000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains C code routines that are called by the parser 000013 ** to handle INSERT statements in SQLite. 000014 */ 000015 #include "sqliteInt.h" 000016 000017 /* 000018 ** Generate code that will 000019 ** 000020 ** (1) acquire a lock for table pTab then 000021 ** (2) open pTab as cursor iCur. 000022 ** 000023 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 000024 ** for that table that is actually opened. 000025 */ 000026 void sqlite3OpenTable( 000027 Parse *pParse, /* Generate code into this VDBE */ 000028 int iCur, /* The cursor number of the table */ 000029 int iDb, /* The database index in sqlite3.aDb[] */ 000030 Table *pTab, /* The table to be opened */ 000031 int opcode /* OP_OpenRead or OP_OpenWrite */ 000032 ){ 000033 Vdbe *v; 000034 assert( !IsVirtual(pTab) ); 000035 assert( pParse->pVdbe!=0 ); 000036 v = pParse->pVdbe; 000037 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 000038 if( !pParse->db->noSharedCache ){ 000039 sqlite3TableLock(pParse, iDb, pTab->tnum, 000040 (opcode==OP_OpenWrite)?1:0, pTab->zName); 000041 } 000042 if( HasRowid(pTab) ){ 000043 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 000044 VdbeComment((v, "%s", pTab->zName)); 000045 }else{ 000046 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 000047 assert( pPk!=0 ); 000048 assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); 000049 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 000050 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 000051 VdbeComment((v, "%s", pTab->zName)); 000052 } 000053 } 000054 000055 /* 000056 ** Return a pointer to the column affinity string associated with index 000057 ** pIdx. A column affinity string has one character for each column in 000058 ** the table, according to the affinity of the column: 000059 ** 000060 ** Character Column affinity 000061 ** ------------------------------ 000062 ** 'A' BLOB 000063 ** 'B' TEXT 000064 ** 'C' NUMERIC 000065 ** 'D' INTEGER 000066 ** 'F' REAL 000067 ** 000068 ** An extra 'D' is appended to the end of the string to cover the 000069 ** rowid that appears as the last column in every index. 000070 ** 000071 ** Memory for the buffer containing the column index affinity string 000072 ** is managed along with the rest of the Index structure. It will be 000073 ** released when sqlite3DeleteIndex() is called. 000074 */ 000075 static SQLITE_NOINLINE const char *computeIndexAffStr(sqlite3 *db, Index *pIdx){ 000076 /* The first time a column affinity string for a particular index is 000077 ** required, it is allocated and populated here. It is then stored as 000078 ** a member of the Index structure for subsequent use. 000079 ** 000080 ** The column affinity string will eventually be deleted by 000081 ** sqliteDeleteIndex() when the Index structure itself is cleaned 000082 ** up. 000083 */ 000084 int n; 000085 Table *pTab = pIdx->pTable; 000086 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 000087 if( !pIdx->zColAff ){ 000088 sqlite3OomFault(db); 000089 return 0; 000090 } 000091 for(n=0; n<pIdx->nColumn; n++){ 000092 i16 x = pIdx->aiColumn[n]; 000093 char aff; 000094 if( x>=0 ){ 000095 aff = pTab->aCol[x].affinity; 000096 }else if( x==XN_ROWID ){ 000097 aff = SQLITE_AFF_INTEGER; 000098 }else{ 000099 assert( x==XN_EXPR ); 000100 assert( pIdx->bHasExpr ); 000101 assert( pIdx->aColExpr!=0 ); 000102 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 000103 } 000104 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 000105 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 000106 pIdx->zColAff[n] = aff; 000107 } 000108 pIdx->zColAff[n] = 0; 000109 return pIdx->zColAff; 000110 } 000111 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 000112 if( !pIdx->zColAff ) return computeIndexAffStr(db, pIdx); 000113 return pIdx->zColAff; 000114 } 000115 000116 000117 /* 000118 ** Compute an affinity string for a table. Space is obtained 000119 ** from sqlite3DbMalloc(). The caller is responsible for freeing 000120 ** the space when done. 000121 */ 000122 char *sqlite3TableAffinityStr(sqlite3 *db, const Table *pTab){ 000123 char *zColAff; 000124 zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1); 000125 if( zColAff ){ 000126 int i, j; 000127 for(i=j=0; i<pTab->nCol; i++){ 000128 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 000129 zColAff[j++] = pTab->aCol[i].affinity; 000130 } 000131 } 000132 do{ 000133 zColAff[j--] = 0; 000134 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 000135 } 000136 return zColAff; 000137 } 000138 000139 /* 000140 ** Make changes to the evolving bytecode to do affinity transformations 000141 ** of values that are about to be gathered into a row for table pTab. 000142 ** 000143 ** For ordinary (legacy, non-strict) tables: 000144 ** ----------------------------------------- 000145 ** 000146 ** Compute the affinity string for table pTab, if it has not already been 000147 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 000148 ** 000149 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 000150 ** which were then optimized out) then this routine becomes a no-op. 000151 ** 000152 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 000153 ** affinities for register iReg and following. Or if iReg==0, 000154 ** then just set the P4 operand of the previous opcode (which should be 000155 ** an OP_MakeRecord) to the affinity string. 000156 ** 000157 ** A column affinity string has one character per column: 000158 ** 000159 ** Character Column affinity 000160 ** --------- --------------- 000161 ** 'A' BLOB 000162 ** 'B' TEXT 000163 ** 'C' NUMERIC 000164 ** 'D' INTEGER 000165 ** 'E' REAL 000166 ** 000167 ** For STRICT tables: 000168 ** ------------------ 000169 ** 000170 ** Generate an appropriate OP_TypeCheck opcode that will verify the 000171 ** datatypes against the column definitions in pTab. If iReg==0, that 000172 ** means an OP_MakeRecord opcode has already been generated and should be 000173 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 000174 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 000175 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 000176 ** the first of a series of registers that will form the new record. 000177 ** Apply the type checking to that array of registers. 000178 */ 000179 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 000180 int i; 000181 char *zColAff; 000182 if( pTab->tabFlags & TF_Strict ){ 000183 if( iReg==0 ){ 000184 /* Move the previous opcode (which should be OP_MakeRecord) forward 000185 ** by one slot and insert a new OP_TypeCheck where the current 000186 ** OP_MakeRecord is found */ 000187 VdbeOp *pPrev; 000188 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 000189 pPrev = sqlite3VdbeGetLastOp(v); 000190 assert( pPrev!=0 ); 000191 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 000192 pPrev->opcode = OP_TypeCheck; 000193 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 000194 }else{ 000195 /* Insert an isolated OP_Typecheck */ 000196 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 000197 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 000198 } 000199 return; 000200 } 000201 zColAff = pTab->zColAff; 000202 if( zColAff==0 ){ 000203 zColAff = sqlite3TableAffinityStr(0, pTab); 000204 if( !zColAff ){ 000205 sqlite3OomFault(sqlite3VdbeDb(v)); 000206 return; 000207 } 000208 pTab->zColAff = zColAff; 000209 } 000210 assert( zColAff!=0 ); 000211 i = sqlite3Strlen30NN(zColAff); 000212 if( i ){ 000213 if( iReg ){ 000214 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 000215 }else{ 000216 assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord 000217 || sqlite3VdbeDb(v)->mallocFailed ); 000218 sqlite3VdbeChangeP4(v, -1, zColAff, i); 000219 } 000220 } 000221 } 000222 000223 /* 000224 ** Return non-zero if the table pTab in database iDb or any of its indices 000225 ** have been opened at any point in the VDBE program. This is used to see if 000226 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 000227 ** run without using a temporary table for the results of the SELECT. 000228 */ 000229 static int readsTable(Parse *p, int iDb, Table *pTab){ 000230 Vdbe *v = sqlite3GetVdbe(p); 000231 int i; 000232 int iEnd = sqlite3VdbeCurrentAddr(v); 000233 #ifndef SQLITE_OMIT_VIRTUALTABLE 000234 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 000235 #endif 000236 000237 for(i=1; i<iEnd; i++){ 000238 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 000239 assert( pOp!=0 ); 000240 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 000241 Index *pIndex; 000242 Pgno tnum = pOp->p2; 000243 if( tnum==pTab->tnum ){ 000244 return 1; 000245 } 000246 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 000247 if( tnum==pIndex->tnum ){ 000248 return 1; 000249 } 000250 } 000251 } 000252 #ifndef SQLITE_OMIT_VIRTUALTABLE 000253 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 000254 assert( pOp->p4.pVtab!=0 ); 000255 assert( pOp->p4type==P4_VTAB ); 000256 return 1; 000257 } 000258 #endif 000259 } 000260 return 0; 000261 } 000262 000263 /* This walker callback will compute the union of colFlags flags for all 000264 ** referenced columns in a CHECK constraint or generated column expression. 000265 */ 000266 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 000267 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 000268 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 000269 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 000270 } 000271 return WRC_Continue; 000272 } 000273 000274 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 000275 /* 000276 ** All regular columns for table pTab have been puts into registers 000277 ** starting with iRegStore. The registers that correspond to STORED 000278 ** or VIRTUAL columns have not yet been initialized. This routine goes 000279 ** back and computes the values for those columns based on the previously 000280 ** computed normal columns. 000281 */ 000282 void sqlite3ComputeGeneratedColumns( 000283 Parse *pParse, /* Parsing context */ 000284 int iRegStore, /* Register holding the first column */ 000285 Table *pTab /* The table */ 000286 ){ 000287 int i; 000288 Walker w; 000289 Column *pRedo; 000290 int eProgress; 000291 VdbeOp *pOp; 000292 000293 assert( pTab->tabFlags & TF_HasGenerated ); 000294 testcase( pTab->tabFlags & TF_HasVirtual ); 000295 testcase( pTab->tabFlags & TF_HasStored ); 000296 000297 /* Before computing generated columns, first go through and make sure 000298 ** that appropriate affinity has been applied to the regular columns 000299 */ 000300 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 000301 if( (pTab->tabFlags & TF_HasStored)!=0 ){ 000302 pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); 000303 if( pOp->opcode==OP_Affinity ){ 000304 /* Change the OP_Affinity argument to '@' (NONE) for all stored 000305 ** columns. '@' is the no-op affinity and those columns have not 000306 ** yet been computed. */ 000307 int ii, jj; 000308 char *zP4 = pOp->p4.z; 000309 assert( zP4!=0 ); 000310 assert( pOp->p4type==P4_DYNAMIC ); 000311 for(ii=jj=0; zP4[jj]; ii++){ 000312 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 000313 continue; 000314 } 000315 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 000316 zP4[jj] = SQLITE_AFF_NONE; 000317 } 000318 jj++; 000319 } 000320 }else if( pOp->opcode==OP_TypeCheck ){ 000321 /* If an OP_TypeCheck was generated because the table is STRICT, 000322 ** then set the P3 operand to indicate that generated columns should 000323 ** not be checked */ 000324 pOp->p3 = 1; 000325 } 000326 } 000327 000328 /* Because there can be multiple generated columns that refer to one another, 000329 ** this is a two-pass algorithm. On the first pass, mark all generated 000330 ** columns as "not available". 000331 */ 000332 for(i=0; i<pTab->nCol; i++){ 000333 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 000334 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 000335 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 000336 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 000337 } 000338 } 000339 000340 w.u.pTab = pTab; 000341 w.xExprCallback = exprColumnFlagUnion; 000342 w.xSelectCallback = 0; 000343 w.xSelectCallback2 = 0; 000344 000345 /* On the second pass, compute the value of each NOT-AVAILABLE column. 000346 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 000347 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 000348 ** they are needed. 000349 */ 000350 pParse->iSelfTab = -iRegStore; 000351 do{ 000352 eProgress = 0; 000353 pRedo = 0; 000354 for(i=0; i<pTab->nCol; i++){ 000355 Column *pCol = pTab->aCol + i; 000356 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 000357 int x; 000358 pCol->colFlags |= COLFLAG_BUSY; 000359 w.eCode = 0; 000360 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 000361 pCol->colFlags &= ~COLFLAG_BUSY; 000362 if( w.eCode & COLFLAG_NOTAVAIL ){ 000363 pRedo = pCol; 000364 continue; 000365 } 000366 eProgress = 1; 000367 assert( pCol->colFlags & COLFLAG_GENERATED ); 000368 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 000369 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 000370 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 000371 } 000372 } 000373 }while( pRedo && eProgress ); 000374 if( pRedo ){ 000375 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 000376 } 000377 pParse->iSelfTab = 0; 000378 } 000379 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 000380 000381 000382 #ifndef SQLITE_OMIT_AUTOINCREMENT 000383 /* 000384 ** Locate or create an AutoincInfo structure associated with table pTab 000385 ** which is in database iDb. Return the register number for the register 000386 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 000387 ** table. (Also return zero when doing a VACUUM since we do not want to 000388 ** update the AUTOINCREMENT counters during a VACUUM.) 000389 ** 000390 ** There is at most one AutoincInfo structure per table even if the 000391 ** same table is autoincremented multiple times due to inserts within 000392 ** triggers. A new AutoincInfo structure is created if this is the 000393 ** first use of table pTab. On 2nd and subsequent uses, the original 000394 ** AutoincInfo structure is used. 000395 ** 000396 ** Four consecutive registers are allocated: 000397 ** 000398 ** (1) The name of the pTab table. 000399 ** (2) The maximum ROWID of pTab. 000400 ** (3) The rowid in sqlite_sequence of pTab 000401 ** (4) The original value of the max ROWID in pTab, or NULL if none 000402 ** 000403 ** The 2nd register is the one that is returned. That is all the 000404 ** insert routine needs to know about. 000405 */ 000406 static int autoIncBegin( 000407 Parse *pParse, /* Parsing context */ 000408 int iDb, /* Index of the database holding pTab */ 000409 Table *pTab /* The table we are writing to */ 000410 ){ 000411 int memId = 0; /* Register holding maximum rowid */ 000412 assert( pParse->db->aDb[iDb].pSchema!=0 ); 000413 if( (pTab->tabFlags & TF_Autoincrement)!=0 000414 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 000415 ){ 000416 Parse *pToplevel = sqlite3ParseToplevel(pParse); 000417 AutoincInfo *pInfo; 000418 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 000419 000420 /* Verify that the sqlite_sequence table exists and is an ordinary 000421 ** rowid table with exactly two columns. 000422 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 000423 if( pSeqTab==0 000424 || !HasRowid(pSeqTab) 000425 || NEVER(IsVirtual(pSeqTab)) 000426 || pSeqTab->nCol!