res2 ){
002351      goto jump_to_p2;
002352    }
002353    break;
002354  }
002355  
002356  /* Opcode: ElseEq * P2 * * *
002357  **
002358  ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
002359  ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
002360  ** opcodes are allowed to occur between this instruction and the previous
002361  ** OP_Lt or OP_Gt.
002362  **
002363  ** If the result of an OP_Eq comparison on the same two operands as
002364  ** the prior OP_Lt or OP_Gt would have been true, then jump to P2.  If
002365  ** the result of an OP_Eq comparison on the two previous operands
002366  ** would have been false or NULL, then fall through.
002367  */
002368  case OP_ElseEq: {       /* same as TK_ESCAPE, jump */
002369  
002370  #ifdef SQLITE_DEBUG
002371    /* Verify the preconditions of this opcode - that it follows an OP_Lt or
002372    ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
002373    int iAddr;
002374    for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
002375      if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
002376      assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
002377      break;
002378    }
002379  #endif /* SQLITE_DEBUG */
002380    assert( iCompareIsInit );
002381    VdbeBranchTaken(iCompare==0, 2);
002382    if( iCompare==0 ) goto jump_to_p2;
002383    break;
002384  }
002385  
002386  
002387  /* Opcode: Permutation * * * P4 *
002388  **
002389  ** Set the permutation used by the OP_Compare operator in the next
002390  ** instruction.  The permutation is stored in the P4 operand.
002391  **
002392  ** The permutation is only valid for the next opcode which must be
002393  ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
002394  **
002395  ** The first integer in the P4 integer array is the length of the array
002396  ** and does not become part of the permutation.
002397  */
002398  case OP_Permutation: {
002399    assert( pOp->p4type==P4_INTARRAY );
002400    assert( pOp->p4.ai );
002401    assert( pOp[1].opcode==OP_Compare );
002402    assert( pOp[1].p5 & OPFLAG_PERMUTE );
002403    break;
002404  }
002405  
002406  /* Opcode: Compare P1 P2 P3 P4 P5
002407  ** Synopsis: r[P1@P3] <-> r[P2@P3]
002408  **
002409  ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
002410  ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
002411  ** the comparison for use by the next OP_Jump instruct.
002412  **
002413  ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
002414  ** determined by the most recent OP_Permutation operator.  If the
002415  ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
002416  ** order.
002417  **
002418  ** P4 is a KeyInfo structure that defines collating sequences and sort
002419  ** orders for the comparison.  The permutation applies to registers
002420  ** only.  The KeyInfo elements are used sequentially.
002421  **
002422  ** The comparison is a sort comparison, so NULLs compare equal,
002423  ** NULLs are less than numbers, numbers are less than strings,
002424  ** and strings are less than blobs.
002425  **
002426  ** This opcode must be immediately followed by an OP_Jump opcode.
002427  */
002428  case OP_Compare: {
002429    int n;
002430    int i;
002431    int p1;
002432    int p2;
002433    const KeyInfo *pKeyInfo;
002434    u32 idx;
002435    CollSeq *pColl;    /* Collating sequence to use on this term */
002436    int bRev;          /* True for DESCENDING sort order */
002437    u32 *aPermute;     /* The permutation */
002438  
002439    if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
002440      aPermute = 0;
002441    }else{
002442      assert( pOp>aOp );
002443      assert( pOp[-1].opcode==OP_Permutation );
002444      assert( pOp[-1].p4type==P4_INTARRAY );
002445      aPermute = pOp[-1].p4.ai + 1;
002446      assert( aPermute!=0 );
002447    }
002448    n = pOp->p3;
002449    pKeyInfo = pOp->p4.pKeyInfo;
002450    assert( n>0 );
002451    assert( pKeyInfo!=0 );
002452    p1 = pOp->p1;
002453    p2 = pOp->p2;
002454  #ifdef SQLITE_DEBUG
002455    if( aPermute ){
002456      int k, mx = 0;
002457      for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
002458      assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
002459      assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
002460    }else{
002461      assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
002462      assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
002463    }
002464  #endif /* SQLITE_DEBUG */
002465    for(i=0; i<n; i++){
002466      idx = aPermute ? aPermute[i] : (u32)i;
002467      assert( memIsValid(&aMem[p1+idx]) );
002468      assert( memIsValid(&aMem[p2+idx]) );
002469      REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
002470      REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
002471      assert( i<pKeyInfo->nKeyField );
002472      pColl = pKeyInfo->aColl[i];
002473      bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
002474      iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
002475      VVA_ONLY( iCompareIsInit = 1; )
002476      if( iCompare ){
002477        if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
002478         && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
002479        ){
002480          iCompare = -iCompare;
002481        }
002482        if( bRev ) iCompare = -iCompare;
002483        break;
002484      }
002485    }
002486    assert( pOp[1].opcode==OP_Jump );
002487    break;
002488  }
002489  
002490  /* Opcode: Jump P1 P2 P3 * *
002491  **
002492  ** Jump to the instruction at address P1, P2, or P3 depending on whether
002493  ** in the most recent OP_Compare instruction the P1 vector was less than,
002494  ** equal to, or greater than the P2 vector, respectively.
002495  **
002496  ** This opcode must immediately follow an OP_Compare opcode.
002497  */
002498  case OP_Jump: {             /* jump */
002499    assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
002500    assert( iCompareIsInit );
002501    if( iCompare<0 ){
002502      VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
002503    }else if( iCompare==0 ){
002504      VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
002505    }else{
002506      VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
002507    }
002508    break;
002509  }
002510  
002511  /* Opcode: And P1 P2 P3 * *
002512  ** Synopsis: r[P3]=(r[P1] && r[P2])
002513  **
002514  ** Take the logical AND of the values in registers P1 and P2 and
002515  ** write the result into register P3.
002516  **
002517  ** If either P1 or P2 is 0 (false) then the result is 0 even if
002518  ** the other input is NULL.  A NULL and true or two NULLs give
002519  ** a NULL output.
002520  */
002521  /* Opcode: Or P1 P2 P3 * *
002522  ** Synopsis: r[P3]=(r[P1] || r[P2])
002523  **
002524  ** Take the logical OR of the values in register P1 and P2 and
002525  ** store the answer in register P3.
002526  **
002527  ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
002528  ** even if the other input is NULL.  A NULL and false or two NULLs
002529  ** give a NULL output.
002530  */
002531  case OP_And:              /* same as TK_AND, in1, in2, out3 */
002532  case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
002533    int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
002534    int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
002535  
002536    v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
002537    v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
002538    if( pOp->opcode==OP_And ){
002539      static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
002540      v1 = and_logic[v1*3+v2];
002541    }else{
002542      static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
002543      v1 = or_logic[v1*3+v2];
002544    }
002545    pOut = &aMem[pOp->p3];
002546    if( v1==2 ){
002547      MemSetTypeFlag(pOut, MEM_Null);
002548    }else{
002549      pOut->u.i = v1;
002550      MemSetTypeFlag(pOut, MEM_Int);
002551    }
002552    break;
002553  }
002554  
002555  /* Opcode: IsTrue P1 P2 P3 P4 *
002556  ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
002557  **
002558  ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
002559  ** IS NOT FALSE operators.
002560  **
002561  ** Interpret the value in register P1 as a boolean value.  Store that
002562  ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
002563  ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
002564  ** is 1.
002565  **
002566  ** The logic is summarized like this:
002567  **
002568  ** <ul>
002569  ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
002570  ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
002571  ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
002572  ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
002573  ** </ul>
002574  */
002575  case OP_IsTrue: {               /* in1, out2 */
002576    assert( pOp->p4type==P4_INT32 );
002577    assert( pOp->p4.i==0 || pOp->p4.i==1 );
002578    assert( pOp->p3==0 || pOp->p3==1 );
002579    sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
002580        sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
002581    break;
002582  }
002583  
002584  /* Opcode: Not P1 P2 * * *
002585  ** Synopsis: r[P2]= !r[P1]
002586  **
002587  ** Interpret the value in register P1 as a boolean value.  Store the
002588  ** boolean complement in register P2.  If the value in register P1 is
002589  ** NULL, then a NULL is stored in P2.
002590  */
002591  case OP_Not: {                /* same as TK_NOT, in1, out2 */
002592    pIn1 = &aMem[pOp->p1];
002593    pOut = &aMem[pOp->p2];
002594    if( (pIn1->flags & MEM_Null)==0 ){
002595      sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
002596    }else{
002597      sqlite3VdbeMemSetNull(pOut);
002598    }
002599    break;
002600  }
002601  
002602  /* Opcode: BitNot P1 P2 * * *
002603  ** Synopsis: r[P2]= ~r[P1]
002604  **
002605  ** Interpret the content of register P1 as an integer.  Store the
002606  ** ones-complement of the P1 value into register P2.  If P1 holds
002607  ** a NULL then store a NULL in P2.
002608  */
002609  case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
002610    pIn1 = &aMem[pOp->p1];
002611    pOut = &aMem[pOp->p2];
002612    sqlite3VdbeMemSetNull(pOut);
002613    if( (pIn1->flags & MEM_Null)==0 ){
002614      pOut->flags = MEM_Int;
002615      pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
002616    }
002617    break;
002618  }
002619  
002620  /* Opcode: Once P1 P2 * * *
002621  **
002622  ** Fall through to the next instruction the first time this opcode is
002623  ** encountered on each invocation of the byte-code program.  Jump to P2
002624  ** on the second and all subsequent encounters during the same invocation.
002625  **
002626  ** Top-level programs determine first invocation by comparing the P1
002627  ** operand against the P1 operand on the OP_Init opcode at the beginning
002628  ** of the program.  If the P1 values differ, then fall through and make
002629  ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
002630  ** the same then take the jump.
002631  **
002632  ** For subprograms, there is a bitmask in the VdbeFrame that determines
002633  ** whether or not the jump should be taken.  The bitmask is necessary
002634  ** because the self-altering code trick does not work for recursive
002635  ** triggers.
002636  */
002637  case OP_Once: {             /* jump */
002638    u32 iAddr;                /* Address of this instruction */
002639    assert( p->aOp[0].opcode==OP_Init );
002640    if( p->pFrame ){
002641      iAddr = (int)(pOp - p->aOp);
002642      if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
002643        VdbeBranchTaken(1, 2);
002644        goto jump_to_p2;
002645      }
002646      p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
002647    }else{
002648      if( p->aOp[0].p1==pOp->p1 ){
002649        VdbeBranchTaken(1, 2);
002650        goto jump_to_p2;
002651      }
002652    }
002653    VdbeBranchTaken(0, 2);
002654    pOp->p1 = p->aOp[0].p1;
002655    break;
002656  }
002657  
002658  /* Opcode: If P1 P2 P3 * *
002659  **
002660  ** Jump to P2 if the value in register P1 is true.  The value
002661  ** is considered true if it is numeric and non-zero.  If the value
002662  ** in P1 is NULL then take the jump if and only if P3 is non-zero.
002663  */
002664  case OP_If:  {               /* jump, in1 */
002665    int c;
002666    c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
002667    VdbeBranchTaken(c!=0, 2);
002668    if( c ) goto jump_to_p2;
002669    break;
002670  }
002671  
002672  /* Opcode: IfNot P1 P2 P3 * *
002673  **
002674  ** Jump to P2 if the value in register P1 is False.  The value
002675  ** is considered false if it has a numeric value of zero.  If the value
002676  ** in P1 is NULL then take the jump if and only if P3 is non-zero.
002677  */
002678  case OP_IfNot: {            /* jump, in1 */
002679    int c;
002680    c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
002681    VdbeBranchTaken(c!=0, 2);
002682    if( c ) goto jump_to_p2;
002683    break;
002684  }
002685  
002686  /* Opcode: IsNull P1 P2 * * *
002687  ** Synopsis: if r[P1]==NULL goto P2
002688  **
002689  ** Jump to P2 if the value in register P1 is NULL.
002690  */
002691  case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
002692    pIn1 = &aMem[pOp->p1];
002693    VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
002694    if( (pIn1->flags & MEM_Null)!=0 ){
002695      goto jump_to_p2;
002696    }
002697    break;
002698  }
002699  
002700  /* Opcode: IsType P1 P2 P3 P4 P5
002701  ** Synopsis: if typeof(P1.P3) in P5 goto P2
002702  **
002703  ** Jump to P2 if the type of a column in a btree is one of the types specified
002704  ** by the P5 bitmask.
002705  **
002706  ** P1 is normally a cursor on a btree for which the row decode cache is
002707  ** valid through at least column P3.  In other words, there should have been
002708  ** a prior OP_Column for column P3 or greater.  If the cursor is not valid,
002709  ** then this opcode might give spurious results.
002710  ** The the btree row has fewer than P3 columns, then use P4 as the
002711  ** datatype.
002712  **
002713  ** If P1 is -1, then P3 is a register number and the datatype is taken
002714  ** from the value in that register.
002715  **
002716  ** P5 is a bitmask of data types.  SQLITE_INTEGER is the least significant
002717  ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
002718  ** SQLITE_BLOB is 0x08.  SQLITE_NULL is 0x10.
002719  **
002720  ** WARNING: This opcode does not reliably distinguish between NULL and REAL
002721  ** when P1>=0.  If the database contains a NaN value, this opcode will think
002722  ** that the datatype is REAL when it should be NULL.  When P1<0 and the value
002723  ** is already stored in register P3, then this opcode does reliably
002724  ** distinguish between NULL and REAL.  The problem only arises then P1>=0.
002725  **
002726  ** Take the jump to address P2 if and only if the datatype of the
002727  ** value determined by P1 and P3 corresponds to one of the bits in the
002728  ** P5 bitmask.
002729  **
002730  */
002731  case OP_IsType: {        /* jump */
002732    VdbeCursor *pC;
002733    u16 typeMask;
002734    u32 serialType;
002735  
002736    assert( pOp->p1>=(-1) && pOp->p1<p->nCursor );
002737    assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) );
002738    if( pOp->p1>=0 ){
002739      pC = p->apCsr[pOp->p1];
002740      assert( pC!=0 );
002741      assert( pOp->p3>=0 );
002742      if( pOp->p3<pC->nHdrParsed ){
002743        serialType = pC->aType[pOp->p3];
002744        if( serialType>=12 ){
002745          if( serialType&1 ){
002746            typeMask = 0x04;   /* SQLITE_TEXT */
002747          }else{
002748            typeMask = 0x08;   /* SQLITE_BLOB */
002749          }
002750        }else{
002751          static const unsigned char aMask[] = {
002752             0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
002753             0x01, 0x01, 0x10, 0x10
002754          };
002755          testcase( serialType==0 );
002756          testcase( serialType==1 );
002757          testcase( serialType==2 );
002758          testcase( serialType==3 );
002759          testcase( serialType==4 );
002760          testcase( serialType==5 );
002761          testcase( serialType==6 );
002762          testcase( serialType==7 );
002763          testcase( serialType==8 );
002764          testcase( serialType==9 );
002765          testcase( serialType==10 );
002766          testcase( serialType==11 );
002767          typeMask = aMask[serialType];
002768        }
002769      }else{
002770        typeMask = 1 << (pOp->p4.i - 1);
002771        testcase( typeMask==0x01 );
002772        testcase( typeMask==0x02 );
002773        testcase( typeMask==0x04 );
002774        testcase( typeMask==0x08 );
002775        testcase( typeMask==0x10 );
002776      }
002777    }else{
002778      assert( memIsValid(&aMem[pOp->p3]) );
002779      typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1);
002780      testcase( typeMask==0x01 );
002781      testcase( typeMask==0x02 );
002782      testcase( typeMask==0x04 );
002783      testcase( typeMask==0x08 );
002784      testcase( typeMask==0x10 );
002785    }
002786    VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2);
002787    if( typeMask & pOp->p5 ){
002788      goto jump_to_p2;
002789    }
002790    break;
002791  }
002792  
002793  /* Opcode: ZeroOrNull P1 P2 P3 * *
002794  ** Synopsis: r[P2] = 0 OR NULL
002795  **
002796  ** If both registers P1 and P3 are NOT NULL, then store a zero in
002797  ** register P2.  If either registers P1 or P3 are NULL then put
002798  ** a NULL in register P2.
002799  */
002800  case OP_ZeroOrNull: {            /* in1, in2, out2, in3 */
002801    if( (aMem[pOp->p1].flags & MEM_Null)!=0
002802     || (aMem[pOp->p3].flags & MEM_Null)!=0
002803    ){
002804      sqlite3VdbeMemSetNull(aMem + pOp->p2);
002805    }else{
002806      sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
002807    }
002808    break;
002809  }
002810  
002811  /* Opcode: NotNull P1 P2 * * *
002812  ** Synopsis: if r[P1]!=NULL goto P2
002813  **
002814  ** Jump to P2 if the value in register P1 is not NULL. 
002815  */
002816  case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
002817    pIn1 = &aMem[pOp->p1];
002818    VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
002819    if( (pIn1->flags & MEM_Null)==0 ){
002820      goto jump_to_p2;
002821    }
002822    break;
002823  }
002824  
002825  /* Opcode: IfNullRow P1 P2 P3 * *
002826  ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
002827  **
002828  ** Check the cursor P1 to see if it is currently pointing at a NULL row.
002829  ** If it is, then set register P3 to NULL and jump immediately to P2.
002830  ** If P1 is not on a NULL row, then fall through without making any
002831  ** changes.
002832  **
002833  ** If P1 is not an open cursor, then this opcode is a no-op.
002834  */
002835  case OP_IfNullRow: {         /* jump */
002836    VdbeCursor *pC;
002837    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
002838    pC = p->apCsr[pOp->p1];
002839    if( pC && pC->nullRow ){
002840      sqlite3VdbeMemSetNull(aMem + pOp->p3);
002841      goto jump_to_p2;
002842    }
002843    break;
002844  }
002845  
002846  #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
002847  /* Opcode: Offset P1 P2 P3 * *
002848  ** Synopsis: r[P3] = sqlite_offset(P1)
002849  **
002850  ** Store in register r[P3] the byte offset into the database file that is the
002851  ** start of the payload for the record at which that cursor P1 is currently
002852  ** pointing.
002853  **
002854  ** P2 is the column number for the argument to the sqlite_offset() function.
002855  ** This opcode does not use P2 itself, but the P2 value is used by the
002856  ** code generator.  The P1, P2, and P3 operands to this opcode are the
002857  ** same as for OP_Column.
002858  **
002859  ** This opcode is only available if SQLite is compiled with the
002860  ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
002861  */
002862  case OP_Offset: {          /* out3 */
002863    VdbeCursor *pC;    /* The VDBE cursor */
002864    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
002865    pC = p->apCsr[pOp->p1];
002866    pOut = &p->aMem[pOp->p3];
002867    if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
002868      sqlite3VdbeMemSetNull(pOut);
002869    }else{
002870      if( pC->deferredMoveto ){
002871        rc = sqlite3VdbeFinishMoveto(pC);
002872        if( rc ) goto abort_due_to_error;
002873      }
002874      if( sqlite3BtreeEof(pC->uc.pCursor) ){
002875        sqlite3VdbeMemSetNull(pOut);
002876      }else{
002877        sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
002878      }
002879    }
002880    break;
002881  }
002882  #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
002883  
002884  /* Opcode: Column P1 P2 P3 P4 P5
002885  ** Synopsis: r[P3]=PX cursor P1 column P2
002886  **
002887  ** Interpret the data that cursor P1 points to as a structure built using
002888  ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
002889  ** information about the format of the data.)  Extract the P2-th column
002890  ** from this record.  If there are less than (P2+1)
002891  ** values in the record, extract a NULL.
002892  **
002893  ** The value extracted is stored in register P3.
002894  **
002895  ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
002896  ** if the P4 argument is a P4_MEM use the value of the P4 argument as
002897  ** the result.
002898  **
002899  ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
002900  ** to only be used by the length() function or the equivalent.  The content
002901  ** of large blobs is not loaded, thus saving CPU cycles.  If the
002902  ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
002903  ** typeof() function or the IS NULL or IS NOT NULL operators or the
002904  ** equivalent.  In this case, all content loading can be omitted.
002905  */
002906  case OP_Column: {            /* ncycle */
002907    u32 p2;            /* column number to retrieve */
002908    VdbeCursor *pC;    /* The VDBE cursor */
002909    BtCursor *pCrsr;   /* The B-Tree cursor corresponding to pC */
002910    u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
002911    int len;           /* The length of the serialized data for the column */
002912    int i;             /* Loop counter */
002913    Mem *pDest;        /* Where to write the extracted value */
002914    Mem sMem;          /* For storing the record being decoded */
002915    const u8 *zData;   /* Part of the record being decoded */
002916    const u8 *zHdr;    /* Next unparsed byte of the header */
002917    const u8 *zEndHdr; /* Pointer to first byte after the header */
002918    u64 offset64;      /* 64-bit offset */
002919    u32 t;             /* A type code from the record header */
002920    Mem *pReg;         /* PseudoTable input register */
002921  
002922    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
002923    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
002924    pC = p->apCsr[pOp->p1];
002925    p2 = (u32)pOp->p2;
002926  
002927  op_column_restart:
002928    assert( pC!=0 );
002929    assert( p2<(u32)pC->nField
002930         || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
002931    aOffset = pC->aOffset;
002932    assert( aOffset==pC->aType+pC->nField );
002933    assert( pC->eCurType!=CURTYPE_VTAB );
002934    assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
002935    assert( pC->eCurType!=CURTYPE_SORTER );
002936  
002937    if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
002938      if( pC->nullRow ){
002939        if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
002940          /* For the special case of as pseudo-cursor, the seekResult field
002941          ** identifies the register that holds the record */
002942          pReg = &aMem[pC->seekResult];
002943          assert( pReg->flags & MEM_Blob );
002944          assert( memIsValid(pReg) );
002945          pC->payloadSize = pC->szRow = pReg->n;
002946          pC->aRow = (u8*)pReg->z;
002947        }else{
002948          pDest = &aMem[pOp->p3];
002949          memAboutToChange(p, pDest);
002950          sqlite3VdbeMemSetNull(pDest);
002951          goto op_column_out;
002952        }
002953      }else{
002954        pCrsr = pC->uc.pCursor;
002955        if( pC->deferredMoveto ){
002956          u32 iMap;
002957          assert( !pC->isEphemeral );
002958          if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0  ){
002959            pC = pC->pAltCursor;
002960            p2 = iMap - 1;
002961            goto op_column_restart;
002962          }
002963          rc = sqlite3VdbeFinishMoveto(pC);
002964          if( rc ) goto abort_due_to_error;
002965        }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
002966          rc = sqlite3VdbeHandleMovedCursor(pC);
002967          if( rc ) goto abort_due_to_error;
002968          goto op_column_restart;
002969        }
002970        assert( pC->eCurType==CURTYPE_BTREE );
002971        assert( pCrsr );
002972        assert( sqlite3BtreeCursorIsValid(pCrsr) );
002973        pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
002974        pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
002975        assert( pC->szRow<=pC->payloadSize );
002976        assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
002977      }
002978      pC->cacheStatus = p->cacheCtr;
002979      if( (aOffset[0] = pC->aRow[0])<0x80 ){
002980        pC->iHdrOffset = 1;
002981      }else{
002982        pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
002983      }
002984      pC->nHdrParsed = 0;
002985  
002986      if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
002987        /* pC->aRow does not have to hold the entire row, but it does at least
002988        ** need to cover the header of the record.  If pC->aRow does not contain
002989        ** the complete header, then set it to zero, forcing the header to be
002990        ** dynamically allocated. */
002991        pC->aRow = 0;
002992        pC->szRow = 0;
002993  
002994        /* Make sure a corrupt database has not given us an oversize header.
002995        ** Do this now to avoid an oversize memory allocation.
002996        **
002997        ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
002998        ** types use so much data space that there can only be 4096 and 32 of
002999        ** them, respectively.  So the maximum header length results from a
003000        ** 3-byte type for each of the maximum of 32768 columns plus three
003001        ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
003002        */
003003        if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
003004          goto op_column_corrupt;
003005        }
003006      }else{
003007        /* This is an optimization.  By skipping over the first few tests
003008        ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
003009        ** measurable performance gain.
003010        **
003011        ** This branch is taken even if aOffset[0]==0.  Such a record is never
003012        ** generated by SQLite, and could be considered corruption, but we
003013        ** accept it for historical reasons.  When aOffset[0]==0, the code this
003014        ** branch jumps to reads past the end of the record, but never more
003015        ** than a few bytes.  Even if the record occurs at the end of the page
003016        ** content area, the "page header" comes after the page content and so
003017        ** this overread is harmless.  Similar overreads can occur for a corrupt
003018        ** database file.
003019        */
003020        zData = pC->aRow;
003021        assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
003022        testcase( aOffset[0]==0 );
003023        goto op_column_read_header;
003024      }
003025    }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
003026      rc = sqlite3VdbeHandleMovedCursor(pC);
003027      if( rc ) goto abort_due_to_error;
003028      goto op_column_restart;
003029    }
003030  
003031    /* Make sure at least the first p2+1 entries of the header have been
003032    ** parsed and valid information is in aOffset[] and pC->aType[].
003033    */
003034    if( pC->nHdrParsed<=p2 ){
003035      /* If there is more header available for parsing in the record, try
003036      ** to extract additional fields up through the p2+1-th field
003037      */
003038      if( pC->iHdrOffset<aOffset[0] ){
003039        /* Make sure zData points to enough of the record to cover the header. */
003040        if( pC->aRow==0 ){
003041          memset(&sMem, 0, sizeof(sMem));
003042          rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
003043          if( rc!=SQLITE_OK ) goto abort_due_to_error;
003044          zData = (u8*)sMem.z;
003045        }else{
003046          zData = pC->aRow;
003047        }
003048   
003049        /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
003050      op_column_read_header:
003051        i = pC->nHdrParsed;
003052        offset64 = aOffset[i];
003053        zHdr = zData + pC->iHdrOffset;
003054        zEndHdr = zData + aOffset[0];
003055        testcase( zHdr>=zEndHdr );
003056        do{
003057          if( (pC->aType[i] = t = zHdr[0])<0x80 ){
003058            zHdr++;
003059            offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
003060          }else{
003061            zHdr += sqlite3GetVarint32(zHdr, &t);
003062            pC->aType[i] = t;
003063            offset64 += sqlite3VdbeSerialTypeLen(t);
003064          }
003065          aOffset[++i] = (u32)(offset64 & 0xffffffff);
003066        }while( (u32)i<=p2 && zHdr<zEndHdr );
003067  
003068        /* The record is corrupt if any of the following are true:
003069        ** (1) the bytes of the header extend past the declared header size
003070        ** (2) the entire header was used but not all data was used
003071        ** (3) the end of the data extends beyond the end of the record.
003072        */
003073        if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
003074         || (offset64 > pC->payloadSize)
003075        ){
003076          if( aOffset[0]==0 ){
003077            i = 0;
003078            zHdr = zEndHdr;
003079          }else{
003080            if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
003081            goto op_column_corrupt;
003082          }
003083        }
003084  
003085        pC->nHdrParsed = i;
003086        pC->iHdrOffset = (u32)(zHdr - zData);
003087        if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
003088      }else{
003089        t = 0;
003090      }
003091  
003092      /* If after trying to extract new entries from the header, nHdrParsed is
003093      ** still not up to p2, that means that the record has fewer than p2
003094      ** columns.  So the result will be either the default value or a NULL.
003095      */
003096      if( pC->nHdrParsed<=p2 ){
003097        pDest = &aMem[pOp->p3];
003098        memAboutToChange(p, pDest);
003099        if( pOp->p4type==P4_MEM ){
003100          sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
003101        }else{
003102          sqlite3VdbeMemSetNull(pDest);
003103        }
003104        goto op_column_out;
003105      }
003106    }else{
003107      t = pC->aType[p2];
003108    }
003109  
003110    /* Extract the content for the p2+1-th column.  Control can only
003111    ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
003112    ** all valid.
003113    */
003114    assert( p2<pC->nHdrParsed );
003115    assert( rc==SQLITE_OK );
003116    pDest = &aMem[pOp->p3];
003117    memAboutToChange(p, pDest);
003118    assert( sqlite3VdbeCheckMemInvariants(pDest) );
003119    if( VdbeMemDynamic(pDest) ){
003120      sqlite3VdbeMemSetNull(pDest);
003121    }
003122    assert( t==pC->aType[p2] );
003123    if( pC->szRow>=aOffset[p2+1] ){
003124      /* This is the common case where the desired content fits on the original
003125      ** page - where the content is not on an overflow page */
003126      zData = pC->aRow + aOffset[p2];
003127      if( t<12 ){
003128        sqlite3VdbeSerialGet(zData, t, pDest);
003129      }else{
003130        /* If the column value is a string, we need a persistent value, not
003131        ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
003132        ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
003133        */
003134        static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
003135        pDest->n = len = (t-12)/2;
003136        pDest->enc = encoding;
003137        if( pDest->szMalloc < len+2 ){
003138          if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
003139          pDest->flags = MEM_Null;
003140          if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
003141        }else{
003142          pDest->z = pDest->zMalloc;
003143        }
003144        memcpy(pDest->z, zData, len);
003145        pDest->z[len] = 0;
003146        pDest->z[len+1] = 0;
003147        pDest->flags = aFlag[t&1];
003148      }
003149    }else{
003150      u8 p5;
003151      pDest->enc = encoding;
003152      assert( pDest->db==db );
003153      /* This branch happens only when content is on overflow pages */
003154      if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0
003155            && (p5==OPFLAG_TYPEOFARG
003156                || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG))
003157               )
003158          )
003159       || sqlite3VdbeSerialTypeLen(t)==0
003160      ){
003161        /* Content is irrelevant for
003162        **    1. the typeof() function,
003163        **    2. the length(X) function if X is a blob, and
003164        **    3. if the content length is zero.
003165        ** So we might as well use bogus content rather than reading
003166        ** content from disk.
003167        **
003168        ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
003169        ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
003170        ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
003171        ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
003172        ** and it begins with a bunch of zeros.
003173        */
003174        sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
003175      }else{
003176        rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2],
003177                  p->cacheCtr, colCacheCtr, pDest);
003178        if( rc ){
003179          if( rc==SQLITE_NOMEM ) goto no_mem;
003180          if( rc==SQLITE_TOOBIG ) goto too_big;
003181          goto abort_due_to_error;
003182        }
003183      }
003184    }
003185  
003186  op_column_out:
003187    UPDATE_MAX_BLOBSIZE(pDest);
003188    REGISTER_TRACE(pOp->p3, pDest);
003189    break;
003190  
003191  op_column_corrupt:
003192    if( aOp[0].p3>0 ){
003193      pOp = &aOp[aOp[0].p3-1];
003194      break;
003195    }else{
003196      rc = SQLITE_CORRUPT_BKPT;
003197      goto abort_due_to_error;
003198    }
003199  }
003200  
003201  /* Opcode: TypeCheck P1 P2 P3 P4 *
003202  ** Synopsis: typecheck(r[P1@P2])
003203  **
003204  ** Apply affinities to the range of P2 registers beginning with P1.
003205  ** Take the affinities from the Table object in P4.  If any value
003206  ** cannot be coerced into the correct type, then raise an error.
003207  **
003208  ** This opcode is similar to OP_Affinity except that this opcode
003209  ** forces the register type to the Table column type.  This is used
003210  ** to implement "strict affinity".
003211  **
003212  ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
003213  ** is zero.  When P3 is non-zero, no type checking occurs for
003214  ** static generated columns.  Virtual columns are computed at query time
003215  ** and so they are never checked.
003216  **
003217  ** Preconditions:
003218  **
003219  ** <ul>
003220  ** <li> P2 should be the number of non-virtual columns in the
003221  **      table of P4.
