SQLite Android Bindings

Check-in [2238cdeb55]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update this project to SQLite version 3.19.0.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 2238cdeb55f4241330fb49f6850d2740edc228fa
User & Date: dan 2017-05-22 15:32:39.066
Context
2017-05-24
15:15
Update this project to sqlite version 3.19.1. (check-in: 43624eb167 user: dan tags: trunk)
2017-05-22
15:32
Update this project to SQLite version 3.19.0. (check-in: 2238cdeb55 user: dan tags: trunk)
2017-05-03
19:59
Update see.wiki to advise use of a URI parameter instead of "PRAGMA key = ?". (check-in: 7a62c59e53 user: dan tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to sqlite3/src/main/jni/sqlite/sqlite3.c.
1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.18.0.  By combining all the individual C code files into this
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other


|







1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.19.0.  By combining all the individual C code files into this
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
** string contains the date and time of the check-in (UTC) and a SHA1
** or SHA3-256 hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.18.0"
#define SQLITE_VERSION_NUMBER 3018000
#define SQLITE_SOURCE_ID      "2017-03-28 18:48:43 424a0d380332858ee55bdebc4af3789f74e70a2b3ba1cf29d84b9b4bcf3e2e37"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
** string contains the date and time of the check-in (UTC) and a SHA1
** or SHA3-256 hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.19.0"
#define SQLITE_VERSION_NUMBER 3019000
#define SQLITE_SOURCE_ID      "2017-05-22 13:58:13 28a94eb282822cad1d1420f2dad6bf65e4b8b9062eda4a0b9ee8270b2c608e40"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
** anti-virus programs.  By default, the windows VFS will retry file read,
** file write, and file delete operations up to 10 times, with a delay
** of 25 milliseconds before the first retry and with the delay increasing
** by an additional 25 milliseconds with each subsequent retry.  This
** opcode allows these two values (10 retries and 25 milliseconds of delay)
** to be adjusted.  The values are changed for all database connections
** within the same process.  The argument is a pointer to an array of two
** integers where the first integer i the new retry count and the second
** integer is the delay.  If either integer is negative, then the setting
** is not changed but instead the prior value of that setting is written
** into the array entry, allowing the current retry settings to be
** interrogated.  The zDbName parameter is ignored.
**
** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the







|







1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
** anti-virus programs.  By default, the windows VFS will retry file read,
** file write, and file delete operations up to 10 times, with a delay
** of 25 milliseconds before the first retry and with the delay increasing
** by an additional 25 milliseconds with each subsequent retry.  This
** opcode allows these two values (10 retries and 25 milliseconds of delay)
** to be adjusted.  The values are changed for all database connections
** within the same process.  The argument is a pointer to an array of two
** integers where the first integer is the new retry count and the second
** integer is the delay.  If either integer is negative, then the setting
** is not changed but instead the prior value of that setting is written
** into the array entry, allowing the current retry settings to be
** interrogated.  The zDbName parameter is ignored.
**
** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
** running statements reaches zero are interrupted as if they had been
** running prior to the sqlite3_interrupt() call.  ^New SQL statements
** that are started after the running statement count reaches zero are
** not effected by the sqlite3_interrupt().
** ^A call to sqlite3_interrupt(D) that occurs when there are no running
** SQL statements is a no-op and has no effect on SQL statements
** that are started after the sqlite3_interrupt() call returns.
**
** If the database connection closes while [sqlite3_interrupt()]
** is running then bad things will likely happen.
*/
SQLITE_API void sqlite3_interrupt(sqlite3*);

/*
** CAPI3REF: Determine If An SQL Statement Is Complete
**
** These routines are useful during command-line input to determine if the







<
<
<







2484
2485
2486
2487
2488
2489
2490



2491
2492
2493
2494
2495
2496
2497
** running statements reaches zero are interrupted as if they had been
** running prior to the sqlite3_interrupt() call.  ^New SQL statements
** that are started after the running statement count reaches zero are
** not effected by the sqlite3_interrupt().
** ^A call to sqlite3_interrupt(D) that occurs when there are no running
** SQL statements is a no-op and has no effect on SQL statements
** that are started after the sqlite3_interrupt() call returns.



*/
SQLITE_API void sqlite3_interrupt(sqlite3*);

/*
** CAPI3REF: Determine If An SQL Statement Is Complete
**
** These routines are useful during command-line input to determine if the
2949
2950
2951
2952
2953
2954
2955

2956
2957
2958
2959
2960
2961
2962
** method.
*/
SQLITE_API void sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks
** METHOD: sqlite3

**
** ^This routine registers an authorizer callback with a particular
** [database connection], supplied in the first argument.
** ^The authorizer callback is invoked as SQL statements are being compiled
** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()].  ^At various
** points during the compilation process, as logic is being created







>







2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
** method.
*/
SQLITE_API void sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks
** METHOD: sqlite3
** KEYWORDS: {authorizer callback}
**
** ^This routine registers an authorizer callback with a particular
** [database connection], supplied in the first argument.
** ^The authorizer callback is invoked as SQL statements are being compiled
** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()].  ^At various
** points during the compilation process, as logic is being created
2976
2977
2978
2979
2980
2981
2982
2983
2984


2985
2986
2987
2988
2989
2990
2991
2992




2993
2994
2995
2996
2997
2998
2999
** authorizer will fail with an error message explaining that
** access is denied. 
**
** ^The first parameter to the authorizer callback is a copy of the third
** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
** to the callback is an integer [SQLITE_COPY | action code] that specifies
** the particular action to be authorized. ^The third through sixth parameters
** to the callback are zero-terminated strings that contain additional
** details about the action to be authorized.


**
** ^If the action code is [SQLITE_READ]
** and the callback returns [SQLITE_IGNORE] then the
** [prepared statement] statement is constructed to substitute
** a NULL value in place of the table column that would have
** been read if [SQLITE_OK] had been returned.  The [SQLITE_IGNORE]
** return can be used to deny an untrusted user access to individual
** columns of a table.




** ^If the action code is [SQLITE_DELETE] and the callback returns
** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
** [truncate optimization] is disabled and all rows are deleted individually.
**
** An authorizer is used when [sqlite3_prepare | preparing]
** SQL statements from an untrusted source, to ensure that the SQL statements
** do not try to access data they are not allowed to see, or that they do not







|
|
>
>








>
>
>
>







2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
** authorizer will fail with an error message explaining that
** access is denied. 
**
** ^The first parameter to the authorizer callback is a copy of the third
** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
** to the callback is an integer [SQLITE_COPY | action code] that specifies
** the particular action to be authorized. ^The third through sixth parameters
** to the callback are either NULL pointers or zero-terminated strings
** that contain additional details about the action to be authorized.
** Applications must always be prepared to encounter a NULL pointer in any
** of the third through the sixth parameters of the authorization callback.
**
** ^If the action code is [SQLITE_READ]
** and the callback returns [SQLITE_IGNORE] then the
** [prepared statement] statement is constructed to substitute
** a NULL value in place of the table column that would have
** been read if [SQLITE_OK] had been returned.  The [SQLITE_IGNORE]
** return can be used to deny an untrusted user access to individual
** columns of a table.
** ^When a table is referenced by a [SELECT] but no column values are
** extracted from that table (for example in a query like
** "SELECT count(*) FROM tab") then the [SQLITE_READ] authorizer callback
** is invoked once for that table with a column name that is an empty string.
** ^If the action code is [SQLITE_DELETE] and the callback returns
** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
** [truncate optimization] is disabled and all rows are deleted individually.
**
** An authorizer is used when [sqlite3_prepare | preparing]
** SQL statements from an untrusted source, to ensure that the SQL statements
** do not try to access data they are not allowed to see, or that they do not
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
** ^The sqlite3_value object returned by
** [sqlite3_column_value()] is unprotected.
** Unprotected sqlite3_value objects may only be used with
** [sqlite3_result_value()] and [sqlite3_bind_value()].
** The [sqlite3_value_blob | sqlite3_value_type()] family of
** interfaces require protected sqlite3_value objects.
*/
typedef struct Mem sqlite3_value;

