000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains routines used for analyzing expressions and 000013 ** for generating VDBE code that evaluates expressions in SQLite. 000014 */ 000015 #include "sqliteInt.h" 000016 000017 /* Forward declarations */ 000018 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 000019 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 000020 000021 /* 000022 ** Return the affinity character for a single column of a table. 000023 */ 000024 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 000025 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; 000026 return pTab->aCol[iCol].affinity; 000027 } 000028 000029 /* 000030 ** Return the 'affinity' of the expression pExpr if any. 000031 ** 000032 ** If pExpr is a column, a reference to a column via an 'AS' alias, 000033 ** or a sub-select with a column as the return value, then the 000034 ** affinity of that column is returned. Otherwise, 0x00 is returned, 000035 ** indicating no affinity for the expression. 000036 ** 000037 ** i.e. the WHERE clause expressions in the following statements all 000038 ** have an affinity: 000039 ** 000040 ** CREATE TABLE t1(a); 000041 ** SELECT * FROM t1 WHERE a; 000042 ** SELECT a AS b FROM t1 WHERE b; 000043 ** SELECT * FROM t1 WHERE (select a from t1); 000044 */ 000045 char sqlite3ExprAffinity(const Expr *pExpr){ 000046 int op; 000047 op = pExpr->op; 000048 while( 1 /* exit-by-break */ ){ 000049 if( op==TK_COLUMN || (op==TK_AGG_COLUMN && pExpr->y.pTab!=0) ){ 000050 assert( ExprUseYTab(pExpr) ); 000051 assert( pExpr->y.pTab!=0 ); 000052 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 000053 } 000054 if( op==TK_SELECT ){ 000055 assert( ExprUseXSelect(pExpr) ); 000056 assert( pExpr->x.pSelect!=0 ); 000057 assert( pExpr->x.pSelect->pEList!=0 ); 000058 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 000059 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 000060 } 000061 #ifndef SQLITE_OMIT_CAST 000062 if( op==TK_CAST ){ 000063 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 000064 return sqlite3AffinityType(pExpr->u.zToken, 0); 000065 } 000066 #endif 000067 if( op==TK_SELECT_COLUMN ){ 000068 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); 000069 assert( pExpr->iColumn < pExpr->iTable ); 000070 assert( pExpr->iColumn >= 0 ); 000071 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 000072 return sqlite3ExprAffinity( 000073 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 000074 ); 000075 } 000076 if( op==TK_VECTOR ){ 000077 assert( ExprUseXList(pExpr) ); 000078 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 000079 } 000080 if( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 000081 assert( pExpr->op==TK_COLLATE 000082 || pExpr->op==TK_IF_NULL_ROW 000083 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 000084 pExpr = pExpr->pLeft; 000085 op = pExpr->op; 000086 continue; 000087 } 000088 if( op!=TK_REGISTER || (op = pExpr->op2)==TK_REGISTER ) break; 000089 } 000090 return pExpr->affExpr; 000091 } 000092 000093 /* 000094 ** Make a guess at all the possible datatypes of the result that could 000095 ** be returned by an expression. Return a bitmask indicating the answer: 000096 ** 000097 ** 0x01 Numeric 000098 ** 0x02 Text 000099 ** 0x04 Blob 000100 ** 000101 ** If the expression must return NULL, then 0x00 is returned. 000102 */ 000103 int sqlite3ExprDataType(const Expr *pExpr){ 000104 while( pExpr ){ 000105 switch( pExpr->op ){ 000106 case TK_COLLATE: 000107 case TK_IF_NULL_ROW: 000108 case TK_UPLUS: { 000109 pExpr = pExpr->pLeft; 000110 break; 000111 } 000112 case TK_NULL: { 000113 pExpr = 0; 000114 break; 000115 } 000116 case TK_STRING: { 000117 return 0x02; 000118 } 000119 case TK_BLOB: { 000120 return 0x04; 000121 } 000122 case TK_CONCAT: { 000123 return 0x06; 000124 } 000125 case TK_VARIABLE: 000126 case TK_AGG_FUNCTION: 000127 case TK_FUNCTION: { 000128 return 0x07; 000129 } 000130 case TK_COLUMN: 000131 case TK_AGG_COLUMN: 000132 case TK_SELECT: 000133 case TK_CAST: 000134 case TK_SELECT_COLUMN: 000135 case TK_VECTOR: { 000136 int aff = sqlite3ExprAffinity(pExpr); 000137 if( aff>=SQLITE_AFF_NUMERIC ) return 0x05; 000138 if( aff==SQLITE_AFF_TEXT ) return 0x06; 000139 return 0x07; 000140 } 000141 case TK_CASE: { 000142 int res = 0; 000143 int ii; 000144 ExprList *pList = pExpr->x.pList; 000145 assert( ExprUseXList(pExpr) && pList!=0 ); 000146 assert( pList->nExpr > 0); 000147 for(ii=1; ii<pList->nExpr; ii+=2){ 000148 res |= sqlite3ExprDataType(pList->a[ii].pExpr); 000149 } 000150 if( pList->nExpr % 2 ){ 000151 res |= sqlite3ExprDataType(pList->a[pList->nExpr-1].pExpr); 000152 } 000153 return res; 000154 } 000155 default: { 000156 return 0x01; 000157 } 000158 } /* End of switch(op) */ 000159 } /* End of while(pExpr) */ 000160 return 0x00; 000161 } 000162 000163 /* 000164 ** Set the collating sequence for expression pExpr to be the collating 000165 ** sequence named by pToken. Return a pointer to a new Expr node that 000166 ** implements the COLLATE operator. 000167 ** 000168 ** If a memory allocation error occurs, that fact is recorded in pParse->db 000169 ** and the pExpr parameter is returned unchanged. 000170 */ 000171 Expr *sqlite3ExprAddCollateToken( 000172 const Parse *pParse, /* Parsing context */ 000173 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 000174 const Token *pCollName, /* Name of collating sequence */ 000175 int dequote /* True to dequote pCollName */ 000176 ){ 000177 if( pCollName->n>0 ){ 000178 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 000179 if( pNew ){ 000180 pNew->pLeft = pExpr; 000181 pNew->flags |= EP_Collate|EP_Skip; 000182 pExpr = pNew; 000183 } 000184 } 000185 return pExpr; 000186 } 000187 Expr *sqlite3ExprAddCollateString( 000188 const Parse *pParse, /* Parsing context */ 000189 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 000190 const char *zC /* The collating sequence name */ 000191 ){ 000192 Token s; 000193 assert( zC!=0 ); 000194 sqlite3TokenInit(&s, (char*)zC); 000195 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 000196 } 000197 000198 /* 000199 ** Skip over any TK_COLLATE operators. 000200 */ 000201 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 000202 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 000203 assert( pExpr->op==TK_COLLATE ); 000204 pExpr = pExpr->pLeft; 000205 } 000206 return pExpr; 000207 } 000208 000209 /* 000210 ** Skip over any TK_COLLATE operators and/or any unlikely() 000211 ** or likelihood() or likely() functions at the root of an 000212 ** expression. 000213 */ 000214 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 000215 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 000216 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 000217 assert( ExprUseXList(pExpr) ); 000218 assert( pExpr->x.pList->nExpr>0 ); 000219 assert( pExpr->op==TK_FUNCTION ); 000220 pExpr = pExpr->x.pList->a[0].pExpr; 000221 }else{ 000222 assert( pExpr->op==TK_COLLATE ); 000223 pExpr = pExpr->pLeft; 000224 } 000225 } 000226 return pExpr; 000227 } 000228 000229 /* 000230 ** Return the collation sequence for the expression pExpr. If 000231 ** there is no defined collating sequence, return NULL. 000232 ** 000233 ** See also: sqlite3ExprNNCollSeq() 000234 ** 000235 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 000236 ** default collation if pExpr has no defined collation. 000237 ** 000238 ** The collating sequence might be determined by a COLLATE operator 000239 ** or by the presence of a column with a defined collating sequence. 000240 ** COLLATE operators take first precedence. Left operands take 000241 ** precedence over right operands. 000242 */ 000243 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 000244 sqlite3 *db = pParse->db; 000245 CollSeq *pColl = 0; 000246 const Expr *p = pExpr; 000247 while( p ){ 000248 int op = p->op; 000249 if( op==TK_REGISTER ) op = p->op2; 000250 if( (op==TK_AGG_COLUMN && p->y.pTab!=0) 000251 || op==TK_COLUMN || op==TK_TRIGGER 000252 ){ 000253 int j; 000254 assert( ExprUseYTab(p) ); 000255 assert( p->y.pTab!=0 ); 000256 if( (j = p->iColumn)>=0 ){ 000257 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 000258 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 000259 } 000260 break; 000261 } 000262 if( op==TK_CAST || op==TK_UPLUS ){ 000263 p = p->pLeft; 000264 continue; 000265 } 000266 if( op==TK_VECTOR ){ 000267 assert( ExprUseXList(p) ); 000268 p = p->x.pList->a[0].pExpr; 000269 continue; 000270 } 000271 if( op==TK_COLLATE ){ 000272 assert( !ExprHasProperty(p, EP_IntValue) ); 000273 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 000274 break; 000275 } 000276 if( p->flags & EP_Collate ){ 000277 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 000278 p = p->pLeft; 000279 }else{ 000280 Expr *pNext = p->pRight; 000281 /* The Expr.x union is never used at the same time as Expr.pRight */ 000282 assert( !ExprUseXList(p) || p->x.pList==0 || p->pRight==0 ); 000283 if( ExprUseXList(p) && p->x.pList!=0 && !db->mallocFailed ){ 000284 int i; 000285 for(i=0; i<p->x.pList->nExpr; i++){ 000286 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 000287 pNext = p->x.pList->a[i].pExpr; 000288 break; 000289 } 000290 } 000291 } 000292 p = pNext; 000293 } 000294 }else{ 000295 break; 000296 } 000297 } 000298 if( sqlite3CheckCollSeq(pParse, pColl) ){ 000299 pColl = 0; 000300 } 000301 return pColl; 000302 } 000303 000304 /* 000305 ** Return the collation sequence for the expression pExpr. If 000306 ** there is no defined collating sequence, return a pointer to the 000307 ** default collation sequence. 000308 ** 000309 ** See also: sqlite3ExprCollSeq() 000310 ** 000311 ** The sqlite3ExprCollSeq() routine works the same except that it 000312 ** returns NULL if there is no defined collation. 000313 */ 000314 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 000315 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 000316 if( p==0 ) p = pParse->db->pDfltColl; 000317 assert( p!=0 ); 000318 return p; 000319 } 000320 000321 /* 000322 ** Return TRUE if the two expressions have equivalent collating sequences. 000323 */ 000324 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 000325 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 000326 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 000327 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 000328 } 000329 000330 /* 000331 ** pExpr is an operand of a comparison operator. aff2 is the 000332 ** type affinity of the other operand. This routine returns the 000333 ** type affinity that should be used for the comparison operator. 000334 */ 000335 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 000336 char aff1 = sqlite3ExprAffinity(pExpr); 000337 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 000338 /* Both sides of the comparison are columns. If one has numeric 000339 ** affinity, use that. Otherwise use no affinity. 000340 */ 000341 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 000342 return SQLITE_AFF_NUMERIC; 000343 }else{ 000344 return SQLITE_AFF_BLOB; 000345 } 000346 }else{ 000347 /* One side is a column, the other is not. Use the columns affinity. */ 000348 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 000349 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 000350 } 000351 } 000352 000353 /* 000354 ** pExpr is a comparison operator. Return the type affinity that should 000355 ** be applied to both operands prior to doing the comparison. 000356 */ 000357 static char comparisonAffinity(const Expr *pExpr){ 000358 char aff; 000359 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 000360 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 000361 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 000362 assert( pExpr->pLeft ); 000363 aff = sqlite3ExprAffinity(pExpr->pLeft); 000364 if( pExpr->pRight ){ 000365 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 000366 }else if( ExprUseXSelect(pExpr) ){ 000367 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 000368 }else if( aff==0 ){ 000369 aff = SQLITE_AFF_BLOB; 000370 } 000371 return aff; 000372 } 000373 000374 /* 000375 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 000376 ** idx_affinity is the affinity of an indexed column. Return true 000377 ** if the index with affinity idx_affinity may be used to implement 000378 ** the comparison in pExpr. 000379 */ 000380 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 000381 char aff = comparisonAffinity(pExpr); 000382 if( aff<SQLITE_AFF_TEXT ){ 000383 return 1; 000384 } 000385 if( aff==SQLITE_AFF_TEXT ){ 000386 return idx_affinity==SQLITE_AFF_TEXT; 000387 } 000388 return sqlite3IsNumericAffinity(idx_affinity); 000389 } 000390 000391 /* 000392 ** Return the P5 value that should be used for a binary comparison 000393 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 000394 */ 000395 static u8 binaryCompareP5( 000396 const Expr *pExpr1, /* Left operand */ 000397 const Expr *pExpr2, /* Right operand */ 000398 int jumpIfNull /* Extra flags added to P5 */ 000399 ){ 000400 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 000401 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 000402 return aff; 000403 } 000404 000405 /* 000406 ** Return a pointer to the collation sequence that should be used by 000407 ** a binary comparison operator comparing pLeft and pRight. 000408 ** 000409 ** If the left hand expression has a collating sequence type, then it is 000410 ** used. Otherwise the collation sequence for the right hand expression 000411 ** is used, or the default (BINARY) if neither expression has a collating 000412 ** type. 000413 ** 000414 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 000415 ** it is not considered. 000416 */ 000417 CollSeq *sqlite3BinaryCompareCollSeq( 000418 Parse *pParse, 000419 const Expr *pLeft, 000420 const Expr *pRight 000421 ){ 000422 CollSeq *pColl; 000423 assert( pLeft ); 000424 if( pLeft->flags & EP_Collate ){ 000425 pColl = sqlite3ExprCollSeq(pParse, pLeft); 000426 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 000427 pColl = sqlite3ExprCollSeq(pParse, pRight); 000428 }else{ 000429 pColl = sqlite3ExprCollSeq(pParse, pLeft); 000430 if( !pColl ){ 000431 pColl = sqlite3ExprCollSeq(pParse, pRight); 000432 } 000433 } 000434 return pColl; 000435 } 000436 000437 /* Expression p is a comparison operator. Return a collation sequence 000438 ** appropriate for the comparison operator. 000439 ** 000440 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 000441 ** However, if the OP_Commuted flag is set, then the order of the operands 000442 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 000443 ** correct collating sequence is found. 000444 */ 000445 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 000446 if( ExprHasProperty(p, EP_Commuted) ){ 000447 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 000448 }else{ 000449 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 000450 } 000451 } 000452 000453 /* 000454 ** Generate code for a comparison operator. 000455 */ 000456 static int codeCompare( 000457 Parse *pParse, /* The parsing (and code generating) context */ 000458 Expr *pLeft, /* The left operand */ 000459 Expr *pRight, /* The right operand */ 000460 int opcode, /* The comparison opcode */ 000461 int in1, int in2, /* Register holding operands */ 000462 int dest, /* Jump here if true. */ 000463 int jumpIfNull, /* If true, jump if either operand is NULL */ 000464 int isCommuted /* The comparison has been commuted */ 000465 ){ 000466 int p5; 000467 int addr; 000468 CollSeq *p4; 000469 000470 if( pParse->nErr ) return 0; 000471 if( isCommuted ){ 000472 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 000473 }else{ 000474 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 000475 } 000476 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 000477 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 000478 (void*)p4, P4_COLLSEQ); 000479 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 000480 return addr; 000481 } 000482 000483 /* 000484 ** Return true if expression pExpr is a vector, or false otherwise. 000485 ** 000486 ** A vector is defined as any expression that results in two or more 000487 ** columns of result. Every TK_VECTOR node is an vector because the 000488 ** parser will not generate a TK_VECTOR with fewer than two entries. 000489 ** But a TK_SELECT might be either a vector or a scalar. It is only 000490 ** considered a vector if it has two or more result columns. 000491 */ 000492 int sqlite3ExprIsVector(const Expr *pExpr){ 000493 return sqlite3ExprVectorSize(pExpr)>1; 000494 } 000495 000496 /* 000497 ** If the expression passed as the only argument is of type TK_VECTOR 000498 ** return the number of expressions in the vector. Or, if the expression 000499 ** is a sub-select, return the number of columns in the sub-select. For 000500 ** any other type of expression, return 1. 000501 */ 000502 int sqlite3ExprVectorSize(const Expr *pExpr){ 000503 u8 op = pExpr->op; 000504 if( op==TK_REGISTER ) op = pExpr->op2; 000505 if( op==TK_VECTOR ){ 000506 assert( ExprUseXList(pExpr) ); 000507 return pExpr->x.pList->nExpr; 000508 }else if( op==TK_SELECT ){ 000509 assert( ExprUseXSelect(pExpr) ); 000510 return pExpr->x.pSelect->pEList->nExpr; 000511 }else{ 000512 return 1; 000513 } 000514 } 000515 000516 /* 000517 ** Return a pointer to a subexpression of pVector that is the i-th 000518 ** column of the vector (numbered starting with 0). The caller must 000519 ** ensure that i is within range. 000520 ** 000521 ** If pVector is really a scalar (and "scalar" here includes subqueries 000522 ** that return a single column!) then return pVector unmodified. 000523 ** 000524 ** pVector retains ownership of the returned subexpression. 000525 ** 000526 ** If the vector is a (SELECT ...) then the expression returned is 000527 ** just the expression for the i-th term of the result set, and may 000528 ** not be ready for evaluation because the table cursor has not yet 000529 ** been positioned. 000530 */ 000531 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 000532 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 000533 if( sqlite3ExprIsVector(pVector) ){ 000534 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 000535 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 000536 assert( ExprUseXSelect(pVector) ); 000537 return pVector->x.pSelect->pEList->a[i].pExpr; 000538 }else{ 000539 assert( ExprUseXList(pVector) ); 000540 return pVector->x.pList->a[i].pExpr; 000541 } 000542 } 000543 return pVector; 000544 } 000545 000546 /* 000547 ** Compute and return a new Expr object which when passed to 000548 ** sqlite3ExprCode() will generate all necessary code to compute 000549 ** the iField-th column of the vector expression pVector. 000550 ** 000551 ** It is ok for pVector to be a scalar (as long as iField==0). 000552 ** In that case, this routine works like sqlite3ExprDup(). 000553 ** 000554 ** The caller owns the returned Expr object and is responsible for 000555 ** ensuring that the returned value eventually gets freed. 000556 ** 000557 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 000558 ** then the returned object will reference pVector and so pVector must remain 000559 ** valid for the life of the returned object. If pVector is a TK_VECTOR 000560 ** or a scalar expression, then it can be deleted as soon as this routine 000561 ** returns. 000562 ** 000563 ** A trick to cause a TK_SELECT pVector to be deleted together with 000564 ** the returned Expr object is to attach the pVector to the pRight field 000565 ** of the returned TK_SELECT_COLUMN Expr object. 000566 */ 000567 Expr *sqlite3ExprForVectorField( 000568 Parse *pParse, /* Parsing context */ 000569 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 000570 int iField, /* Which column of the vector to return */ 000571 int nField /* Total number of columns in the vector */ 000572 ){ 000573 Expr *pRet; 000574 if( pVector->op==TK_SELECT ){ 000575 assert( ExprUseXSelect(pVector) ); 000576 /* The TK_SELECT_COLUMN Expr node: 000577 ** 000578 ** pLeft: pVector containing TK_SELECT. Not deleted. 000579 ** pRight: not used. But recursively deleted. 000580 ** iColumn: Index of a column in pVector 000581 ** iTable: 0 or the number of columns on the LHS of an assignment 000582 ** pLeft->iTable: First in an array of register holding result, or 0 000583 ** if the result is not yet computed. 000584 ** 000585 ** sqlite3ExprDelete() specifically skips the recursive delete of 000586 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 000587 ** can be attached to pRight to cause this node to take ownership of 000588 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 000589 ** with the same pLeft pointer to the pVector, but only one of them 000590 ** will own the pVector. 000591 */ 000592 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 000593 if( pRet ){ 000594 pRet->iTable = nField; 000595 pRet->iColumn = iField; 000596 pRet->pLeft = pVector; 000597 } 000598 }else{ 000599 if( pVector->op==TK_VECTOR ){ 000600 Expr **ppVector; 000601 assert( ExprUseXList(pVector) ); 000602 ppVector = &pVector->x.pList->a[iField].pExpr; 000603 pVector = *ppVector; 000604 if( IN_RENAME_OBJECT ){ 000605 /* This must be a vector UPDATE inside a trigger */ 000606 *ppVector = 0; 000607 return pVector; 000608 } 000609 } 000610 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 000611 } 000612 return pRet; 000613 } 000614 000615 /* 000616 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 000617 ** it. Return the register in which the result is stored (or, if the 000618 ** sub-select returns more than one column, the first in an array 000619 ** of registers in which the result is stored). 000620 ** 000621 ** If pExpr is not a TK_SELECT expression, return 0. 000622 */ 000623 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 000624 int reg = 0; 000625 #ifndef SQLITE_OMIT_SUBQUERY 000626 if( pExpr->op==TK_SELECT ){ 000627 reg = sqlite3CodeSubselect(pParse, pExpr); 000628 } 000629 #endif 000630 return reg; 000631 } 000632 000633 /* 000634 ** Argument pVector points to a vector expression - either a TK_VECTOR 000635 ** or TK_SELECT that returns more than one column. This function returns 000636 ** the register number of a register that contains the value of 000637 ** element iField of the vector. 000638 ** 000639 ** If pVector is a TK_SELECT expression, then code for it must have 000640 ** already been generated using the exprCodeSubselect() routine. In this 000641 ** case parameter regSelect should be the first in an array of registers 000642 ** containing the results of the sub-select. 000643 ** 000644 ** If pVector is of type TK_VECTOR, then code for the requested field 000645 ** is generated. In this case (*pRegFree) may be set to the number of 000646 ** a temporary register to be freed by the caller before returning. 000647 ** 000648 ** Before returning, output parameter (*ppExpr) is set to point to the 000649 ** Expr object corresponding to element iElem of the vector. 000650 */ 000651 static int exprVectorRegister( 000652 Parse *pParse, /* Parse context */ 000653 Expr *pVector, /* Vector to extract element from */ 000654 int iField, /* Field to extract from pVector */ 000655 int regSelect, /* First in array of registers */ 000656 Expr **ppExpr, /* OUT: Expression element */ 000657 int *pRegFree /* OUT: Temp register to free */ 000658 ){ 000659 u8 op = pVector->op; 000660 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 000661 if( op==TK_REGISTER ){ 000662 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 000663 return pVector->iTable+iField; 000664 } 000665 if( op==TK_SELECT ){ 000666 assert( ExprUseXSelect(pVector) ); 000667 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 000668 return regSelect+iField; 000669 } 000670 if( op==TK_VECTOR ){ 000671 assert( ExprUseXList(pVector) ); 000672 *ppExpr = pVector->x.pList->a[iField].pExpr; 000673 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 000674 } 000675 return 0; 000676 } 000677 000678 /* 000679 ** Expression pExpr is a comparison between two vector values. Compute 000680 ** the result of the comparison (1, 0, or NULL) and write that 000681 ** result into register dest. 000682 ** 000683 ** The caller must satisfy the following preconditions: 000684 ** 000685 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 000686 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 000687 ** otherwise: op==pExpr->op and p5==0 000688 */ 000689 static void codeVectorCompare( 000690 Parse *pParse, /* Code generator context */ 000691 Expr *pExpr, /* The comparison operation */ 000692 int dest, /* Write results into this register */ 000693 u8 op, /* Comparison operator */ 000694 u8 p5 /* SQLITE_NULLEQ or zero */ 000695 ){ 000696 Vdbe *v = pParse->pVdbe; 000697 Expr *pLeft = pExpr->pLeft; 000698 Expr *pRight = pExpr->pRight; 000699 int nLeft = sqlite3ExprVectorSize(pLeft); 000700 int i; 000701 int regLeft = 0; 000702 int regRight = 0; 000703 u8 opx = op; 000704 int addrCmp = 0; 000705 int addrDone = sqlite3VdbeMakeLabel(pParse); 000706 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 000707 000708 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 000709 if( pParse->nErr ) return; 000710 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 000711 sqlite3ErrorMsg(pParse, "row value misused"); 000712 return; 000713 } 000714 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 000715 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 000716 || pExpr->op==TK_LT || pExpr->op==TK_GT 000717 || pExpr->op==TK_LE || pExpr->op==TK_GE 000718 ); 000719 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 000720 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 000721 assert( p5==0 || pExpr->op!=op ); 000722 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 000723 000724 if( op==TK_LE ) opx = TK_LT; 000725 if( op==TK_GE ) opx = TK_GT; 000726 if( op==TK_NE ) opx = TK_EQ; 000727 000728 regLeft = exprCodeSubselect(pParse, pLeft); 000729 regRight = exprCodeSubselect(pParse, pRight); 000730 000731 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 000732 for(i=0; 1 /*Loop exits by "break"*/; i++){ 000733 int regFree1 = 0, regFree2 = 0; 000734 Expr *pL = 0, *pR = 0; 000735 int r1, r2; 000736 assert( i>=0 && i<nLeft ); 000737 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 000738 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 000739 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 000740 addrCmp = sqlite3VdbeCurrentAddr(v); 000741 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 000742 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 000743 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 000744 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 000745 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 000746 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 000747 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 000748 sqlite3ReleaseTempReg(pParse, regFree1); 000749 sqlite3ReleaseTempReg(pParse, regFree2); 000750 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 000751 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 000752 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 000753 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 000754 } 000755 if( p5==SQLITE_NULLEQ ){ 000756 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 000757 }else{ 000758 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 000759 } 000760 if( i==nLeft-1 ){ 000761 break; 000762 } 000763 if( opx==TK_EQ ){ 000764 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 000765 }else{ 000766 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 000767 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 000768 if( i==nLeft-2 ) opx = op; 000769 } 000770 } 000771 sqlite3VdbeJumpHere(v, addrCmp); 000772 sqlite3VdbeResolveLabel(v, addrDone); 000773 if( op==TK_NE ){ 000774 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 000775 } 000776 } 000777 000778 #if SQLITE_MAX_EXPR_DEPTH>0 000779 /* 000780 ** Check that argument nHeight is less than or equal to the maximum 000781 ** expression depth allowed. If it is not, leave an error message in 000782 ** pParse. 000783 */ 000784 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 000785 int rc = SQLITE_OK; 000786 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 000787 if( nHeight>mxHeight ){ 000788 sqlite3ErrorMsg(pParse, 000789 "Expression tree is too large (maximum depth %d)", mxHeight 000790 ); 000791 rc = SQLITE_ERROR; 000792 } 000793 return rc; 000794 } 000795 000796 /* The following three functions, heightOfExpr(), heightOfExprList() 000797 ** and heightOfSelect(), are used to determine the maximum height 000798 ** of any expression tree referenced by the structure passed as the 000799 ** first argument. 000800 ** 000801 ** If this maximum height is greater than the current value pointed 000802 ** to by pnHeight, the second parameter, then set *pnHeight to that 000803 ** value. 000804 */ 000805 static void heightOfExpr(const Expr *p, int *pnHeight){ 000806 if( p ){ 000807 if( p->nHeight>*pnHeight ){ 000808 *pnHeight = p->nHeight; 000809 } 000810 } 000811 } 000812 static void heightOfExprList(const ExprList *p, int *pnHeight){ 000813 if( p ){ 000814 int i; 000815 for(i=0; i<p->nExpr; i++){ 000816 heightOfExpr(p->a[i].pExpr, pnHeight); 000817 } 000818 } 000819 } 000820 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 000821 const Select *p; 000822 for(p=pSelect; p; p=p->pPrior){ 000823 heightOfExpr(p->pWhere, pnHeight); 000824 heightOfExpr(p->pHaving, pnHeight); 000825 heightOfExpr(p->pLimit, pnHeight); 000826 heightOfExprList(p->pEList, pnHeight); 000827 heightOfExprList(p->pGroupBy, pnHeight); 000828 heightOfExprList(p->pOrderBy, pnHeight); 000829 } 000830 } 000831 000832 /* 000833 ** Set the Expr.nHeight variable in the structure passed as an 000834 ** argument. An expression with no children, Expr.pList or 000835 ** Expr.pSelect member has a height of 1. Any other expression 000836 ** has a height equal to the maximum height of any other 000837 ** referenced Expr plus one. 000838 ** 000839 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 000840 ** if appropriate. 000841 */ 000842 static void exprSetHeight(Expr *p){ 000843 int nHeight = p->pLeft ? p->pLeft->nHeight : 0; 000844 if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){ 000845 nHeight = p->pRight->nHeight; 000846 } 000847 if( ExprUseXSelect(p) ){ 000848 heightOfSelect(p->x.pSelect, &nHeight); 000849 }else if( p->x.pList ){ 000850 heightOfExprList(p->x.pList, &nHeight); 000851 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 000852 } 000853 p->nHeight = nHeight + 1; 000854 } 000855 000856 /* 000857 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 000858 ** the height is greater than the maximum allowed expression depth, 000859 ** leave an error in pParse. 000860 ** 000861 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 000862 ** Expr.flags. 000863 */ 000864 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 000865 if( pParse->nErr ) return; 000866 exprSetHeight(p); 000867 sqlite3ExprCheckHeight(pParse, p->nHeight); 000868 } 000869 000870 /* 000871 ** Return the maximum height of any expression tree referenced 000872 ** by the select statement passed as an argument. 000873 */ 000874 int sqlite3SelectExprHeight(const Select *p){ 000875 int nHeight = 0; 000876 heightOfSelect(p, &nHeight); 000877 return nHeight; 000878 } 000879 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 000880 /* 000881 ** Propagate all EP_Propagate flags from the Expr.x.pList into 000882 ** Expr.flags. 