=2 000427 ){ 000428 pParse->nErr++; 000429 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 000430 return 0; 000431 } 000432 000433 pInfo = pToplevel->pAinc; 000434 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 000435 if( pInfo==0 ){ 000436 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 000437 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 000438 testcase( pParse->earlyCleanup ); 000439 if( pParse->db->mallocFailed ) return 0; 000440 pInfo->pNext = pToplevel->pAinc; 000441 pToplevel->pAinc = pInfo; 000442 pInfo->pTab = pTab; 000443 pInfo->iDb = iDb; 000444 pToplevel->nMem++; /* Register to hold name of table */ 000445 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 000446 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 000447 } 000448 memId = pInfo->regCtr; 000449 } 000450 return memId; 000451 } 000452 000453 /* 000454 ** This routine generates code that will initialize all of the 000455 ** register used by the autoincrement tracker. 000456 */ 000457 void sqlite3AutoincrementBegin(Parse *pParse){ 000458 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 000459 sqlite3 *db = pParse->db; /* The database connection */ 000460 Db *pDb; /* Database only autoinc table */ 000461 int memId; /* Register holding max rowid */ 000462 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 000463 000464 /* This routine is never called during trigger-generation. It is 000465 ** only called from the top-level */ 000466 assert( pParse->pTriggerTab==0 ); 000467 assert( sqlite3IsToplevel(pParse) ); 000468 000469 assert( v ); /* We failed long ago if this is not so */ 000470 for(p = pParse->pAinc; p; p = p->pNext){ 000471 static const int iLn = VDBE_OFFSET_LINENO(2); 000472 static const VdbeOpList autoInc[] = { 000473 /* 0 */ {OP_Null, 0, 0, 0}, 000474 /* 1 */ {OP_Rewind, 0, 10, 0}, 000475 /* 2 */ {OP_Column, 0, 0, 0}, 000476 /* 3 */ {OP_Ne, 0, 9, 0}, 000477 /* 4 */ {OP_Rowid, 0, 0, 0}, 000478 /* 5 */ {OP_Column, 0, 1, 0}, 000479 /* 6 */ {OP_AddImm, 0, 0, 0}, 000480 /* 7 */ {OP_Copy, 0, 0, 0}, 000481 /* 8 */ {OP_Goto, 0, 11, 0}, 000482 /* 9 */ {OP_Next, 0, 2, 0}, 000483 /* 10 */ {OP_Integer, 0, 0, 0}, 000484 /* 11 */ {OP_Close, 0, 0, 0} 000485 }; 000486 VdbeOp *aOp; 000487 pDb = &db->aDb[p->iDb]; 000488 memId = p->regCtr; 000489 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 000490 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 000491 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 000492 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 000493 if( aOp==0 ) break; 000494 aOp[0].p2 = memId; 000495 aOp[0].p3 = memId+2; 000496 aOp[2].p3 = memId; 000497 aOp[3].p1 = memId-1; 000498 aOp[3].p3 = memId; 000499 aOp[3].p5 = SQLITE_JUMPIFNULL; 000500 aOp[4].p2 = memId+1; 000501 aOp[5].p3 = memId; 000502 aOp[6].p1 = memId; 000503 aOp[7].p2 = memId+2; 000504 aOp[7].p1 = memId; 000505 aOp[10].p2 = memId; 000506 if( pParse->nTab==0 ) pParse->nTab = 1; 000507 } 000508 } 000509 000510 /* 000511 ** Update the maximum rowid for an autoincrement calculation. 000512 ** 000513 ** This routine should be called when the regRowid register holds a 000514 ** new rowid that is about to be inserted. If that new rowid is 000515 ** larger than the maximum rowid in the memId memory cell, then the 000516 ** memory cell is updated. 000517 */ 000518 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 000519 if( memId>0 ){ 000520 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 000521 } 000522 } 000523 000524 /* 000525 ** This routine generates the code needed to write autoincrement 000526 ** maximum rowid values back into the sqlite_sequence register. 000527 ** Every statement that might do an INSERT into an autoincrement 000528 ** table (either directly or through triggers) needs to call this 000529 ** routine just before the "exit" code. 000530 */ 000531 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 000532 AutoincInfo *p; 000533 Vdbe *v = pParse->pVdbe; 000534 sqlite3 *db = pParse->db; 000535 000536 assert( v ); 000537 for(p = pParse->pAinc; p; p = p->pNext){ 000538 static const int iLn = VDBE_OFFSET_LINENO(2); 000539 static const VdbeOpList autoIncEnd[] = { 000540 /* 0 */ {OP_NotNull, 0, 2, 0}, 000541 /* 1 */ {OP_NewRowid, 0, 0, 0}, 000542 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 000543 /* 3 */ {OP_Insert, 0, 0, 0}, 000544 /* 4 */ {OP_Close, 0, 0, 0} 000545 }; 000546 VdbeOp *aOp; 000547 Db *pDb = &db->aDb[p->iDb]; 000548 int iRec; 000549 int memId = p->regCtr; 000550 000551 iRec = sqlite3GetTempReg(pParse); 000552 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 000553 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 000554 VdbeCoverage(v); 000555 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 000556 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 000557 if( aOp==0 ) break; 000558 aOp[0].p1 = memId+1; 000559 aOp[1].p2 = memId+1; 000560 aOp[2].p1 = memId-1; 000561 aOp[2].p3 = iRec; 000562 aOp[3].p2 = iRec; 000563 aOp[3].p3 = memId+1; 000564 aOp[3].p5 = OPFLAG_APPEND; 000565 sqlite3ReleaseTempReg(pParse, iRec); 000566 } 000567 } 000568 void sqlite3AutoincrementEnd(Parse *pParse){ 000569 if( pParse->pAinc ) autoIncrementEnd(pParse); 000570 } 000571 #else 000572 /* 000573 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 000574 ** above are all no-ops 000575 */ 000576 # define autoIncBegin(A,B,C) (0) 000577 # define autoIncStep(A,B,C) 000578 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 000579 000580 000581 /* Forward declaration */ 000582 static int xferOptimization( 000583 Parse *pParse, /* Parser context */ 000584 Table *pDest, /* The table we are inserting into */ 000585 Select *pSelect, /* A SELECT statement to use as the data source */ 000586 int onError, /* How to handle constraint errors */ 000587 int iDbDest /* The database of pDest */ 000588 ); 000589 000590 /* 000591 ** This routine is called to handle SQL of the following forms: 000592 ** 000593 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 000594 ** insert into TABLE (IDLIST) select 000595 ** insert into TABLE (IDLIST) default values 000596 ** 000597 ** The IDLIST following the table name is always optional. If omitted, 000598 ** then a list of all (non-hidden) columns for the table is substituted. 000599 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 000600 ** is omitted. 000601 ** 000602 ** For the pSelect parameter holds the values to be inserted for the 000603 ** first two forms shown above. A VALUES clause is really just short-hand 000604 ** for a SELECT statement that omits the FROM clause and everything else 000605 ** that follows. If the pSelect parameter is NULL, that means that the 000606 ** DEFAULT VALUES form of the INSERT statement is intended. 000607 ** 000608 ** The code generated follows one of four templates. For a simple 000609 ** insert with data coming from a single-row VALUES clause, the code executes 000610 ** once straight down through. Pseudo-code follows (we call this 000611 ** the "1st template"): 000612 ** 000613 ** open write cursor to <table> and its indices 000614 ** put VALUES clause expressions into registers 000615 ** write the resulting record into <table> 000616 ** cleanup 000617 ** 000618 ** The three remaining templates assume the statement is of the form 000619 ** 000620 ** INSERT INTO <table> SELECT ... 000621 ** 000622 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 000623 ** in other words if the SELECT pulls all columns from a single table 000624 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 000625 ** if <table2> and <table1> are distinct tables but have identical 000626 ** schemas, including all the same indices, then a special optimization 000627 ** is invoked that copies raw records from <table2> over to <table1>. 000628 ** See the xferOptimization() function for the implementation of this 000629 ** template. This is the 2nd template. 000630 ** 000631 ** open a write cursor to <table> 000632 ** open read cursor on <table2> 000633 ** transfer all records in <table2> over to <table> 000634 ** close cursors 000635 ** foreach index on <table> 000636 ** open a write cursor on the <table> index 000637 ** open a read cursor on the corresponding <table2> index 000638 ** transfer all records from the read to the write cursors 000639 ** close cursors 000640 ** end foreach 000641 ** 000642 ** The 3rd template is for when the second template does not apply 000643 ** and the SELECT clause does not read from <table> at any time. 000644 ** The generated code follows this template: 000645 ** 000646 ** X <- A 000647 ** goto B 000648 ** A: setup for the SELECT 000649 ** loop over the rows in the SELECT 000650 ** load values into registers R..R+n 000651 ** yield X 000652 ** end loop 000653 ** cleanup after the SELECT 000654 ** end-coroutine X 000655 ** B: open write cursor to <table> and its indices 000656 ** C: yield X, at EOF goto D 000657 ** insert the select result into <table> from R..R+n 000658 ** goto C 000659 ** D: cleanup 000660 ** 000661 ** The 4th template is used if the insert statement takes its 000662 ** values from a SELECT but the data is being inserted into a table 000663 ** that is also read as part of the SELECT. In the third form, 000664 ** we have to use an intermediate table to store the results of 000665 ** the select. The template is like this: 000666 ** 000667 ** X <- A 000668 ** goto B 000669 ** A: setup for the SELECT 000670 ** loop over the tables in the SELECT 000671 ** load value into register R..R+n 000672 ** yield X 000673 ** end loop 000674 ** cleanup after the SELECT 000675 ** end co-routine R 000676 ** B: open temp table 000677 ** L: yield X, at EOF goto M 000678 ** insert row from R..R+n into temp table 000679 ** goto L 000680 ** M: open write cursor to <table> and its indices 000681 ** rewind temp table 000682 ** C: loop over rows of intermediate table 000683 ** transfer values form intermediate table into <table> 000684 ** end loop 000685 ** D: cleanup 000686 */ 000687 void sqlite3Insert( 000688 Parse *pParse, /* Parser context */ 000689 SrcList *pTabList, /* Name of table into which we are inserting */ 000690 Select *pSelect, /* A SELECT statement to use as the data source */ 000691 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 000692 int onError, /* How to handle constraint errors */ 000693 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 000694 ){ 000695 sqlite3 *db; /* The main database structure */ 000696 Table *pTab; /* The table to insert into. aka TABLE */ 000697 int i, j; /* Loop counters */ 000698 Vdbe *v; /* Generate code into this virtual machine */ 000699 Index *pIdx; /* For looping over indices of the table */ 000700 int nColumn; /* Number of columns in the data */ 000701 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 000702 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 000703 int iIdxCur = 0; /* First index cursor */ 000704 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 000705 int endOfLoop; /* Label for the end of the insertion loop */ 000706 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 000707 int addrInsTop = 0; /* Jump to label "D" */ 000708 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 000709 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 000710 int iDb; /* Index of database holding TABLE */ 000711 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 000712 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 000713 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 000714 u8 bIdListInOrder; /* True if IDLIST is in table order */ 000715 ExprList *pList = 0; /* List of VALUES() to be inserted */ 000716 int iRegStore; /* Register in which to store next column */ 000717 000718 /* Register allocations */ 000719 int regFromSelect = 0;/* Base register for data coming from SELECT */ 000720 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 000721 int regRowCount = 0; /* Memory cell used for the row counter */ 000722 int regIns; /* Block of regs holding rowid+data being inserted */ 000723 int regRowid; /* registers holding insert rowid */ 000724 int regData; /* register holding first column to insert */ 000725 int *aRegIdx = 0; /* One register allocated to each index */ 000726 000727 #ifndef SQLITE_OMIT_TRIGGER 000728 int isView; /* True if attempting to insert into a view */ 000729 Trigger *pTrigger; /* List of triggers on pTab, if required */ 000730 int tmask; /* Mask of trigger times */ 000731 #endif 000732 000733 db = pParse->db; 000734 assert( db->pParse==pParse ); 000735 if( pParse->nErr ){ 000736 goto insert_cleanup; 000737 } 000738 assert( db->mallocFailed==0 ); 000739 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 000740 000741 /* If the Select object is really just a simple VALUES() list with a 000742 ** single row (the common case) then keep that one row of values 000743 ** and discard the other (unused) parts of the pSelect object 000744 */ 000745 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 000746 pList = pSelect->pEList; 000747 pSelect->pEList = 0; 000748 sqlite3SelectDelete(db, pSelect); 000749 pSelect = 0; 000750 } 000751 000752 /* Locate the table into which we will be inserting new information. 000753 */ 000754 assert( pTabList->nSrc==1 ); 000755 pTab = sqlite3SrcListLookup(pParse, pTabList); 000756 if( pTab==0 ){ 000757 goto insert_cleanup; 000758 } 000759 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 000760 assert( iDb<db->nDb ); 000761 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 000762 db->aDb[iDb].zDbSName) ){ 000763 goto insert_cleanup; 000764 } 000765 withoutRowid = !HasRowid(pTab); 000766 000767 /* Figure out if we have any triggers and if the table being 000768 ** inserted into is a view 000769 */ 000770 #ifndef SQLITE_OMIT_TRIGGER 000771 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 000772 isView = IsView(pTab); 000773 #else 000774 # define pTrigger 0 000775 # define tmask 0 000776 # define isView 0 000777 #endif 000778 #ifdef SQLITE_OMIT_VIEW 000779 # undef isView 000780 # define isView 0 000781 #endif 000782 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 000783 000784 #if TREETRACE_ENABLED 000785 if( sqlite3TreeTrace & 0x10000 ){ 000786 sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__); 000787 sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList, 000788 onError, pUpsert, pTrigger); 000789 } 000790 #endif 000791 000792 /* If pTab is really a view, make sure it has been initialized. 000793 ** ViewGetColumnNames() is a no-op if pTab is not a view. 000794 */ 000795 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 000796 goto insert_cleanup; 000797 } 000798 000799 /* Cannot insert into a read-only table. 000800 */ 000801 if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){ 000802 goto insert_cleanup; 000803 } 000804 000805 /* Allocate a VDBE 000806 */ 000807 v = sqlite3GetVdbe(pParse); 000808 if( v==0 ) goto insert_cleanup; 000809 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 000810 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 000811 000812 #ifndef SQLITE_OMIT_XFER_OPT 000813 /* If the statement is of the form 000814 ** 000815 ** INSERT INTO <table1> SELECT * FROM <table2>; 000816 ** 000817 ** Then special optimizations can be applied that make the transfer 000818 ** very fast and which reduce fragmentation of indices. 000819 ** 000820 ** This is the 2nd template. 000821 */ 000822 if( pColumn==0 000823 && pSelect!=0 000824 && pTrigger==0 000825 && xferOptimization(pParse, pTab, pSelect, onError, iDb) 000826 ){ 000827 assert( !pTrigger ); 000828 assert( pList==0 ); 000829 goto insert_end; 000830 } 000831 #endif /* SQLITE_OMIT_XFER_OPT */ 000832 000833 /* If this is an AUTOINCREMENT table, look up the sequence number in the 000834 ** sqlite_sequence table and store it in memory cell regAutoinc. 