000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** 000013 ** Memory allocation functions used throughout sqlite. 000014 */ 000015 #include "sqliteInt.h" 000016 #include <stdarg.h> 000017 000018 /* 000019 ** Attempt to release up to n bytes of non-essential memory currently 000020 ** held by SQLite. An example of non-essential memory is memory used to 000021 ** cache database pages that are not currently in use. 000022 */ 000023 int sqlite3_release_memory(int n){ 000024 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 000025 return sqlite3PcacheReleaseMemory(n); 000026 #else 000027 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine 000028 ** is a no-op returning zero if SQLite is not compiled with 000029 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ 000030 UNUSED_PARAMETER(n); 000031 return 0; 000032 #endif 000033 } 000034 000035 /* 000036 ** Default value of the hard heap limit. 0 means "no limit". 000037 */ 000038 #ifndef SQLITE_MAX_MEMORY 000039 # define SQLITE_MAX_MEMORY 0 000040 #endif 000041 000042 /* 000043 ** State information local to the memory allocation subsystem. 000044 */ 000045 static SQLITE_WSD struct Mem0Global { 000046 sqlite3_mutex *mutex; /* Mutex to serialize access */ 000047 sqlite3_int64 alarmThreshold; /* The soft heap limit */ 000048 sqlite3_int64 hardLimit; /* The hard upper bound on memory */ 000049 000050 /* 000051 ** True if heap is nearly "full" where "full" is defined by the 000052 ** sqlite3_soft_heap_limit() setting. 000053 */ 000054 int nearlyFull; 000055 } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 }; 000056 000057 #define mem0 GLOBAL(struct Mem0Global, mem0) 000058 000059 /* 000060 ** Return the memory allocator mutex. sqlite3_status() needs it. 000061 */ 000062 sqlite3_mutex *sqlite3MallocMutex(void){ 000063 return mem0.mutex; 000064 } 000065 000066 #ifndef SQLITE_OMIT_DEPRECATED 000067 /* 000068 ** Deprecated external interface. It used to set an alarm callback 000069 ** that was invoked when memory usage grew too large. Now it is a 000070 ** no-op. 000071 */ 000072 int sqlite3_memory_alarm( 000073 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 000074 void *pArg, 000075 sqlite3_int64 iThreshold 000076 ){ 000077 (void)xCallback; 000078 (void)pArg; 000079 (void)iThreshold; 000080 return SQLITE_OK; 000081 } 000082 #endif 000083 000084 /* 000085 ** Set the soft heap-size limit for the library. An argument of 000086 ** zero disables the limit. A negative argument is a no-op used to 000087 ** obtain the return value. 000088 ** 000089 ** The return value is the value of the heap limit just before this 000090 ** interface was called. 000091 ** 000092 ** If the hard heap limit is enabled, then the soft heap limit cannot 000093 ** be disabled nor raised above the hard heap limit. 000094 */ 000095 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 000096 sqlite3_int64 priorLimit; 000097 sqlite3_int64 excess; 000098 sqlite3_int64 nUsed; 000099 #ifndef SQLITE_OMIT_AUTOINIT 000100 int rc = sqlite3_initialize(); 000101 if( rc ) return -1; 000102 #endif 000103 sqlite3_mutex_enter(mem0.mutex); 000104 priorLimit = mem0.alarmThreshold; 000105 if( n<0 ){ 000106 sqlite3_mutex_leave(mem0.mutex); 000107 return priorLimit; 000108 } 000109 if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){ 000110 n = mem0.hardLimit; 000111 } 000112 mem0.alarmThreshold = n; 000113 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 000114 AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed); 000115 sqlite3_mutex_leave(mem0.mutex); 000116 excess = sqlite3_memory_used() - n; 000117 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); 000118 return priorLimit; 000119 } 000120 void sqlite3_soft_heap_limit(int n){ 000121 if( n<0 ) n = 0; 000122 sqlite3_soft_heap_limit64(n); 000123 } 000124 000125 /* 000126 ** Set the hard heap-size limit for the library. An argument of zero 000127 ** disables the hard heap limit. A negative argument is a no-op used 000128 ** to obtain the return value without affecting the hard heap limit. 