000883 */ 000884 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 000885 if( pParse->nErr ) return; 000886 if( p && ExprUseXList(p) && p->x.pList ){ 000887 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 000888 } 000889 } 000890 #define exprSetHeight(y) 000891 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 000892 000893 /* 000894 ** Set the error offset for an Expr node, if possible. 000895 */ 000896 void sqlite3ExprSetErrorOffset(Expr *pExpr, int iOfst){ 000897 if( pExpr==0 ) return; 000898 if( NEVER(ExprUseWJoin(pExpr)) ) return; 000899 pExpr->w.iOfst = iOfst; 000900 } 000901 000902 /* 000903 ** This routine is the core allocator for Expr nodes. 000904 ** 000905 ** Construct a new expression node and return a pointer to it. Memory 000906 ** for this node and for the pToken argument is a single allocation 000907 ** obtained from sqlite3DbMalloc(). The calling function 000908 ** is responsible for making sure the node eventually gets freed. 000909 ** 000910 ** If dequote is true, then the token (if it exists) is dequoted. 000911 ** If dequote is false, no dequoting is performed. The deQuote 000912 ** parameter is ignored if pToken is NULL or if the token does not 000913 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 000914 ** then the EP_DblQuoted flag is set on the expression node. 000915 ** 000916 ** Special case: If op==TK_INTEGER and pToken points to a string that 000917 ** can be translated into a 32-bit integer, then the token is not 000918 ** stored in u.zToken. Instead, the integer values is written 000919 ** into u.iValue and the EP_IntValue flag is set. No extra storage 000920 ** is allocated to hold the integer text and the dequote flag is ignored. 000921 */ 000922 Expr *sqlite3ExprAlloc( 000923 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 000924 int op, /* Expression opcode */ 000925 const Token *pToken, /* Token argument. Might be NULL */ 000926 int dequote /* True to dequote */ 000927 ){ 000928 Expr *pNew; 000929 int nExtra = 0; 000930 int iValue = 0; 000931 000932 assert( db!=0 ); 000933 if( pToken ){ 000934 if( op!=TK_INTEGER || pToken->z==0 000935 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 000936 nExtra = pToken->n+1; 000937 assert( iValue>=0 ); 000938 } 000939 } 000940 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 000941 if( pNew ){ 000942 memset(pNew, 0, sizeof(Expr)); 000943 pNew->op = (u8)op; 000944 pNew->iAgg = -1; 000945 if( pToken ){ 000946 if( nExtra==0 ){ 000947 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 000948 pNew->u.iValue = iValue; 000949 }else{ 000950 pNew->u.zToken = (char*)&pNew[1]; 000951 assert( pToken->z!=0 || pToken->n==0 ); 000952 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 000953 pNew->u.zToken[pToken->n] = 0; 000954 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 000955 sqlite3DequoteExpr(pNew); 000956 } 000957 } 000958 } 000959 #if SQLITE_MAX_EXPR_DEPTH>0 000960 pNew->nHeight = 1; 000961 #endif 000962 } 000963 return pNew; 000964 } 000965 000966 /* 000967 ** Allocate a new expression node from a zero-terminated token that has 000968 ** already been dequoted. 000969 */ 000970 Expr *sqlite3Expr( 000971 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 000972 int op, /* Expression opcode */ 000973 const char *zToken /* Token argument. Might be NULL */ 000974 ){ 000975 Token x; 000976 x.z = zToken; 000977 x.n = sqlite3Strlen30(zToken); 000978 return sqlite3ExprAlloc(db, op, &x, 0); 000979 } 000980 000981 /* 000982 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 000983 ** 000984 ** If pRoot==NULL that means that a memory allocation error has occurred. 000985 ** In that case, delete the subtrees pLeft and pRight. 000986 */ 000987 void sqlite3ExprAttachSubtrees( 000988 sqlite3 *db, 000989 Expr *pRoot, 000990 Expr *pLeft, 000991 Expr *pRight 000992 ){ 000993 if( pRoot==0 ){ 000994 assert( db->mallocFailed ); 000995 sqlite3ExprDelete(db, pLeft); 000996 sqlite3ExprDelete(db, pRight); 000997 }else{ 000998 assert( ExprUseXList(pRoot) ); 000999 assert( pRoot->x.pSelect==0 ); 001000 if( pRight ){ 001001 pRoot->pRight = pRight; 001002 pRoot->flags |= EP_Propagate & pRight->flags; 001003 #if SQLITE_MAX_EXPR_DEPTH>0 001004 pRoot->nHeight = pRight->nHeight+1; 001005 }else{ 001006 pRoot->nHeight = 1; 001007 #endif 001008 } 001009 if( pLeft ){ 001010 pRoot->pLeft = pLeft; 001011 pRoot->flags |= EP_Propagate & pLeft->flags; 001012 #if SQLITE_MAX_EXPR_DEPTH>0 001013 if( pLeft->nHeight>=pRoot->nHeight ){ 001014 pRoot->nHeight = pLeft->nHeight+1; 001015 } 001016 #endif 001017 } 001018 } 001019 } 001020 001021 /* 001022 ** Allocate an Expr node which joins as many as two subtrees. 001023 ** 001024 ** One or both of the subtrees can be NULL. Return a pointer to the new 001025 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 001026 ** free the subtrees and return NULL. 001027 */ 001028 Expr *sqlite3PExpr( 001029 Parse *pParse, /* Parsing context */ 001030 int op, /* Expression opcode */ 001031 Expr *pLeft, /* Left operand */ 001032 Expr *pRight /* Right operand */ 001033 ){ 001034 Expr *p; 001035 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 001036 if( p ){ 001037 memset(p, 0, sizeof(Expr)); 001038 p->op = op & 0xff; 001039 p->iAgg = -1; 001040 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 001041 sqlite3ExprCheckHeight(pParse, p->nHeight); 001042 }else{ 001043 sqlite3ExprDelete(pParse->db, pLeft); 001044 sqlite3ExprDelete(pParse->db, pRight); 001045 } 001046 return p; 001047 } 001048 001049 /* 001050 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 001051 ** do a memory allocation failure) then delete the pSelect object. 001052 */ 001053 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 001054 if( pExpr ){ 001055 pExpr->x.pSelect = pSelect; 001056 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 001057 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 001058 }else{ 001059 assert( pParse->db->mallocFailed ); 001060 sqlite3SelectDelete(pParse->db, pSelect); 001061 } 001062 } 001063 001064 /* 001065 ** Expression list pEList is a list of vector values. This function 001066 ** converts the contents of pEList to a VALUES(...) Select statement 001067 ** returning 1 row for each element of the list. For example, the 001068 ** expression list: 001069 ** 001070 ** ( (1,2), (3,4) (5,6) ) 001071 ** 001072 ** is translated to the equivalent of: 001073 ** 001074 ** VALUES(1,2), (3,4), (5,6) 001075 ** 001076 ** Each of the vector values in pEList must contain exactly nElem terms. 001077 ** If a list element that is not a vector or does not contain nElem terms, 001078 ** an error message is left in pParse. 001079 ** 001080 ** This is used as part of processing IN(...) expressions with a list 001081 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 001082 */ 001083 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 001084 int ii; 001085 Select *pRet = 0; 001086 assert( nElem>1 ); 001087 for(ii=0; ii<pEList->nExpr; ii++){ 001088 Select *pSel; 001089 Expr *pExpr = pEList->a[ii].pExpr; 001090 int nExprElem; 001091 if( pExpr->op==TK_VECTOR ){ 001092 assert( ExprUseXList(pExpr) ); 001093 nExprElem = pExpr->x.pList->nExpr; 001094 }else{ 001095 nExprElem = 1; 001096 } 001097 if( nExprElem!=nElem ){ 001098 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 001099 nExprElem, nExprElem>1?"s":"", nElem 001100 ); 001101 break; 001102 } 001103 assert( ExprUseXList(pExpr) ); 001104 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 001105 pExpr->x.pList = 0; 001106 if( pSel ){ 001107 if( pRet ){ 001108 pSel->op = TK_ALL; 001109 pSel->pPrior = pRet; 001110 } 001111 pRet = pSel; 001112 } 001113 } 001114 001115 if( pRet && pRet->pPrior ){ 001116 pRet->selFlags |= SF_MultiValue; 001117 } 001118 sqlite3ExprListDelete(pParse->db, pEList); 001119 return pRet; 001120 } 001121 001122 /* 001123 ** Join two expressions using an AND operator. If either expression is 001124 ** NULL, then just return the other expression. 001125 ** 001126 ** If one side or the other of the AND is known to be false, and neither side 001127 ** is part of an ON clause, then instead of returning an AND expression, 001128 ** just return a constant expression with a value of false. 001129 */ 001130 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 001131 sqlite3 *db = pParse->db; 001132 if( pLeft==0 ){ 001133 return pRight; 001134 }else if( pRight==0 ){ 001135 return pLeft; 001136 }else{ 001137 u32 f = pLeft->flags | pRight->flags; 001138 if( (f&(EP_OuterON|EP_InnerON|EP_IsFalse))==EP_IsFalse 001139 && !IN_RENAME_OBJECT 001140 ){ 001141 sqlite3ExprDeferredDelete(pParse, pLeft); 001142 sqlite3ExprDeferredDelete(pParse, pRight); 001143 return sqlite3Expr(db, TK_INTEGER, "0"); 001144 }else{ 001145 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 001146 } 001147 } 001148 } 001149 001150 /* 001151 ** Construct a new expression node for a function with multiple 001152 ** arguments. 001153 */ 001154 Expr *sqlite3ExprFunction( 001155 Parse *pParse, /* Parsing context */ 001156 ExprList *pList, /* Argument list */ 001157 const Token *pToken, /* Name of the function */ 001158 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 001159 ){ 001160 Expr *pNew; 001161 sqlite3 *db = pParse->db; 001162 assert( pToken ); 001163 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 001164 if( pNew==0 ){ 001165 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 001166 return 0; 001167 } 001168 assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) ); 001169 pNew->w.iOfst = (int)(pToken->z - pParse->zTail); 001170 if( pList 001171 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 001172 && !pParse->nested 001173 ){ 001174 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 001175 } 001176 pNew->x.pList = pList; 001177 ExprSetProperty(pNew, EP_HasFunc); 001178 assert( ExprUseXList(pNew) ); 001179 sqlite3ExprSetHeightAndFlags(pParse, pNew); 001180 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 001181 return pNew; 001182 } 001183 001184 /* 001185 ** Check to see if a function is usable according to current access 001186 ** rules: 001187 ** 001188 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 001189 ** 001190 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 001191 ** top-level SQL 001192 ** 001193 ** If the function is not usable, create an error. 001194 */ 001195 void sqlite3ExprFunctionUsable( 001196 Parse *pParse, /* Parsing and code generating context */ 001197 const Expr *pExpr, /* The function invocation */ 001198 const FuncDef *pDef /* The function being invoked */ 001199 ){ 001200 assert( !IN_RENAME_OBJECT ); 001201 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 001202 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 001203 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 001204 || (pParse->db->flags & SQLITE_TrustedSchema)==0 001205 ){ 001206 /* Functions prohibited in triggers and views if: 001207 ** (1) tagged with SQLITE_DIRECTONLY 001208 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 001209 ** is tagged with SQLITE_FUNC_UNSAFE) and 001210 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 001211 ** that the schema is possibly tainted). 001212 */ 001213 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); 001214 } 001215 } 001216 } 001217 001218 /* 001219 ** Assign a variable number to an expression that encodes a wildcard 001220 ** in the original SQL statement. 001221 ** 001222 ** Wildcards consisting of a single "?" are assigned the next sequential 001223 ** variable number. 001224 ** 001225 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 001226 ** sure "nnn" is not too big to avoid a denial of service attack when 001227 ** the SQL statement comes from an external source. 001228 ** 001229 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 001230 ** as the previous instance of the same wildcard. Or if this is the first 001231 ** instance of the wildcard, the next sequential variable number is 001232 ** assigned. 001233 */ 001234 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 001235 sqlite3 *db = pParse->db; 001236 const char *z; 001237 ynVar x; 001238 001239 if( pExpr==0 ) return; 001240 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 001241 z = pExpr->u.zToken; 001242 assert( z!=0 ); 001243 assert( z[0]!=0 ); 001244 assert( n==(u32)sqlite3Strlen30(z) ); 001245 if( z[1]==0 ){ 001246 /* Wildcard of the form "?". Assign the next variable number */ 001247 assert( z[0]=='?' ); 001248 x = (ynVar)(++pParse->nVar); 001249 }else{ 001250 int doAdd = 0; 001251 if( z[0]=='?' ){ 001252 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 001253 ** use it as the variable number */ 001254 i64 i; 001255 int bOk; 001256 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 001257 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 001258 bOk = 1; 001259 }else{ 001260 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 001261 } 001262 testcase( i==0 ); 001263 testcase( i==1 ); 001264 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 001265 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 001266 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 001267 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 001268 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 001269 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 001270 return; 001271 } 001272 x = (ynVar)i; 001273 if( x>pParse->nVar ){ 001274 pParse->nVar = (int)x; 001275 doAdd = 1; 001276 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 001277 doAdd = 1; 001278 } 001279 }else{ 001280 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 001281 ** number as the prior appearance of the same name, or if the name 001282 ** has never appeared before, reuse the same variable number 001283 */ 001284 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 001285 if( x==0 ){ 001286 x = (ynVar)(++pParse->nVar); 001287 doAdd = 1; 001288 } 001289 } 001290 if( doAdd ){ 001291 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 001292 } 001293 } 001294 pExpr->iColumn = x; 001295 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 001296 sqlite3ErrorMsg(pParse, "too many SQL variables"); 001297 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 001298 } 001299 } 001300 001301 /* 001302 ** Recursively delete an expression tree. 001303 */ 001304 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 001305 assert( p!=0 ); 001306 assert( db!=0 ); 001307 assert( !ExprUseUValue(p) || p->u.iValue>=0 ); 001308 assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); 001309 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); 001310 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); 001311 #ifdef SQLITE_DEBUG 001312 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 001313 assert( p->pLeft==0 ); 001314 assert( p->pRight==0 ); 001315 assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); 001316 assert( !ExprUseXList(p) || p->x.pList==0 ); 001317 } 001318 #endif 001319 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 001320 /* The Expr.x union is never used at the same time as Expr.pRight */ 001321 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); 001322 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 001323 if( p->pRight ){ 001324 assert( !ExprHasProperty(p, EP_WinFunc) ); 001325 sqlite3ExprDeleteNN(db, p->pRight); 001326 }else if( ExprUseXSelect(p) ){ 001327 assert( !ExprHasProperty(p, EP_WinFunc) ); 001328 sqlite3SelectDelete(db, p->x.pSelect); 001329 }else{ 001330 sqlite3ExprListDelete(db, p->x.pList); 001331 #ifndef SQLITE_OMIT_WINDOWFUNC 001332 if( ExprHasProperty(p, EP_WinFunc) ){ 001333 sqlite3WindowDelete(db, p->y.pWin); 001334 } 001335 #endif 001336 } 001337 } 001338 if( !ExprHasProperty(p, EP_Static) ){ 001339 sqlite3DbNNFreeNN(db, p); 001340 } 001341 } 001342 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 001343 if( p ) sqlite3ExprDeleteNN(db, p); 001344 } 001345 001346 /* 001347 ** Clear both elements of an OnOrUsing object 001348 */ 001349 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ 001350 if( p==0 ){ 001351 /* Nothing to clear */ 001352 }else if( p->pOn ){ 001353 sqlite3ExprDeleteNN(db, p->pOn); 001354 }else if( p->pUsing ){ 001355 sqlite3IdListDelete(db, p->pUsing); 001356 } 001357 } 001358 001359 /* 001360 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 001361 ** This is similar to sqlite3ExprDelete() except that the delete is 001362 ** deferred until the pParse is deleted. 001363 ** 001364 ** The pExpr might be deleted immediately on an OOM error. 001365 ** 001366 ** The deferred delete is (currently) implemented by adding the 001367 ** pExpr to the pParse->pConstExpr list with a register number of 0. 001368 */ 001369 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 001370 sqlite3ParserAddCleanup(pParse, 001371 (void(*)(sqlite3*,void*))sqlite3ExprDelete, 001372 pExpr); 001373 } 001374 001375 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 001376 ** expression. 001377 */ 001378 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 001379 if( p ){ 001380 if( IN_RENAME_OBJECT ){ 001381 sqlite3RenameExprUnmap(pParse, p); 001382 } 001383 sqlite3ExprDeleteNN(pParse->db, p); 001384 } 001385 } 001386 001387 /* 001388 ** Return the number of bytes allocated for the expression structure 001389 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 001390 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 001391 */ 001392 static int exprStructSize(const Expr *p){ 001393 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 001394 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 001395 return EXPR_FULLSIZE; 001396 } 001397 001398 /* 001399 ** The dupedExpr*Size() routines each return the number of bytes required 001400 ** to store a copy of an expression or expression tree. They differ in 001401 ** how much of the tree is measured. 001402 ** 001403 ** dupedExprStructSize() Size of only the Expr structure 001404 ** dupedExprNodeSize() Size of Expr + space for token 001405 ** dupedExprSize() Expr + token + subtree components 001406 ** 001407 *************************************************************************** 001408 ** 001409 ** The dupedExprStructSize() function returns two values OR-ed together: 001410 ** (1) the space required for a copy of the Expr structure only and 001411 ** (2) the EP_xxx flags that indicate what the structure size should be. 001412 ** The return values is always one of: 001413 ** 001414 ** EXPR_FULLSIZE 001415 ** EXPR_REDUCEDSIZE | EP_Reduced 001416 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 001417 ** 001418 ** The size of the structure can be found by masking the return value 001419 ** of this routine with 0xfff. The flags can be found by masking the 001420 ** return value with EP_Reduced|EP_TokenOnly. 001421 ** 001422 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 001423 ** (unreduced) Expr objects as they or originally constructed by the parser. 001424 ** During expression analysis, extra information is computed and moved into 001425 ** later parts of the Expr object and that extra information might get chopped 001426 ** off if the expression is reduced. Note also that it does not work to 001427 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 001428 ** to reduce a pristine expression tree from the parser. The implementation 001429 ** of dupedExprStructSize() contain multiple assert() statements that attempt 001430 ** to enforce this constraint. 001431 */ 001432 static int dupedExprStructSize(const Expr *p, int flags){ 001433 int nSize; 001434 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 001435 assert( EXPR_FULLSIZE<=0xfff ); 001436 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 001437 if( 0==flags || p->op==TK_SELECT_COLUMN 001438 #ifndef SQLITE_OMIT_WINDOWFUNC 001439 || ExprHasProperty(p, EP_WinFunc) 001440 #endif 001441 ){ 001442 nSize = EXPR_FULLSIZE; 001443 }else{ 001444 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 001445 assert( !ExprHasProperty(p, EP_OuterON) ); 001446 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 001447 if( p->pLeft || p->x.pList ){ 001448 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 001449 }else{ 001450 assert( p->pRight==0 ); 001451 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 001452 } 001453 } 001454 return nSize; 001455 } 001456 001457 /* 001458 ** This function returns the space in bytes required to store the copy 001459 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 001460 ** string is defined.) 001461 */ 001462 static int dupedExprNodeSize(const Expr *p, int flags){ 001463 int nByte = dupedExprStructSize(p, flags) & 0xfff; 001464 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 001465 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 001466 } 001467 return ROUND8(nByte); 001468 } 001469 001470 /* 001471 ** Return the number of bytes required to create a duplicate of the 001472 ** expression passed as the first argument. The second argument is a 001473 ** mask containing EXPRDUP_XXX flags. 001474 ** 001475 ** The value returned includes space to create a copy of the Expr struct 001476 ** itself and the buffer referred to by Expr.u.zToken, if any. 001477 ** 001478 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 001479 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 001480 ** and Expr.pRight variables (but not for any structures pointed to or 001481 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 001482 */ 001483 static int dupedExprSize(const Expr *p, int flags){ 001484 int nByte = 0; 001485 if( p ){ 001486 nByte = dupedExprNodeSize(p, flags); 001487 if( flags&EXPRDUP_REDUCE ){ 001488 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 001489 } 001490 } 001491 return nByte; 001492 } 001493 001494 /* 001495 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 001496 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 001497 ** to store the copy of expression p, the copies of p->u.zToken 001498 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 001499 ** if any. Before returning, *pzBuffer is set to the first byte past the 001500 ** portion of the buffer copied into by this function. 001501 */ 001502 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 001503 Expr *pNew; /* Value to return */ 001504 u8 *zAlloc; /* Memory space from which to build Expr object */ 001505 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 001506 001507 assert( db!=0 ); 001508 assert( p ); 001509 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 001510 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 001511 001512 /* Figure out where to write the new Expr structure. */ 001513 if( pzBuffer ){ 001514 zAlloc = *pzBuffer; 001515 staticFlag = EP_Static; 001516 assert( zAlloc!=0 ); 001517 }else{ 001518 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 001519 staticFlag = 0; 001520 } 001521 pNew = (Expr *)zAlloc; 001522 001523 if( pNew ){ 001524 /* Set nNewSize to the size allocated for the structure pointed to 001525 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 001526 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 001527 ** by the copy of the p->u.zToken string (if any). 001528 */ 001529 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 001530 const int nNewSize = nStructSize & 0xfff; 001531 int nToken; 001532 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 001533 nToken = sqlite3Strlen30(p->u.zToken) + 1; 001534 }else{ 001535 nToken = 0; 001536 } 001537 if( dupFlags ){ 001538 assert( ExprHasProperty(p, EP_Reduced)==0 ); 001539 memcpy(zAlloc, p, nNewSize); 001540 }else{ 001541 u32 nSize = (u32)exprStructSize(p); 001542 memcpy(zAlloc, p, nSize); 001543 if( nSize<EXPR_FULLSIZE ){ 001544 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 001545 } 001546 } 001547 001548 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 001549 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 001550 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 001551 pNew->flags |= staticFlag; 001552 ExprClearVVAProperties(pNew); 001553 if( dupFlags ){ 001554 ExprSetVVAProperty(pNew, EP_Immutable); 001555 } 001556 001557 /* Copy the p->u.zToken string, if any. */ 001558 if( nToken ){ 001559 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 001560 memcpy(zToken, p->u.zToken, nToken); 001561 } 001562 001563 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 001564 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 001565 if( ExprUseXSelect(p) ){ 001566 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 001567 }else{ 001568 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 001569 } 001570 } 001571 001572 /* Fill in pNew->pLeft and pNew->pRight. */ 001573 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 001574 zAlloc += dupedExprNodeSize(p, dupFlags); 001575 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 001576 pNew->pLeft = p->pLeft ? 001577 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 001578 pNew->pRight = p->pRight ? 001579 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 001580 } 001581 #ifndef SQLITE_OMIT_WINDOWFUNC 001582 if( ExprHasProperty(p, EP_WinFunc) ){ 001583 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 001584 assert( ExprHasProperty(pNew, EP_WinFunc) ); 001585 } 001586 #endif /* SQLITE_OMIT_WINDOWFUNC */ 001587 if( pzBuffer ){ 001588 *pzBuffer = zAlloc; 001589 } 001590 }else{ 001591 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 001592 if( pNew->op==TK_SELECT_COLUMN ){ 001593 pNew->pLeft = p->pLeft; 001594 assert( p->pRight==0 || p->pRight==p->pLeft 001595 || ExprHasProperty(p->pLeft, EP_Subquery) ); 001596 }else{ 001597 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 001598 } 001599 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 001600 } 001601 } 001602 } 001603 return pNew; 001604 } 001605 001606 /* 001607 ** Create and return a deep copy of the object passed as the second 001608 ** argument. If an OOM condition is encountered, NULL is returned 001609 ** and the db->mallocFailed flag set. 001610 */ 001611 #ifndef SQLITE_OMIT_CTE 001612 With *sqlite3WithDup(sqlite3 *db, With *p){ 001613 With *pRet = 0; 001614 if( p ){ 001615 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 001616 pRet = sqlite3DbMallocZero(db, nByte); 001617 if( pRet ){ 001618 int i; 001619 pRet->nCte = p->nCte; 001620 for(i=0; i<p->nCte; i++){ 001621 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 001622 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 001623 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 001624 pRet->a[i].eM10d = p->a[i].eM10d; 001625 } 001626 } 001627 } 001628 return pRet; 001629 } 001630 #else 001631 # define sqlite3WithDup(x,y) 0 001632 #endif 001633 001634 #ifndef SQLITE_OMIT_WINDOWFUNC 001635 /* 001636 ** The gatherSelectWindows() procedure and its helper routine 001637 ** gatherSelectWindowsCallback() are used to scan all the expressions 001638 ** an a newly duplicated SELECT statement and gather all of the Window 001639 ** objects found there, assembling them onto the linked list at Select->pWin. 001640 */ 001641 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 001642 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 001643 Select *pSelect = pWalker->u.pSelect; 001644 Window *pWin = pExpr->y.pWin; 001645 assert( pWin ); 001646 assert( IsWindowFunc(pExpr) ); 001647 assert( pWin->ppThis==0 ); 001648 sqlite3WindowLink(pSelect, pWin); 001649 } 001650 return WRC_Continue; 001651 } 001652 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 001653 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 001654 } 001655 static void gatherSelectWindows(Select *p){ 001656 Walker w; 001657 w.xExprCallback = gatherSelectWindowsCallback; 001658 w.xSelectCallback = gatherSelectWindowsSelectCallback; 001659 w.xSelectCallback2 = 0; 001660 w.pParse = 0; 001661 w.u.pSelect = p; 001662 sqlite3WalkSelect(&w, p); 001663 } 001664 #endif 001665 001666 001667 /* 001668 ** The following group of routines make deep copies of expressions, 001669 ** expression lists, ID lists, and select statements. The copies can 001670 ** be deleted (by being passed to their respective ...Delete() routines) 001671 ** without effecting the originals. 001672 ** 001673 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 001674 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 001675 ** by subsequent calls to sqlite*ListAppend() routines. 001676 ** 001677 ** Any tables that the SrcList might point to are not duplicated. 001678 ** 001679 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 001680 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 001681 ** truncated version of the usual Expr structure that will be stored as 001682 ** part of the in-memory representation of the database schema. 001683 */ 001684 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 001685 assert( flags==0 || flags==EXPRDUP_REDUCE ); 001686 return p ? exprDup(db, p, flags, 0) : 0; 001687 } 001688 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 001689 ExprList *pNew; 001690 struct ExprList_item *pItem; 001691 const struct ExprList_item *pOldItem; 001692 int i; 001693 Expr *pPriorSelectColOld = 0; 001694 Expr *pPriorSelectColNew = 0; 001695 assert( db!=0 ); 001696 if( p==0 ) return 0; 001697 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 001698 if( pNew==0 ) return 0; 001699 pNew->nExpr = p->nExpr; 001700 pNew->nAlloc = p->nAlloc; 001701 pItem = pNew->a; 001702 pOldItem = p->a; 001703 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 001704 Expr *pOldExpr = pOldItem->pExpr; 001705 Expr *pNewExpr; 001706 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 001707 if( pOldExpr 001708 && pOldExpr->op==TK_SELECT_COLUMN 001709 && (pNewExpr = pItem->pExpr)!=0 001710 ){ 001711 if( pNewExpr->pRight ){ 001712 pPriorSelectColOld = pOldExpr->pRight; 001713 pPriorSelectColNew = pNewExpr->pRight; 001714 pNewExpr->pLeft = pNewExpr->pRight; 001715 }else{ 001716 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 001717 pPriorSelectColOld = pOldExpr->pLeft; 001718 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 001719 pNewExpr->pRight = pPriorSelectColNew; 001720 } 001721 pNewExpr->pLeft = pPriorSelectColNew; 001722 } 001723 } 001724 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 001725 pItem->fg = pOldItem->fg; 001726 pItem->fg.done = 0; 001727 pItem->u = pOldItem->u; 001728 } 001729 return pNew; 001730 } 001731 001732 /* 001733 ** If cursors, triggers, views and subqueries are all omitted from 001734 ** the build, then none of the following routines, except for 001735 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 001736 ** called with a NULL argument. 001737 */ 001738 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 001739 || !defined(SQLITE_OMIT_SUBQUERY) 001740 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 001741 SrcList *pNew; 001742 int i; 001743 int nByte; 001744 assert( db!