003222  ** <li> Table P4 should be a STRICT table.
003223  ** </ul>
003224  **
003225  ** If any precondition is false, an assertion fault occurs.
003226  */
003227  case OP_TypeCheck: {
003228    Table *pTab;
003229    Column *aCol;
003230    int i;
003231  
003232    assert( pOp->p4type==P4_TABLE );
003233    pTab = pOp->p4.pTab;
003234    assert( pTab->tabFlags & TF_Strict );
003235    assert( pTab->nNVCol==pOp->p2 );
003236    aCol = pTab->aCol;
003237    pIn1 = &aMem[pOp->p1];
003238    for(i=0; i<pTab->nCol; i++){
003239      if( aCol[i].colFlags & COLFLAG_GENERATED ){
003240        if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
003241        if( pOp->p3 ){ pIn1++; continue; }
003242      }
003243      assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
003244      applyAffinity(pIn1, aCol[i].affinity, encoding);
003245      if( (pIn1->flags & MEM_Null)==0 ){
003246        switch( aCol[i].eCType ){
003247          case COLTYPE_BLOB: {
003248            if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
003249            break;
003250          }
003251          case COLTYPE_INTEGER:
003252          case COLTYPE_INT: {
003253            if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
003254            break;
003255          }
003256          case COLTYPE_TEXT: {
003257            if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
003258            break;
003259          }
003260          case COLTYPE_REAL: {
003261            testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
003262            assert( (pIn1->flags & MEM_IntReal)==0 );
003263            if( pIn1->flags & MEM_Int ){
003264              /* When applying REAL affinity, if the result is still an MEM_Int
003265              ** that will fit in 6 bytes, then change the type to MEM_IntReal
003266              ** so that we keep the high-resolution integer value but know that
003267              ** the type really wants to be REAL. */
003268              testcase( pIn1->u.i==140737488355328LL );
003269              testcase( pIn1->u.i==140737488355327LL );
003270              testcase( pIn1->u.i==-140737488355328LL );
003271              testcase( pIn1->u.i==-140737488355329LL );
003272              if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
003273                pIn1->flags |= MEM_IntReal;
003274                pIn1->flags &= ~MEM_Int;
003275              }else{
003276                pIn1->u.r = (double)pIn1->u.i;
003277                pIn1->flags |= MEM_Real;
003278                pIn1->flags &= ~MEM_Int;
003279              }
003280            }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
003281              goto vdbe_type_error;
003282            }
003283            break;
003284          }
003285          default: {
003286            /* COLTYPE_ANY.  Accept anything. */
003287            break;
003288          }
003289        }
003290      }
003291      REGISTER_TRACE((int)(pIn1-aMem), pIn1);
003292      pIn1++;
003293    }
003294    assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
003295    break;
003296  
003297  vdbe_type_error:
003298    sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
003299       vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
003300       pTab->zName, aCol[i].zCnName);
003301    rc = SQLITE_CONSTRAINT_DATATYPE;
003302    goto abort_due_to_error;
003303  }
003304  
003305  /* Opcode: Affinity P1 P2 * P4 *
003306  ** Synopsis: affinity(r[P1@P2])
003307  **
003308  ** Apply affinities to a range of P2 registers starting with P1.
003309  **
003310  ** P4 is a string that is P2 characters long. The N-th character of the
003311  ** string indicates the column affinity that should be used for the N-th
003312  ** memory cell in the range.
003313  */
003314  case OP_Affinity: {
003315    const char *zAffinity;   /* The affinity to be applied */
003316  
003317    zAffinity = pOp->p4.z;
003318    assert( zAffinity!=0 );
003319    assert( pOp->p2>0 );
003320    assert( zAffinity[pOp->p2]==0 );
003321    pIn1 = &aMem[pOp->p1];
003322    while( 1 /*exit-by-break*/ ){
003323      assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
003324      assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
003325      applyAffinity(pIn1, zAffinity[0], encoding);
003326      if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
003327        /* When applying REAL affinity, if the result is still an MEM_Int
003328        ** that will fit in 6 bytes, then change the type to MEM_IntReal
003329        ** so that we keep the high-resolution integer value but know that
003330        ** the type really wants to be REAL. */
003331        testcase( pIn1->u.i==140737488355328LL );
003332        testcase( pIn1->u.i==140737488355327LL );
003333        testcase( pIn1->u.i==-140737488355328LL );
003334        testcase( pIn1->u.i==-140737488355329LL );
003335        if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
003336          pIn1->flags |= MEM_IntReal;
003337          pIn1->flags &= ~MEM_Int;
003338        }else{
003339          pIn1->u.r = (double)pIn1->u.i;
003340          pIn1->flags |= MEM_Real;
003341          pIn1->flags &= ~(MEM_Int|MEM_Str);
003342        }
003343      }
003344      REGISTER_TRACE((int)(pIn1-aMem), pIn1);
003345      zAffinity++;
003346      if( zAffinity[0]==0 ) break;
003347      pIn1++;
003348    }
003349    break;
003350  }
003351  
003352  /* Opcode: MakeRecord P1 P2 P3 P4 *
003353  ** Synopsis: r[P3]=mkrec(r[P1@P2])
003354  **
003355  ** Convert P2 registers beginning with P1 into the [record format]
003356  ** use as a data record in a database table or as a key
003357  ** in an index.  The OP_Column opcode can decode the record later.
003358  **
003359  ** P4 may be a string that is P2 characters long.  The N-th character of the
003360  ** string indicates the column affinity that should be used for the N-th
003361  ** field of the index key.
003362  **
003363  ** The mapping from character to affinity is given by the SQLITE_AFF_
003364  ** macros defined in sqliteInt.h.
003365  **
003366  ** If P4 is NULL then all index fields have the affinity BLOB.
003367  **
003368  ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
003369  ** compile-time option is enabled:
003370  **
003371  **   * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
003372  **     of the right-most table that can be null-trimmed.
003373  **
003374  **   * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
003375  **     OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
003376  **     accept no-change records with serial_type 10.  This value is
003377  **     only used inside an assert() and does not affect the end result.
003378  */
003379  case OP_MakeRecord: {
003380    Mem *pRec;             /* The new record */
003381    u64 nData;             /* Number of bytes of data space */
003382    int nHdr;              /* Number of bytes of header space */
003383    i64 nByte;             /* Data space required for this record */
003384    i64 nZero;             /* Number of zero bytes at the end of the record */
003385    int nVarint;           /* Number of bytes in a varint */
003386    u32 serial_type;       /* Type field */
003387    Mem *pData0;           /* First field to be combined into the record */
003388    Mem *pLast;            /* Last field of the record */
003389    int nField;            /* Number of fields in the record */
003390    char *zAffinity;       /* The affinity string for the record */
003391    u32 len;               /* Length of a field */
003392    u8 *zHdr;              /* Where to write next byte of the header */
003393    u8 *zPayload;          /* Where to write next byte of the payload */
003394  
003395    /* Assuming the record contains N fields, the record format looks
003396    ** like this:
003397    **
003398    ** ------------------------------------------------------------------------
003399    ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
003400    ** ------------------------------------------------------------------------
003401    **
003402    ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
003403    ** and so forth.
003404    **
003405    ** Each type field is a varint representing the serial type of the
003406    ** corresponding data element (see sqlite3VdbeSerialType()). The
003407    ** hdr-size field is also a varint which is the offset from the beginning
003408    ** of the record to data0.
003409    */
003410    nData = 0;         /* Number of bytes of data space */
003411    nHdr = 0;          /* Number of bytes of header space */
003412    nZero = 0;         /* Number of zero bytes at the end of the record */
003413    nField = pOp->p1;
003414    zAffinity = pOp->p4.z;
003415    assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
003416    pData0 = &aMem[nField];
003417    nField = pOp->p2;
003418    pLast = &pData0[nField-1];
003419  
003420    /* Identify the output register */
003421    assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
003422    pOut = &aMem[pOp->p3];
003423    memAboutToChange(p, pOut);
003424  
003425    /* Apply the requested affinity to all inputs
003426    */
003427    assert( pData0<=pLast );
003428    if( zAffinity ){
003429      pRec = pData0;
003430      do{
003431        applyAffinity(pRec, zAffinity[0], encoding);
003432        if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
003433          pRec->flags |= MEM_IntReal;
003434          pRec->flags &= ~(MEM_Int);
003435        }
003436        REGISTER_TRACE((int)(pRec-aMem), pRec);
003437        zAffinity++;
003438        pRec++;
003439        assert( zAffinity[0]==0 || pRec<=pLast );
003440      }while( zAffinity[0] );
003441    }
003442  
003443  #ifdef SQLITE_ENABLE_NULL_TRIM
003444    /* NULLs can be safely trimmed from the end of the record, as long as
003445    ** as the schema format is 2 or more and none of the omitted columns
003446    ** have a non-NULL default value.  Also, the record must be left with
003447    ** at least one field.  If P5>0 then it will be one more than the
003448    ** index of the right-most column with a non-NULL default value */
003449    if( pOp->p5 ){
003450      while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
003451        pLast--;
003452        nField--;
003453      }
003454    }
003455  #endif
003456  
003457    /* Loop through the elements that will make up the record to figure
003458    ** out how much space is required for the new record.  After this loop,
003459    ** the Mem.uTemp field of each term should hold the serial-type that will
003460    ** be used for that term in the generated record:
003461    **
003462    **   Mem.uTemp value    type
003463    **   ---------------    ---------------
003464    **      0               NULL
003465    **      1               1-byte signed integer
003466    **      2               2-byte signed integer
003467    **      3               3-byte signed integer
003468    **      4               4-byte signed integer
003469    **      5               6-byte signed integer
003470    **      6               8-byte signed integer
003471    **      7               IEEE float
003472    **      8               Integer constant 0
003473    **      9               Integer constant 1
003474    **     10,11            reserved for expansion
003475    **    N>=12 and even    BLOB
003476    **    N>=13 and odd     text
003477    **
003478    ** The following additional values are computed:
003479    **     nHdr        Number of bytes needed for the record header
003480    **     nData       Number of bytes of data space needed for the record
003481    **     nZero       Zero bytes at the end of the record
003482    */
003483    pRec = pLast;
003484    do{
003485      assert( memIsValid(pRec) );
003486      if( pRec->flags & MEM_Null ){
003487        if( pRec->flags & MEM_Zero ){
003488          /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
003489          ** table methods that never invoke sqlite3_result_xxxxx() while
003490          ** computing an unchanging column value in an UPDATE statement.
003491          ** Give such values a special internal-use-only serial-type of 10
003492          ** so that they can be passed through to xUpdate and have
003493          ** a true sqlite3_value_nochange(). */
003494  #ifndef SQLITE_ENABLE_NULL_TRIM
003495          assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
003496  #endif
003497          pRec->uTemp = 10;
003498        }else{
003499          pRec->uTemp = 0;
003500        }
003501        nHdr++;
003502      }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
003503        /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
003504        i64 i = pRec->u.i;
003505        u64 uu;
003506        testcase( pRec->flags & MEM_Int );
003507        testcase( pRec->flags & MEM_IntReal );
003508        if( i<0 ){
003509          uu = ~i;
003510        }else{
003511          uu = i;
003512        }
003513        nHdr++;
003514        testcase( uu==127 );               testcase( uu==128 );
003515        testcase( uu==32767 );             testcase( uu==32768 );
003516        testcase( uu==8388607 );           testcase( uu==8388608 );
003517        testcase( uu==2147483647 );        testcase( uu==2147483648LL );
003518        testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
003519        if( uu<=127 ){
003520          if( (i&1)==i && p->minWriteFileFormat>=4 ){
003521            pRec->uTemp = 8+(u32)uu;
003522          }else{
003523            nData++;
003524            pRec->uTemp = 1;
003525          }
003526        }else if( uu<=32767 ){
003527          nData += 2;
003528          pRec->uTemp = 2;
003529        }else if( uu<=8388607 ){
003530          nData += 3;
003531          pRec->uTemp = 3;
003532        }else if( uu<=2147483647 ){
003533          nData += 4;
003534          pRec->uTemp = 4;
003535        }else if( uu<=140737488355327LL ){
003536          nData += 6;
003537          pRec->uTemp = 5;
003538        }else{
003539          nData += 8;
003540          if( pRec->flags & MEM_IntReal ){
003541            /* If the value is IntReal and is going to take up 8 bytes to store
003542            ** as an integer, then we might as well make it an 8-byte floating
003543            ** point value */
003544            pRec->u.r = (double)pRec->u.i;
003545            pRec->flags &= ~MEM_IntReal;
003546            pRec->flags |= MEM_Real;
003547            pRec->uTemp = 7;
003548          }else{
003549            pRec->uTemp = 6;
003550          }
003551        }
003552      }else if( pRec->flags & MEM_Real ){
003553        nHdr++;
003554        nData += 8;
003555        pRec->uTemp = 7;
003556      }else{
003557        assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
003558        assert( pRec->n>=0 );
003559        len = (u32)pRec->n;
003560        serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
003561        if( pRec->flags & MEM_Zero ){
003562          serial_type += pRec->u.nZero*2;
003563          if( nData ){
003564            if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
003565            len += pRec->u.nZero;
003566          }else{
003567            nZero += pRec->u.nZero;
003568          }
003569        }
003570        nData += len;
003571        nHdr += sqlite3VarintLen(serial_type);
003572        pRec->uTemp = serial_type;
003573      }
003574      if( pRec==pData0 ) break;
003575      pRec--;
003576    }while(1);
003577  
003578    /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
003579    ** which determines the total number of bytes in the header. The varint
003580    ** value is the size of the header in bytes including the size varint
003581    ** itself. */
003582    testcase( nHdr==126 );
003583    testcase( nHdr==127 );
003584    if( nHdr<=126 ){
003585      /* The common case */
003586      nHdr += 1;
003587    }else{
003588      /* Rare case of a really large header */
003589      nVarint = sqlite3VarintLen(nHdr);
003590      nHdr += nVarint;
003591      if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
003592    }
003593    nByte = nHdr+nData;
003594  
003595    /* Make sure the output register has a buffer large enough to store
003596    ** the new record. The output register (pOp->p3) is not allowed to
003597    ** be one of the input registers (because the following call to
003598    ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
003599    */
003600    if( nByte+nZero<=pOut->szMalloc ){
003601      /* The output register is already large enough to hold the record.
003602      ** No error checks or buffer enlargement is required */
003603      pOut->z = pOut->zMalloc;
003604    }else{
003605      /* Need to make sure that the output is not too big and then enlarge
003606      ** the output register to hold the full result */
003607      if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
003608        goto too_big;
003609      }
003610      if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
003611        goto no_mem;
003612      }
003613    }
003614    pOut->n = (int)nByte;
003615    pOut->flags = MEM_Blob;
003616    if( nZero ){
003617      pOut->u.nZero = nZero;
003618      pOut->flags |= MEM_Zero;
003619    }
003620    UPDATE_MAX_BLOBSIZE(pOut);
003621    zHdr = (u8 *)pOut->z;
003622    zPayload = zHdr + nHdr;
003623  
003624    /* Write the record */
003625    if( nHdr<0x80 ){
003626      *(zHdr++) = nHdr;
003627    }else{
003628      zHdr += sqlite3PutVarint(zHdr,nHdr);
003629    }
003630    assert( pData0<=pLast );
003631    pRec = pData0;
003632    while( 1 /*exit-by-break*/ ){
003633      serial_type = pRec->uTemp;
003634      /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
003635      ** additional varints, one per column.
003636      ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
003637      ** immediately follow the header. */
003638      if( serial_type<=7 ){
003639        *(zHdr++) = serial_type;
003640        if( serial_type==0 ){
003641          /* NULL value.  No change in zPayload */
003642        }else{
003643          u64 v;
003644          u32 i;
003645          if( serial_type==7 ){
003646            assert( sizeof(v)==sizeof(pRec->u.r) );
003647            memcpy(&v, &pRec->u.r, sizeof(v));
003648            swapMixedEndianFloat(v);
003649          }else{
003650            v = pRec->u.i;
003651          }
003652          len = i = sqlite3SmallTypeSizes[serial_type];
003653          assert( i>0 );
003654          while( 1 /*exit-by-break*/ ){
003655            zPayload[--i] = (u8)(v&0xFF);
003656            if( i==0 ) break;
003657            v >>= 8;
003658          }
003659          zPayload += len;
003660        }
003661      }else if( serial_type<0x80 ){
003662        *(zHdr++) = serial_type;
003663        if( serial_type>=14 && pRec->n>0 ){
003664          assert( pRec->z!=0 );
003665          memcpy(zPayload, pRec->z, pRec->n);
003666          zPayload += pRec->n;
003667        }
003668      }else{
003669        zHdr += sqlite3PutVarint(zHdr, serial_type);
003670        if( pRec->n ){
003671          assert( pRec->z!=0 );
003672          memcpy(zPayload, pRec->z, pRec->n);
003673          zPayload += pRec->n;
003674        }
003675      }
003676      if( pRec==pLast ) break;
003677      pRec++;
003678    }
003679    assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
003680    assert( nByte==(int)(zPayload - (u8*)pOut->z) );
003681  
003682    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
003683    REGISTER_TRACE(pOp->p3, pOut);
003684    break;
003685  }
003686  
003687  /* Opcode: Count P1 P2 P3 * *
003688  ** Synopsis: r[P2]=count()
003689  **
003690  ** Store the number of entries (an integer value) in the table or index
003691  ** opened by cursor P1 in register P2.
003692  **
003693  ** If P3==0, then an exact count is obtained, which involves visiting
003694  ** every btree page of the table.  But if P3 is non-zero, an estimate
003695  ** is returned based on the current cursor position. 
003696  */
003697  case OP_Count: {         /* out2 */
003698    i64 nEntry;
003699    BtCursor *pCrsr;
003700  
003701    assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
003702    pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
003703    assert( pCrsr );
003704    if( pOp->p3 ){
003705      nEntry = sqlite3BtreeRowCountEst(pCrsr);
003706    }else{
003707      nEntry = 0;  /* Not needed.  Only used to silence a warning. */
003708      rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
003709      if( rc ) goto abort_due_to_error;
003710    }
003711    pOut = out2Prerelease(p, pOp);
003712    pOut->u.i = nEntry;
003713    goto check_for_interrupt;
003714  }
003715  
003716  /* Opcode: Savepoint P1 * * P4 *
003717  **
003718  ** Open, release or rollback the savepoint named by parameter P4, depending
003719  ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
003720  ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
003721  ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
003722  */
003723  case OP_Savepoint: {
003724    int p1;                         /* Value of P1 operand */
003725    char *zName;                    /* Name of savepoint */
003726    int nName;
003727    Savepoint *pNew;
003728    Savepoint *pSavepoint;
003729    Savepoint *pTmp;
003730    int iSavepoint;
003731    int ii;
003732  
003733    p1 = pOp->p1;
003734    zName = pOp->p4.z;
003735  
003736    /* Assert that the p1 parameter is valid. Also that if there is no open
003737    ** transaction, then there cannot be any savepoints.
003738    */
003739    assert( db->pSavepoint==0 || db->autoCommit==0 );
003740    assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
003741    assert( db->pSavepoint || db->isTransactionSavepoint==0 );
003742    assert( checkSavepointCount(db) );
003743    assert( p->bIsReader );
003744  
003745    if( p1==SAVEPOINT_BEGIN ){
003746      if( db->nVdbeWrite>0 ){
003747        /* A new savepoint cannot be created if there are active write
003748        ** statements (i.e. open read/write incremental blob handles).
003749        */
003750        sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
003751        rc = SQLITE_BUSY;
003752      }else{
003753        nName = sqlite3Strlen30(zName);
003754  
003755  #ifndef SQLITE_OMIT_VIRTUALTABLE
003756        /* This call is Ok even if this savepoint is actually a transaction
003757        ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
003758        ** If this is a transaction savepoint being opened, it is guaranteed
003759        ** that the db->aVTrans[] array is empty.  */
003760        assert( db->autoCommit==0 || db->nVTrans==0 );
003761        rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
003762                                  db->nStatement+db->nSavepoint);
003763        if( rc!=SQLITE_OK ) goto abort_due_to_error;
003764  #endif
003765  
003766        /* Create a new savepoint structure. */
003767        pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
003768        if( pNew ){
003769          pNew->zName = (char *)&pNew[1];
003770          memcpy(pNew->zName, zName, nName+1);
003771     
003772          /* If there is no open transaction, then mark this as a special
003773          ** "transaction savepoint". */
003774          if( db->autoCommit ){
003775            db->autoCommit = 0;
003776            db->isTransactionSavepoint = 1;
003777          }else{
003778            db->nSavepoint++;
003779          }
003780  
003781          /* Link the new savepoint into the database handle's list. */
003782          pNew->pNext = db->pSavepoint;
003783          db->pSavepoint = pNew;
003784          pNew->nDeferredCons = db->nDeferredCons;
003785          pNew->nDeferredImmCons = db->nDeferredImmCons;
003786        }
003787      }
003788    }else{
003789      assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
003790      iSavepoint = 0;
003791  
003792      /* Find the named savepoint. If there is no such savepoint, then an
003793      ** an error is returned to the user.  */
003794      for(
003795        pSavepoint = db->pSavepoint;
003796        pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
003797        pSavepoint = pSavepoint->pNext
003798      ){
003799        iSavepoint++;
003800      }
003801      if( !pSavepoint ){
003802        sqlite3VdbeError(p, "no such savepoint: %s", zName);
003803        rc = SQLITE_ERROR;
003804      }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
003805        /* It is not possible to release (commit) a savepoint if there are
003806        ** active write statements.
003807        */
003808        sqlite3VdbeError(p, "cannot release savepoint - "
003809                            "SQL statements in progress");
003810        rc = SQLITE_BUSY;
003811      }else{
003812  
003813        /* Determine whether or not this is a transaction savepoint. If so,
003814        ** and this is a RELEASE command, then the current transaction
003815        ** is committed.
003816        */
003817        int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
003818        if( isTransaction && p1==SAVEPOINT_RELEASE ){
003819          if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
003820            goto vdbe_return;
003821          }
003822          db->autoCommit = 1;
003823          if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
003824            p->pc = (int)(pOp - aOp);
003825            db->autoCommit = 0;
003826            p->rc = rc = SQLITE_BUSY;
003827            goto vdbe_return;
003828          }
003829          rc = p->rc;
003830          if( rc ){
003831            db->autoCommit = 0;
003832          }else{
003833            db->isTransactionSavepoint = 0;
003834          }
003835        }else{
003836          int isSchemaChange;
003837          iSavepoint = db->nSavepoint - iSavepoint - 1;
003838          if( p1==SAVEPOINT_ROLLBACK ){
003839            isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
003840            for(ii=0; ii<db->nDb; ii++){
003841              rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
003842                                         SQLITE_ABORT_ROLLBACK,
003843                                         isSchemaChange==0);
003844              if( rc!=SQLITE_OK ) goto abort_due_to_error;
003845            }
003846          }else{
003847            assert( p1==SAVEPOINT_RELEASE );
003848            isSchemaChange = 0;
003849          }
003850          for(ii=0; ii<db->nDb; ii++){
003851            rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
003852            if( rc!=SQLITE_OK ){
003853              goto abort_due_to_error;
003854            }
003855          }
003856          if( isSchemaChange ){
003857            sqlite3ExpirePreparedStatements(db, 0);
003858            sqlite3ResetAllSchemasOfConnection(db);
003859            db->mDbFlags |= DBFLAG_SchemaChange;
003860          }
003861        }
003862        if( rc ) goto abort_due_to_error;
003863   
003864        /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
003865        ** savepoints nested inside of the savepoint being operated on. */
003866        while( db->pSavepoint!=pSavepoint ){
003867          pTmp = db->pSavepoint;
003868          db->pSavepoint = pTmp->pNext;
003869          sqlite3DbFree(db, pTmp);
003870          db->nSavepoint--;
003871        }
003872  
003873        /* If it is a RELEASE, then destroy the savepoint being operated on
003874        ** too. If it is a ROLLBACK TO, then set the number of deferred
003875        ** constraint violations present in the database to the value stored
003876        ** when the savepoint was created.  */
003877        if( p1==SAVEPOINT_RELEASE ){
003878          assert( pSavepoint==db->pSavepoint );
003879          db->pSavepoint = pSavepoint->pNext;
003880          sqlite3DbFree(db, pSavepoint);
003881          if( !isTransaction ){
003882            db->nSavepoint--;
003883          }
003884        }else{
003885          assert( p1==SAVEPOINT_ROLLBACK );
003886          db->nDeferredCons = pSavepoint->nDeferredCons;
003887          db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
003888        }
003889  
003890        if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
003891          rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
003892          if( rc!=SQLITE_OK ) goto abort_due_to_error;
003893        }
003894      }
003895    }
003896    if( rc ) goto abort_due_to_error;
003897    if( p->eVdbeState==VDBE_HALT_STATE ){
003898      rc = SQLITE_DONE;
003899      goto vdbe_return;
003900    }
003901    break;
003902  }
003903  
003904  /* Opcode: AutoCommit P1 P2 * * *
003905  **
003906  ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
003907  ** back any currently active btree transactions. If there are any active
003908  ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
003909  ** there are active writing VMs or active VMs that use shared cache.
003910  **
003911  ** This instruction causes the VM to halt.
003912  */
003913  case OP_AutoCommit: {
003914    int desiredAutoCommit;
003915    int iRollback;
003916  
003917    desiredAutoCommit = pOp->p1;
003918    iRollback = pOp->p2;
003919    assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
003920    assert( desiredAutoCommit==1 || iRollback==0 );
003921    assert( db->nVdbeActive>0 );  /* At least this one VM is active */
003922    assert( p->bIsReader );
003923  
003924    if( desiredAutoCommit!=db->autoCommit ){
003925      if( iRollback ){
003926        assert( desiredAutoCommit==1 );
003927        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
003928        db->autoCommit = 1;
003929      }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
003930        /* If this instruction implements a COMMIT and other VMs are writing
003931        ** return an error indicating that the other VMs must complete first.
003932        */
003933        sqlite3VdbeError(p, "cannot commit transaction - "
003934                            "SQL statements in progress");
003935        rc = SQLITE_BUSY;
003936        goto abort_due_to_error;
003937      }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
003938        goto vdbe_return;
003939      }else{
003940        db->autoCommit = (u8)desiredAutoCommit;
003941      }
003942      if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
003943        p->pc = (int)(pOp - aOp);
003944        db->autoCommit = (u8)(1-desiredAutoCommit);
003945        p->rc = rc = SQLITE_BUSY;
003946        goto vdbe_return;
003947      }
003948      sqlite3CloseSavepoints(db);
003949      if( p->rc==SQLITE_OK ){
003950        rc = SQLITE_DONE;
003951      }else{
003952        rc = SQLITE_ERROR;
003953      }
003954      goto vdbe_return;
003955    }else{
003956      sqlite3VdbeError(p,
003957          (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
003958          (iRollback)?"cannot rollback - no transaction is active":
003959                     "cannot commit - no transaction is active"));
003960          
003961      rc = SQLITE_ERROR;
003962      goto abort_due_to_error;
003963    }
003964    /*NOTREACHED*/ assert(0);
003965  }
003966  
003967  /* Opcode: Transaction P1 P2 P3 P4 P5
003968  **
003969  ** Begin a transaction on database P1 if a transaction is not already
003970  ** active.
003971  ** If P2 is non-zero, then a write-transaction is started, or if a
003972  ** read-transaction is already active, it is upgraded to a write-transaction.
003973  ** If P2 is zero, then a read-transaction is started.  If P2 is 2 or more
003974  ** then an exclusive transaction is started.
003975  **
003976  ** P1 is the index of the database file on which the transaction is
003977  ** started.  Index 0 is the main database file and index 1 is the
003978  ** file used for temporary tables.  Indices of 2 or more are used for
003979  ** attached databases.
003980  **
003981  ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
003982  ** true (this flag is set if the Vdbe may modify more than one row and may
003983  ** throw an ABORT exception), a statement transaction may also be opened.
003984  ** More specifically, a statement transaction is opened iff the database
003985  ** connection is currently not in autocommit mode, or if there are other
003986  ** active statements. A statement transaction allows the changes made by this
003987  ** VDBE to be rolled back after an error without having to roll back the
003988  ** entire transaction. If no error is encountered, the statement transaction
003989  ** will automatically commit when the VDBE halts.
003990  **
003991  ** If P5!=0 then this opcode also checks the schema cookie against P3
003992  ** and the schema generation counter against P4.
003993  ** The cookie changes its value whenever the database schema changes.
003994  ** This operation is used to detect when that the cookie has changed
003995  ** and that the current process needs to reread the schema.  If the schema
003996  ** cookie in P3 differs from the schema cookie in the database header or
003997  ** if the schema generation counter in P4 differs from the current
003998  ** generation counter, then an SQLITE_SCHEMA error is raised and execution
003999  ** halts.  The sqlite3_step() wrapper function might then reprepare the
004000  ** statement and rerun it from the beginning.
004001  */
004002  case OP_Transaction: {
004003    Btree *pBt;
004004    Db *pDb;
004005    int iMeta = 0;
004006  
004007    assert( p->bIsReader );
004008    assert( p->readOnly==0 || pOp->p2==0 );
004009    assert( pOp->p2>=0 && pOp->p2<=2 );
004010    assert( pOp->p1>=0 && pOp->p1<db->nDb );
004011    assert( DbMaskTest(p->btreeMask, pOp->p1) );
004012    assert( rc==SQLITE_OK );
004013    if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
004014      if( db->flags & SQLITE_QueryOnly ){
004015        /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
004016        rc = SQLITE_READONLY;
004017      }else{
004018        /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
004019        ** transaction */
004020        rc = SQLITE_CORRUPT;
004021      }
004022      goto abort_due_to_error;
004023    }
004024    pDb = &db->aDb[pOp->p1];
004025    pBt = pDb->pBt;
004026  
004027    if( pBt ){
004028      rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
004029      testcase( rc==SQLITE_BUSY_SNAPSHOT );
004030      testcase( rc==SQLITE_BUSY_RECOVERY );
004031      if( rc!=SQLITE_OK ){
004032        if( (rc&0xff)==SQLITE_BUSY ){
004033          p->pc = (int)(pOp - aOp);
004034          p->rc = rc;
004035          goto vdbe_return;
004036        }
004037        goto abort_due_to_error;
004038      }
004039  
004040      if( p->usesStmtJournal
004041       && pOp->p2
004042       && (db->autoCommit==0 || db->nVdbeRead>1)
004043      ){
004044        assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
004045        if( p->iStatement==0 ){
004046          assert( db->nStatement>=0 && db->nSavepoint>=0 );
004047          db->nStatement++;
004048          p->iStatement = db->nSavepoint + db->nStatement;
004049        }
004050  
004051        rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
004052        if( rc==SQLITE_OK ){
004053          rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
004054        }
004055  
004056        /* Store the current value of the database handles deferred constraint
004057        ** counter. If the statement transaction needs to be rolled back,
004058        ** the value of this counter needs to be restored too.  */
004059        p->nStmtDefCons = db->nDeferredCons;
004060        p->nStmtDefImmCons = db->nDeferredImmCons;
004061      }
004062    }
004063    assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
004064    if( rc==SQLITE_OK
004065     && pOp->p5
004066     && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
004067    ){
004068      /*
004069      ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
004070      ** version is checked to ensure that the schema has not changed since the
004071      ** SQL statement was prepared.
004072      */
004073      sqlite3DbFree(db, p->zErrMsg);
004074      p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
004075      /* If the schema-cookie from the database file matches the cookie
004076      ** stored with the in-memory representation of the schema, do
004077      ** not reload the schema from the database file.