/*
** CAPI3REF: SQL Function Context Object
**
** The context in which an SQL function executes is stored in an
** sqlite3_context object.  ^A pointer to an sqlite3_context object
** is always first parameter to [application-defined SQL functions].







|







3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
** ^The sqlite3_value object returned by
** [sqlite3_column_value()] is unprotected.
** Unprotected sqlite3_value objects may only be used with
** [sqlite3_result_value()] and [sqlite3_bind_value()].
** The [sqlite3_value_blob | sqlite3_value_type()] family of
** interfaces require protected sqlite3_value objects.
*/
typedef struct sqlite3_value sqlite3_value;

/*
** CAPI3REF: SQL Function Context Object
**
** The context in which an SQL function executes is stored in an
** sqlite3_context object.  ^A pointer to an sqlite3_context object
** is always first parameter to [application-defined SQL functions].
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041

5042
5043
5044
5045
5046
5047
5048
5049
** of where this might be useful is in a regular-expression matching
** function. The compiled version of the regular expression can be stored as
** metadata associated with the pattern string.  
** Then as long as the pattern string remains the same,
** the compiled regular expression can be reused on multiple
** invocations of the same function.
**
** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata
** associated by the sqlite3_set_auxdata() function with the Nth argument
** value to the application-defined function. ^If there is no metadata

** associated with the function argument, this sqlite3_get_auxdata() interface
** returns a NULL pointer.
**
** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as metadata for the N-th
** argument of the application-defined function.  ^Subsequent
** calls to sqlite3_get_auxdata(C,N) return P from the most recent
** sqlite3_set_auxdata(C,N,P,X) call if the metadata is still valid or
** NULL if the metadata has been discarded.







|
|
|
>
|







5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
** of where this might be useful is in a regular-expression matching
** function. The compiled version of the regular expression can be stored as
** metadata associated with the pattern string.  
** Then as long as the pattern string remains the same,
** the compiled regular expression can be reused on multiple
** invocations of the same function.
**
** ^The sqlite3_get_auxdata(C,N) interface returns a pointer to the metadata
** associated by the sqlite3_set_auxdata(C,N,P,X) function with the Nth argument
** value to the application-defined function.  ^N is zero for the left-most
** function argument.  ^If there is no metadata
** associated with the function argument, the sqlite3_get_auxdata(C,N) interface
** returns a NULL pointer.
**
** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as metadata for the N-th
** argument of the application-defined function.  ^Subsequent
** calls to sqlite3_get_auxdata(C,N) return P from the most recent
** sqlite3_set_auxdata(C,N,P,X) call if the metadata is still valid or
** NULL if the metadata has been discarded.
5065
5066
5067
5068
5069
5070
5071




5072
5073
5074
5075
5076
5077
5078
** should be called near the end of the function implementation and the
** function implementation should not make any use of P after
** sqlite3_set_auxdata() has been called.
**
** ^(In practice, metadata is preserved between function calls for
** function parameters that are compile-time constants, including literal
** values and [parameters] and expressions composed from the same.)^




**
** These routines must be called from the same thread in which
** the SQL function is running.
*/
SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));








>
>
>
>







5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
** should be called near the end of the function implementation and the
** function implementation should not make any use of P after
** sqlite3_set_auxdata() has been called.
**
** ^(In practice, metadata is preserved between function calls for
** function parameters that are compile-time constants, including literal
** values and [parameters] and expressions composed from the same.)^
**
** The value of the N parameter to these interfaces should be non-negative.
** Future enhancements may make use of negative N values to define new
** kinds of function caching behavior.
**
** These routines must be called from the same thread in which
** the SQL function is running.
*/
SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));

9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
** Any number of calls to add() and output() may be made between the calls to
** new() and delete(), and in any order.
**
** As well as the regular sqlite3changegroup_add() and 
** sqlite3changegroup_output() functions, also available are the streaming
** versions sqlite3changegroup_add_strm() and sqlite3changegroup_output_strm().
*/
int sqlite3changegroup_new(sqlite3_changegroup **pp);

/*
** CAPI3REF: Add A Changeset To A Changegroup
**
** Add all changes within the changeset (or patchset) in buffer pData (size
** nData bytes) to the changegroup. 
**







|







9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
** Any number of calls to add() and output() may be made between the calls to
** new() and delete(), and in any order.
**
** As well as the regular sqlite3changegroup_add() and 
** sqlite3changegroup_output() functions, also available are the streaming
** versions sqlite3changegroup_add_strm() and sqlite3changegroup_output_strm().
*/
SQLITE_API int sqlite3changegroup_new(sqlite3_changegroup **pp);

/*
** CAPI3REF: Add A Changeset To A Changegroup
**
** Add all changes within the changeset (or patchset) in buffer pData (size
** nData bytes) to the changegroup. 
**
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
** appears to be corrupt and the corruption is detected, SQLITE_CORRUPT is
** returned. Or, if an out-of-memory condition occurs during processing, this
** function returns SQLITE_NOMEM. In all cases, if an error occurs the
** final contents of the changegroup is undefined.
**
** If no error occurs, SQLITE_OK is returned.
*/
int sqlite3changegroup_add(sqlite3_changegroup*, int nData, void *pData);

/*
** CAPI3REF: Obtain A Composite Changeset From A Changegroup
**
** Obtain a buffer containing a changeset (or patchset) representing the
** current contents of the changegroup. If the inputs to the changegroup
** were themselves changesets, the output is a changeset. Or, if the







|







9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
** appears to be corrupt and the corruption is detected, SQLITE_CORRUPT is
** returned. Or, if an out-of-memory condition occurs during processing, this
** function returns SQLITE_NOMEM. In all cases, if an error occurs the
** final contents of the changegroup is undefined.
**
** If no error occurs, SQLITE_OK is returned.
*/
SQLITE_API int sqlite3changegroup_add(sqlite3_changegroup*, int nData, void *pData);

/*
** CAPI3REF: Obtain A Composite Changeset From A Changegroup
**
** Obtain a buffer containing a changeset (or patchset) representing the
** current contents of the changegroup. If the inputs to the changegroup
** were themselves changesets, the output is a changeset. Or, if the
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
** If an error occurs, an SQLite error code is returned and the output
** variables (*pnData) and (*ppData) are set to 0. Otherwise, SQLITE_OK
** is returned and the output variables are set to the size of and a 
** pointer to the output buffer, respectively. In this case it is the
** responsibility of the caller to eventually free the buffer using a
** call to sqlite3_free().
*/
int sqlite3changegroup_output(
  sqlite3_changegroup*,
  int *pnData,                    /* OUT: Size of output buffer in bytes */
  void **ppData                   /* OUT: Pointer to output buffer */
);

/*
** CAPI3REF: Delete A Changegroup Object
*/
void sqlite3changegroup_delete(sqlite3_changegroup*);