000835 */ 000836 regAutoinc = autoIncBegin(pParse, iDb, pTab); 000837 000838 /* Allocate a block registers to hold the rowid and the values 000839 ** for all columns of the new row. 000840 */ 000841 regRowid = regIns = pParse->nMem+1; 000842 pParse->nMem += pTab->nCol + 1; 000843 if( IsVirtual(pTab) ){ 000844 regRowid++; 000845 pParse->nMem++; 000846 } 000847 regData = regRowid+1; 000848 000849 /* If the INSERT statement included an IDLIST term, then make sure 000850 ** all elements of the IDLIST really are columns of the table and 000851 ** remember the column indices. 000852 ** 000853 ** If the table has an INTEGER PRIMARY KEY column and that column 000854 ** is named in the IDLIST, then record in the ipkColumn variable 000855 ** the index into IDLIST of the primary key column. ipkColumn is 000856 ** the index of the primary key as it appears in IDLIST, not as 000857 ** is appears in the original table. (The index of the INTEGER 000858 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 000859 ** loop, if ipkColumn==(-1), that means that integer primary key 000860 ** is unspecified, and hence the table is either WITHOUT ROWID or 000861 ** it will automatically generated an integer primary key. 000862 ** 000863 ** bIdListInOrder is true if the columns in IDLIST are in storage 000864 ** order. This enables an optimization that avoids shuffling the 000865 ** columns into storage order. False negatives are harmless, 000866 ** but false positives will cause database corruption. 000867 */ 000868 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 000869 if( pColumn ){ 000870 assert( pColumn->eU4!=EU4_EXPR ); 000871 pColumn->eU4 = EU4_IDX; 000872 for(i=0; i<pColumn->nId; i++){ 000873 pColumn->a[i].u4.idx = -1; 000874 } 000875 for(i=0; i<pColumn->nId; i++){ 000876 for(j=0; j<pTab->nCol; j++){ 000877 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 000878 pColumn->a[i].u4.idx = j; 000879 if( i!=j ) bIdListInOrder = 0; 000880 if( j==pTab->iPKey ){ 000881 ipkColumn = i; assert( !withoutRowid ); 000882 } 000883 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 000884 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 000885 sqlite3ErrorMsg(pParse, 000886 "cannot INSERT into generated column \"%s\"", 000887 pTab->aCol[j].zCnName); 000888 goto insert_cleanup; 000889 } 000890 #endif 000891 break; 000892 } 000893 } 000894 if( j>=pTab->nCol ){ 000895 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 000896 ipkColumn = i; 000897 bIdListInOrder = 0; 000898 }else{ 000899 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 000900 pTabList->a, pColumn->a[i].zName); 000901 pParse->checkSchema = 1; 000902 goto insert_cleanup; 000903 } 000904 } 000905 } 000906 } 000907 000908 /* Figure out how many columns of data are supplied. If the data 000909 ** is coming from a SELECT statement, then generate a co-routine that 000910 ** produces a single row of the SELECT on each invocation. The 000911 ** co-routine is the common header to the 3rd and 4th templates. 000912 */ 000913 if( pSelect ){ 000914 /* Data is coming from a SELECT or from a multi-row VALUES clause. 000915 ** Generate a co-routine to run the SELECT. */ 000916 int regYield; /* Register holding co-routine entry-point */ 000917 int addrTop; /* Top of the co-routine */ 000918 int rc; /* Result code */ 000919 000920 regYield = ++pParse->nMem; 000921 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 000922 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 000923 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 000924 dest.iSdst = bIdListInOrder ? regData : 0; 000925 dest.nSdst = pTab->nCol; 000926 rc = sqlite3Select(pParse, pSelect, &dest); 000927 regFromSelect = dest.iSdst; 000928 assert( db->pParse==pParse ); 000929 if( rc || pParse->nErr ) goto insert_cleanup; 000930 assert( db->mallocFailed==0 ); 000931 sqlite3VdbeEndCoroutine(v, regYield); 000932 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 000933 assert( pSelect->pEList ); 000934 nColumn = pSelect->pEList->nExpr; 000935 000936 /* Set useTempTable to TRUE if the result of the SELECT statement 000937 ** should be written into a temporary table (template 4). Set to 000938 ** FALSE if each output row of the SELECT can be written directly into 000939 ** the destination table (template 3). 000940 ** 000941 ** A temp table must be used if the table being updated is also one 000942 ** of the tables being read by the SELECT statement. Also use a 000943 ** temp table in the case of row triggers. 000944 */ 000945 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 000946 useTempTable = 1; 000947 } 000948 000949 if( useTempTable ){ 000950 /* Invoke the coroutine to extract information from the SELECT 000951 ** and add it to a transient table srcTab. The code generated 000952 ** here is from the 4th template: 000953 ** 000954 ** B: open temp table 000955 ** L: yield X, goto M at EOF 000956 ** insert row from R..R+n into temp table 000957 ** goto L 000958 ** M: ... 000959 */ 000960 int regRec; /* Register to hold packed record */ 000961 int regTempRowid; /* Register to hold temp table ROWID */ 000962 int addrL; /* Label "L" */ 000963 000964 srcTab = pParse->nTab++; 000965 regRec = sqlite3GetTempReg(pParse); 000966 regTempRowid = sqlite3GetTempReg(pParse); 000967 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 000968 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 000969 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 000970 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 000971 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 000972 sqlite3VdbeGoto(v, addrL); 000973 sqlite3VdbeJumpHere(v, addrL); 000974 sqlite3ReleaseTempReg(pParse, regRec); 000975 sqlite3ReleaseTempReg(pParse, regTempRowid); 000976 } 000977 }else{ 000978 /* This is the case if the data for the INSERT is coming from a 000979 ** single-row VALUES clause 000980 */ 000981 NameContext sNC; 000982 memset(&sNC, 0, sizeof(sNC)); 000983 sNC.pParse = pParse; 000984 srcTab = -1; 000985 assert( useTempTable==0 ); 000986 if( pList ){ 000987 nColumn = pList->nExpr; 000988 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 000989 goto insert_cleanup; 000990 } 000991 }else{ 000992 nColumn = 0; 000993 } 000994 } 000995 000996 /* If there is no IDLIST term but the table has an integer primary 000997 ** key, the set the ipkColumn variable to the integer primary key 000998 ** column index in the original table definition. 000999 */ 001000 if( pColumn==0 && nColumn>0 ){ 001001 ipkColumn = pTab->iPKey; 001002 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001003 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 001004 testcase( pTab->tabFlags & TF_HasVirtual ); 001005 testcase( pTab->tabFlags & TF_HasStored ); 001006 for(i=ipkColumn-1; i>=0; i--){ 001007 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 001008 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 001009 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 001010 ipkColumn--; 001011 } 001012 } 001013 } 001014 #endif 001015 001016 /* Make sure the number of columns in the source data matches the number 001017 ** of columns to be inserted into the table. 001018 */ 001019 assert( TF_HasHidden==COLFLAG_HIDDEN ); 001020 assert( TF_HasGenerated==COLFLAG_GENERATED ); 001021 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 001022 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 001023 for(i=0; i<pTab->nCol; i++){ 001024 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 001025 } 001026 } 001027 if( nColumn!=(pTab->nCol-nHidden) ){ 001028 sqlite3ErrorMsg(pParse, 001029 "table %S has %d columns but %d values were supplied", 001030 pTabList->a, pTab->nCol-nHidden, nColumn); 001031 goto insert_cleanup; 001032 } 001033 } 001034 if( pColumn!=0 && nColumn!=pColumn->nId ){ 001035 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 001036 goto insert_cleanup; 001037 } 001038 001039 /* Initialize the count of rows to be inserted 001040 */ 001041 if( (db->flags & SQLITE_CountRows)!=0 001042 && !pParse->nested 001043 && !pParse->pTriggerTab 001044 && !pParse->bReturning 001045 ){ 001046 regRowCount = ++pParse->nMem; 001047 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 001048 } 001049 001050 /* If this is not a view, open the table and and all indices */ 001051 if( !isView ){ 001052 int nIdx; 001053 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 001054 &iDataCur, &iIdxCur); 001055 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 001056 if( aRegIdx==0 ){ 001057 goto insert_cleanup; 001058 } 001059 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 001060 assert( pIdx ); 001061 aRegIdx[i] = ++pParse->nMem; 001062 pParse->nMem += pIdx->nColumn; 001063 } 001064 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 001065 } 001066 #ifndef SQLITE_OMIT_UPSERT 001067 if( pUpsert ){ 001068 Upsert *pNx; 001069 if( IsVirtual(pTab) ){ 001070 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 001071 pTab->zName); 001072 goto insert_cleanup; 001073 } 001074 if( IsView(pTab) ){ 001075 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 001076 goto insert_cleanup; 001077 } 001078 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 001079 goto insert_cleanup; 001080 } 001081 pTabList->a[0].iCursor = iDataCur; 001082 pNx = pUpsert; 001083 do{ 001084 pNx->pUpsertSrc = pTabList; 001085 pNx->regData = regData; 001086 pNx->iDataCur = iDataCur; 001087 pNx->iIdxCur = iIdxCur; 001088 if( pNx->pUpsertTarget ){ 001089 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ 001090 goto insert_cleanup; 001091 } 001092 } 001093 pNx = pNx->pNextUpsert; 001094 }while( pNx!=0 ); 001095 } 001096 #endif 001097 001098 001099 /* This is the top of the main insertion loop */ 001100 if( useTempTable ){ 001101 /* This block codes the top of loop only. The complete loop is the 001102 ** following pseudocode (template 4): 001103 ** 001104 ** rewind temp table, if empty goto D 001105 ** C: loop over rows of intermediate table 001106 ** transfer values form intermediate table into <table> 001107 ** end loop 001108 ** D: ... 001109 */ 001110 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 001111 addrCont = sqlite3VdbeCurrentAddr(v); 001112 }else if( pSelect ){ 001113 /* This block codes the top of loop only. The complete loop is the 001114 ** following pseudocode (template 3): 001115 ** 001116 ** C: yield X, at EOF goto D 001117 ** insert the select result into <table> from R..R+n 001118 ** goto C 001119 ** D: ... 001120 */ 001121 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 001122 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 001123 VdbeCoverage(v); 001124 if( ipkColumn>=0 ){ 001125 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 001126 ** SELECT, go ahead and copy the value into the rowid slot now, so that 001127 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 001128 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 001129 } 001130 } 001131 001132 /* Compute data for ordinary columns of the new entry. Values 001133 ** are written in storage order into registers starting with regData. 001134 ** Only ordinary columns are computed in this loop. The rowid 001135 ** (if there is one) is computed later and generated columns are 001136 ** computed after the rowid since they might depend on the value 001137 ** of the rowid. 001138 */ 001139 nHidden = 0; 001140 iRegStore = regData; assert( regData==regRowid+1 ); 001141 for(i=0; i<pTab->nCol; i++, iRegStore++){ 001142 int k; 001143 u32 colFlags; 001144 assert( i>=nHidden ); 001145 if( i==pTab->iPKey ){ 001146 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 001147 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 001148 ** using excess space. The file format definition requires this extra 001149 ** NULL - we cannot optimize further by skipping the column completely */ 001150 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 001151 continue; 001152 } 001153 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 001154 nHidden++; 001155 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 001156 /* Virtual columns do not participate in OP_MakeRecord. So back up 001157 ** iRegStore by one slot to compensate for the iRegStore++ in the 001158 ** outer for() loop */ 001159 iRegStore--; 001160 continue; 001161 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 001162 /* Stored columns are computed later. But if there are BEFORE 001163 ** triggers, the slots used for stored columns will be OP_Copy-ed 001164 ** to a second block of registers, so the register needs to be 001165 ** initialized to NULL to avoid an uninitialized register read */ 001166 if( tmask & TRIGGER_BEFORE ){ 001167 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 001168 } 001169 continue; 001170 }else if( pColumn==0 ){ 001171 /* Hidden columns that are not explicitly named in the INSERT 001172 ** get there default value */ 001173 sqlite3ExprCodeFactorable(pParse, 001174 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 001175 iRegStore); 001176 continue; 001177 } 001178 } 001179 if( pColumn ){ 001180 assert( pColumn->eU4==EU4_IDX ); 001181 for(j=0; j<pColumn->nId && pColumn->a[j].u4.idx!=i; j++){} 001182 if( j>=pColumn->nId ){ 001183 /* A column not named in the insert column list gets its 001184 ** default value */ 001185 sqlite3ExprCodeFactorable(pParse, 001186 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 001187 iRegStore); 001188 continue; 001189 } 001190 k = j; 001191 }else if( nColumn==0 ){ 001192 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 001193 sqlite3ExprCodeFactorable(pParse, 001194 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 001195 iRegStore); 001196 continue; 001197 }else{ 001198 k = i - nHidden; 001199 } 001200 001201 if( useTempTable ){ 001202 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 001203 }else if( pSelect ){ 001204 if( regFromSelect!=regData ){ 001205 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 001206 } 001207 }else{ 001208 Expr *pX = pList->a[k].pExpr; 001209 int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore); 001210 if( y!=iRegStore ){ 001211 sqlite3VdbeAddOp2(v, 001212 ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore); 001213 } 001214 } 001215 } 001216 001217 001218 /* Run the BEFORE and INSTEAD OF triggers, if there are any 001219 */ 001220 endOfLoop = sqlite3VdbeMakeLabel(pParse); 001221 if( tmask & TRIGGER_BEFORE ){ 001222 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 001223 001224 /* build the NEW.* reference row. Note that if there is an INTEGER 001225 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 001226 ** translated into a unique ID for the row. But on a BEFORE trigger, 001227 ** we do not know what the unique ID will be (because the insert has 001228 ** not happened yet) so we substitute a rowid of -1 001229 */ 001230 if( ipkColumn<0 ){ 001231 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 001232 }else{ 001233 int addr1; 001234 assert( !withoutRowid ); 001235 if( useTempTable ){ 001236 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 001237 }else{ 001238 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 001239 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 001240 } 001241 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 001242 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 001243 sqlite3VdbeJumpHere(v, addr1); 001244 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 001245 } 001246 001247 /* Copy the new data already generated. */ 001248 assert( pTab->nNVCol>0 || pParse->nErr>0 ); 001249 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 001250 001251 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001252 /* Compute the new value for generated columns after all other 001253 ** columns have already been computed. This must be done after 001254 ** computing the ROWID in case one of the generated columns 001255 ** refers to the ROWID. */ 001256 if( pTab->tabFlags & TF_HasGenerated ){ 001257 testcase( pTab->tabFlags & TF_HasVirtual ); 001258 testcase( pTab->tabFlags & TF_HasStored ); 001259 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 001260 } 001261 #endif 001262 001263 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 001264 ** do not attempt any conversions before assembling the record. 