000129 ** 000130 ** The return value is the value of the hard heap limit just prior to 000131 ** calling this interface. 000132 ** 000133 ** Setting the hard heap limit will also activate the soft heap limit 000134 ** and constrain the soft heap limit to be no more than the hard heap 000135 ** limit. 000136 */ 000137 sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){ 000138 sqlite3_int64 priorLimit; 000139 #ifndef SQLITE_OMIT_AUTOINIT 000140 int rc = sqlite3_initialize(); 000141 if( rc ) return -1; 000142 #endif 000143 sqlite3_mutex_enter(mem0.mutex); 000144 priorLimit = mem0.hardLimit; 000145 if( n>=0 ){ 000146 mem0.hardLimit = n; 000147 if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){ 000148 mem0.alarmThreshold = n; 000149 } 000150 } 000151 sqlite3_mutex_leave(mem0.mutex); 000152 return priorLimit; 000153 } 000154 000155 000156 /* 000157 ** Initialize the memory allocation subsystem. 000158 */ 000159 int sqlite3MallocInit(void){ 000160 int rc; 000161 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 000162 sqlite3MemSetDefault(); 000163 } 000164 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 000165 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 000166 || sqlite3GlobalConfig.nPage<=0 ){ 000167 sqlite3GlobalConfig.pPage = 0; 000168 sqlite3GlobalConfig.szPage = 0; 000169 } 000170 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 000171 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); 000172 return rc; 000173 } 000174 000175 /* 000176 ** Return true if the heap is currently under memory pressure - in other 000177 ** words if the amount of heap used is close to the limit set by 000178 ** sqlite3_soft_heap_limit(). 000179 */ 000180 int sqlite3HeapNearlyFull(void){ 000181 return AtomicLoad(&mem0.nearlyFull); 000182 } 000183 000184 /* 000185 ** Deinitialize the memory allocation subsystem. 000186 */ 000187 void sqlite3MallocEnd(void){ 000188 if( sqlite3GlobalConfig.m.xShutdown ){ 000189 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 000190 } 000191 memset(&mem0, 0, sizeof(mem0)); 000192 } 000193 000194 /* 000195 ** Return the amount of memory currently checked out. 000196 */ 000197 sqlite3_int64 sqlite3_memory_used(void){ 000198 sqlite3_int64 res, mx; 000199 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0); 000200 return res; 000201 } 000202 000203 /* 000204 ** Return the maximum amount of memory that has ever been 000205 ** checked out since either the beginning of this process 000206 ** or since the most recent reset. 000207 */ 000208 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 000209 sqlite3_int64 res, mx; 000210 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag); 000211 return mx; 000212 } 000213 000214 /* 000215 ** Trigger the alarm 000216 */ 000217 static void sqlite3MallocAlarm(int nByte){ 000218 if( mem0.alarmThreshold<=0 ) return; 000219 sqlite3_mutex_leave(mem0.mutex); 000220 sqlite3_release_memory(nByte); 000221 sqlite3_mutex_enter(mem0.mutex); 000222 } 000223 000224 /* 000225 ** Do a memory allocation with statistics and alarms. Assume the 000226 ** lock is already held. 000227 */ 000228 static void mallocWithAlarm(int n, void **pp){ 000229 void *p; 000230 int nFull; 000231 assert( sqlite3_mutex_held(mem0.mutex) ); 000232 assert( n>0 ); 000233 000234 /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal 000235 ** implementation of malloc_good_size(), which must be called in debug 000236 ** mode and specifically when the DMD "Dark Matter Detector" is enabled 000237 ** or else a crash results. Hence, do not attempt to optimize out the 000238 ** following xRoundup() call. */ 000239 nFull = sqlite3GlobalConfig.m.xRoundup(n); 000240 000241 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); 000242 if( mem0.alarmThreshold>0 ){ 000243 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 000244 if( nUsed >= mem0.alarmThreshold - nFull ){ 000245 AtomicStore(&mem0.nearlyFull, 1); 000246 sqlite3MallocAlarm(nFull); 000247 if( mem0.hardLimit ){ 000248 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 000249 if( nUsed >= mem0.hardLimit - nFull ){ 000250 *pp = 0; 000251 return; 000252 } 000253 } 000254 }else{ 000255 AtomicStore(&mem0.nearlyFull, 0); 000256 } 000257 } 000258 p = sqlite3GlobalConfig.m.xMalloc(nFull); 000259 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 000260 if( p==0 && mem0.alarmThreshold>0 ){ 000261 sqlite3MallocAlarm(nFull); 000262 p = sqlite3GlobalConfig.m.xMalloc(nFull); 000263 } 000264 #endif 000265 if( p ){ 000266 nFull = sqlite3MallocSize(p); 000267 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); 000268 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); 000269 } 000270 *pp = p; 000271 } 000272 000273 /* 000274 ** Maximum size of any single memory allocation. 000275 ** 000276 ** This is not a limit on the total amount of memory used. This is 000277 ** a limit on the size parameter to sqlite3_malloc() and sqlite3_realloc(). 000278 ** 000279 ** The upper bound is slightly less than 2GiB: 0x7ffffeff == 2,147,483,391 000280 ** This provides a 256-byte safety margin for defense against 32-bit 000281 ** signed integer overflow bugs when computing memory allocation sizes. 000282 ** Paranoid applications might want to reduce the maximum allocation size 000283 ** further for an even larger safety margin. 0x3fffffff or 0x0fffffff 000284 ** or even smaller would be reasonable upper bounds on the size of a memory 000285 ** allocations for most applications. 000286 */ 000287 #ifndef SQLITE_MAX_ALLOCATION_SIZE 000288 # define SQLITE_MAX_ALLOCATION_SIZE 2147483391 000289 #endif 000290 #if SQLITE_MAX_ALLOCATION_SIZE>2147483391 000291 # error Maximum size for SQLITE_MAX_ALLOCATION_SIZE is 2147483391 000292 #endif 000293 000294 /* 000295 ** Allocate memory. This routine is like sqlite3_malloc() except that it 000296 ** assumes the memory subsystem has already been initialized. 000297 */ 000298 void *sqlite3Malloc(u64 n){ 000299 void *p; 000300 if( n==0 || n>SQLITE_MAX_ALLOCATION_SIZE ){ 000301 p = 0; 000302 }else if( sqlite3GlobalConfig.bMemstat ){ 000303 sqlite3_mutex_enter(mem0.mutex); 000304 mallocWithAlarm((int)n, &p); 000305 sqlite3_mutex_leave(mem0.mutex); 000306 }else{ 000307 p = sqlite3GlobalConfig.m.xMalloc((int)n); 000308 } 000309 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ 000310 return p; 000311 } 000312 000313 /* 000314 ** This version of the memory allocation is for use by the application. 000315 ** First make sure the memory subsystem is initialized, then do the 000316 ** allocation. 000317 */ 000318 void *sqlite3_malloc(int n){ 000319 #ifndef SQLITE_OMIT_AUTOINIT 000320 if( sqlite3_initialize() ) return 0; 000321 #endif 000322 return n<=0 ? 0 : sqlite3Malloc(n); 000323 } 000324 void *sqlite3_malloc64(sqlite3_uint64 n){ 000325 #ifndef SQLITE_OMIT_AUTOINIT 000326 if( sqlite3_initialize() ) return 0; 000327 #endif 000328 return sqlite3Malloc(n); 000329 } 000330 000331 /* 000332 ** TRUE if p is a lookaside memory allocation from db 000333 */ 000334 #ifndef SQLITE_OMIT_LOOKASIDE 000335 static int isLookaside(sqlite3 *db, const void *p){ 000336 return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pTrueEnd); 000337 } 000338 #else 000339 #define isLookaside(A,B) 0 000340 #endif 000341 000342 /* 000343 ** Return the size of a memory allocation previously obtained from 000344 ** sqlite3Malloc() or sqlite3_malloc(). 