/*
** CAPI3REF: Apply A Changeset To A Database
**
** Apply a changeset to a database. This function attempts to update the
** "main" database attached to handle db with the changes found in the
** changeset passed via the second and third arguments.







|








|







9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
** If an error occurs, an SQLite error code is returned and the output
** variables (*pnData) and (*ppData) are set to 0. Otherwise, SQLITE_OK
** is returned and the output variables are set to the size of and a 
** pointer to the output buffer, respectively. In this case it is the
** responsibility of the caller to eventually free the buffer using a
** call to sqlite3_free().
*/
SQLITE_API int sqlite3changegroup_output(
  sqlite3_changegroup*,
  int *pnData,                    /* OUT: Size of output buffer in bytes */
  void **ppData                   /* OUT: Pointer to output buffer */
);

/*
** CAPI3REF: Delete A Changegroup Object
*/
SQLITE_API void sqlite3changegroup_delete(sqlite3_changegroup*);

/*
** CAPI3REF: Apply A Changeset To A Database
**
** Apply a changeset to a database. This function attempts to update the
** "main" database attached to handle db with the changes found in the
** changeset passed via the second and third arguments.
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
  void *pOut
);
SQLITE_API int sqlite3session_patchset_strm(
  sqlite3_session *pSession,
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);
int sqlite3changegroup_add_strm(sqlite3_changegroup*, 
    int (*xInput)(void *pIn, void *pData, int *pnData),
    void *pIn
);
int sqlite3changegroup_output_strm(sqlite3_changegroup*,
    int (*xOutput)(void *pOut, const void *pData, int nData), 
    void *pOut
);


/*
** Make sure we can call this stuff from C++.







|



|







10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
  void *pOut
);
SQLITE_API int sqlite3session_patchset_strm(
  sqlite3_session *pSession,
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);
SQLITE_API int sqlite3changegroup_add_strm(sqlite3_changegroup*, 
    int (*xInput)(void *pIn, void *pData, int *pnData),
    void *pIn
);
SQLITE_API int sqlite3changegroup_output_strm(sqlite3_changegroup*,
    int (*xOutput)(void *pOut, const void *pData, int nData), 
    void *pOut
);


/*
** Make sure we can call this stuff from C++.
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506


11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525



























11526
11527
11528
11529
11530
11531
11532
#define TK_EXISTS                          20
#define TK_TEMP                            21
#define TK_LP                              22
#define TK_RP                              23
#define TK_AS                              24
#define TK_WITHOUT                         25
#define TK_COMMA                           26
#define TK_OR                              27
#define TK_AND                             28
#define TK_IS                              29
#define TK_MATCH                           30
#define TK_LIKE_KW                         31
#define TK_BETWEEN                         32
#define TK_IN                              33
#define TK_ISNULL                          34
#define TK_NOTNULL                         35
#define TK_NE                              36
#define TK_EQ                              37
#define TK_GT                              38
#define TK_LE                              39
#define TK_LT                              40
#define TK_GE                              41
#define TK_ESCAPE                          42
#define TK_BITAND                          43
#define TK_BITOR                           44
#define TK_LSHIFT                          45
#define TK_RSHIFT                          46
#define TK_PLUS                            47
#define TK_MINUS                           48
#define TK_STAR                            49
#define TK_SLASH                           50
#define TK_REM                             51
#define TK_CONCAT                          52
#define TK_COLLATE                         53
#define TK_BITNOT                          54
#define TK_ID                              55
#define TK_INDEXED                         56
#define TK_ABORT                           57
#define TK_ACTION                          58
#define TK_AFTER                           59
#define TK_ANALYZE                         60
#define TK_ASC                             61
#define TK_ATTACH                          62
#define TK_BEFORE                          63
#define TK_BY                              64
#define TK_CASCADE                         65
#define TK_CAST                            66
#define TK_COLUMNKW                        67
#define TK_CONFLICT                        68
#define TK_DATABASE                        69
#define TK_DESC                            70
#define TK_DETACH                          71
#define TK_EACH                            72
#define TK_FAIL                            73
#define TK_FOR                             74
#define TK_IGNORE                          75
#define TK_INITIALLY                       76
#define TK_INSTEAD                         77


#define TK_NO                              78
#define TK_KEY                             79
#define TK_OF                              80
#define TK_OFFSET                          81
#define TK_PRAGMA                          82
#define TK_RAISE                           83
#define TK_RECURSIVE                       84
#define TK_REPLACE                         85
#define TK_RESTRICT                        86
#define TK_ROW                             87
#define TK_TRIGGER                         88
#define TK_VACUUM                          89
#define TK_VIEW                            90
#define TK_VIRTUAL                         91
#define TK_WITH                            92
#define TK_REINDEX                         93
#define TK_RENAME                          94
#define TK_CTIME_KW                        95
#define TK_ANY                             96



























#define TK_STRING                          97
#define TK_JOIN_KW                         98
#define TK_CONSTRAINT                      99
#define TK_DEFAULT                        100
#define TK_NULL                           101
#define TK_PRIMARY                        102
#define TK_UNIQUE                         103







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







11458
11459
11460
11461
11462
11463
11464




























11465

11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
#define TK_EXISTS                          20
#define TK_TEMP                            21
#define TK_LP                              22
#define TK_RP                              23
#define TK_AS                              24
#define TK_WITHOUT                         25
#define TK_COMMA                           26




























#define TK_ID                              27

#define TK_ABORT                           28
#define TK_ACTION                          29
#define TK_AFTER                           30
#define TK_ANALYZE                         31
#define TK_ASC                             32
#define TK_ATTACH                          33
#define TK_BEFORE                          34
#define TK_BY                              35
#define TK_CASCADE                         36
#define TK_CAST                            37
#define TK_COLUMNKW                        38
#define TK_CONFLICT                        39
#define TK_DATABASE                        40
#define TK_DESC                            41
#define TK_DETACH                          42
#define TK_EACH                            43
#define TK_FAIL                            44
#define TK_FOR                             45
#define TK_IGNORE                          46
#define TK_INITIALLY                       47
#define TK_INSTEAD                         48
#define TK_LIKE_KW                         49
#define TK_MATCH                           50
#define TK_NO                              51
#define TK_KEY                             52
#define TK_OF                              53
#define TK_OFFSET                          54
#define TK_PRAGMA                          55
#define TK_RAISE                           56
#define TK_RECURSIVE                       57
#define TK_REPLACE                         58
#define TK_RESTRICT                        59
#define TK_ROW                             60
#define TK_TRIGGER                         61
#define TK_VACUUM                          62
#define TK_VIEW                            63
#define TK_VIRTUAL                         64
#define TK_WITH                            65
#define TK_REINDEX                         66
#define TK_RENAME                          67
#define TK_CTIME_KW                        68
#define TK_ANY                             69
#define TK_OR                              70
#define TK_AND                             71
#define TK_IS                              72
#define TK_BETWEEN                         73
#define TK_IN                              74
#define TK_ISNULL                          75
#define TK_NOTNULL                         76
#define TK_NE                              77
#define TK_EQ                              78
#define TK_GT                              79
#define TK_LE                              80
#define TK_LT                              81
#define TK_GE                              82
#define TK_ESCAPE                          83
#define TK_BITAND                          84
#define TK_BITOR                           85
#define TK_LSHIFT                          86
#define TK_RSHIFT                          87
#define TK_PLUS                            88
#define TK_MINUS                           89
#define TK_STAR                            90
#define TK_SLASH                           91
#define TK_REM                             92
#define TK_CONCAT                          93
#define TK_COLLATE                         94
#define TK_BITNOT                          95
#define TK_INDEXED                         96
#define TK_STRING                          97
#define TK_JOIN_KW                         98
#define TK_CONSTRAINT                      99
#define TK_DEFAULT                        100
#define TK_NULL                           101
#define TK_PRIMARY                        102
#define TK_UNIQUE                         103
11582
11583
11584
11585
11586
11587
11588