001265 ** If this is a real table, attempt conversions as required by the 001266 ** table column affinities. 001267 */ 001268 if( !isView ){ 001269 sqlite3TableAffinity(v, pTab, regCols+1); 001270 } 001271 001272 /* Fire BEFORE or INSTEAD OF triggers */ 001273 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 001274 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 001275 001276 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 001277 } 001278 001279 if( !isView ){ 001280 if( IsVirtual(pTab) ){ 001281 /* The row that the VUpdate opcode will delete: none */ 001282 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 001283 } 001284 if( ipkColumn>=0 ){ 001285 /* Compute the new rowid */ 001286 if( useTempTable ){ 001287 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 001288 }else if( pSelect ){ 001289 /* Rowid already initialized at tag-20191021-001 */ 001290 }else{ 001291 Expr *pIpk = pList->a[ipkColumn].pExpr; 001292 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 001293 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 001294 appendFlag = 1; 001295 }else{ 001296 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 001297 } 001298 } 001299 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 001300 ** to generate a unique primary key value. 001301 */ 001302 if( !appendFlag ){ 001303 int addr1; 001304 if( !IsVirtual(pTab) ){ 001305 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 001306 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 001307 sqlite3VdbeJumpHere(v, addr1); 001308 }else{ 001309 addr1 = sqlite3VdbeCurrentAddr(v); 001310 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 001311 } 001312 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 001313 } 001314 }else if( IsVirtual(pTab) || withoutRowid ){ 001315 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 001316 }else{ 001317 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 001318 appendFlag = 1; 001319 } 001320 autoIncStep(pParse, regAutoinc, regRowid); 001321 001322 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001323 /* Compute the new value for generated columns after all other 001324 ** columns have already been computed. This must be done after 001325 ** computing the ROWID in case one of the generated columns 001326 ** is derived from the INTEGER PRIMARY KEY. */ 001327 if( pTab->tabFlags & TF_HasGenerated ){ 001328 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 001329 } 001330 #endif 001331 001332 /* Generate code to check constraints and generate index keys and 001333 ** do the insertion. 001334 */ 001335 #ifndef SQLITE_OMIT_VIRTUALTABLE 001336 if( IsVirtual(pTab) ){ 001337 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 001338 sqlite3VtabMakeWritable(pParse, pTab); 001339 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 001340 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 001341 sqlite3MayAbort(pParse); 001342 }else 001343 #endif 001344 { 001345 int isReplace = 0;/* Set to true if constraints may cause a replace */ 001346 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 001347 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 001348 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 001349 ); 001350 if( db->flags & SQLITE_ForeignKeys ){ 001351 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 001352 } 001353 001354 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 001355 ** constraints or (b) there are no triggers and this table is not a 001356 ** parent table in a foreign key constraint. It is safe to set the 001357 ** flag in the second case as if any REPLACE constraint is hit, an 001358 ** OP_Delete or OP_IdxDelete instruction will be executed on each 001359 ** cursor that is disturbed. And these instructions both clear the 001360 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 001361 ** functionality. */ 001362 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 001363 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 001364 regIns, aRegIdx, 0, appendFlag, bUseSeek 001365 ); 001366 } 001367 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 001368 }else if( pParse->bReturning ){ 001369 /* If there is a RETURNING clause, populate the rowid register with 001370 ** constant value -1, in case one or more of the returned expressions 001371 ** refer to the "rowid" of the view. */ 001372 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 001373 #endif 001374 } 001375 001376 /* Update the count of rows that are inserted 001377 */ 001378 if( regRowCount ){ 001379 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 001380 } 001381 001382 if( pTrigger ){ 001383 /* Code AFTER triggers */ 001384 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 001385 pTab, regData-2-pTab->nCol, onError, endOfLoop); 001386 } 001387 001388 /* The bottom of the main insertion loop, if the data source 001389 ** is a SELECT statement. 001390 */ 001391 sqlite3VdbeResolveLabel(v, endOfLoop); 001392 if( useTempTable ){ 001393 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 001394 sqlite3VdbeJumpHere(v, addrInsTop); 001395 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 001396 }else if( pSelect ){ 001397 sqlite3VdbeGoto(v, addrCont); 001398 #ifdef SQLITE_DEBUG 001399 /* If we are jumping back to an OP_Yield that is preceded by an 001400 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 001401 ** OP_ReleaseReg will be included in the loop. */ 001402 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 001403 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 001404 sqlite3VdbeChangeP5(v, 1); 001405 } 001406 #endif 001407 sqlite3VdbeJumpHere(v, addrInsTop); 001408 } 001409 001410 #ifndef SQLITE_OMIT_XFER_OPT 001411 insert_end: 001412 #endif /* SQLITE_OMIT_XFER_OPT */ 001413 /* Update the sqlite_sequence table by storing the content of the 001414 ** maximum rowid counter values recorded while inserting into 001415 ** autoincrement tables. 001416 */ 001417 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 001418 sqlite3AutoincrementEnd(pParse); 001419 } 001420 001421 /* 001422 ** Return the number of rows inserted. If this routine is 001423 ** generating code because of a call to sqlite3NestedParse(), do not 001424 ** invoke the callback function. 001425 */ 001426 if( regRowCount ){ 001427 sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); 001428 } 001429 001430 insert_cleanup: 001431 sqlite3SrcListDelete(db, pTabList); 001432 sqlite3ExprListDelete(db, pList); 001433 sqlite3UpsertDelete(db, pUpsert); 001434 sqlite3SelectDelete(db, pSelect); 001435 sqlite3IdListDelete(db, pColumn); 001436 if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx); 001437 } 001438 001439 /* Make sure "isView" and other macros defined above are undefined. Otherwise 001440 ** they may interfere with compilation of other functions in this file 001441 ** (or in another file, if this file becomes part of the amalgamation). */ 001442 #ifdef isView 001443 #undef isView 001444 #endif 001445 #ifdef pTrigger 001446 #undef pTrigger 001447 #endif 001448 #ifdef tmask 001449 #undef tmask 001450 #endif 001451 001452 /* 001453 ** Meanings of bits in of pWalker->eCode for 001454 ** sqlite3ExprReferencesUpdatedColumn() 001455 */ 001456 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 001457 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 001458 001459 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 001460 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 001461 ** expression node references any of the 001462 ** columns that are being modified by an UPDATE statement. 001463 */ 001464 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 001465 if( pExpr->op==TK_COLUMN ){ 001466 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 001467 if( pExpr->iColumn>=0 ){ 001468 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 001469 pWalker->eCode |= CKCNSTRNT_COLUMN; 001470 } 001471 }else{ 001472 pWalker->eCode |= CKCNSTRNT_ROWID; 001473 } 001474 } 001475 return WRC_Continue; 001476 } 001477 001478 /* 001479 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 001480 ** only columns that are modified by the UPDATE are those for which 001481 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 001482 ** 001483 ** Return true if CHECK constraint pExpr uses any of the 001484 ** changing columns (or the rowid if it is changing). In other words, 001485 ** return true if this CHECK constraint must be validated for 001486 ** the new row in the UPDATE statement. 001487 ** 001488 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 001489 ** The operation of this routine is the same - return true if an only if 001490 ** the expression uses one or more of columns identified by the second and 001491 ** third arguments. 001492 */ 001493 int sqlite3ExprReferencesUpdatedColumn( 001494 Expr *pExpr, /* The expression to be checked */ 001495 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 001496 int chngRowid /* True if UPDATE changes the rowid */ 001497 ){ 001498 Walker w; 001499 memset(&w, 0, sizeof(w)); 001500 w.eCode = 0; 001501 w.xExprCallback = checkConstraintExprNode; 001502 w.u.aiCol = aiChng; 001503 sqlite3WalkExpr(&w, pExpr); 001504 if( !chngRowid ){ 001505 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 001506 w.eCode &= ~CKCNSTRNT_ROWID; 001507 } 001508 testcase( w.eCode==0 ); 001509 testcase( w.eCode==CKCNSTRNT_COLUMN ); 001510 testcase( w.eCode==CKCNSTRNT_ROWID ); 001511 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 001512 return w.eCode!=0; 001513 } 001514 001515 /* 001516 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 001517 ** the indexes of a table in the order provided in the Table->pIndex list. 001518 ** However, sometimes (rarely - when there is an upsert) it wants to visit 001519 ** the indexes in a different order. The following data structures accomplish 001520 ** this. 001521 ** 001522 ** The IndexIterator object is used to walk through all of the indexes 001523 ** of a table in either Index.pNext order, or in some other order established 001524 ** by an array of IndexListTerm objects. 001525 */ 001526 typedef struct IndexListTerm IndexListTerm; 001527 typedef struct IndexIterator IndexIterator; 001528 struct IndexIterator { 001529 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 001530 int i; /* Index of the current item from the list */ 001531 union { 001532 struct { /* Use this object for eType==0: A Index.pNext list */ 001533 Index *pIdx; /* The current Index */ 001534 } lx; 001535 struct { /* Use this object for eType==1; Array of IndexListTerm */ 001536 int nIdx; /* Size of the array */ 001537 IndexListTerm *aIdx; /* Array of IndexListTerms */ 001538 } ax; 001539 } u; 001540 }; 001541 001542 /* When IndexIterator.eType==1, then each index is an array of instances 001543 ** of the following object 001544 */ 001545 struct IndexListTerm { 001546 Index *p; /* The index */ 001547 int ix; /* Which entry in the original Table.pIndex list is this index*/ 001548 }; 001549 001550 /* Return the first index on the list */ 001551 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 001552 assert( pIter->i==0 ); 001553 if( pIter->eType ){ 001554 *pIx = pIter->u.ax.aIdx[0].ix; 001555 return pIter->u.ax.aIdx[0].p; 001556 }else{ 001557 *pIx = 0; 001558 return pIter->u.lx.pIdx; 001559 } 001560 } 001561 001562 /* Return the next index from the list. Return NULL when out of indexes */ 001563 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 001564 if( pIter->eType ){ 001565 int i = ++pIter->i; 001566 if( i>=pIter->u.ax.nIdx ){ 001567 *pIx = i; 001568 return 0; 001569 } 001570 *pIx = pIter->u.ax.aIdx[i].ix; 001571 return pIter->u.ax.aIdx[i].p; 001572 }else{ 001573 ++(*pIx); 001574 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 001575 return pIter->u.lx.pIdx; 001576 } 001577 } 001578 001579 /* 001580 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 001581 ** on table pTab. 001582 ** 001583 ** The regNewData parameter is the first register in a range that contains 001584 ** the data to be inserted or the data after the update. There will be 001585 ** pTab->nCol+1 registers in this range. The first register (the one 001586 ** that regNewData points to) will contain the new rowid, or NULL in the 001587 ** case of a WITHOUT ROWID table. The second register in the range will 001588 ** contain the content of the first table column. The third register will 001589 ** contain the content of the second table column. And so forth. 001590 ** 001591 ** The regOldData parameter is similar to regNewData except that it contains 001592 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 001593 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 001594 ** checking regOldData for zero. 001595 ** 001596 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 001597 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 001598 ** might be modified by the UPDATE. If pkChng is false, then the key of 001599 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 001600 ** 001601 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 001602 ** was explicitly specified as part of the INSERT statement. If pkChng 001603 ** is zero, it means that the either rowid is computed automatically or 001604 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 001605 ** pkChng will only be true if the INSERT statement provides an integer 001606 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 001607 ** 001608 ** The code generated by this routine will store new index entries into 001609 ** registers identified by aRegIdx[]. No index entry is created for 001610 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 001611 ** the same as the order of indices on the linked list of indices 001612 ** at pTab->pIndex. 001613 ** 001614 ** (2019-05-07) The generated code also creates a new record for the 001615 ** main table, if pTab is a rowid table, and stores that record in the 001616 ** register identified by aRegIdx[nIdx] - in other words in the first 001617 ** entry of aRegIdx[] past the last index. It is important that the 001618 ** record be generated during constraint checks to avoid affinity changes 001619 ** to the register content that occur after constraint checks but before 001620 ** the new record is inserted. 001621 ** 001622 ** The caller must have already opened writeable cursors on the main 001623 ** table and all applicable indices (that is to say, all indices for which 001624 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 001625 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 001626 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 001627 ** for the first index in the pTab->pIndex list. Cursors for other indices 001628 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 001629 ** 001630 ** This routine also generates code to check constraints. NOT NULL, 001631 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 001632 ** then the appropriate action is performed. There are five possible 001633 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 001634 ** 001635 ** Constraint type Action What Happens 001636 ** --------------- ---------- ---------------------------------------- 001637 ** any ROLLBACK The current transaction is rolled back and 001638 ** sqlite3_step() returns immediately with a 001639 ** return code of SQLITE_CONSTRAINT. 