=0 ); 001745 if( p==0 ) return 0; 001746 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 001747 pNew = sqlite3DbMallocRawNN(db, nByte ); 001748 if( pNew==0 ) return 0; 001749 pNew->nSrc = pNew->nAlloc = p->nSrc; 001750 for(i=0; i<p->nSrc; i++){ 001751 SrcItem *pNewItem = &pNew->a[i]; 001752 const SrcItem *pOldItem = &p->a[i]; 001753 Table *pTab; 001754 pNewItem->pSchema = pOldItem->pSchema; 001755 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 001756 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 001757 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 001758 pNewItem->fg = pOldItem->fg; 001759 pNewItem->iCursor = pOldItem->iCursor; 001760 pNewItem->addrFillSub = pOldItem->addrFillSub; 001761 pNewItem->regReturn = pOldItem->regReturn; 001762 if( pNewItem->fg.isIndexedBy ){ 001763 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 001764 } 001765 pNewItem->u2 = pOldItem->u2; 001766 if( pNewItem->fg.isCte ){ 001767 pNewItem->u2.pCteUse->nUse++; 001768 } 001769 if( pNewItem->fg.isTabFunc ){ 001770 pNewItem->u1.pFuncArg = 001771 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 001772 } 001773 pTab = pNewItem->pTab = pOldItem->pTab; 001774 if( pTab ){ 001775 pTab->nTabRef++; 001776 } 001777 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 001778 if( pOldItem->fg.isUsing ){ 001779 assert( pNewItem->fg.isUsing ); 001780 pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); 001781 }else{ 001782 pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); 001783 } 001784 pNewItem->colUsed = pOldItem->colUsed; 001785 } 001786 return pNew; 001787 } 001788 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 001789 IdList *pNew; 001790 int i; 001791 assert( db!=0 ); 001792 if( p==0 ) return 0; 001793 assert( p->eU4!=EU4_EXPR ); 001794 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) ); 001795 if( pNew==0 ) return 0; 001796 pNew->nId = p->nId; 001797 pNew->eU4 = p->eU4; 001798 for(i=0; i<p->nId; i++){ 001799 struct IdList_item *pNewItem = &pNew->a[i]; 001800 const struct IdList_item *pOldItem = &p->a[i]; 001801 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 001802 pNewItem->u4 = pOldItem->u4; 001803 } 001804 return pNew; 001805 } 001806 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 001807 Select *pRet = 0; 001808 Select *pNext = 0; 001809 Select **pp = &pRet; 001810 const Select *p; 001811 001812 assert( db!=0 ); 001813 for(p=pDup; p; p=p->pPrior){ 001814 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 001815 if( pNew==0 ) break; 001816 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 001817 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 001818 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 001819 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 001820 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 001821 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 001822 pNew->op = p->op; 001823 pNew->pNext = pNext; 001824 pNew->pPrior = 0; 001825 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 001826 pNew->iLimit = 0; 001827 pNew->iOffset = 0; 001828 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 001829 pNew->addrOpenEphm[0] = -1; 001830 pNew->addrOpenEphm[1] = -1; 001831 pNew->nSelectRow = p->nSelectRow; 001832 pNew->pWith = sqlite3WithDup(db, p->pWith); 001833 #ifndef SQLITE_OMIT_WINDOWFUNC 001834 pNew->pWin = 0; 001835 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 001836 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 001837 #endif 001838 pNew->selId = p->selId; 001839 if( db->mallocFailed ){ 001840 /* Any prior OOM might have left the Select object incomplete. 001841 ** Delete the whole thing rather than allow an incomplete Select 001842 ** to be used by the code generator. */ 001843 pNew->pNext = 0; 001844 sqlite3SelectDelete(db, pNew); 001845 break; 001846 } 001847 *pp = pNew; 001848 pp = &pNew->pPrior; 001849 pNext = pNew; 001850 } 001851 001852 return pRet; 001853 } 001854 #else 001855 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ 001856 assert( p==0 ); 001857 return 0; 001858 } 001859 #endif 001860 001861 001862 /* 001863 ** Add a new element to the end of an expression list. If pList is 001864 ** initially NULL, then create a new expression list. 001865 ** 001866 ** The pList argument must be either NULL or a pointer to an ExprList 001867 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 001868 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 001869 ** Reason: This routine assumes that the number of slots in pList->a[] 001870 ** is a power of two. That is true for sqlite3ExprListAppend() returns 001871 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 001872 ** 001873 ** If a memory allocation error occurs, the entire list is freed and 001874 ** NULL is returned. If non-NULL is returned, then it is guaranteed 001875 ** that the new entry was successfully appended. 001876 */ 001877 static const struct ExprList_item zeroItem = {0}; 001878 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 001879 sqlite3 *db, /* Database handle. Used for memory allocation */ 001880 Expr *pExpr /* Expression to be appended. Might be NULL */ 001881 ){ 001882 struct ExprList_item *pItem; 001883 ExprList *pList; 001884 001885 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 001886 if( pList==0 ){ 001887 sqlite3ExprDelete(db, pExpr); 001888 return 0; 001889 } 001890 pList->nAlloc = 4; 001891 pList->nExpr = 1; 001892 pItem = &pList->a[0]; 001893 *pItem = zeroItem; 001894 pItem->pExpr = pExpr; 001895 return pList; 001896 } 001897 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 001898 sqlite3 *db, /* Database handle. Used for memory allocation */ 001899 ExprList *pList, /* List to which to append. Might be NULL */ 001900 Expr *pExpr /* Expression to be appended. Might be NULL */ 001901 ){ 001902 struct ExprList_item *pItem; 001903 ExprList *pNew; 001904 pList->nAlloc *= 2; 001905 pNew = sqlite3DbRealloc(db, pList, 001906 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 001907 if( pNew==0 ){ 001908 sqlite3ExprListDelete(db, pList); 001909 sqlite3ExprDelete(db, pExpr); 001910 return 0; 001911 }else{ 001912 pList = pNew; 001913 } 001914 pItem = &pList->a[pList->nExpr++]; 001915 *pItem = zeroItem; 001916 pItem->pExpr = pExpr; 001917 return pList; 001918 } 001919 ExprList *sqlite3ExprListAppend( 001920 Parse *pParse, /* Parsing context */ 001921 ExprList *pList, /* List to which to append. Might be NULL */ 001922 Expr *pExpr /* Expression to be appended. Might be NULL */ 001923 ){ 001924 struct ExprList_item *pItem; 001925 if( pList==0 ){ 001926 return sqlite3ExprListAppendNew(pParse->db,pExpr); 001927 } 001928 if( pList->nAlloc<pList->nExpr+1 ){ 001929 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 001930 } 001931 pItem = &pList->a[pList->nExpr++]; 001932 *pItem = zeroItem; 001933 pItem->pExpr = pExpr; 001934 return pList; 001935 } 001936 001937 /* 001938 ** pColumns and pExpr form a vector assignment which is part of the SET 001939 ** clause of an UPDATE statement. Like this: 001940 ** 001941 ** (a,b,c) = (expr1,expr2,expr3) 001942 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 001943 ** 001944 ** For each term of the vector assignment, append new entries to the 001945 ** expression list pList. In the case of a subquery on the RHS, append 001946 ** TK_SELECT_COLUMN expressions. 001947 */ 001948 ExprList *sqlite3ExprListAppendVector( 001949 Parse *pParse, /* Parsing context */ 001950 ExprList *pList, /* List to which to append. Might be NULL */ 001951 IdList *pColumns, /* List of names of LHS of the assignment */ 001952 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 001953 ){ 001954 sqlite3 *db = pParse->db; 001955 int n; 001956 int i; 001957 int iFirst = pList ? pList->nExpr : 0; 001958 /* pColumns can only be NULL due to an OOM but an OOM will cause an 001959 ** exit prior to this routine being invoked */ 001960 if( NEVER(pColumns==0) ) goto vector_append_error; 001961 if( pExpr==0 ) goto vector_append_error; 001962 001963 /* If the RHS is a vector, then we can immediately check to see that 001964 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 001965 ** wildcards ("*") in the result set of the SELECT must be expanded before 001966 ** we can do the size check, so defer the size check until code generation. 001967 */ 001968 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 001969 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 001970 pColumns->nId, n); 001971 goto vector_append_error; 001972 } 001973 001974 for(i=0; i<pColumns->nId; i++){ 001975 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 001976 assert( pSubExpr!=0 || db->mallocFailed ); 001977 if( pSubExpr==0 ) continue; 001978 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 001979 if( pList ){ 001980 assert( pList->nExpr==iFirst+i+1 ); 001981 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 001982 pColumns->a[i].zName = 0; 001983 } 001984 } 001985 001986 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 001987 Expr *pFirst = pList->a[iFirst].pExpr; 001988 assert( pFirst!=0 ); 001989 assert( pFirst->op==TK_SELECT_COLUMN ); 001990 001991 /* Store the SELECT statement in pRight so it will be deleted when 001992 ** sqlite3ExprListDelete() is called */ 001993 pFirst->pRight = pExpr; 001994 pExpr = 0; 001995 001996 /* Remember the size of the LHS in iTable so that we can check that 001997 ** the RHS and LHS sizes match during code generation. */ 001998 pFirst->iTable = pColumns->nId; 001999 } 002000 002001 vector_append_error: 002002 sqlite3ExprUnmapAndDelete(pParse, pExpr); 002003 sqlite3IdListDelete(db, pColumns); 002004 return pList; 002005 } 002006 002007 /* 002008 ** Set the sort order for the last element on the given ExprList. 002009 */ 002010 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 002011 struct ExprList_item *pItem; 002012 if( p==0 ) return; 002013 assert( p->nExpr>0 ); 002014 002015 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 002016 assert( iSortOrder==SQLITE_SO_UNDEFINED 002017 || iSortOrder==SQLITE_SO_ASC 002018 || iSortOrder==SQLITE_SO_DESC 002019 ); 002020 assert( eNulls==SQLITE_SO_UNDEFINED 002021 || eNulls==SQLITE_SO_ASC 002022 || eNulls==SQLITE_SO_DESC 002023 ); 002024 002025 pItem = &p->a[p->nExpr-1]; 002026 assert( pItem->fg.bNulls==0 ); 002027 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 002028 iSortOrder = SQLITE_SO_ASC; 002029 } 002030 pItem->fg.sortFlags = (u8)iSortOrder; 002031 002032 if( eNulls!=SQLITE_SO_UNDEFINED ){ 002033 pItem->fg.bNulls = 1; 002034 if( iSortOrder!=eNulls ){ 002035 pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL; 002036 } 002037 } 002038 } 002039 002040 /* 002041 ** Set the ExprList.a[].zEName element of the most recently added item 002042 ** on the expression list. 002043 ** 002044 ** pList might be NULL following an OOM error. But pName should never be 002045 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 002046 ** is set. 002047 */ 002048 void sqlite3ExprListSetName( 002049 Parse *pParse, /* Parsing context */ 002050 ExprList *pList, /* List to which to add the span. */ 002051 const Token *pName, /* Name to be added */ 002052 int dequote /* True to cause the name to be dequoted */ 002053 ){ 002054 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 002055 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 002056 if( pList ){ 002057 struct ExprList_item *pItem; 002058 assert( pList->nExpr>0 ); 002059 pItem = &pList->a[pList->nExpr-1]; 002060 assert( pItem->zEName==0 ); 002061 assert( pItem->fg.eEName==ENAME_NAME ); 002062 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 002063 if( dequote ){ 002064 /* If dequote==0, then pName->z does not point to part of a DDL 002065 ** statement handled by the parser. And so no token need be added 002066 ** to the token-map. */ 002067 sqlite3Dequote(pItem->zEName); 002068 if( IN_RENAME_OBJECT ){ 002069 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 002070 } 002071 } 002072 } 002073 } 002074 002075 /* 002076 ** Set the ExprList.a[].zSpan element of the most recently added item 002077 ** on the expression list. 002078 ** 002079 ** pList might be NULL following an OOM error. But pSpan should never be 002080 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 002081 ** is set. 002082 */ 002083 void sqlite3ExprListSetSpan( 002084 Parse *pParse, /* Parsing context */ 002085 ExprList *pList, /* List to which to add the span. */ 002086 const char *zStart, /* Start of the span */ 002087 const char *zEnd /* End of the span */ 002088 ){ 002089 sqlite3 *db = pParse->db; 002090 assert( pList!=0 || db->mallocFailed!=0 ); 002091 if( pList ){ 002092 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 002093 assert( pList->nExpr>0 ); 002094 if( pItem->zEName==0 ){ 002095 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 002096 pItem->fg.eEName = ENAME_SPAN; 002097 } 002098 } 002099 } 002100 002101 /* 002102 ** If the expression list pEList contains more than iLimit elements, 002103 ** leave an error message in pParse. 002104 */ 002105 void sqlite3ExprListCheckLength( 002106 Parse *pParse, 002107 ExprList *pEList, 002108 const char *zObject 002109 ){ 002110 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 002111 testcase( pEList && pEList->nExpr==mx ); 002112 testcase( pEList && pEList->nExpr==mx+1 ); 002113 if( pEList && pEList->nExpr>mx ){ 002114 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 002115 } 002116 } 002117 002118 /* 002119 ** Delete an entire expression list. 002120 */ 002121 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 002122 int i = pList->nExpr; 002123 struct ExprList_item *pItem = pList->a; 002124 assert( pList->nExpr>0 ); 002125 assert( db!=0 ); 002126 do{ 002127 sqlite3ExprDelete(db, pItem->pExpr); 002128 if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName); 002129 pItem++; 002130 }while( --i>0 ); 002131 sqlite3DbNNFreeNN(db, pList); 002132 } 002133 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 002134 if( pList ) exprListDeleteNN(db, pList); 002135 } 002136 002137 /* 002138 ** Return the bitwise-OR of all Expr.flags fields in the given 002139 ** ExprList. 002140 */ 002141 u32 sqlite3ExprListFlags(const ExprList *pList){ 002142 int i; 002143 u32 m = 0; 002144 assert( pList!=0 ); 002145 for(i=0; i<pList->nExpr; i++){ 002146 Expr *pExpr = pList->a[i].pExpr; 002147 assert( pExpr!=0 ); 002148 m |= pExpr->flags; 002149 } 002150 return m; 002151 } 002152 002153 /* 002154 ** This is a SELECT-node callback for the expression walker that 002155 ** always "fails". By "fail" in this case, we mean set 002156 ** pWalker->eCode to zero and abort. 002157 ** 002158 ** This callback is used by multiple expression walkers. 002159 */ 002160 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 002161 UNUSED_PARAMETER(NotUsed); 002162 pWalker->eCode = 0; 002163 return WRC_Abort; 002164 } 002165 002166 /* 002167 ** Check the input string to see if it is "true" or "false" (in any case). 002168 ** 002169 ** If the string is.... Return 002170 ** "true" EP_IsTrue 002171 ** "false" EP_IsFalse 002172 ** anything else 0 002173 */ 002174 u32 sqlite3IsTrueOrFalse(const char *zIn){ 002175 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 002176 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 002177 return 0; 002178 } 002179 002180 002181 /* 002182 ** If the input expression is an ID with the name "true" or "false" 002183 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 002184 ** the conversion happened, and zero if the expression is unaltered. 002185 */ 002186 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 002187 u32 v; 002188 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 002189 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) 002190 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 002191 ){ 002192 pExpr->op = TK_TRUEFALSE; 002193 ExprSetProperty(pExpr, v); 002194 return 1; 002195 } 002196 return 0; 002197 } 002198 002199 /* 002200 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 002201 ** and 0 if it is FALSE. 002202 */ 002203 int sqlite3ExprTruthValue(const Expr *pExpr){ 002204 pExpr = sqlite3ExprSkipCollateAndLikely((Expr*)pExpr); 002205 assert( pExpr->op==TK_TRUEFALSE ); 002206 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 002207 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 002208 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 002209 return pExpr->u.zToken[4]==0; 002210 } 002211 002212 /* 002213 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 002214 ** terms that are always true or false. Return the simplified expression. 002215 ** Or return the original expression if no simplification is possible. 002216 ** 002217 ** Examples: 002218 ** 002219 ** (x<10) AND true => (x<10) 002220 ** (x<10) AND false => false 002221 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 002222 ** (x<10) AND (y=22 OR true) => (x<10) 002223 ** (y=22) OR true => true 002224 */ 002225 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 002226 assert( pExpr!=0 ); 002227 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 002228 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 002229 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 002230 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 002231 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 002232 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 002233 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 002234 } 002235 } 002236 return pExpr; 002237 } 002238 002239 002240 /* 002241 ** These routines are Walker callbacks used to check expressions to 002242 ** see if they are "constant" for some definition of constant. The 002243 ** Walker.eCode value determines the type of "constant" we are looking 002244 ** for. 002245 ** 002246 ** These callback routines are used to implement the following: 002247 ** 002248 ** sqlite3ExprIsConstant() pWalker->eCode==1 002249 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 002250 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 002251 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 002252 ** 002253 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 002254 ** is found to not be a constant. 002255 ** 002256 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 002257 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 002258 ** when parsing an existing schema out of the sqlite_schema table and 4 002259 ** when processing a new CREATE TABLE statement. A bound parameter raises 002260 ** an error for new statements, but is silently converted 002261 ** to NULL for existing schemas. This allows sqlite_schema tables that 002262 ** contain a bound parameter because they were generated by older versions 002263 ** of SQLite to be parsed by newer versions of SQLite without raising a 002264 ** malformed schema error. 002265 */ 002266 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 002267 002268 /* If pWalker->eCode is 2 then any term of the expression that comes from 002269 ** the ON or USING clauses of an outer join disqualifies the expression 002270 ** from being considered constant. */ 002271 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){ 002272 pWalker->eCode = 0; 002273 return WRC_Abort; 002274 } 002275 002276 switch( pExpr->op ){ 002277 /* Consider functions to be constant if all their arguments are constant 002278 ** and either pWalker->eCode==4 or 5 or the function has the 002279 ** SQLITE_FUNC_CONST flag. */ 002280 case TK_FUNCTION: 002281 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 002282 && !ExprHasProperty(pExpr, EP_WinFunc) 002283 ){ 002284 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 002285 return WRC_Continue; 002286 }else{ 002287 pWalker->eCode = 0; 002288 return WRC_Abort; 002289 } 002290 case TK_ID: 002291 /* Convert "true" or "false" in a DEFAULT clause into the 002292 ** appropriate TK_TRUEFALSE operator */ 002293 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 002294 return WRC_Prune; 002295 } 002296 /* no break */ deliberate_fall_through 002297 case TK_COLUMN: 002298 case TK_AGG_FUNCTION: 002299 case TK_AGG_COLUMN: 002300 testcase( pExpr->op==TK_ID ); 002301 testcase( pExpr->op==TK_COLUMN ); 002302 testcase( pExpr->op==TK_AGG_FUNCTION ); 002303 testcase( pExpr->op==TK_AGG_COLUMN ); 002304 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 002305 return WRC_Continue; 002306 } 002307 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 002308 return WRC_Continue; 002309 } 002310 /* no break */ deliberate_fall_through 002311 case TK_IF_NULL_ROW: 002312 case TK_REGISTER: 002313 case TK_DOT: 002314 testcase( pExpr->op==TK_REGISTER ); 002315 testcase( pExpr->op==TK_IF_NULL_ROW ); 002316 testcase( pExpr->op==TK_DOT ); 002317 pWalker->eCode = 0; 002318 return WRC_Abort; 002319 case TK_VARIABLE: 002320 if( pWalker->eCode==5 ){ 002321 /* Silently convert bound parameters that appear inside of CREATE 002322 ** statements into a NULL when parsing the CREATE statement text out 002323 ** of the sqlite_schema table */ 002324 pExpr->op = TK_NULL; 002325 }else if( pWalker->eCode==4 ){ 002326 /* A bound parameter in a CREATE statement that originates from 002327 ** sqlite3_prepare() causes an error */ 002328 pWalker->eCode = 0; 002329 return WRC_Abort; 002330 } 002331 /* no break */ deliberate_fall_through 002332 default: 002333 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 002334 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 002335 return WRC_Continue; 002336 } 002337 } 002338 static int exprIsConst(Expr *p, int initFlag, int iCur){ 002339 Walker w; 002340 w.eCode = initFlag; 002341 w.xExprCallback = exprNodeIsConstant; 002342 w.xSelectCallback = sqlite3SelectWalkFail; 002343 #ifdef SQLITE_DEBUG 002344 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 002345 #endif 002346 w.u.iCur = iCur; 002347 sqlite3WalkExpr(&w, p); 002348 return w.eCode; 002349 } 002350 002351 /* 002352 ** Walk an expression tree. Return non-zero if the expression is constant 002353 ** and 0 if it involves variables or function calls. 002354 ** 002355 ** For the purposes of this function, a double-quoted string (ex: "abc") 002356 ** is considered a variable but a single-quoted string (ex: 'abc') is 002357 ** a constant. 002358 */ 002359 int sqlite3ExprIsConstant(Expr *p){ 002360 return exprIsConst(p, 1, 0); 002361 } 002362 002363 /* 002364 ** Walk an expression tree. Return non-zero if 002365 ** 002366 ** (1) the expression is constant, and 002367 ** (2) the expression does originate in the ON or USING clause 002368 ** of a LEFT JOIN, and 002369 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 002370 ** operands created by the constant propagation optimization. 002371 ** 002372 ** When this routine returns true, it indicates that the expression 002373 ** can be added to the pParse->pConstExpr list and evaluated once when 002374 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 002375 */ 002376 int sqlite3ExprIsConstantNotJoin(Expr *p){ 002377 return exprIsConst(p, 2, 0); 002378 } 002379 002380 /* 002381 ** Walk an expression tree. Return non-zero if the expression is constant 002382 ** for any single row of the table with cursor iCur. In other words, the 002383 ** expression must not refer to any non-deterministic function nor any 002384 ** table other than iCur. 002385 */ 002386 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 002387 return exprIsConst(p, 3, iCur); 002388 } 002389 002390 /* 002391 ** Check pExpr to see if it is an constraint on the single data source 002392 ** pSrc = &pSrcList->a[iSrc]. In other words, check to see if pExpr 002393 ** constrains pSrc but does not depend on any other tables or data 002394 ** sources anywhere else in the query. Return true (non-zero) if pExpr 002395 ** is a constraint on pSrc only. 002396 ** 002397 ** This is an optimization. False negatives will perhaps cause slower 002398 ** queries, but false positives will yield incorrect answers. So when in 002399 ** doubt, return 0. 002400 ** 002401 ** To be an single-source constraint, the following must be true: 002402 ** 002403 ** (1) pExpr cannot refer to any table other than pSrc->iCursor. 002404 ** 002405 ** (2) pExpr cannot use subqueries or non-deterministic functions. 002406 ** 002407 ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN. 002408 ** (Is there some way to relax this constraint?) 002409 ** 002410 ** (4) If pSrc is the right operand of a LEFT JOIN, then... 002411 ** (4a) pExpr must come from an ON clause.. 002412 ** (4b) and specifically the ON clause associated with the LEFT JOIN. 002413 ** 002414 ** (5) If pSrc is not the right operand of a LEFT JOIN or the left 002415 ** operand of a RIGHT JOIN, then pExpr must be from the WHERE 002416 ** clause, not an ON clause. 002417 ** 002418 ** (6) Either: 002419 ** 002420 ** (6a) pExpr does not originate in an ON or USING clause, or 002421 ** 002422 ** (6b) The ON or USING clause from which pExpr is derived is 002423 ** not to the left of a RIGHT JOIN (or FULL JOIN). 002424 ** 002425 ** Without this restriction, accepting pExpr as a single-table 002426 ** constraint might move the the ON/USING filter expression 002427 ** from the left side of a RIGHT JOIN over to the right side, 002428 ** which leads to incorrect answers. See also restriction (9) 002429 ** on push-down. 002430 */ 002431 int sqlite3ExprIsSingleTableConstraint( 002432 Expr *pExpr, /* The constraint */ 002433 const SrcList *pSrcList, /* Complete FROM clause */ 002434 int iSrc /* Which element of pSrcList to use */ 002435 ){ 002436 const SrcItem *pSrc = &pSrcList->a[iSrc]; 002437 if( pSrc->fg.jointype & JT_LTORJ ){ 002438 return 0; /* rule (3) */ 002439 } 002440 if( pSrc->fg.jointype & JT_LEFT ){ 002441 if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */ 002442 if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */ 002443 }else{ 002444 if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */ 002445 } 002446 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) /* (6a) */ 002447 && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (6b) */ 002448 ){ 002449 int jj; 002450 for(jj=0; jj<iSrc; jj++){ 002451 if( pExpr->w.iJoin==pSrcList->a[jj].iCursor ){ 002452 if( (pSrcList->a[jj].fg.jointype & JT_LTORJ)!=0 ){ 002453 return 0; /* restriction (6) */ 002454 } 002455 break; 002456 } 002457 } 002458 } 002459 return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */ 002460 } 002461 002462 002463 /* 002464 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 002465 */ 002466 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 002467 ExprList *pGroupBy = pWalker->u.pGroupBy; 002468 int i; 002469 002470 /* Check if pExpr is identical to any GROUP BY term. If so, consider 002471 ** it constant. */ 002472 for(i=0; i<pGroupBy->nExpr; i++){ 002473 Expr *p = pGroupBy->a[i].pExpr; 002474 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 002475 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 002476 if( sqlite3IsBinary(pColl) ){ 002477 return WRC_Prune; 002478 } 002479 } 002480 } 002481 002482 /* Check if pExpr is a sub-select. If so, consider it variable. */ 002483 if( ExprUseXSelect(pExpr) ){ 002484 pWalker->eCode = 0; 002485 return WRC_Abort; 002486 } 002487 002488 return exprNodeIsConstant(pWalker, pExpr); 002489 } 002490 002491 /* 002492 ** Walk the expression tree passed as the first argument. Return non-zero 002493 ** if the expression consists entirely of constants or copies of terms 002494 ** in pGroupBy that sort with the BINARY collation sequence. 002495 ** 002496 ** This routine is used to determine if a term of the HAVING clause can 002497 ** be promoted into the WHERE clause. In order for such a promotion to work, 002498 ** the value of the HAVING clause term must be the same for all members of 002499 ** a "group". The requirement that the GROUP BY term must be BINARY 002500 ** assumes that no other collating sequence will have a finer-grained 002501 ** grouping than binary. In other words (A=B COLLATE binary) implies 002502 ** A=B in every other collating sequence. The requirement that the 002503 ** GROUP BY be BINARY is stricter than necessary. It would also work 002504 ** to promote HAVING clauses that use the same alternative collating 002505 ** sequence as the GROUP BY term, but that is much harder to check, 002506 ** alternative collating sequences are uncommon, and this is only an 002507 ** optimization, so we take the easy way out and simply require the 002508 ** GROUP BY to use the BINARY collating sequence. 002509 */ 002510 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 002511 Walker w; 002512 w.eCode = 1; 002513 w.xExprCallback = exprNodeIsConstantOrGroupBy; 002514 w.xSelectCallback = 0; 002515 w.u.pGroupBy = pGroupBy; 002516 w.pParse = pParse; 002517 sqlite3WalkExpr(&w, p); 002518 return w.eCode; 002519 } 002520 002521 /* 002522 ** Walk an expression tree for the DEFAULT field of a column definition 002523 ** in a CREATE TABLE statement. Return non-zero if the expression is 002524 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 002525 ** the expression is constant or a function call with constant arguments. 002526 ** Return and 0 if there are any variables. 002527 ** 002528 ** isInit is true when parsing from sqlite_schema. isInit is false when 002529 ** processing a new CREATE TABLE statement. When isInit is true, parameters 002530 ** (such as ? or $abc) in the expression are converted into NULL. When 002531 ** isInit is false, parameters raise an error. Parameters should not be 002532 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 002533 ** allowed it, so we need to support it when reading sqlite_schema for 002534 ** backwards compatibility. 002535 ** 002536 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 002537 ** 002538 ** For the purposes of this function, a double-quoted string (ex: "abc") 002539 ** is considered a variable but a single-quoted string (ex: 'abc') is 002540 ** a constant. 002541 */ 002542 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 002543 assert( isInit==0 || isInit==1 ); 002544 return exprIsConst(p, 4+isInit, 0); 002545 } 002546 002547 #ifdef SQLITE_ENABLE_CURSOR_HINTS 002548 /* 002549 ** Walk an expression tree. Return 1 if the expression contains a 002550 ** subquery of some kind. Return 0 if there are no subqueries. 002551 */ 002552 int sqlite3ExprContainsSubquery(Expr *p){ 002553 Walker w; 002554 w.eCode = 1; 002555 w.xExprCallback = sqlite3ExprWalkNoop; 002556 w.xSelectCallback = sqlite3SelectWalkFail; 002557 #ifdef SQLITE_DEBUG 002558 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 002559 #endif 002560 sqlite3WalkExpr(&w, p); 002561 return w.eCode==0; 002562 } 002563 #endif 002564 002565 /* 002566 ** If the expression p codes a constant integer that is small enough 002567 ** to fit in a 32-bit integer, return 1 and put the value of the integer 002568 ** in *pValue. If the expression is not an integer or if it is too big 002569 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 002570 */ 002571 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 002572 int rc = 0; 002573 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 002574 002575 /* If an expression is an integer literal that fits in a signed 32-bit 002576 ** integer, then the EP_IntValue flag will have already been set */ 002577 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 002578 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 002579 002580 if( p->flags & EP_IntValue ){ 002581 *pValue = p->u.iValue; 002582 return 1; 002583 } 002584 switch( p->op ){ 002585 case TK_UPLUS: { 002586 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 002587 break; 002588 } 002589 case TK_UMINUS: { 002590 int v = 0; 002591 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 002592 assert( ((unsigned int)v)!