11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
#define TK_AGG_FUNCTION                   153
#define TK_AGG_COLUMN                     154
#define TK_UMINUS                         155
#define TK_UPLUS                          156
#define TK_REGISTER                       157
#define TK_VECTOR                         158
#define TK_SELECT_COLUMN                  159

#define TK_ASTERISK                       160
#define TK_SPAN                           161
#define TK_SPACE                          162
#define TK_ILLEGAL                        163

/* The token codes above must all fit in 8 bits */
#define TKFLG_MASK           0xff  

/* Flags that can be added to a token code when it is not
** being stored in a u8: */
#define TKFLG_DONTFOLD       0x100  /* Omit constant folding optimizations */







>
|
|
|
|







11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
#define TK_AGG_FUNCTION                   153
#define TK_AGG_COLUMN                     154
#define TK_UMINUS                         155
#define TK_UPLUS                          156
#define TK_REGISTER                       157
#define TK_VECTOR                         158
#define TK_SELECT_COLUMN                  159
#define TK_IF_NULL_ROW                    160
#define TK_ASTERISK                       161
#define TK_SPAN                           162
#define TK_SPACE                          163
#define TK_ILLEGAL                        164

/* The token codes above must all fit in 8 bits */
#define TKFLG_MASK           0xff  

/* Flags that can be added to a token code when it is not
** being stored in a u8: */
#define TKFLG_DONTFOLD       0x100  /* Omit constant folding optimizations */
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
** organized and understandable, and it also helps the resulting code to
** run a little faster by using fewer registers for parameter passing.
*/
struct BtreePayload {
  const void *pKey;       /* Key content for indexes.  NULL for tables */
  sqlite3_int64 nKey;     /* Size of pKey for indexes.  PRIMARY KEY for tabs */
  const void *pData;      /* Data for tables.  NULL for indexes */
  struct Mem *aMem;       /* First of nMem value in the unpacked pKey */
  u16 nMem;               /* Number of aMem[] value.  Might be zero */
  int nData;              /* Size of pData.  0 if none. */
  int nZero;              /* Extra zero data appended after pData,nData */
};

SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload,
                       int flags, int seekResult);







|







12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
** organized and understandable, and it also helps the resulting code to
** run a little faster by using fewer registers for parameter passing.
*/
struct BtreePayload {
  const void *pKey;       /* Key content for indexes.  NULL for tables */
  sqlite3_int64 nKey;     /* Size of pKey for indexes.  PRIMARY KEY for tabs */
  const void *pData;      /* Data for tables.  NULL for indexes */
  sqlite3_value *aMem;    /* First of nMem value in the unpacked pKey */
  u16 nMem;               /* Number of aMem[] value.  Might be zero */
  int nData;              /* Size of pData.  0 if none. */
  int nZero;              /* Extra zero data appended after pData,nData */
};

SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload,
                       int flags, int seekResult);
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
*/
typedef struct Vdbe Vdbe;

/*
** The names of the following types declared in vdbeInt.h are required
** for the VdbeOp definition.
*/
typedef struct Mem Mem;
typedef struct SubProgram SubProgram;

/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:
*/







|







12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
*/
typedef struct Vdbe Vdbe;

/*
** The names of the following types declared in vdbeInt.h are required
** for the VdbeOp definition.
*/
typedef struct sqlite3_value Mem;
typedef struct SubProgram SubProgram;

/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:
*/
12746
12747
12748
12749
12750
12751
12752

12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786

12787


12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824

12825
12826
12827

12828
12829
12830
12831
12832
12833
12834
12835
12836

12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862


12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915

12916
12917


12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
#define OP_Yield          16
#define OP_MustBeInt      17
#define OP_Jump           18
#define OP_Not            19 /* same as TK_NOT, synopsis: r[P2]= !r[P1]    */
#define OP_Once           20
#define OP_If             21
#define OP_IfNot          22

#define OP_SeekLT         23 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekLE         24 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekGE         25 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekGT         26 /* synopsis: key=r[P3@P4]                     */
#define OP_Or             27 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */
#define OP_And            28 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */
#define OP_NoConflict     29 /* synopsis: key=r[P3@P4]                     */
#define OP_NotFound       30 /* synopsis: key=r[P3@P4]                     */
#define OP_Found          31 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekRowid      32 /* synopsis: intkey=r[P3]                     */
#define OP_NotExists      33 /* synopsis: intkey=r[P3]                     */
#define OP_IsNull         34 /* same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */
#define OP_NotNull        35 /* same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */
#define OP_Ne             36 /* same as TK_NE, synopsis: IF r[P3]!=r[P1]   */
#define OP_Eq             37 /* same as TK_EQ, synopsis: IF r[P3]==r[P1]   */
#define OP_Gt             38 /* same as TK_GT, synopsis: IF r[P3]>r[P1]    */
#define OP_Le             39 /* same as TK_LE, synopsis: IF r[P3]<=r[P1]   */
#define OP_Lt             40 /* same as TK_LT, synopsis: IF r[P3]<r[P1]    */
#define OP_Ge             41 /* same as TK_GE, synopsis: IF r[P3]>=r[P1]   */
#define OP_ElseNotEq      42 /* same as TK_ESCAPE                          */
#define OP_BitAnd         43 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */
#define OP_BitOr          44 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */
#define OP_ShiftLeft      45 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<<r[P1] */
#define OP_ShiftRight     46 /* same as TK_RSHIFT, synopsis: r[P3]=r[P2]>>r[P1] */
#define OP_Add            47 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */
#define OP_Subtract       48 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */
#define OP_Multiply       49 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */
#define OP_Divide         50 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */
#define OP_Remainder      51 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */
#define OP_Concat         52 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */
#define OP_Last           53
#define OP_BitNot         54 /* same as TK_BITNOT, synopsis: r[P1]= ~r[P1] */
#define OP_IfSmaller      55
#define OP_SorterSort     56