000345 */ 000346 int sqlite3MallocSize(const void *p){ 000347 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 000348 return sqlite3GlobalConfig.m.xSize((void*)p); 000349 } 000350 static int lookasideMallocSize(sqlite3 *db, const void *p){ 000351 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000352 return p<db->lookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL; 000353 #else 000354 return db->lookaside.szTrue; 000355 #endif 000356 } 000357 int sqlite3DbMallocSize(sqlite3 *db, const void *p){ 000358 assert( p!=0 ); 000359 #ifdef SQLITE_DEBUG 000360 if( db==0 ){ 000361 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 000362 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 000363 }else if( !isLookaside(db,p) ){ 000364 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000365 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000366 } 000367 #endif 000368 if( db ){ 000369 if( ((uptr)p)<(uptr)(db->lookaside.pTrueEnd) ){ 000370 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000371 if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ 000372 assert( sqlite3_mutex_held(db->mutex) ); 000373 return LOOKASIDE_SMALL; 000374 } 000375 #endif 000376 if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ 000377 assert( sqlite3_mutex_held(db->mutex) ); 000378 return db->lookaside.szTrue; 000379 } 000380 } 000381 } 000382 return sqlite3GlobalConfig.m.xSize((void*)p); 000383 } 000384 sqlite3_uint64 sqlite3_msize(void *p){ 000385 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 000386 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 000387 return p ? sqlite3GlobalConfig.m.xSize(p) : 0; 000388 } 000389 000390 /* 000391 ** Free memory previously obtained from sqlite3Malloc(). 000392 */ 000393 void sqlite3_free(void *p){ 000394 if( p==0 ) return; /* IMP: R-49053-54554 */ 000395 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 000396 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 000397 if( sqlite3GlobalConfig.bMemstat ){ 000398 sqlite3_mutex_enter(mem0.mutex); 000399 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); 000400 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); 000401 sqlite3GlobalConfig.m.xFree(p); 000402 sqlite3_mutex_leave(mem0.mutex); 000403 }else{ 000404 sqlite3GlobalConfig.m.xFree(p); 000405 } 000406 } 000407 000408 /* 000409 ** Add the size of memory allocation "p" to the count in 000410 ** *db->pnBytesFreed. 000411 */ 000412 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ 000413 *db->pnBytesFreed += sqlite3DbMallocSize(db,p); 000414 } 000415 000416 /* 000417 ** Free memory that might be associated with a particular database 000418 ** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op. 000419 ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL. 000420 */ 000421 void sqlite3DbFreeNN(sqlite3 *db, void *p){ 000422 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 000423 assert( p!=0 ); 000424 if( db ){ 000425 if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ 000426 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000427 if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ 000428 LookasideSlot *pBuf = (LookasideSlot*)p; 000429 assert( db->pnBytesFreed==0 ); 000430 #ifdef SQLITE_DEBUG 000431 memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */ 000432 #endif 000433 pBuf->pNext = db->lookaside.pSmallFree; 000434 db->lookaside.pSmallFree = pBuf; 000435 return; 000436 } 000437 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ 000438 if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ 000439 LookasideSlot *pBuf = (LookasideSlot*)p; 000440 assert( db->pnBytesFreed==0 ); 000441 #ifdef SQLITE_DEBUG 000442 memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */ 000443 #endif 000444 pBuf->pNext = db->lookaside.pFree; 000445 db->lookaside.pFree = pBuf; 000446 return; 000447 } 000448 } 000449 if( db->pnBytesFreed ){ 000450 measureAllocationSize(db, p); 000451 return; 000452 } 000453 } 000454 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000455 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000456 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 000457 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 000458 sqlite3_free(p); 000459 } 000460 void sqlite3DbNNFreeNN(sqlite3 *db, void *p){ 000461 assert( db!