=0x80000000 ); 002593 *pValue = -v; 002594 rc = 1; 002595 } 002596 break; 002597 } 002598 default: break; 002599 } 002600 return rc; 002601 } 002602 002603 /* 002604 ** Return FALSE if there is no chance that the expression can be NULL. 002605 ** 002606 ** If the expression might be NULL or if the expression is too complex 002607 ** to tell return TRUE. 002608 ** 002609 ** This routine is used as an optimization, to skip OP_IsNull opcodes 002610 ** when we know that a value cannot be NULL. Hence, a false positive 002611 ** (returning TRUE when in fact the expression can never be NULL) might 002612 ** be a small performance hit but is otherwise harmless. On the other 002613 ** hand, a false negative (returning FALSE when the result could be NULL) 002614 ** will likely result in an incorrect answer. So when in doubt, return 002615 ** TRUE. 002616 */ 002617 int sqlite3ExprCanBeNull(const Expr *p){ 002618 u8 op; 002619 assert( p!=0 ); 002620 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 002621 p = p->pLeft; 002622 assert( p!=0 ); 002623 } 002624 op = p->op; 002625 if( op==TK_REGISTER ) op = p->op2; 002626 switch( op ){ 002627 case TK_INTEGER: 002628 case TK_STRING: 002629 case TK_FLOAT: 002630 case TK_BLOB: 002631 return 0; 002632 case TK_COLUMN: 002633 assert( ExprUseYTab(p) ); 002634 return ExprHasProperty(p, EP_CanBeNull) || 002635 p->y.pTab==0 || /* Reference to column of index on expression */ 002636 (p->iColumn>=0 002637 && p->y.pTab->aCol!=0 /* Possible due to prior error */ 002638 && p->y.pTab->aCol[p->iColumn].notNull==0); 002639 default: 002640 return 1; 002641 } 002642 } 002643 002644 /* 002645 ** Return TRUE if the given expression is a constant which would be 002646 ** unchanged by OP_Affinity with the affinity given in the second 002647 ** argument. 002648 ** 002649 ** This routine is used to determine if the OP_Affinity operation 002650 ** can be omitted. When in doubt return FALSE. A false negative 002651 ** is harmless. A false positive, however, can result in the wrong 002652 ** answer. 002653 */ 002654 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 002655 u8 op; 002656 int unaryMinus = 0; 002657 if( aff==SQLITE_AFF_BLOB ) return 1; 002658 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 002659 if( p->op==TK_UMINUS ) unaryMinus = 1; 002660 p = p->pLeft; 002661 } 002662 op = p->op; 002663 if( op==TK_REGISTER ) op = p->op2; 002664 switch( op ){ 002665 case TK_INTEGER: { 002666 return aff>=SQLITE_AFF_NUMERIC; 002667 } 002668 case TK_FLOAT: { 002669 return aff>=SQLITE_AFF_NUMERIC; 002670 } 002671 case TK_STRING: { 002672 return !unaryMinus && aff==SQLITE_AFF_TEXT; 002673 } 002674 case TK_BLOB: { 002675 return !unaryMinus; 002676 } 002677 case TK_COLUMN: { 002678 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 002679 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 002680 } 002681 default: { 002682 return 0; 002683 } 002684 } 002685 } 002686 002687 /* 002688 ** Return TRUE if the given string is a row-id column name. 002689 */ 002690 int sqlite3IsRowid(const char *z){ 002691 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 002692 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 002693 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 002694 return 0; 002695 } 002696 002697 /* 002698 ** pX is the RHS of an IN operator. If pX is a SELECT statement 002699 ** that can be simplified to a direct table access, then return 002700 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 002701 ** or if the SELECT statement needs to be materialized into a transient 002702 ** table, then return NULL. 002703 */ 002704 #ifndef SQLITE_OMIT_SUBQUERY 002705 static Select *isCandidateForInOpt(const Expr *pX){ 002706 Select *p; 002707 SrcList *pSrc; 002708 ExprList *pEList; 002709 Table *pTab; 002710 int i; 002711 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ 002712 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 002713 p = pX->x.pSelect; 002714 if( p->pPrior ) return 0; /* Not a compound SELECT */ 002715 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 002716 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 002717 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 002718 return 0; /* No DISTINCT keyword and no aggregate functions */ 002719 } 002720 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 002721 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 002722 if( p->pWhere ) return 0; /* Has no WHERE clause */ 002723 pSrc = p->pSrc; 002724 assert( pSrc!=0 ); 002725 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 002726 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 002727 pTab = pSrc->a[0].pTab; 002728 assert( pTab!=0 ); 002729 assert( !IsView(pTab) ); /* FROM clause is not a view */ 002730 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 002731 pEList = p->pEList; 002732 assert( pEList!=0 ); 002733 /* All SELECT results must be columns. */ 002734 for(i=0; i<pEList->nExpr; i++){ 002735 Expr *pRes = pEList->a[i].pExpr; 002736 if( pRes->op!=TK_COLUMN ) return 0; 002737 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 002738 } 002739 return p; 002740 } 002741 #endif /* SQLITE_OMIT_SUBQUERY */ 002742 002743 #ifndef SQLITE_OMIT_SUBQUERY 002744 /* 002745 ** Generate code that checks the left-most column of index table iCur to see if 002746 ** it contains any NULL entries. Cause the register at regHasNull to be set 002747 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 002748 ** to be set to NULL if iCur contains one or more NULL values. 002749 */ 002750 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 002751 int addr1; 002752 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 002753 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 002754 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 002755 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 002756 VdbeComment((v, "first_entry_in(%d)", iCur)); 002757 sqlite3VdbeJumpHere(v, addr1); 002758 } 002759 #endif 002760 002761 002762 #ifndef SQLITE_OMIT_SUBQUERY 002763 /* 002764 ** The argument is an IN operator with a list (not a subquery) on the 002765 ** right-hand side. Return TRUE if that list is constant. 002766 */ 002767 static int sqlite3InRhsIsConstant(Expr *pIn){ 002768 Expr *pLHS; 002769 int res; 002770 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 002771 pLHS = pIn->pLeft; 002772 pIn->pLeft = 0; 002773 res = sqlite3ExprIsConstant(pIn); 002774 pIn->pLeft = pLHS; 002775 return res; 002776 } 002777 #endif 002778 002779 /* 002780 ** This function is used by the implementation of the IN (...) operator. 002781 ** The pX parameter is the expression on the RHS of the IN operator, which 002782 ** might be either a list of expressions or a subquery. 002783 ** 002784 ** The job of this routine is to find or create a b-tree object that can 002785 ** be used either to test for membership in the RHS set or to iterate through 002786 ** all members of the RHS set, skipping duplicates. 002787 ** 002788 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 002789 ** and the *piTab parameter is set to the index of that cursor. 002790 ** 002791 ** The returned value of this function indicates the b-tree type, as follows: 002792 ** 002793 ** IN_INDEX_ROWID - The cursor was opened on a database table. 002794 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 002795 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 002796 ** IN_INDEX_EPH - The cursor was opened on a specially created and 002797 ** populated ephemeral table. 002798 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 002799 ** implemented as a sequence of comparisons. 002800 ** 002801 ** An existing b-tree might be used if the RHS expression pX is a simple 002802 ** subquery such as: 002803 ** 002804 ** SELECT <column1>, <column2>... FROM <table> 002805 ** 002806 ** If the RHS of the IN operator is a list or a more complex subquery, then 002807 ** an ephemeral table might need to be generated from the RHS and then 002808 ** pX->iTable made to point to the ephemeral table instead of an 002809 ** existing table. In this case, the creation and initialization of the 002810 ** ephemeral table might be put inside of a subroutine, the EP_Subrtn flag 002811 ** will be set on pX and the pX->y.sub fields will be set to show where 002812 ** the subroutine is coded. 002813 ** 002814 ** The inFlags parameter must contain, at a minimum, one of the bits 002815 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 002816 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 002817 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 002818 ** be used to loop over all values of the RHS of the IN operator. 002819 ** 002820 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 002821 ** through the set members) then the b-tree must not contain duplicates. 002822 ** An ephemeral table will be created unless the selected columns are guaranteed 002823 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 002824 ** a UNIQUE constraint or index. 002825 ** 002826 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 002827 ** for fast set membership tests) then an ephemeral table must 002828 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 002829 ** index can be found with the specified <columns> as its left-most. 002830 ** 002831 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 002832 ** if the RHS of the IN operator is a list (not a subquery) then this 002833 ** routine might decide that creating an ephemeral b-tree for membership 002834 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 002835 ** calling routine should implement the IN operator using a sequence 002836 ** of Eq or Ne comparison operations. 002837 ** 002838 ** When the b-tree is being used for membership tests, the calling function 002839 ** might need to know whether or not the RHS side of the IN operator 002840 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 002841 ** if there is any chance that the (...) might contain a NULL value at 002842 ** runtime, then a register is allocated and the register number written 002843 ** to *prRhsHasNull. If there is no chance that the (...) contains a 002844 ** NULL value, then *prRhsHasNull is left unchanged. 002845 ** 002846 ** If a register is allocated and its location stored in *prRhsHasNull, then 002847 ** the value in that register will be NULL if the b-tree contains one or more 002848 ** NULL values, and it will be some non-NULL value if the b-tree contains no 002849 ** NULL values. 002850 ** 002851 ** If the aiMap parameter is not NULL, it must point to an array containing 002852 ** one element for each column returned by the SELECT statement on the RHS 002853 ** of the IN(...) operator. The i'th entry of the array is populated with the 002854 ** offset of the index column that matches the i'th column returned by the 002855 ** SELECT. For example, if the expression and selected index are: 002856 ** 002857 ** (?,?,?) IN (SELECT a, b, c FROM t1) 002858 ** CREATE INDEX i1 ON t1(b, c, a); 002859 ** 002860 ** then aiMap[] is populated with {2, 0, 1}. 002861 */ 002862 #ifndef SQLITE_OMIT_SUBQUERY 002863 int sqlite3FindInIndex( 002864 Parse *pParse, /* Parsing context */ 002865 Expr *pX, /* The IN expression */ 002866 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 002867 int *prRhsHasNull, /* Register holding NULL status. See notes */ 002868 int *aiMap, /* Mapping from Index fields to RHS fields */ 002869 int *piTab /* OUT: index to use */ 002870 ){ 002871 Select *p; /* SELECT to the right of IN operator */ 002872 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 002873 int iTab; /* Cursor of the RHS table */ 002874 int mustBeUnique; /* True if RHS must be unique */ 002875 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 002876 002877 assert( pX->op==TK_IN ); 002878 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 002879 iTab = pParse->nTab++; 002880 002881 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 002882 ** whether or not the SELECT result contains NULL values, check whether 002883 ** or not NULL is actually possible (it may not be, for example, due 002884 ** to NOT NULL constraints in the schema). If no NULL values are possible, 002885 ** set prRhsHasNull to 0 before continuing. */ 002886 if( prRhsHasNull && ExprUseXSelect(pX) ){ 002887 int i; 002888 ExprList *pEList = pX->x.pSelect->pEList; 002889 for(i=0; i<pEList->nExpr; i++){ 002890 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 002891 } 002892 if( i==pEList->nExpr ){ 002893 prRhsHasNull = 0; 002894 } 002895 } 002896 002897 /* Check to see if an existing table or index can be used to 002898 ** satisfy the query. This is preferable to generating a new 002899 ** ephemeral table. */ 002900 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 002901 sqlite3 *db = pParse->db; /* Database connection */ 002902 Table *pTab; /* Table <table>. */ 002903 int iDb; /* Database idx for pTab */ 002904 ExprList *pEList = p->pEList; 002905 int nExpr = pEList->nExpr; 002906 002907 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 002908 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 002909 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 002910 pTab = p->pSrc->a[0].pTab; 002911 002912 /* Code an OP_Transaction and OP_TableLock for <table>. */ 002913 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 002914 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 002915 sqlite3CodeVerifySchema(pParse, iDb); 002916 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 002917 002918 assert(v); /* sqlite3GetVdbe() has always been previously called */ 002919 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 002920 /* The "x IN (SELECT rowid FROM table)" case */ 002921 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 002922 VdbeCoverage(v); 002923 002924 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 002925 eType = IN_INDEX_ROWID; 002926 ExplainQueryPlan((pParse, 0, 002927 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 002928 sqlite3VdbeJumpHere(v, iAddr); 002929 }else{ 002930 Index *pIdx; /* Iterator variable */ 002931 int affinity_ok = 1; 002932 int i; 002933 002934 /* Check that the affinity that will be used to perform each 002935 ** comparison is the same as the affinity of each column in table 002936 ** on the RHS of the IN operator. If it not, it is not possible to 002937 ** use any index of the RHS table. */ 002938 for(i=0; i<nExpr && affinity_ok; i++){ 002939 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 002940 int iCol = pEList->a[i].pExpr->iColumn; 002941 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 002942 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 002943 testcase( cmpaff==SQLITE_AFF_BLOB ); 002944 testcase( cmpaff==SQLITE_AFF_TEXT ); 002945 switch( cmpaff ){ 002946 case SQLITE_AFF_BLOB: 002947 break; 002948 case SQLITE_AFF_TEXT: 002949 /* sqlite3CompareAffinity() only returns TEXT if one side or the 002950 ** other has no affinity and the other side is TEXT. Hence, 002951 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 002952 ** and for the term on the LHS of the IN to have no affinity. */ 002953 assert( idxaff==SQLITE_AFF_TEXT ); 002954 break; 002955 default: 002956 affinity_ok = sqlite3IsNumericAffinity(idxaff); 002957 } 002958 } 002959 002960 if( affinity_ok ){ 002961 /* Search for an existing index that will work for this IN operator */ 002962 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 002963 Bitmask colUsed; /* Columns of the index used */ 002964 Bitmask mCol; /* Mask for the current column */ 002965 if( pIdx->nColumn<nExpr ) continue; 002966 if( pIdx->pPartIdxWhere!=0 ) continue; 002967 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 002968 ** BITMASK(nExpr) without overflowing */ 002969 testcase( pIdx->nColumn==BMS-2 ); 002970 testcase( pIdx->nColumn==BMS-1 ); 002971 if( pIdx->nColumn>=BMS-1 ) continue; 002972 if( mustBeUnique ){ 002973 if( pIdx->nKeyCol>nExpr 002974 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 002975 ){ 002976 continue; /* This index is not unique over the IN RHS columns */ 002977 } 002978 } 002979 002980 colUsed = 0; /* Columns of index used so far */ 002981 for(i=0; i<nExpr; i++){ 002982 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 002983 Expr *pRhs = pEList->a[i].pExpr; 002984 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 002985 int j; 002986 002987 for(j=0; j<nExpr; j++){ 002988 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 002989 assert( pIdx->azColl[j] ); 002990 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 002991 continue; 002992 } 002993 break; 002994 } 002995 if( j==nExpr ) break; 002996 mCol = MASKBIT(j); 002997 if( mCol & colUsed ) break; /* Each column used only once */ 002998 colUsed |= mCol; 002999 if( aiMap ) aiMap[i] = j; 003000 } 003001 003002 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 003003 if( colUsed==(MASKBIT(nExpr)-1) ){ 003004 /* If we reach this point, that means the index pIdx is usable */ 003005 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 003006 ExplainQueryPlan((pParse, 0, 003007 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 003008 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 003009 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 003010 VdbeComment((v, "%s", pIdx->zName)); 003011 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 003012 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 003013 003014 if( prRhsHasNull ){ 003015 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 003016 i64 mask = (1<<nExpr)-1; 003017 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 003018 iTab, 0, 0, (u8*)&mask, P4_INT64); 003019 #endif 003020 *prRhsHasNull = ++pParse->nMem; 003021 if( nExpr==1 ){ 003022 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 003023 } 003024 } 003025 sqlite3VdbeJumpHere(v, iAddr); 003026 } 003027 } /* End loop over indexes */ 003028 } /* End if( affinity_ok ) */ 003029 } /* End if not an rowid index */ 003030 } /* End attempt to optimize using an index */ 003031 003032 /* If no preexisting index is available for the IN clause 003033 ** and IN_INDEX_NOOP is an allowed reply 003034 ** and the RHS of the IN operator is a list, not a subquery 003035 ** and the RHS is not constant or has two or fewer terms, 003036 ** then it is not worth creating an ephemeral table to evaluate 003037 ** the IN operator so return IN_INDEX_NOOP. 003038 */ 003039 if( eType==0 003040 && (inFlags & IN_INDEX_NOOP_OK) 003041 && ExprUseXList(pX) 003042 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 003043 ){ 003044 pParse->nTab--; /* Back out the allocation of the unused cursor */ 003045 iTab = -1; /* Cursor is not allocated */ 003046 eType = IN_INDEX_NOOP; 003047 } 003048 003049 if( eType==0 ){ 003050 /* Could not find an existing table or index to use as the RHS b-tree. 003051 ** We will have to generate an ephemeral table to do the job. 003052 */ 003053 u32 savedNQueryLoop = pParse->nQueryLoop; 003054 int rMayHaveNull = 0; 003055 eType = IN_INDEX_EPH; 003056 if( inFlags & IN_INDEX_LOOP ){ 003057 pParse->nQueryLoop = 0; 003058 }else if( prRhsHasNull ){ 003059 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 003060 } 003061 assert( pX->op==TK_IN ); 003062 sqlite3CodeRhsOfIN(pParse, pX, iTab); 003063 if( rMayHaveNull ){ 003064 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 003065 } 003066 pParse->nQueryLoop = savedNQueryLoop; 003067 } 003068 003069 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 003070 int i, n; 003071 n = sqlite3ExprVectorSize(pX->pLeft); 003072 for(i=0; i<n; i++) aiMap[i] = i; 003073 } 003074 *piTab = iTab; 003075 return eType; 003076 } 003077 #endif 003078 003079 #ifndef SQLITE_OMIT_SUBQUERY 003080 /* 003081 ** Argument pExpr is an (?, ?...) IN(...) expression. This 003082 ** function allocates and returns a nul-terminated string containing 003083 ** the affinities to be used for each column of the comparison. 003084 ** 003085 ** It is the responsibility of the caller to ensure that the returned 003086 ** string is eventually freed using sqlite3DbFree(). 003087 */ 003088 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 003089 Expr *pLeft = pExpr->pLeft; 003090 int nVal = sqlite3ExprVectorSize(pLeft); 003091 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; 003092 char *zRet; 003093 003094 assert( pExpr->op==TK_IN ); 003095 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 003096 if( zRet ){ 003097 int i; 003098 for(i=0; i<nVal; i++){ 003099 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 003100 char a = sqlite3ExprAffinity(pA); 003101 if( pSelect ){ 003102 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 003103 }else{ 003104 zRet[i] = a; 003105 } 003106 } 003107 zRet[nVal] = '\0'; 003108 } 003109 return zRet; 003110 } 003111 #endif 003112 003113 #ifndef SQLITE_OMIT_SUBQUERY 003114 /* 003115 ** Load the Parse object passed as the first argument with an error 003116 ** message of the form: 003117 ** 003118 ** "sub-select returns N columns - expected M" 003119 */ 003120 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 003121 if( pParse->nErr==0 ){ 003122 const char *zFmt = "sub-select returns %d columns - expected %d"; 003123 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 003124 } 003125 } 003126 #endif 003127 003128 /* 003129 ** Expression pExpr is a vector that has been used in a context where 003130 ** it is not permitted. If pExpr is a sub-select vector, this routine 003131 ** loads the Parse object with a message of the form: 003132 ** 003133 ** "sub-select returns N columns - expected 1" 003134 ** 003135 ** Or, if it is a regular scalar vector: 003136 ** 003137 ** "row value misused" 003138 */ 003139 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 003140 #ifndef SQLITE_OMIT_SUBQUERY 003141 if( ExprUseXSelect(pExpr) ){ 003142 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 003143 }else 003144 #endif 003145 { 003146 sqlite3ErrorMsg(pParse, "row value misused"); 003147 } 003148 } 003149 003150 #ifndef SQLITE_OMIT_SUBQUERY 003151 /* 003152 ** Generate code that will construct an ephemeral table containing all terms 003153 ** in the RHS of an IN operator. The IN operator can be in either of two 003154 ** forms: 003155 ** 003156 ** x IN (4,5,11) -- IN operator with list on right-hand side 003157 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 003158 ** 003159 ** The pExpr parameter is the IN operator. The cursor number for the 003160 ** constructed ephemeral table is returned. The first time the ephemeral 003161 ** table is computed, the cursor number is also stored in pExpr->iTable, 003162 ** however the cursor number returned might not be the same, as it might 003163 ** have been duplicated using OP_OpenDup. 003164 ** 003165 ** If the LHS expression ("x" in the examples) is a column value, or 003166 ** the SELECT statement returns a column value, then the affinity of that 003167 ** column is used to build the index keys. If both 'x' and the 003168 ** SELECT... statement are columns, then numeric affinity is used 003169 ** if either column has NUMERIC or INTEGER affinity. If neither 003170 ** 'x' nor the SELECT... statement are columns, then numeric affinity 003171 ** is used. 003172 */ 003173 void sqlite3CodeRhsOfIN( 003174 Parse *pParse, /* Parsing context */ 003175 Expr *pExpr, /* The IN operator */ 003176 int iTab /* Use this cursor number */ 003177 ){ 003178 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 003179 int addr; /* Address of OP_OpenEphemeral instruction */ 003180 Expr *pLeft; /* the LHS of the IN operator */ 003181 KeyInfo *pKeyInfo = 0; /* Key information */ 003182 int nVal; /* Size of vector pLeft */ 003183 Vdbe *v; /* The prepared statement under construction */ 003184 003185 v = pParse->pVdbe; 003186 assert( v!=0 ); 003187 003188 /* The evaluation of the IN must be repeated every time it 003189 ** is encountered if any of the following is true: 003190 ** 003191 ** * The right-hand side is a correlated subquery 003192 ** * The right-hand side is an expression list containing variables 003193 ** * We are inside a trigger 003194 ** 003195 ** If all of the above are false, then we can compute the RHS just once 003196 ** and reuse it many names. 003197 */ 003198 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 003199 /* Reuse of the RHS is allowed */ 003200 /* If this routine has already been coded, but the previous code 003201 ** might not have been invoked yet, so invoke it now as a subroutine. 003202 */ 003203 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 003204 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 003205 if( ExprUseXSelect(pExpr) ){ 003206 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 003207 pExpr->x.pSelect->selId)); 003208 } 003209 assert( ExprUseYSub(pExpr) ); 003210 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 003211 pExpr->y.sub.iAddr); 003212 assert( iTab!=pExpr->iTable ); 003213 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 003214 sqlite3VdbeJumpHere(v, addrOnce); 003215 return; 003216 } 003217 003218 /* Begin coding the subroutine */ 003219 assert( !ExprUseYWin(pExpr) ); 003220 ExprSetProperty(pExpr, EP_Subrtn); 003221 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 003222 pExpr->y.sub.regReturn = ++pParse->nMem; 003223 pExpr->y.sub.iAddr = 003224 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 003225 003226 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 003227 } 003228 003229 /* Check to see if this is a vector IN operator */ 003230 pLeft = pExpr->pLeft; 003231 nVal = sqlite3ExprVectorSize(pLeft); 003232 003233 /* Construct the ephemeral table that will contain the content of 003234 ** RHS of the IN operator. 003235 */ 003236 pExpr->iTable = iTab; 003237 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 003238 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 003239 if( ExprUseXSelect(pExpr) ){ 003240 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 003241 }else{ 003242 VdbeComment((v, "RHS of IN operator")); 003243 } 003244 #endif 003245 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 003246 003247 if( ExprUseXSelect(pExpr) ){ 003248 /* Case 1: expr IN (SELECT ...) 003249 ** 003250 ** Generate code to write the results of the select into the temporary 003251 ** table allocated and opened above. 003252 */ 003253 Select *pSelect = pExpr->x.pSelect; 003254 ExprList *pEList = pSelect->pEList; 003255 003256 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 003257 addrOnce?"":"CORRELATED ", pSelect->selId 003258 )); 003259 /* If the LHS and RHS of the IN operator do not match, that 003260 ** error will have been caught long before we reach this point. */ 003261 if( ALWAYS(pEList->nExpr==nVal) ){ 003262 Select *pCopy; 003263 SelectDest dest; 003264 int i; 003265 int rc; 003266 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 003267 dest.zAffSdst = exprINAffinity(pParse, pExpr); 003268 pSelect->iLimit = 0; 003269 testcase( pSelect->selFlags & SF_Distinct ); 003270 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 003271 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 003272 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 003273 sqlite3SelectDelete(pParse->db, pCopy); 003274 sqlite3DbFree(pParse->db, dest.zAffSdst); 003275 if( rc ){ 003276 sqlite3KeyInfoUnref(pKeyInfo); 003277 return; 003278 } 003279 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 003280 assert( pEList!=0 ); 003281 assert( pEList->nExpr>0 ); 003282 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 003283 for(i=0; i<nVal; i++){ 003284 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 003285 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 003286 pParse, p, pEList->a[i].pExpr 003287 ); 003288 } 003289 } 003290 }else if( ALWAYS(pExpr->x.pList!=0) ){ 003291 /* Case 2: expr IN (exprlist) 003292 ** 003293 ** For each expression, build an index key from the evaluation and 003294 ** store it in the temporary table. If <expr> is a column, then use 003295 ** that columns affinity when building index keys. If <expr> is not 003296 ** a column, use numeric affinity. 003297 */ 003298 char affinity; /* Affinity of the LHS of the IN */ 003299 int i; 003300 ExprList *pList = pExpr->x.pList; 003301 struct ExprList_item *pItem; 003302 int r1, r2; 003303 affinity = sqlite3ExprAffinity(pLeft); 003304 if( affinity<=SQLITE_AFF_NONE ){ 003305 affinity = SQLITE_AFF_BLOB; 003306 }else if( affinity==SQLITE_AFF_REAL ){ 003307 affinity = SQLITE_AFF_NUMERIC; 003308 } 003309 if( pKeyInfo ){ 003310 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 003311 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 003312 } 003313 003314 /* Loop through each expression in <exprlist>. */ 003315 r1 = sqlite3GetTempReg(pParse); 003316 r2 = sqlite3GetTempReg(pParse); 003317 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 003318 Expr *pE2 = pItem->pExpr; 003319 003320 /* If the expression is not constant then we will need to 003321 ** disable the test that was generated above that makes sure 003322 ** this code only executes once. Because for a non-constant 003323 ** expression we need to rerun this code each time. 003324 */ 003325 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 003326 sqlite3VdbeChangeToNoop(v, addrOnce-1); 003327 sqlite3VdbeChangeToNoop(v, addrOnce); 003328 ExprClearProperty(pExpr, EP_Subrtn); 003329 addrOnce = 0; 003330 } 003331 003332 /* Evaluate the expression and insert it into the temp table */ 003333 sqlite3ExprCode(pParse, pE2, r1); 003334 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 003335 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 003336 } 003337 sqlite3ReleaseTempReg(pParse, r1); 003338 sqlite3ReleaseTempReg(pParse, r2); 003339 } 003340 if( pKeyInfo ){ 003341 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 003342 } 003343 if( addrOnce ){ 003344 sqlite3VdbeAddOp1(v, OP_NullRow, iTab); 003345 sqlite3VdbeJumpHere(v, addrOnce); 003346 /* Subroutine return */ 003347 assert( ExprUseYSub(pExpr) ); 003348 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 003349 || pParse->nErr ); 003350 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 003351 pExpr->y.sub.iAddr, 1); 003352 VdbeCoverage(v); 003353 sqlite3ClearTempRegCache(pParse); 003354 } 003355 } 003356 #endif /* SQLITE_OMIT_SUBQUERY */ 003357 003358 /* 003359 ** Generate code for scalar subqueries used as a subquery expression 003360 ** or EXISTS operator: 003361 ** 003362 ** (SELECT a FROM b) -- subquery 003363 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 003364 ** 003365 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 003366 ** 003367 ** Return the register that holds the result. For a multi-column SELECT, 003368 ** the result is stored in a contiguous array of registers and the 003369 ** return value is the register of the left-most result column. 003370 ** Return 0 if an error occurs. 003371 */ 003372 #ifndef SQLITE_OMIT_SUBQUERY 003373 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 003374 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 003375 int rReg = 0; /* Register storing resulting */ 003376 Select *pSel; /* SELECT statement to encode */ 003377 SelectDest dest; /* How to deal with SELECT result */ 003378 int nReg; /* Registers to allocate */ 003379 Expr *pLimit; /* New limit expression */ 003380 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 003381 int addrExplain; /* Address of OP_Explain instruction */ 003382 #endif 003383 003384 Vdbe *v = pParse->pVdbe; 003385 assert( v!