001640 ** 001641 ** any ABORT Back out changes from the current command 001642 ** only (do not do a complete rollback) then 001643 ** cause sqlite3_step() to return immediately 001644 ** with SQLITE_CONSTRAINT. 001645 ** 001646 ** any FAIL Sqlite3_step() returns immediately with a 001647 ** return code of SQLITE_CONSTRAINT. The 001648 ** transaction is not rolled back and any 001649 ** changes to prior rows are retained. 001650 ** 001651 ** any IGNORE The attempt in insert or update the current 001652 ** row is skipped, without throwing an error. 001653 ** Processing continues with the next row. 001654 ** (There is an immediate jump to ignoreDest.) 001655 ** 001656 ** NOT NULL REPLACE The NULL value is replace by the default 001657 ** value for that column. If the default value 001658 ** is NULL, the action is the same as ABORT. 001659 ** 001660 ** UNIQUE REPLACE The other row that conflicts with the row 001661 ** being inserted is removed. 001662 ** 001663 ** CHECK REPLACE Illegal. The results in an exception. 001664 ** 001665 ** Which action to take is determined by the overrideError parameter. 001666 ** Or if overrideError==OE_Default, then the pParse->onError parameter 001667 ** is used. Or if pParse->onError==OE_Default then the onError value 001668 ** for the constraint is used. 001669 */ 001670 void sqlite3GenerateConstraintChecks( 001671 Parse *pParse, /* The parser context */ 001672 Table *pTab, /* The table being inserted or updated */ 001673 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 001674 int iDataCur, /* Canonical data cursor (main table or PK index) */ 001675 int iIdxCur, /* First index cursor */ 001676 int regNewData, /* First register in a range holding values to insert */ 001677 int regOldData, /* Previous content. 0 for INSERTs */ 001678 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 001679 u8 overrideError, /* Override onError to this if not OE_Default */ 001680 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 001681 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 001682 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 001683 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 001684 ){ 001685 Vdbe *v; /* VDBE under construction */ 001686 Index *pIdx; /* Pointer to one of the indices */ 001687 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 001688 sqlite3 *db; /* Database connection */ 001689 int i; /* loop counter */ 001690 int ix; /* Index loop counter */ 001691 int nCol; /* Number of columns */ 001692 int onError; /* Conflict resolution strategy */ 001693 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 001694 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 001695 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 001696 u8 isUpdate; /* True if this is an UPDATE operation */ 001697 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 001698 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 001699 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 001700 int ipkTop = 0; /* Top of the IPK uniqueness check */ 001701 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 001702 /* Variables associated with retesting uniqueness constraints after 001703 ** replace triggers fire have run */ 001704 int regTrigCnt; /* Register used to count replace trigger invocations */ 001705 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 001706 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 001707 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 001708 int nReplaceTrig = 0; /* Number of replace triggers coded */ 001709 IndexIterator sIdxIter; /* Index iterator */ 001710 001711 isUpdate = regOldData!=0; 001712 db = pParse->db; 001713 v = pParse->pVdbe; 001714 assert( v!=0 ); 001715 assert( !IsView(pTab) ); /* This table is not a VIEW */ 001716 nCol = pTab->nCol; 001717 001718 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 001719 ** normal rowid tables. nPkField is the number of key fields in the 001720 ** pPk index or 1 for a rowid table. In other words, nPkField is the 001721 ** number of fields in the true primary key of the table. */ 001722 if( HasRowid(pTab) ){ 001723 pPk = 0; 001724 nPkField = 1; 001725 }else{ 001726 pPk = sqlite3PrimaryKeyIndex(pTab); 001727 nPkField = pPk->nKeyCol; 001728 } 001729 001730 /* Record that this module has started */ 001731 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 001732 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 001733 001734 /* Test all NOT NULL constraints. 001735 */ 001736 if( pTab->tabFlags & TF_HasNotNull ){ 001737 int b2ndPass = 0; /* True if currently running 2nd pass */ 001738 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 001739 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 001740 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 001741 for(i=0; i<nCol; i++){ 001742 int iReg; /* Register holding column value */ 001743 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 001744 int isGenerated; /* non-zero if column is generated */ 001745 onError = pCol->notNull; 001746 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 001747 if( i==pTab->iPKey ){ 001748 continue; /* ROWID is never NULL */ 001749 } 001750 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 001751 if( isGenerated && !b2ndPass ){ 001752 nGenerated++; 001753 continue; /* Generated columns processed on 2nd pass */ 001754 } 001755 if( aiChng && aiChng[i]<0 && !isGenerated ){ 001756 /* Do not check NOT NULL on columns that do not change */ 001757 continue; 001758 } 001759 if( overrideError!=OE_Default ){ 001760 onError = overrideError; 001761 }else if( onError==OE_Default ){ 001762 onError = OE_Abort; 001763 } 001764 if( onError==OE_Replace ){ 001765 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 001766 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 001767 ){ 001768 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 001769 testcase( pCol->colFlags & COLFLAG_STORED ); 001770 testcase( pCol->colFlags & COLFLAG_GENERATED ); 001771 onError = OE_Abort; 001772 }else{ 001773 assert( !isGenerated ); 001774 } 001775 }else if( b2ndPass && !isGenerated ){ 001776 continue; 001777 } 001778 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 001779 || onError==OE_Ignore || onError==OE_Replace ); 001780 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 001781 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 001782 switch( onError ){ 001783 case OE_Replace: { 001784 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 001785 VdbeCoverage(v); 001786 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 001787 nSeenReplace++; 001788 sqlite3ExprCodeCopy(pParse, 001789 sqlite3ColumnExpr(pTab, pCol), iReg); 001790 sqlite3VdbeJumpHere(v, addr1); 001791 break; 001792 } 001793 case OE_Abort: 001794 sqlite3MayAbort(pParse); 001795 /* no break */ deliberate_fall_through 001796 case OE_Rollback: 001797 case OE_Fail: { 001798 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 001799 pCol->zCnName); 001800 testcase( zMsg==0 && db->mallocFailed==0 ); 001801 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 001802 onError, iReg); 001803 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 001804 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 001805 VdbeCoverage(v); 001806 break; 001807 } 001808 default: { 001809 assert( onError==OE_Ignore ); 001810 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 001811 VdbeCoverage(v); 001812 break; 001813 } 001814 } /* end switch(onError) */ 001815 } /* end loop i over columns */ 001816 if( nGenerated==0 && nSeenReplace==0 ){ 001817 /* If there are no generated columns with NOT NULL constraints 001818 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 001819 ** pass is sufficient */ 001820 break; 001821 } 001822 if( b2ndPass ) break; /* Never need more than 2 passes */ 001823 b2ndPass = 1; 001824 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001825 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 001826 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 001827 ** first pass, recomputed values for all generated columns, as 001828 ** those values might depend on columns affected by the REPLACE. 001829 */ 001830 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 001831 } 001832 #endif 001833 } /* end of 2-pass loop */ 001834 } /* end if( has-not-null-constraints ) */ 001835 001836 /* Test all CHECK constraints 001837 */ 001838 #ifndef SQLITE_OMIT_CHECK 001839 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 001840 ExprList *pCheck = pTab->pCheck; 001841 pParse->iSelfTab = -(regNewData+1); 001842 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 001843 for(i=0; i<pCheck->nExpr; i++){ 001844 int allOk; 001845 Expr *pCopy; 001846 Expr *pExpr = pCheck->a[i].pExpr; 001847 if( aiChng 001848 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 001849 ){ 001850 /* The check constraints do not reference any of the columns being 001851 ** updated so there is no point it verifying the check constraint */ 001852 continue; 001853 } 001854 if( bAffinityDone==0 ){ 001855 sqlite3TableAffinity(v, pTab, regNewData+1); 001856 bAffinityDone = 1; 001857 } 001858 allOk = sqlite3VdbeMakeLabel(pParse); 001859 sqlite3VdbeVerifyAbortable(v, onError); 001860 pCopy = sqlite3ExprDup(db, pExpr, 0); 001861 if( !db->mallocFailed ){ 001862 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 001863 } 001864 sqlite3ExprDelete(db, pCopy); 001865 if( onError==OE_Ignore ){ 001866 sqlite3VdbeGoto(v, ignoreDest); 001867 }else{ 001868 char *zName = pCheck->a[i].zEName; 001869 assert( zName!=0 || pParse->db->mallocFailed ); 001870 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 001871 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 001872 onError, zName, P4_TRANSIENT, 001873 P5_ConstraintCheck); 001874 } 001875 sqlite3VdbeResolveLabel(v, allOk); 001876 } 001877 pParse->iSelfTab = 0; 001878 } 001879 #endif /* !defined(SQLITE_OMIT_CHECK) */ 001880 001881 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 001882 ** order: 001883 ** 001884 ** (1) OE_Update 001885 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 001886 ** (3) OE_Replace 001887 ** 001888 ** OE_Fail and OE_Ignore must happen before any changes are made. 001889 ** OE_Update guarantees that only a single row will change, so it 001890 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 001891 ** could happen in any order, but they are grouped up front for 001892 ** convenience. 001893 ** 001894 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 001895 ** The order of constraints used to have OE_Update as (2) and OE_Abort 001896 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 001897 ** constraint before any others, so it had to be moved. 001898 ** 001899 ** Constraint checking code is generated in this order: 001900 ** (A) The rowid constraint 001901 ** (B) Unique index constraints that do not have OE_Replace as their 001902 ** default conflict resolution strategy 001903 ** (C) Unique index that do use OE_Replace by default. 001904 ** 001905 ** The ordering of (2) and (3) is accomplished by making sure the linked 001906 ** list of indexes attached to a table puts all OE_Replace indexes last 001907 ** in the list. See sqlite3CreateIndex() for where that happens. 001908 */ 001909 sIdxIter.eType = 0; 001910 sIdxIter.i = 0; 001911 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 001912 sIdxIter.u.lx.pIdx = pTab->pIndex; 001913 if( pUpsert ){ 001914 if( pUpsert->pUpsertTarget==0 ){ 001915 /* There is just on ON CONFLICT clause and it has no constraint-target */ 001916 assert( pUpsert->pNextUpsert==0 ); 001917 if( pUpsert->isDoUpdate==0 ){ 001918 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 001919 ** Make all unique constraint resolution be OE_Ignore */ 001920 overrideError = OE_Ignore; 001921 pUpsert = 0; 001922 }else{ 001923 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 001924 overrideError = OE_Update; 001925 } 001926 }else if( pTab->pIndex!=0 ){ 001927 /* Otherwise, we'll need to run the IndexListTerm array version of the 001928 ** iterator to ensure that all of the ON CONFLICT conditions are 001929 ** checked first and in order. */ 001930 int nIdx, jj; 001931 u64 nByte; 001932 Upsert *pTerm; 001933 u8 *bUsed; 001934 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 001935 assert( aRegIdx[nIdx]>0 ); 001936 } 001937 sIdxIter.eType = 1; 001938 sIdxIter.u.ax.nIdx = nIdx; 001939 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 001940 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 001941 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 001942 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 001943 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 001944 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 001945 if( pTerm->pUpsertTarget==0 ) break; 001946 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 001947 jj = 0; 001948 pIdx = pTab->pIndex; 001949 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 001950 pIdx = pIdx->pNext; 001951 jj++; 001952 } 001953 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 001954 bUsed[jj] = 1; 001955 sIdxIter.u.ax.aIdx[i].p = pIdx; 001956 sIdxIter.u.ax.aIdx[i].ix = jj; 001957 i++; 001958 } 001959 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 001960 if( bUsed[jj] ) continue; 001961 sIdxIter.u.ax.aIdx[i].p = pIdx; 001962 sIdxIter.u.ax.aIdx[i].ix = jj; 001963 i++; 001964 } 001965 assert( i==nIdx ); 001966 } 001967 } 001968 001969 /* Determine if it is possible that triggers (either explicitly coded 001970 ** triggers or FK resolution actions) might run as a result of deletes 001971 ** that happen when OE_Replace conflict resolution occurs. (Call these 001972 ** "replace triggers".) If any replace triggers run, we will need to 001973 ** recheck all of the uniqueness constraints after they have all run. 001974 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 001975 ** 001976 ** If replace triggers are a possibility, then 001977 ** 001978 ** (1) Allocate register regTrigCnt and initialize it to zero. 001979 ** That register will count the number of replace triggers that 001980 ** fire. Constraint recheck only occurs if the number is positive. 001981 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 001982 ** (3) Initialize addrRecheck and lblRecheckOk 001983 ** 001984 ** The uniqueness rechecking code will create a series of tests to run 001985 ** in a second pass. The addrRecheck and lblRecheckOk variables are 001986 ** used to link together these tests which are separated from each other 001987 ** in the generate bytecode. 001988 */ 001989 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 001990 /* There are not DELETE triggers nor FK constraints. No constraint 001991 ** rechecks are needed. */ 001992 pTrigger = 0; 001993 regTrigCnt = 0; 001994 }else{ 001995 if( db->flags&SQLITE_RecTriggers ){ 001996 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 001997 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 001998 }else{ 001999 pTrigger = 0; 002000 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 002001 } 002002 if( regTrigCnt ){ 002003 /* Replace triggers might exist. Allocate the counter and 002004 ** initialize it to zero. */ 002005 regTrigCnt = ++pParse->nMem; 002006 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 002007 VdbeComment((v, "trigger count")); 002008 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 002009 addrRecheck = lblRecheckOk; 002010 } 002011 } 002012 002013 /* If rowid is changing, make sure the new rowid does not previously 002014 ** exist in the table. 