=0 ); 000462 assert( sqlite3_mutex_held(db->mutex) ); 000463 assert( p!=0 ); 000464 if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ 000465 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000466 if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ 000467 LookasideSlot *pBuf = (LookasideSlot*)p; 000468 assert( db->pnBytesFreed==0 ); 000469 #ifdef SQLITE_DEBUG 000470 memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */ 000471 #endif 000472 pBuf->pNext = db->lookaside.pSmallFree; 000473 db->lookaside.pSmallFree = pBuf; 000474 return; 000475 } 000476 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ 000477 if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ 000478 LookasideSlot *pBuf = (LookasideSlot*)p; 000479 assert( db->pnBytesFreed==0 ); 000480 #ifdef SQLITE_DEBUG 000481 memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */ 000482 #endif 000483 pBuf->pNext = db->lookaside.pFree; 000484 db->lookaside.pFree = pBuf; 000485 return; 000486 } 000487 } 000488 if( db->pnBytesFreed ){ 000489 measureAllocationSize(db, p); 000490 return; 000491 } 000492 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000493 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000494 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 000495 sqlite3_free(p); 000496 } 000497 void sqlite3DbFree(sqlite3 *db, void *p){ 000498 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 000499 if( p ) sqlite3DbFreeNN(db, p); 000500 } 000501 000502 /* 000503 ** Change the size of an existing memory allocation 000504 */ 000505 void *sqlite3Realloc(void *pOld, u64 nBytes){ 000506 int nOld, nNew, nDiff; 000507 void *pNew; 000508 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 000509 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); 000510 if( pOld==0 ){ 000511 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ 000512 } 000513 if( nBytes==0 ){ 000514 sqlite3_free(pOld); /* IMP: R-26507-47431 */ 000515 return 0; 000516 } 000517 if( nBytes>=0x7fffff00 ){ 000518 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 000519 return 0; 000520 } 000521 nOld = sqlite3MallocSize(pOld); 000522 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 000523 ** argument to xRealloc is always a value returned by a prior call to 000524 ** xRoundup. */ 000525 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); 000526 if( nOld==nNew ){ 000527 pNew = pOld; 000528 }else if( sqlite3GlobalConfig.bMemstat ){ 000529 sqlite3_int64 nUsed; 000530 sqlite3_mutex_enter(mem0.mutex); 000531 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); 000532 nDiff = nNew - nOld; 000533 if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >= 000534 mem0.alarmThreshold-nDiff ){ 000535 sqlite3MallocAlarm(nDiff); 000536 if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){ 000537 sqlite3_mutex_leave(mem0.mutex); 000538 return 0; 000539 } 000540 } 000541 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 000542 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 000543 if( pNew==0 && mem0.alarmThreshold>0 ){ 000544 sqlite3MallocAlarm((int)nBytes); 000545 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 000546 } 000547 #endif 000548 if( pNew ){ 000549 nNew = sqlite3MallocSize(pNew); 000550 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 000551 } 000552 sqlite3_mutex_leave(mem0.mutex); 000553 }else{ 000554 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 000555 } 000556 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ 000557 return pNew; 000558 } 000559 000560 /* 000561 ** The public interface to sqlite3Realloc. Make sure that the memory 000562 ** subsystem is initialized prior to invoking sqliteRealloc. 