#define OP_Sort           57


#define OP_Rewind         58
#define OP_IdxLE          59 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxGT          60 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxLT          61 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxGE          62 /* synopsis: key=r[P3@P4]                     */
#define OP_RowSetRead     63 /* synopsis: r[P3]=rowset(P1)                 */
#define OP_RowSetTest     64 /* synopsis: if r[P3] in rowset(P1) goto P2   */
#define OP_Program        65
#define OP_FkIfZero       66 /* synopsis: if fkctr[P1]==0 goto P2          */
#define OP_IfPos          67 /* synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 */
#define OP_IfNotZero      68 /* synopsis: if r[P1]!=0 then r[P1]--, goto P2 */
#define OP_DecrJumpZero   69 /* synopsis: if (--r[P1])==0 goto P2          */
#define OP_IncrVacuum     70
#define OP_VNext          71
#define OP_Init           72 /* synopsis: Start at P2                      */
#define OP_Return         73
#define OP_EndCoroutine   74
#define OP_HaltIfNull     75 /* synopsis: if r[P3]=null halt               */
#define OP_Halt           76
#define OP_Integer        77 /* synopsis: r[P2]=P1                         */
#define OP_Int64          78 /* synopsis: r[P2]=P4                         */
#define OP_String         79 /* synopsis: r[P2]='P4' (len=P1)              */
#define OP_Null           80 /* synopsis: r[P2..P3]=NULL                   */
#define OP_SoftNull       81 /* synopsis: r[P1]=NULL                       */
#define OP_Blob           82 /* synopsis: r[P2]=P4 (len=P1)                */
#define OP_Variable       83 /* synopsis: r[P2]=parameter(P1,P4)           */
#define OP_Move           84 /* synopsis: r[P2@P3]=r[P1@P3]                */
#define OP_Copy           85 /* synopsis: r[P2@P3+1]=r[P1@P3+1]            */
#define OP_SCopy          86 /* synopsis: r[P2]=r[P1]                      */
#define OP_IntCopy        87 /* synopsis: r[P2]=r[P1]                      */
#define OP_ResultRow      88 /* synopsis: output=r[P1@P2]                  */
#define OP_CollSeq        89
#define OP_Function0      90 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_Function       91 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_AddImm         92 /* synopsis: r[P1]=r[P1]+P2                   */
#define OP_RealAffinity   93
#define OP_Cast           94 /* synopsis: affinity(r[P1])                  */

#define OP_Permutation    95
#define OP_Compare        96 /* synopsis: r[P1@P3] <-> r[P2@P3]            */
#define OP_String8        97 /* same as TK_STRING, synopsis: r[P2]='P4'    */

#define OP_Column         98 /* synopsis: r[P3]=PX                         */
#define OP_Affinity       99 /* synopsis: affinity(r[P1@P2])               */
#define OP_MakeRecord    100 /* synopsis: r[P3]=mkrec(r[P1@P2])            */
#define OP_Count         101 /* synopsis: r[P2]=count()                    */
#define OP_ReadCookie    102
#define OP_SetCookie     103
#define OP_ReopenIdx     104 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenRead      105 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenWrite     106 /* synopsis: root=P2 iDb=P3                   */

#define OP_OpenAutoindex 107 /* synopsis: nColumn=P2                       */
#define OP_OpenEphemeral 108 /* synopsis: nColumn=P2                       */
#define OP_SorterOpen    109
#define OP_SequenceTest  110 /* synopsis: if( cursor[P1].ctr++ ) pc = P2   */
#define OP_OpenPseudo    111 /* synopsis: P3 columns in r[P2]              */
#define OP_Close         112
#define OP_ColumnsUsed   113
#define OP_Sequence      114 /* synopsis: r[P2]=cursor[P1].ctr++           */
#define OP_NewRowid      115 /* synopsis: r[P2]=rowid                      */
#define OP_Insert        116 /* synopsis: intkey=r[P3] data=r[P2]          */
#define OP_InsertInt     117 /* synopsis: intkey=P3 data=r[P2]             */
#define OP_Delete        118
#define OP_ResetCount    119
#define OP_SorterCompare 120 /* synopsis: if key(P1)!=trim(r[P3],P4) goto P2 */
#define OP_SorterData    121 /* synopsis: r[P2]=data                       */
#define OP_RowData       122 /* synopsis: r[P2]=data                       */
#define OP_Rowid         123 /* synopsis: r[P2]=rowid                      */
#define OP_NullRow       124
#define OP_SorterInsert  125 /* synopsis: key=r[P2]                        */
#define OP_IdxInsert     126 /* synopsis: key=r[P2]                        */
#define OP_IdxDelete     127 /* synopsis: key=r[P2@P3]                     */
#define OP_Seek          128 /* synopsis: Move P3 to P1.rowid              */
#define OP_IdxRowid      129 /* synopsis: r[P2]=rowid                      */
#define OP_Destroy       130
#define OP_Clear         131
#define OP_Real          132 /* same as TK_FLOAT, synopsis: r[P2]=P4       */


#define OP_ResetSorter   133
#define OP_CreateIndex   134 /* synopsis: r[P2]=root iDb=P1                */
#define OP_CreateTable   135 /* synopsis: r[P2]=root iDb=P1                */
#define OP_SqlExec       136
#define OP_ParseSchema   137
#define OP_LoadAnalysis  138
#define OP_DropTable     139
#define OP_DropIndex     140
#define OP_DropTrigger   141
#define OP_IntegrityCk   142
#define OP_RowSetAdd     143 /* synopsis: rowset(P1)=r[P2]                 */
#define OP_Param         144
#define OP_FkCounter     145 /* synopsis: fkctr[P1]+=P2                    */
#define OP_MemMax        146 /* synopsis: r[P1]=max(r[P1],r[P2])           */
#define OP_OffsetLimit   147 /* synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) */
#define OP_AggStep0      148 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggStep       149 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggFinal      150 /* synopsis: accum=r[P1] N=P2                 */
#define OP_Expire        151
#define OP_TableLock     152 /* synopsis: iDb=P1 root=P2 write=P3          */
#define OP_VBegin        153
#define OP_VCreate       154
#define OP_VDestroy      155
#define OP_VOpen         156
#define OP_VColumn       157 /* synopsis: r[P3]=vcolumn(P2)                */
#define OP_VRename       158
#define OP_Pagecount     159
#define OP_MaxPgcnt      160
#define OP_CursorHint    161
#define OP_Noop          162
#define OP_Explain       163

/* Properties such as "out2" or "jump" that are specified in
** comments following the "case" for each opcode in the vdbe.c
** are encoded into bitvectors as follows:
*/
#define OPFLG_JUMP        0x01  /* jump:  P2 holds jmp target */
#define OPFLG_IN1         0x02  /* in1:   P1 is an input */
#define OPFLG_IN2         0x04  /* in2:   P2 is an input */
#define OPFLG_IN3         0x08  /* in3:   P3 is an input */
#define OPFLG_OUT2        0x10  /* out2:  P2 is an output */
#define OPFLG_OUT3        0x20  /* out3:  P3 is an output */
#define OPFLG_INITIALIZER {\
/*   0 */ 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01,\
/*   8 */ 0x00, 0x10, 0x00, 0x01, 0x00, 0x01, 0x01, 0x01,\
/*  16 */ 0x03, 0x03, 0x01, 0x12, 0x01, 0x03, 0x03, 0x09,\
/*  24 */ 0x09, 0x09, 0x09, 0x26, 0x26, 0x09, 0x09, 0x09,\
/*  32 */ 0x09, 0x09, 0x03, 0x03, 0x0b, 0x0b, 0x0b, 0x0b,\
/*  40 */ 0x0b, 0x0b, 0x01, 0x26, 0x26, 0x26, 0x26, 0x26,\
/*  48 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x01, 0x12, 0x01,\
/*  56 */ 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x23,\
/*  64 */ 0x0b, 0x01, 0x01, 0x03, 0x03, 0x03, 0x01, 0x01,\
/*  72 */ 0x01, 0x02, 0x02, 0x08, 0x00, 0x10, 0x10, 0x10,\

/*  80 */ 0x10, 0x00, 0x10, 0x10, 0x00, 0x00, 0x10, 0x10,\
/*  88 */ 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x00,\


/*  96 */ 0x00, 0x10, 0x00, 0x00, 0x00, 0x10, 0x10, 0x00,\
/* 104 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 112 */ 0x00, 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00,\
/* 120 */ 0x00, 0x00, 0x00, 0x10, 0x00, 0x04, 0x04, 0x00,\
/* 128 */ 0x00, 0x10, 0x10, 0x00, 0x10, 0x00, 0x10, 0x10,\
/* 136 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06,\
/* 144 */ 0x10, 0x00, 0x04, 0x1a, 0x00, 0x00, 0x00, 0x00,\
/* 152 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,\
/* 160 */ 0x10, 0x00, 0x00, 0x00,}

/* The sqlite3P2Values() routine is able to run faster if it knows
** the value of the largest JUMP opcode.  The smaller the maximum
** JUMP opcode the better, so the mkopcodeh.tcl script that
** generated this include file strives to group all JUMP opcodes
** together near the beginning of the list.
*/
#define SQLITE_MX_JUMP_OPCODE  72  /* Maximum JUMP opcode */

/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.