002015 */ 002016 if( pkChng && pPk==0 ){ 002017 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 002018 002019 /* Figure out what action to take in case of a rowid collision */ 002020 onError = pTab->keyConf; 002021 if( overrideError!=OE_Default ){ 002022 onError = overrideError; 002023 }else if( onError==OE_Default ){ 002024 onError = OE_Abort; 002025 } 002026 002027 /* figure out whether or not upsert applies in this case */ 002028 if( pUpsert ){ 002029 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 002030 if( pUpsertClause!=0 ){ 002031 if( pUpsertClause->isDoUpdate==0 ){ 002032 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 002033 }else{ 002034 onError = OE_Update; /* DO UPDATE */ 002035 } 002036 } 002037 if( pUpsertClause!=pUpsert ){ 002038 /* The first ON CONFLICT clause has a conflict target other than 002039 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 002040 ** and then come back here and deal with the IPK afterwards */ 002041 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 002042 } 002043 } 002044 002045 /* If the response to a rowid conflict is REPLACE but the response 002046 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 002047 ** to defer the running of the rowid conflict checking until after 002048 ** the UNIQUE constraints have run. 002049 */ 002050 if( onError==OE_Replace /* IPK rule is REPLACE */ 002051 && onError!=overrideError /* Rules for other constraints are different */ 002052 && pTab->pIndex /* There exist other constraints */ 002053 && !upsertIpkDelay /* IPK check already deferred by UPSERT */ 002054 ){ 002055 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 002056 VdbeComment((v, "defer IPK REPLACE until last")); 002057 } 002058 002059 if( isUpdate ){ 002060 /* pkChng!=0 does not mean that the rowid has changed, only that 002061 ** it might have changed. Skip the conflict logic below if the rowid 002062 ** is unchanged. */ 002063 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 002064 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002065 VdbeCoverage(v); 002066 } 002067 002068 /* Check to see if the new rowid already exists in the table. Skip 002069 ** the following conflict logic if it does not. */ 002070 VdbeNoopComment((v, "uniqueness check for ROWID")); 002071 sqlite3VdbeVerifyAbortable(v, onError); 002072 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 002073 VdbeCoverage(v); 002074 002075 switch( onError ){ 002076 default: { 002077 onError = OE_Abort; 002078 /* no break */ deliberate_fall_through 002079 } 002080 case OE_Rollback: 002081 case OE_Abort: 002082 case OE_Fail: { 002083 testcase( onError==OE_Rollback ); 002084 testcase( onError==OE_Abort ); 002085 testcase( onError==OE_Fail ); 002086 sqlite3RowidConstraint(pParse, onError, pTab); 002087 break; 002088 } 002089 case OE_Replace: { 002090 /* If there are DELETE triggers on this table and the 002091 ** recursive-triggers flag is set, call GenerateRowDelete() to 002092 ** remove the conflicting row from the table. This will fire 002093 ** the triggers and remove both the table and index b-tree entries. 002094 ** 002095 ** Otherwise, if there are no triggers or the recursive-triggers 002096 ** flag is not set, but the table has one or more indexes, call 002097 ** GenerateRowIndexDelete(). This removes the index b-tree entries 002098 ** only. The table b-tree entry will be replaced by the new entry 002099 ** when it is inserted. 002100 ** 002101 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 002102 ** also invoke MultiWrite() to indicate that this VDBE may require 002103 ** statement rollback (if the statement is aborted after the delete 002104 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 002105 ** but being more selective here allows statements like: 002106 ** 002107 ** REPLACE INTO t(rowid) VALUES($newrowid) 002108 ** 002109 ** to run without a statement journal if there are no indexes on the 002110 ** table. 002111 */ 002112 if( regTrigCnt ){ 002113 sqlite3MultiWrite(pParse); 002114 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 002115 regNewData, 1, 0, OE_Replace, 1, -1); 002116 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 002117 nReplaceTrig++; 002118 }else{ 002119 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002120 assert( HasRowid(pTab) ); 002121 /* This OP_Delete opcode fires the pre-update-hook only. It does 002122 ** not modify the b-tree. It is more efficient to let the coming 002123 ** OP_Insert replace the existing entry than it is to delete the 002124 ** existing entry and then insert a new one. */ 002125 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 002126 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 002127 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002128 if( pTab->pIndex ){ 002129 sqlite3MultiWrite(pParse); 002130 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 002131 } 002132 } 002133 seenReplace = 1; 002134 break; 002135 } 002136 #ifndef SQLITE_OMIT_UPSERT 002137 case OE_Update: { 002138 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 002139 /* no break */ deliberate_fall_through 002140 } 002141 #endif 002142 case OE_Ignore: { 002143 testcase( onError==OE_Ignore ); 002144 sqlite3VdbeGoto(v, ignoreDest); 002145 break; 002146 } 002147 } 002148 sqlite3VdbeResolveLabel(v, addrRowidOk); 002149 if( pUpsert && pUpsertClause!=pUpsert ){ 002150 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 002151 }else if( ipkTop ){ 002152 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 002153 sqlite3VdbeJumpHere(v, ipkTop-1); 002154 } 002155 } 002156 002157 /* Test all UNIQUE constraints by creating entries for each UNIQUE 002158 ** index and making sure that duplicate entries do not already exist. 002159 ** Compute the revised record entries for indices as we go. 002160 ** 002161 ** This loop also handles the case of the PRIMARY KEY index for a 002162 ** WITHOUT ROWID table. 002163 */ 002164 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 002165 pIdx; 002166 pIdx = indexIteratorNext(&sIdxIter, &ix) 002167 ){ 002168 int regIdx; /* Range of registers holding content for pIdx */ 002169 int regR; /* Range of registers holding conflicting PK */ 002170 int iThisCur; /* Cursor for this UNIQUE index */ 002171 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 002172 int addrConflictCk; /* First opcode in the conflict check logic */ 002173 002174 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 002175 if( pUpsert ){ 002176 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 002177 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 002178 sqlite3VdbeJumpHere(v, upsertIpkDelay); 002179 } 002180 } 002181 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 002182 if( bAffinityDone==0 ){ 002183 sqlite3TableAffinity(v, pTab, regNewData+1); 002184 bAffinityDone = 1; 002185 } 002186 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 002187 iThisCur = iIdxCur+ix; 002188 002189 002190 /* Skip partial indices for which the WHERE clause is not true */ 002191 if( pIdx->pPartIdxWhere ){ 002192 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 002193 pParse->iSelfTab = -(regNewData+1); 002194 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 002195 SQLITE_JUMPIFNULL); 002196 pParse->iSelfTab = 0; 002197 } 002198 002199 /* Create a record for this index entry as it should appear after 002200 ** the insert or update. Store that record in the aRegIdx[ix] register 002201 */ 002202 regIdx = aRegIdx[ix]+1; 002203 for(i=0; i<pIdx->nColumn; i++){ 002204 int iField = pIdx->aiColumn[i]; 002205 int x; 002206 if( iField==XN_EXPR ){ 002207 pParse->iSelfTab = -(regNewData+1); 002208 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 002209 pParse->iSelfTab = 0; 002210 VdbeComment((v, "%s column %d", pIdx->zName, i)); 002211 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 002212 x = regNewData; 002213 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 002214 VdbeComment((v, "rowid")); 002215 }else{ 002216 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 002217 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 002218 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 002219 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 002220 } 002221 } 002222 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 002223 VdbeComment((v, "for %s", pIdx->zName)); 002224 #ifdef SQLITE_ENABLE_NULL_TRIM 002225 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 002226 sqlite3SetMakeRecordP5(v, pIdx->pTable); 002227 } 002228 #endif 002229 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 002230 002231 /* In an UPDATE operation, if this index is the PRIMARY KEY index 002232 ** of a WITHOUT ROWID table and there has been no change the 002233 ** primary key, then no collision is possible. The collision detection 002234 ** logic below can all be skipped. */ 002235 if( isUpdate && pPk==pIdx && pkChng==0 ){ 002236 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002237 continue; 002238 } 002239 002240 /* Find out what action to take in case there is a uniqueness conflict */ 002241 onError = pIdx->onError; 002242 if( onError==OE_None ){ 002243 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002244 continue; /* pIdx is not a UNIQUE index */ 002245 } 002246 if( overrideError!=OE_Default ){ 002247 onError = overrideError; 002248 }else if( onError==OE_Default ){ 002249 onError = OE_Abort; 002250 } 002251 002252 /* Figure out if the upsert clause applies to this index */ 002253 if( pUpsertClause ){ 002254 if( pUpsertClause->isDoUpdate==0 ){ 002255 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 002256 }else{ 002257 onError = OE_Update; /* DO UPDATE */ 002258 } 002259 } 002260 002261 /* Collision detection may be omitted if all of the following are true: 002262 ** (1) The conflict resolution algorithm is REPLACE 002263 ** (2) The table is a WITHOUT ROWID table 002264 ** (3) There are no secondary indexes on the table 002265 ** (4) No delete triggers need to be fired if there is a conflict 002266 ** (5) No FK constraint counters need to be updated if a conflict occurs. 002267 ** 002268 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 002269 ** must be explicitly deleted in order to ensure any pre-update hook 002270 ** is invoked. */ 002271 assert( IsOrdinaryTable(pTab) ); 002272 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 002273 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 002274 && pPk==pIdx /* Condition 2 */ 002275 && onError==OE_Replace /* Condition 1 */ 002276 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 002277 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 002278 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 002279 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 002280 ){ 002281 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002282 continue; 002283 } 002284 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 002285 002286 /* Check to see if the new index entry will be unique */ 002287 sqlite3VdbeVerifyAbortable(v, onError); 002288 addrConflictCk = 002289 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 002290 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 002291 002292 /* Generate code to handle collisions */ 002293 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 002294 if( isUpdate || onError==OE_Replace ){ 002295 if( HasRowid(pTab) ){ 002296 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 002297 /* Conflict only if the rowid of the existing index entry 002298 ** is different from old-rowid */ 002299 if( isUpdate ){ 002300 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 002301 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002302 VdbeCoverage(v); 002303 } 002304 }else{ 002305 int x; 002306 /* Extract the PRIMARY KEY from the end of the index entry and 002307 ** store it in registers regR..regR+nPk-1 */ 002308 if( pIdx!=pPk ){ 002309 for(i=0; i<pPk->nKeyCol; i++){ 002310 assert( pPk->aiColumn[i]>=0 ); 002311 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 002312 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 002313 VdbeComment((v, "%s.%s", pTab->zName, 002314 pTab->aCol[pPk->aiColumn[i]].zCnName)); 002315 } 002316 } 002317 if( isUpdate ){ 002318 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 002319 ** table, only conflict if the new PRIMARY KEY values are actually 002320 ** different from the old. See TH3 withoutrowid04.test. 002321 ** 002322 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 002323 ** of the matched index row are different from the original PRIMARY 002324 ** KEY values of this row before the update. */ 002325 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 002326 int op = OP_Ne; 002327 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 002328 002329 for(i=0; i<pPk->nKeyCol; i++){ 002330 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 002331 x = pPk->aiColumn[i]; 002332 assert( x>=0 ); 002333 if( i==(pPk->nKeyCol-1) ){ 002334 addrJump = addrUniqueOk; 002335 op = OP_Eq; 002336 } 002337 x = sqlite3TableColumnToStorage(pTab, x); 002338 sqlite3VdbeAddOp4(v, op, 002339 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 002340 ); 002341 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002342 VdbeCoverageIf(v, op==OP_Eq); 002343 VdbeCoverageIf(v, op==OP_Ne); 002344 } 002345 } 002346 } 002347 } 002348 002349 /* Generate code that executes if the new index entry is not unique */ 002350 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 002351 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 002352 switch( onError ){ 002353 case OE_Rollback: 002354 case OE_Abort: 002355 case OE_Fail: { 002356 testcase( onError==OE_Rollback ); 002357 testcase( onError==OE_Abort ); 002358 testcase( onError==OE_Fail ); 002359 sqlite3UniqueConstraint(pParse, onError, pIdx); 002360 break; 002361 } 002362 #ifndef SQLITE_OMIT_UPSERT 002363 case OE_Update: { 002364 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 002365 /* no break */ deliberate_fall_through 002366 } 002367 #endif 002368 case OE_Ignore: { 002369 testcase( onError==OE_Ignore ); 002370 sqlite3VdbeGoto(v, ignoreDest); 002371 break; 002372 } 002373 default: { 002374 int nConflictCk; /* Number of opcodes in conflict check logic */ 002375 002376 assert( onError==OE_Replace ); 002377 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 002378 assert( nConflictCk>0 || db->mallocFailed ); 002379 testcase( nConflictCk<=0 ); 002380 testcase( nConflictCk>1 ); 002381 if( regTrigCnt ){ 002382 sqlite3MultiWrite(pParse); 002383 nReplaceTrig++; 002384 } 002385 if( pTrigger && isUpdate ){ 002386 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 002387 } 002388 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 002389 regR, nPkField, 0, OE_Replace, 002390 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 002391 if( pTrigger && isUpdate ){ 002392 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 002393 } 002394 if( regTrigCnt ){ 002395 int addrBypass; /* Jump destination to bypass recheck logic */ 002396 002397 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 002398 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 002399 VdbeComment((v, "bypass recheck")); 002400 002401 /* Here we insert code that will be invoked after all constraint 002402 ** checks have run, if and only if one or more replace triggers 002403 ** fired. */ 002404 sqlite3VdbeResolveLabel(v, lblRecheckOk); 002405 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 002406 if( pIdx->pPartIdxWhere ){ 002407 /* Bypass the recheck if this partial index is not defined 002408 ** for the current row */ 002409 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 002410 VdbeCoverage(v); 002411 } 002412 /* Copy the constraint check code from above, except change 002413 ** the constraint-ok jump destination to be the address of 002414 ** the next retest block */ 002415 while( nConflictCk>0 ){ 002416 VdbeOp x; /* Conflict check opcode to copy */ 002417 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 002418 ** Hence, make a complete copy of the opcode, rather than using 002419 ** a pointer to the opcode. */ 002420 x = *sqlite3VdbeGetOp(v, addrConflictCk); 002421 if( x.opcode!