=0 ); 003386 if( pParse->nErr ) return 0; 003387 testcase( pExpr->op==TK_EXISTS ); 003388 testcase( pExpr->op==TK_SELECT ); 003389 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 003390 assert( ExprUseXSelect(pExpr) ); 003391 pSel = pExpr->x.pSelect; 003392 003393 /* If this routine has already been coded, then invoke it as a 003394 ** subroutine. */ 003395 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 003396 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 003397 assert( ExprUseYSub(pExpr) ); 003398 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 003399 pExpr->y.sub.iAddr); 003400 return pExpr->iTable; 003401 } 003402 003403 /* Begin coding the subroutine */ 003404 assert( !ExprUseYWin(pExpr) ); 003405 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); 003406 ExprSetProperty(pExpr, EP_Subrtn); 003407 pExpr->y.sub.regReturn = ++pParse->nMem; 003408 pExpr->y.sub.iAddr = 003409 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 003410 003411 /* The evaluation of the EXISTS/SELECT must be repeated every time it 003412 ** is encountered if any of the following is true: 003413 ** 003414 ** * The right-hand side is a correlated subquery 003415 ** * The right-hand side is an expression list containing variables 003416 ** * We are inside a trigger 003417 ** 003418 ** If all of the above are false, then we can run this code just once 003419 ** save the results, and reuse the same result on subsequent invocations. 003420 */ 003421 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 003422 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 003423 } 003424 003425 /* For a SELECT, generate code to put the values for all columns of 003426 ** the first row into an array of registers and return the index of 003427 ** the first register. 003428 ** 003429 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 003430 ** into a register and return that register number. 003431 ** 003432 ** In both cases, the query is augmented with "LIMIT 1". Any 003433 ** preexisting limit is discarded in place of the new LIMIT 1. 003434 */ 003435 ExplainQueryPlan2(addrExplain, (pParse, 1, "%sSCALAR SUBQUERY %d", 003436 addrOnce?"":"CORRELATED ", pSel->selId)); 003437 sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, -1); 003438 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 003439 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 003440 pParse->nMem += nReg; 003441 if( pExpr->op==TK_SELECT ){ 003442 dest.eDest = SRT_Mem; 003443 dest.iSdst = dest.iSDParm; 003444 dest.nSdst = nReg; 003445 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 003446 VdbeComment((v, "Init subquery result")); 003447 }else{ 003448 dest.eDest = SRT_Exists; 003449 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 003450 VdbeComment((v, "Init EXISTS result")); 003451 } 003452 if( pSel->pLimit ){ 003453 /* The subquery already has a limit. If the pre-existing limit is X 003454 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 003455 sqlite3 *db = pParse->db; 003456 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 003457 if( pLimit ){ 003458 pLimit->affExpr = SQLITE_AFF_NUMERIC; 003459 pLimit = sqlite3PExpr(pParse, TK_NE, 003460 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 003461 } 003462 sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft); 003463 pSel->pLimit->pLeft = pLimit; 003464 }else{ 003465 /* If there is no pre-existing limit add a limit of 1 */ 003466 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 003467 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 003468 } 003469 pSel->iLimit = 0; 003470 if( sqlite3Select(pParse, pSel, &dest) ){ 003471 pExpr->op2 = pExpr->op; 003472 pExpr->op = TK_ERROR; 003473 return 0; 003474 } 003475 pExpr->iTable = rReg = dest.iSDParm; 003476 ExprSetVVAProperty(pExpr, EP_NoReduce); 003477 if( addrOnce ){ 003478 sqlite3VdbeJumpHere(v, addrOnce); 003479 } 003480 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1); 003481 003482 /* Subroutine return */ 003483 assert( ExprUseYSub(pExpr) ); 003484 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 003485 || pParse->nErr ); 003486 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 003487 pExpr->y.sub.iAddr, 1); 003488 VdbeCoverage(v); 003489 sqlite3ClearTempRegCache(pParse); 003490 return rReg; 003491 } 003492 #endif /* SQLITE_OMIT_SUBQUERY */ 003493 003494 #ifndef SQLITE_OMIT_SUBQUERY 003495 /* 003496 ** Expr pIn is an IN(...) expression. This function checks that the 003497 ** sub-select on the RHS of the IN() operator has the same number of 003498 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 003499 ** a sub-query, that the LHS is a vector of size 1. 003500 */ 003501 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 003502 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 003503 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ 003504 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 003505 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 003506 return 1; 003507 } 003508 }else if( nVector!=1 ){ 003509 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 003510 return 1; 003511 } 003512 return 0; 003513 } 003514 #endif 003515 003516 #ifndef SQLITE_OMIT_SUBQUERY 003517 /* 003518 ** Generate code for an IN expression. 003519 ** 003520 ** x IN (SELECT ...) 003521 ** x IN (value, value, ...) 003522 ** 003523 ** The left-hand side (LHS) is a scalar or vector expression. The 003524 ** right-hand side (RHS) is an array of zero or more scalar values, or a 003525 ** subquery. If the RHS is a subquery, the number of result columns must 003526 ** match the number of columns in the vector on the LHS. If the RHS is 003527 ** a list of values, the LHS must be a scalar. 003528 ** 003529 ** The IN operator is true if the LHS value is contained within the RHS. 003530 ** The result is false if the LHS is definitely not in the RHS. The 003531 ** result is NULL if the presence of the LHS in the RHS cannot be 003532 ** determined due to NULLs. 003533 ** 003534 ** This routine generates code that jumps to destIfFalse if the LHS is not 003535 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 003536 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 003537 ** within the RHS then fall through. 003538 ** 003539 ** See the separate in-operator.md documentation file in the canonical 003540 ** SQLite source tree for additional information. 003541 */ 003542 static void sqlite3ExprCodeIN( 003543 Parse *pParse, /* Parsing and code generating context */ 003544 Expr *pExpr, /* The IN expression */ 003545 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 003546 int destIfNull /* Jump here if the results are unknown due to NULLs */ 003547 ){ 003548 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 003549 int eType; /* Type of the RHS */ 003550 int rLhs; /* Register(s) holding the LHS values */ 003551 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 003552 Vdbe *v; /* Statement under construction */ 003553 int *aiMap = 0; /* Map from vector field to index column */ 003554 char *zAff = 0; /* Affinity string for comparisons */ 003555 int nVector; /* Size of vectors for this IN operator */ 003556 int iDummy; /* Dummy parameter to exprCodeVector() */ 003557 Expr *pLeft; /* The LHS of the IN operator */ 003558 int i; /* loop counter */ 003559 int destStep2; /* Where to jump when NULLs seen in step 2 */ 003560 int destStep6 = 0; /* Start of code for Step 6 */ 003561 int addrTruthOp; /* Address of opcode that determines the IN is true */ 003562 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 003563 int addrTop; /* Top of the step-6 loop */ 003564 int iTab = 0; /* Index to use */ 003565 u8 okConstFactor = pParse->okConstFactor; 003566 003567 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 003568 pLeft = pExpr->pLeft; 003569 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 003570 zAff = exprINAffinity(pParse, pExpr); 003571 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 003572 aiMap = (int*)sqlite3DbMallocZero( 003573 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 003574 ); 003575 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 003576 003577 /* Attempt to compute the RHS. After this step, if anything other than 003578 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 003579 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 003580 ** the RHS has not yet been coded. */ 003581 v = pParse->pVdbe; 003582 assert( v!=0 ); /* OOM detected prior to this routine */ 003583 VdbeNoopComment((v, "begin IN expr")); 003584 eType = sqlite3FindInIndex(pParse, pExpr, 003585 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 003586 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 003587 aiMap, &iTab); 003588 003589 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 003590 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 003591 ); 003592 #ifdef SQLITE_DEBUG 003593 /* Confirm that aiMap[] contains nVector integer values between 0 and 003594 ** nVector-1. */ 003595 for(i=0; i<nVector; i++){ 003596 int j, cnt; 003597 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 003598 assert( cnt==1 ); 003599 } 003600 #endif 003601 003602 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 003603 ** vector, then it is stored in an array of nVector registers starting 003604 ** at r1. 003605 ** 003606 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 003607 ** so that the fields are in the same order as an existing index. The 003608 ** aiMap[] array contains a mapping from the original LHS field order to 003609 ** the field order that matches the RHS index. 003610 ** 003611 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 003612 ** even if it is constant, as OP_Affinity may be used on the register 003613 ** by code generated below. */ 003614 assert( pParse->okConstFactor==okConstFactor ); 003615 pParse->okConstFactor = 0; 003616 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 003617 pParse->okConstFactor = okConstFactor; 003618 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 003619 if( i==nVector ){ 003620 /* LHS fields are not reordered */ 003621 rLhs = rLhsOrig; 003622 }else{ 003623 /* Need to reorder the LHS fields according to aiMap */ 003624 rLhs = sqlite3GetTempRange(pParse, nVector); 003625 for(i=0; i<nVector; i++){ 003626 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 003627 } 003628 } 003629 003630 /* If sqlite3FindInIndex() did not find or create an index that is 003631 ** suitable for evaluating the IN operator, then evaluate using a 003632 ** sequence of comparisons. 003633 ** 003634 ** This is step (1) in the in-operator.md optimized algorithm. 003635 */ 003636 if( eType==IN_INDEX_NOOP ){ 003637 ExprList *pList; 003638 CollSeq *pColl; 003639 int labelOk = sqlite3VdbeMakeLabel(pParse); 003640 int r2, regToFree; 003641 int regCkNull = 0; 003642 int ii; 003643 assert( ExprUseXList(pExpr) ); 003644 pList = pExpr->x.pList; 003645 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 003646 if( destIfNull!=destIfFalse ){ 003647 regCkNull = sqlite3GetTempReg(pParse); 003648 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 003649 } 003650 for(ii=0; ii<pList->nExpr; ii++){ 003651 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 003652 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 003653 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 003654 } 003655 sqlite3ReleaseTempReg(pParse, regToFree); 003656 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 003657 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 003658 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 003659 (void*)pColl, P4_COLLSEQ); 003660 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 003661 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 003662 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 003663 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 003664 sqlite3VdbeChangeP5(v, zAff[0]); 003665 }else{ 003666 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 003667 assert( destIfNull==destIfFalse ); 003668 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 003669 (void*)pColl, P4_COLLSEQ); 003670 VdbeCoverageIf(v, op==OP_Ne); 003671 VdbeCoverageIf(v, op==OP_IsNull); 003672 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 003673 } 003674 } 003675 if( regCkNull ){ 003676 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 003677 sqlite3VdbeGoto(v, destIfFalse); 003678 } 003679 sqlite3VdbeResolveLabel(v, labelOk); 003680 sqlite3ReleaseTempReg(pParse, regCkNull); 003681 goto sqlite3ExprCodeIN_finished; 003682 } 003683 003684 /* Step 2: Check to see if the LHS contains any NULL columns. If the 003685 ** LHS does contain NULLs then the result must be either FALSE or NULL. 003686 ** We will then skip the binary search of the RHS. 003687 */ 003688 if( destIfNull==destIfFalse ){ 003689 destStep2 = destIfFalse; 003690 }else{ 003691 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 003692 } 003693 for(i=0; i<nVector; i++){ 003694 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 003695 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; 003696 if( sqlite3ExprCanBeNull(p) ){ 003697 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 003698 VdbeCoverage(v); 003699 } 003700 } 003701 003702 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 003703 ** of the RHS using the LHS as a probe. If found, the result is 003704 ** true. 003705 */ 003706 if( eType==IN_INDEX_ROWID ){ 003707 /* In this case, the RHS is the ROWID of table b-tree and so we also 003708 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 003709 ** into a single opcode. */ 003710 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 003711 VdbeCoverage(v); 003712 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 003713 }else{ 003714 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 003715 if( destIfFalse==destIfNull ){ 003716 /* Combine Step 3 and Step 5 into a single opcode */ 003717 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 003718 rLhs, nVector); VdbeCoverage(v); 003719 goto sqlite3ExprCodeIN_finished; 003720 } 003721 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 003722 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 003723 rLhs, nVector); VdbeCoverage(v); 003724 } 003725 003726 /* Step 4. If the RHS is known to be non-NULL and we did not find 003727 ** an match on the search above, then the result must be FALSE. 003728 */ 003729 if( rRhsHasNull && nVector==1 ){ 003730 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 003731 VdbeCoverage(v); 003732 } 003733 003734 /* Step 5. If we do not care about the difference between NULL and 003735 ** FALSE, then just return false. 003736 */ 003737 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 003738 003739 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 003740 ** If any comparison is NULL, then the result is NULL. If all 003741 ** comparisons are FALSE then the final result is FALSE. 003742 ** 003743 ** For a scalar LHS, it is sufficient to check just the first row 003744 ** of the RHS. 003745 */ 003746 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 003747 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 003748 VdbeCoverage(v); 003749 if( nVector>1 ){ 003750 destNotNull = sqlite3VdbeMakeLabel(pParse); 003751 }else{ 003752 /* For nVector==1, combine steps 6 and 7 by immediately returning 003753 ** FALSE if the first comparison is not NULL */ 003754 destNotNull = destIfFalse; 003755 } 003756 for(i=0; i<nVector; i++){ 003757 Expr *p; 003758 CollSeq *pColl; 003759 int r3 = sqlite3GetTempReg(pParse); 003760 p = sqlite3VectorFieldSubexpr(pLeft, i); 003761 pColl = sqlite3ExprCollSeq(pParse, p); 003762 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 003763 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 003764 (void*)pColl, P4_COLLSEQ); 003765 VdbeCoverage(v); 003766 sqlite3ReleaseTempReg(pParse, r3); 003767 } 003768 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 003769 if( nVector>1 ){ 003770 sqlite3VdbeResolveLabel(v, destNotNull); 003771 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 003772 VdbeCoverage(v); 003773 003774 /* Step 7: If we reach this point, we know that the result must 003775 ** be false. */ 003776 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 003777 } 003778 003779 /* Jumps here in order to return true. */ 003780 sqlite3VdbeJumpHere(v, addrTruthOp); 003781 003782 sqlite3ExprCodeIN_finished: 003783 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 003784 VdbeComment((v, "end IN expr")); 003785 sqlite3ExprCodeIN_oom_error: 003786 sqlite3DbFree(pParse->db, aiMap); 003787 sqlite3DbFree(pParse->db, zAff); 003788 } 003789 #endif /* SQLITE_OMIT_SUBQUERY */ 003790 003791 #ifndef SQLITE_OMIT_FLOATING_POINT 003792 /* 003793 ** Generate an instruction that will put the floating point 003794 ** value described by z[0..n-1] into register iMem. 003795 ** 003796 ** The z[] string will probably not be zero-terminated. But the 003797 ** z[n] character is guaranteed to be something that does not look 003798 ** like the continuation of the number. 003799 */ 003800 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 003801 if( ALWAYS(z!=0) ){ 003802 double value; 003803 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 003804 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 003805 if( negateFlag ) value = -value; 003806 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 003807 } 003808 } 003809 #endif 003810 003811 003812 /* 003813 ** Generate an instruction that will put the integer describe by 003814 ** text z[0..n-1] into register iMem. 003815 ** 003816 ** Expr.u.zToken is always UTF8 and zero-terminated. 003817 */ 003818 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 003819 Vdbe *v = pParse->pVdbe; 003820 if( pExpr->flags & EP_IntValue ){ 003821 int i = pExpr->u.iValue; 003822 assert( i>=0 ); 003823 if( negFlag ) i = -i; 003824 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 003825 }else{ 003826 int c; 003827 i64 value; 003828 const char *z = pExpr->u.zToken; 003829 assert( z!=0 ); 003830 c = sqlite3DecOrHexToI64(z, &value); 003831 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 003832 #ifdef SQLITE_OMIT_FLOATING_POINT 003833 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); 003834 #else 003835 #ifndef SQLITE_OMIT_HEX_INTEGER 003836 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 003837 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", 003838 negFlag?"-":"",pExpr); 003839 }else 003840 #endif 003841 { 003842 codeReal(v, z, negFlag, iMem); 003843 } 003844 #endif 003845 }else{ 003846 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 003847 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 003848 } 003849 } 003850 } 003851 003852 003853 /* Generate code that will load into register regOut a value that is 003854 ** appropriate for the iIdxCol-th column of index pIdx. 003855 */ 003856 void sqlite3ExprCodeLoadIndexColumn( 003857 Parse *pParse, /* The parsing context */ 003858 Index *pIdx, /* The index whose column is to be loaded */ 003859 int iTabCur, /* Cursor pointing to a table row */ 003860 int iIdxCol, /* The column of the index to be loaded */ 003861 int regOut /* Store the index column value in this register */ 003862 ){ 003863 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 003864 if( iTabCol==XN_EXPR ){ 003865 assert( pIdx->aColExpr ); 003866 assert( pIdx->aColExpr->nExpr>iIdxCol ); 003867 pParse->iSelfTab = iTabCur + 1; 003868 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 003869 pParse->iSelfTab = 0; 003870 }else{ 003871 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 003872 iTabCol, regOut); 003873 } 003874 } 003875 003876 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 003877 /* 003878 ** Generate code that will compute the value of generated column pCol 003879 ** and store the result in register regOut 003880 */ 003881 void sqlite3ExprCodeGeneratedColumn( 003882 Parse *pParse, /* Parsing context */ 003883 Table *pTab, /* Table containing the generated column */ 003884 Column *pCol, /* The generated column */ 003885 int regOut /* Put the result in this register */ 003886 ){ 003887 int iAddr; 003888 Vdbe *v = pParse->pVdbe; 003889 int nErr = pParse->nErr; 003890 assert( v!=0 ); 003891 assert( pParse->iSelfTab!=0 ); 003892 if( pParse->iSelfTab>0 ){ 003893 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 003894 }else{ 003895 iAddr = 0; 003896 } 003897 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 003898 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 003899 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 003900 } 003901 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 003902 if( pParse->nErr>nErr ) pParse->db->errByteOffset = -1; 003903 } 003904 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 003905 003906 /* 003907 ** Generate code to extract the value of the iCol-th column of a table. 003908 */ 003909 void sqlite3ExprCodeGetColumnOfTable( 003910 Vdbe *v, /* Parsing context */ 003911 Table *pTab, /* The table containing the value */ 003912 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 003913 int iCol, /* Index of the column to extract */ 003914 int regOut /* Extract the value into this register */ 003915 ){ 003916 Column *pCol; 003917 assert( v!=0 ); 003918 assert( pTab!=0 ); 003919 assert( iCol!=XN_EXPR ); 003920 if( iCol<0 || iCol==pTab->iPKey ){ 003921 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 003922 VdbeComment((v, "%s.rowid", pTab->zName)); 003923 }else{ 003924 int op; 003925 int x; 003926 if( IsVirtual(pTab) ){ 003927 op = OP_VColumn; 003928 x = iCol; 003929 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 003930 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 003931 Parse *pParse = sqlite3VdbeParser(v); 003932 if( pCol->colFlags & COLFLAG_BUSY ){ 003933 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 003934 pCol->zCnName); 003935 }else{ 003936 int savedSelfTab = pParse->iSelfTab; 003937 pCol->colFlags |= COLFLAG_BUSY; 003938 pParse->iSelfTab = iTabCur+1; 003939 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 003940 pParse->iSelfTab = savedSelfTab; 003941 pCol->colFlags &= ~COLFLAG_BUSY; 003942 } 003943 return; 003944 #endif 003945 }else if( !HasRowid(pTab) ){ 003946 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 003947 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 003948 op = OP_Column; 003949 }else{ 003950 x = sqlite3TableColumnToStorage(pTab,iCol); 003951 testcase( x!=iCol ); 003952 op = OP_Column; 003953 } 003954 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 003955 sqlite3ColumnDefault(v, pTab, iCol, regOut); 003956 } 003957 } 003958 003959 /* 003960 ** Generate code that will extract the iColumn-th column from 003961 ** table pTab and store the column value in register iReg. 003962 ** 003963 ** There must be an open cursor to pTab in iTable when this routine 003964 ** is called. If iColumn<0 then code is generated that extracts the rowid. 003965 */ 003966 int sqlite3ExprCodeGetColumn( 003967 Parse *pParse, /* Parsing and code generating context */ 003968 Table *pTab, /* Description of the table we are reading from */ 003969 int iColumn, /* Index of the table column */ 003970 int iTable, /* The cursor pointing to the table */ 003971 int iReg, /* Store results here */ 003972 u8 p5 /* P5 value for OP_Column + FLAGS */ 003973 ){ 003974 assert( pParse->pVdbe!=0 ); 003975 assert( (p5 & (OPFLAG_NOCHNG|OPFLAG_TYPEOFARG|OPFLAG_LENGTHARG))==p5 ); 003976 assert( IsVirtual(pTab) || (p5 & OPFLAG_NOCHNG)==0 ); 003977 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 003978 if( p5 ){ 003979 VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); 003980 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 003981 if( pOp->opcode==OP_VColumn ) pOp->p5 = (p5 & OPFLAG_NOCHNG); 003982 } 003983 return iReg; 003984 } 003985 003986 /* 003987 ** Generate code to move content from registers iFrom...iFrom+nReg-1 003988 ** over to iTo..iTo+nReg-1. 003989 */ 003990 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 003991 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 003992 } 003993 003994 /* 003995 ** Convert a scalar expression node to a TK_REGISTER referencing 003996 ** register iReg. The caller must ensure that iReg already contains 003997 ** the correct value for the expression. 003998 */ 003999 static void exprToRegister(Expr *pExpr, int iReg){ 004000 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 004001 if( NEVER(p==0) ) return; 004002 p->op2 = p->op; 004003 p->op = TK_REGISTER; 004004 p->iTable = iReg; 004005 ExprClearProperty(p, EP_Skip); 004006 } 004007 004008 /* 004009 ** Evaluate an expression (either a vector or a scalar expression) and store 004010 ** the result in contiguous temporary registers. Return the index of 004011 ** the first register used to store the result. 004012 ** 004013 ** If the returned result register is a temporary scalar, then also write 004014 ** that register number into *piFreeable. If the returned result register 004015 ** is not a temporary or if the expression is a vector set *piFreeable 004016 ** to 0. 004017 */ 004018 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 004019 int iResult; 004020 int nResult = sqlite3ExprVectorSize(p); 004021 if( nResult==1 ){ 004022 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 004023 }else{ 004024 *piFreeable = 0; 004025 if( p->op==TK_SELECT ){ 004026 #if SQLITE_OMIT_SUBQUERY 004027 iResult = 0; 004028 #else 004029 iResult = sqlite3CodeSubselect(pParse, p); 004030 #endif 004031 }else{ 004032 int i; 004033 iResult = pParse->nMem+1; 004034 pParse->nMem += nResult; 004035 assert( ExprUseXList(p) ); 004036 for(i=0; i<nResult; i++){ 004037 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 004038 } 004039 } 004040 } 004041 return iResult; 004042 } 004043 004044 /* 004045 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 004046 ** so that a subsequent copy will not be merged into this one. 004047 */ 004048 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 004049 if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){ 004050 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergeable */ 004051 } 004052 } 004053 004054 /* 004055 ** Generate code to implement special SQL functions that are implemented 004056 ** in-line rather than by using the usual callbacks. 004057 */ 004058 static int exprCodeInlineFunction( 004059 Parse *pParse, /* Parsing context */ 004060 ExprList *pFarg, /* List of function arguments */ 004061 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 004062 int target /* Store function result in this register */ 004063 ){ 004064 int nFarg; 004065 Vdbe *v = pParse->pVdbe; 004066 assert( v!=0 ); 004067 assert( pFarg!=0 ); 004068 nFarg = pFarg->nExpr; 004069 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 004070 switch( iFuncId ){ 004071 case INLINEFUNC_coalesce: { 004072 /* Attempt a direct implementation of the built-in COALESCE() and 004073 ** IFNULL() functions. This avoids unnecessary evaluation of 004074 ** arguments past the first non-NULL argument. 004075 */ 004076 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 004077 int i; 004078 assert( nFarg>=2 ); 004079 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 004080 for(i=1; i<nFarg; i++){ 004081 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 004082 VdbeCoverage(v); 004083 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 004084 } 004085 setDoNotMergeFlagOnCopy(v); 004086 sqlite3VdbeResolveLabel(v, endCoalesce); 004087 break; 004088 } 004089 case INLINEFUNC_iif: { 004090 Expr caseExpr; 004091 memset(&caseExpr, 0, sizeof(caseExpr)); 004092 caseExpr.op = TK_CASE; 004093 caseExpr.x.pList = pFarg; 004094 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 004095 } 004096 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 004097 case INLINEFUNC_sqlite_offset: { 004098 Expr *pArg = pFarg->a[0].pExpr; 004099 if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){ 004100 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 004101 }else{ 004102 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 004103 } 004104 break; 004105 } 004106 #endif 004107 default: { 004108 /* The UNLIKELY() function is a no-op. The result is the value 004109 ** of the first argument. 004110 */ 004111 assert( nFarg==1 || nFarg==2 ); 004112 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 004113 break; 004114 } 004115 004116 /*********************************************************************** 004117 ** Test-only SQL functions that are only usable if enabled 004118 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 004119 */ 004120 #if !defined(SQLITE_UNTESTABLE) 004121 case INLINEFUNC_expr_compare: { 004122 /* Compare two expressions using sqlite3ExprCompare() */ 004123 assert( nFarg==2 ); 004124 sqlite3VdbeAddOp2(v, OP_Integer, 004125 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 004126 target); 004127 break; 004128 } 004129 004130 case INLINEFUNC_expr_implies_expr: { 004131 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 004132 assert( nFarg==2 ); 004133 sqlite3VdbeAddOp2(v, OP_Integer, 004134 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 004135 target); 004136 break; 004137 } 004138 004139 case INLINEFUNC_implies_nonnull_row: { 004140 /* Result of sqlite3ExprImpliesNonNullRow() */ 004141 Expr *pA1; 004142 assert( nFarg==2 ); 004143 pA1 = pFarg->a[1].pExpr; 004144 if( pA1->op==TK_COLUMN ){ 004145 sqlite3VdbeAddOp2(v, OP_Integer, 004146 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable,1), 004147 target); 004148 }else{ 004149 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 004150 } 004151 break; 004152 } 004153 004154 case INLINEFUNC_affinity: { 004155 /* The AFFINITY() function evaluates to a string that describes 004156 ** the type affinity of the argument. This is used for testing of 004157 ** the SQLite type logic. 004158 */ 004159 const char *azAff[] = { "blob", "text", "numeric", "integer", 004160 "real", "flexnum" }; 004161 char aff; 004162 assert( nFarg==1 ); 004163 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 004164 assert( aff<=SQLITE_AFF_NONE 004165 || (aff>=SQLITE_AFF_BLOB && aff<=SQLITE_AFF_FLEXNUM) ); 004166 sqlite3VdbeLoadString(v, target, 004167 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 004168 break; 004169 } 004170 #endif /* !defined(SQLITE_UNTESTABLE) */ 004171 } 004172 return target; 004173 } 004174 004175 /* 004176 ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxEpr. 004177 ** If it is, then resolve the expression by reading from the index and 004178 ** return the register into which the value has been read. If pExpr is 004179 ** not an indexed expression, then return negative. 004180 */ 004181 static SQLITE_NOINLINE int sqlite3IndexedExprLookup( 004182 Parse *pParse, /* The parsing context */ 004183 Expr *pExpr, /* The expression to potentially bypass */ 004184 int target /* Where to store the result of the expression */ 004185 ){ 004186 IndexedExpr *p; 004187 Vdbe *v; 004188 for(p=pParse->pIdxEpr; p; p=p->pIENext){ 004189 u8 exprAff; 004190 int iDataCur = p->iDataCur; 004191 if( iDataCur<0 ) continue; 004192 if( pParse->iSelfTab ){ 004193 if( p->iDataCur!=pParse->iSelfTab-1 ) continue; 004194 iDataCur = -1; 004195 } 004196 if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue; 004197 assert( p->aff>=SQLITE_AFF_BLOB && p->aff<=SQLITE_AFF_NUMERIC ); 004198 exprAff = sqlite3ExprAffinity(pExpr); 004199 if( (exprAff<=SQLITE_AFF_BLOB && p->aff!=SQLITE_AFF_BLOB) 004200 || (exprAff==SQLITE_AFF_TEXT && p->aff!=SQLITE_AFF_TEXT) 004201 || (exprAff>=SQLITE_AFF_NUMERIC && p->aff!=SQLITE_AFF_NUMERIC) 004202 ){ 004203 /* Affinity mismatch on a generated column */ 004204 continue; 004205 } 004206 004207 v = pParse->pVdbe; 004208 assert( v!