>
|
|
|
|
<
<
|
|
|
|
|
<
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

>
|
<

>
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
<

>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|














|
|
<
<
<
|
|
|
>
|
|
>
>
|

|
|
|
|
|
|
|







|







12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767


12768
12769
12770
12771
12772


12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836

12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871


12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921



12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
#define OP_Yield          16
#define OP_MustBeInt      17
#define OP_Jump           18
#define OP_Not            19 /* same as TK_NOT, synopsis: r[P2]= !r[P1]    */
#define OP_Once           20
#define OP_If             21
#define OP_IfNot          22
#define OP_IfNullRow      23 /* synopsis: if P1.nullRow then r[P3]=NULL, goto P2 */
#define OP_SeekLT         24 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekLE         25 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekGE         26 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekGT         27 /* synopsis: key=r[P3@P4]                     */


#define OP_NoConflict     28 /* synopsis: key=r[P3@P4]                     */
#define OP_NotFound       29 /* synopsis: key=r[P3@P4]                     */
#define OP_Found          30 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekRowid      31 /* synopsis: intkey=r[P3]                     */
#define OP_NotExists      32 /* synopsis: intkey=r[P3]                     */


#define OP_Last           33
#define OP_IfSmaller      34
#define OP_SorterSort     35
#define OP_Sort           36
#define OP_Rewind         37
#define OP_IdxLE          38 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxGT          39 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxLT          40 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxGE          41 /* synopsis: key=r[P3@P4]                     */
#define OP_RowSetRead     42 /* synopsis: r[P3]=rowset(P1)                 */
#define OP_RowSetTest     43 /* synopsis: if r[P3] in rowset(P1) goto P2   */
#define OP_Program        44
#define OP_FkIfZero       45 /* synopsis: if fkctr[P1]==0 goto P2          */
#define OP_IfPos          46 /* synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 */
#define OP_IfNotZero      47 /* synopsis: if r[P1]!=0 then r[P1]--, goto P2 */
#define OP_DecrJumpZero   48 /* synopsis: if (--r[P1])==0 goto P2          */
#define OP_IncrVacuum     49
#define OP_VNext          50
#define OP_Init           51 /* synopsis: Start at P2                      */
#define OP_Return         52
#define OP_EndCoroutine   53
#define OP_HaltIfNull     54 /* synopsis: if r[P3]=null halt               */
#define OP_Halt           55
#define OP_Integer        56 /* synopsis: r[P2]=P1                         */
#define OP_Int64          57 /* synopsis: r[P2]=P4                         */
#define OP_String         58 /* synopsis: r[P2]='P4' (len=P1)              */
#define OP_Null           59 /* synopsis: r[P2..P3]=NULL                   */
#define OP_SoftNull       60 /* synopsis: r[P1]=NULL                       */
#define OP_Blob           61 /* synopsis: r[P2]=P4 (len=P1)                */
#define OP_Variable       62 /* synopsis: r[P2]=parameter(P1,P4)           */
#define OP_Move           63 /* synopsis: r[P2@P3]=r[P1@P3]                */
#define OP_Copy           64 /* synopsis: r[P2@P3+1]=r[P1@P3+1]            */
#define OP_SCopy          65 /* synopsis: r[P2]=r[P1]                      */
#define OP_IntCopy        66 /* synopsis: r[P2]=r[P1]                      */
#define OP_ResultRow      67 /* synopsis: output=r[P1@P2]                  */
#define OP_CollSeq        68
#define OP_Function0      69 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_Or             70 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */
#define OP_And            71 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */
#define OP_Function       72 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_AddImm         73 /* synopsis: r[P1]=r[P1]+P2                   */
#define OP_RealAffinity   74
#define OP_IsNull         75 /* same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */
#define OP_NotNull        76 /* same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */
#define OP_Ne             77 /* same as TK_NE, synopsis: IF r[P3]!=r[P1]   */
#define OP_Eq             78 /* same as TK_EQ, synopsis: IF r[P3]==r[P1]   */
#define OP_Gt             79 /* same as TK_GT, synopsis: IF r[P3]>r[P1]    */
#define OP_Le             80 /* same as TK_LE, synopsis: IF r[P3]<=r[P1]   */
#define OP_Lt             81 /* same as TK_LT, synopsis: IF r[P3]<r[P1]    */
#define OP_Ge             82 /* same as TK_GE, synopsis: IF r[P3]>=r[P1]   */
#define OP_ElseNotEq      83 /* same as TK_ESCAPE                          */
#define OP_BitAnd         84 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */
#define OP_BitOr          85 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */
#define OP_ShiftLeft      86 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<<r[P1] */
#define OP_ShiftRight     87 /* same as TK_RSHIFT, synopsis: r[P3]=r[P2]>>r[P1] */
#define OP_Add            88 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */
#define OP_Subtract       89 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */
#define OP_Multiply       90 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */
#define OP_Divide         91 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */
#define OP_Remainder      92 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */
#define OP_Concat         93 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */
#define OP_Cast           94 /* synopsis: affinity(r[P1])                  */
#define OP_BitNot         95 /* same as TK_BITNOT, synopsis: r[P1]= ~r[P1] */
#define OP_Permutation    96

#define OP_String8        97 /* same as TK_STRING, synopsis: r[P2]='P4'    */
#define OP_Compare        98 /* synopsis: r[P1@P3] <-> r[P2@P3]            */
#define OP_Column         99 /* synopsis: r[P3]=PX                         */
#define OP_Affinity      100 /* synopsis: affinity(r[P1@P2])               */
#define OP_MakeRecord    101 /* synopsis: r[P3]=mkrec(r[P1@P2])            */
#define OP_Count         102 /* synopsis: r[P2]=count()                    */
#define OP_ReadCookie    103
#define OP_SetCookie     104
#define OP_ReopenIdx     105 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenRead      106 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenWrite     107 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenDup       108
#define OP_OpenAutoindex 109 /* synopsis: nColumn=P2                       */
#define OP_OpenEphemeral 110 /* synopsis: nColumn=P2                       */
#define OP_SorterOpen    111
#define OP_SequenceTest  112 /* synopsis: if( cursor[P1].ctr++ ) pc = P2   */
#define OP_OpenPseudo    113 /* synopsis: P3 columns in r[P2]              */
#define OP_Close         114
#define OP_ColumnsUsed   115
#define OP_Sequence      116 /* synopsis: r[P2]=cursor[P1].ctr++           */
#define OP_NewRowid      117 /* synopsis: r[P2]=rowid                      */
#define OP_Insert        118 /* synopsis: intkey=r[P3] data=r[P2]          */
#define OP_InsertInt     119 /* synopsis: intkey=P3 data=r[P2]             */
#define OP_Delete        120
#define OP_ResetCount    121
#define OP_SorterCompare 122 /* synopsis: if key(P1)!=trim(r[P3],P4) goto P2 */
#define OP_SorterData    123 /* synopsis: r[P2]=data                       */
#define OP_RowData       124 /* synopsis: r[P2]=data                       */
#define OP_Rowid         125 /* synopsis: r[P2]=rowid                      */
#define OP_NullRow       126
#define OP_SorterInsert  127 /* synopsis: key=r[P2]                        */
#define OP_IdxInsert     128 /* synopsis: key=r[P2]                        */
#define OP_IdxDelete     129 /* synopsis: key=r[P2@P3]                     */
#define OP_Seek          130 /* synopsis: Move P3 to P1.rowid              */
#define OP_IdxRowid      131 /* synopsis: r[P2]=rowid                      */