=OP_IdxRowid ){ 002422 int p2; /* New P2 value for copied conflict check opcode */ 002423 const char *zP4; 002424 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 002425 p2 = lblRecheckOk; 002426 }else{ 002427 p2 = x.p2; 002428 } 002429 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 002430 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 002431 sqlite3VdbeChangeP5(v, x.p5); 002432 VdbeCoverageIf(v, p2!=x.p2); 002433 } 002434 nConflictCk--; 002435 addrConflictCk++; 002436 } 002437 /* If the retest fails, issue an abort */ 002438 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 002439 002440 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 002441 } 002442 seenReplace = 1; 002443 break; 002444 } 002445 } 002446 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002447 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 002448 if( pUpsertClause 002449 && upsertIpkReturn 002450 && sqlite3UpsertNextIsIPK(pUpsertClause) 002451 ){ 002452 sqlite3VdbeGoto(v, upsertIpkDelay+1); 002453 sqlite3VdbeJumpHere(v, upsertIpkReturn); 002454 upsertIpkReturn = 0; 002455 } 002456 } 002457 002458 /* If the IPK constraint is a REPLACE, run it last */ 002459 if( ipkTop ){ 002460 sqlite3VdbeGoto(v, ipkTop); 002461 VdbeComment((v, "Do IPK REPLACE")); 002462 assert( ipkBottom>0 ); 002463 sqlite3VdbeJumpHere(v, ipkBottom); 002464 } 002465 002466 /* Recheck all uniqueness constraints after replace triggers have run */ 002467 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 002468 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 002469 if( nReplaceTrig ){ 002470 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 002471 if( !pPk ){ 002472 if( isUpdate ){ 002473 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 002474 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002475 VdbeCoverage(v); 002476 } 002477 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 002478 VdbeCoverage(v); 002479 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 002480 }else{ 002481 sqlite3VdbeGoto(v, addrRecheck); 002482 } 002483 sqlite3VdbeResolveLabel(v, lblRecheckOk); 002484 } 002485 002486 /* Generate the table record */ 002487 if( HasRowid(pTab) ){ 002488 int regRec = aRegIdx[ix]; 002489 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 002490 sqlite3SetMakeRecordP5(v, pTab); 002491 if( !bAffinityDone ){ 002492 sqlite3TableAffinity(v, pTab, 0); 002493 } 002494 } 002495 002496 *pbMayReplace = seenReplace; 002497 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 002498 } 002499 002500 #ifdef SQLITE_ENABLE_NULL_TRIM 002501 /* 002502 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 002503 ** to be the number of columns in table pTab that must not be NULL-trimmed. 002504 ** 002505 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 002506 */ 002507 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 002508 u16 i; 002509 002510 /* Records with omitted columns are only allowed for schema format 002511 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 002512 if( pTab->pSchema->file_format<2 ) return; 002513 002514 for(i=pTab->nCol-1; i>0; i--){ 002515 if( pTab->aCol[i].iDflt!=0 ) break; 002516 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 002517 } 002518 sqlite3VdbeChangeP5(v, i+1); 002519 } 002520 #endif 002521 002522 /* 002523 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 002524 ** number is iCur, and register regData contains the new record for the 002525 ** PK index. This function adds code to invoke the pre-update hook, 002526 ** if one is registered. 002527 */ 002528 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002529 static void codeWithoutRowidPreupdate( 002530 Parse *pParse, /* Parse context */ 002531 Table *pTab, /* Table being updated */ 002532 int iCur, /* Cursor number for table */ 002533 int regData /* Data containing new record */ 002534 ){ 002535 Vdbe *v = pParse->pVdbe; 002536 int r = sqlite3GetTempReg(pParse); 002537 assert( !HasRowid(pTab) ); 002538 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 002539 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 002540 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 002541 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 002542 sqlite3ReleaseTempReg(pParse, r); 002543 } 002544 #else 002545 # define codeWithoutRowidPreupdate(a,b,c,d) 002546 #endif 002547 002548 /* 002549 ** This routine generates code to finish the INSERT or UPDATE operation 002550 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 002551 ** A consecutive range of registers starting at regNewData contains the 002552 ** rowid and the content to be inserted. 002553 ** 002554 ** The arguments to this routine should be the same as the first six 002555 ** arguments to sqlite3GenerateConstraintChecks. 002556 */ 002557 void sqlite3CompleteInsertion( 002558 Parse *pParse, /* The parser context */ 002559 Table *pTab, /* the table into which we are inserting */ 002560 int iDataCur, /* Cursor of the canonical data source */ 002561 int iIdxCur, /* First index cursor */ 002562 int regNewData, /* Range of content */ 002563 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 002564 int update_flags, /* True for UPDATE, False for INSERT */ 002565 int appendBias, /* True if this is likely to be an append */ 002566 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 002567 ){ 002568 Vdbe *v; /* Prepared statements under construction */ 002569 Index *pIdx; /* An index being inserted or updated */ 002570 u8 pik_flags; /* flag values passed to the btree insert */ 002571 int i; /* Loop counter */ 002572 002573 assert( update_flags==0 002574 || update_flags==OPFLAG_ISUPDATE 002575 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 002576 ); 002577 002578 v = pParse->pVdbe; 002579 assert( v!=0 ); 002580 assert( !IsView(pTab) ); /* This table is not a VIEW */ 002581 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 002582 /* All REPLACE indexes are at the end of the list */ 002583 assert( pIdx->onError!=OE_Replace 002584 || pIdx->pNext==0 002585 || pIdx->pNext->onError==OE_Replace ); 002586 if( aRegIdx[i]==0 ) continue; 002587 if( pIdx->pPartIdxWhere ){ 002588 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 002589 VdbeCoverage(v); 002590 } 002591 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 002592 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 002593 pik_flags |= OPFLAG_NCHANGE; 002594 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 002595 if( update_flags==0 ){ 002596 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 002597 } 002598 } 002599 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 002600 aRegIdx[i]+1, 002601 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 002602 sqlite3VdbeChangeP5(v, pik_flags); 002603 } 002604 if( !HasRowid(pTab) ) return; 002605 if( pParse->nested ){ 002606 pik_flags = 0; 002607 }else{ 002608 pik_flags = OPFLAG_NCHANGE; 002609 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 002610 } 002611 if( appendBias ){ 002612 pik_flags |= OPFLAG_APPEND; 002613 } 002614 if( useSeekResult ){ 002615 pik_flags |= OPFLAG_USESEEKRESULT; 002616 } 002617 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 002618 if( !pParse->nested ){ 002619 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 002620 } 002621 sqlite3VdbeChangeP5(v, pik_flags); 002622 } 002623 002624 /* 002625 ** Allocate cursors for the pTab table and all its indices and generate 002626 ** code to open and initialized those cursors. 002627 ** 002628 ** The cursor for the object that contains the complete data (normally 002629 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 002630 ** ROWID table) is returned in *piDataCur. The first index cursor is 002631 ** returned in *piIdxCur. The number of indices is returned. 002632 ** 002633 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 002634 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 002635 ** If iBase is negative, then allocate the next available cursor. 002636 ** 002637 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 002638 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 002639 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 002640 ** pTab->pIndex list. 002641 ** 002642 ** If pTab is a virtual table, then this routine is a no-op and the 002643 ** *piDataCur and *piIdxCur values are left uninitialized. 002644 */ 002645 int sqlite3OpenTableAndIndices( 002646 Parse *pParse, /* Parsing context */ 002647 Table *pTab, /* Table to be opened */ 002648 int op, /* OP_OpenRead or OP_OpenWrite */ 002649 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 002650 int iBase, /* Use this for the table cursor, if there is one */ 002651 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 002652 int *piDataCur, /* Write the database source cursor number here */ 002653 int *piIdxCur /* Write the first index cursor number here */ 002654 ){ 002655 int i; 002656 int iDb; 002657 int iDataCur; 002658 Index *pIdx; 002659 Vdbe *v; 002660 002661 assert( op==OP_OpenRead || op==OP_OpenWrite ); 002662 assert( op==OP_OpenWrite || p5==0 ); 002663 assert( piDataCur!=0 ); 002664 assert( piIdxCur!=0 ); 002665 if( IsVirtual(pTab) ){ 002666 /* This routine is a no-op for virtual tables. Leave the output 002667 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers 002668 ** for improved error detection. */ 002669 *piDataCur = *piIdxCur = -999; 002670 return 0; 002671 } 002672 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 002673 v = pParse->pVdbe; 002674 assert( v!=0 ); 002675 if( iBase<0 ) iBase = pParse->nTab; 002676 iDataCur = iBase++; 002677 *piDataCur = iDataCur; 002678 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 002679 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 002680 }else if( pParse->db->noSharedCache==0 ){ 002681 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 002682 } 002683 *piIdxCur = iBase; 002684 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 002685 int iIdxCur = iBase++; 002686 assert( pIdx->pSchema==pTab->pSchema ); 002687 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 002688 *piDataCur = iIdxCur; 002689 p5 = 0; 002690 } 002691 if( aToOpen==0 || aToOpen[i+1] ){ 002692 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 002693 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 002694 sqlite3VdbeChangeP5(v, p5); 002695 VdbeComment((v, "%s", pIdx->zName)); 002696 } 002697 } 002698 if( iBase>pParse->nTab ) pParse->nTab = iBase; 002699 return i; 002700 } 002701 002702 002703 #ifdef SQLITE_TEST 002704 /* 002705 ** The following global variable is incremented whenever the 002706 ** transfer optimization is used. This is used for testing 002707 ** purposes only - to make sure the transfer optimization really 002708 ** is happening when it is supposed to. 002709 */ 002710 int sqlite3_xferopt_count; 002711 #endif /* SQLITE_TEST */ 002712 002713 002714 #ifndef SQLITE_OMIT_XFER_OPT 002715 /* 002716 ** Check to see if index pSrc is compatible as a source of data 002717 ** for index pDest in an insert transfer optimization. The rules 002718 ** for a compatible index: 002719 ** 002720 ** * The index is over the same set of columns 002721 ** * The same DESC and ASC markings occurs on all columns 002722 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 002723 ** * The same collating sequence on each column 002724 ** * The index has the exact same WHERE clause 002725 */ 002726 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 002727 int i; 002728 assert( pDest && pSrc ); 002729 assert( pDest->pTable!=pSrc->pTable ); 002730 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 002731 return 0; /* Different number of columns */ 002732 } 002733 if( pDest->onError!=pSrc->onError ){ 002734 return 0; /* Different conflict resolution strategies */ 002735 } 002736 for(i=0; i<pSrc->nKeyCol; i++){ 002737 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 002738 return 0; /* Different columns indexed */ 002739 } 002740 if( pSrc->aiColumn[i]==XN_EXPR ){ 002741 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 002742 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 002743 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 002744 return 0; /* Different expressions in the index */ 002745 } 002746 } 002747 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 002748 return 0; /* Different sort orders */ 002749 } 002750 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 002751 return 0; /* Different collating sequences */ 002752 } 002753 } 002754 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 002755 return 0; /* Different WHERE clauses */ 002756 } 002757 002758 /* If no test above fails then the indices must be compatible */ 002759 return 1; 002760 } 002761 002762 /* 002763 ** Attempt the transfer optimization on INSERTs of the form 002764 ** 002765 ** INSERT INTO tab1 SELECT * FROM tab2; 002766 ** 002767 ** The xfer optimization transfers raw records from tab2 over to tab1. 002768 ** Columns are not decoded and reassembled, which greatly improves 002769 ** performance. Raw index records are transferred in the same way. 002770 ** 002771 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 002772 ** There are lots of rules for determining compatibility - see comments 002773 ** embedded in the code for details. 002774 ** 002775 ** This routine returns TRUE if the optimization is guaranteed to be used. 002776 ** Sometimes the xfer optimization will only work if the destination table 002777 ** is empty - a factor that can only be determined at run-time. In that 002778 ** case, this routine generates code for the xfer optimization but also 002779 ** does a test to see if the destination table is empty and jumps over the 002780 ** xfer optimization code if the test fails. In that case, this routine 002781 ** returns FALSE so that the caller will know to go ahead and generate 002782 ** an unoptimized transfer. This routine also returns FALSE if there 002783 ** is no chance that the xfer optimization can be applied. 002784 ** 002785 ** This optimization is particularly useful at making VACUUM run faster. 002786 */ 002787 static int xferOptimization( 002788 Parse *pParse, /* Parser context */ 002789 Table *pDest, /* The table we are inserting into */ 002790 Select *pSelect, /* A SELECT statement to use as the data source */ 002791 int onError, /* How to handle constraint errors */ 002792 int iDbDest /* The database of pDest */ 002793 ){ 002794 sqlite3 *db = pParse->db; 002795 ExprList *pEList; /* The result set of the SELECT */ 002796 Table *pSrc; /* The table in the FROM clause of SELECT */ 002797 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 002798 SrcItem *pItem; /* An element of pSelect->pSrc */ 002799 int i; /* Loop counter */ 002800 int iDbSrc; /* The database of pSrc */ 002801 int iSrc, iDest; /* Cursors from source and destination */ 002802 int addr1, addr2; /* Loop addresses */ 002803 int emptyDestTest = 0; /* Address of test for empty pDest */ 002804 int emptySrcTest = 0; /* Address of test for empty pSrc */ 002805 Vdbe *v; /* The VDBE we are building */ 002806 int regAutoinc; /* Memory register used by AUTOINC */ 002807 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 002808 int regData, regRowid; /* Registers holding data and rowid */ 002809 002810 assert( pSelect!