=0 ); 004209 if( p->bMaybeNullRow ){ 004210 /* If the index is on a NULL row due to an outer join, then we 004211 ** cannot extract the value from the index. The value must be 004212 ** computed using the original expression. */ 004213 int addr = sqlite3VdbeCurrentAddr(v); 004214 sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target); 004215 VdbeCoverage(v); 004216 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); 004217 VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol)); 004218 sqlite3VdbeGoto(v, 0); 004219 p = pParse->pIdxEpr; 004220 pParse->pIdxEpr = 0; 004221 sqlite3ExprCode(pParse, pExpr, target); 004222 pParse->pIdxEpr = p; 004223 sqlite3VdbeJumpHere(v, addr+2); 004224 }else{ 004225 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); 004226 VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol)); 004227 } 004228 return target; 004229 } 004230 return -1; /* Not found */ 004231 } 004232 004233 004234 /* 004235 ** Generate code into the current Vdbe to evaluate the given 004236 ** expression. Attempt to store the results in register "target". 004237 ** Return the register where results are stored. 004238 ** 004239 ** With this routine, there is no guarantee that results will 004240 ** be stored in target. The result might be stored in some other 004241 ** register if it is convenient to do so. The calling function 004242 ** must check the return code and move the results to the desired 004243 ** register. 004244 */ 004245 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 004246 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 004247 int op; /* The opcode being coded */ 004248 int inReg = target; /* Results stored in register inReg */ 004249 int regFree1 = 0; /* If non-zero free this temporary register */ 004250 int regFree2 = 0; /* If non-zero free this temporary register */ 004251 int r1, r2; /* Various register numbers */ 004252 Expr tempX; /* Temporary expression node */ 004253 int p5 = 0; 004254 004255 assert( target>0 && target<=pParse->nMem ); 004256 assert( v!=0 ); 004257 004258 expr_code_doover: 004259 if( pExpr==0 ){ 004260 op = TK_NULL; 004261 }else if( pParse->pIdxEpr!=0 004262 && !ExprHasProperty(pExpr, EP_Leaf) 004263 && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0 004264 ){ 004265 return r1; 004266 }else{ 004267 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 004268 op = pExpr->op; 004269 } 004270 switch( op ){ 004271 case TK_AGG_COLUMN: { 004272 AggInfo *pAggInfo = pExpr->pAggInfo; 004273 struct AggInfo_col *pCol; 004274 assert( pAggInfo!=0 ); 004275 assert( pExpr->iAgg>=0 ); 004276 if( pExpr->iAgg>=pAggInfo->nColumn ){ 004277 /* Happens when the left table of a RIGHT JOIN is null and 004278 ** is using an expression index */ 004279 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 004280 #ifdef SQLITE_VDBE_COVERAGE 004281 /* Verify that the OP_Null above is exercised by tests 004282 ** tag-20230325-2 */ 004283 sqlite3VdbeAddOp2(v, OP_NotNull, target, 1); 004284 VdbeCoverageNeverTaken(v); 004285 #endif 004286 break; 004287 } 004288 pCol = &pAggInfo->aCol[pExpr->iAgg]; 004289 if( !pAggInfo->directMode ){ 004290 return AggInfoColumnReg(pAggInfo, pExpr->iAgg); 004291 }else if( pAggInfo->useSortingIdx ){ 004292 Table *pTab = pCol->pTab; 004293 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 004294 pCol->iSorterColumn, target); 004295 if( pTab==0 ){ 004296 /* No comment added */ 004297 }else if( pCol->iColumn<0 ){ 004298 VdbeComment((v,"%s.rowid",pTab->zName)); 004299 }else{ 004300 VdbeComment((v,"%s.%s", 004301 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 004302 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 004303 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 004304 } 004305 } 004306 return target; 004307 }else if( pExpr->y.pTab==0 ){ 004308 /* This case happens when the argument to an aggregate function 004309 ** is rewritten by aggregateConvertIndexedExprRefToColumn() */ 004310 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, pExpr->iColumn, target); 004311 return target; 004312 } 004313 /* Otherwise, fall thru into the TK_COLUMN case */ 004314 /* no break */ deliberate_fall_through 004315 } 004316 case TK_COLUMN: { 004317 int iTab = pExpr->iTable; 004318 int iReg; 004319 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 004320 /* This COLUMN expression is really a constant due to WHERE clause 004321 ** constraints, and that constant is coded by the pExpr->pLeft 004322 ** expression. However, make sure the constant has the correct 004323 ** datatype by applying the Affinity of the table column to the 004324 ** constant. 004325 */ 004326 int aff; 004327 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 004328 assert( ExprUseYTab(pExpr) ); 004329 assert( pExpr->y.pTab!=0 ); 004330 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 004331 if( aff>SQLITE_AFF_BLOB ){ 004332 static const char zAff[] = "B\000C\000D\000E\000F"; 004333 assert( SQLITE_AFF_BLOB=='A' ); 004334 assert( SQLITE_AFF_TEXT=='B' ); 004335 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 004336 &zAff[(aff-'B')*2], P4_STATIC); 004337 } 004338 return iReg; 004339 } 004340 if( iTab<0 ){ 004341 if( pParse->iSelfTab<0 ){ 004342 /* Other columns in the same row for CHECK constraints or 004343 ** generated columns or for inserting into partial index. 004344 ** The row is unpacked into registers beginning at 004345 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 004346 ** immediately prior to the first column. 004347 */ 004348 Column *pCol; 004349 Table *pTab; 004350 int iSrc; 004351 int iCol = pExpr->iColumn; 004352 assert( ExprUseYTab(pExpr) ); 004353 pTab = pExpr->y.pTab; 004354 assert( pTab!=0 ); 004355 assert( iCol>=XN_ROWID ); 004356 assert( iCol<pTab->nCol ); 004357 if( iCol<0 ){ 004358 return -1-pParse->iSelfTab; 004359 } 004360 pCol = pTab->aCol + iCol; 004361 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 004362 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 004363 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 004364 if( pCol->colFlags & COLFLAG_GENERATED ){ 004365 if( pCol->colFlags & COLFLAG_BUSY ){ 004366 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 004367 pCol->zCnName); 004368 return 0; 004369 } 004370 pCol->colFlags |= COLFLAG_BUSY; 004371 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 004372 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 004373 } 004374 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 004375 return iSrc; 004376 }else 004377 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 004378 if( pCol->affinity==SQLITE_AFF_REAL ){ 004379 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 004380 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 004381 return target; 004382 }else{ 004383 return iSrc; 004384 } 004385 }else{ 004386 /* Coding an expression that is part of an index where column names 004387 ** in the index refer to the table to which the index belongs */ 004388 iTab = pParse->iSelfTab - 1; 004389 } 004390 } 004391 assert( ExprUseYTab(pExpr) ); 004392 assert( pExpr->y.pTab!=0 ); 004393 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 004394 pExpr->iColumn, iTab, target, 004395 pExpr->op2); 004396 return iReg; 004397 } 004398 case TK_INTEGER: { 004399 codeInteger(pParse, pExpr, 0, target); 004400 return target; 004401 } 004402 case TK_TRUEFALSE: { 004403 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 004404 return target; 004405 } 004406 #ifndef SQLITE_OMIT_FLOATING_POINT 004407 case TK_FLOAT: { 004408 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004409 codeReal(v, pExpr->u.zToken, 0, target); 004410 return target; 004411 } 004412 #endif 004413 case TK_STRING: { 004414 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004415 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 004416 return target; 004417 } 004418 default: { 004419 /* Make NULL the default case so that if a bug causes an illegal 004420 ** Expr node to be passed into this function, it will be handled 004421 ** sanely and not crash. But keep the assert() to bring the problem 004422 ** to the attention of the developers. */ 004423 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 004424 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 004425 return target; 004426 } 004427 #ifndef SQLITE_OMIT_BLOB_LITERAL 004428 case TK_BLOB: { 004429 int n; 004430 const char *z; 004431 char *zBlob; 004432 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004433 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 004434 assert( pExpr->u.zToken[1]=='\'' ); 004435 z = &pExpr->u.zToken[2]; 004436 n = sqlite3Strlen30(z) - 1; 004437 assert( z[n]=='\'' ); 004438 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 004439 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 004440 return target; 004441 } 004442 #endif 004443 case TK_VARIABLE: { 004444 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004445 assert( pExpr->u.zToken!=0 ); 004446 assert( pExpr->u.zToken[0]!=0 ); 004447 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 004448 if( pExpr->u.zToken[1]!=0 ){ 004449 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 004450 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 004451 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 004452 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 004453 } 004454 return target; 004455 } 004456 case TK_REGISTER: { 004457 return pExpr->iTable; 004458 } 004459 #ifndef SQLITE_OMIT_CAST 004460 case TK_CAST: { 004461 /* Expressions of the form: CAST(pLeft AS token) */ 004462 sqlite3ExprCode(pParse, pExpr->pLeft, target); 004463 assert( inReg==target ); 004464 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004465 sqlite3VdbeAddOp2(v, OP_Cast, target, 004466 sqlite3AffinityType(pExpr->u.zToken, 0)); 004467 return inReg; 004468 } 004469 #endif /* SQLITE_OMIT_CAST */ 004470 case TK_IS: 004471 case TK_ISNOT: 004472 op = (op==TK_IS) ? TK_EQ : TK_NE; 004473 p5 = SQLITE_NULLEQ; 004474 /* fall-through */ 004475 case TK_LT: 004476 case TK_LE: 004477 case TK_GT: 004478 case TK_GE: 004479 case TK_NE: 004480 case TK_EQ: { 004481 Expr *pLeft = pExpr->pLeft; 004482 if( sqlite3ExprIsVector(pLeft) ){ 004483 codeVectorCompare(pParse, pExpr, target, op, p5); 004484 }else{ 004485 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 004486 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 004487 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 004488 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 004489 sqlite3VdbeCurrentAddr(v)+2, p5, 004490 ExprHasProperty(pExpr,EP_Commuted)); 004491 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 004492 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 004493 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 004494 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 004495 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 004496 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 004497 if( p5==SQLITE_NULLEQ ){ 004498 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 004499 }else{ 004500 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 004501 } 004502 testcase( regFree1==0 ); 004503 testcase( regFree2==0 ); 004504 } 004505 break; 004506 } 004507 case TK_AND: 004508 case TK_OR: 004509 case TK_PLUS: 004510 case TK_STAR: 004511 case TK_MINUS: 004512 case TK_REM: 004513 case TK_BITAND: 004514 case TK_BITOR: 004515 case TK_SLASH: 004516 case TK_LSHIFT: 004517 case TK_RSHIFT: 004518 case TK_CONCAT: { 004519 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 004520 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 004521 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 004522 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 004523 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 004524 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 004525 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 004526 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 004527 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 004528 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 004529 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 004530 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 004531 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 004532 sqlite3VdbeAddOp3(v, op, r2, r1, target); 004533 testcase( regFree1==0 ); 004534 testcase( regFree2==0 ); 004535 break; 004536 } 004537 case TK_UMINUS: { 004538 Expr *pLeft = pExpr->pLeft; 004539 assert( pLeft ); 004540 if( pLeft->op==TK_INTEGER ){ 004541 codeInteger(pParse, pLeft, 1, target); 004542 return target; 004543 #ifndef SQLITE_OMIT_FLOATING_POINT 004544 }else if( pLeft->op==TK_FLOAT ){ 004545 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004546 codeReal(v, pLeft->u.zToken, 1, target); 004547 return target; 004548 #endif 004549 }else{ 004550 tempX.op = TK_INTEGER; 004551 tempX.flags = EP_IntValue|EP_TokenOnly; 004552 tempX.u.iValue = 0; 004553 ExprClearVVAProperties(&tempX); 004554 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 004555 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 004556 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 004557 testcase( regFree2==0 ); 004558 } 004559 break; 004560 } 004561 case TK_BITNOT: 004562 case TK_NOT: { 004563 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 004564 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 004565 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 004566 testcase( regFree1==0 ); 004567 sqlite3VdbeAddOp2(v, op, r1, inReg); 004568 break; 004569 } 004570 case TK_TRUTH: { 004571 int isTrue; /* IS TRUE or IS NOT TRUE */ 004572 int bNormal; /* IS TRUE or IS FALSE */ 004573 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 004574 testcase( regFree1==0 ); 004575 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 004576 bNormal = pExpr->op2==TK_IS; 004577 testcase( isTrue && bNormal); 004578 testcase( !isTrue && bNormal); 004579 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 004580 break; 004581 } 004582 case TK_ISNULL: 004583 case TK_NOTNULL: { 004584 int addr; 004585 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 004586 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 004587 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 004588 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 004589 testcase( regFree1==0 ); 004590 addr = sqlite3VdbeAddOp1(v, op, r1); 004591 VdbeCoverageIf(v, op==TK_ISNULL); 004592 VdbeCoverageIf(v, op==TK_NOTNULL); 004593 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 004594 sqlite3VdbeJumpHere(v, addr); 004595 break; 004596 } 004597 case TK_AGG_FUNCTION: { 004598 AggInfo *pInfo = pExpr->pAggInfo; 004599 if( pInfo==0 004600 || NEVER(pExpr->iAgg<0) 004601 || NEVER(pExpr->iAgg>=pInfo->nFunc) 004602 ){ 004603 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004604 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); 004605 }else{ 004606 return AggInfoFuncReg(pInfo, pExpr->iAgg); 004607 } 004608 break; 004609 } 004610 case TK_FUNCTION: { 004611 ExprList *pFarg; /* List of function arguments */ 004612 int nFarg; /* Number of function arguments */ 004613 FuncDef *pDef; /* The function definition object */ 004614 const char *zId; /* The function name */ 004615 u32 constMask = 0; /* Mask of function arguments that are constant */ 004616 int i; /* Loop counter */ 004617 sqlite3 *db = pParse->db; /* The database connection */ 004618 u8 enc = ENC(db); /* The text encoding used by this database */ 004619 CollSeq *pColl = 0; /* A collating sequence */ 004620 004621 #ifndef SQLITE_OMIT_WINDOWFUNC 004622 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 004623 return pExpr->y.pWin->regResult; 004624 } 004625 #endif 004626 004627 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 004628 /* SQL functions can be expensive. So try to avoid running them 004629 ** multiple times if we know they always give the same result */ 004630 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 004631 } 004632 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 004633 assert( ExprUseXList(pExpr) ); 004634 pFarg = pExpr->x.pList; 004635 nFarg = pFarg ? pFarg->nExpr : 0; 004636 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 004637 zId = pExpr->u.zToken; 004638 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 004639 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 004640 if( pDef==0 && pParse->explain ){ 004641 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 004642 } 004643 #endif 004644 if( pDef==0 || pDef->xFinalize!=0 ){ 004645 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); 004646 break; 004647 } 004648 if( (pDef->funcFlags & SQLITE_FUNC_INLINE)!=0 && ALWAYS(pFarg!=0) ){ 004649 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 004650 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 004651 return exprCodeInlineFunction(pParse, pFarg, 004652 SQLITE_PTR_TO_INT(pDef->pUserData), target); 004653 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 004654 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 004655 } 004656 004657 for(i=0; i<nFarg; i++){ 004658 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 004659 testcase( i==31 ); 004660 constMask |= MASKBIT32(i); 004661 } 004662 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 004663 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 004664 } 004665 } 004666 if( pFarg ){ 004667 if( constMask ){ 004668 r1 = pParse->nMem+1; 004669 pParse->nMem += nFarg; 004670 }else{ 004671 r1 = sqlite3GetTempRange(pParse, nFarg); 004672 } 004673 004674 /* For length() and typeof() and octet_length() functions, 004675 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 004676 ** or OPFLAG_TYPEOFARG or OPFLAG_BYTELENARG respectively, to avoid 004677 ** unnecessary data loading. 004678 */ 004679 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 004680 u8 exprOp; 004681 assert( nFarg==1 ); 004682 assert( pFarg->a[0].pExpr!=0 ); 004683 exprOp = pFarg->a[0].pExpr->op; 004684 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 004685 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 004686 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 004687 assert( SQLITE_FUNC_BYTELEN==OPFLAG_BYTELENARG ); 004688 assert( (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG)==OPFLAG_BYTELENARG ); 004689 testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_LENGTHARG ); 004690 testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_TYPEOFARG ); 004691 testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_BYTELENARG); 004692 pFarg->a[0].pExpr->op2 = pDef->funcFlags & OPFLAG_BYTELENARG; 004693 } 004694 } 004695 004696 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, SQLITE_ECEL_FACTOR); 004697 }else{ 004698 r1 = 0; 004699 } 004700 #ifndef SQLITE_OMIT_VIRTUALTABLE 004701 /* Possibly overload the function if the first argument is 004702 ** a virtual table column. 004703 ** 004704 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 004705 ** second argument, not the first, as the argument to test to 004706 ** see if it is a column in a virtual table. This is done because 004707 ** the left operand of infix functions (the operand we want to 004708 ** control overloading) ends up as the second argument to the 004709 ** function. The expression "A glob B" is equivalent to 004710 ** "glob(B,A). We want to use the A in "A glob B" to test 004711 ** for function overloading. But we use the B term in "glob(B,A)". 004712 */ 004713 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 004714 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 004715 }else if( nFarg>0 ){ 004716 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 004717 } 004718 #endif 004719 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 004720 if( !pColl ) pColl = db->pDfltColl; 004721 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 004722 } 004723 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 004724 pDef, pExpr->op2); 004725 if( nFarg ){ 004726 if( constMask==0 ){ 004727 sqlite3ReleaseTempRange(pParse, r1, nFarg); 004728 }else{ 004729 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 004730 } 004731 } 004732 return target; 004733 } 004734 #ifndef SQLITE_OMIT_SUBQUERY 004735 case TK_EXISTS: 004736 case TK_SELECT: { 004737 int nCol; 004738 testcase( op==TK_EXISTS ); 004739 testcase( op==TK_SELECT ); 004740 if( pParse->db->mallocFailed ){ 004741 return 0; 004742 }else if( op==TK_SELECT 004743 && ALWAYS( ExprUseXSelect(pExpr) ) 004744 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 004745 ){ 004746 sqlite3SubselectError(pParse, nCol, 1); 004747 }else{ 004748 return sqlite3CodeSubselect(pParse, pExpr); 004749 } 004750 break; 004751 } 004752 case TK_SELECT_COLUMN: { 004753 int n; 004754 Expr *pLeft = pExpr->pLeft; 004755 if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){ 004756 pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft); 004757 pLeft->op2 = pParse->withinRJSubrtn; 004758 } 004759 assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR ); 004760 n = sqlite3ExprVectorSize(pLeft); 004761 if( pExpr->iTable!=n ){ 004762 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 004763 pExpr->iTable, n); 004764 } 004765 return pLeft->iTable + pExpr->iColumn; 004766 } 004767 case TK_IN: { 004768 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 004769 int destIfNull = sqlite3VdbeMakeLabel(pParse); 004770 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 004771 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 004772 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 004773 sqlite3VdbeResolveLabel(v, destIfFalse); 004774 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 004775 sqlite3VdbeResolveLabel(v, destIfNull); 004776 return target; 004777 } 004778 #endif /* SQLITE_OMIT_SUBQUERY */ 004779 004780 004781 /* 004782 ** x BETWEEN y AND z 004783 ** 004784 ** This is equivalent to 004785 ** 004786 ** x>=y AND x<=z 004787 ** 004788 ** X is stored in pExpr->pLeft. 004789 ** Y is stored in pExpr->pList->a[0].pExpr. 004790 ** Z is stored in pExpr->pList->a[1].pExpr. 004791 */ 004792 case TK_BETWEEN: { 004793 exprCodeBetween(pParse, pExpr, target, 0, 0); 004794 return target; 004795 } 004796 case TK_COLLATE: { 004797 if( !ExprHasProperty(pExpr, EP_Collate) ){ 004798 /* A TK_COLLATE Expr node without the EP_Collate tag is a so-called 004799 ** "SOFT-COLLATE" that is added to constraints that are pushed down 004800 ** from outer queries into sub-queries by the push-down optimization. 004801 ** Clear subtypes as subtypes may not cross a subquery boundary. 004802 */ 004803 assert( pExpr->pLeft ); 004804 sqlite3ExprCode(pParse, pExpr->pLeft, target); 004805 sqlite3VdbeAddOp1(v, OP_ClrSubtype, target); 004806 return target; 004807 }else{ 004808 pExpr = pExpr->pLeft; 004809 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */ 004810 } 004811 } 004812 case TK_SPAN: 004813 case TK_UPLUS: { 004814 pExpr = pExpr->pLeft; 004815 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 004816 } 004817 004818 case TK_TRIGGER: { 004819 /* If the opcode is TK_TRIGGER, then the expression is a reference 004820 ** to a column in the new.* or old.* pseudo-tables available to 004821 ** trigger programs. In this case Expr.iTable is set to 1 for the 004822 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 004823 ** is set to the column of the pseudo-table to read, or to -1 to 004824 ** read the rowid field. 004825 ** 004826 ** The expression is implemented using an OP_Param opcode. The p1 004827 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 004828 ** to reference another column of the old.* pseudo-table, where 004829 ** i is the index of the column. For a new.rowid reference, p1 is 004830 ** set to (n+1), where n is the number of columns in each pseudo-table. 004831 ** For a reference to any other column in the new.* pseudo-table, p1 004832 ** is set to (n+2+i), where n and i are as defined previously. For 004833 ** example, if the table on which triggers are being fired is 004834 ** declared as: 004835 ** 004836 ** CREATE TABLE t1(a, b); 004837 ** 004838 ** Then p1 is interpreted as follows: 004839 ** 004840 ** p1==0 -> old.rowid p1==3 -> new.rowid 004841 ** p1==1 -> old.a p1==4 -> new.a 004842 ** p1==2 -> old.b p1==5 -> new.b 004843 */ 004844 Table *pTab; 004845 int iCol; 004846 int p1; 004847 004848 assert( ExprUseYTab(pExpr) ); 004849 pTab = pExpr->y.pTab; 004850 iCol = pExpr->iColumn; 004851 p1 = pExpr->iTable * (pTab->nCol+1) + 1 004852 + sqlite3TableColumnToStorage(pTab, iCol); 004853 004854 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 004855 assert( iCol>=-1 && iCol<pTab->nCol ); 004856 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 004857 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 004858 004859 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 004860 VdbeComment((v, "r[%d]=%s.%s", target, 004861 (pExpr->iTable ? "new" : "old"), 004862 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 004863 )); 004864 004865 #ifndef SQLITE_OMIT_FLOATING_POINT 004866 /* If the column has REAL affinity, it may currently be stored as an 004867 ** integer. Use OP_RealAffinity to make sure it is really real. 004868 ** 004869 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 004870 ** floating point when extracting it from the record. */ 004871 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 004872 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 004873 } 004874 #endif 004875 break; 004876 } 004877 004878 case TK_VECTOR: { 004879 sqlite3ErrorMsg(pParse, "row value misused"); 004880 break; 004881 } 004882 004883 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 004884 ** that derive from the right-hand table of a LEFT JOIN. The 004885 ** Expr.iTable value is the table number for the right-hand table. 004886 ** The expression is only evaluated if that table is not currently 004887 ** on a LEFT JOIN NULL row. 004888 */ 004889 case TK_IF_NULL_ROW: { 004890 int addrINR; 004891 u8 okConstFactor = pParse->okConstFactor; 004892 AggInfo *pAggInfo = pExpr->pAggInfo; 004893 if( pAggInfo ){ 004894 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 004895 if( !pAggInfo->directMode ){ 004896 inReg = AggInfoColumnReg(pAggInfo, pExpr->iAgg); 004897 break; 004898 } 004899 if( pExpr->pAggInfo->useSortingIdx ){ 004900 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 004901 pAggInfo->aCol[pExpr->iAgg].iSorterColumn, 004902 target); 004903 inReg = target; 004904 break; 004905 } 004906 } 004907 addrINR = sqlite3VdbeAddOp3(v, OP_IfNullRow, pExpr->iTable, 0, target); 004908 /* The OP_IfNullRow opcode above can overwrite the result register with 004909 ** NULL. So we have to ensure that the result register is not a value 004910 ** that is suppose to be a constant. Two defenses are needed: 004911 ** (1) Temporarily disable factoring of constant expressions 004912 ** (2) Make sure the computed value really is stored in register 004913 ** "target" and not someplace else. 004914 */ 004915 pParse->okConstFactor = 0; /* note (1) above */ 004916 sqlite3ExprCode(pParse, pExpr->pLeft, target); 004917 assert( target==inReg ); 004918 pParse->okConstFactor = okConstFactor; 004919 sqlite3VdbeJumpHere(v, addrINR); 004920 break; 004921 } 004922 004923 /* 004924 ** Form A: 004925 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 004926 ** 004927 ** Form B: 004928 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 004929 ** 004930 ** Form A is can be transformed into the equivalent form B as follows: 004931 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 004932 ** WHEN x=eN THEN rN ELSE y END 004933 ** 004934 ** X (if it exists) is in pExpr->pLeft. 004935 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 004936 ** odd. The Y is also optional. If the number of elements in x.pList 004937 ** is even, then Y is omitted and the "otherwise" result is NULL. 004938 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 004939 ** 004940 ** The result of the expression is the Ri for the first matching Ei, 004941 ** or if there is no matching Ei, the ELSE term Y, or if there is 004942 ** no ELSE term, NULL. 004943 */ 004944 case TK_CASE: { 004945 int endLabel; /* GOTO label for end of CASE stmt */ 004946 int nextCase; /* GOTO label for next WHEN clause */ 004947 int nExpr; /* 2x number of WHEN terms */ 004948 int i; /* Loop counter */ 004949 ExprList *pEList; /* List of WHEN terms */ 004950 struct ExprList_item *aListelem; /* Array of WHEN terms */ 004951 Expr opCompare; /* The X==Ei expression */ 004952 Expr *pX; /* The X expression */ 004953 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 004954 Expr *pDel = 0; 004955 sqlite3 *db = pParse->db; 004956 004957 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); 004958 assert(pExpr->x.pList->nExpr > 0); 004959 pEList = pExpr->x.pList; 004960 aListelem = pEList->a; 004961 nExpr = pEList->nExpr; 004962 endLabel = sqlite3VdbeMakeLabel(pParse); 004963 if( (pX = pExpr->pLeft)!=0 ){ 004964 pDel = sqlite3ExprDup(db, pX, 0); 004965 if( db->mallocFailed ){ 004966 sqlite3ExprDelete(db, pDel); 004967 break; 004968 } 004969 testcase( pX->op==TK_COLUMN ); 004970 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 004971 testcase( regFree1==0 ); 004972 memset(&opCompare, 0, sizeof(opCompare)); 004973 opCompare.op = TK_EQ; 004974 opCompare.pLeft = pDel; 004975 pTest = &opCompare; 004976 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 004977 ** The value in regFree1 might get SCopy-ed into the file result. 004978 ** So make sure that the regFree1 register is not reused for other 004979 ** purposes and possibly overwritten. */ 004980 regFree1 = 0; 004981 } 004982 for(i=0; i<nExpr-1; i=i+2){ 004983 if( pX ){ 004984 assert( pTest!=0 ); 004985 opCompare.pRight = aListelem[i].pExpr; 004986 }else{ 004987 pTest = aListelem[i].pExpr; 004988 } 004989 nextCase = sqlite3VdbeMakeLabel(pParse); 004990 testcase( pTest->op==TK_COLUMN ); 004991 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 004992 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 004993 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 004994 sqlite3VdbeGoto(v, endLabel); 004995 sqlite3VdbeResolveLabel(v, nextCase); 004996 } 004997 if( (nExpr&1)!=0 ){ 004998 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 004999 }else{ 005000 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 005001 } 005002 sqlite3ExprDelete(db, pDel); 005003 setDoNotMergeFlagOnCopy(v); 005004 sqlite3VdbeResolveLabel(v, endLabel); 005005 break; 005006 } 005007 #ifndef SQLITE_OMIT_TRIGGER 005008 case TK_RAISE: { 005009 assert( pExpr->affExpr==OE_Rollback 005010 || pExpr->affExpr==OE_Abort 005011 || pExpr->affExpr==OE_Fail 005012 || pExpr->affExpr==OE_Ignore 005013 ); 005014 if( !pParse->pTriggerTab && !pParse->nested ){ 005015 sqlite3ErrorMsg(pParse, 005016 "RAISE() may only be used within a trigger-program"); 005017 return 0; 005018 } 005019 if( pExpr->affExpr==OE_Abort ){ 005020 sqlite3MayAbort(pParse); 005021 } 005022 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 005023 if( pExpr->affExpr==OE_Ignore ){ 005024 sqlite3VdbeAddOp4( 005025 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 005026 VdbeCoverage(v); 005027 }else{ 005028 sqlite3HaltConstraint(pParse, 005029 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 005030 pExpr->affExpr, pExpr->u.zToken, 0, 0); 005031 } 005032 005033 break; 005034 } 005035 #endif 005036 } 005037 sqlite3ReleaseTempReg(pParse, regFree1); 005038 sqlite3ReleaseTempReg(pParse, regFree2); 005039 return inReg; 005040 } 005041 005042 /* 005043 ** Generate code that will evaluate expression pExpr just one time 005044 ** per prepared statement execution. 