004078      **
004079      ** If virtual-tables are in use, this is not just an optimization.
004080      ** Often, v-tables store their data in other SQLite tables, which
004081      ** are queried from within xNext() and other v-table methods using
004082      ** prepared queries. If such a query is out-of-date, we do not want to
004083      ** discard the database schema, as the user code implementing the
004084      ** v-table would have to be ready for the sqlite3_vtab structure itself
004085      ** to be invalidated whenever sqlite3_step() is called from within
004086      ** a v-table method.
004087      */
004088      if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
004089        sqlite3ResetOneSchema(db, pOp->p1);
004090      }
004091      p->expired = 1;
004092      rc = SQLITE_SCHEMA;
004093  
004094      /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
004095      ** from being modified in sqlite3VdbeHalt(). If this statement is
004096      ** reprepared, changeCntOn will be set again. */
004097      p->changeCntOn = 0;
004098    }
004099    if( rc ) goto abort_due_to_error;
004100    break;
004101  }
004102  
004103  /* Opcode: ReadCookie P1 P2 P3 * *
004104  **
004105  ** Read cookie number P3 from database P1 and write it into register P2.
004106  ** P3==1 is the schema version.  P3==2 is the database format.
004107  ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
004108  ** the main database file and P1==1 is the database file used to store
004109  ** temporary tables.
004110  **
004111  ** There must be a read-lock on the database (either a transaction
004112  ** must be started or there must be an open cursor) before
004113  ** executing this instruction.
004114  */
004115  case OP_ReadCookie: {               /* out2 */
004116    int iMeta;
004117    int iDb;
004118    int iCookie;
004119  
004120    assert( p->bIsReader );
004121    iDb = pOp->p1;
004122    iCookie = pOp->p3;
004123    assert( pOp->p3<SQLITE_N_BTREE_META );
004124    assert( iDb>=0 && iDb<db->nDb );
004125    assert( db->aDb[iDb].pBt!=0 );
004126    assert( DbMaskTest(p->btreeMask, iDb) );
004127  
004128    sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
004129    pOut = out2Prerelease(p, pOp);
004130    pOut->u.i = iMeta;
004131    break;
004132  }
004133  
004134  /* Opcode: SetCookie P1 P2 P3 * P5
004135  **
004136  ** Write the integer value P3 into cookie number P2 of database P1.
004137  ** P2==1 is the schema version.  P2==2 is the database format.
004138  ** P2==3 is the recommended pager cache
004139  ** size, and so forth.  P1==0 is the main database file and P1==1 is the
004140  ** database file used to store temporary tables.
004141  **
004142  ** A transaction must be started before executing this opcode.
004143  **
004144  ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
004145  ** schema version is set to P3-P5.  The "PRAGMA schema_version=N" statement
004146  ** has P5 set to 1, so that the internal schema version will be different
004147  ** from the database schema version, resulting in a schema reset.
004148  */
004149  case OP_SetCookie: {
004150    Db *pDb;
004151  
004152    sqlite3VdbeIncrWriteCounter(p, 0);
004153    assert( pOp->p2<SQLITE_N_BTREE_META );
004154    assert( pOp->p1>=0 && pOp->p1<db->nDb );
004155    assert( DbMaskTest(p->btreeMask, pOp->p1) );
004156    assert( p->readOnly==0 );
004157    pDb = &db->aDb[pOp->p1];
004158    assert( pDb->pBt!=0 );
004159    assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
004160    /* See note about index shifting on OP_ReadCookie */
004161    rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
004162    if( pOp->p2==BTREE_SCHEMA_VERSION ){
004163      /* When the schema cookie changes, record the new cookie internally */
004164      *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
004165      db->mDbFlags |= DBFLAG_SchemaChange;
004166      sqlite3FkClearTriggerCache(db, pOp->p1);
004167    }else if( pOp->p2==BTREE_FILE_FORMAT ){
004168      /* Record changes in the file format */
004169      pDb->pSchema->file_format = pOp->p3;
004170    }
004171    if( pOp->p1==1 ){
004172      /* Invalidate all prepared statements whenever the TEMP database
004173      ** schema is changed.  Ticket #1644 */
004174      sqlite3ExpirePreparedStatements(db, 0);
004175      p->expired = 0;
004176    }
004177    if( rc ) goto abort_due_to_error;
004178    break;
004179  }
004180  
004181  /* Opcode: OpenRead P1 P2 P3 P4 P5
004182  ** Synopsis: root=P2 iDb=P3
004183  **
004184  ** Open a read-only cursor for the database table whose root page is
004185  ** P2 in a database file.  The database file is determined by P3.
004186  ** P3==0 means the main database, P3==1 means the database used for
004187  ** temporary tables, and P3>1 means used the corresponding attached
004188  ** database.  Give the new cursor an identifier of P1.  The P1
004189  ** values need not be contiguous but all P1 values should be small integers.
004190  ** It is an error for P1 to be negative.
004191  **
004192  ** Allowed P5 bits:
004193  ** <ul>
004194  ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
004195  **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
004196  **       of OP_SeekLE/OP_IdxLT)
004197  ** </ul>
004198  **
004199  ** The P4 value may be either an integer (P4_INT32) or a pointer to
004200  ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
004201  ** object, then table being opened must be an [index b-tree] where the
004202  ** KeyInfo object defines the content and collating
004203  ** sequence of that index b-tree. Otherwise, if P4 is an integer
004204  ** value, then the table being opened must be a [table b-tree] with a
004205  ** number of columns no less than the value of P4.
004206  **
004207  ** See also: OpenWrite, ReopenIdx
004208  */
004209  /* Opcode: ReopenIdx P1 P2 P3 P4 P5
004210  ** Synopsis: root=P2 iDb=P3
004211  **
004212  ** The ReopenIdx opcode works like OP_OpenRead except that it first
004213  ** checks to see if the cursor on P1 is already open on the same
004214  ** b-tree and if it is this opcode becomes a no-op.  In other words,
004215  ** if the cursor is already open, do not reopen it.
004216  **
004217  ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
004218  ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
004219  ** be the same as every other ReopenIdx or OpenRead for the same cursor
004220  ** number.
004221  **
004222  ** Allowed P5 bits:
004223  ** <ul>
004224  ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
004225  **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
004226  **       of OP_SeekLE/OP_IdxLT)
004227  ** </ul>
004228  **
004229  ** See also: OP_OpenRead, OP_OpenWrite
004230  */
004231  /* Opcode: OpenWrite P1 P2 P3 P4 P5
004232  ** Synopsis: root=P2 iDb=P3
004233  **
004234  ** Open a read/write cursor named P1 on the table or index whose root
004235  ** page is P2 (or whose root page is held in register P2 if the
004236  ** OPFLAG_P2ISREG bit is set in P5 - see below).
004237  **
004238  ** The P4 value may be either an integer (P4_INT32) or a pointer to
004239  ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
004240  ** object, then table being opened must be an [index b-tree] where the
004241  ** KeyInfo object defines the content and collating
004242  ** sequence of that index b-tree. Otherwise, if P4 is an integer
004243  ** value, then the table being opened must be a [table b-tree] with a
004244  ** number of columns no less than the value of P4.
004245  **
004246  ** Allowed P5 bits:
004247  ** <ul>
004248  ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
004249  **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
004250  **       of OP_SeekLE/OP_IdxLT)
004251  ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
004252  **       and subsequently delete entries in an index btree.  This is a
004253  **       hint to the storage engine that the storage engine is allowed to
004254  **       ignore.  The hint is not used by the official SQLite b*tree storage
004255  **       engine, but is used by COMDB2.
004256  ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
004257  **       as the root page, not the value of P2 itself.
004258  ** </ul>
004259  **
004260  ** This instruction works like OpenRead except that it opens the cursor
004261  ** in read/write mode.
004262  **
004263  ** See also: OP_OpenRead, OP_ReopenIdx
004264  */
004265  case OP_ReopenIdx: {         /* ncycle */
004266    int nField;
004267    KeyInfo *pKeyInfo;
004268    u32 p2;
004269    int iDb;
004270    int wrFlag;
004271    Btree *pX;
004272    VdbeCursor *pCur;
004273    Db *pDb;
004274  
004275    assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
004276    assert( pOp->p4type==P4_KEYINFO );
004277    pCur = p->apCsr[pOp->p1];
004278    if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
004279      assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
004280      assert( pCur->eCurType==CURTYPE_BTREE );
004281      sqlite3BtreeClearCursor(pCur->uc.pCursor);
004282      goto open_cursor_set_hints;
004283    }
004284    /* If the cursor is not currently open or is open on a different
004285    ** index, then fall through into OP_OpenRead to force a reopen */
004286  case OP_OpenRead:            /* ncycle */
004287  case OP_OpenWrite:
004288  
004289    assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
004290    assert( p->bIsReader );
004291    assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
004292            || p->readOnly==0 );
004293  
004294    if( p->expired==1 ){
004295      rc = SQLITE_ABORT_ROLLBACK;
004296      goto abort_due_to_error;
004297    }
004298  
004299    nField = 0;
004300    pKeyInfo = 0;
004301    p2 = (u32)pOp->p2;
004302    iDb = pOp->p3;
004303    assert( iDb>=0 && iDb<db->nDb );
004304    assert( DbMaskTest(p->btreeMask, iDb) );
004305    pDb = &db->aDb[iDb];
004306    pX = pDb->pBt;
004307    assert( pX!=0 );
004308    if( pOp->opcode==OP_OpenWrite ){
004309      assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
004310      wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
004311      assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
004312      if( pDb->pSchema->file_format < p->minWriteFileFormat ){
004313        p->minWriteFileFormat = pDb->pSchema->file_format;
004314      }
004315    }else{
004316      wrFlag = 0;
004317    }
004318    if( pOp->p5 & OPFLAG_P2ISREG ){
004319      assert( p2>0 );
004320      assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
004321      assert( pOp->opcode==OP_OpenWrite );
004322      pIn2 = &aMem[p2];
004323      assert( memIsValid(pIn2) );
004324      assert( (pIn2->flags & MEM_Int)!=0 );
004325      sqlite3VdbeMemIntegerify(pIn2);
004326      p2 = (int)pIn2->u.i;
004327      /* The p2 value always comes from a prior OP_CreateBtree opcode and
004328      ** that opcode will always set the p2 value to 2 or more or else fail.
004329      ** If there were a failure, the prepared statement would have halted
004330      ** before reaching this instruction. */
004331      assert( p2>=2 );
004332    }
004333    if( pOp->p4type==P4_KEYINFO ){
004334      pKeyInfo = pOp->p4.pKeyInfo;
004335      assert( pKeyInfo->enc==ENC(db) );
004336      assert( pKeyInfo->db==db );
004337      nField = pKeyInfo->nAllField;
004338    }else if( pOp->p4type==P4_INT32 ){
004339      nField = pOp->p4.i;
004340    }
004341    assert( pOp->p1>=0 );
004342    assert( nField>=0 );
004343    testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
004344    pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
004345    if( pCur==0 ) goto no_mem;
004346    pCur->iDb = iDb;
004347    pCur->nullRow = 1;
004348    pCur->isOrdered = 1;
004349    pCur->pgnoRoot = p2;
004350  #ifdef SQLITE_DEBUG
004351    pCur->wrFlag = wrFlag;
004352  #endif
004353    rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
004354    pCur->pKeyInfo = pKeyInfo;
004355    /* Set the VdbeCursor.isTable variable. Previous versions of
004356    ** SQLite used to check if the root-page flags were sane at this point
004357    ** and report database corruption if they were not, but this check has
004358    ** since moved into the btree layer.  */ 
004359    pCur->isTable = pOp->p4type!=P4_KEYINFO;
004360  
004361  open_cursor_set_hints:
004362    assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
004363    assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
004364    testcase( pOp->p5 & OPFLAG_BULKCSR );
004365    testcase( pOp->p2 & OPFLAG_SEEKEQ );
004366    sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
004367                                 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
004368    if( rc ) goto abort_due_to_error;
004369    break;
004370  }
004371  
004372  /* Opcode: OpenDup P1 P2 * * *
004373  **
004374  ** Open a new cursor P1 that points to the same ephemeral table as
004375  ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
004376  ** opcode.  Only ephemeral cursors may be duplicated.
004377  **
004378  ** Duplicate ephemeral cursors are used for self-joins of materialized views.
004379  */
004380  case OP_OpenDup: {           /* ncycle */
004381    VdbeCursor *pOrig;    /* The original cursor to be duplicated */
004382    VdbeCursor *pCx;      /* The new cursor */
004383  
004384    pOrig = p->apCsr[pOp->p2];
004385    assert( pOrig );
004386    assert( pOrig->isEphemeral );  /* Only ephemeral cursors can be duplicated */
004387  
004388    pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
004389    if( pCx==0 ) goto no_mem;
004390    pCx->nullRow = 1;
004391    pCx->isEphemeral = 1;
004392    pCx->pKeyInfo = pOrig->pKeyInfo;
004393    pCx->isTable = pOrig->isTable;
004394    pCx->pgnoRoot = pOrig->pgnoRoot;
004395    pCx->isOrdered = pOrig->isOrdered;
004396    pCx->ub.pBtx = pOrig->ub.pBtx;
004397    pCx->noReuse = 1;
004398    pOrig->noReuse = 1;
004399    rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
004400                            pCx->pKeyInfo, pCx->uc.pCursor);
004401    /* The sqlite3BtreeCursor() routine can only fail for the first cursor
004402    ** opened for a database.  Since there is already an open cursor when this
004403    ** opcode is run, the sqlite3BtreeCursor() cannot fail */
004404    assert( rc==SQLITE_OK );
004405    break;
004406  }
004407  
004408  
004409  /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
004410  ** Synopsis: nColumn=P2
004411  **
004412  ** Open a new cursor P1 to a transient table.
004413  ** The cursor is always opened read/write even if
004414  ** the main database is read-only.  The ephemeral
004415  ** table is deleted automatically when the cursor is closed.
004416  **
004417  ** If the cursor P1 is already opened on an ephemeral table, the table
004418  ** is cleared (all content is erased).
004419  **
004420  ** P2 is the number of columns in the ephemeral table.
004421  ** The cursor points to a BTree table if P4==0 and to a BTree index
004422  ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
004423  ** that defines the format of keys in the index.
004424  **
004425  ** The P5 parameter can be a mask of the BTREE_* flags defined
004426  ** in btree.h.  These flags control aspects of the operation of
004427  ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
004428  ** added automatically.
004429  **
004430  ** If P3 is positive, then reg[P3] is modified slightly so that it
004431  ** can be used as zero-length data for OP_Insert.  This is an optimization
004432  ** that avoids an extra OP_Blob opcode to initialize that register.
004433  */
004434  /* Opcode: OpenAutoindex P1 P2 * P4 *
004435  ** Synopsis: nColumn=P2
004436  **
004437  ** This opcode works the same as OP_OpenEphemeral.  It has a
004438  ** different name to distinguish its use.  Tables created using
004439  ** by this opcode will be used for automatically created transient
004440  ** indices in joins.
004441  */
004442  case OP_OpenAutoindex:       /* ncycle */
004443  case OP_OpenEphemeral: {     /* ncycle */
004444    VdbeCursor *pCx;
004445    KeyInfo *pKeyInfo;
004446  
004447    static const int vfsFlags =
004448        SQLITE_OPEN_READWRITE |
004449        SQLITE_OPEN_CREATE |
004450        SQLITE_OPEN_EXCLUSIVE |
004451        SQLITE_OPEN_DELETEONCLOSE |
004452        SQLITE_OPEN_TRANSIENT_DB;
004453    assert( pOp->p1>=0 );
004454    assert( pOp->p2>=0 );
004455    if( pOp->p3>0 ){
004456      /* Make register reg[P3] into a value that can be used as the data
004457      ** form sqlite3BtreeInsert() where the length of the data is zero. */
004458      assert( pOp->p2==0 ); /* Only used when number of columns is zero */
004459      assert( pOp->opcode==OP_OpenEphemeral );
004460      assert( aMem[pOp->p3].flags & MEM_Null );
004461      aMem[pOp->p3].n = 0;
004462      aMem[pOp->p3].z = "";
004463    }
004464    pCx = p->apCsr[pOp->p1];
004465    if( pCx && !pCx->noReuse &&  ALWAYS(pOp->p2<=pCx->nField) ){
004466      /* If the ephemeral table is already open and has no duplicates from
004467      ** OP_OpenDup, then erase all existing content so that the table is
004468      ** empty again, rather than creating a new table. */
004469      assert( pCx->isEphemeral );
004470      pCx->seqCount = 0;
004471      pCx->cacheStatus = CACHE_STALE;
004472      rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
004473    }else{
004474      pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
004475      if( pCx==0 ) goto no_mem;
004476      pCx->isEphemeral = 1;
004477      rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
004478                            BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
004479                            vfsFlags);
004480      if( rc==SQLITE_OK ){
004481        rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
004482        if( rc==SQLITE_OK ){
004483          /* If a transient index is required, create it by calling
004484          ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
004485          ** opening it. If a transient table is required, just use the
004486          ** automatically created table with root-page 1 (an BLOB_INTKEY table).
004487          */
004488          if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
004489            assert( pOp->p4type==P4_KEYINFO );
004490            rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
004491                BTREE_BLOBKEY | pOp->p5);
004492            if( rc==SQLITE_OK ){
004493              assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
004494              assert( pKeyInfo->db==db );
004495              assert( pKeyInfo->enc==ENC(db) );
004496              rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
004497                  pKeyInfo, pCx->uc.pCursor);
004498            }
004499            pCx->isTable = 0;
004500          }else{
004501            pCx->pgnoRoot = SCHEMA_ROOT;
004502            rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
004503                0, pCx->uc.pCursor);
004504            pCx->isTable = 1;
004505          }
004506        }
004507        pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
004508        if( rc ){
004509          sqlite3BtreeClose(pCx->ub.pBtx);
004510        }
004511      }
004512    }
004513    if( rc ) goto abort_due_to_error;
004514    pCx->nullRow = 1;
004515    break;
004516  }
004517  
004518  /* Opcode: SorterOpen P1 P2 P3 P4 *
004519  **
004520  ** This opcode works like OP_OpenEphemeral except that it opens
004521  ** a transient index that is specifically designed to sort large
004522  ** tables using an external merge-sort algorithm.
004523  **
004524  ** If argument P3 is non-zero, then it indicates that the sorter may
004525  ** assume that a stable sort considering the first P3 fields of each
004526  ** key is sufficient to produce the required results.
004527  */
004528  case OP_SorterOpen: {
004529    VdbeCursor *pCx;
004530  
004531    assert( pOp->p1>=0 );
004532    assert( pOp->p2>=0 );
004533    pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
004534    if( pCx==0 ) goto no_mem;
004535    pCx->pKeyInfo = pOp->p4.pKeyInfo;
004536    assert( pCx->pKeyInfo->db==db );
004537    assert( pCx->pKeyInfo->enc==ENC(db) );
004538    rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
004539    if( rc ) goto abort_due_to_error;
004540    break;
004541  }
004542  
004543  /* Opcode: SequenceTest P1 P2 * * *
004544  ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
004545  **
004546  ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
004547  ** to P2. Regardless of whether or not the jump is taken, increment the
004548  ** the sequence value.
004549  */
004550  case OP_SequenceTest: {
004551    VdbeCursor *pC;
004552    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004553    pC = p->apCsr[pOp->p1];
004554    assert( isSorter(pC) );
004555    if( (pC->seqCount++)==0 ){
004556      goto jump_to_p2;
004557    }
004558    break;
004559  }
004560  
004561  /* Opcode: OpenPseudo P1 P2 P3 * *
004562  ** Synopsis: P3 columns in r[P2]
004563  **
004564  ** Open a new cursor that points to a fake table that contains a single
004565  ** row of data.  The content of that one row is the content of memory
004566  ** register P2.  In other words, cursor P1 becomes an alias for the
004567  ** MEM_Blob content contained in register P2.
004568  **
004569  ** A pseudo-table created by this opcode is used to hold a single
004570  ** row output from the sorter so that the row can be decomposed into
004571  ** individual columns using the OP_Column opcode.  The OP_Column opcode
004572  ** is the only cursor opcode that works with a pseudo-table.
004573  **
004574  ** P3 is the number of fields in the records that will be stored by
004575  ** the pseudo-table.
004576  */
004577  case OP_OpenPseudo: {
004578    VdbeCursor *pCx;
004579  
004580    assert( pOp->p1>=0 );
004581    assert( pOp->p3>=0 );
004582    pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
004583    if( pCx==0 ) goto no_mem;
004584    pCx->nullRow = 1;
004585    pCx->seekResult = pOp->p2;
004586    pCx->isTable = 1;
004587    /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
004588    ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
004589    ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
004590    ** which is a performance optimization */
004591    pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
004592    assert( pOp->p5==0 );
004593    break;
004594  }
004595  
004596  /* Opcode: Close P1 * * * *
004597  **
004598  ** Close a cursor previously opened as P1.  If P1 is not
004599  ** currently open, this instruction is a no-op.
004600  */
004601  case OP_Close: {             /* ncycle */
004602    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004603    sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
004604    p->apCsr[pOp->p1] = 0;
004605    break;
004606  }
004607  
004608  #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
004609  /* Opcode: ColumnsUsed P1 * * P4 *
004610  **
004611  ** This opcode (which only exists if SQLite was compiled with
004612  ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
004613  ** table or index for cursor P1 are used.  P4 is a 64-bit integer
004614  ** (P4_INT64) in which the first 63 bits are one for each of the
004615  ** first 63 columns of the table or index that are actually used
004616  ** by the cursor.  The high-order bit is set if any column after
004617  ** the 64th is used.
004618  */
004619  case OP_ColumnsUsed: {
004620    VdbeCursor *pC;
004621    pC = p->apCsr[pOp->p1];
004622    assert( pC->eCurType==CURTYPE_BTREE );
004623    pC->maskUsed = *(u64*)pOp->p4.pI64;
004624    break;
004625  }
004626  #endif
004627  
004628  /* Opcode: SeekGE P1 P2 P3 P4 *
004629  ** Synopsis: key=r[P3@P4]
004630  **
004631  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
004632  ** use the value in register P3 as the key.  If cursor P1 refers
004633  ** to an SQL index, then P3 is the first in an array of P4 registers
004634  ** that are used as an unpacked index key.
004635  **
004636  ** Reposition cursor P1 so that  it points to the smallest entry that
004637  ** is greater than or equal to the key value. If there are no records
004638  ** greater than or equal to the key and P2 is not zero, then jump to P2.
004639  **
004640  ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
004641  ** opcode will either land on a record that exactly matches the key, or
004642  ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
004643  ** this opcode must be followed by an IdxLE opcode with the same arguments.
004644  ** The IdxGT opcode will be skipped if this opcode succeeds, but the
004645  ** IdxGT opcode will be used on subsequent loop iterations.  The
004646  ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
004647  ** is an equality search.
004648  **
004649  ** This opcode leaves the cursor configured to move in forward order,
004650  ** from the beginning toward the end.  In other words, the cursor is
004651  ** configured to use Next, not Prev.
004652  **
004653  ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
004654  */
004655  /* Opcode: SeekGT P1 P2 P3 P4 *
004656  ** Synopsis: key=r[P3@P4]
004657  **
004658  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
004659  ** use the value in register P3 as a key. If cursor P1 refers
004660  ** to an SQL index, then P3 is the first in an array of P4 registers
004661  ** that are used as an unpacked index key.
004662  **
004663  ** Reposition cursor P1 so that it points to the smallest entry that
004664  ** is greater than the key value. If there are no records greater than
004665  ** the key and P2 is not zero, then jump to P2.
004666  **
004667  ** This opcode leaves the cursor configured to move in forward order,
004668  ** from the beginning toward the end.  In other words, the cursor is
004669  ** configured to use Next, not Prev.
004670  **
004671  ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
004672  */
004673  /* Opcode: SeekLT P1 P2 P3 P4 *
004674  ** Synopsis: key=r[P3@P4]
004675  **
004676  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
004677  ** use the value in register P3 as a key. If cursor P1 refers
004678  ** to an SQL index, then P3 is the first in an array of P4 registers
004679  ** that are used as an unpacked index key.
004680  **
004681  ** Reposition cursor P1 so that  it points to the largest entry that
004682  ** is less than the key value. If there are no records less than
004683  ** the key and P2 is not zero, then jump to P2.
004684  **
004685  ** This opcode leaves the cursor configured to move in reverse order,
004686  ** from the end toward the beginning.  In other words, the cursor is
004687  ** configured to use Prev, not Next.
004688  **
004689  ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
004690  */
004691  /* Opcode: SeekLE P1 P2 P3 P4 *
004692  ** Synopsis: key=r[P3@P4]
004693  **
004694  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
004695  ** use the value in register P3 as a key. If cursor P1 refers
004696  ** to an SQL index, then P3 is the first in an array of P4 registers
004697  ** that are used as an unpacked index key.
004698  **
004699  ** Reposition cursor P1 so that it points to the largest entry that
004700  ** is less than or equal to the key value. If there are no records
004701  ** less than or equal to the key and P2 is not zero, then jump to P2.
004702  **
004703  ** This opcode leaves the cursor configured to move in reverse order,
004704  ** from the end toward the beginning.  In other words, the cursor is
004705  ** configured to use Prev, not Next.
004706  **
004707  ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
004708  ** opcode will either land on a record that exactly matches the key, or
004709  ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
004710  ** this opcode must be followed by an IdxLE opcode with the same arguments.
004711  ** The IdxGE opcode will be skipped if this opcode succeeds, but the
004712  ** IdxGE opcode will be used on subsequent loop iterations.  The
004713  ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
004714  ** is an equality search.
004715  **
004716  ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
004717  */
004718  case OP_SeekLT:         /* jump, in3, group, ncycle */
004719  case OP_SeekLE:         /* jump, in3, group, ncycle */
004720  case OP_SeekGE:         /* jump, in3, group, ncycle */
004721  case OP_SeekGT: {       /* jump, in3, group, ncycle */
004722    int res;           /* Comparison result */
004723    int oc;            /* Opcode */
004724    VdbeCursor *pC;    /* The cursor to seek */
004725    UnpackedRecord r;  /* The key to seek for */
004726    int nField;        /* Number of columns or fields in the key */
004727    i64 iKey;          /* The rowid we are to seek to */
004728    int eqOnly;        /* Only interested in == results */
004729  
004730    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004731    assert( pOp->p2!=0 );
004732    pC = p->apCsr[pOp->p1];
004733    assert( pC!=0 );
004734    assert( pC->eCurType==CURTYPE_BTREE );
004735    assert( OP_SeekLE == OP_SeekLT+1 );
004736    assert( OP_SeekGE == OP_SeekLT+2 );
004737    assert( OP_SeekGT == OP_SeekLT+3 );
004738    assert( pC->isOrdered );
004739    assert( pC->uc.pCursor!=0 );
004740    oc = pOp->opcode;
004741    eqOnly = 0;
004742    pC->nullRow = 0;
004743  #ifdef SQLITE_DEBUG
004744    pC->seekOp = pOp->opcode;
004745  #endif
004746  
004747    pC->deferredMoveto = 0;
004748    pC->cacheStatus = CACHE_STALE;
004749    if( pC->isTable ){
004750      u16 flags3, newType;
004751      /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
004752      assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
004753                || CORRUPT_DB );
004754  
004755      /* The input value in P3 might be of any type: integer, real, string,
004756      ** blob, or NULL.  But it needs to be an integer before we can do
004757      ** the seek, so convert it. */
004758      pIn3 = &aMem[pOp->p3];
004759      flags3 = pIn3->flags;
004760      if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
004761        applyNumericAffinity(pIn3, 0);
004762      }
004763      iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
004764      newType = pIn3->flags; /* Record the type after applying numeric affinity */
004765      pIn3->flags = flags3;  /* But convert the type back to its original */
004766  
004767      /* If the P3 value could not be converted into an integer without
004768      ** loss of information, then special processing is required... */
004769      if( (newType & (MEM_Int|MEM_IntReal))==0 ){
004770        int c;
004771        if( (newType & MEM_Real)==0 ){
004772          if( (newType & MEM_Null) || oc>=OP_SeekGE ){
004773            VdbeBranchTaken(1,2);
004774            goto jump_to_p2;
004775          }else{
004776            rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
004777            if( rc!=SQLITE_OK ) goto abort_due_to_error;
004778            goto seek_not_found;
004779          }
004780        }
004781        c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
004782  
004783        /* If the approximation iKey is larger than the actual real search
004784        ** term, substitute >= for > and < for <=. e.g. if the search term
004785        ** is 4.9 and the integer approximation 5:
004786        **
004787        **        (x >  4.9)    ->     (x >= 5)
004788        **        (x <= 4.9)    ->     (x <  5)
004789        */
004790        if( c>0 ){
004791          assert( OP_SeekGE==(OP_SeekGT-1) );
004792          assert( OP_SeekLT==(OP_SeekLE-1) );
004793          assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
004794          if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
004795        }
004796  
004797        /* If the approximation iKey is smaller than the actual real search
004798        ** term, substitute <= for < and > for >=.  */
004799        else if( c<0 ){
004800          assert( OP_SeekLE==(OP_SeekLT+1) );
004801          assert( OP_SeekGT==(OP_SeekGE+1) );
004802          assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
004803          if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
004804        }
004805      }
004806      rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
004807      pC->movetoTarget = iKey;  /* Used by OP_Delete */
004808      if( rc!=SQLITE_OK ){
004809        goto abort_due_to_error;
004810      }
004811    }else{
004812      /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
004813      ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
004814      ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
004815      ** with the same key.
004816      */
004817      if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
004818        eqOnly = 1;
004819        assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
004820        assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
004821        assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
004822        assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
004823        assert( pOp[1].p1==pOp[0].p1 );
004824        assert( pOp[1].p2==pOp[0].p2 );
004825        assert( pOp[1].p3==pOp[0].p3 );
004826        assert( pOp[1].p4.i==pOp[0].p4.i );
004827      }
004828  
004829      nField = pOp->p4.i;
004830      assert( pOp->p4type==P4_INT32 );
004831      assert( nField>0 );
004832      r.pKeyInfo = pC->pKeyInfo;
004833      r.nField = (u16)nField;
004834  
004835      /* The next line of code computes as follows, only faster:
004836      **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
004837      **     r.default_rc = -1;
004838      **   }else{
004839      **     r.default_rc = +1;
004840      **   }
004841      */
004842      r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
004843      assert( oc!=OP_SeekGT || r.default_rc==-1 );
004844      assert( oc!=OP_SeekLE || r.default_rc==-1 );
004845      assert( oc!=OP_SeekGE || r.default_rc==+1 );
004846      assert( oc!=OP_SeekLT || r.default_rc==+1 );
004847  
004848      r.aMem = &aMem[pOp->p3];
004849  #ifdef SQLITE_DEBUG
004850      {
004851        int i;
004852        for(i=0; i<r.nField; i++){
004853          assert( memIsValid(&r.aMem[i]) );
004854          if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
004855        }
004856      }
004857  #endif
004858      r.eqSeen = 0;
004859      rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
004860      if( rc!=SQLITE_OK ){
004861        goto abort_due_to_error;
004862      }
004863      if( eqOnly && r.eqSeen==0 ){
004864        assert( res!=0 );
004865        goto seek_not_found;
004866      }
004867    }
004868  #ifdef SQLITE_TEST
004869    sqlite3_search_count++;
004870  #endif
004871    if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
004872      if( res<0 || (res==0 && oc==OP_SeekGT) ){
004873        res = 0;
004874        rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
004875        if( rc!=SQLITE_OK ){
004876          if( rc==SQLITE_DONE ){
004877            rc = SQLITE_OK;
004878            res = 1;
004879          }else{
004880            goto abort_due_to_error;
004881          }
004882        }
004883      }else{
004884        res = 0;
004885      }
004886    }else{
004887      assert( oc==OP_SeekLT || oc==OP_SeekLE );
004888      if( res>0 || (res==0 && oc==OP_SeekLT) ){
004889        res = 0;
004890        rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
004891        if( rc!=SQLITE_OK ){
004892          if( rc==SQLITE_DONE ){
004893            rc = SQLITE_OK;
004894            res = 1;
004895          }else{
004896            goto abort_due_to_error;
004897          }
004898        }
004899      }else{
004900        /* res might be negative because the table is empty.  Check to
004901        ** see if this is the case.