=0 ); 002811 if( pParse->pWith || pSelect->pWith ){ 002812 /* Do not attempt to process this query if there are an WITH clauses 002813 ** attached to it. Proceeding may generate a false "no such table: xxx" 002814 ** error if pSelect reads from a CTE named "xxx". */ 002815 return 0; 002816 } 002817 #ifndef SQLITE_OMIT_VIRTUALTABLE 002818 if( IsVirtual(pDest) ){ 002819 return 0; /* tab1 must not be a virtual table */ 002820 } 002821 #endif 002822 if( onError==OE_Default ){ 002823 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 002824 if( onError==OE_Default ) onError = OE_Abort; 002825 } 002826 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 002827 if( pSelect->pSrc->nSrc!=1 ){ 002828 return 0; /* FROM clause must have exactly one term */ 002829 } 002830 if( pSelect->pSrc->a[0].pSelect ){ 002831 return 0; /* FROM clause cannot contain a subquery */ 002832 } 002833 if( pSelect->pWhere ){ 002834 return 0; /* SELECT may not have a WHERE clause */ 002835 } 002836 if( pSelect->pOrderBy ){ 002837 return 0; /* SELECT may not have an ORDER BY clause */ 002838 } 002839 /* Do not need to test for a HAVING clause. If HAVING is present but 002840 ** there is no ORDER BY, we will get an error. */ 002841 if( pSelect->pGroupBy ){ 002842 return 0; /* SELECT may not have a GROUP BY clause */ 002843 } 002844 if( pSelect->pLimit ){ 002845 return 0; /* SELECT may not have a LIMIT clause */ 002846 } 002847 if( pSelect->pPrior ){ 002848 return 0; /* SELECT may not be a compound query */ 002849 } 002850 if( pSelect->selFlags & SF_Distinct ){ 002851 return 0; /* SELECT may not be DISTINCT */ 002852 } 002853 pEList = pSelect->pEList; 002854 assert( pEList!=0 ); 002855 if( pEList->nExpr!=1 ){ 002856 return 0; /* The result set must have exactly one column */ 002857 } 002858 assert( pEList->a[0].pExpr ); 002859 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 002860 return 0; /* The result set must be the special operator "*" */ 002861 } 002862 002863 /* At this point we have established that the statement is of the 002864 ** correct syntactic form to participate in this optimization. Now 002865 ** we have to check the semantics. 002866 */ 002867 pItem = pSelect->pSrc->a; 002868 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 002869 if( pSrc==0 ){ 002870 return 0; /* FROM clause does not contain a real table */ 002871 } 002872 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 002873 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 002874 return 0; /* tab1 and tab2 may not be the same table */ 002875 } 002876 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 002877 return 0; /* source and destination must both be WITHOUT ROWID or not */ 002878 } 002879 if( !IsOrdinaryTable(pSrc) ){ 002880 return 0; /* tab2 may not be a view or virtual table */ 002881 } 002882 if( pDest->nCol!=pSrc->nCol ){ 002883 return 0; /* Number of columns must be the same in tab1 and tab2 */ 002884 } 002885 if( pDest->iPKey!=pSrc->iPKey ){ 002886 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 002887 } 002888 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 002889 return 0; /* Cannot feed from a non-strict into a strict table */ 002890 } 002891 for(i=0; i<pDest->nCol; i++){ 002892 Column *pDestCol = &pDest->aCol[i]; 002893 Column *pSrcCol = &pSrc->aCol[i]; 002894 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 002895 if( (db->mDbFlags & DBFLAG_Vacuum)==0 002896 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 002897 ){ 002898 return 0; /* Neither table may have __hidden__ columns */ 002899 } 002900 #endif 002901 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 002902 /* Even if tables t1 and t2 have identical schemas, if they contain 002903 ** generated columns, then this statement is semantically incorrect: 002904 ** 002905 ** INSERT INTO t2 SELECT * FROM t1; 002906 ** 002907 ** The reason is that generated column values are returned by the 002908 ** the SELECT statement on the right but the INSERT statement on the 002909 ** left wants them to be omitted. 002910 ** 002911 ** Nevertheless, this is a useful notational shorthand to tell SQLite 002912 ** to do a bulk transfer all of the content from t1 over to t2. 002913 ** 002914 ** We could, in theory, disable this (except for internal use by the 002915 ** VACUUM command where it is actually needed). But why do that? It 002916 ** seems harmless enough, and provides a useful service. 002917 */ 002918 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 002919 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 002920 return 0; /* Both columns have the same generated-column type */ 002921 } 002922 /* But the transfer is only allowed if both the source and destination 002923 ** tables have the exact same expressions for generated columns. 002924 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 002925 */ 002926 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 002927 if( sqlite3ExprCompare(0, 002928 sqlite3ColumnExpr(pSrc, pSrcCol), 002929 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 002930 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 002931 testcase( pDestCol->colFlags & COLFLAG_STORED ); 002932 return 0; /* Different generator expressions */ 002933 } 002934 } 002935 #endif 002936 if( pDestCol->affinity!=pSrcCol->affinity ){ 002937 return 0; /* Affinity must be the same on all columns */ 002938 } 002939 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 002940 sqlite3ColumnColl(pSrcCol))!=0 ){ 002941 return 0; /* Collating sequence must be the same on all columns */ 002942 } 002943 if( pDestCol->notNull && !pSrcCol->notNull ){ 002944 return 0; /* tab2 must be NOT NULL if tab1 is */ 002945 } 002946 /* Default values for second and subsequent columns need to match. */ 002947 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 002948 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 002949 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 002950 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 002951 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); 002952 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 002953 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); 002954 if( (pDestExpr==0)!=(pSrcExpr==0) 002955 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 002956 pSrcExpr->u.zToken)!=0) 002957 ){ 002958 return 0; /* Default values must be the same for all columns */ 002959 } 002960 } 002961 } 002962 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 002963 if( IsUniqueIndex(pDestIdx) ){ 002964 destHasUniqueIdx = 1; 002965 } 002966 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 002967 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 002968 } 002969 if( pSrcIdx==0 ){ 002970 return 0; /* pDestIdx has no corresponding index in pSrc */ 002971 } 002972 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 002973 && sqlite3FaultSim(411)==SQLITE_OK ){ 002974 /* The sqlite3FaultSim() call allows this corruption test to be 002975 ** bypassed during testing, in order to exercise other corruption tests 002976 ** further downstream. */ 002977 return 0; /* Corrupt schema - two indexes on the same btree */ 002978 } 002979 } 002980 #ifndef SQLITE_OMIT_CHECK 002981 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 002982 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 002983 } 002984 #endif 002985 #ifndef SQLITE_OMIT_FOREIGN_KEY 002986 /* Disallow the transfer optimization if the destination table contains 002987 ** any foreign key constraints. This is more restrictive than necessary. 002988 ** But the main beneficiary of the transfer optimization is the VACUUM 002989 ** command, and the VACUUM command disables foreign key constraints. So 002990 ** the extra complication to make this rule less restrictive is probably 002991 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 002992 */ 002993 assert( IsOrdinaryTable(pDest) ); 002994 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 002995 return 0; 002996 } 002997 #endif 002998 if( (db->flags & SQLITE_CountRows)!=0 ){ 002999 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 003000 } 003001 003002 /* If we get this far, it means that the xfer optimization is at 003003 ** least a possibility, though it might only work if the destination 003004 ** table (tab1) is initially empty. 003005 */ 003006 #ifdef SQLITE_TEST 003007 sqlite3_xferopt_count++; 003008 #endif 003009 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 003010 v = sqlite3GetVdbe(pParse); 003011 sqlite3CodeVerifySchema(pParse, iDbSrc); 003012 iSrc = pParse->nTab++; 003013 iDest = pParse->nTab++; 003014 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 003015 regData = sqlite3GetTempReg(pParse); 003016 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 003017 regRowid = sqlite3GetTempReg(pParse); 003018 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 003019 assert( HasRowid(pDest) || destHasUniqueIdx ); 003020 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 003021 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 003022 || destHasUniqueIdx /* (2) */ 003023 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 003024 )){ 003025 /* In some circumstances, we are able to run the xfer optimization 003026 ** only if the destination table is initially empty. Unless the 003027 ** DBFLAG_Vacuum flag is set, this block generates code to make 003028 ** that determination. If DBFLAG_Vacuum is set, then the destination 003029 ** table is always empty. 003030 ** 003031 ** Conditions under which the destination must be empty: 003032 ** 003033 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 003034 ** (If the destination is not initially empty, the rowid fields 003035 ** of index entries might need to change.) 003036 ** 003037 ** (2) The destination has a unique index. (The xfer optimization 003038 ** is unable to test uniqueness.) 003039 ** 003040 ** (3) onError is something other than OE_Abort and OE_Rollback. 003041 */ 003042 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 003043 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 003044 sqlite3VdbeJumpHere(v, addr1); 003045 } 003046 if( HasRowid(pSrc) ){ 003047 u8 insFlags; 003048 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 003049 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 003050 if( pDest->iPKey>=0 ){ 003051 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 003052 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 003053 sqlite3VdbeVerifyAbortable(v, onError); 003054 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 003055 VdbeCoverage(v); 003056 sqlite3RowidConstraint(pParse, onError, pDest); 003057 sqlite3VdbeJumpHere(v, addr2); 003058 } 003059 autoIncStep(pParse, regAutoinc, regRowid); 003060 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 003061 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 003062 }else{ 003063 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 003064 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 003065 } 003066 003067 if( db->mDbFlags & DBFLAG_Vacuum ){ 003068 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 003069 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 003070 }else{ 003071 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 003072 } 003073 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 003074 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 003075 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 003076 insFlags &= ~OPFLAG_PREFORMAT; 003077 }else 003078 #endif 003079 { 003080 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 003081 } 003082 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 003083 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 003084 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 003085 } 003086 sqlite3VdbeChangeP5(v, insFlags); 003087 003088 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 003089 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 003090 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 003091 }else{ 003092 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 003093 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 003094 } 003095 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 003096 u8 idxInsFlags = 0; 003097 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 003098 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 003099 } 003100 assert( pSrcIdx ); 003101 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 003102 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 003103 VdbeComment((v, "%s", pSrcIdx->zName)); 003104 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 003105 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 003106 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 003107 VdbeComment((v, "%s", pDestIdx->zName)); 003108 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 003109 if( db->mDbFlags & DBFLAG_Vacuum ){ 003110 /* This INSERT command is part of a VACUUM operation, which guarantees 003111 ** that the destination table is empty. If all indexed columns use 003112 ** collation sequence BINARY, then it can also be assumed that the 003113 ** index will be populated by inserting keys in strictly sorted 003114 ** order. In this case, instead of seeking within the b-tree as part 003115 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 003116 ** OP_IdxInsert to seek to the point within the b-tree where each key 003117 ** should be inserted. This is faster. 003118 ** 003119 ** If any of the indexed columns use a collation sequence other than 003120 ** BINARY, this optimization is disabled. This is because the user 003121 ** might change the definition of a collation sequence and then run 003122 ** a VACUUM command. In that case keys may not be written in strictly 003123 ** sorted order. */ 003124 for(i=0; i<pSrcIdx->nColumn; i++){ 003125 const char *zColl = pSrcIdx->azColl[i]; 003126 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 003127 } 003128 if( i==pSrcIdx->nColumn ){ 003129 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 003130 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 003131 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 003132 } 003133 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 003134 idxInsFlags |= OPFLAG_NCHANGE; 003135 } 003136 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 003137 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 003138 if( (db->mDbFlags & DBFLAG_Vacuum)==0 003139 && !HasRowid(pDest) 003140 && IsPrimaryKeyIndex(pDestIdx) 003141 ){ 003142 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 003143 } 003144 } 003145 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 003146 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 003147 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 003148 sqlite3VdbeJumpHere(v, addr1); 003149 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 003150 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 003151 } 003152 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 003153 sqlite3ReleaseTempReg(pParse, regRowid); 003154 sqlite3ReleaseTempReg(pParse, regData); 003155 if( emptyDestTest ){ 003156 sqlite3AutoincrementEnd(pParse); 003157 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 003158 sqlite3VdbeJumpHere(v, emptyDestTest); 003159 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 003160 return 0; 003161 }else{ 003162 return 1; 003163 } 003164 } 003165 #endif /* SQLITE_OMIT_XFER_OPT */