005045 ** 005046 ** If the expression uses functions (that might throw an exception) then 005047 ** guard them with an OP_Once opcode to ensure that the code is only executed 005048 ** once. If no functions are involved, then factor the code out and put it at 005049 ** the end of the prepared statement in the initialization section. 005050 ** 005051 ** If regDest>=0 then the result is always stored in that register and the 005052 ** result is not reusable. If regDest<0 then this routine is free to 005053 ** store the value wherever it wants. The register where the expression 005054 ** is stored is returned. When regDest<0, two identical expressions might 005055 ** code to the same register, if they do not contain function calls and hence 005056 ** are factored out into the initialization section at the end of the 005057 ** prepared statement. 005058 */ 005059 int sqlite3ExprCodeRunJustOnce( 005060 Parse *pParse, /* Parsing context */ 005061 Expr *pExpr, /* The expression to code when the VDBE initializes */ 005062 int regDest /* Store the value in this register */ 005063 ){ 005064 ExprList *p; 005065 assert( ConstFactorOk(pParse) ); 005066 p = pParse->pConstExpr; 005067 if( regDest<0 && p ){ 005068 struct ExprList_item *pItem; 005069 int i; 005070 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 005071 if( pItem->fg.reusable 005072 && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 005073 ){ 005074 return pItem->u.iConstExprReg; 005075 } 005076 } 005077 } 005078 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 005079 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 005080 Vdbe *v = pParse->pVdbe; 005081 int addr; 005082 assert( v ); 005083 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 005084 pParse->okConstFactor = 0; 005085 if( !pParse->db->mallocFailed ){ 005086 if( regDest<0 ) regDest = ++pParse->nMem; 005087 sqlite3ExprCode(pParse, pExpr, regDest); 005088 } 005089 pParse->okConstFactor = 1; 005090 sqlite3ExprDelete(pParse->db, pExpr); 005091 sqlite3VdbeJumpHere(v, addr); 005092 }else{ 005093 p = sqlite3ExprListAppend(pParse, p, pExpr); 005094 if( p ){ 005095 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 005096 pItem->fg.reusable = regDest<0; 005097 if( regDest<0 ) regDest = ++pParse->nMem; 005098 pItem->u.iConstExprReg = regDest; 005099 } 005100 pParse->pConstExpr = p; 005101 } 005102 return regDest; 005103 } 005104 005105 /* 005106 ** Generate code to evaluate an expression and store the results 005107 ** into a register. Return the register number where the results 005108 ** are stored. 005109 ** 005110 ** If the register is a temporary register that can be deallocated, 005111 ** then write its number into *pReg. If the result register is not 005112 ** a temporary, then set *pReg to zero. 005113 ** 005114 ** If pExpr is a constant, then this routine might generate this 005115 ** code to fill the register in the initialization section of the 005116 ** VDBE program, in order to factor it out of the evaluation loop. 005117 */ 005118 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 005119 int r2; 005120 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 005121 if( ConstFactorOk(pParse) 005122 && ALWAYS(pExpr!=0) 005123 && pExpr->op!=TK_REGISTER 005124 && sqlite3ExprIsConstantNotJoin(pExpr) 005125 ){ 005126 *pReg = 0; 005127 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 005128 }else{ 005129 int r1 = sqlite3GetTempReg(pParse); 005130 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 005131 if( r2==r1 ){ 005132 *pReg = r1; 005133 }else{ 005134 sqlite3ReleaseTempReg(pParse, r1); 005135 *pReg = 0; 005136 } 005137 } 005138 return r2; 005139 } 005140 005141 /* 005142 ** Generate code that will evaluate expression pExpr and store the 005143 ** results in register target. The results are guaranteed to appear 005144 ** in register target. 005145 */ 005146 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 005147 int inReg; 005148 005149 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 005150 assert( target>0 && target<=pParse->nMem ); 005151 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 005152 if( pParse->pVdbe==0 ) return; 005153 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 005154 if( inReg!=target ){ 005155 u8 op; 005156 if( ALWAYS(pExpr) 005157 && (ExprHasProperty(pExpr,EP_Subquery) || pExpr->op==TK_REGISTER) 005158 ){ 005159 op = OP_Copy; 005160 }else{ 005161 op = OP_SCopy; 005162 } 005163 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 005164 } 005165 } 005166 005167 /* 005168 ** Make a transient copy of expression pExpr and then code it using 005169 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 005170 ** except that the input expression is guaranteed to be unchanged. 005171 */ 005172 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 005173 sqlite3 *db = pParse->db; 005174 pExpr = sqlite3ExprDup(db, pExpr, 0); 005175 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 005176 sqlite3ExprDelete(db, pExpr); 005177 } 005178 005179 /* 005180 ** Generate code that will evaluate expression pExpr and store the 005181 ** results in register target. The results are guaranteed to appear 005182 ** in register target. If the expression is constant, then this routine 005183 ** might choose to code the expression at initialization time. 005184 */ 005185 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 005186 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 005187 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 005188 }else{ 005189 sqlite3ExprCodeCopy(pParse, pExpr, target); 005190 } 005191 } 005192 005193 /* 005194 ** Generate code that pushes the value of every element of the given 005195 ** expression list into a sequence of registers beginning at target. 005196 ** 005197 ** Return the number of elements evaluated. The number returned will 005198 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 005199 ** is defined. 005200 ** 005201 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 005202 ** filled using OP_SCopy. OP_Copy must be used instead. 005203 ** 005204 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 005205 ** factored out into initialization code. 005206 ** 005207 ** The SQLITE_ECEL_REF flag means that expressions in the list with 005208 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 005209 ** in registers at srcReg, and so the value can be copied from there. 005210 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 005211 ** are simply omitted rather than being copied from srcReg. 005212 */ 005213 int sqlite3ExprCodeExprList( 005214 Parse *pParse, /* Parsing context */ 005215 ExprList *pList, /* The expression list to be coded */ 005216 int target, /* Where to write results */ 005217 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 005218 u8 flags /* SQLITE_ECEL_* flags */ 005219 ){ 005220 struct ExprList_item *pItem; 005221 int i, j, n; 005222 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 005223 Vdbe *v = pParse->pVdbe; 005224 assert( pList!=0 ); 005225 assert( target>0 ); 005226 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 005227 n = pList->nExpr; 005228 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 005229 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 005230 Expr *pExpr = pItem->pExpr; 005231 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 005232 if( pItem->fg.bSorterRef ){ 005233 i--; 005234 n--; 005235 }else 005236 #endif 005237 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 005238 if( flags & SQLITE_ECEL_OMITREF ){ 005239 i--; 005240 n--; 005241 }else{ 005242 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 005243 } 005244 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 005245 && sqlite3ExprIsConstantNotJoin(pExpr) 005246 ){ 005247 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 005248 }else{ 005249 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 005250 if( inReg!=target+i ){ 005251 VdbeOp *pOp; 005252 if( copyOp==OP_Copy 005253 && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy 005254 && pOp->p1+pOp->p3+1==inReg 005255 && pOp->p2+pOp->p3+1==target+i 005256 && pOp->p5==0 /* The do-not-merge flag must be clear */ 005257 ){ 005258 pOp->p3++; 005259 }else{ 005260 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 005261 } 005262 } 005263 } 005264 } 005265 return n; 005266 } 005267 005268 /* 005269 ** Generate code for a BETWEEN operator. 005270 ** 005271 ** x BETWEEN y AND z 005272 ** 005273 ** The above is equivalent to 005274 ** 005275 ** x>=y AND x<=z 005276 ** 005277 ** Code it as such, taking care to do the common subexpression 005278 ** elimination of x. 005279 ** 005280 ** The xJumpIf parameter determines details: 005281 ** 005282 ** NULL: Store the boolean result in reg[dest] 005283 ** sqlite3ExprIfTrue: Jump to dest if true 005284 ** sqlite3ExprIfFalse: Jump to dest if false 005285 ** 005286 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 005287 */ 005288 static void exprCodeBetween( 005289 Parse *pParse, /* Parsing and code generating context */ 005290 Expr *pExpr, /* The BETWEEN expression */ 005291 int dest, /* Jump destination or storage location */ 005292 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 005293 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 005294 ){ 005295 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 005296 Expr compLeft; /* The x>=y term */ 005297 Expr compRight; /* The x<=z term */ 005298 int regFree1 = 0; /* Temporary use register */ 005299 Expr *pDel = 0; 005300 sqlite3 *db = pParse->db; 005301 005302 memset(&compLeft, 0, sizeof(Expr)); 005303 memset(&compRight, 0, sizeof(Expr)); 005304 memset(&exprAnd, 0, sizeof(Expr)); 005305 005306 assert( ExprUseXList(pExpr) ); 005307 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 005308 if( db->mallocFailed==0 ){ 005309 exprAnd.op = TK_AND; 005310 exprAnd.pLeft = &compLeft; 005311 exprAnd.pRight = &compRight; 005312 compLeft.op = TK_GE; 005313 compLeft.pLeft = pDel; 005314 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 005315 compRight.op = TK_LE; 005316 compRight.pLeft = pDel; 005317 compRight.pRight = pExpr->x.pList->a[1].pExpr; 005318 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 005319 if( xJump ){ 005320 xJump(pParse, &exprAnd, dest, jumpIfNull); 005321 }else{ 005322 /* Mark the expression is being from the ON or USING clause of a join 005323 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 005324 ** it into the Parse.pConstExpr list. We should use a new bit for this, 005325 ** for clarity, but we are out of bits in the Expr.flags field so we 005326 ** have to reuse the EP_OuterON bit. Bummer. */ 005327 pDel->flags |= EP_OuterON; 005328 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 005329 } 005330 sqlite3ReleaseTempReg(pParse, regFree1); 005331 } 005332 sqlite3ExprDelete(db, pDel); 005333 005334 /* Ensure adequate test coverage */ 005335 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 005336 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 005337 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 005338 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 005339 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 005340 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 005341 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 005342 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 005343 testcase( xJump==0 ); 005344 } 005345 005346 /* 005347 ** Generate code for a boolean expression such that a jump is made 005348 ** to the label "dest" if the expression is true but execution 005349 ** continues straight thru if the expression is false. 005350 ** 005351 ** If the expression evaluates to NULL (neither true nor false), then 005352 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 005353 ** 005354 ** This code depends on the fact that certain token values (ex: TK_EQ) 005355 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 005356 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 005357 ** the make process cause these values to align. Assert()s in the code 005358 ** below verify that the numbers are aligned correctly. 005359 */ 005360 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 005361 Vdbe *v = pParse->pVdbe; 005362 int op = 0; 005363 int regFree1 = 0; 005364 int regFree2 = 0; 005365 int r1, r2; 005366 005367 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 005368 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 005369 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 005370 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 005371 op = pExpr->op; 005372 switch( op ){ 005373 case TK_AND: 005374 case TK_OR: { 005375 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 005376 if( pAlt!=pExpr ){ 005377 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 005378 }else if( op==TK_AND ){ 005379 int d2 = sqlite3VdbeMakeLabel(pParse); 005380 testcase( jumpIfNull==0 ); 005381 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 005382 jumpIfNull^SQLITE_JUMPIFNULL); 005383 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 005384 sqlite3VdbeResolveLabel(v, d2); 005385 }else{ 005386 testcase( jumpIfNull==0 ); 005387 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 005388 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 005389 } 005390 break; 005391 } 005392 case TK_NOT: { 005393 testcase( jumpIfNull==0 ); 005394 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 005395 break; 005396 } 005397 case TK_TRUTH: { 005398 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 005399 int isTrue; /* IS TRUE or IS NOT TRUE */ 005400 testcase( jumpIfNull==0 ); 005401 isNot = pExpr->op2==TK_ISNOT; 005402 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 005403 testcase( isTrue && isNot ); 005404 testcase( !isTrue && isNot ); 005405 if( isTrue ^ isNot ){ 005406 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 005407 isNot ? SQLITE_JUMPIFNULL : 0); 005408 }else{ 005409 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 005410 isNot ? SQLITE_JUMPIFNULL : 0); 005411 } 005412 break; 005413 } 005414 case TK_IS: 005415 case TK_ISNOT: 005416 testcase( op==TK_IS ); 005417 testcase( op==TK_ISNOT ); 005418 op = (op==TK_IS) ? TK_EQ : TK_NE; 005419 jumpIfNull = SQLITE_NULLEQ; 005420 /* no break */ deliberate_fall_through 005421 case TK_LT: 005422 case TK_LE: 005423 case TK_GT: 005424 case TK_GE: 005425 case TK_NE: 005426 case TK_EQ: { 005427 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 005428 testcase( jumpIfNull==0 ); 005429 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 005430 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 005431 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 005432 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 005433 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 005434 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 005435 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 005436 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 005437 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 005438 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 005439 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 005440 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 005441 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 005442 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 005443 testcase( regFree1==0 ); 005444 testcase( regFree2==0 ); 005445 break; 005446 } 005447 case TK_ISNULL: 005448 case TK_NOTNULL: { 005449 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 005450 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 005451 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 005452 sqlite3VdbeTypeofColumn(v, r1); 005453 sqlite3VdbeAddOp2(v, op, r1, dest); 005454 VdbeCoverageIf(v, op==TK_ISNULL); 005455 VdbeCoverageIf(v, op==TK_NOTNULL); 005456 testcase( regFree1==0 ); 005457 break; 005458 } 005459 case TK_BETWEEN: { 005460 testcase( jumpIfNull==0 ); 005461 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 005462 break; 005463 } 005464 #ifndef SQLITE_OMIT_SUBQUERY 005465 case TK_IN: { 005466 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 005467 int destIfNull = jumpIfNull ? dest : destIfFalse; 005468 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 005469 sqlite3VdbeGoto(v, dest); 005470 sqlite3VdbeResolveLabel(v, destIfFalse); 005471 break; 005472 } 005473 #endif 005474 default: { 005475 default_expr: 005476 if( ExprAlwaysTrue(pExpr) ){ 005477 sqlite3VdbeGoto(v, dest); 005478 }else if( ExprAlwaysFalse(pExpr) ){ 005479 /* No-op */ 005480 }else{ 005481 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 005482 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 005483 VdbeCoverage(v); 005484 testcase( regFree1==0 ); 005485 testcase( jumpIfNull==0 ); 005486 } 005487 break; 005488 } 005489 } 005490 sqlite3ReleaseTempReg(pParse, regFree1); 005491 sqlite3ReleaseTempReg(pParse, regFree2); 005492 } 005493 005494 /* 005495 ** Generate code for a boolean expression such that a jump is made 005496 ** to the label "dest" if the expression is false but execution 005497 ** continues straight thru if the expression is true. 005498 ** 005499 ** If the expression evaluates to NULL (neither true nor false) then 005500 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 005501 ** is 0. 005502 */ 005503 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 005504 Vdbe *v = pParse->pVdbe; 005505 int op = 0; 005506 int regFree1 = 0; 005507 int regFree2 = 0; 005508 int r1, r2; 005509 005510 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 005511 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 005512 if( pExpr==0 ) return; 005513 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 005514 005515 /* The value of pExpr->op and op are related as follows: 005516 ** 005517 ** pExpr->op op 005518 ** --------- ---------- 005519 ** TK_ISNULL OP_NotNull 005520 ** TK_NOTNULL OP_IsNull 005521 ** TK_NE OP_Eq 005522 ** TK_EQ OP_Ne 005523 ** TK_GT OP_Le 005524 ** TK_LE OP_Gt 005525 ** TK_GE OP_Lt 005526 ** TK_LT OP_Ge 005527 ** 005528 ** For other values of pExpr->op, op is undefined and unused. 005529 ** The value of TK_ and OP_ constants are arranged such that we 005530 ** can compute the mapping above using the following expression. 005531 ** Assert()s verify that the computation is correct. 005532 */ 005533 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 005534 005535 /* Verify correct alignment of TK_ and OP_ constants 005536 */ 005537 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 005538 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 005539 assert( pExpr->op!=TK_NE || op==OP_Eq ); 005540 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 005541 assert( pExpr->op!=TK_LT || op==OP_Ge ); 005542 assert( pExpr->op!=TK_LE || op==OP_Gt ); 005543 assert( pExpr->op!=TK_GT || op==OP_Le ); 005544 assert( pExpr->op!=TK_GE || op==OP_Lt ); 005545 005546 switch( pExpr->op ){ 005547 case TK_AND: 005548 case TK_OR: { 005549 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 005550 if( pAlt!=pExpr ){ 005551 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 005552 }else if( pExpr->op==TK_AND ){ 005553 testcase( jumpIfNull==0 ); 005554 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 005555 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 005556 }else{ 005557 int d2 = sqlite3VdbeMakeLabel(pParse); 005558 testcase( jumpIfNull==0 ); 005559 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 005560 jumpIfNull^SQLITE_JUMPIFNULL); 005561 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 005562 sqlite3VdbeResolveLabel(v, d2); 005563 } 005564 break; 005565 } 005566 case TK_NOT: { 005567 testcase( jumpIfNull==0 ); 005568 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 005569 break; 005570 } 005571 case TK_TRUTH: { 005572 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 005573 int isTrue; /* IS TRUE or IS NOT TRUE */ 005574 testcase( jumpIfNull==0 ); 005575 isNot = pExpr->op2==TK_ISNOT; 005576 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 005577 testcase( isTrue && isNot ); 005578 testcase( !isTrue && isNot ); 005579 if( isTrue ^ isNot ){ 005580 /* IS TRUE and IS NOT FALSE */ 005581 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 005582 isNot ? 0 : SQLITE_JUMPIFNULL); 005583 005584 }else{ 005585 /* IS FALSE and IS NOT TRUE */ 005586 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 005587 isNot ? 0 : SQLITE_JUMPIFNULL); 005588 } 005589 break; 005590 } 005591 case TK_IS: 005592 case TK_ISNOT: 005593 testcase( pExpr->op==TK_IS ); 005594 testcase( pExpr->op==TK_ISNOT ); 005595 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 005596 jumpIfNull = SQLITE_NULLEQ; 005597 /* no break */ deliberate_fall_through 005598 case TK_LT: 005599 case TK_LE: 005600 case TK_GT: 005601 case TK_GE: 005602 case TK_NE: 005603 case TK_EQ: { 005604 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 005605 testcase( jumpIfNull==0 ); 005606 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 005607 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 005608 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 005609 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 005610 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 005611 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 005612 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 005613 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 005614 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 005615 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 005616 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 005617 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 005618 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 005619 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 005620 testcase( regFree1==0 ); 005621 testcase( regFree2==0 ); 005622 break; 005623 } 005624 case TK_ISNULL: 005625 case TK_NOTNULL: { 005626 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 005627 sqlite3VdbeTypeofColumn(v, r1); 005628 sqlite3VdbeAddOp2(v, op, r1, dest); 005629 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 005630 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 005631 testcase( regFree1==0 ); 005632 break; 005633 } 005634 case TK_BETWEEN: { 005635 testcase( jumpIfNull==0 ); 005636 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 005637 break; 005638 } 005639 #ifndef SQLITE_OMIT_SUBQUERY 005640 case TK_IN: { 005641 if( jumpIfNull ){ 005642 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 005643 }else{ 005644 int destIfNull = sqlite3VdbeMakeLabel(pParse); 005645 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 005646 sqlite3VdbeResolveLabel(v, destIfNull); 005647 } 005648 break; 005649 } 005650 #endif 005651 default: { 005652 default_expr: 005653 if( ExprAlwaysFalse(pExpr) ){ 005654 sqlite3VdbeGoto(v, dest); 005655 }else if( ExprAlwaysTrue(pExpr) ){ 005656 /* no-op */ 005657 }else{ 005658 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 005659 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 005660 VdbeCoverage(v); 005661 testcase( regFree1==0 ); 005662 testcase( jumpIfNull==0 ); 005663 } 005664 break; 005665 } 005666 } 005667 sqlite3ReleaseTempReg(pParse, regFree1); 005668 sqlite3ReleaseTempReg(pParse, regFree2); 005669 } 005670 005671 /* 005672 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 005673 ** code generation, and that copy is deleted after code generation. This 005674 ** ensures that the original pExpr is unchanged. 005675 */ 005676 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 005677 sqlite3 *db = pParse->db; 005678 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 005679 if( db->mallocFailed==0 ){ 005680 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 005681 } 005682 sqlite3ExprDelete(db, pCopy); 005683 } 005684 005685 /* 005686 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 005687 ** type of expression. 005688 ** 005689 ** If pExpr is a simple SQL value - an integer, real, string, blob 005690 ** or NULL value - then the VDBE currently being prepared is configured 005691 ** to re-prepare each time a new value is bound to variable pVar. 005692 ** 005693 ** Additionally, if pExpr is a simple SQL value and the value is the 005694 ** same as that currently bound to variable pVar, non-zero is returned. 005695 ** Otherwise, if the values are not the same or if pExpr is not a simple 005696 ** SQL value, zero is returned. 005697 */ 005698 static int exprCompareVariable( 005699 const Parse *pParse, 005700 const Expr *pVar, 005701 const Expr *pExpr 005702 ){ 005703 int res = 0; 005704 int iVar; 005705 sqlite3_value *pL, *pR = 0; 005706 005707 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 005708 if( pR ){ 005709 iVar = pVar->iColumn; 005710 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 005711 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 005712 if( pL ){ 005713 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 005714 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 005715 } 005716 res = 0==sqlite3MemCompare(pL, pR, 0); 005717 } 005718 sqlite3ValueFree(pR); 005719 sqlite3ValueFree(pL); 005720 } 005721 005722 return res; 005723 } 005724 005725 /* 005726 ** Do a deep comparison of two expression trees. Return 0 if the two 005727 ** expressions are completely identical. Return 1 if they differ only 005728 ** by a COLLATE operator at the top level. Return 2 if there are differences 005729 ** other than the top-level COLLATE operator. 005730 ** 005731 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 005732 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 005733 ** 005734 ** The pA side might be using TK_REGISTER. If that is the case and pB is 005735 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 005736 ** 005737 ** Sometimes this routine will return 2 even if the two expressions 005738 ** really are equivalent. If we cannot prove that the expressions are 005739 ** identical, we return 2 just to be safe. So if this routine 005740 ** returns 2, then you do not really know for certain if the two 005741 ** expressions are the same. But if you get a 0 or 1 return, then you 005742 ** can be sure the expressions are the same. In the places where 005743 ** this routine is used, it does not hurt to get an extra 2 - that 005744 ** just might result in some slightly slower code. But returning 005745 ** an incorrect 0 or 1 could lead to a malfunction. 005746 ** 005747 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 005748 ** pParse->pReprepare can be matched against literals in pB. The 005749 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 005750 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 005751 ** Argument pParse should normally be NULL. If it is not NULL and pA or 005752 ** pB causes a return value of 2. 005753 */ 005754 int sqlite3ExprCompare( 005755 const Parse *pParse, 005756 const Expr *pA, 005757 const Expr *pB, 005758 int iTab 005759 ){ 005760 u32 combinedFlags; 005761 if( pA==0 || pB==0 ){ 005762 return pB==pA ? 0 : 2; 005763 } 005764 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 005765 return 0; 005766 } 005767 combinedFlags = pA->flags | pB->flags; 005768 if( combinedFlags & EP_IntValue ){ 005769 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 005770 return 0; 005771 } 005772 return 2; 005773 } 005774 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 005775 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 005776 return 1; 005777 } 005778 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 005779 return 1; 005780 } 005781 if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN 005782 && pB->iTable<0 && pA->iTable==iTab 005783 ){ 005784 /* fall through */ 005785 }else{ 005786 return 2; 005787 } 005788 } 005789 assert( !ExprHasProperty(pA, EP_IntValue) ); 005790 assert( !ExprHasProperty(pB, EP_IntValue) ); 005791 if( pA->u.zToken ){ 005792 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 005793 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 005794 #ifndef SQLITE_OMIT_WINDOWFUNC 005795 assert( pA->op==pB->op ); 005796 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 005797 return 2; 005798 } 005799 if( ExprHasProperty(pA,EP_WinFunc) ){ 005800 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 005801 return 2; 005802 } 005803 } 005804 #endif 005805 }else if( pA->op==TK_NULL ){ 005806 return 0; 005807 }else if( pA->op==TK_COLLATE ){ 005808 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 005809 }else 005810 if( pB->u.zToken!=0 005811 && pA->op!=TK_COLUMN 005812 && pA->op!=TK_AGG_COLUMN 005813 && strcmp(pA->u.zToken,pB->u.zToken)!=0 005814 ){ 005815 return 2; 005816 } 005817 } 005818 if( (pA->flags & (EP_Distinct|EP_Commuted)) 005819 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 005820 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 005821 if( combinedFlags & EP_xIsSelect ) return 2; 005822 if( (combinedFlags & EP_FixedCol)==0 005823 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 005824 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 005825 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 005826 if( pA->op!=TK_STRING 005827 && pA->op!=TK_TRUEFALSE 005828 && ALWAYS((combinedFlags & EP_Reduced)==0) 005829 ){ 005830 if( pA->iColumn!=pB->iColumn ) return 2; 005831 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 005832 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 005833 return 2; 005834 } 005835 } 005836 } 005837 return 0; 005838 } 005839 005840 /* 005841 ** Compare two ExprList objects. Return 0 if they are identical, 1 005842 ** if they are certainly different, or 2 if it is not possible to 005843 ** determine if they are identical or not. 005844 ** 005845 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 005846 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 005847 ** 005848 ** This routine might return non-zero for equivalent ExprLists. The 005849 ** only consequence will be disabled optimizations. But this routine 005850 ** must never return 0 if the two ExprList objects are different, or 005851 ** a malfunction will result. 005852 ** 005853 ** Two NULL pointers are considered to be the same. But a NULL pointer 005854 ** always differs from a non-NULL pointer. 005855 */ 005856 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 005857 int i; 005858 if( pA==0 && pB==0 ) return 0; 005859 if( pA==0 || pB==0 ) return 1; 005860 if( pA->nExpr!=pB->nExpr ) return 1; 005861 for(i=0; i<pA->nExpr; i++){ 005862 int res; 005863 Expr *pExprA = pA->a[i].pExpr; 005864 Expr *pExprB = pB->a[i].pExpr; 005865 if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1; 005866 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 005867 } 005868 return 0; 005869 } 005870 005871 /* 005872 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 005873 ** are ignored. 005874 */ 005875 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 005876 return sqlite3ExprCompare(0, 005877 sqlite3ExprSkipCollateAndLikely(pA), 005878 sqlite3ExprSkipCollateAndLikely(pB), 005879 iTab); 005880 } 005881 005882 /* 005883 ** Return non-zero if Expr p can only be true if pNN is not NULL. 005884 ** 005885 ** Or if seenNot is true, return non-zero if Expr p can only be 005886 ** non-NULL if pNN is not NULL 005887 */ 005888 static int exprImpliesNotNull( 005889 const Parse *pParse,/* Parsing context */ 005890 const Expr *p, /* The expression to be checked */ 005891 const Expr *pNN, /* The expression that is NOT NULL */ 005892 int iTab, /* Table being evaluated */ 005893 int seenNot /* Return true only if p can be any non-NULL value */ 005894 ){ 005895 assert( p ); 005896 assert( pNN ); 005897 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 005898 return pNN->op!