004902        */
004903        res = sqlite3BtreeEof(pC->uc.pCursor);
004904      }
004905    }
004906  seek_not_found:
004907    assert( pOp->p2>0 );
004908    VdbeBranchTaken(res!=0,2);
004909    if( res ){
004910      goto jump_to_p2;
004911    }else if( eqOnly ){
004912      assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
004913      pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
004914    }
004915    break;
004916  }
004917  
004918  
004919  /* Opcode: SeekScan  P1 P2 * * P5
004920  ** Synopsis: Scan-ahead up to P1 rows
004921  **
004922  ** This opcode is a prefix opcode to OP_SeekGE.  In other words, this
004923  ** opcode must be immediately followed by OP_SeekGE. This constraint is
004924  ** checked by assert() statements.
004925  **
004926  ** This opcode uses the P1 through P4 operands of the subsequent
004927  ** OP_SeekGE.  In the text that follows, the operands of the subsequent
004928  ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4.   Only
004929  ** the P1, P2 and P5 operands of this opcode are also used, and  are called
004930  ** This.P1, This.P2 and This.P5.
004931  **
004932  ** This opcode helps to optimize IN operators on a multi-column index
004933  ** where the IN operator is on the later terms of the index by avoiding
004934  ** unnecessary seeks on the btree, substituting steps to the next row
004935  ** of the b-tree instead.  A correct answer is obtained if this opcode
004936  ** is omitted or is a no-op.
004937  **
004938  ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
004939  ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
004940  ** to.  Call this SeekGE.P3/P4 row the "target".
004941  **
004942  ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
004943  ** then this opcode is a no-op and control passes through into the OP_SeekGE.
004944  **
004945  ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
004946  ** might be the target row, or it might be near and slightly before the
004947  ** target row, or it might be after the target row.  If the cursor is
004948  ** currently before the target row, then this opcode attempts to position
004949  ** the cursor on or after the target row by invoking sqlite3BtreeStep()
004950  ** on the cursor between 1 and This.P1 times.
004951  **
004952  ** The This.P5 parameter is a flag that indicates what to do if the
004953  ** cursor ends up pointing at a valid row that is past the target
004954  ** row.  If This.P5 is false (0) then a jump is made to SeekGE.P2.  If
004955  ** This.P5 is true (non-zero) then a jump is made to This.P2.  The P5==0
004956  ** case occurs when there are no inequality constraints to the right of
004957  ** the IN constraint.  The jump to SeekGE.P2 ends the loop.  The P5!=0 case
004958  ** occurs when there are inequality constraints to the right of the IN
004959  ** operator.  In that case, the This.P2 will point either directly to or
004960  ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
004961  ** loop terminate.
004962  **
004963  ** Possible outcomes from this opcode:<ol>
004964  **
004965  ** <li> If the cursor is initially not pointed to any valid row, then
004966  **      fall through into the subsequent OP_SeekGE opcode.
004967  **
004968  ** <li> If the cursor is left pointing to a row that is before the target
004969  **      row, even after making as many as This.P1 calls to
004970  **      sqlite3BtreeNext(), then also fall through into OP_SeekGE.
004971  **
004972  ** <li> If the cursor is left pointing at the target row, either because it
004973  **      was at the target row to begin with or because one or more
004974  **      sqlite3BtreeNext() calls moved the cursor to the target row,
004975  **      then jump to This.P2..,
004976  **
004977  ** <li> If the cursor started out before the target row and a call to
004978  **      to sqlite3BtreeNext() moved the cursor off the end of the index
004979  **      (indicating that the target row definitely does not exist in the
004980  **      btree) then jump to SeekGE.P2, ending the loop.
004981  **
004982  ** <li> If the cursor ends up on a valid row that is past the target row
004983  **      (indicating that the target row does not exist in the btree) then
004984  **      jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
004985  ** </ol>
004986  */
004987  case OP_SeekScan: {          /* ncycle */
004988    VdbeCursor *pC;
004989    int res;
004990    int nStep;
004991    UnpackedRecord r;
004992  
004993    assert( pOp[1].opcode==OP_SeekGE );
004994  
004995    /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
004996    ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
004997    ** opcode past the OP_SeekGE itself.  */
004998    assert( pOp->p2>=(int)(pOp-aOp)+2 );
004999  #ifdef SQLITE_DEBUG
005000    if( pOp->p5==0 ){
005001      /* There are no inequality constraints following the IN constraint. */
005002      assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
005003      assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
005004      assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
005005      assert( aOp[pOp->p2-1].opcode==OP_IdxGT
005006           || aOp[pOp->p2-1].opcode==OP_IdxGE );
005007      testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
005008    }else{
005009      /* There are inequality constraints.  */
005010      assert( pOp->p2==(int)(pOp-aOp)+2 );
005011      assert( aOp[pOp->p2-1].opcode==OP_SeekGE );
005012    }
005013  #endif
005014  
005015    assert( pOp->p1>0 );
005016    pC = p->apCsr[pOp[1].p1];
005017    assert( pC!=0 );
005018    assert( pC->eCurType==CURTYPE_BTREE );
005019    assert( !pC->isTable );
005020    if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
005021  #ifdef SQLITE_DEBUG
005022       if( db->flags&SQLITE_VdbeTrace ){
005023         printf("... cursor not valid - fall through\n");
005024       }       
005025  #endif
005026      break;
005027    }
005028    nStep = pOp->p1;
005029    assert( nStep>=1 );
005030    r.pKeyInfo = pC->pKeyInfo;
005031    r.nField = (u16)pOp[1].p4.i;
005032    r.default_rc = 0;
005033    r.aMem = &aMem[pOp[1].p3];
005034  #ifdef SQLITE_DEBUG
005035    {
005036      int i;
005037      for(i=0; i<r.nField; i++){
005038        assert( memIsValid(&r.aMem[i]) );
005039        REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
005040      }
005041    }
005042  #endif
005043    res = 0;  /* Not needed.  Only used to silence a warning. */
005044    while(1){
005045      rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
005046      if( rc ) goto abort_due_to_error;
005047      if( res>0 && pOp->p5==0 ){
005048        seekscan_search_fail:
005049        /* Jump to SeekGE.P2, ending the loop */
005050  #ifdef SQLITE_DEBUG
005051        if( db->flags&SQLITE_VdbeTrace ){
005052          printf("... %d steps and then skip\n", pOp->p1 - nStep);
005053        }       
005054  #endif
005055        VdbeBranchTaken(1,3);
005056        pOp++;
005057        goto jump_to_p2;
005058      }
005059      if( res>=0 ){
005060        /* Jump to This.P2, bypassing the OP_SeekGE opcode */
005061  #ifdef SQLITE_DEBUG
005062        if( db->flags&SQLITE_VdbeTrace ){
005063          printf("... %d steps and then success\n", pOp->p1 - nStep);
005064        }       
005065  #endif
005066        VdbeBranchTaken(2,3);
005067        goto jump_to_p2;
005068        break;
005069      }
005070      if( nStep<=0 ){
005071  #ifdef SQLITE_DEBUG
005072        if( db->flags&SQLITE_VdbeTrace ){
005073          printf("... fall through after %d steps\n", pOp->p1);
005074        }       
005075  #endif
005076        VdbeBranchTaken(0,3);
005077        break;
005078      }
005079      nStep--;
005080      pC->cacheStatus = CACHE_STALE;
005081      rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
005082      if( rc ){
005083        if( rc==SQLITE_DONE ){
005084          rc = SQLITE_OK;
005085          goto seekscan_search_fail;
005086        }else{
005087          goto abort_due_to_error;
005088        }
005089      }
005090    }
005091   
005092    break;
005093  }
005094  
005095  
005096  /* Opcode: SeekHit P1 P2 P3 * *
005097  ** Synopsis: set P2<=seekHit<=P3
005098  **
005099  ** Increase or decrease the seekHit value for cursor P1, if necessary,
005100  ** so that it is no less than P2 and no greater than P3.
005101  **
005102  ** The seekHit integer represents the maximum of terms in an index for which
005103  ** there is known to be at least one match.  If the seekHit value is smaller
005104  ** than the total number of equality terms in an index lookup, then the
005105  ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
005106  ** early, thus saving work.  This is part of the IN-early-out optimization.
005107  **
005108  ** P1 must be a valid b-tree cursor.
005109  */
005110  case OP_SeekHit: {           /* ncycle */
005111    VdbeCursor *pC;
005112    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005113    pC = p->apCsr[pOp->p1];
005114    assert( pC!=0 );
005115    assert( pOp->p3>=pOp->p2 );
005116    if( pC->seekHit<pOp->p2 ){
005117  #ifdef SQLITE_DEBUG
005118      if( db->flags&SQLITE_VdbeTrace ){
005119        printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
005120      }       
005121  #endif
005122      pC->seekHit = pOp->p2;
005123    }else if( pC->seekHit>pOp->p3 ){
005124  #ifdef SQLITE_DEBUG
005125      if( db->flags&SQLITE_VdbeTrace ){
005126        printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
005127      }       
005128  #endif
005129      pC->seekHit = pOp->p3;
005130    }
005131    break;
005132  }
005133  
005134  /* Opcode: IfNotOpen P1 P2 * * *
005135  ** Synopsis: if( !csr[P1] ) goto P2
005136  **
005137  ** If cursor P1 is not open or if P1 is set to a NULL row using the
005138  ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
005139  */
005140  case OP_IfNotOpen: {        /* jump */
005141    VdbeCursor *pCur;
005142  
005143    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005144    pCur = p->apCsr[pOp->p1];
005145    VdbeBranchTaken(pCur==0 || pCur->nullRow, 2);
005146    if( pCur==0 || pCur->nullRow ){
005147      goto jump_to_p2_and_check_for_interrupt;
005148    }
005149    break;
005150  }
005151  
005152  /* Opcode: Found P1 P2 P3 P4 *
005153  ** Synopsis: key=r[P3@P4]
005154  **
005155  ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
005156  ** P4>0 then register P3 is the first of P4 registers that form an unpacked
005157  ** record.
005158  **
005159  ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
005160  ** is a prefix of any entry in P1 then a jump is made to P2 and
005161  ** P1 is left pointing at the matching entry.
005162  **
005163  ** This operation leaves the cursor in a state where it can be
005164  ** advanced in the forward direction.  The Next instruction will work,
005165  ** but not the Prev instruction.
005166  **
005167  ** See also: NotFound, NoConflict, NotExists. SeekGe
005168  */
005169  /* Opcode: NotFound P1 P2 P3 P4 *
005170  ** Synopsis: key=r[P3@P4]
005171  **
005172  ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
005173  ** P4>0 then register P3 is the first of P4 registers that form an unpacked
005174  ** record.
005175  **
005176  ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
005177  ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
005178  ** does contain an entry whose prefix matches the P3/P4 record then control
005179  ** falls through to the next instruction and P1 is left pointing at the
005180  ** matching entry.
005181  **
005182  ** This operation leaves the cursor in a state where it cannot be
005183  ** advanced in either direction.  In other words, the Next and Prev
005184  ** opcodes do not work after this operation.
005185  **
005186  ** See also: Found, NotExists, NoConflict, IfNoHope
005187  */
005188  /* Opcode: IfNoHope P1 P2 P3 P4 *
005189  ** Synopsis: key=r[P3@P4]
005190  **
005191  ** Register P3 is the first of P4 registers that form an unpacked
005192  ** record.  Cursor P1 is an index btree.  P2 is a jump destination.
005193  ** In other words, the operands to this opcode are the same as the
005194  ** operands to OP_NotFound and OP_IdxGT.
005195  **
005196  ** This opcode is an optimization attempt only.  If this opcode always
005197  ** falls through, the correct answer is still obtained, but extra work
005198  ** is performed.
005199  **
005200  ** A value of N in the seekHit flag of cursor P1 means that there exists
005201  ** a key P3:N that will match some record in the index.  We want to know
005202  ** if it is possible for a record P3:P4 to match some record in the
005203  ** index.  If it is not possible, we can skip some work.  So if seekHit
005204  ** is less than P4, attempt to find out if a match is possible by running
005205  ** OP_NotFound.
005206  **
005207  ** This opcode is used in IN clause processing for a multi-column key.
005208  ** If an IN clause is attached to an element of the key other than the
005209  ** left-most element, and if there are no matches on the most recent
005210  ** seek over the whole key, then it might be that one of the key element
005211  ** to the left is prohibiting a match, and hence there is "no hope" of
005212  ** any match regardless of how many IN clause elements are checked.
005213  ** In such a case, we abandon the IN clause search early, using this
005214  ** opcode.  The opcode name comes from the fact that the
005215  ** jump is taken if there is "no hope" of achieving a match.
005216  **
005217  ** See also: NotFound, SeekHit
005218  */
005219  /* Opcode: NoConflict P1 P2 P3 P4 *
005220  ** Synopsis: key=r[P3@P4]
005221  **
005222  ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
005223  ** P4>0 then register P3 is the first of P4 registers that form an unpacked
005224  ** record.
005225  **
005226  ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
005227  ** contains any NULL value, jump immediately to P2.  If all terms of the
005228  ** record are not-NULL then a check is done to determine if any row in the
005229  ** P1 index btree has a matching key prefix.  If there are no matches, jump
005230  ** immediately to P2.  If there is a match, fall through and leave the P1
005231  ** cursor pointing to the matching row.
005232  **
005233  ** This opcode is similar to OP_NotFound with the exceptions that the
005234  ** branch is always taken if any part of the search key input is NULL.
005235  **
005236  ** This operation leaves the cursor in a state where it cannot be
005237  ** advanced in either direction.  In other words, the Next and Prev
005238  ** opcodes do not work after this operation.
005239  **
005240  ** See also: NotFound, Found, NotExists
005241  */
005242  case OP_IfNoHope: {     /* jump, in3, ncycle */
005243    VdbeCursor *pC;
005244    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005245    pC = p->apCsr[pOp->p1];
005246    assert( pC!=0 );
005247  #ifdef SQLITE_DEBUG
005248    if( db->flags&SQLITE_VdbeTrace ){
005249      printf("seekHit is %d\n", pC->seekHit);
005250    }       
005251  #endif
005252    if( pC->seekHit>=pOp->p4.i ) break;
005253    /* Fall through into OP_NotFound */
005254    /* no break */ deliberate_fall_through
005255  }
005256  case OP_NoConflict:     /* jump, in3, ncycle */
005257  case OP_NotFound:       /* jump, in3, ncycle */
005258  case OP_Found: {        /* jump, in3, ncycle */
005259    int alreadyExists;
005260    int ii;
005261    VdbeCursor *pC;
005262    UnpackedRecord *pIdxKey;
005263    UnpackedRecord r;
005264  
005265  #ifdef SQLITE_TEST
005266    if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
005267  #endif
005268  
005269    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005270    assert( pOp->p4type==P4_INT32 );
005271    pC = p->apCsr[pOp->p1];
005272    assert( pC!=0 );
005273  #ifdef SQLITE_DEBUG
005274    pC->seekOp = pOp->opcode;
005275  #endif
005276    r.aMem = &aMem[pOp->p3];
005277    assert( pC->eCurType==CURTYPE_BTREE );
005278    assert( pC->uc.pCursor!=0 );
005279    assert( pC->isTable==0 );
005280    r.nField = (u16)pOp->p4.i;
005281    if( r.nField>0 ){
005282      /* Key values in an array of registers */
005283      r.pKeyInfo = pC->pKeyInfo;
005284      r.default_rc = 0;
005285  #ifdef SQLITE_DEBUG
005286      for(ii=0; ii<r.nField; ii++){
005287        assert( memIsValid(&r.aMem[ii]) );
005288        assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
005289        if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
005290      }
005291  #endif
005292      rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
005293    }else{
005294      /* Composite key generated by OP_MakeRecord */
005295      assert( r.aMem->flags & MEM_Blob );
005296      assert( pOp->opcode!=OP_NoConflict );
005297      rc = ExpandBlob(r.aMem);
005298      assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
005299      if( rc ) goto no_mem;
005300      pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
005301      if( pIdxKey==0 ) goto no_mem;
005302      sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
005303      pIdxKey->default_rc = 0;
005304      rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
005305      sqlite3DbFreeNN(db, pIdxKey);
005306    }
005307    if( rc!=SQLITE_OK ){
005308      goto abort_due_to_error;
005309    }
005310    alreadyExists = (pC->seekResult==0);
005311    pC->nullRow = 1-alreadyExists;
005312    pC->deferredMoveto = 0;
005313    pC->cacheStatus = CACHE_STALE;
005314    if( pOp->opcode==OP_Found ){
005315      VdbeBranchTaken(alreadyExists!=0,2);
005316      if( alreadyExists ) goto jump_to_p2;
005317    }else{
005318      if( !alreadyExists ){
005319        VdbeBranchTaken(1,2);
005320        goto jump_to_p2;
005321      }
005322      if( pOp->opcode==OP_NoConflict ){
005323        /* For the OP_NoConflict opcode, take the jump if any of the
005324        ** input fields are NULL, since any key with a NULL will not
005325        ** conflict */
005326        for(ii=0; ii<r.nField; ii++){
005327          if( r.aMem[ii].flags & MEM_Null ){
005328            VdbeBranchTaken(1,2);
005329            goto jump_to_p2;
005330          }
005331        }
005332      }
005333      VdbeBranchTaken(0,2);
005334      if( pOp->opcode==OP_IfNoHope ){
005335        pC->seekHit = pOp->p4.i;
005336      }
005337    }
005338    break;
005339  }
005340  
005341  /* Opcode: SeekRowid P1 P2 P3 * *
005342  ** Synopsis: intkey=r[P3]
005343  **
005344  ** P1 is the index of a cursor open on an SQL table btree (with integer
005345  ** keys).  If register P3 does not contain an integer or if P1 does not
005346  ** contain a record with rowid P3 then jump immediately to P2. 
005347  ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
005348  ** a record with rowid P3 then
005349  ** leave the cursor pointing at that record and fall through to the next
005350  ** instruction.
005351  **
005352  ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
005353  ** the P3 register must be guaranteed to contain an integer value.  With this
005354  ** opcode, register P3 might not contain an integer.
005355  **
005356  ** The OP_NotFound opcode performs the same operation on index btrees
005357  ** (with arbitrary multi-value keys).
005358  **
005359  ** This opcode leaves the cursor in a state where it cannot be advanced
005360  ** in either direction.  In other words, the Next and Prev opcodes will
005361  ** not work following this opcode.
005362  **
005363  ** See also: Found, NotFound, NoConflict, SeekRowid
005364  */
005365  /* Opcode: NotExists P1 P2 P3 * *
005366  ** Synopsis: intkey=r[P3]
005367  **
005368  ** P1 is the index of a cursor open on an SQL table btree (with integer
005369  ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
005370  ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
005371  ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
005372  ** leave the cursor pointing at that record and fall through to the next
005373  ** instruction.
005374  **
005375  ** The OP_SeekRowid opcode performs the same operation but also allows the
005376  ** P3 register to contain a non-integer value, in which case the jump is
005377  ** always taken.  This opcode requires that P3 always contain an integer.
005378  **
005379  ** The OP_NotFound opcode performs the same operation on index btrees
005380  ** (with arbitrary multi-value keys).
005381  **
005382  ** This opcode leaves the cursor in a state where it cannot be advanced
005383  ** in either direction.  In other words, the Next and Prev opcodes will
005384  ** not work following this opcode.
005385  **
005386  ** See also: Found, NotFound, NoConflict, SeekRowid
005387  */
005388  case OP_SeekRowid: {        /* jump, in3, ncycle */
005389    VdbeCursor *pC;
005390    BtCursor *pCrsr;
005391    int res;
005392    u64 iKey;
005393  
005394    pIn3 = &aMem[pOp->p3];
005395    testcase( pIn3->flags & MEM_Int );
005396    testcase( pIn3->flags & MEM_IntReal );
005397    testcase( pIn3->flags & MEM_Real );
005398    testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
005399    if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
005400      /* If pIn3->u.i does not contain an integer, compute iKey as the
005401      ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
005402      ** into an integer without loss of information.  Take care to avoid
005403      ** changing the datatype of pIn3, however, as it is used by other
005404      ** parts of the prepared statement. */
005405      Mem x = pIn3[0];
005406      applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
005407      if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
005408      iKey = x.u.i;
005409      goto notExistsWithKey;
005410    }
005411    /* Fall through into OP_NotExists */
005412    /* no break */ deliberate_fall_through
005413  case OP_NotExists:          /* jump, in3, ncycle */
005414    pIn3 = &aMem[pOp->p3];
005415    assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
005416    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005417    iKey = pIn3->u.i;
005418  notExistsWithKey:
005419    pC = p->apCsr[pOp->p1];
005420    assert( pC!=0 );
005421  #ifdef SQLITE_DEBUG
005422    if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
005423  #endif
005424    assert( pC->isTable );
005425    assert( pC->eCurType==CURTYPE_BTREE );
005426    pCrsr = pC->uc.pCursor;
005427    assert( pCrsr!=0 );
005428    res = 0;
005429    rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
005430    assert( rc==SQLITE_OK || res==0 );
005431    pC->movetoTarget = iKey;  /* Used by OP_Delete */
005432    pC->nullRow = 0;
005433    pC->cacheStatus = CACHE_STALE;
005434    pC->deferredMoveto = 0;
005435    VdbeBranchTaken(res!=0,2);
005436    pC->seekResult = res;
005437    if( res!=0 ){
005438      assert( rc==SQLITE_OK );
005439      if( pOp->p2==0 ){
005440        rc = SQLITE_CORRUPT_BKPT;
005441      }else{
005442        goto jump_to_p2;
005443      }
005444    }
005445    if( rc ) goto abort_due_to_error;
005446    break;
005447  }
005448  
005449  /* Opcode: Sequence P1 P2 * * *
005450  ** Synopsis: r[P2]=cursor[P1].ctr++
005451  **
005452  ** Find the next available sequence number for cursor P1.
005453  ** Write the sequence number into register P2.
005454  ** The sequence number on the cursor is incremented after this
005455  ** instruction. 
005456  */
005457  case OP_Sequence: {           /* out2 */
005458    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005459    assert( p->apCsr[pOp->p1]!=0 );
005460    assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
005461    pOut = out2Prerelease(p, pOp);
005462    pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
005463    break;
005464  }
005465  
005466  
005467  /* Opcode: NewRowid P1 P2 P3 * *
005468  ** Synopsis: r[P2]=rowid
005469  **
005470  ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
005471  ** The record number is not previously used as a key in the database
005472  ** table that cursor P1 points to.  The new record number is written
005473  ** written to register P2.
005474  **
005475  ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
005476  ** the largest previously generated record number. No new record numbers are
005477  ** allowed to be less than this value. When this value reaches its maximum,
005478  ** an SQLITE_FULL error is generated. The P3 register is updated with the '
005479  ** generated record number. This P3 mechanism is used to help implement the
005480  ** AUTOINCREMENT feature.
005481  */
005482  case OP_NewRowid: {           /* out2 */
005483    i64 v;                 /* The new rowid */
005484    VdbeCursor *pC;        /* Cursor of table to get the new rowid */
005485    int res;               /* Result of an sqlite3BtreeLast() */
005486    int cnt;               /* Counter to limit the number of searches */
005487  #ifndef SQLITE_OMIT_AUTOINCREMENT
005488    Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
005489    VdbeFrame *pFrame;     /* Root frame of VDBE */
005490  #endif
005491  
005492    v = 0;
005493    res = 0;
005494    pOut = out2Prerelease(p, pOp);
005495    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005496    pC = p->apCsr[pOp->p1];
005497    assert( pC!=0 );
005498    assert( pC->isTable );
005499    assert( pC->eCurType==CURTYPE_BTREE );
005500    assert( pC->uc.pCursor!=0 );
005501    {
005502      /* The next rowid or record number (different terms for the same
005503      ** thing) is obtained in a two-step algorithm.
005504      **
005505      ** First we attempt to find the largest existing rowid and add one
005506      ** to that.  But if the largest existing rowid is already the maximum
005507      ** positive integer, we have to fall through to the second
005508      ** probabilistic algorithm
005509      **
005510      ** The second algorithm is to select a rowid at random and see if
005511      ** it already exists in the table.  If it does not exist, we have
005512      ** succeeded.  If the random rowid does exist, we select a new one
005513      ** and try again, up to 100 times.
005514      */
005515      assert( pC->isTable );
005516  
005517  #ifdef SQLITE_32BIT_ROWID
005518  #   define MAX_ROWID 0x7fffffff
005519  #else
005520      /* Some compilers complain about constants of the form 0x7fffffffffffffff.
005521      ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
005522      ** to provide the constant while making all compilers happy.
005523      */
005524  #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
005525  #endif
005526  
005527      if( !pC->useRandomRowid ){
005528        rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
005529        if( rc!=SQLITE_OK ){
005530          goto abort_due_to_error;
005531        }
005532        if( res ){
005533          v = 1;   /* IMP: R-61914-48074 */
005534        }else{
005535          assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
005536          v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
005537          if( v>=MAX_ROWID ){
005538            pC->useRandomRowid = 1;
005539          }else{
005540            v++;   /* IMP: R-29538-34987 */
005541          }
005542        }
005543      }
005544  
005545  #ifndef SQLITE_OMIT_AUTOINCREMENT
005546      if( pOp->p3 ){
005547        /* Assert that P3 is a valid memory cell. */
005548        assert( pOp->p3>0 );
005549        if( p->pFrame ){
005550          for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
005551          /* Assert that P3 is a valid memory cell. */
005552          assert( pOp->p3<=pFrame->nMem );
005553          pMem = &pFrame->aMem[pOp->p3];
005554        }else{
005555          /* Assert that P3 is a valid memory cell. */
005556          assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
005557          pMem = &aMem[pOp->p3];
005558          memAboutToChange(p, pMem);
005559        }
005560        assert( memIsValid(pMem) );
005561  
005562        REGISTER_TRACE(pOp->p3, pMem);
005563        sqlite3VdbeMemIntegerify(pMem);
005564        assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
005565        if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
005566          rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
005567          goto abort_due_to_error;
005568        }
005569        if( v<pMem->u.i+1 ){
005570          v = pMem->u.i + 1;
005571        }
005572        pMem->u.i = v;
005573      }
005574  #endif
005575      if( pC->useRandomRowid ){
005576        /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
005577        ** largest possible integer (9223372036854775807) then the database
005578        ** engine starts picking positive candidate ROWIDs at random until
005579        ** it finds one that is not previously used. */
005580        assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
005581                               ** an AUTOINCREMENT table. */
005582        cnt = 0;
005583        do{
005584          sqlite3_randomness(sizeof(v), &v);
005585          v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
005586        }while(  ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
005587                                                   0, &res))==SQLITE_OK)
005588              && (res==0)
005589              && (++cnt<100));
005590        if( rc ) goto abort_due_to_error;
005591        if( res==0 ){
005592          rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
005593          goto abort_due_to_error;
005594        }
005595        assert( v>0 );  /* EV: R-40812-03570 */
005596      }
005597      pC->deferredMoveto = 0;
005598      pC->cacheStatus = CACHE_STALE;
005599    }
005600    pOut->u.i = v;
005601    break;
005602  }
005603  
005604  /* Opcode: Insert P1 P2 P3 P4 P5
005605  ** Synopsis: intkey=r[P3] data=r[P2]
005606  **
005607  ** Write an entry into the table of cursor P1.  A new entry is
005608  ** created if it doesn't already exist or the data for an existing
005609  ** entry is overwritten.  The data is the value MEM_Blob stored in register
005610  ** number P2. The key is stored in register P3. The key must
005611  ** be a MEM_Int.
005612  **
005613  ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
005614  ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
005615  ** then rowid is stored for subsequent return by the
005616  ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
005617  **
005618  ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
005619  ** run faster by avoiding an unnecessary seek on cursor P1.  However,
005620  ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
005621  ** seeks on the cursor or if the most recent seek used a key equal to P3.
005622  **
005623  ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
005624  ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
005625  ** is part of an INSERT operation.  The difference is only important to
005626  ** the update hook.
005627  **
005628  ** Parameter P4 may point to a Table structure, or may be NULL. If it is
005629  ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
005630  ** following a successful insert.
005631  **
005632  ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
005633  ** allocated, then ownership of P2 is transferred to the pseudo-cursor
005634  ** and register P2 becomes ephemeral.  If the cursor is changed, the
005635  ** value of register P2 will then change.  Make sure this does not
005636  ** cause any problems.)
005637  **
005638  ** This instruction only works on tables.  The equivalent instruction
005639  ** for indices is OP_IdxInsert.
005640  */
005641  case OP_Insert: {
005642    Mem *pData;       /* MEM cell holding data for the record to be inserted */
005643    Mem *pKey;        /* MEM cell holding key  for the record */
005644    VdbeCursor *pC;   /* Cursor to table into which insert is written */
005645    int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
005646    const char *zDb;  /* database name - used by the update hook */
005647    Table *pTab;      /* Table structure - used by update and pre-update hooks */
005648    BtreePayload x;   /* Payload to be inserted */
005649  
005650    pData = &aMem[pOp->p2];
005651    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005652    assert( memIsValid(pData) );
005653    pC = p->apCsr[pOp->p1];
005654    assert( pC!=0 );
005655    assert( pC->eCurType==CURTYPE_BTREE );
005656    assert( pC->deferredMoveto==0 );
005657    assert( pC->uc.pCursor!=0 );
005658    assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
005659    assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
005660    REGISTER_TRACE(pOp->p2, pData);
005661    sqlite3VdbeIncrWriteCounter(p, pC);
005662  
005663    pKey = &aMem[pOp->p3];
005664    assert( pKey->flags & MEM_Int );
005665    assert( memIsValid(pKey) );
005666    REGISTER_TRACE(pOp->p3, pKey);
005667    x.nKey = pKey->u.i;
005668  
005669    if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
005670      assert( pC->iDb>=0 );
005671      zDb = db->aDb[pC->iDb].zDbSName;
005672      pTab = pOp->p4.pTab;
005673      assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
005674    }else{
005675      pTab = 0;
005676      zDb = 0;
005677    }
005678  
005679  #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
005680    /* Invoke the pre-update hook, if any */
005681    if( pTab ){
005682      if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
005683        sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
005684      }
005685      if( db->xUpdateCallback==0 || pTab->aCol==0 ){
005686        /* Prevent post-update hook from running in cases when it should not */
005687        pTab = 0;
005688      }
005689    }
005690    if( pOp->p5 & OPFLAG_ISNOOP ) break;
005691  #endif
005692  
005693    assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 );
005694    if( pOp->p5 & OPFLAG_NCHANGE ){
005695      p->nChange++;
005696      if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
005697    }
005698    assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
005699    x.pData = pData->z;
005700    x.nData = pData->n;
005701    seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
005702    if( pData->flags & MEM_Zero ){
005703      x.nZero = pData->u.nZero;
005704    }else{
005705      x.nZero = 0;
005706    }
005707    x.pKey = 0;
005708    assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT );
005709    rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
005710        (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
005711        seekResult
005712    );
005713    pC->deferredMoveto = 0;
005714    pC->cacheStatus = CACHE_STALE;
005715    colCacheCtr++;
005716  
005717    /* Invoke the update-hook if required. */
005718    if( rc ) goto abort_due_to_error;
005719    if( pTab ){
005720      assert( db->xUpdateCallback!=0 );
005721      assert( pTab->aCol!=0 );
005722      db->xUpdateCallback(db->pUpdateArg,
005723             (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
005724             zDb, pTab->zName, x.nKey);
005725    }
005726    break;
005727  }
005728  
005729  /* Opcode: RowCell P1 P2 P3 * *
005730  **
005731  ** P1 and P2 are both open cursors. Both must be opened on the same type
005732  ** of table - intkey or index. This opcode is used as part of copying
005733  ** the current row from P2 into P1. If the cursors are opened on intkey
005734  ** tables, register P3 contains the rowid to use with the new record in
005735  ** P1. If they are opened on index tables, P3 is not used.