000563 */ 000564 void *sqlite3_realloc(void *pOld, int n){ 000565 #ifndef SQLITE_OMIT_AUTOINIT 000566 if( sqlite3_initialize() ) return 0; 000567 #endif 000568 if( n<0 ) n = 0; /* IMP: R-26507-47431 */ 000569 return sqlite3Realloc(pOld, n); 000570 } 000571 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ 000572 #ifndef SQLITE_OMIT_AUTOINIT 000573 if( sqlite3_initialize() ) return 0; 000574 #endif 000575 return sqlite3Realloc(pOld, n); 000576 } 000577 000578 000579 /* 000580 ** Allocate and zero memory. 000581 */ 000582 void *sqlite3MallocZero(u64 n){ 000583 void *p = sqlite3Malloc(n); 000584 if( p ){ 000585 memset(p, 0, (size_t)n); 000586 } 000587 return p; 000588 } 000589 000590 /* 000591 ** Allocate and zero memory. If the allocation fails, make 000592 ** the mallocFailed flag in the connection pointer. 000593 */ 000594 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ 000595 void *p; 000596 testcase( db==0 ); 000597 p = sqlite3DbMallocRaw(db, n); 000598 if( p ) memset(p, 0, (size_t)n); 000599 return p; 000600 } 000601 000602 000603 /* Finish the work of sqlite3DbMallocRawNN for the unusual and 000604 ** slower case when the allocation cannot be fulfilled using lookaside. 000605 */ 000606 static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){ 000607 void *p; 000608 assert( db!=0 ); 000609 p = sqlite3Malloc(n); 000610 if( !p ) sqlite3OomFault(db); 000611 sqlite3MemdebugSetType(p, 000612 (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); 000613 return p; 000614 } 000615 000616 /* 000617 ** Allocate memory, either lookaside (if possible) or heap. 000618 ** If the allocation fails, set the mallocFailed flag in 000619 ** the connection pointer. 000620 ** 000621 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 000622 ** failure on the same database connection) then always return 0. 000623 ** Hence for a particular database connection, once malloc starts 000624 ** failing, it fails consistently until mallocFailed is reset. 000625 ** This is an important assumption. There are many places in the 000626 ** code that do things like this: 000627 ** 000628 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 000629 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 000630 ** if( b ) a[10] = 9; 000631 ** 000632 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 000633 ** that all prior mallocs (ex: "a") worked too. 000634 ** 000635 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is 000636 ** not a NULL pointer. 000637 */ 000638 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ 000639 void *p; 000640 if( db ) return sqlite3DbMallocRawNN(db, n); 000641 p = sqlite3Malloc(n); 000642 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 000643 return p; 000644 } 000645 void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){ 000646 #ifndef SQLITE_OMIT_LOOKASIDE 000647 LookasideSlot *pBuf; 000648 assert( db!=0 ); 000649 assert( sqlite3_mutex_held(db->mutex) ); 000650 assert( db->pnBytesFreed==0 ); 000651 if( n>db->lookaside.sz ){ 000652 if( !db->lookaside.bDisable ){ 000653 db->lookaside.anStat[1]++; 000654 }else if( db->mallocFailed ){ 000655 return 0; 000656 } 000657 return dbMallocRawFinish(db, n); 000658 } 000659 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000660 if( n<=LOOKASIDE_SMALL ){ 000661 if( (pBuf = db->lookaside.pSmallFree)!=0 ){ 000662 db->lookaside.pSmallFree = pBuf->pNext; 000663 db->lookaside.anStat[0]++; 000664 return (void*)pBuf; 000665 }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){ 000666 db->lookaside.pSmallInit = pBuf->pNext; 000667 db->lookaside.anStat[0]++; 000668 return (void*)pBuf; 000669 } 000670 } 000671 #endif 000672 if( (pBuf = db->lookaside.pFree)!