#define OP_Real          132 /* same as TK_FLOAT, synopsis: r[P2]=P4       */
#define OP_Destroy       133
#define OP_Clear         134
#define OP_ResetSorter   135
#define OP_CreateIndex   136 /* synopsis: r[P2]=root iDb=P1                */
#define OP_CreateTable   137 /* synopsis: r[P2]=root iDb=P1                */
#define OP_SqlExec       138
#define OP_ParseSchema   139
#define OP_LoadAnalysis  140
#define OP_DropTable     141
#define OP_DropIndex     142
#define OP_DropTrigger   143
#define OP_IntegrityCk   144
#define OP_RowSetAdd     145 /* synopsis: rowset(P1)=r[P2]                 */
#define OP_Param         146
#define OP_FkCounter     147 /* synopsis: fkctr[P1]+=P2                    */
#define OP_MemMax        148 /* synopsis: r[P1]=max(r[P1],r[P2])           */
#define OP_OffsetLimit   149 /* synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) */
#define OP_AggStep0      150 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggStep       151 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggFinal      152 /* synopsis: accum=r[P1] N=P2                 */
#define OP_Expire        153
#define OP_TableLock     154 /* synopsis: iDb=P1 root=P2 write=P3          */
#define OP_VBegin        155
#define OP_VCreate       156
#define OP_VDestroy      157
#define OP_VOpen         158
#define OP_VColumn       159 /* synopsis: r[P3]=vcolumn(P2)                */
#define OP_VRename       160
#define OP_Pagecount     161
#define OP_MaxPgcnt      162
#define OP_CursorHint    163
#define OP_Noop          164
#define OP_Explain       165

/* Properties such as "out2" or "jump" that are specified in
** comments following the "case" for each opcode in the vdbe.c
** are encoded into bitvectors as follows:
*/
#define OPFLG_JUMP        0x01  /* jump:  P2 holds jmp target */
#define OPFLG_IN1         0x02  /* in1:   P1 is an input */
#define OPFLG_IN2         0x04  /* in2:   P2 is an input */
#define OPFLG_IN3         0x08  /* in3:   P3 is an input */
#define OPFLG_OUT2        0x10  /* out2:  P2 is an output */
#define OPFLG_OUT3        0x20  /* out3:  P3 is an output */
#define OPFLG_INITIALIZER {\
/*   0 */ 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01,\
/*   8 */ 0x00, 0x10, 0x00, 0x01, 0x00, 0x01, 0x01, 0x01,\
/*  16 */ 0x03, 0x03, 0x01, 0x12, 0x01, 0x03, 0x03, 0x01,\
/*  24 */ 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,\



/*  32 */ 0x09, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,\
/*  40 */ 0x01, 0x01, 0x23, 0x0b, 0x01, 0x01, 0x03, 0x03,\
/*  48 */ 0x03, 0x01, 0x01, 0x01, 0x02, 0x02, 0x08, 0x00,\
/*  56 */ 0x10, 0x10, 0x10, 0x10, 0x00, 0x10, 0x10, 0x00,\
/*  64 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x26, 0x26,\
/*  72 */ 0x00, 0x02, 0x02, 0x03, 0x03, 0x0b, 0x0b, 0x0b,\
/*  80 */ 0x0b, 0x0b, 0x0b, 0x01, 0x26, 0x26, 0x26, 0x26,\
/*  88 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x02, 0x12,\
/*  96 */ 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10, 0x10,\
/* 104 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 112 */ 0x00, 0x00, 0x00, 0x00, 0x10, 0x10, 0x00, 0x00,\
/* 120 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x04,\
/* 128 */ 0x04, 0x00, 0x00, 0x10, 0x10, 0x10, 0x00, 0x00,\
/* 136 */ 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 144 */ 0x00, 0x06, 0x10, 0x00, 0x04, 0x1a, 0x00, 0x00,\
/* 152 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 160 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00,}

/* The sqlite3P2Values() routine is able to run faster if it knows
** the value of the largest JUMP opcode.  The smaller the maximum
** JUMP opcode the better, so the mkopcodeh.tcl script that
** generated this include file strives to group all JUMP opcodes
** together near the beginning of the list.
*/
#define SQLITE_MX_JUMP_OPCODE  83  /* Maximum JUMP opcode */

/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.
15207
15208
15209
15210
15211
15212
15213

15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
** column expression as it exists in a SELECT statement.  However, if
** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
** form is used for name resolution with nested FROM clauses.
*/
struct ExprList {
  int nExpr;             /* Number of expressions on the list */

  struct ExprList_item { /* For each expression in the list */
    Expr *pExpr;            /* The parse tree for this expression */
    char *zName;            /* Token associated with this expression */
    char *zSpan;            /* Original text of the expression */
    u8 sortOrder;           /* 1 for DESC or 0 for ASC */
    unsigned done :1;       /* A flag to indicate when processing is finished */
    unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
    unsigned reusable :1;   /* Constant expression is reusable */
    union {
      struct {
        u16 iOrderByCol;      /* For ORDER BY, column number in result set */
        u16 iAlias;           /* Index into Parse.aAlias[] for zName */
      } x;
      int iConstExprReg;      /* Register in which Expr value is cached */
    } u;
  } *a;                  /* Alloc a power of two greater or equal to nExpr */
};

/*
** An instance of this structure is used by the parser to record both
** the parse tree for an expression and the span of input text for an
** expression.
*/







>















|







15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
** column expression as it exists in a SELECT statement.  However, if
** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
** form is used for name resolution with nested FROM clauses.
*/
struct ExprList {
  int nExpr;             /* Number of expressions on the list */
  int nAlloc;            /* Number of a[] slots allocated */
  struct ExprList_item { /* For each expression in the list */
    Expr *pExpr;            /* The parse tree for this expression */
    char *zName;            /* Token associated with this expression */
    char *zSpan;            /* Original text of the expression */
    u8 sortOrder;           /* 1 for DESC or 0 for ASC */
    unsigned done :1;       /* A flag to indicate when processing is finished */
    unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
    unsigned reusable :1;   /* Constant expression is reusable */
    union {
      struct {
        u16 iOrderByCol;      /* For ORDER BY, column number in result set */
        u16 iAlias;           /* Index into Parse.aAlias[] for zName */
      } x;
      int iConstExprReg;      /* Register in which Expr value is cached */
    } u;
  } a[1];                  /* One slot for each expression in the list */
};

/*
** An instance of this structure is used by the parser to record both
** the parse tree for an expression and the span of input text for an
** expression.
*/
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093