005736  **
005737  ** This opcode must be followed by either an Insert or InsertIdx opcode
005738  ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
005739  */
005740  case OP_RowCell: {
005741    VdbeCursor *pDest;              /* Cursor to write to */
005742    VdbeCursor *pSrc;               /* Cursor to read from */
005743    i64 iKey;                       /* Rowid value to insert with */
005744    assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
005745    assert( pOp[1].opcode==OP_Insert    || pOp->p3==0 );
005746    assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
005747    assert( pOp[1].p5 & OPFLAG_PREFORMAT );
005748    pDest = p->apCsr[pOp->p1];
005749    pSrc = p->apCsr[pOp->p2];
005750    iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
005751    rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
005752    if( rc!=SQLITE_OK ) goto abort_due_to_error;
005753    break;
005754  };
005755  
005756  /* Opcode: Delete P1 P2 P3 P4 P5
005757  **
005758  ** Delete the record at which the P1 cursor is currently pointing.
005759  **
005760  ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
005761  ** the cursor will be left pointing at  either the next or the previous
005762  ** record in the table. If it is left pointing at the next record, then
005763  ** the next Next instruction will be a no-op. As a result, in this case
005764  ** it is ok to delete a record from within a Next loop. If
005765  ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
005766  ** left in an undefined state.
005767  **
005768  ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
005769  ** delete is one of several associated with deleting a table row and
005770  ** all its associated index entries.  Exactly one of those deletes is
005771  ** the "primary" delete.  The others are all on OPFLAG_FORDELETE
005772  ** cursors or else are marked with the AUXDELETE flag.
005773  **
005774  ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
005775  ** change count is incremented (otherwise not).
005776  **
005777  ** P1 must not be pseudo-table.  It has to be a real table with
005778  ** multiple rows.
005779  **
005780  ** If P4 is not NULL then it points to a Table object. In this case either
005781  ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
005782  ** have been positioned using OP_NotFound prior to invoking this opcode in
005783  ** this case. Specifically, if one is configured, the pre-update hook is
005784  ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
005785  ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
005786  **
005787  ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
005788  ** of the memory cell that contains the value that the rowid of the row will
005789  ** be set to by the update.
005790  */
005791  case OP_Delete: {
005792    VdbeCursor *pC;
005793    const char *zDb;
005794    Table *pTab;
005795    int opflags;
005796  
005797    opflags = pOp->p2;
005798    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005799    pC = p->apCsr[pOp->p1];
005800    assert( pC!=0 );
005801    assert( pC->eCurType==CURTYPE_BTREE );
005802    assert( pC->uc.pCursor!=0 );
005803    assert( pC->deferredMoveto==0 );
005804    sqlite3VdbeIncrWriteCounter(p, pC);
005805  
005806  #ifdef SQLITE_DEBUG
005807    if( pOp->p4type==P4_TABLE
005808     && HasRowid(pOp->p4.pTab)
005809     && pOp->p5==0
005810     && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
005811    ){
005812      /* If p5 is zero, the seek operation that positioned the cursor prior to
005813      ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
005814      ** the row that is being deleted */
005815      i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
005816      assert( CORRUPT_DB || pC->movetoTarget==iKey );
005817    }
005818  #endif
005819  
005820    /* If the update-hook or pre-update-hook will be invoked, set zDb to
005821    ** the name of the db to pass as to it. Also set local pTab to a copy
005822    ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
005823    ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
005824    ** VdbeCursor.movetoTarget to the current rowid.  */
005825    if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
005826      assert( pC->iDb>=0 );
005827      assert( pOp->p4.pTab!=0 );
005828      zDb = db->aDb[pC->iDb].zDbSName;
005829      pTab = pOp->p4.pTab;
005830      if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
005831        pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
005832      }
005833    }else{
005834      zDb = 0;
005835      pTab = 0;
005836    }
005837  
005838  #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
005839    /* Invoke the pre-update-hook if required. */
005840    assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
005841    if( db->xPreUpdateCallback && pTab ){
005842      assert( !(opflags & OPFLAG_ISUPDATE)
005843           || HasRowid(pTab)==0
005844           || (aMem[pOp->p3].flags & MEM_Int)
005845      );
005846      sqlite3VdbePreUpdateHook(p, pC,
005847          (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
005848          zDb, pTab, pC->movetoTarget,
005849          pOp->p3, -1
005850      );
005851    }
005852    if( opflags & OPFLAG_ISNOOP ) break;
005853  #endif
005854  
005855    /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
005856    assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
005857    assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
005858    assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
005859  
005860  #ifdef SQLITE_DEBUG
005861    if( p->pFrame==0 ){
005862      if( pC->isEphemeral==0
005863          && (pOp->p5 & OPFLAG_AUXDELETE)==0
005864          && (pC->wrFlag & OPFLAG_FORDELETE)==0
005865        ){
005866        nExtraDelete++;
005867      }
005868      if( pOp->p2 & OPFLAG_NCHANGE ){
005869        nExtraDelete--;
005870      }
005871    }
005872  #endif
005873  
005874    rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
005875    pC->cacheStatus = CACHE_STALE;
005876    colCacheCtr++;
005877    pC->seekResult = 0;
005878    if( rc ) goto abort_due_to_error;
005879  
005880    /* Invoke the update-hook if required. */
005881    if( opflags & OPFLAG_NCHANGE ){
005882      p->nChange++;
005883      if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
005884        db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
005885            pC->movetoTarget);
005886        assert( pC->iDb>=0 );
005887      }
005888    }
005889  
005890    break;
005891  }
005892  /* Opcode: ResetCount * * * * *
005893  **
005894  ** The value of the change counter is copied to the database handle
005895  ** change counter (returned by subsequent calls to sqlite3_changes()).
005896  ** Then the VMs internal change counter resets to 0.
005897  ** This is used by trigger programs.
005898  */
005899  case OP_ResetCount: {
005900    sqlite3VdbeSetChanges(db, p->nChange);
005901    p->nChange = 0;
005902    break;
005903  }
005904  
005905  /* Opcode: SorterCompare P1 P2 P3 P4
005906  ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
005907  **
005908  ** P1 is a sorter cursor. This instruction compares a prefix of the
005909  ** record blob in register P3 against a prefix of the entry that
005910  ** the sorter cursor currently points to.  Only the first P4 fields
005911  ** of r[P3] and the sorter record are compared.
005912  **
005913  ** If either P3 or the sorter contains a NULL in one of their significant
005914  ** fields (not counting the P4 fields at the end which are ignored) then
005915  ** the comparison is assumed to be equal.
005916  **
005917  ** Fall through to next instruction if the two records compare equal to
005918  ** each other.  Jump to P2 if they are different.
005919  */
005920  case OP_SorterCompare: {
005921    VdbeCursor *pC;
005922    int res;
005923    int nKeyCol;
005924  
005925    pC = p->apCsr[pOp->p1];
005926    assert( isSorter(pC) );
005927    assert( pOp->p4type==P4_INT32 );
005928    pIn3 = &aMem[pOp->p3];
005929    nKeyCol = pOp->p4.i;
005930    res = 0;
005931    rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
005932    VdbeBranchTaken(res!=0,2);
005933    if( rc ) goto abort_due_to_error;
005934    if( res ) goto jump_to_p2;
005935    break;
005936  };
005937  
005938  /* Opcode: SorterData P1 P2 P3 * *
005939  ** Synopsis: r[P2]=data
005940  **
005941  ** Write into register P2 the current sorter data for sorter cursor P1.
005942  ** Then clear the column header cache on cursor P3.
005943  **
005944  ** This opcode is normally used to move a record out of the sorter and into
005945  ** a register that is the source for a pseudo-table cursor created using
005946  ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
005947  ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
005948  ** us from having to issue a separate NullRow instruction to clear that cache.
005949  */
005950  case OP_SorterData: {       /* ncycle */
005951    VdbeCursor *pC;
005952  
005953    pOut = &aMem[pOp->p2];
005954    pC = p->apCsr[pOp->p1];
005955    assert( isSorter(pC) );
005956    rc = sqlite3VdbeSorterRowkey(pC, pOut);
005957    assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
005958    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005959    if( rc ) goto abort_due_to_error;
005960    p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
005961    break;
005962  }
005963  
005964  /* Opcode: RowData P1 P2 P3 * *
005965  ** Synopsis: r[P2]=data
005966  **
005967  ** Write into register P2 the complete row content for the row at
005968  ** which cursor P1 is currently pointing.
005969  ** There is no interpretation of the data. 
005970  ** It is just copied onto the P2 register exactly as
005971  ** it is found in the database file.
005972  **
005973  ** If cursor P1 is an index, then the content is the key of the row.
005974  ** If cursor P2 is a table, then the content extracted is the data.
005975  **
005976  ** If the P1 cursor must be pointing to a valid row (not a NULL row)
005977  ** of a real table, not a pseudo-table.
005978  **
005979  ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
005980  ** into the database page.  That means that the content of the output
005981  ** register will be invalidated as soon as the cursor moves - including
005982  ** moves caused by other cursors that "save" the current cursors
005983  ** position in order that they can write to the same table.  If P3==0
005984  ** then a copy of the data is made into memory.  P3!=0 is faster, but
005985  ** P3==0 is safer.
005986  **
005987  ** If P3!=0 then the content of the P2 register is unsuitable for use
005988  ** in OP_Result and any OP_Result will invalidate the P2 register content.
005989  ** The P2 register content is invalidated by opcodes like OP_Function or
005990  ** by any use of another cursor pointing to the same table.
005991  */
005992  case OP_RowData: {
005993    VdbeCursor *pC;
005994    BtCursor *pCrsr;
005995    u32 n;
005996  
005997    pOut = out2Prerelease(p, pOp);
005998  
005999    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006000    pC = p->apCsr[pOp->p1];
006001    assert( pC!=0 );
006002    assert( pC->eCurType==CURTYPE_BTREE );
006003    assert( isSorter(pC)==0 );
006004    assert( pC->nullRow==0 );
006005    assert( pC->uc.pCursor!=0 );
006006    pCrsr = pC->uc.pCursor;
006007  
006008    /* The OP_RowData opcodes always follow OP_NotExists or
006009    ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
006010    ** that might invalidate the cursor.
006011    ** If this where not the case, on of the following assert()s
006012    ** would fail.  Should this ever change (because of changes in the code
006013    ** generator) then the fix would be to insert a call to
006014    ** sqlite3VdbeCursorMoveto().
006015    */
006016    assert( pC->deferredMoveto==0 );
006017    assert( sqlite3BtreeCursorIsValid(pCrsr) );
006018  
006019    n = sqlite3BtreePayloadSize(pCrsr);
006020    if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
006021      goto too_big;
006022    }
006023    testcase( n==0 );
006024    rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
006025    if( rc ) goto abort_due_to_error;
006026    if( !pOp->p3 ) Deephemeralize(pOut);
006027    UPDATE_MAX_BLOBSIZE(pOut);
006028    REGISTER_TRACE(pOp->p2, pOut);
006029    break;
006030  }
006031  
006032  /* Opcode: Rowid P1 P2 * * *
006033  ** Synopsis: r[P2]=PX rowid of P1
006034  **
006035  ** Store in register P2 an integer which is the key of the table entry that
006036  ** P1 is currently point to.
006037  **
006038  ** P1 can be either an ordinary table or a virtual table.  There used to
006039  ** be a separate OP_VRowid opcode for use with virtual tables, but this
006040  ** one opcode now works for both table types.
006041  */
006042  case OP_Rowid: {                 /* out2, ncycle */
006043    VdbeCursor *pC;
006044    i64 v;
006045    sqlite3_vtab *pVtab;
006046    const sqlite3_module *pModule;
006047  
006048    pOut = out2Prerelease(p, pOp);
006049    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006050    pC = p->apCsr[pOp->p1];
006051    assert( pC!=0 );
006052    assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
006053    if( pC->nullRow ){
006054      pOut->flags = MEM_Null;
006055      break;
006056    }else if( pC->deferredMoveto ){
006057      v = pC->movetoTarget;
006058  #ifndef SQLITE_OMIT_VIRTUALTABLE
006059    }else if( pC->eCurType==CURTYPE_VTAB ){
006060      assert( pC->uc.pVCur!=0 );
006061      pVtab = pC->uc.pVCur->pVtab;
006062      pModule = pVtab->pModule;
006063      assert( pModule->xRowid );
006064      rc = pModule->xRowid(pC->uc.pVCur, &v);
006065      sqlite3VtabImportErrmsg(p, pVtab);
006066      if( rc ) goto abort_due_to_error;
006067  #endif /* SQLITE_OMIT_VIRTUALTABLE */
006068    }else{
006069      assert( pC->eCurType==CURTYPE_BTREE );
006070      assert( pC->uc.pCursor!=0 );
006071      rc = sqlite3VdbeCursorRestore(pC);
006072      if( rc ) goto abort_due_to_error;
006073      if( pC->nullRow ){
006074        pOut->flags = MEM_Null;
006075        break;
006076      }
006077      v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
006078    }
006079    pOut->u.i = v;
006080    break;
006081  }
006082  
006083  /* Opcode: NullRow P1 * * * *
006084  **
006085  ** Move the cursor P1 to a null row.  Any OP_Column operations
006086  ** that occur while the cursor is on the null row will always
006087  ** write a NULL.
006088  **
006089  ** If cursor P1 is not previously opened, open it now to a special
006090  ** pseudo-cursor that always returns NULL for every column.
006091  */
006092  case OP_NullRow: {
006093    VdbeCursor *pC;
006094  
006095    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006096    pC = p->apCsr[pOp->p1];
006097    if( pC==0 ){
006098      /* If the cursor is not already open, create a special kind of
006099      ** pseudo-cursor that always gives null rows. */
006100      pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
006101      if( pC==0 ) goto no_mem;
006102      pC->seekResult = 0;
006103      pC->isTable = 1;
006104      pC->noReuse = 1;
006105      pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
006106    }
006107    pC->nullRow = 1;
006108    pC->cacheStatus = CACHE_STALE;
006109    if( pC->eCurType==CURTYPE_BTREE ){
006110      assert( pC->uc.pCursor!=0 );
006111      sqlite3BtreeClearCursor(pC->uc.pCursor);
006112    }
006113  #ifdef SQLITE_DEBUG
006114    if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
006115  #endif
006116    break;
006117  }
006118  
006119  /* Opcode: SeekEnd P1 * * * *
006120  **
006121  ** Position cursor P1 at the end of the btree for the purpose of
006122  ** appending a new entry onto the btree.
006123  **
006124  ** It is assumed that the cursor is used only for appending and so
006125  ** if the cursor is valid, then the cursor must already be pointing
006126  ** at the end of the btree and so no changes are made to
006127  ** the cursor.
006128  */
006129  /* Opcode: Last P1 P2 * * *
006130  **
006131  ** The next use of the Rowid or Column or Prev instruction for P1
006132  ** will refer to the last entry in the database table or index.
006133  ** If the table or index is empty and P2>0, then jump immediately to P2.
006134  ** If P2 is 0 or if the table or index is not empty, fall through
006135  ** to the following instruction.
006136  **
006137  ** This opcode leaves the cursor configured to move in reverse order,
006138  ** from the end toward the beginning.  In other words, the cursor is
006139  ** configured to use Prev, not Next.
006140  */
006141  case OP_SeekEnd:             /* ncycle */
006142  case OP_Last: {              /* jump, ncycle */
006143    VdbeCursor *pC;
006144    BtCursor *pCrsr;
006145    int res;
006146  
006147    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006148    pC = p->apCsr[pOp->p1];
006149    assert( pC!=0 );
006150    assert( pC->eCurType==CURTYPE_BTREE );
006151    pCrsr = pC->uc.pCursor;
006152    res = 0;
006153    assert( pCrsr!=0 );
006154  #ifdef SQLITE_DEBUG
006155    pC->seekOp = pOp->opcode;
006156  #endif
006157    if( pOp->opcode==OP_SeekEnd ){
006158      assert( pOp->p2==0 );
006159      pC->seekResult = -1;
006160      if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
006161        break;
006162      }
006163    }
006164    rc = sqlite3BtreeLast(pCrsr, &res);
006165    pC->nullRow = (u8)res;
006166    pC->deferredMoveto = 0;
006167    pC->cacheStatus = CACHE_STALE;
006168    if( rc ) goto abort_due_to_error;
006169    if( pOp->p2>0 ){
006170      VdbeBranchTaken(res!=0,2);
006171      if( res ) goto jump_to_p2;
006172    }
006173    break;
006174  }
006175  
006176  /* Opcode: IfSmaller P1 P2 P3 * *
006177  **
006178  ** Estimate the number of rows in the table P1.  Jump to P2 if that
006179  ** estimate is less than approximately 2**(0.1*P3).
006180  */
006181  case OP_IfSmaller: {        /* jump */
006182    VdbeCursor *pC;
006183    BtCursor *pCrsr;
006184    int res;
006185    i64 sz;
006186  
006187    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006188    pC = p->apCsr[pOp->p1];
006189    assert( pC!=0 );
006190    pCrsr = pC->uc.pCursor;
006191    assert( pCrsr );
006192    rc = sqlite3BtreeFirst(pCrsr, &res);
006193    if( rc ) goto abort_due_to_error;
006194    if( res==0 ){
006195      sz = sqlite3BtreeRowCountEst(pCrsr);
006196      if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
006197    }
006198    VdbeBranchTaken(res!=0,2);
006199    if( res ) goto jump_to_p2;
006200    break;
006201  }
006202  
006203  
006204  /* Opcode: SorterSort P1 P2 * * *
006205  **
006206  ** After all records have been inserted into the Sorter object
006207  ** identified by P1, invoke this opcode to actually do the sorting.
006208  ** Jump to P2 if there are no records to be sorted.
006209  **
006210  ** This opcode is an alias for OP_Sort and OP_Rewind that is used
006211  ** for Sorter objects.
006212  */
006213  /* Opcode: Sort P1 P2 * * *
006214  **
006215  ** This opcode does exactly the same thing as OP_Rewind except that
006216  ** it increments an undocumented global variable used for testing.
006217  **
006218  ** Sorting is accomplished by writing records into a sorting index,
006219  ** then rewinding that index and playing it back from beginning to
006220  ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
006221  ** rewinding so that the global variable will be incremented and
006222  ** regression tests can determine whether or not the optimizer is
006223  ** correctly optimizing out sorts.
006224  */
006225  case OP_SorterSort:    /* jump ncycle */
006226  case OP_Sort: {        /* jump ncycle */
006227  #ifdef SQLITE_TEST
006228    sqlite3_sort_count++;
006229    sqlite3_search_count--;
006230  #endif
006231    p->aCounter[SQLITE_STMTSTATUS_SORT]++;
006232    /* Fall through into OP_Rewind */
006233    /* no break */ deliberate_fall_through
006234  }
006235  /* Opcode: Rewind P1 P2 * * *
006236  **
006237  ** The next use of the Rowid or Column or Next instruction for P1
006238  ** will refer to the first entry in the database table or index.
006239  ** If the table or index is empty, jump immediately to P2.
006240  ** If the table or index is not empty, fall through to the following
006241  ** instruction.
006242  **
006243  ** If P2 is zero, that is an assertion that the P1 table is never
006244  ** empty and hence the jump will never be taken.
006245  **
006246  ** This opcode leaves the cursor configured to move in forward order,
006247  ** from the beginning toward the end.  In other words, the cursor is
006248  ** configured to use Next, not Prev.
006249  */
006250  case OP_Rewind: {        /* jump, ncycle */
006251    VdbeCursor *pC;
006252    BtCursor *pCrsr;
006253    int res;
006254  
006255    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006256    assert( pOp->p5==0 );
006257    assert( pOp->p2>=0 && pOp->p2<p->nOp );
006258  
006259    pC = p->apCsr[pOp->p1];
006260    assert( pC!=0 );
006261    assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
006262    res = 1;
006263  #ifdef SQLITE_DEBUG
006264    pC->seekOp = OP_Rewind;
006265  #endif
006266    if( isSorter(pC) ){
006267      rc = sqlite3VdbeSorterRewind(pC, &res);
006268    }else{
006269      assert( pC->eCurType==CURTYPE_BTREE );
006270      pCrsr = pC->uc.pCursor;
006271      assert( pCrsr );
006272      rc = sqlite3BtreeFirst(pCrsr, &res);
006273      pC->deferredMoveto = 0;
006274      pC->cacheStatus = CACHE_STALE;
006275    }
006276    if( rc ) goto abort_due_to_error;
006277    pC->nullRow = (u8)res;
006278    if( pOp->p2>0 ){
006279      VdbeBranchTaken(res!=0,2);
006280      if( res ) goto jump_to_p2;
006281    }
006282    break;
006283  }
006284  
006285  /* Opcode: Next P1 P2 P3 * P5
006286  **
006287  ** Advance cursor P1 so that it points to the next key/data pair in its
006288  ** table or index.  If there are no more key/value pairs then fall through
006289  ** to the following instruction.  But if the cursor advance was successful,
006290  ** jump immediately to P2.
006291  **
006292  ** The Next opcode is only valid following an SeekGT, SeekGE, or
006293  ** OP_Rewind opcode used to position the cursor.  Next is not allowed
006294  ** to follow SeekLT, SeekLE, or OP_Last.
006295  **
006296  ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
006297  ** been opened prior to this opcode or the program will segfault.
006298  **
006299  ** The P3 value is a hint to the btree implementation. If P3==1, that
006300  ** means P1 is an SQL index and that this instruction could have been
006301  ** omitted if that index had been unique.  P3 is usually 0.  P3 is
006302  ** always either 0 or 1.
006303  **
006304  ** If P5 is positive and the jump is taken, then event counter
006305  ** number P5-1 in the prepared statement is incremented.
006306  **
006307  ** See also: Prev
006308  */
006309  /* Opcode: Prev P1 P2 P3 * P5
006310  **
006311  ** Back up cursor P1 so that it points to the previous key/data pair in its
006312  ** table or index.  If there is no previous key/value pairs then fall through
006313  ** to the following instruction.  But if the cursor backup was successful,
006314  ** jump immediately to P2.
006315  **
006316  **
006317  ** The Prev opcode is only valid following an SeekLT, SeekLE, or
006318  ** OP_Last opcode used to position the cursor.  Prev is not allowed
006319  ** to follow SeekGT, SeekGE, or OP_Rewind.
006320  **
006321  ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
006322  ** not open then the behavior is undefined.
006323  **
006324  ** The P3 value is a hint to the btree implementation. If P3==1, that
006325  ** means P1 is an SQL index and that this instruction could have been
006326  ** omitted if that index had been unique.  P3 is usually 0.  P3 is
006327  ** always either 0 or 1.
006328  **
006329  ** If P5 is positive and the jump is taken, then event counter
006330  ** number P5-1 in the prepared statement is incremented.
006331  */
006332  /* Opcode: SorterNext P1 P2 * * P5
006333  **
006334  ** This opcode works just like OP_Next except that P1 must be a
006335  ** sorter object for which the OP_SorterSort opcode has been
006336  ** invoked.  This opcode advances the cursor to the next sorted
006337  ** record, or jumps to P2 if there are no more sorted records.
006338  */
006339  case OP_SorterNext: {  /* jump */
006340    VdbeCursor *pC;
006341  
006342    pC = p->apCsr[pOp->p1];
006343    assert( isSorter(pC) );
006344    rc = sqlite3VdbeSorterNext(db, pC);
006345    goto next_tail;
006346  
006347  case OP_Prev:          /* jump, ncycle */
006348    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006349    assert( pOp->p5==0
006350         || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
006351         || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
006352    pC = p->apCsr[pOp->p1];
006353    assert( pC!=0 );
006354    assert( pC->deferredMoveto==0 );
006355    assert( pC->eCurType==CURTYPE_BTREE );
006356    assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
006357         || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
006358         || pC->seekOp==OP_NullRow);
006359    rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
006360    goto next_tail;
006361  
006362  case OP_Next:          /* jump, ncycle */
006363    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006364    assert( pOp->p5==0
006365         || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
006366         || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
006367    pC = p->apCsr[pOp->p1];
006368    assert( pC!=0 );
006369    assert( pC->deferredMoveto==0 );
006370    assert( pC->eCurType==CURTYPE_BTREE );
006371    assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
006372         || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
006373         || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
006374         || pC->seekOp==OP_IfNoHope);
006375    rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
006376  
006377  next_tail:
006378    pC->cacheStatus = CACHE_STALE;
006379    VdbeBranchTaken(rc==SQLITE_OK,2);
006380    if( rc==SQLITE_OK ){
006381      pC->nullRow = 0;
006382      p->aCounter[pOp->p5]++;
006383  #ifdef SQLITE_TEST
006384      sqlite3_search_count++;
006385  #endif
006386      goto jump_to_p2_and_check_for_interrupt;
006387    }
006388    if( rc!=SQLITE_DONE ) goto abort_due_to_error;
006389    rc = SQLITE_OK;
006390    pC->nullRow = 1;
006391    goto check_for_interrupt;
006392  }
006393  
006394  /* Opcode: IdxInsert P1 P2 P3 P4 P5
006395  ** Synopsis: key=r[P2]
006396  **
006397  ** Register P2 holds an SQL index key made using the
006398  ** MakeRecord instructions.  This opcode writes that key
006399  ** into the index P1.  Data for the entry is nil.
006400  **
006401  ** If P4 is not zero, then it is the number of values in the unpacked
006402  ** key of reg(P2).  In that case, P3 is the index of the first register
006403  ** for the unpacked key.  The availability of the unpacked key can sometimes
006404  ** be an optimization.
006405  **
006406  ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
006407  ** that this insert is likely to be an append.
006408  **
006409  ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
006410  ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
006411  ** then the change counter is unchanged.
006412  **
006413  ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
006414  ** run faster by avoiding an unnecessary seek on cursor P1.  However,
006415  ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
006416  ** seeks on the cursor or if the most recent seek used a key equivalent
006417  ** to P2.
006418  **
006419  ** This instruction only works for indices.  The equivalent instruction
006420  ** for tables is OP_Insert.
006421  */
006422  case OP_IdxInsert: {        /* in2 */
006423    VdbeCursor *pC;
006424    BtreePayload x;
006425  
006426    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006427    pC = p->apCsr[pOp->p1];
006428    sqlite3VdbeIncrWriteCounter(p, pC);
006429    assert( pC!=0 );
006430    assert( !isSorter(pC) );
006431    pIn2 = &aMem[pOp->p2];
006432    assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
006433    if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
006434    assert( pC->eCurType==CURTYPE_BTREE );
006435    assert( pC->isTable==0 );
006436    rc = ExpandBlob(pIn2);
006437    if( rc ) goto abort_due_to_error;
006438    x.nKey = pIn2->n;
006439    x.pKey = pIn2->z;
006440    x.aMem = aMem + pOp->p3;
006441    x.nMem = (u16)pOp->p4.i;
006442    rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
006443         (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
006444        ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
006445        );
006446    assert( pC->deferredMoveto==0 );
006447    pC->cacheStatus = CACHE_STALE;
006448    if( rc) goto abort_due_to_error;
006449    break;
006450  }
006451  
006452  /* Opcode: SorterInsert P1 P2 * * *
006453  ** Synopsis: key=r[P2]
006454  **
006455  ** Register P2 holds an SQL index key made using the
006456  ** MakeRecord instructions.  This opcode writes that key
006457  ** into the sorter P1.  Data for the entry is nil.
006458  */
006459  case OP_SorterInsert: {     /* in2 */
006460    VdbeCursor *pC;
006461  
006462    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006463    pC = p->apCsr[pOp->p1];
006464    sqlite3VdbeIncrWriteCounter(p, pC);
006465    assert( pC!=0 );
006466    assert( isSorter(pC) );
006467    pIn2 = &aMem[pOp->p2];
006468    assert( pIn2->flags & MEM_Blob );
006469    assert( pC->isTable==0 );
006470    rc = ExpandBlob(pIn2);
006471    if( rc ) goto abort_due_to_error;
006472    rc = sqlite3VdbeSorterWrite(pC, pIn2);
006473    if( rc) goto abort_due_to_error;
006474    break;
006475  }
006476  
006477  /* Opcode: IdxDelete P1 P2 P3 * P5
006478  ** Synopsis: key=r[P2@P3]
006479  **
006480  ** The content of P3 registers starting at register P2 form
006481  ** an unpacked index key. This opcode removes that entry from the
006482  ** index opened by cursor P1.
006483  **
006484  ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
006485  ** if no matching index entry is found.  This happens when running
006486  ** an UPDATE or DELETE statement and the index entry to be updated
006487  ** or deleted is not found.  For some uses of IdxDelete
006488  ** (example:  the EXCEPT operator) it does not matter that no matching
006489  ** entry is found.  For those cases, P5 is zero.  Also, do not raise
006490  ** this (self-correcting and non-critical) error if in writable_schema mode.
006491  */
006492  case OP_IdxDelete: {
006493    VdbeCursor *pC;
006494    BtCursor *pCrsr;
006495    int res;
006496    UnpackedRecord r;
006497  
006498    assert( pOp->p3>0 );
006499    assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
006500    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006501    pC = p->apCsr[pOp->p1];
006502    assert( pC!=0 );
006503    assert( pC->eCurType==CURTYPE_BTREE );
006504    sqlite3VdbeIncrWriteCounter(p, pC);
006505    pCrsr = pC->uc.pCursor;
006506    assert( pCrsr!=0 );
006507    r.pKeyInfo = pC->pKeyInfo;
006508    r.nField = (u16)pOp->p3;
006509    r.default_rc = 0;
006510    r.aMem = &aMem[pOp->p2];
006511    rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
006512    if( rc ) goto abort_due_to_error;
006513    if( res==0 ){
006514      rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
006515      if( rc ) goto abort_due_to_error;
006516    }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
006517      rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
006518      goto abort_due_to_error;
006519    }
006520    assert( pC->deferredMoveto==0 );
006521    pC->cacheStatus = CACHE_STALE;
006522    pC->seekResult = 0;
006523    break;
006524  }
006525  
006526  /* Opcode: DeferredSeek P1 * P3 P4 *
006527  ** Synopsis: Move P3 to P1.rowid if needed
006528  **
006529  ** P1 is an open index cursor and P3 is a cursor on the corresponding
006530  ** table.  This opcode does a deferred seek of the P3 table cursor
006531  ** to the row that corresponds to the current row of P1.
006532  **
006533  ** This is a deferred seek.  Nothing actually happens until
006534  ** the cursor is used to read a record.  That way, if no reads
006535  ** occur, no unnecessary I/O happens.