=0 ){ 000673 db->lookaside.pFree = pBuf->pNext; 000674 db->lookaside.anStat[0]++; 000675 return (void*)pBuf; 000676 }else if( (pBuf = db->lookaside.pInit)!=0 ){ 000677 db->lookaside.pInit = pBuf->pNext; 000678 db->lookaside.anStat[0]++; 000679 return (void*)pBuf; 000680 }else{ 000681 db->lookaside.anStat[2]++; 000682 } 000683 #else 000684 assert( db!=0 ); 000685 assert( sqlite3_mutex_held(db->mutex) ); 000686 assert( db->pnBytesFreed==0 ); 000687 if( db->mallocFailed ){ 000688 return 0; 000689 } 000690 #endif 000691 return dbMallocRawFinish(db, n); 000692 } 000693 000694 /* Forward declaration */ 000695 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n); 000696 000697 /* 000698 ** Resize the block of memory pointed to by p to n bytes. If the 000699 ** resize fails, set the mallocFailed flag in the connection object. 000700 */ 000701 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ 000702 assert( db!=0 ); 000703 if( p==0 ) return sqlite3DbMallocRawNN(db, n); 000704 assert( sqlite3_mutex_held(db->mutex) ); 000705 if( ((uptr)p)<(uptr)db->lookaside.pEnd ){ 000706 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000707 if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){ 000708 if( n<=LOOKASIDE_SMALL ) return p; 000709 }else 000710 #endif 000711 if( ((uptr)p)>=(uptr)db->lookaside.pStart ){ 000712 if( n<=db->lookaside.szTrue ) return p; 000713 } 000714 } 000715 return dbReallocFinish(db, p, n); 000716 } 000717 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){ 000718 void *pNew = 0; 000719 assert( db!=0 ); 000720 assert( p!=0 ); 000721 if( db->mallocFailed==0 ){ 000722 if( isLookaside(db, p) ){ 000723 pNew = sqlite3DbMallocRawNN(db, n); 000724 if( pNew ){ 000725 memcpy(pNew, p, lookasideMallocSize(db, p)); 000726 sqlite3DbFree(db, p); 000727 } 000728 }else{ 000729 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000730 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000731 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 000732 pNew = sqlite3Realloc(p, n); 000733 if( !pNew ){ 000734 sqlite3OomFault(db); 000735 } 000736 sqlite3MemdebugSetType(pNew, 000737 (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 000738 } 000739 } 000740 return pNew; 000741 } 000742 000743 /* 000744 ** Attempt to reallocate p. If the reallocation fails, then free p 000745 ** and set the mallocFailed flag in the database connection. 000746 */ 000747 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ 000748 void *pNew; 000749 pNew = sqlite3DbRealloc(db, p, n); 000750 if( !pNew ){ 000751 sqlite3DbFree(db, p); 000752 } 000753 return pNew; 000754 } 000755 000756 /* 000757 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 000758 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 000759 ** is because when memory debugging is turned on, these two functions are 000760 ** called via macros that record the current file and line number in the 000761 ** ThreadData structure. 000762 */ 000763 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 000764 char *zNew; 000765 size_t n; 000766 if( z==0 ){ 000767 return 0; 000768 } 000769 n = strlen(z) + 1; 000770 zNew = sqlite3DbMallocRaw(db, n); 000771 if( zNew ){ 000772 memcpy(zNew, z, n); 000773 } 000774 return zNew; 000775 } 000776 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ 000777 char *zNew; 000778 assert( db!=0 ); 000779 assert( z!=0 || n==0 ); 000780 assert( (n&0x7fffffff)==n ); 000781 zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0; 000782 if( zNew ){ 000783 memcpy(zNew, z, (size_t)n); 000784 zNew[n] = 0; 000785 } 000786 return zNew; 000787 } 000788 000789 /* 000790 ** The text between zStart and zEnd represents a phrase within a larger 000791 ** SQL statement. Make a copy of this phrase in space obtained form 000792 ** sqlite3DbMalloc(). Omit leading and trailing whitespace. 