=TK_NULL; 005899 } 005900 switch( p->op ){ 005901 case TK_IN: { 005902 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 005903 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 005904 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 005905 } 005906 case TK_BETWEEN: { 005907 ExprList *pList; 005908 assert( ExprUseXList(p) ); 005909 pList = p->x.pList; 005910 assert( pList!=0 ); 005911 assert( pList->nExpr==2 ); 005912 if( seenNot ) return 0; 005913 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 005914 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 005915 ){ 005916 return 1; 005917 } 005918 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 005919 } 005920 case TK_EQ: 005921 case TK_NE: 005922 case TK_LT: 005923 case TK_LE: 005924 case TK_GT: 005925 case TK_GE: 005926 case TK_PLUS: 005927 case TK_MINUS: 005928 case TK_BITOR: 005929 case TK_LSHIFT: 005930 case TK_RSHIFT: 005931 case TK_CONCAT: 005932 seenNot = 1; 005933 /* no break */ deliberate_fall_through 005934 case TK_STAR: 005935 case TK_REM: 005936 case TK_BITAND: 005937 case TK_SLASH: { 005938 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 005939 /* no break */ deliberate_fall_through 005940 } 005941 case TK_SPAN: 005942 case TK_COLLATE: 005943 case TK_UPLUS: 005944 case TK_UMINUS: { 005945 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 005946 } 005947 case TK_TRUTH: { 005948 if( seenNot ) return 0; 005949 if( p->op2!=TK_IS ) return 0; 005950 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 005951 } 005952 case TK_BITNOT: 005953 case TK_NOT: { 005954 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 005955 } 005956 } 005957 return 0; 005958 } 005959 005960 /* 005961 ** Return true if we can prove the pE2 will always be true if pE1 is 005962 ** true. Return false if we cannot complete the proof or if pE2 might 005963 ** be false. Examples: 005964 ** 005965 ** pE1: x==5 pE2: x==5 Result: true 005966 ** pE1: x>0 pE2: x==5 Result: false 005967 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 005968 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 005969 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 005970 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 005971 ** pE1: x IS ?2 pE2: x IS NOT NULL Result: false 005972 ** 005973 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 005974 ** Expr.iTable<0 then assume a table number given by iTab. 005975 ** 005976 ** If pParse is not NULL, then the values of bound variables in pE1 are 005977 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 005978 ** modified to record which bound variables are referenced. If pParse 005979 ** is NULL, then false will be returned if pE1 contains any bound variables. 005980 ** 005981 ** When in doubt, return false. Returning true might give a performance 005982 ** improvement. Returning false might cause a performance reduction, but 005983 ** it will always give the correct answer and is hence always safe. 005984 */ 005985 int sqlite3ExprImpliesExpr( 005986 const Parse *pParse, 005987 const Expr *pE1, 005988 const Expr *pE2, 005989 int iTab 005990 ){ 005991 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 005992 return 1; 005993 } 005994 if( pE2->op==TK_OR 005995 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 005996 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 005997 ){ 005998 return 1; 005999 } 006000 if( pE2->op==TK_NOTNULL 006001 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 006002 ){ 006003 return 1; 006004 } 006005 return 0; 006006 } 006007 006008 /* This is a helper function to impliesNotNullRow(). In this routine, 006009 ** set pWalker->eCode to one only if *both* of the input expressions 006010 ** separately have the implies-not-null-row property. 006011 */ 006012 static void bothImplyNotNullRow(Walker *pWalker, Expr *pE1, Expr *pE2){ 006013 if( pWalker->eCode==0 ){ 006014 sqlite3WalkExpr(pWalker, pE1); 006015 if( pWalker->eCode ){ 006016 pWalker->eCode = 0; 006017 sqlite3WalkExpr(pWalker, pE2); 006018 } 006019 } 006020 } 006021 006022 /* 006023 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 006024 ** If the expression node requires that the table at pWalker->iCur 006025 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 006026 ** 006027 ** pWalker->mWFlags is non-zero if this inquiry is being undertaking on 006028 ** behalf of a RIGHT JOIN (or FULL JOIN). That makes a difference when 006029 ** evaluating terms in the ON clause of an inner join. 006030 ** 006031 ** This routine controls an optimization. False positives (setting 006032 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 006033 ** (never setting pWalker->eCode) is a harmless missed optimization. 006034 */ 006035 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 006036 testcase( pExpr->op==TK_AGG_COLUMN ); 006037 testcase( pExpr->op==TK_AGG_FUNCTION ); 006038 if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune; 006039 if( ExprHasProperty(pExpr, EP_InnerON) && pWalker->mWFlags ){ 006040 /* If iCur is used in an inner-join ON clause to the left of a 006041 ** RIGHT JOIN, that does *not* mean that the table must be non-null. 006042 ** But it is difficult to check for that condition precisely. 006043 ** To keep things simple, any use of iCur from any inner-join is 006044 ** ignored while attempting to simplify a RIGHT JOIN. */ 006045 return WRC_Prune; 006046 } 006047 switch( pExpr->op ){ 006048 case TK_ISNOT: 006049 case TK_ISNULL: 006050 case TK_NOTNULL: 006051 case TK_IS: 006052 case TK_VECTOR: 006053 case TK_FUNCTION: 006054 case TK_TRUTH: 006055 case TK_CASE: 006056 testcase( pExpr->op==TK_ISNOT ); 006057 testcase( pExpr->op==TK_ISNULL ); 006058 testcase( pExpr->op==TK_NOTNULL ); 006059 testcase( pExpr->op==TK_IS ); 006060 testcase( pExpr->op==TK_VECTOR ); 006061 testcase( pExpr->op==TK_FUNCTION ); 006062 testcase( pExpr->op==TK_TRUTH ); 006063 testcase( pExpr->op==TK_CASE ); 006064 return WRC_Prune; 006065 006066 case TK_COLUMN: 006067 if( pWalker->u.iCur==pExpr->iTable ){ 006068 pWalker->eCode = 1; 006069 return WRC_Abort; 006070 } 006071 return WRC_Prune; 006072 006073 case TK_OR: 006074 case TK_AND: 006075 /* Both sides of an AND or OR must separately imply non-null-row. 006076 ** Consider these cases: 006077 ** 1. NOT (x AND y) 006078 ** 2. x OR y 006079 ** If only one of x or y is non-null-row, then the overall expression 006080 ** can be true if the other arm is false (case 1) or true (case 2). 006081 */ 006082 testcase( pExpr->op==TK_OR ); 006083 testcase( pExpr->op==TK_AND ); 006084 bothImplyNotNullRow(pWalker, pExpr->pLeft, pExpr->pRight); 006085 return WRC_Prune; 006086 006087 case TK_IN: 006088 /* Beware of "x NOT IN ()" and "x NOT IN (SELECT 1 WHERE false)", 006089 ** both of which can be true. But apart from these cases, if 006090 ** the left-hand side of the IN is NULL then the IN itself will be 006091 ** NULL. */ 006092 if( ExprUseXList(pExpr) && ALWAYS(pExpr->x.pList->nExpr>0) ){ 006093 sqlite3WalkExpr(pWalker, pExpr->pLeft); 006094 } 006095 return WRC_Prune; 006096 006097 case TK_BETWEEN: 006098 /* In "x NOT BETWEEN y AND z" either x must be non-null-row or else 006099 ** both y and z must be non-null row */ 006100 assert( ExprUseXList(pExpr) ); 006101 assert( pExpr->x.pList->nExpr==2 ); 006102 sqlite3WalkExpr(pWalker, pExpr->pLeft); 006103 bothImplyNotNullRow(pWalker, pExpr->x.pList->a[0].pExpr, 006104 pExpr->x.pList->a[1].pExpr); 006105 return WRC_Prune; 006106 006107 /* Virtual tables are allowed to use constraints like x=NULL. So 006108 ** a term of the form x=y does not prove that y is not null if x 006109 ** is the column of a virtual table */ 006110 case TK_EQ: 006111 case TK_NE: 006112 case TK_LT: 006113 case TK_LE: 006114 case TK_GT: 006115 case TK_GE: { 006116 Expr *pLeft = pExpr->pLeft; 006117 Expr *pRight = pExpr->pRight; 006118 testcase( pExpr->op==TK_EQ ); 006119 testcase( pExpr->op==TK_NE ); 006120 testcase( pExpr->op==TK_LT ); 006121 testcase( pExpr->op==TK_LE ); 006122 testcase( pExpr->op==TK_GT ); 006123 testcase( pExpr->op==TK_GE ); 006124 /* The y.pTab=0 assignment in wherecode.c always happens after the 006125 ** impliesNotNullRow() test */ 006126 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); 006127 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); 006128 if( (pLeft->op==TK_COLUMN 006129 && ALWAYS(pLeft->y.pTab!=0) 006130 && IsVirtual(pLeft->y.pTab)) 006131 || (pRight->op==TK_COLUMN 006132 && ALWAYS(pRight->y.pTab!=0) 006133 && IsVirtual(pRight->y.pTab)) 006134 ){ 006135 return WRC_Prune; 006136 } 006137 /* no break */ deliberate_fall_through 006138 } 006139 default: 006140 return WRC_Continue; 006141 } 006142 } 006143 006144 /* 006145 ** Return true (non-zero) if expression p can only be true if at least 006146 ** one column of table iTab is non-null. In other words, return true 006147 ** if expression p will always be NULL or false if every column of iTab 006148 ** is NULL. 006149 ** 006150 ** False negatives are acceptable. In other words, it is ok to return 006151 ** zero even if expression p will never be true of every column of iTab 006152 ** is NULL. A false negative is merely a missed optimization opportunity. 006153 ** 006154 ** False positives are not allowed, however. A false positive may result 006155 ** in an incorrect answer. 006156 ** 006157 ** Terms of p that are marked with EP_OuterON (and hence that come from 006158 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis. 006159 ** 006160 ** This routine is used to check if a LEFT JOIN can be converted into 006161 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 006162 ** clause requires that some column of the right table of the LEFT JOIN 006163 ** be non-NULL, then the LEFT JOIN can be safely converted into an 006164 ** ordinary join. 006165 */ 006166 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab, int isRJ){ 006167 Walker w; 006168 p = sqlite3ExprSkipCollateAndLikely(p); 006169 if( p==0 ) return 0; 006170 if( p->op==TK_NOTNULL ){ 006171 p = p->pLeft; 006172 }else{ 006173 while( p->op==TK_AND ){ 006174 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab, isRJ) ) return 1; 006175 p = p->pRight; 006176 } 006177 } 006178 w.xExprCallback = impliesNotNullRow; 006179 w.xSelectCallback = 0; 006180 w.xSelectCallback2 = 0; 006181 w.eCode = 0; 006182 w.mWFlags = isRJ!=0; 006183 w.u.iCur = iTab; 006184 sqlite3WalkExpr(&w, p); 006185 return w.eCode; 006186 } 006187 006188 /* 006189 ** An instance of the following structure is used by the tree walker 006190 ** to determine if an expression can be evaluated by reference to the 006191 ** index only, without having to do a search for the corresponding 006192 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 006193 ** is the cursor for the table. 006194 */ 006195 struct IdxCover { 006196 Index *pIdx; /* The index to be tested for coverage */ 006197 int iCur; /* Cursor number for the table corresponding to the index */ 006198 }; 006199 006200 /* 006201 ** Check to see if there are references to columns in table 006202 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 006203 ** pWalker->u.pIdxCover->pIdx. 006204 */ 006205 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 006206 if( pExpr->op==TK_COLUMN 006207 && pExpr->iTable==pWalker->u.pIdxCover->iCur 006208 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 006209 ){ 006210 pWalker->eCode = 1; 006211 return WRC_Abort; 006212 } 006213 return WRC_Continue; 006214 } 006215 006216 /* 006217 ** Determine if an index pIdx on table with cursor iCur contains will 006218 ** the expression pExpr. Return true if the index does cover the 006219 ** expression and false if the pExpr expression references table columns 006220 ** that are not found in the index pIdx. 006221 ** 006222 ** An index covering an expression means that the expression can be 006223 ** evaluated using only the index and without having to lookup the 006224 ** corresponding table entry. 006225 */ 006226 int sqlite3ExprCoveredByIndex( 006227 Expr *pExpr, /* The index to be tested */ 006228 int iCur, /* The cursor number for the corresponding table */ 006229 Index *pIdx /* The index that might be used for coverage */ 006230 ){ 006231 Walker w; 006232 struct IdxCover xcov; 006233 memset(&w, 0, sizeof(w)); 006234 xcov.iCur = iCur; 006235 xcov.pIdx = pIdx; 006236 w.xExprCallback = exprIdxCover; 006237 w.u.pIdxCover = &xcov; 006238 sqlite3WalkExpr(&w, pExpr); 006239 return !w.eCode; 006240 } 006241 006242 006243 /* Structure used to pass information throughout the Walker in order to 006244 ** implement sqlite3ReferencesSrcList(). 006245 */ 006246 struct RefSrcList { 006247 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ 006248 SrcList *pRef; /* Looking for references to these tables */ 006249 i64 nExclude; /* Number of tables to exclude from the search */ 006250 int *aiExclude; /* Cursor IDs for tables to exclude from the search */ 006251 }; 006252 006253 /* 006254 ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). 006255 ** 006256 ** When entering a new subquery on the pExpr argument, add all FROM clause 006257 ** entries for that subquery to the exclude list. 006258 ** 006259 ** When leaving the subquery, remove those entries from the exclude list. 006260 */ 006261 static int selectRefEnter(Walker *pWalker, Select *pSelect){ 006262 struct RefSrcList *p = pWalker->u.pRefSrcList; 006263 SrcList *pSrc = pSelect->pSrc; 006264 i64 i, j; 006265 int *piNew; 006266 if( pSrc->nSrc==0 ) return WRC_Continue; 006267 j = p->nExclude; 006268 p->nExclude += pSrc->nSrc; 006269 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); 006270 if( piNew==0 ){ 006271 p->nExclude = 0; 006272 return WRC_Abort; 006273 }else{ 006274 p->aiExclude = piNew; 006275 } 006276 for(i=0; i<pSrc->nSrc; i++, j++){ 006277 p->aiExclude[j] = pSrc->a[i].iCursor; 006278 } 006279 return WRC_Continue; 006280 } 006281 static void selectRefLeave(Walker *pWalker, Select *pSelect){ 006282 struct RefSrcList *p = pWalker->u.pRefSrcList; 006283 SrcList *pSrc = pSelect->pSrc; 006284 if( p->nExclude ){ 006285 assert( p->nExclude>=pSrc->nSrc ); 006286 p->nExclude -= pSrc->nSrc; 006287 } 006288 } 006289 006290 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). 006291 ** 006292 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any 006293 ** of the tables shown in RefSrcList.pRef. 006294 ** 006295 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a 006296 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. 006297 */ 006298 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ 006299 if( pExpr->op==TK_COLUMN 006300 || pExpr->op==TK_AGG_COLUMN 006301 ){ 006302 int i; 006303 struct RefSrcList *p = pWalker->u.pRefSrcList; 006304 SrcList *pSrc = p->pRef; 006305 int nSrc = pSrc ? pSrc->nSrc : 0; 006306 for(i=0; i<nSrc; i++){ 006307 if( pExpr->iTable==pSrc->a[i].iCursor ){ 006308 pWalker->eCode |= 1; 006309 return WRC_Continue; 006310 } 006311 } 006312 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} 006313 if( i>=p->nExclude ){ 006314 pWalker->eCode |= 2; 006315 } 006316 } 006317 return WRC_Continue; 006318 } 006319 006320 /* 006321 ** Check to see if pExpr references any tables in pSrcList. 006322 ** Possible return values: 006323 ** 006324 ** 1 pExpr does references a table in pSrcList. 006325 ** 006326 ** 0 pExpr references some table that is not defined in either 006327 ** pSrcList or in subqueries of pExpr itself. 006328 ** 006329 ** -1 pExpr only references no tables at all, or it only 006330 ** references tables defined in subqueries of pExpr itself. 006331 ** 006332 ** As currently used, pExpr is always an aggregate function call. That 006333 ** fact is exploited for efficiency. 006334 */ 006335 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ 006336 Walker w; 006337 struct RefSrcList x; 006338 assert( pParse->db!=0 ); 006339 memset(&w, 0, sizeof(w)); 006340 memset(&x, 0, sizeof(x)); 006341 w.xExprCallback = exprRefToSrcList; 006342 w.xSelectCallback = selectRefEnter; 006343 w.xSelectCallback2 = selectRefLeave; 006344 w.u.pRefSrcList = &x; 006345 x.db = pParse->db; 006346 x.pRef = pSrcList; 006347 assert( pExpr->op==TK_AGG_FUNCTION ); 006348 assert( ExprUseXList(pExpr) ); 006349 sqlite3WalkExprList(&w, pExpr->x.pList); 006350 #ifndef SQLITE_OMIT_WINDOWFUNC 006351 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 006352 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 006353 } 006354 #endif 006355 if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude); 006356 if( w.eCode & 0x01 ){ 006357 return 1; 006358 }else if( w.eCode ){ 006359 return 0; 006360 }else{ 006361 return -1; 006362 } 006363 } 006364 006365 /* 006366 ** This is a Walker expression node callback. 006367 ** 006368 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 006369 ** object that is referenced does not refer directly to the Expr. If 006370 ** it does, make a copy. This is done because the pExpr argument is 006371 ** subject to change. 006372 ** 006373 ** The copy is scheduled for deletion using the sqlite3ExprDeferredDelete() 006374 ** which builds on the sqlite3ParserAddCleanup() mechanism. 006375 */ 006376 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 006377 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 006378 && pExpr->pAggInfo!=0 006379 ){ 006380 AggInfo *pAggInfo = pExpr->pAggInfo; 006381 int iAgg = pExpr->iAgg; 006382 Parse *pParse = pWalker->pParse; 006383 sqlite3 *db = pParse->db; 006384 assert( iAgg>=0 ); 006385 if( pExpr->op!=TK_AGG_FUNCTION ){ 006386 if( iAgg<pAggInfo->nColumn 006387 && pAggInfo->aCol[iAgg].pCExpr==pExpr 006388 ){ 006389 pExpr = sqlite3ExprDup(db, pExpr, 0); 006390 if( pExpr ){ 006391 pAggInfo->aCol[iAgg].pCExpr = pExpr; 006392 sqlite3ExprDeferredDelete(pParse, pExpr); 006393 } 006394 } 006395 }else{ 006396 assert( pExpr->op==TK_AGG_FUNCTION ); 006397 if( ALWAYS(iAgg<pAggInfo->nFunc) 006398 && pAggInfo->aFunc[iAgg].pFExpr==pExpr 006399 ){ 006400 pExpr = sqlite3ExprDup(db, pExpr, 0); 006401 if( pExpr ){ 006402 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 006403 sqlite3ExprDeferredDelete(pParse, pExpr); 006404 } 006405 } 006406 } 006407 } 006408 return WRC_Continue; 006409 } 006410 006411 /* 006412 ** Initialize a Walker object so that will persist AggInfo entries referenced 006413 ** by the tree that is walked. 006414 */ 006415 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 006416 memset(pWalker, 0, sizeof(*pWalker)); 006417 pWalker->pParse = pParse; 006418 pWalker->xExprCallback = agginfoPersistExprCb; 006419 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 006420 } 006421 006422 /* 006423 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 006424 ** the new element. Return a negative number if malloc fails. 006425 */ 006426 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 006427 int i; 006428 pInfo->aCol = sqlite3ArrayAllocate( 006429 db, 006430 pInfo->aCol, 006431 sizeof(pInfo->aCol[0]), 006432 &pInfo->nColumn, 006433 &i 006434 ); 006435 return i; 006436 } 006437 006438 /* 006439 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 006440 ** the new element. Return a negative number if malloc fails. 006441 */ 006442 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 006443 int i; 006444 pInfo->aFunc = sqlite3ArrayAllocate( 006445 db, 006446 pInfo->aFunc, 006447 sizeof(pInfo->aFunc[0]), 006448 &pInfo->nFunc, 006449 &i 006450 ); 006451 return i; 006452 } 006453 006454 /* 006455 ** Search the AggInfo object for an aCol[] entry that has iTable and iColumn. 006456 ** Return the index in aCol[] of the entry that describes that column. 006457 ** 006458 ** If no prior entry is found, create a new one and return -1. The 006459 ** new column will have an index of pAggInfo->nColumn-1. 006460 */ 006461 static void findOrCreateAggInfoColumn( 006462 Parse *pParse, /* Parsing context */ 006463 AggInfo *pAggInfo, /* The AggInfo object to search and/or modify */ 006464 Expr *pExpr /* Expr describing the column to find or insert */ 006465 ){ 006466 struct AggInfo_col *pCol; 006467 int k; 006468 006469 assert( pAggInfo->iFirstReg==0 ); 006470 pCol = pAggInfo->aCol; 006471 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 006472 if( pCol->pCExpr==pExpr ) return; 006473 if( pCol->iTable==pExpr->iTable 006474 && pCol->iColumn==pExpr->iColumn 006475 && pExpr->op!=TK_IF_NULL_ROW 006476 ){ 006477 goto fix_up_expr; 006478 } 006479 } 006480 k = addAggInfoColumn(pParse->db, pAggInfo); 006481 if( k<0 ){ 006482 /* OOM on resize */ 006483 assert( pParse->db->mallocFailed ); 006484 return; 006485 } 006486 pCol = &pAggInfo->aCol[k]; 006487 assert( ExprUseYTab(pExpr) ); 006488 pCol->pTab = pExpr->y.pTab; 006489 pCol->iTable = pExpr->iTable; 006490 pCol->iColumn = pExpr->iColumn; 006491 pCol->iSorterColumn = -1; 006492 pCol->pCExpr = pExpr; 006493 if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){ 006494 int j, n; 006495 ExprList *pGB = pAggInfo->pGroupBy; 006496 struct ExprList_item *pTerm = pGB->a; 006497 n = pGB->nExpr; 006498 for(j=0; j<n; j++, pTerm++){ 006499 Expr *pE = pTerm->pExpr; 006500 if( pE->op==TK_COLUMN 006501 && pE->iTable==pExpr->iTable 006502 && pE->iColumn==pExpr->iColumn 006503 ){ 006504 pCol->iSorterColumn = j; 006505 break; 006506 } 006507 } 006508 } 006509 if( pCol->iSorterColumn<0 ){ 006510 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 006511 } 006512 fix_up_expr: 006513 ExprSetVVAProperty(pExpr, EP_NoReduce); 006514 assert( pExpr->pAggInfo==0 || pExpr->pAggInfo==pAggInfo ); 006515 pExpr->pAggInfo = pAggInfo; 006516 if( pExpr->op==TK_COLUMN ){ 006517 pExpr->op = TK_AGG_COLUMN; 006518 } 006519 pExpr->iAgg = (i16)k; 006520 } 006521 006522 /* 006523 ** This is the xExprCallback for a tree walker. It is used to 006524 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 006525 ** for additional information. 006526 */ 006527 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 006528 int i; 006529 NameContext *pNC = pWalker->u.pNC; 006530 Parse *pParse = pNC->pParse; 006531 SrcList *pSrcList = pNC->pSrcList; 006532 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 006533 006534 assert( pNC->ncFlags & NC_UAggInfo ); 006535 assert( pAggInfo->iFirstReg==0 ); 006536 switch( pExpr->op ){ 006537 default: { 006538 IndexedExpr *pIEpr; 006539 Expr tmp; 006540 assert( pParse->iSelfTab==0 ); 006541 if( (pNC->ncFlags & NC_InAggFunc)==0 ) break; 006542 if( pParse->pIdxEpr==0 ) break; 006543 for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){ 006544 int iDataCur = pIEpr->iDataCur; 006545 if( iDataCur<0 ) continue; 006546 if( sqlite3ExprCompare(0, pExpr, pIEpr->pExpr, iDataCur)==0 ) break; 006547 } 006548 if( pIEpr==0 ) break; 006549 if( NEVER(!ExprUseYTab(pExpr)) ) break; 006550 for(i=0; i<pSrcList->nSrc; i++){ 006551 if( pSrcList->a[0].iCursor==pIEpr->iDataCur ) break; 006552 } 006553 if( i>=pSrcList->nSrc ) break; 006554 if( NEVER(pExpr->pAggInfo!=0) ) break; /* Resolved by outer context */ 006555 if( pParse->nErr ){ return WRC_Abort; } 006556 006557 /* If we reach this point, it means that expression pExpr can be 006558 ** translated into a reference to an index column as described by 006559 ** pIEpr. 006560 */ 006561 memset(&tmp, 0, sizeof(tmp)); 006562 tmp.op = TK_AGG_COLUMN; 006563 tmp.iTable = pIEpr->iIdxCur; 006564 tmp.iColumn = pIEpr->iIdxCol; 006565 findOrCreateAggInfoColumn(pParse, pAggInfo, &tmp); 006566 if( pParse->nErr ){ return WRC_Abort; } 006567 assert( pAggInfo->aCol!=0 ); 006568 assert( tmp.iAgg<pAggInfo->nColumn ); 006569 pAggInfo->aCol[tmp.iAgg].pCExpr = pExpr; 006570 pExpr->pAggInfo = pAggInfo; 006571 pExpr->iAgg = tmp.iAgg; 006572 return WRC_Prune; 006573 } 006574 case TK_IF_NULL_ROW: 006575 case TK_AGG_COLUMN: 006576 case TK_COLUMN: { 006577 testcase( pExpr->op==TK_AGG_COLUMN ); 006578 testcase( pExpr->op==TK_COLUMN ); 006579 testcase( pExpr->op==TK_IF_NULL_ROW ); 006580 /* Check to see if the column is in one of the tables in the FROM 006581 ** clause of the aggregate query */ 006582 if( ALWAYS(pSrcList!=0) ){ 006583 SrcItem *pItem = pSrcList->a; 006584 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 006585 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 006586 if( pExpr->iTable==pItem->iCursor ){ 006587 findOrCreateAggInfoColumn(pParse, pAggInfo, pExpr); 006588 break; 006589 } /* endif pExpr->iTable==pItem->iCursor */ 006590 } /* end loop over pSrcList */ 006591 } 006592 return WRC_Continue; 006593 } 006594 case TK_AGG_FUNCTION: { 006595 if( (pNC->ncFlags & NC_InAggFunc)==0 006596 && pWalker->walkerDepth==pExpr->op2 006597 ){ 006598 /* Check to see if pExpr is a duplicate of another aggregate 006599 ** function that is already in the pAggInfo structure 006600 */ 006601 struct AggInfo_func *pItem = pAggInfo->aFunc; 006602 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 006603 if( pItem->pFExpr==pExpr ) break; 006604 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 006605 break; 006606 } 006607 } 006608 if( i>=pAggInfo->nFunc ){ 006609 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 006610 */ 006611 u8 enc = ENC(pParse->db); 006612 i = addAggInfoFunc(pParse->db, pAggInfo); 006613 if( i>=0 ){ 006614 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 006615 pItem = &pAggInfo->aFunc[i]; 006616 pItem->pFExpr = pExpr; 006617 assert( ExprUseUToken(pExpr) ); 006618 pItem->pFunc = sqlite3FindFunction(pParse->db, 006619 pExpr->u.zToken, 006620 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 006621 if( pExpr->flags & EP_Distinct ){ 006622 pItem->iDistinct = pParse->nTab++; 006623 }else{ 006624 pItem->iDistinct = -1; 006625 } 006626 } 006627 } 006628 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 006629 */ 006630 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 006631 ExprSetVVAProperty(pExpr, EP_NoReduce); 006632 pExpr->iAgg = (i16)i; 006633 pExpr->pAggInfo = pAggInfo; 006634 return WRC_Prune; 006635 }else{ 006636 return WRC_Continue; 006637 } 006638 } 006639 } 006640 return WRC_Continue; 006641 } 006642 006643 /* 006644 ** Analyze the pExpr expression looking for aggregate functions and 006645 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 006646 ** points to. Additional entries are made on the AggInfo object as 006647 ** necessary. 006648 ** 006649 ** This routine should only be called after the expression has been 006650 ** analyzed by sqlite3ResolveExprNames(). 006651 */ 006652 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 006653 Walker w; 006654 w.xExprCallback = analyzeAggregate; 006655 w.xSelectCallback = sqlite3WalkerDepthIncrease; 006656 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 006657 w.walkerDepth = 0; 006658 w.u.pNC = pNC; 006659 w.pParse = 0; 006660 assert( pNC->pSrcList!=0 ); 006661 sqlite3WalkExpr(&w, pExpr); 006662 } 006663 006664 /* 006665 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 006666 ** expression list. Return the number of errors. 006667 ** 006668 ** If an error is found, the analysis is cut short. 006669 */ 006670 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 006671 struct ExprList_item *pItem; 006672 int i; 006673 if( pList ){ 006674 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 006675 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 006676 } 006677 } 006678 } 006679 006680 /* 006681 ** Allocate a single new register for use to hold some intermediate result. 006682 */ 006683 int sqlite3GetTempReg(Parse *pParse){ 006684 if( pParse->nTempReg==0 ){ 006685 return ++pParse->nMem; 006686 } 006687 return pParse->aTempReg[--pParse->nTempReg]; 006688 } 006689 006690 /* 006691 ** Deallocate a register, making available for reuse for some other 006692 ** purpose. 006693 */ 006694 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 006695 if( iReg ){ 006696 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 006697 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 006698 pParse->aTempReg[pParse->nTempReg++] = iReg; 006699 } 006700 } 006701 } 006702 006703 /* 006704 ** Allocate or deallocate a block of nReg consecutive registers. 006705 */ 006706 int sqlite3GetTempRange(Parse *pParse, int nReg){ 006707 int i, n; 006708 if( nReg==1 ) return sqlite3GetTempReg(pParse); 006709 i = pParse->iRangeReg; 006710 n = pParse->nRangeReg; 006711 if( nReg<=n ){ 006712 pParse->iRangeReg += nReg; 006713 pParse->nRangeReg -= nReg; 006714 }else{ 006715 i = pParse->nMem+1; 006716 pParse->nMem += nReg; 006717 } 006718 return i; 006719 } 006720 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 006721 if( nReg==1 ){ 006722 sqlite3ReleaseTempReg(pParse, iReg); 006723 return; 006724 } 006725 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 006726 if( nReg>pParse->nRangeReg ){ 006727 pParse->nRangeReg = nReg; 006728 pParse->iRangeReg = iReg; 006729 } 006730 } 006731 006732 /* 006733 ** Mark all temporary registers as being unavailable for reuse. 006734 ** 006735 ** Always invoke this procedure after coding a subroutine or co-routine 006736 ** that might be invoked from other parts of the code, to ensure that 006737 ** the sub/co-routine does not use registers in common with the code that 006738 ** invokes the sub/co-routine. 006739 */ 006740 void sqlite3ClearTempRegCache(Parse *pParse){ 006741 pParse->nTempReg = 0; 006742 pParse->nRangeReg = 0; 006743 } 006744 006745 /* 006746 ** Make sure sufficient registers have been allocated so that 006747 ** iReg is a valid register number. 006748 */ 006749 void sqlite3TouchRegister(Parse *pParse, int iReg){ 006750 if( pParse->nMem<iReg ) pParse->nMem = iReg; 006751 } 006752 006753 #if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG) 006754 /* 006755 ** Return the latest reusable register in the set of all registers. 006756 ** The value returned is no less than iMin. If any register iMin or 006757 ** greater is in permanent use, then return one more than that last 006758 ** permanent register. 006759 */ 006760 int sqlite3FirstAvailableRegister(Parse *pParse, int iMin){ 006761 const ExprList *pList = pParse->pConstExpr; 006762 if( pList ){ 006763 int i; 006764 for(i=0; i<pList->nExpr; i++){ 006765 if( pList->a[i].u.iConstExprReg>=iMin ){ 006766 iMin = pList->a[i].u.iConstExprReg + 1; 006767 } 006768 } 006769 } 006770 pParse->nTempReg = 0; 006771 pParse->nRangeReg = 0; 006772 return iMin; 006773 } 006774 #endif /* SQLITE_ENABLE_STAT4 || SQLITE_DEBUG */ 006775 006776 /* 006777 ** Validate that no temporary register falls within the range of 006778 ** iFirst..iLast, inclusive. This routine is only call from within assert() 006779 ** statements. 006780 */ 006781 #ifdef SQLITE_DEBUG 006782 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 006783 int i; 006784 if( pParse->nRangeReg>0 006785 && pParse->iRangeReg+pParse->nRangeReg > iFirst 006786 && pParse->iRangeReg <= iLast 006787 ){ 006788 return 0; 006789 } 006790 for(i=0; i<pParse->nTempReg; i++){ 006791 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 006792 return 0; 006793 } 006794 } 006795 if( pParse->pConstExpr ){ 006796 ExprList *pList = pParse->pConstExpr; 006797 for(i=0; i<pList->nExpr; i++){ 006798 int iReg = pList->a[i].u.iConstExprReg; 006799 if( iReg==0 ) continue; 006800 if( iReg>=iFirst && iReg<=iLast ) return 0; 006801 } 006802 } 006803 return 1; 006804 } 006805 #endif /* SQLITE_DEBUG */