006536  **
006537  ** P4 may be an array of integers (type P4_INTARRAY) containing
006538  ** one entry for each column in the P3 table.  If array entry a(i)
006539  ** is non-zero, then reading column a(i)-1 from cursor P3 is
006540  ** equivalent to performing the deferred seek and then reading column i
006541  ** from P1.  This information is stored in P3 and used to redirect
006542  ** reads against P3 over to P1, thus possibly avoiding the need to
006543  ** seek and read cursor P3.
006544  */
006545  /* Opcode: IdxRowid P1 P2 * * *
006546  ** Synopsis: r[P2]=rowid
006547  **
006548  ** Write into register P2 an integer which is the last entry in the record at
006549  ** the end of the index key pointed to by cursor P1.  This integer should be
006550  ** the rowid of the table entry to which this index entry points.
006551  **
006552  ** See also: Rowid, MakeRecord.
006553  */
006554  case OP_DeferredSeek:         /* ncycle */
006555  case OP_IdxRowid: {           /* out2, ncycle */
006556    VdbeCursor *pC;             /* The P1 index cursor */
006557    VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
006558    i64 rowid;                  /* Rowid that P1 current points to */
006559  
006560    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006561    pC = p->apCsr[pOp->p1];
006562    assert( pC!=0 );
006563    assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
006564    assert( pC->uc.pCursor!=0 );
006565    assert( pC->isTable==0 || IsNullCursor(pC) );
006566    assert( pC->deferredMoveto==0 );
006567    assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
006568  
006569    /* The IdxRowid and Seek opcodes are combined because of the commonality
006570    ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
006571    rc = sqlite3VdbeCursorRestore(pC);
006572  
006573    /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
006574    ** since it was last positioned and an error (e.g. OOM or an IO error)
006575    ** occurs while trying to reposition it. */
006576    if( rc!=SQLITE_OK ) goto abort_due_to_error;
006577  
006578    if( !pC->nullRow ){
006579      rowid = 0;  /* Not needed.  Only used to silence a warning. */
006580      rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
006581      if( rc!=SQLITE_OK ){
006582        goto abort_due_to_error;
006583      }
006584      if( pOp->opcode==OP_DeferredSeek ){
006585        assert( pOp->p3>=0 && pOp->p3<p->nCursor );
006586        pTabCur = p->apCsr[pOp->p3];
006587        assert( pTabCur!=0 );
006588        assert( pTabCur->eCurType==CURTYPE_BTREE );
006589        assert( pTabCur->uc.pCursor!=0 );
006590        assert( pTabCur->isTable );
006591        pTabCur->nullRow = 0;
006592        pTabCur->movetoTarget = rowid;
006593        pTabCur->deferredMoveto = 1;
006594        pTabCur->cacheStatus = CACHE_STALE;
006595        assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
006596        assert( !pTabCur->isEphemeral );
006597        pTabCur->ub.aAltMap = pOp->p4.ai;
006598        assert( !pC->isEphemeral );
006599        pTabCur->pAltCursor = pC;
006600      }else{
006601        pOut = out2Prerelease(p, pOp);
006602        pOut->u.i = rowid;
006603      }
006604    }else{
006605      assert( pOp->opcode==OP_IdxRowid );
006606      sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
006607    }
006608    break;
006609  }
006610  
006611  /* Opcode: FinishSeek P1 * * * *
006612  **
006613  ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
006614  ** seek operation now, without further delay.  If the cursor seek has
006615  ** already occurred, this instruction is a no-op.
006616  */
006617  case OP_FinishSeek: {        /* ncycle */
006618    VdbeCursor *pC;            /* The P1 index cursor */
006619  
006620    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006621    pC = p->apCsr[pOp->p1];
006622    if( pC->deferredMoveto ){
006623      rc = sqlite3VdbeFinishMoveto(pC);
006624      if( rc ) goto abort_due_to_error;
006625    }
006626    break;
006627  }
006628  
006629  /* Opcode: IdxGE P1 P2 P3 P4 *
006630  ** Synopsis: key=r[P3@P4]
006631  **
006632  ** The P4 register values beginning with P3 form an unpacked index
006633  ** key that omits the PRIMARY KEY.  Compare this key value against the index
006634  ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
006635  ** fields at the end.
006636  **
006637  ** If the P1 index entry is greater than or equal to the key value
006638  ** then jump to P2.  Otherwise fall through to the next instruction.
006639  */
006640  /* Opcode: IdxGT P1 P2 P3 P4 *
006641  ** Synopsis: key=r[P3@P4]
006642  **
006643  ** The P4 register values beginning with P3 form an unpacked index
006644  ** key that omits the PRIMARY KEY.  Compare this key value against the index
006645  ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
006646  ** fields at the end.
006647  **
006648  ** If the P1 index entry is greater than the key value
006649  ** then jump to P2.  Otherwise fall through to the next instruction.
006650  */
006651  /* Opcode: IdxLT P1 P2 P3 P4 *
006652  ** Synopsis: key=r[P3@P4]
006653  **
006654  ** The P4 register values beginning with P3 form an unpacked index
006655  ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
006656  ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
006657  ** ROWID on the P1 index.
006658  **
006659  ** If the P1 index entry is less than the key value then jump to P2.
006660  ** Otherwise fall through to the next instruction.
006661  */
006662  /* Opcode: IdxLE P1 P2 P3 P4 *
006663  ** Synopsis: key=r[P3@P4]
006664  **
006665  ** The P4 register values beginning with P3 form an unpacked index
006666  ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
006667  ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
006668  ** ROWID on the P1 index.
006669  **
006670  ** If the P1 index entry is less than or equal to the key value then jump
006671  ** to P2. Otherwise fall through to the next instruction.
006672  */
006673  case OP_IdxLE:          /* jump, ncycle */
006674  case OP_IdxGT:          /* jump, ncycle */
006675  case OP_IdxLT:          /* jump, ncycle */
006676  case OP_IdxGE:  {       /* jump, ncycle */
006677    VdbeCursor *pC;
006678    int res;
006679    UnpackedRecord r;
006680  
006681    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006682    pC = p->apCsr[pOp->p1];
006683    assert( pC!=0 );
006684    assert( pC->isOrdered );
006685    assert( pC->eCurType==CURTYPE_BTREE );
006686    assert( pC->uc.pCursor!=0);
006687    assert( pC->deferredMoveto==0 );
006688    assert( pOp->p4type==P4_INT32 );
006689    r.pKeyInfo = pC->pKeyInfo;
006690    r.nField = (u16)pOp->p4.i;
006691    if( pOp->opcode<OP_IdxLT ){
006692      assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
006693      r.default_rc = -1;
006694    }else{
006695      assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
006696      r.default_rc = 0;
006697    }
006698    r.aMem = &aMem[pOp->p3];
006699  #ifdef SQLITE_DEBUG
006700    {
006701      int i;
006702      for(i=0; i<r.nField; i++){
006703        assert( memIsValid(&r.aMem[i]) );
006704        REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
006705      }
006706    }
006707  #endif
006708  
006709    /* Inlined version of sqlite3VdbeIdxKeyCompare() */
006710    {
006711      i64 nCellKey = 0;
006712      BtCursor *pCur;
006713      Mem m;
006714  
006715      assert( pC->eCurType==CURTYPE_BTREE );
006716      pCur = pC->uc.pCursor;
006717      assert( sqlite3BtreeCursorIsValid(pCur) );
006718      nCellKey = sqlite3BtreePayloadSize(pCur);
006719      /* nCellKey will always be between 0 and 0xffffffff because of the way
006720      ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
006721      if( nCellKey<=0 || nCellKey>0x7fffffff ){
006722        rc = SQLITE_CORRUPT_BKPT;
006723        goto abort_due_to_error;
006724      }
006725      sqlite3VdbeMemInit(&m, db, 0);
006726      rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
006727      if( rc ) goto abort_due_to_error;
006728      res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
006729      sqlite3VdbeMemReleaseMalloc(&m);
006730    }
006731    /* End of inlined sqlite3VdbeIdxKeyCompare() */
006732  
006733    assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
006734    if( (pOp->opcode&1)==(OP_IdxLT&1) ){
006735      assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
006736      res = -res;
006737    }else{
006738      assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
006739      res++;
006740    }
006741    VdbeBranchTaken(res>0,2);
006742    assert( rc==SQLITE_OK );
006743    if( res>0 ) goto jump_to_p2;
006744    break;
006745  }
006746  
006747  /* Opcode: Destroy P1 P2 P3 * *
006748  **
006749  ** Delete an entire database table or index whose root page in the database
006750  ** file is given by P1.
006751  **
006752  ** The table being destroyed is in the main database file if P3==0.  If
006753  ** P3==1 then the table to be destroyed is in the auxiliary database file
006754  ** that is used to store tables create using CREATE TEMPORARY TABLE.
006755  **
006756  ** If AUTOVACUUM is enabled then it is possible that another root page
006757  ** might be moved into the newly deleted root page in order to keep all
006758  ** root pages contiguous at the beginning of the database.  The former
006759  ** value of the root page that moved - its value before the move occurred -
006760  ** is stored in register P2. If no page movement was required (because the
006761  ** table being dropped was already the last one in the database) then a
006762  ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
006763  ** is stored in register P2.
006764  **
006765  ** This opcode throws an error if there are any active reader VMs when
006766  ** it is invoked. This is done to avoid the difficulty associated with
006767  ** updating existing cursors when a root page is moved in an AUTOVACUUM
006768  ** database. This error is thrown even if the database is not an AUTOVACUUM
006769  ** db in order to avoid introducing an incompatibility between autovacuum
006770  ** and non-autovacuum modes.
006771  **
006772  ** See also: Clear
006773  */
006774  case OP_Destroy: {     /* out2 */
006775    int iMoved;
006776    int iDb;
006777  
006778    sqlite3VdbeIncrWriteCounter(p, 0);
006779    assert( p->readOnly==0 );
006780    assert( pOp->p1>1 );
006781    pOut = out2Prerelease(p, pOp);
006782    pOut->flags = MEM_Null;
006783    if( db->nVdbeRead > db->nVDestroy+1 ){
006784      rc = SQLITE_LOCKED;
006785      p->errorAction = OE_Abort;
006786      goto abort_due_to_error;
006787    }else{
006788      iDb = pOp->p3;
006789      assert( DbMaskTest(p->btreeMask, iDb) );
006790      iMoved = 0;  /* Not needed.  Only to silence a warning. */
006791      rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
006792      pOut->flags = MEM_Int;
006793      pOut->u.i = iMoved;
006794      if( rc ) goto abort_due_to_error;
006795  #ifndef SQLITE_OMIT_AUTOVACUUM
006796      if( iMoved!=0 ){
006797        sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
006798        /* All OP_Destroy operations occur on the same btree */
006799        assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
006800        resetSchemaOnFault = iDb+1;
006801      }
006802  #endif
006803    }
006804    break;
006805  }
006806  
006807  /* Opcode: Clear P1 P2 P3
006808  **
006809  ** Delete all contents of the database table or index whose root page
006810  ** in the database file is given by P1.  But, unlike Destroy, do not
006811  ** remove the table or index from the database file.
006812  **
006813  ** The table being cleared is in the main database file if P2==0.  If
006814  ** P2==1 then the table to be cleared is in the auxiliary database file
006815  ** that is used to store tables create using CREATE TEMPORARY TABLE.
006816  **
006817  ** If the P3 value is non-zero, then the row change count is incremented
006818  ** by the number of rows in the table being cleared. If P3 is greater
006819  ** than zero, then the value stored in register P3 is also incremented
006820  ** by the number of rows in the table being cleared.
006821  **
006822  ** See also: Destroy
006823  */
006824  case OP_Clear: {
006825    i64 nChange;
006826  
006827    sqlite3VdbeIncrWriteCounter(p, 0);
006828    nChange = 0;
006829    assert( p->readOnly==0 );
006830    assert( DbMaskTest(p->btreeMask, pOp->p2) );
006831    rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
006832    if( pOp->p3 ){
006833      p->nChange += nChange;
006834      if( pOp->p3>0 ){
006835        assert( memIsValid(&aMem[pOp->p3]) );
006836        memAboutToChange(p, &aMem[pOp->p3]);
006837        aMem[pOp->p3].u.i += nChange;
006838      }
006839    }
006840    if( rc ) goto abort_due_to_error;
006841    break;
006842  }
006843  
006844  /* Opcode: ResetSorter P1 * * * *
006845  **
006846  ** Delete all contents from the ephemeral table or sorter
006847  ** that is open on cursor P1.
006848  **
006849  ** This opcode only works for cursors used for sorting and
006850  ** opened with OP_OpenEphemeral or OP_SorterOpen.
006851  */
006852  case OP_ResetSorter: {
006853    VdbeCursor *pC;
006854  
006855    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006856    pC = p->apCsr[pOp->p1];
006857    assert( pC!=0 );
006858    if( isSorter(pC) ){
006859      sqlite3VdbeSorterReset(db, pC->uc.pSorter);
006860    }else{
006861      assert( pC->eCurType==CURTYPE_BTREE );
006862      assert( pC->isEphemeral );
006863      rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
006864      if( rc ) goto abort_due_to_error;
006865    }
006866    break;
006867  }
006868  
006869  /* Opcode: CreateBtree P1 P2 P3 * *
006870  ** Synopsis: r[P2]=root iDb=P1 flags=P3
006871  **
006872  ** Allocate a new b-tree in the main database file if P1==0 or in the
006873  ** TEMP database file if P1==1 or in an attached database if
006874  ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
006875  ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
006876  ** The root page number of the new b-tree is stored in register P2.
006877  */
006878  case OP_CreateBtree: {          /* out2 */
006879    Pgno pgno;
006880    Db *pDb;
006881  
006882    sqlite3VdbeIncrWriteCounter(p, 0);
006883    pOut = out2Prerelease(p, pOp);
006884    pgno = 0;
006885    assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
006886    assert( pOp->p1>=0 && pOp->p1<db->nDb );
006887    assert( DbMaskTest(p->btreeMask, pOp->p1) );
006888    assert( p->readOnly==0 );
006889    pDb = &db->aDb[pOp->p1];
006890    assert( pDb->pBt!=0 );
006891    rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
006892    if( rc ) goto abort_due_to_error;
006893    pOut->u.i = pgno;
006894    break;
006895  }
006896  
006897  /* Opcode: SqlExec * * * P4 *
006898  **
006899  ** Run the SQL statement or statements specified in the P4 string.
006900  */
006901  case OP_SqlExec: {
006902    sqlite3VdbeIncrWriteCounter(p, 0);
006903    db->nSqlExec++;
006904    rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
006905    db->nSqlExec--;
006906    if( rc ) goto abort_due_to_error;
006907    break;
006908  }
006909  
006910  /* Opcode: ParseSchema P1 * * P4 *
006911  **
006912  ** Read and parse all entries from the schema table of database P1
006913  ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
006914  ** entire schema for P1 is reparsed.
006915  **
006916  ** This opcode invokes the parser to create a new virtual machine,
006917  ** then runs the new virtual machine.  It is thus a re-entrant opcode.
006918  */
006919  case OP_ParseSchema: {
006920    int iDb;
006921    const char *zSchema;
006922    char *zSql;
006923    InitData initData;
006924  
006925    /* Any prepared statement that invokes this opcode will hold mutexes
006926    ** on every btree.  This is a prerequisite for invoking
006927    ** sqlite3InitCallback().
006928    */
006929  #ifdef SQLITE_DEBUG
006930    for(iDb=0; iDb<db->nDb; iDb++){
006931      assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
006932    }
006933  #endif
006934  
006935    iDb = pOp->p1;
006936    assert( iDb>=0 && iDb<db->nDb );
006937    assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
006938             || db->mallocFailed
006939             || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
006940  
006941  #ifndef SQLITE_OMIT_ALTERTABLE
006942    if( pOp->p4.z==0 ){
006943      sqlite3SchemaClear(db->aDb[iDb].pSchema);
006944      db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
006945      rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
006946      db->mDbFlags |= DBFLAG_SchemaChange;
006947      p->expired = 0;
006948    }else
006949  #endif
006950    {
006951      zSchema = LEGACY_SCHEMA_TABLE;
006952      initData.db = db;
006953      initData.iDb = iDb;
006954      initData.pzErrMsg = &p->zErrMsg;
006955      initData.mInitFlags = 0;
006956      initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
006957      zSql = sqlite3MPrintf(db,
006958         "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
006959         db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
006960      if( zSql==0 ){
006961        rc = SQLITE_NOMEM_BKPT;
006962      }else{
006963        assert( db->init.busy==0 );
006964        db->init.busy = 1;
006965        initData.rc = SQLITE_OK;
006966        initData.nInitRow = 0;
006967        assert( !db->mallocFailed );
006968        rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
006969        if( rc==SQLITE_OK ) rc = initData.rc;
006970        if( rc==SQLITE_OK && initData.nInitRow==0 ){
006971          /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
006972          ** at least one SQL statement. Any less than that indicates that
006973          ** the sqlite_schema table is corrupt. */
006974          rc = SQLITE_CORRUPT_BKPT;
006975        }
006976        sqlite3DbFreeNN(db, zSql);
006977        db->init.busy = 0;
006978      }
006979    }
006980    if( rc ){
006981      sqlite3ResetAllSchemasOfConnection(db);
006982      if( rc==SQLITE_NOMEM ){
006983        goto no_mem;
006984      }
006985      goto abort_due_to_error;
006986    }
006987    break; 
006988  }
006989  
006990  #if !defined(SQLITE_OMIT_ANALYZE)
006991  /* Opcode: LoadAnalysis P1 * * * *
006992  **
006993  ** Read the sqlite_stat1 table for database P1 and load the content
006994  ** of that table into the internal index hash table.  This will cause
006995  ** the analysis to be used when preparing all subsequent queries.
006996  */
006997  case OP_LoadAnalysis: {
006998    assert( pOp->p1>=0 && pOp->p1<db->nDb );
006999    rc = sqlite3AnalysisLoad(db, pOp->p1);
007000    if( rc ) goto abort_due_to_error;
007001    break; 
007002  }
007003  #endif /* !defined(SQLITE_OMIT_ANALYZE) */
007004  
007005  /* Opcode: DropTable P1 * * P4 *
007006  **
007007  ** Remove the internal (in-memory) data structures that describe
007008  ** the table named P4 in database P1.  This is called after a table
007009  ** is dropped from disk (using the Destroy opcode) in order to keep
007010  ** the internal representation of the
007011  ** schema consistent with what is on disk.
007012  */
007013  case OP_DropTable: {
007014    sqlite3VdbeIncrWriteCounter(p, 0);
007015    sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
007016    break;
007017  }
007018  
007019  /* Opcode: DropIndex P1 * * P4 *
007020  **
007021  ** Remove the internal (in-memory) data structures that describe
007022  ** the index named P4 in database P1.  This is called after an index
007023  ** is dropped from disk (using the Destroy opcode)
007024  ** in order to keep the internal representation of the
007025  ** schema consistent with what is on disk.
007026  */
007027  case OP_DropIndex: {
007028    sqlite3VdbeIncrWriteCounter(p, 0);
007029    sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
007030    break;
007031  }
007032  
007033  /* Opcode: DropTrigger P1 * * P4 *
007034  **
007035  ** Remove the internal (in-memory) data structures that describe
007036  ** the trigger named P4 in database P1.  This is called after a trigger
007037  ** is dropped from disk (using the Destroy opcode) in order to keep
007038  ** the internal representation of the
007039  ** schema consistent with what is on disk.
007040  */
007041  case OP_DropTrigger: {
007042    sqlite3VdbeIncrWriteCounter(p, 0);
007043    sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
007044    break;
007045  }
007046  
007047  
007048  #ifndef SQLITE_OMIT_INTEGRITY_CHECK
007049  /* Opcode: IntegrityCk P1 P2 P3 P4 P5
007050  **
007051  ** Do an analysis of the currently open database.  Store in
007052  ** register P1 the text of an error message describing any problems.
007053  ** If no problems are found, store a NULL in register P1.
007054  **
007055  ** The register P3 contains one less than the maximum number of allowed errors.
007056  ** At most reg(P3) errors will be reported.
007057  ** In other words, the analysis stops as soon as reg(P1) errors are
007058  ** seen.  Reg(P1) is updated with the number of errors remaining.
007059  **
007060  ** The root page numbers of all tables in the database are integers
007061  ** stored in P4_INTARRAY argument.
007062  **
007063  ** If P5 is not zero, the check is done on the auxiliary database
007064  ** file, not the main database file.
007065  **
007066  ** This opcode is used to implement the integrity_check pragma.
007067  */
007068  case OP_IntegrityCk: {
007069    int nRoot;      /* Number of tables to check.  (Number of root pages.) */
007070    Pgno *aRoot;    /* Array of rootpage numbers for tables to be checked */
007071    int nErr;       /* Number of errors reported */
007072    char *z;        /* Text of the error report */
007073    Mem *pnErr;     /* Register keeping track of errors remaining */
007074  
007075    assert( p->bIsReader );
007076    nRoot = pOp->p2;
007077    aRoot = pOp->p4.ai;
007078    assert( nRoot>0 );
007079    assert( aRoot[0]==(Pgno)nRoot );
007080    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
007081    pnErr = &aMem[pOp->p3];
007082    assert( (pnErr->flags & MEM_Int)!=0 );
007083    assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
007084    pIn1 = &aMem[pOp->p1];
007085    assert( pOp->p5<db->nDb );
007086    assert( DbMaskTest(p->btreeMask, pOp->p5) );
007087    rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
007088                                   (int)pnErr->u.i+1, &nErr, &z);
007089    sqlite3VdbeMemSetNull(pIn1);
007090    if( nErr==0 ){
007091      assert( z==0 );
007092    }else if( rc ){
007093      sqlite3_free(z);
007094      goto abort_due_to_error;
007095    }else{
007096      pnErr->u.i -= nErr-1;
007097      sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
007098    }
007099    UPDATE_MAX_BLOBSIZE(pIn1);
007100    sqlite3VdbeChangeEncoding(pIn1, encoding);
007101    goto check_for_interrupt;
007102  }
007103  #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
007104  
007105  /* Opcode: RowSetAdd P1 P2 * * *
007106  ** Synopsis: rowset(P1)=r[P2]
007107  **
007108  ** Insert the integer value held by register P2 into a RowSet object
007109  ** held in register P1.
007110  **
007111  ** An assertion fails if P2 is not an integer.
007112  */
007113  case OP_RowSetAdd: {       /* in1, in2 */
007114    pIn1 = &aMem[pOp->p1];
007115    pIn2 = &aMem[pOp->p2];
007116    assert( (pIn2->flags & MEM_Int)!=0 );
007117    if( (pIn1->flags & MEM_Blob)==0 ){
007118      if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
007119    }
007120    assert( sqlite3VdbeMemIsRowSet(pIn1) );
007121    sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
007122    break;
007123  }
007124  
007125  /* Opcode: RowSetRead P1 P2 P3 * *
007126  ** Synopsis: r[P3]=rowset(P1)
007127  **
007128  ** Extract the smallest value from the RowSet object in P1
007129  ** and put that value into register P3.
007130  ** Or, if RowSet object P1 is initially empty, leave P3
007131  ** unchanged and jump to instruction P2.
007132  */
007133  case OP_RowSetRead: {       /* jump, in1, out3 */
007134    i64 val;
007135  
007136    pIn1 = &aMem[pOp->p1];
007137    assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
007138    if( (pIn1->flags & MEM_Blob)==0
007139     || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
007140    ){
007141      /* The boolean index is empty */
007142      sqlite3VdbeMemSetNull(pIn1);
007143      VdbeBranchTaken(1,2);
007144      goto jump_to_p2_and_check_for_interrupt;
007145    }else{
007146      /* A value was pulled from the index */
007147      VdbeBranchTaken(0,2);
007148      sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
007149    }
007150    goto check_for_interrupt;
007151  }
007152  
007153  /* Opcode: RowSetTest P1 P2 P3 P4
007154  ** Synopsis: if r[P3] in rowset(P1) goto P2
007155  **
007156  ** Register P3 is assumed to hold a 64-bit integer value. If register P1
007157  ** contains a RowSet object and that RowSet object contains
007158  ** the value held in P3, jump to register P2. Otherwise, insert the
007159  ** integer in P3 into the RowSet and continue on to the
007160  ** next opcode.
007161  **
007162  ** The RowSet object is optimized for the case where sets of integers
007163  ** are inserted in distinct phases, which each set contains no duplicates.
007164  ** Each set is identified by a unique P4 value. The first set
007165  ** must have P4==0, the final set must have P4==-1, and for all other sets
007166  ** must have P4>0.
007167  **
007168  ** This allows optimizations: (a) when P4==0 there is no need to test
007169  ** the RowSet object for P3, as it is guaranteed not to contain it,
007170  ** (b) when P4==-1 there is no need to insert the value, as it will
007171  ** never be tested for, and (c) when a value that is part of set X is
007172  ** inserted, there is no need to search to see if the same value was
007173  ** previously inserted as part of set X (only if it was previously
007174  ** inserted as part of some other set).
007175  */
007176  case OP_RowSetTest: {                     /* jump, in1, in3 */
007177    int iSet;
007178    int exists;
007179  
007180    pIn1 = &aMem[pOp->p1];
007181    pIn3 = &aMem[pOp->p3];
007182    iSet = pOp->p4.i;
007183    assert( pIn3->flags&MEM_Int );
007184  
007185    /* If there is anything other than a rowset object in memory cell P1,
007186    ** delete it now and initialize P1 with an empty rowset
007187    */
007188    if( (pIn1->flags & MEM_Blob)==0 ){
007189      if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
007190    }
007191    assert( sqlite3VdbeMemIsRowSet(pIn1) );
007192    assert( pOp->p4type==P4_INT32 );
007193    assert( iSet==-1 || iSet>=0 );
007194    if( iSet ){
007195      exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
007196      VdbeBranchTaken(exists!=0,2);
007197      if( exists ) goto jump_to_p2;
007198    }
007199    if( iSet>=0 ){
007200      sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
007201    }
007202    break;
007203  }
007204  
007205  
007206  #ifndef SQLITE_OMIT_TRIGGER
007207  
007208  /* Opcode: Program P1 P2 P3 P4 P5
007209  **
007210  ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
007211  **
007212  ** P1 contains the address of the memory cell that contains the first memory
007213  ** cell in an array of values used as arguments to the sub-program. P2
007214  ** contains the address to jump to if the sub-program throws an IGNORE
007215  ** exception using the RAISE() function. Register P3 contains the address
007216  ** of a memory cell in this (the parent) VM that is used to allocate the
007217  ** memory required by the sub-vdbe at runtime.
007218  **
007219  ** P4 is a pointer to the VM containing the trigger program.
007220  **
007221  ** If P5 is non-zero, then recursive program invocation is enabled.
007222  */
007223  case OP_Program: {        /* jump */
007224    int nMem;               /* Number of memory registers for sub-program */
007225    int nByte;              /* Bytes of runtime space required for sub-program */
007226    Mem *pRt;               /* Register to allocate runtime space */
007227    Mem *pMem;              /* Used to iterate through memory cells */
007228    Mem *pEnd;              /* Last memory cell in new array */
007229    VdbeFrame *pFrame;      /* New vdbe frame to execute in */
007230    SubProgram *pProgram;   /* Sub-program to execute */
007231    void *t;                /* Token identifying trigger */
007232  
007233    pProgram = pOp->p4.pProgram;
007234    pRt = &aMem[pOp->p3];
007235    assert( pProgram->nOp>0 );
007236   
007237    /* If the p5 flag is clear, then recursive invocation of triggers is
007238    ** disabled for backwards compatibility (p5 is set if this sub-program
007239    ** is really a trigger, not a foreign key action, and the flag set
007240    ** and cleared by the "PRAGMA recursive_triggers" command is clear).
007241    **
007242    ** It is recursive invocation of triggers, at the SQL level, that is
007243    ** disabled. In some cases a single trigger may generate more than one
007244    ** SubProgram (if the trigger may be executed with more than one different
007245    ** ON CONFLICT algorithm). SubProgram structures associated with a
007246    ** single trigger all have the same value for the SubProgram.token
007247    ** variable.  */
007248    if( pOp->p5 ){
007249      t = pProgram->token;
007250      for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
007251      if( pFrame ) break;
007252    }
007253  
007254    if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
007255      rc = SQLITE_ERROR;
007256      sqlite3VdbeError(p, "too many levels of trigger recursion");
007257      goto abort_due_to_error;
007258    }
007259  
007260    /* Register pRt is used to store the memory required to save the state
007261    ** of the current program, and the memory required at runtime to execute
007262    ** the trigger program. If this trigger has been fired before, then pRt
007263    ** is already allocated. Otherwise, it must be initialized.  */
007264    if( (pRt->flags&MEM_Blob)==0 ){
007265      /* SubProgram.nMem is set to the number of memory cells used by the
007266      ** program stored in SubProgram.aOp. As well as these, one memory
007267      ** cell is required for each cursor used by the program. Set local
007268      ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
007269      */
007270      nMem = pProgram->nMem + pProgram->nCsr;
007271      assert( nMem>0 );
007272      if( pProgram->nCsr==0 ) nMem++;
007273      nByte = ROUND8(sizeof(VdbeFrame))
007274                + nMem * sizeof(Mem)
007275                + pProgram->nCsr * sizeof(VdbeCursor*)
007276                + (pProgram->nOp + 7)/8;
007277      pFrame = sqlite3DbMallocZero(db, nByte);
007278      if( !pFrame ){
007279        goto no_mem;
007280      }
007281      sqlite3VdbeMemRelease(pRt);
007282      pRt->flags = MEM_Blob|MEM_Dyn;
007283      pRt->z = (char*)pFrame;
007284      pRt->n = nByte;
007285      pRt->xDel = sqlite3VdbeFrameMemDel;
007286  
007287      pFrame->v = p;
007288      pFrame->nChildMem = nMem;
007289      pFrame->nChildCsr = pProgram->nCsr;
007290      pFrame->pc = (int)(pOp - aOp);
007291      pFrame->aMem = p->aMem;
007292      pFrame->nMem = p->nMem;
007293      pFrame->apCsr = p->apCsr;
007294      pFrame->nCursor = p->nCursor;
007295      pFrame->aOp = p->aOp;
007296      pFrame->nOp = p->nOp;
007297      pFrame->token = pProgram->token;
007298  #ifdef SQLITE_DEBUG
007299      pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
007300  #endif
007301  
007302      pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
007303      for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
007304        pMem->flags = MEM_Undefined;
007305        pMem->db = db;
007306      }
007307    }else{
007308      pFrame = (VdbeFrame*)pRt->z;
007309      assert( pRt->xDel==sqlite3VdbeFrameMemDel );
007310      assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
007311          || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
007312      assert( pProgram->nCsr==pFrame->nChildCsr );
007313      assert( (int)(pOp - aOp)==pFrame->pc );
007314    }
007315  
007316    p->nFrame++;
007317    pFrame->pParent = p->pFrame;
007318    pFrame->lastRowid = db->lastRowid;
007319    pFrame->nChange = p->nChange;
007320    pFrame->nDbChange = p->db->nChange;
007321    assert( pFrame->pAuxData==0 );
007322    pFrame->pAuxData = p->pAuxData;
007323    p->pAuxData = 0;
007324    p->nChange = 0;
007325    p->pFrame = pFrame;
007326    p->aMem = aMem = VdbeFrameMem(pFrame);
007327    p->nMem = pFrame->nChildMem;
007328    p->nCursor = (u16)pFrame->nChildCsr;
007329    p->apCsr = (VdbeCursor **)&aMem[p->nMem];
007330    pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
007331    memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
007332    p->aOp = aOp = pProgram->aOp;
007333    p->nOp = pProgram->nOp;
007334  #ifdef SQLITE_DEBUG
007335    /* Verify that second and subsequent executions of the same trigger do not
007336    ** try to reuse register values from the first use. */
007337    {
007338      int i;
007339      for(i=0; i<p->nMem; i++){
007340        aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
007341        MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
007342      }
007343    }
007344  #endif
007345    pOp = &aOp[-1];
007346    goto check_for_interrupt;
007347  }
007348  
007349  /* Opcode: Param P1 P2 * * *
007350  **
007351  ** This opcode is only ever present in sub-programs called via the
007352  ** OP_Program instruction. Copy a value currently stored in a memory
007353  ** cell of the calling (parent) frame to cell P2 in the current frames
007354  ** address space. This is used by trigger programs to access the new.*
007355  ** and old.* values.