000793 */ 000794 char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){ 000795 int n; 000796 #ifdef SQLITE_DEBUG 000797 /* Because of the way the parser works, the span is guaranteed to contain 000798 ** at least one non-space character */ 000799 for(n=0; sqlite3Isspace(zStart[n]); n++){ assert( &zStart[n]<zEnd ); } 000800 #endif 000801 while( sqlite3Isspace(zStart[0]) ) zStart++; 000802 n = (int)(zEnd - zStart); 000803 while( sqlite3Isspace(zStart[n-1]) ) n--; 000804 return sqlite3DbStrNDup(db, zStart, n); 000805 } 000806 000807 /* 000808 ** Free any prior content in *pz and replace it with a copy of zNew. 000809 */ 000810 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){ 000811 char *z = sqlite3DbStrDup(db, zNew); 000812 sqlite3DbFree(db, *pz); 000813 *pz = z; 000814 } 000815 000816 /* 000817 ** Call this routine to record the fact that an OOM (out-of-memory) error 000818 ** has happened. This routine will set db->mallocFailed, and also 000819 ** temporarily disable the lookaside memory allocator and interrupt 000820 ** any running VDBEs. 000821 ** 000822 ** Always return a NULL pointer so that this routine can be invoked using 000823 ** 000824 ** return sqlite3OomFault(db); 000825 ** 000826 ** and thereby avoid unnecessary stack frame allocations for the overwhelmingly 000827 ** common case where no OOM occurs. 000828 */ 000829 void *sqlite3OomFault(sqlite3 *db){ 000830 if( db->mallocFailed==0 && db->bBenignMalloc==0 ){ 000831 db->mallocFailed = 1; 000832 if( db->nVdbeExec>0 ){ 000833 AtomicStore(&db->u1.isInterrupted, 1); 000834 } 000835 DisableLookaside; 000836 if( db->pParse ){ 000837 Parse *pParse; 000838 sqlite3ErrorMsg(db->pParse, "out of memory"); 000839 db->pParse->rc = SQLITE_NOMEM_BKPT; 000840 for(pParse=db->pParse->pOuterParse; pParse; pParse = pParse->pOuterParse){ 000841 pParse->nErr++; 000842 pParse->rc = SQLITE_NOMEM; 000843 } 000844 } 000845 } 000846 return 0; 000847 } 000848 000849 /* 000850 ** This routine reactivates the memory allocator and clears the 000851 ** db->mallocFailed flag as necessary. 000852 ** 000853 ** The memory allocator is not restarted if there are running 000854 ** VDBEs. 000855 */ 000856 void sqlite3OomClear(sqlite3 *db){ 000857 if( db->mallocFailed && db->nVdbeExec==0 ){ 000858 db->mallocFailed = 0; 000859 AtomicStore(&db->u1.isInterrupted, 0); 000860 assert( db->lookaside.bDisable>0 ); 000861 EnableLookaside; 000862 } 000863 } 000864 000865 /* 000866 ** Take actions at the end of an API call to deal with error codes. 000867 */ 000868 static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){ 000869 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ 000870 sqlite3OomClear(db); 000871 sqlite3Error(db, SQLITE_NOMEM); 000872 return SQLITE_NOMEM_BKPT; 000873 } 000874 return rc & db->errMask; 000875 } 000876 000877 /* 000878 ** This function must be called before exiting any API function (i.e. 000879 ** returning control to the user) that has called sqlite3_malloc or 000880 ** sqlite3_realloc. 000881 ** 000882 ** The returned value is normally a copy of the second argument to this 000883 ** function. However, if a malloc() failure has occurred since the previous 000884 ** invocation SQLITE_NOMEM is returned instead. 000885 ** 000886 ** If an OOM as occurred, then the connection error-code (the value 000887 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. 000888 */ 000889 int sqlite3ApiExit(sqlite3* db, int rc){ 000890 /* If the db handle must hold the connection handle mutex here. 000891 ** Otherwise the read (and possible write) of db->mallocFailed 000892 ** is unsafe, as is the call to sqlite3Error(). 000893 */ 000894 assert( db!=0 ); 000895 assert( sqlite3_mutex_held(db->mutex) ); 000896 if( db->mallocFailed || rc ){ 000897 return apiHandleError(db, rc); 000898 } 000899 return rc & db->errMask; 000900 }