007356  **
007357  ** The address of the cell in the parent frame is determined by adding
007358  ** the value of the P1 argument to the value of the P1 argument to the
007359  ** calling OP_Program instruction.
007360  */
007361  case OP_Param: {           /* out2 */
007362    VdbeFrame *pFrame;
007363    Mem *pIn;
007364    pOut = out2Prerelease(p, pOp);
007365    pFrame = p->pFrame;
007366    pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];  
007367    sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
007368    break;
007369  }
007370  
007371  #endif /* #ifndef SQLITE_OMIT_TRIGGER */
007372  
007373  #ifndef SQLITE_OMIT_FOREIGN_KEY
007374  /* Opcode: FkCounter P1 P2 * * *
007375  ** Synopsis: fkctr[P1]+=P2
007376  **
007377  ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
007378  ** If P1 is non-zero, the database constraint counter is incremented
007379  ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
007380  ** statement counter is incremented (immediate foreign key constraints).
007381  */
007382  case OP_FkCounter: {
007383    if( db->flags & SQLITE_DeferFKs ){
007384      db->nDeferredImmCons += pOp->p2;
007385    }else if( pOp->p1 ){
007386      db->nDeferredCons += pOp->p2;
007387    }else{
007388      p->nFkConstraint += pOp->p2;
007389    }
007390    break;
007391  }
007392  
007393  /* Opcode: FkIfZero P1 P2 * * *
007394  ** Synopsis: if fkctr[P1]==0 goto P2
007395  **
007396  ** This opcode tests if a foreign key constraint-counter is currently zero.
007397  ** If so, jump to instruction P2. Otherwise, fall through to the next
007398  ** instruction.
007399  **
007400  ** If P1 is non-zero, then the jump is taken if the database constraint-counter
007401  ** is zero (the one that counts deferred constraint violations). If P1 is
007402  ** zero, the jump is taken if the statement constraint-counter is zero
007403  ** (immediate foreign key constraint violations).
007404  */
007405  case OP_FkIfZero: {         /* jump */
007406    if( pOp->p1 ){
007407      VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
007408      if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
007409    }else{
007410      VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
007411      if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
007412    }
007413    break;
007414  }
007415  #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
007416  
007417  #ifndef SQLITE_OMIT_AUTOINCREMENT
007418  /* Opcode: MemMax P1 P2 * * *
007419  ** Synopsis: r[P1]=max(r[P1],r[P2])
007420  **
007421  ** P1 is a register in the root frame of this VM (the root frame is
007422  ** different from the current frame if this instruction is being executed
007423  ** within a sub-program). Set the value of register P1 to the maximum of
007424  ** its current value and the value in register P2.
007425  **
007426  ** This instruction throws an error if the memory cell is not initially
007427  ** an integer.
007428  */
007429  case OP_MemMax: {        /* in2 */
007430    VdbeFrame *pFrame;
007431    if( p->pFrame ){
007432      for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
007433      pIn1 = &pFrame->aMem[pOp->p1];
007434    }else{
007435      pIn1 = &aMem[pOp->p1];
007436    }
007437    assert( memIsValid(pIn1) );
007438    sqlite3VdbeMemIntegerify(pIn1);
007439    pIn2 = &aMem[pOp->p2];
007440    sqlite3VdbeMemIntegerify(pIn2);
007441    if( pIn1->u.i<pIn2->u.i){
007442      pIn1->u.i = pIn2->u.i;
007443    }
007444    break;
007445  }
007446  #endif /* SQLITE_OMIT_AUTOINCREMENT */
007447  
007448  /* Opcode: IfPos P1 P2 P3 * *
007449  ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
007450  **
007451  ** Register P1 must contain an integer.
007452  ** If the value of register P1 is 1 or greater, subtract P3 from the
007453  ** value in P1 and jump to P2.
007454  **
007455  ** If the initial value of register P1 is less than 1, then the
007456  ** value is unchanged and control passes through to the next instruction.
007457  */
007458  case OP_IfPos: {        /* jump, in1 */
007459    pIn1 = &aMem[pOp->p1];
007460    assert( pIn1->flags&MEM_Int );
007461    VdbeBranchTaken( pIn1->u.i>0, 2);
007462    if( pIn1->u.i>0 ){
007463      pIn1->u.i -= pOp->p3;
007464      goto jump_to_p2;
007465    }
007466    break;
007467  }
007468  
007469  /* Opcode: OffsetLimit P1 P2 P3 * *
007470  ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
007471  **
007472  ** This opcode performs a commonly used computation associated with
007473  ** LIMIT and OFFSET processing.  r[P1] holds the limit counter.  r[P3]
007474  ** holds the offset counter.  The opcode computes the combined value
007475  ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
007476  ** value computed is the total number of rows that will need to be
007477  ** visited in order to complete the query.
007478  **
007479  ** If r[P3] is zero or negative, that means there is no OFFSET
007480  ** and r[P2] is set to be the value of the LIMIT, r[P1].
007481  **
007482  ** if r[P1] is zero or negative, that means there is no LIMIT
007483  ** and r[P2] is set to -1.
007484  **
007485  ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
007486  */
007487  case OP_OffsetLimit: {    /* in1, out2, in3 */
007488    i64 x;
007489    pIn1 = &aMem[pOp->p1];
007490    pIn3 = &aMem[pOp->p3];
007491    pOut = out2Prerelease(p, pOp);
007492    assert( pIn1->flags & MEM_Int );
007493    assert( pIn3->flags & MEM_Int );
007494    x = pIn1->u.i;
007495    if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
007496      /* If the LIMIT is less than or equal to zero, loop forever.  This
007497      ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
007498      ** also loop forever.  This is undocumented.  In fact, one could argue
007499      ** that the loop should terminate.  But assuming 1 billion iterations
007500      ** per second (far exceeding the capabilities of any current hardware)
007501      ** it would take nearly 300 years to actually reach the limit.  So
007502      ** looping forever is a reasonable approximation. */
007503      pOut->u.i = -1;
007504    }else{
007505      pOut->u.i = x;
007506    }
007507    break;
007508  }
007509  
007510  /* Opcode: IfNotZero P1 P2 * * *
007511  ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
007512  **
007513  ** Register P1 must contain an integer.  If the content of register P1 is
007514  ** initially greater than zero, then decrement the value in register P1.
007515  ** If it is non-zero (negative or positive) and then also jump to P2. 
007516  ** If register P1 is initially zero, leave it unchanged and fall through.
007517  */
007518  case OP_IfNotZero: {        /* jump, in1 */
007519    pIn1 = &aMem[pOp->p1];
007520    assert( pIn1->flags&MEM_Int );
007521    VdbeBranchTaken(pIn1->u.i<0, 2);
007522    if( pIn1->u.i ){
007523       if( pIn1->u.i>0 ) pIn1->u.i--;
007524       goto jump_to_p2;
007525    }
007526    break;
007527  }
007528  
007529  /* Opcode: DecrJumpZero P1 P2 * * *
007530  ** Synopsis: if (--r[P1])==0 goto P2
007531  **
007532  ** Register P1 must hold an integer.  Decrement the value in P1
007533  ** and jump to P2 if the new value is exactly zero.
007534  */
007535  case OP_DecrJumpZero: {      /* jump, in1 */
007536    pIn1 = &aMem[pOp->p1];
007537    assert( pIn1->flags&MEM_Int );
007538    if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
007539    VdbeBranchTaken(pIn1->u.i==0, 2);
007540    if( pIn1->u.i==0 ) goto jump_to_p2;
007541    break;
007542  }
007543  
007544  
007545  /* Opcode: AggStep * P2 P3 P4 P5
007546  ** Synopsis: accum=r[P3] step(r[P2@P5])
007547  **
007548  ** Execute the xStep function for an aggregate.
007549  ** The function has P5 arguments.  P4 is a pointer to the
007550  ** FuncDef structure that specifies the function.  Register P3 is the
007551  ** accumulator.
007552  **
007553  ** The P5 arguments are taken from register P2 and its
007554  ** successors.
007555  */
007556  /* Opcode: AggInverse * P2 P3 P4 P5
007557  ** Synopsis: accum=r[P3] inverse(r[P2@P5])
007558  **
007559  ** Execute the xInverse function for an aggregate.
007560  ** The function has P5 arguments.  P4 is a pointer to the
007561  ** FuncDef structure that specifies the function.  Register P3 is the
007562  ** accumulator.
007563  **
007564  ** The P5 arguments are taken from register P2 and its
007565  ** successors.
007566  */
007567  /* Opcode: AggStep1 P1 P2 P3 P4 P5
007568  ** Synopsis: accum=r[P3] step(r[P2@P5])
007569  **
007570  ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
007571  ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
007572  ** FuncDef structure that specifies the function.  Register P3 is the
007573  ** accumulator.
007574  **
007575  ** The P5 arguments are taken from register P2 and its
007576  ** successors.
007577  **
007578  ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
007579  ** the FuncDef stored in P4 is converted into an sqlite3_context and
007580  ** the opcode is changed.  In this way, the initialization of the
007581  ** sqlite3_context only happens once, instead of on each call to the
007582  ** step function.
007583  */
007584  case OP_AggInverse:
007585  case OP_AggStep: {
007586    int n;
007587    sqlite3_context *pCtx;
007588  
007589    assert( pOp->p4type==P4_FUNCDEF );
007590    n = pOp->p5;
007591    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
007592    assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
007593    assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
007594    pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
007595                 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
007596    if( pCtx==0 ) goto no_mem;
007597    pCtx->pMem = 0;
007598    pCtx->pOut = (Mem*)&(pCtx->argv[n]);
007599    sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
007600    pCtx->pFunc = pOp->p4.pFunc;
007601    pCtx->iOp = (int)(pOp - aOp);
007602    pCtx->pVdbe = p;
007603    pCtx->skipFlag = 0;
007604    pCtx->isError = 0;
007605    pCtx->enc = encoding;
007606    pCtx->argc = n;
007607    pOp->p4type = P4_FUNCCTX;
007608    pOp->p4.pCtx = pCtx;
007609  
007610    /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
007611    assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
007612  
007613    pOp->opcode = OP_AggStep1;
007614    /* Fall through into OP_AggStep */
007615    /* no break */ deliberate_fall_through
007616  }
007617  case OP_AggStep1: {
007618    int i;
007619    sqlite3_context *pCtx;
007620    Mem *pMem;
007621  
007622    assert( pOp->p4type==P4_FUNCCTX );
007623    pCtx = pOp->p4.pCtx;
007624    pMem = &aMem[pOp->p3];
007625  
007626  #ifdef SQLITE_DEBUG
007627    if( pOp->p1 ){
007628      /* This is an OP_AggInverse call.  Verify that xStep has always
007629      ** been called at least once prior to any xInverse call. */
007630      assert( pMem->uTemp==0x1122e0e3 );
007631    }else{
007632      /* This is an OP_AggStep call.  Mark it as such. */
007633      pMem->uTemp = 0x1122e0e3;
007634    }
007635  #endif
007636  
007637    /* If this function is inside of a trigger, the register array in aMem[]
007638    ** might change from one evaluation to the next.  The next block of code
007639    ** checks to see if the register array has changed, and if so it
007640    ** reinitializes the relevant parts of the sqlite3_context object */
007641    if( pCtx->pMem != pMem ){
007642      pCtx->pMem = pMem;
007643      for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
007644    }
007645  
007646  #ifdef SQLITE_DEBUG
007647    for(i=0; i<pCtx->argc; i++){
007648      assert( memIsValid(pCtx->argv[i]) );
007649      REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
007650    }
007651  #endif
007652  
007653    pMem->n++;
007654    assert( pCtx->pOut->flags==MEM_Null );
007655    assert( pCtx->isError==0 );
007656    assert( pCtx->skipFlag==0 );
007657  #ifndef SQLITE_OMIT_WINDOWFUNC
007658    if( pOp->p1 ){
007659      (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
007660    }else
007661  #endif
007662    (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
007663  
007664    if( pCtx->isError ){
007665      if( pCtx->isError>0 ){
007666        sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
007667        rc = pCtx->isError;
007668      }
007669      if( pCtx->skipFlag ){
007670        assert( pOp[-1].opcode==OP_CollSeq );
007671        i = pOp[-1].p1;
007672        if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
007673        pCtx->skipFlag = 0;
007674      }
007675      sqlite3VdbeMemRelease(pCtx->pOut);
007676      pCtx->pOut->flags = MEM_Null;
007677      pCtx->isError = 0;
007678      if( rc ) goto abort_due_to_error;
007679    }
007680    assert( pCtx->pOut->flags==MEM_Null );
007681    assert( pCtx->skipFlag==0 );
007682    break;
007683  }
007684  
007685  /* Opcode: AggFinal P1 P2 * P4 *
007686  ** Synopsis: accum=r[P1] N=P2
007687  **
007688  ** P1 is the memory location that is the accumulator for an aggregate
007689  ** or window function.  Execute the finalizer function
007690  ** for an aggregate and store the result in P1.
007691  **
007692  ** P2 is the number of arguments that the step function takes and
007693  ** P4 is a pointer to the FuncDef for this function.  The P2
007694  ** argument is not used by this opcode.  It is only there to disambiguate
007695  ** functions that can take varying numbers of arguments.  The
007696  ** P4 argument is only needed for the case where
007697  ** the step function was not previously called.
007698  */
007699  /* Opcode: AggValue * P2 P3 P4 *
007700  ** Synopsis: r[P3]=value N=P2
007701  **
007702  ** Invoke the xValue() function and store the result in register P3.
007703  **
007704  ** P2 is the number of arguments that the step function takes and
007705  ** P4 is a pointer to the FuncDef for this function.  The P2
007706  ** argument is not used by this opcode.  It is only there to disambiguate
007707  ** functions that can take varying numbers of arguments.  The
007708  ** P4 argument is only needed for the case where
007709  ** the step function was not previously called.
007710  */
007711  case OP_AggValue:
007712  case OP_AggFinal: {
007713    Mem *pMem;
007714    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
007715    assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
007716    pMem = &aMem[pOp->p1];
007717    assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
007718  #ifndef SQLITE_OMIT_WINDOWFUNC
007719    if( pOp->p3 ){
007720      memAboutToChange(p, &aMem[pOp->p3]);
007721      rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
007722      pMem = &aMem[pOp->p3];
007723    }else
007724  #endif
007725    {
007726      rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
007727    }
007728   
007729    if( rc ){
007730      sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
007731      goto abort_due_to_error;
007732    }
007733    sqlite3VdbeChangeEncoding(pMem, encoding);
007734    UPDATE_MAX_BLOBSIZE(pMem);
007735    REGISTER_TRACE((int)(pMem-aMem), pMem);
007736    break;
007737  }
007738  
007739  #ifndef SQLITE_OMIT_WAL
007740  /* Opcode: Checkpoint P1 P2 P3 * *
007741  **
007742  ** Checkpoint database P1. This is a no-op if P1 is not currently in
007743  ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
007744  ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
007745  ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
007746  ** WAL after the checkpoint into mem[P3+1] and the number of pages
007747  ** in the WAL that have been checkpointed after the checkpoint
007748  ** completes into mem[P3+2].  However on an error, mem[P3+1] and
007749  ** mem[P3+2] are initialized to -1.
007750  */
007751  case OP_Checkpoint: {
007752    int i;                          /* Loop counter */
007753    int aRes[3];                    /* Results */
007754    Mem *pMem;                      /* Write results here */
007755  
007756    assert( p->readOnly==0 );
007757    aRes[0] = 0;
007758    aRes[1] = aRes[2] = -1;
007759    assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
007760         || pOp->p2==SQLITE_CHECKPOINT_FULL
007761         || pOp->p2==SQLITE_CHECKPOINT_RESTART
007762         || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
007763    );
007764    rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
007765    if( rc ){
007766      if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
007767      rc = SQLITE_OK;
007768      aRes[0] = 1;
007769    }
007770    for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
007771      sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
007772    }   
007773    break;
007774  }; 
007775  #endif
007776  
007777  #ifndef SQLITE_OMIT_PRAGMA
007778  /* Opcode: JournalMode P1 P2 P3 * *
007779  **
007780  ** Change the journal mode of database P1 to P3. P3 must be one of the
007781  ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
007782  ** modes (delete, truncate, persist, off and memory), this is a simple
007783  ** operation. No IO is required.
007784  **
007785  ** If changing into or out of WAL mode the procedure is more complicated.
007786  **
007787  ** Write a string containing the final journal-mode to register P2.
007788  */
007789  case OP_JournalMode: {    /* out2 */
007790    Btree *pBt;                     /* Btree to change journal mode of */
007791    Pager *pPager;                  /* Pager associated with pBt */
007792    int eNew;                       /* New journal mode */
007793    int eOld;                       /* The old journal mode */
007794  #ifndef SQLITE_OMIT_WAL
007795    const char *zFilename;          /* Name of database file for pPager */
007796  #endif
007797  
007798    pOut = out2Prerelease(p, pOp);
007799    eNew = pOp->p3;
007800    assert( eNew==PAGER_JOURNALMODE_DELETE
007801         || eNew==PAGER_JOURNALMODE_TRUNCATE
007802         || eNew==PAGER_JOURNALMODE_PERSIST
007803         || eNew==PAGER_JOURNALMODE_OFF
007804         || eNew==PAGER_JOURNALMODE_MEMORY
007805         || eNew==PAGER_JOURNALMODE_WAL
007806         || eNew==PAGER_JOURNALMODE_QUERY
007807    );
007808    assert( pOp->p1>=0 && pOp->p1<db->nDb );
007809    assert( p->readOnly==0 );
007810  
007811    pBt = db->aDb[pOp->p1].pBt;
007812    pPager = sqlite3BtreePager(pBt);
007813    eOld = sqlite3PagerGetJournalMode(pPager);
007814    if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
007815    assert( sqlite3BtreeHoldsMutex(pBt) );
007816    if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
007817  
007818  #ifndef SQLITE_OMIT_WAL
007819    zFilename = sqlite3PagerFilename(pPager, 1);
007820  
007821    /* Do not allow a transition to journal_mode=WAL for a database
007822    ** in temporary storage or if the VFS does not support shared memory
007823    */
007824    if( eNew==PAGER_JOURNALMODE_WAL
007825     && (sqlite3Strlen30(zFilename)==0           /* Temp file */
007826         || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
007827    ){
007828      eNew = eOld;
007829    }
007830  
007831    if( (eNew!=eOld)
007832     && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
007833    ){
007834      if( !db->autoCommit || db->nVdbeRead>1 ){
007835        rc = SQLITE_ERROR;
007836        sqlite3VdbeError(p,
007837            "cannot change %s wal mode from within a transaction",
007838            (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
007839        );
007840        goto abort_due_to_error;
007841      }else{
007842  
007843        if( eOld==PAGER_JOURNALMODE_WAL ){
007844          /* If leaving WAL mode, close the log file. If successful, the call
007845          ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
007846          ** file. An EXCLUSIVE lock may still be held on the database file
007847          ** after a successful return.
007848          */
007849          rc = sqlite3PagerCloseWal(pPager, db);
007850          if( rc==SQLITE_OK ){
007851            sqlite3PagerSetJournalMode(pPager, eNew);
007852          }
007853        }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
007854          /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
007855          ** as an intermediate */
007856          sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
007857        }
007858   
007859        /* Open a transaction on the database file. Regardless of the journal
007860        ** mode, this transaction always uses a rollback journal.
007861        */
007862        assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
007863        if( rc==SQLITE_OK ){
007864          rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
007865        }
007866      }
007867    }
007868  #endif /* ifndef SQLITE_OMIT_WAL */
007869  
007870    if( rc ) eNew = eOld;
007871    eNew = sqlite3PagerSetJournalMode(pPager, eNew);
007872  
007873    pOut->flags = MEM_Str|MEM_Static|MEM_Term;
007874    pOut->z = (char *)sqlite3JournalModename(eNew);
007875    pOut->n = sqlite3Strlen30(pOut->z);
007876    pOut->enc = SQLITE_UTF8;
007877    sqlite3VdbeChangeEncoding(pOut, encoding);
007878    if( rc ) goto abort_due_to_error;
007879    break;
007880  };
007881  #endif /* SQLITE_OMIT_PRAGMA */
007882  
007883  #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
007884  /* Opcode: Vacuum P1 P2 * * *
007885  **
007886  ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
007887  ** for an attached database.  The "temp" database may not be vacuumed.
007888  **
007889  ** If P2 is not zero, then it is a register holding a string which is
007890  ** the file into which the result of vacuum should be written.  When
007891  ** P2 is zero, the vacuum overwrites the original database.
007892  */
007893  case OP_Vacuum: {
007894    assert( p->readOnly==0 );
007895    rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
007896                          pOp->p2 ? &aMem[pOp->p2] : 0);
007897    if( rc ) goto abort_due_to_error;
007898    break;
007899  }
007900  #endif
007901  
007902  #if !defined(SQLITE_OMIT_AUTOVACUUM)
007903  /* Opcode: IncrVacuum P1 P2 * * *
007904  **
007905  ** Perform a single step of the incremental vacuum procedure on
007906  ** the P1 database. If the vacuum has finished, jump to instruction
007907  ** P2. Otherwise, fall through to the next instruction.
007908  */
007909  case OP_IncrVacuum: {        /* jump */
007910    Btree *pBt;
007911  
007912    assert( pOp->p1>=0 && pOp->p1<db->nDb );
007913    assert( DbMaskTest(p->btreeMask, pOp->p1) );
007914    assert( p->readOnly==0 );
007915    pBt = db->aDb[pOp->p1].pBt;
007916    rc = sqlite3BtreeIncrVacuum(pBt);
007917    VdbeBranchTaken(rc==SQLITE_DONE,2);
007918    if( rc ){
007919      if( rc!=SQLITE_DONE ) goto abort_due_to_error;
007920      rc = SQLITE_OK;
007921      goto jump_to_p2;
007922    }
007923    break;
007924  }
007925  #endif
007926  
007927  /* Opcode: Expire P1 P2 * * *
007928  **
007929  ** Cause precompiled statements to expire.  When an expired statement
007930  ** is executed using sqlite3_step() it will either automatically
007931  ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
007932  ** or it will fail with SQLITE_SCHEMA.
007933  **
007934  ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
007935  ** then only the currently executing statement is expired.
007936  **
007937  ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
007938  ** then running SQL statements are allowed to continue to run to completion.
007939  ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
007940  ** that might help the statement run faster but which does not affect the
007941  ** correctness of operation.
007942  */
007943  case OP_Expire: {
007944    assert( pOp->p2==0 || pOp->p2==1 );
007945    if( !pOp->p1 ){
007946      sqlite3ExpirePreparedStatements(db, pOp->p2);
007947    }else{
007948      p->expired = pOp->p2+1;
007949    }
007950    break;
007951  }
007952  
007953  /* Opcode: CursorLock P1 * * * *
007954  **
007955  ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
007956  ** written by an other cursor.
007957  */
007958  case OP_CursorLock: {
007959    VdbeCursor *pC;
007960    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
007961    pC = p->apCsr[pOp->p1];
007962    assert( pC!=0 );
007963    assert( pC->eCurType==CURTYPE_BTREE );
007964    sqlite3BtreeCursorPin(pC->uc.pCursor);
007965    break;
007966  }
007967  
007968  /* Opcode: CursorUnlock P1 * * * *
007969  **
007970  ** Unlock the btree to which cursor P1 is pointing so that it can be
007971  ** written by other cursors.
007972  */
007973  case OP_CursorUnlock: {
007974    VdbeCursor *pC;
007975    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
007976    pC = p->apCsr[pOp->p1];
007977    assert( pC!=0 );
007978    assert( pC->eCurType==CURTYPE_BTREE );
007979    sqlite3BtreeCursorUnpin(pC->uc.pCursor);
007980    break;
007981  }
007982  
007983  #ifndef SQLITE_OMIT_SHARED_CACHE
007984  /* Opcode: TableLock P1 P2 P3 P4 *
007985  ** Synopsis: iDb=P1 root=P2 write=P3
007986  **
007987  ** Obtain a lock on a particular table. This instruction is only used when
007988  ** the shared-cache feature is enabled.
007989  **
007990  ** P1 is the index of the database in sqlite3.aDb[] of the database
007991  ** on which the lock is acquired.  A readlock is obtained if P3==0 or
007992  ** a write lock if P3==1.
007993  **
007994  ** P2 contains the root-page of the table to lock.
007995  **
007996  ** P4 contains a pointer to the name of the table being locked. This is only
007997  ** used to generate an error message if the lock cannot be obtained.
007998  */
007999  case OP_TableLock: {
008000    u8 isWriteLock = (u8)pOp->p3;
008001    if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
008002      int p1 = pOp->p1;
008003      assert( p1>=0 && p1<db->nDb );
008004      assert( DbMaskTest(p->btreeMask, p1) );
008005      assert( isWriteLock==0 || isWriteLock==1 );
008006      rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
008007      if( rc ){
008008        if( (rc&0xFF)==SQLITE_LOCKED ){
008009          const char *z = pOp->p4.z;
008010          sqlite3VdbeError(p, "database table is locked: %s", z);
008011        }
008012        goto abort_due_to_error;
008013      }
008014    }
008015    break;
008016  }
008017  #endif /* SQLITE_OMIT_SHARED_CACHE */
008018  
008019  #ifndef SQLITE_OMIT_VIRTUALTABLE
008020  /* Opcode: VBegin * * * P4 *
008021  **
008022  ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
008023  ** xBegin method for that table.
008024  **
008025  ** Also, whether or not P4 is set, check that this is not being called from
008026  ** within a callback to a virtual table xSync() method. If it is, the error
008027  ** code will be set to SQLITE_LOCKED.
008028  */
008029  case OP_VBegin: {
008030    VTable *pVTab;
008031    pVTab = pOp->p4.pVtab;
008032    rc = sqlite3VtabBegin(db, pVTab);
008033    if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
008034    if( rc ) goto abort_due_to_error;
008035    break;
008036  }
008037  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008038  
008039  #ifndef SQLITE_OMIT_VIRTUALTABLE
008040  /* Opcode: VCreate P1 P2 * * *
008041  **
008042  ** P2 is a register that holds the name of a virtual table in database
008043  ** P1. Call the xCreate method for that table.
008044  */
008045  case OP_VCreate: {
008046    Mem sMem;          /* For storing the record being decoded */
008047    const char *zTab;  /* Name of the virtual table */
008048  
008049    memset(&sMem, 0, sizeof(sMem));
008050    sMem.db = db;
008051    /* Because P2 is always a static string, it is impossible for the
008052    ** sqlite3VdbeMemCopy() to fail */
008053    assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
008054    assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
008055    rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
008056    assert( rc==SQLITE_OK );
008057    zTab = (const char*)sqlite3_value_text(&sMem);
008058    assert( zTab || db->mallocFailed );
008059    if( zTab ){
008060      rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
008061    }
008062    sqlite3VdbeMemRelease(&sMem);
008063    if( rc ) goto abort_due_to_error;
008064    break;
008065  }
008066  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008067  
008068  #ifndef SQLITE_OMIT_VIRTUALTABLE
008069  /* Opcode: VDestroy P1 * * P4 *
008070  **
008071  ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
008072  ** of that table.
008073  */
008074  case OP_VDestroy: {
008075    db->nVDestroy++;
008076    rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
008077    db->nVDestroy--;
008078    assert( p->errorAction==OE_Abort && p->usesStmtJournal );
008079    if( rc ) goto abort_due_to_error;
008080    break;
008081  }
008082  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008083  
008084  #ifndef SQLITE_OMIT_VIRTUALTABLE
008085  /* Opcode: VOpen P1 * * P4 *
008086  **
008087  ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
008088  ** P1 is a cursor number.  This opcode opens a cursor to the virtual
008089  ** table and stores that cursor in P1.
008090  */
008091  case OP_VOpen: {             /* ncycle */
008092    VdbeCursor *pCur;
008093    sqlite3_vtab_cursor *pVCur;
008094    sqlite3_vtab *pVtab;
008095    const sqlite3_module *pModule;
008096  
008097    assert( p->bIsReader );
008098    pCur = 0;
008099    pVCur = 0;
008100    pVtab = pOp->p4.pVtab->pVtab;
008101    if( pVtab==0 || NEVER(pVtab->pModule==0) ){
008102      rc = SQLITE_LOCKED;
008103      goto abort_due_to_error;
008104    }
008105    pModule = pVtab->pModule;
008106    rc = pModule->xOpen(pVtab, &pVCur);
008107    sqlite3VtabImportErrmsg(p, pVtab);
008108    if( rc ) goto abort_due_to_error;
008109  
008110    /* Initialize sqlite3_vtab_cursor base class */
008111    pVCur->pVtab = pVtab;
008112  
008113    /* Initialize vdbe cursor object */
008114    pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
008115    if( pCur ){
008116      pCur->uc.pVCur = pVCur;
008117      pVtab->nRef++;
008118    }else{
008119      assert( db->mallocFailed );
008120      pModule->xClose(pVCur);
008121      goto no_mem;
008122    }
008123    break;
008124  }
008125  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008126  
008127  #ifndef SQLITE_OMIT_VIRTUALTABLE
008128  /* Opcode: VInitIn P1 P2 P3 * *
008129  ** Synopsis: r[P2]=ValueList(P1,P3)
008130  **
008131  ** Set register P2 to be a pointer to a ValueList object for cursor P1
008132  ** with cache register P3 and output register P3+1.  This ValueList object
008133  ** can be used as the first argument to sqlite3_vtab_in_first() and
008134  ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
008135  ** cursor.  Register P3 is used to hold the values returned by
008136  ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
008137  */
008138  case OP_VInitIn: {        /* out2, ncycle */
008139    VdbeCursor *pC;         /* The cursor containing the RHS values */
008140    ValueList *pRhs;        /* New ValueList object to put in reg[P2] */
008141  
008142    pC = p->apCsr[pOp->p1];
008143    pRhs = sqlite3_malloc64( sizeof(*pRhs) );
008144    if( pRhs==0 ) goto no_mem;
008145    pRhs->pCsr = pC->uc.pCursor;
008146    pRhs->pOut = &aMem[pOp->p3];
008147    pOut = out2Prerelease(p, pOp);
008148    pOut->flags = MEM_Null;
008149    sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree);
008150    break;
008151  }
008152  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008153  
008154  
008155  #ifndef SQLITE_OMIT_VIRTUALTABLE
008156  /* Opcode: VFilter P1 P2 P3 P4 *
008157  ** Synopsis: iplan=r[P3] zplan='P4'
008158  **
008159  ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
008160  ** the filtered result set is empty.
008161  **
008162  ** P4 is either NULL or a string that was generated by the xBestIndex
008163  ** method of the module.  The interpretation of the P4 string is left
008164  ** to the module implementation.
008165  **
008166  ** This opcode invokes the xFilter method on the virtual table specified
008167  ** by P1.  The integer query plan parameter to xFilter is stored in register
008168  ** P3. Register P3+1 stores the argc parameter to be passed to the
008169  ** xFilter method. Registers P3+2..P3+1+argc are the argc
008170  ** additional parameters which are passed to
008171  ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
008172  **
008173  ** A jump is made to P2 if the result set after filtering would be empty.
008174  */
008175  case OP_VFilter: {   /* jump, ncycle */
008176    int nArg;
008177    int iQuery;
008178    const sqlite3_module *pModule;
008179    Mem *pQuery;
008180    Mem *pArgc;
008181    sqlite3_vtab_cursor *pVCur;
008182    sqlite3_vtab *pVtab;
008183    VdbeCursor *pCur;
008184    int res;
008185    int i;
008186    Mem **apArg;
008187  
008188    pQuery = &aMem[pOp->p3];
008189    pArgc = &pQuery[1];
008190    pCur = p->apCsr[pOp->p1];
008191    assert( memIsValid(pQuery) );
008192    REGISTER_TRACE(pOp->p3, pQuery);
008193    assert( pCur!=0 );
008194    assert( pCur->eCurType==CURTYPE_VTAB );
008195    pVCur = pCur->uc.pVCur;
008196    pVtab = pVCur->pVtab;
008197    pModule = pVtab->pModule;
008198  
008199    /* Grab the index number and argc parameters */
008200    assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
008201    nArg = (int)pArgc->u.i;
008202    iQuery = (int)pQuery->u.i;
008203  
008204    /* Invoke the xFilter method */
008205    apArg = p->apArg;
008206    for(i = 0; i<nArg; i++){
008207      apArg[i] = &pArgc[i+1];
008208    }
008209    rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
008210    sqlite3VtabImportErrmsg(p, pVtab);
008211    if( rc ) goto abort_due_to_error;
008212    res = pModule->xEof(pVCur);
008213    pCur->nullRow = 0;
008214    VdbeBranchTaken(res!=0,2);
008215    if( res ) goto jump_to_p2;
008216    break;
008217  }
008218  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008219  
008220  #ifndef SQLITE_OMIT_VIRTUALTABLE
008221  /* Opcode: VColumn P1 P2 P3 * P5
008222  ** Synopsis: r[P3]=vcolumn(P2)
008223  **
008224  ** Store in register P3 the value of the P2-th column of
008225  ** the current row of the virtual-table of cursor P1.
008226  **
008227  ** If the VColumn opcode is being used to fetch the value of
008228  ** an unchanging column during an UPDATE operation, then the P5
008229  ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
008230  ** function to return true inside the xColumn method of the virtual
008231  ** table implementation.  The P5 column might also contain other
008232  ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
008233  ** unused by OP_VColumn.
008234  */
008235  case OP_VColumn: {           /* ncycle */
008236    sqlite3_vtab *pVtab;
008237    const sqlite3_module *pModule;
008238    Mem *pDest;
008239    sqlite3_context sContext;
008240  
008241    VdbeCursor *pCur = p->apCsr[pOp->p1];
008242    assert( pCur!=0 );
008243    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
008244    pDest = &aMem[pOp->p3];
008245    memAboutToChange(p, pDest);
008246    if( pCur->nullRow ){
008247      sqlite3VdbeMemSetNull(pDest);
008248      break;
008249    }
008250    assert( pCur->eCurType==CURTYPE_VTAB );
008251    pVtab = pCur->uc.pVCur->pVtab;
008252    pModule = pVtab->pModule;
008253    assert( pModule->xColumn );
008254    memset(&sContext, 0, sizeof(sContext));
008255    sContext.pOut = pDest;
008256    sContext.enc = encoding;
008257    assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
008258    if( pOp->p5 & OPFLAG_NOCHNG ){
008259      sqlite3VdbeMemSetNull(pDest);
008260      pDest->flags = MEM_Null|MEM_Zero;
008261      pDest->u.nZero = 0;
008262    }else{
008263      MemSetTypeFlag(pDest, MEM_Null);
008264    }
008265    rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
008266    sqlite3VtabImportErrmsg(p, pVtab);
008267    if( sContext.isError>0 ){
008268      sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
008269      rc = sContext.isError;
008270    }
008271    sqlite3VdbeChangeEncoding(pDest, encoding);
008272    REGISTER_TRACE(pOp->p3, pDest);
008273    UPDATE_MAX_BLOBSIZE(pDest);
008274  
008275    if( rc ) goto abort_due_to_error;
008276    break;
008277  }
008278  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008279  
008280  #ifndef SQLITE_OMIT_VIRTUALTABLE
008281  /* Opcode: VNext P1 P2 * * *
008282  **
008283  ** Advance virtual table P1 to the next row in its result set and
008284  ** jump to instruction P2.  Or, if the virtual table has reached
008285  ** the end of its result set, then fall through to the next instruction.
008286  */
008287  case OP_VNext: {   /* jump, ncycle */
008288    sqlite3_vtab *pVtab;
008289    const sqlite3_module *pModule;
008290    int res;
008291    VdbeCursor *pCur;
008292  
008293    pCur = p->apCsr[pOp->p1];
008294    assert( pCur!=0 );
008295    assert( pCur->eCurType==CURTYPE_VTAB );
008296    if( pCur->nullRow ){
008297      break;
008298    }
008299    pVtab = pCur->uc.pVCur->pVtab;
008300    pModule = pVtab->pModule;
008301    assert( pModule->xNext );
008302  
008303    /* Invoke the xNext() method of the module. There is no way for the
008304    ** underlying implementation to return an error if one occurs during
008305    ** xNext(). Instead, if an error occurs, true is returned (indicating that
008306    ** data is available) and the error code returned when xColumn or
008307    ** some other method is next invoked on the save virtual table cursor.
008308    */
008309    rc = pModule->xNext(pCur->uc.pVCur);
008310    sqlite3VtabImportErrmsg(p, pVtab);
008311    if( rc ) goto abort_due_to_error;
008312    res = pModule->xEof(pCur->uc.pVCur);
008313    VdbeBranchTaken(!res,2);
008314    if( !res ){
008315      /* If there is data, jump to P2 */
008316      goto jump_to_p2_and_check_for_interrupt;
008317    }
008318    goto check_for_interrupt;
008319  }
008320  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008321  
008322  #ifndef SQLITE_OMIT_VIRTUALTABLE
008323  /* Opcode: VRename P1 * * P4 *
008324  **
008325  ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
008326  ** This opcode invokes the corresponding xRename method. The value
008327  ** in register P1 is passed as the zName argument to the xRename method.
008328  */
008329  case OP_VRename: {
008330    sqlite3_vtab *pVtab;
008331    Mem *pName;
008332    int isLegacy;
008333   
008334    isLegacy = (db->flags & SQLITE_LegacyAlter);
008335    db->flags |= SQLITE_LegacyAlter;
008336    pVtab = pOp->p4.pVtab->pVtab;
008337    pName = &aMem[pOp->p1];
008338    assert( pVtab->pModule->xRename );
008339    assert( memIsValid(pName) );
008340    assert( p->readOnly==0 );
008341    REGISTER_TRACE(pOp->p1, pName);
008342    assert( pName->flags & MEM_Str );
008343    testcase( pName->enc==SQLITE_UTF8 );
008344    testcase( pName->enc==SQLITE_UTF16BE );
008345    testcase( pName->enc==SQLITE_UTF16LE );
008346    rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
008347    if( rc ) goto abort_due_to_error;
008348    rc = pVtab->pModule->xRename(pVtab, pName->z);
008349    if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
008350    sqlite3VtabImportErrmsg(p, pVtab);
008351    p->expired = 0;
008352    if( rc ) goto abort_due_to_error;
008353    break;
008354  }
008355  #endif
008356  
008357  #ifndef SQLITE_OMIT_VIRTUALTABLE
008358  /* Opcode: VUpdate P1 P2 P3 P4 P5
008359  ** Synopsis: data=r[P3@P2]
008360  **
008361  ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
008362  ** This opcode invokes the corresponding xUpdate method. P2 values
008363  ** are contiguous memory cells starting at P3 to pass to the xUpdate
008364  ** invocation. The value in register (P3+P2-1) corresponds to the
008365  ** p2th element of the argv array passed to xUpdate.
008366  **
008367  ** The xUpdate method will do a DELETE or an INSERT or both.
008368  ** The argv[0] element (which corresponds to memory cell P3)
008369  ** is the rowid of a row to delete.  If argv[0] is NULL then no
008370  ** deletion occurs.  The argv[1] element is the rowid of the new
008371  ** row.  This can be NULL to have the virtual table select the new
008372  ** rowid for itself.  The subsequent elements in the array are
008373  ** the values of columns in the new row.
008374  **
008375  ** If P2==1 then no insert is performed.  argv[0] is the rowid of
008376  ** a row to delete.
008377  **
008378  ** P1 is a boolean flag. If it is set to true and the xUpdate call
008379  ** is successful, then the value returned by sqlite3_last_insert_rowid()
008380  ** is set to the value of the rowid for the row just inserted.
008381  **
008382  ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
008383  ** apply in the case of a constraint failure on an insert or update.
008384  */
008385  case OP_VUpdate: {
008386    sqlite3_vtab *pVtab;
008387    const sqlite3_module *pModule;
008388    int nArg;
008389    int i;
008390    sqlite_int64 rowid = 0;
008391    Mem **apArg;
008392    Mem *pX;
008393  
008394    assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
008395         || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
008396    );
008397    assert( p->readOnly==0 );
008398    if( db->mallocFailed ) goto no_mem;
008399    sqlite3VdbeIncrWriteCounter(p, 0);
008400    pVtab = pOp->p4.pVtab->pVtab;
008401    if( pVtab==0 || NEVER(pVtab->pModule==0) ){
008402      rc = SQLITE_LOCKED;
008403      goto abort_due_to_error;
008404    }
008405    pModule = pVtab->pModule;
008406    nArg = pOp->p2;
008407    assert( pOp->p4type==P4_VTAB );
008408    if( ALWAYS(pModule->xUpdate) ){
008409      u8 vtabOnConflict = db->vtabOnConflict;
008410      apArg = p->apArg;
008411      pX = &aMem[pOp->p3];
008412      for(i=0; i<nArg; i++){
008413        assert( memIsValid(pX) );
008414        memAboutToChange(p, pX);
008415        apArg[i] = pX;
008416        pX++;
008417      }
008418      db->vtabOnConflict = pOp->p5;
008419      rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
008420      db->vtabOnConflict = vtabOnConflict;
008421      sqlite3VtabImportErrmsg(p, pVtab);
008422      if( rc==SQLITE_OK && pOp->p1 ){
008423        assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
008424        db->lastRowid = rowid;
008425      }
008426      if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
008427        if( pOp->p5==OE_Ignore ){
008428          rc = SQLITE_OK;
008429        }else{
008430          p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
008431        }
008432      }else{
008433        p->nChange++;
008434      }
008435      if( rc ) goto abort_due_to_error;
008436    }
008437    break;
008438  }
008439  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008440  
008441  #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
008442  /* Opcode: Pagecount P1 P2 * * *
008443  **
008444  ** Write the current number of pages in database P1 to memory cell P2.
008445  */
008446  case OP_Pagecount: {            /* out2 */
008447    pOut = out2Prerelease(p, pOp);
008448    pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
008449    break;
008450  }
008451  #endif
008452  
008453  
008454  #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
008455  /* Opcode: MaxPgcnt P1 P2 P3 * *
008456  **
008457  ** Try to set the maximum page count for database P1 to the value in P3.
008458  ** Do not let the maximum page count fall below the current page count and
008459  ** do not change the maximum page count value if P3==0.
008460  **
008461  ** Store the maximum page count after the change in register P2.
008462  */
008463  case OP_MaxPgcnt: {            /* out2 */
008464    unsigned int newMax;
008465    Btree *pBt;
008466  
008467    pOut = out2Prerelease(p, pOp);
008468    pBt = db->aDb[pOp->p1].pBt;
008469    newMax = 0;
008470    if( pOp->p3 ){
008471      newMax = sqlite3BtreeLastPage(pBt);
008472      if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
008473    }
008474    pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
008475    break;
008476  }
008477  #endif
008478  
008479  /* Opcode: Function P1 P2 P3 P4 *
008480  ** Synopsis: r[P3]=func(r[P2@NP])
008481  **
008482  ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
008483  ** contains a pointer to the function to be run) with arguments taken
008484  ** from register P2 and successors.  The number of arguments is in
008485  ** the sqlite3_context object that P4 points to.
008486  ** The result of the function is stored
008487  ** in register P3.  Register P3 must not be one of the function inputs.
008488  **
008489  ** P1 is a 32-bit bitmask indicating whether or not each argument to the
008490  ** function was determined to be constant at compile time. If the first
008491  ** argument was constant then bit 0 of P1 is set. This is used to determine
008492  ** whether meta data associated with a user function argument using the
008493  ** sqlite3_set_auxdata() API may be safely retained until the next
008494  ** invocation of this opcode.
008495  **
008496  ** See also: AggStep, AggFinal, PureFunc
008497  */
008498  /* Opcode: PureFunc P1 P2 P3 P4 *
008499  ** Synopsis: r[P3]=func(r[P2@NP])
008500  **
008501  ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
008502  ** contains a pointer to the function to be run) with arguments taken
008503  ** from register P2 and successors.  The number of arguments is in
008504  ** the sqlite3_context object that P4 points to.
008505  ** The result of the function is stored
008506  ** in register P3.  Register P3 must not be one of the function inputs.
008507  **
008508  ** P1 is a 32-bit bitmask indicating whether or not each argument to the
008509  ** function was determined to be constant at compile time. If the first
008510  ** argument was constant then bit 0 of P1 is set. This is used to determine
008511  ** whether meta data associated with a user function argument using the
008512  ** sqlite3_set_auxdata() API may be safely retained until the next
008513  ** invocation of this opcode.
008514  **
008515  ** This opcode works exactly like OP_Function.  The only difference is in
008516  ** its name.  This opcode is used in places where the function must be
008517  ** purely non-deterministic.  Some built-in date/time functions can be
008518  ** either deterministic of non-deterministic, depending on their arguments.
008519  ** When those function are used in a non-deterministic way, they will check
008520  ** to see if they were called using OP_PureFunc instead of OP_Function, and
008521  ** if they were, they throw an error.
008522  **
008523  ** See also: AggStep, AggFinal, Function
008524  */
008525  case OP_PureFunc:              /* group */
008526  case OP_Function: {            /* group */
008527    int i;
008528    sqlite3_context *pCtx;
008529  
008530    assert( pOp->p4type==P4_FUNCCTX );
008531    pCtx = pOp->p4.pCtx;
008532  
008533    /* If this function is inside of a trigger, the register array in aMem[]
008534    ** might change from one evaluation to the next.  The next block of code
008535    ** checks to see if the register array has changed, and if so it
008536    ** reinitializes the relevant parts of the sqlite3_context object */
008537    pOut = &aMem[pOp->p3];
008538    if( pCtx->pOut != pOut ){
008539      pCtx->pVdbe = p;
008540      pCtx->pOut = pOut;
008541      pCtx->enc = encoding;
008542      for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
008543    }
008544    assert( pCtx->pVdbe==p );
008545  
008546    memAboutToChange(p, pOut);
008547  #ifdef SQLITE_DEBUG
008548    for(i=0; i<pCtx->argc; i++){
008549      assert( memIsValid(pCtx->argv[i]) );
008550      REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
008551    }
008552  #endif
008553    MemSetTypeFlag(pOut, MEM_Null);
008554    assert( pCtx->isError==0 );
008555    (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
008556  
008557    /* If the function returned an error, throw an exception */
008558    if( pCtx->isError ){
008559      if( pCtx->isError>0 ){
008560        sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
008561        rc = pCtx->isError;
008562      }
008563      sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
008564      pCtx->isError = 0;
008565      if( rc ) goto abort_due_to_error;
008566    }
008567  
008568    assert( (pOut->flags&MEM_Str)==0
008569         || pOut->enc==encoding
008570         || db->mallocFailed );
008571    assert( !sqlite3VdbeMemTooBig(pOut) );
008572  
008573    REGISTER_TRACE(pOp->p3, pOut);
008574    UPDATE_MAX_BLOBSIZE(pOut);
008575    break;
008576  }
008577  
008578  /* Opcode: ClrSubtype P1 * * * *
008579  ** Synopsis:  r[P1].subtype = 0
008580  **
008581  ** Clear the subtype from register P1.
008582  */
008583  case OP_ClrSubtype: {   /* in1 */
008584    pIn1 = &aMem[pOp->p1];
008585    pIn1->flags &= ~MEM_Subtype;
008586    break;
008587  }
008588  
008589  /* Opcode: FilterAdd P1 * P3 P4 *
008590  ** Synopsis: filter(P1) += key(P3@P4)
008591  **
008592  ** Compute a hash on the P4 registers starting with r[P3] and
008593  ** add that hash to the bloom filter contained in r[P1].
008594  */
008595  case OP_FilterAdd: {
008596    u64 h;
008597  
008598    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
008599    pIn1 = &aMem[pOp->p1];
008600    assert( pIn1->flags & MEM_Blob );
008601    assert( pIn1->n>0 );
008602    h = filterHash(aMem, pOp);
008603  #ifdef SQLITE_DEBUG
008604    if( db->flags&SQLITE_VdbeTrace ){
008605      int ii;
008606      for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
008607        registerTrace(ii, &aMem[ii]);
008608      }
008609      printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
008610    }
008611  #endif
008612    h %= (pIn1->n*8);
008613    pIn1->z[h/8] |= 1<<(h&7);
008614    break;
008615  }
008616  
008617  /* Opcode: Filter P1 P2 P3 P4 *
008618  ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
008619  **
008620  ** Compute a hash on the key contained in the P4 registers starting
008621  ** with r[P3].  Check to see if that hash is found in the
008622  ** bloom filter hosted by register P1.  If it is not present then
008623  ** maybe jump to P2.  Otherwise fall through.
008624  **
008625  ** False negatives are harmless.  It is always safe to fall through,
008626  ** even if the value is in the bloom filter.  A false negative causes
008627  ** more CPU cycles to be used, but it should still yield the correct
008628  ** answer.  However, an incorrect answer may well arise from a
008629  ** false positive - if the jump is taken when it should fall through.
008630  */
008631  case OP_Filter: {          /* jump */
008632    u64 h;
008633  
008634    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
008635    pIn1 = &aMem[pOp->p1];
008636    assert( (pIn1->flags & MEM_Blob)!=0 );
008637    assert( pIn1->n >= 1 );
008638    h = filterHash(aMem, pOp);
008639  #ifdef SQLITE_DEBUG
008640    if( db->flags&SQLITE_VdbeTrace ){
008641      int ii;
008642      for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
008643        registerTrace(ii, &aMem[ii]);
008644      }
008645      printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
008646    }
008647  #endif
008648    h %= (pIn1->n*8);
008649    if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
008650      VdbeBranchTaken(1, 2);
008651      p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
008652      goto jump_to_p2;
008653    }else{
008654      p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
008655      VdbeBranchTaken(0, 2);
008656    }
008657    break;
008658  }
008659  
008660  /* Opcode: Trace P1 P2 * P4 *
008661  **
008662  ** Write P4 on the statement trace output if statement tracing is
008663  ** enabled.
008664  **
008665  ** Operand P1 must be 0x7fffffff and P2 must positive.
008666  */
008667  /* Opcode: Init P1 P2 P3 P4 *
008668  ** Synopsis: Start at P2
008669  **
008670  ** Programs contain a single instance of this opcode as the very first
008671  ** opcode.
008672  **
008673  ** If tracing is enabled (by the sqlite3_trace()) interface, then
008674  ** the UTF-8 string contained in P4 is emitted on the trace callback.
008675  ** Or if P4 is blank, use the string returned by sqlite3_sql().
008676  **
008677  ** If P2 is not zero, jump to instruction P2.
008678  **
008679  ** Increment the value of P1 so that OP_Once opcodes will jump the
008680  ** first time they are evaluated for this run.
008681  **
008682  ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
008683  ** error is encountered.
008684  */
008685  case OP_Trace:
008686  case OP_Init: {          /* jump */
008687    int i;
008688  #ifndef SQLITE_OMIT_TRACE
008689    char *zTrace;
008690  #endif
008691  
008692    /* If the P4 argument is not NULL, then it must be an SQL comment string.
008693    ** The "--" string is broken up to prevent false-positives with srcck1.c.
008694    **
008695    ** This assert() provides evidence for:
008696    ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
008697    ** would have been returned by the legacy sqlite3_trace() interface by
008698    ** using the X argument when X begins with "--" and invoking
008699    ** sqlite3_expanded_sql(P) otherwise.
008700    */
008701    assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
008702  
008703    /* OP_Init is always instruction 0 */
008704    assert( pOp==p->aOp || pOp->opcode==OP_Trace );
008705  
008706  #ifndef SQLITE_OMIT_TRACE
008707    if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
008708     && p->minWriteFileFormat!=254  /* tag-20220401a */
008709     && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
008710    ){
008711  #ifndef SQLITE_OMIT_DEPRECATED
008712      if( db->mTrace & SQLITE_TRACE_LEGACY ){
008713        char *z = sqlite3VdbeExpandSql(p, zTrace);
008714        db->trace.xLegacy(db->pTraceArg, z);
008715        sqlite3_free(z);
008716      }else
008717  #endif
008718      if( db->nVdbeExec>1 ){
008719        char *z = sqlite3MPrintf(db, "-- %s", zTrace);
008720        (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
008721        sqlite3DbFree(db, z);
008722      }else{
008723        (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
008724      }
008725    }
008726  #ifdef SQLITE_USE_FCNTL_TRACE
008727    zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
008728    if( zTrace ){
008729      int j;
008730      for(j=0; j<db->nDb; j++){
008731        if( DbMaskTest(p->btreeMask, j)==0 ) continue;
008732        sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
008733      }
008734    }
008735  #endif /* SQLITE_USE_FCNTL_TRACE */
008736  #ifdef SQLITE_DEBUG
008737    if( (db->flags & SQLITE_SqlTrace)!=0
008738     && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
008739    ){
008740      sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
008741    }
008742  #endif /* SQLITE_DEBUG */
008743  #endif /* SQLITE_OMIT_TRACE */
008744    assert( pOp->p2>0 );
008745    if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
008746      if( pOp->opcode==OP_Trace ) break;
008747      for(i=1; i<p->nOp; i++){
008748        if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
008749      }
008750      pOp->p1 = 0;
008751    }
008752    pOp->p1++;
008753    p->aCounter[SQLITE_STMTSTATUS_RUN]++;
008754    goto jump_to_p2;
008755  }
008756  
008757  #ifdef SQLITE_ENABLE_CURSOR_HINTS
008758  /* Opcode: CursorHint P1 * * P4 *
008759  **
008760  ** Provide a hint to cursor P1 that it only needs to return rows that
008761  ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
008762  ** to values currently held in registers.  TK_COLUMN terms in the P4
008763  ** expression refer to columns in the b-tree to which cursor P1 is pointing.
008764  */
008765  case OP_CursorHint: {
008766    VdbeCursor *pC;
008767  
008768    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
008769    assert( pOp->p4type==P4_EXPR );
008770    pC = p->apCsr[pOp->p1];
008771    if( pC ){
008772      assert( pC->eCurType==CURTYPE_BTREE );
008773      sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
008774                             pOp->p4.pExpr, aMem);
008775    }
008776    break;
008777  }
008778  #endif /* SQLITE_ENABLE_CURSOR_HINTS */
008779  
008780  #ifdef SQLITE_DEBUG
008781  /* Opcode:  Abortable   * * * * *
008782  **
008783  ** Verify that an Abort can happen.  Assert if an Abort at this point
008784  ** might cause database corruption.  This opcode only appears in debugging
008785  ** builds.
008786  **
008787  ** An Abort is safe if either there have been no writes, or if there is
008788  ** an active statement journal.
008789  */
008790  case OP_Abortable: {
008791    sqlite3VdbeAssertAbortable(p);
008792    break;
008793  }
008794  #endif
008795  
008796  #ifdef SQLITE_DEBUG
008797  /* Opcode:  ReleaseReg   P1 P2 P3 * P5
008798  ** Synopsis: release r[P1@P2] mask P3
008799  **
008800  ** Release registers from service.  Any content that was in the
008801  ** the registers is unreliable after this opcode completes.
008802  **
008803  ** The registers released will be the P2 registers starting at P1,
008804  ** except if bit ii of P3 set, then do not release register P1+ii.
008805  ** In other words, P3 is a mask of registers to preserve.
008806  **
008807  ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
008808  ** that if the content of the released register was set using OP_SCopy,
008809  ** a change to the value of the source register for the OP_SCopy will no longer
008810  ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
008811  **
008812  ** If P5 is set, then all released registers have their type set
008813  ** to MEM_Undefined so that any subsequent attempt to read the released
008814  ** register (before it is reinitialized) will generate an assertion fault.
008815  **
008816  ** P5 ought to be set on every call to this opcode.
008817  ** However, there are places in the code generator will release registers
008818  ** before their are used, under the (valid) assumption that the registers
008819  ** will not be reallocated for some other purpose before they are used and
008820  ** hence are safe to release.
008821  **
008822  ** This opcode is only available in testing and debugging builds.  It is
008823  ** not generated for release builds.  The purpose of this opcode is to help
008824  ** validate the generated bytecode.  This opcode does not actually contribute
008825  ** to computing an answer.
008826  */
008827  case OP_ReleaseReg: {
008828    Mem *pMem;
008829    int i;
008830    u32 constMask;
008831    assert( pOp->p1>0 );
008832    assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
008833    pMem = &aMem[pOp->p1];
008834    constMask = pOp->p3;
008835    for(i=0; i<pOp->p2; i++, pMem++){
008836      if( i>=32 || (constMask & MASKBIT32(i))==0 ){
008837        pMem->pScopyFrom = 0;
008838        if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
008839      }
008840    }
008841    break;
008842  }
008843  #endif
008844  
008845  /* Opcode: Noop * * * * *
008846  **
008847  ** Do nothing.  This instruction is often useful as a jump
008848  ** destination.
008849  */
008850  /*
008851  ** The magic Explain opcode are only inserted when explain==2 (which
008852  ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
008853  ** This opcode records information from the optimizer.  It is the
008854  ** the same as a no-op.  This opcodesnever appears in a real VM program.
008855  */
008856  default: {          /* This is really OP_Noop, OP_Explain */
008857    assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
008858  
008859    break;
008860  }
008861  
008862  /*****************************************************************************
008863  ** The cases of the switch statement above this line should all be indented
008864  ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
008865  ** readability.  From this point on down, the normal indentation rules are
008866  ** restored.
008867  *****************************************************************************/
008868      }
008869  
008870  #if defined(VDBE_PROFILE)
008871      *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
008872      pnCycle = 0;
008873  #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
008874      if( pnCycle ){
008875        *pnCycle += sqlite3Hwtime();
008876        pnCycle = 0;
008877      }
008878  #endif
008879  
008880      /* The following code adds nothing to the actual functionality
008881      ** of the program.  It is only here for testing and debugging.
008882      ** On the other hand, it does burn CPU cycles every time through
008883      ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
008884      */
008885  #ifndef NDEBUG
008886      assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
008887  
008888  #ifdef SQLITE_DEBUG
008889      if( db->flags & SQLITE_VdbeTrace ){
008890        u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
008891        if( rc!=0 ) printf("rc=%d\n",rc);
008892        if( opProperty & (OPFLG_OUT2) ){
008893          registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
008894        }
008895        if( opProperty & OPFLG_OUT3 ){
008896          registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
008897        }
008898        if( opProperty==0xff ){
008899          /* Never happens.  This code exists to avoid a harmless linkage
008900          ** warning about sqlite3VdbeRegisterDump() being defined but not
008901          ** used. */
008902          sqlite3VdbeRegisterDump(p);
008903        }
008904      }
008905  #endif  /* SQLITE_DEBUG */
008906  #endif  /* NDEBUG */
008907    }  /* The end of the for(;;) loop the loops through opcodes */
008908  
008909    /* If we reach this point, it means that execution is finished with
008910    ** an error of some kind.
008911    */
008912  abort_due_to_error:
008913    if( db->mallocFailed ){
008914      rc = SQLITE_NOMEM_BKPT;
008915    }else if( rc==SQLITE_IOERR_CORRUPTFS ){
008916      rc = SQLITE_CORRUPT_BKPT;
008917    }
008918    assert( rc );
008919  #ifdef SQLITE_DEBUG
008920    if( db->flags & SQLITE_VdbeTrace ){
008921      const char *zTrace = p->zSql;
008922      if( zTrace==0 ){
008923        if( aOp[0].opcode==OP_Trace ){
008924          zTrace = aOp[0].p4.z;
008925        }
008926        if( zTrace==0 ) zTrace = "???";
008927      }
008928      printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
008929    }
008930  #endif
008931    if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
008932      sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
008933    }
008934    p->rc = rc;
008935    sqlite3SystemError(db, rc);
008936    testcase( sqlite3GlobalConfig.xLog!=0 );
008937    sqlite3_log(rc, "statement aborts at %d: [%s] %s",
008938                     (int)(pOp - aOp), p->zSql, p->zErrMsg);
008939    if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
008940    if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
008941    if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
008942      db->flags |= SQLITE_CorruptRdOnly;
008943    }
008944    rc = SQLITE_ERROR;
008945    if( resetSchemaOnFault>0 ){
008946      sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
008947    }
008948  
008949    /* This is the only way out of this procedure.  We have to
008950    ** release the mutexes on btrees that were acquired at the
008951    ** top. */
008952  vdbe_return:
008953  #if defined(VDBE_PROFILE)
008954    if( pnCycle ){
008955      *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
008956      pnCycle = 0;
008957    }
008958  #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
008959    if( pnCycle ){
008960      *pnCycle += sqlite3Hwtime();
008961      pnCycle = 0;
008962    }
008963  #endif
008964  
008965  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
008966    while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
008967      nProgressLimit += db->nProgressOps;
008968      if( db->xProgress(db->pProgressArg) ){
008969        nProgressLimit = LARGEST_UINT64;
008970        rc = SQLITE_INTERRUPT;
008971        goto abort_due_to_error;
008972      }
008973    }
008974  #endif
008975    p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
008976    if( DbMaskNonZero(p->lockMask) ){
008977      sqlite3VdbeLeave(p);
008978    }
008979    assert( rc!=SQLITE_OK || nExtraDelete==0
008980         || sqlite3_strlike("DELETE%",p->zSql,0)!=0
008981    );
008982    return rc;
008983  
008984    /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
008985    ** is encountered.
008986    */
008987  too_big:
008988    sqlite3VdbeError(p, "string or blob too big");
008989    rc = SQLITE_TOOBIG;
008990    goto abort_due_to_error;
008991  
008992    /* Jump to here if a malloc() fails.
008993    */
008994  no_mem:
008995    sqlite3OomFault(db);
008996    sqlite3VdbeError(p, "out of memory");
008997    rc = SQLITE_NOMEM_BKPT;
008998    goto abort_due_to_error;
008999  
009000    /* Jump to here if the sqlite3_interrupt() API sets the interrupt
009001    ** flag.
009002    */
009003  abort_due_to_interrupt:
009004    assert( AtomicLoad(&db->u1.isInterrupted) );
009005    rc = SQLITE_INTERRUPT;
009006    goto abort_due_to_error;
009007  }