16094
16095
16096
16097
16098
16099
16100
  Parse *pParse;                            /* Parser context.  */
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
  int walkerDepth;                          /* Number of subqueries */
  u8 eCode;                                 /* A small processing code */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int n;                                     /* A counter */
    int iCur;                                  /* A cursor number */
    SrcList *pSrcList;                         /* FROM clause */
    struct SrcCount *pSrcCount;                /* Counting column references */
    struct CCurHint *pCCurHint;                /* Used by codeCursorHint() */
    int *aiCol;                                /* array of column indexes */
    struct IdxCover *pIdxCover;                /* Check for index coverage */



  } u;
};

/* Forward declarations */
SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);







|
|
|
|
|
|
|
|
>
>
>







16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
  Parse *pParse;                            /* Parser context.  */
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
  int walkerDepth;                          /* Number of subqueries */
  u8 eCode;                                 /* A small processing code */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                         /* Naming context */
    int n;                                    /* A counter */
    int iCur;                                 /* A cursor number */
    SrcList *pSrcList;                        /* FROM clause */
    struct SrcCount *pSrcCount;               /* Counting column references */
    struct CCurHint *pCCurHint;               /* Used by codeCursorHint() */
    int *aiCol;                               /* array of column indexes */
    struct IdxCover *pIdxCover;               /* Check for index coverage */
    struct IdxExprTrans *pIdxTrans;           /* Convert indexed expr to column */
    ExprList *pGroupBy;                       /* GROUP BY clause */
    struct HavingToWhereCtx *pHavingCtx;      /* HAVING to WHERE clause ctx */
  } u;
};

/* Forward declarations */
SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);
16240
16241
16242
16243
16244
16245
16246

16247
16248
16249
16250
16251
16252
16253
SQLITE_PRIVATE void *sqlite3DbMallocRawNN(sqlite3*, u64);
SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
SQLITE_PRIVATE void *sqlite3Realloc(void*, u64);
SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, u64);
SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*);

SQLITE_PRIVATE int sqlite3MallocSize(void*);
SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, void*);
SQLITE_PRIVATE void *sqlite3ScratchMalloc(int);
SQLITE_PRIVATE void sqlite3ScratchFree(void*);
SQLITE_PRIVATE void *sqlite3PageMalloc(int);
SQLITE_PRIVATE void sqlite3PageFree(void*);
SQLITE_PRIVATE void sqlite3MemSetDefault(void);







>







16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
SQLITE_PRIVATE void *sqlite3DbMallocRawNN(sqlite3*, u64);
SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
SQLITE_PRIVATE void *sqlite3Realloc(void*, u64);
SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, u64);
SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*);
SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3*, void*);
SQLITE_PRIVATE int sqlite3MallocSize(void*);
SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, void*);
SQLITE_PRIVATE void *sqlite3ScratchMalloc(int);
SQLITE_PRIVATE void sqlite3ScratchFree(void*);
SQLITE_PRIVATE void *sqlite3PageMalloc(int);
SQLITE_PRIVATE void sqlite3PageFree(void*);
SQLITE_PRIVATE void sqlite3MemSetDefault(void);
16555
16556
16557
16558
16559
16560
16561

16562
16563
16564
16565
16566
16567
16568
SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*);
SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*, u8);

SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr*,int);
#ifdef SQLITE_ENABLE_CURSOR_HINTS
SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr*);
#endif
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);







>







16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*);
SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*, u8);
SQLITE_PRIVATE int sqlite3ExprIsConstantOrGroupBy(Parse*, Expr*, ExprList*);
SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr*,int);
#ifdef SQLITE_ENABLE_CURSOR_HINTS
SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr*);
#endif
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
17264
17265
17266
17267
17268
17269
17270



17271
17272



17273

17274
17275
17276
17277
17278
17279
17280
**
** EVIDENCE-OF: R-38799-08373 URI filenames can be enabled or disabled
** using the SQLITE_USE_URI=1 or SQLITE_USE_URI=0 compile-time options.
**
** EVIDENCE-OF: R-43642-56306 By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** SQLITE_USE_URI symbol defined.



*/
#ifndef SQLITE_USE_URI



# define  SQLITE_USE_URI 0

#endif

/* EVIDENCE-OF: R-38720-18127 The default setting is determined by the
** SQLITE_ALLOW_COVERING_INDEX_SCAN compile-time option, or is "on" if
** that compile-time option is omitted.
*/
#ifndef SQLITE_ALLOW_COVERING_INDEX_SCAN







>
>
>


>
>
>
|
>







17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
**
** EVIDENCE-OF: R-38799-08373 URI filenames can be enabled or disabled
** using the SQLITE_USE_URI=1 or SQLITE_USE_URI=0 compile-time options.
**
** EVIDENCE-OF: R-43642-56306 By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** SQLITE_USE_URI symbol defined.
**
** URI filenames are enabled by default if SQLITE_HAS_CODEC is
** enabled.
*/
#ifndef SQLITE_USE_URI
# ifdef SQLITE_HAS_CODEC
#  define SQLITE_USE_URI 1
# else
#  define SQLITE_USE_URI 0
# endif
#endif

/* EVIDENCE-OF: R-38720-18127 The default setting is determined by the
** SQLITE_ALLOW_COVERING_INDEX_SCAN compile-time option, or is "on" if
** that compile-time option is omitted.
*/
#ifndef SQLITE_ALLOW_COVERING_INDEX_SCAN
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
#define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])

/*
** Internally, the vdbe manipulates nearly all SQL values as Mem
** structures. Each Mem struct may cache multiple representations (string,
** integer etc.) of the same value.
*/
struct Mem {
  union MemValue {
    double r;           /* Real value used when MEM_Real is set in flags */
    i64 i;              /* Integer value used when MEM_Int is set in flags */
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */







|







18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
#define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])

/*
** Internally, the vdbe manipulates nearly all SQL values as Mem
** structures. Each Mem struct may cache multiple representations (string,
** integer etc.) of the same value.
*/
struct sqlite3_value {
  union MemValue {
    double r;           /* Real value used when MEM_Real is set in flags */
    i64 i;              /* Integer value used when MEM_Int is set in flags */
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
** Each auxiliary data pointer stored by a user defined function 
** implementation calling sqlite3_set_auxdata() is stored in an instance
** of this structure. All such structures associated with a single VM
** are stored in a linked list headed at Vdbe.pAuxData. All are destroyed
** when the VM is halted (if not before).
*/
struct AuxData {
  int iOp;                        /* Instruction number of OP_Function opcode */
  int iArg;                       /* Index of function argument. */
  void *pAux;                     /* Aux data pointer */
  void (*xDelete)(void *);        /* Destructor for the aux data */
  AuxData *pNext;                 /* Next element in list */
};

/*
** The "context" argument for an installable function.  A pointer to an
** instance of this structure is the first argument to the routines used
** implement the SQL functions.
**







|
|

|
|







18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
** Each auxiliary data pointer stored by a user defined function 
** implementation calling sqlite3_set_auxdata() is stored in an instance
** of this structure. All such structures associated with a single VM
** are stored in a linked list headed at Vdbe.pAuxData. All are destroyed
** when the VM is halted (if not before).
*/
struct AuxData {
  int iAuxOp;                     /* Instruction number of OP_Function opcode */
  int iAuxArg;                    /* Index of function argument. */
  void *pAux;                     /* Aux data pointer */
  void (*xDeleteAux)(void*);      /* Destructor for the aux data */
  AuxData *pNextAux;              /* Next element in list */
};

/*
** The "context" argument for an installable function.  A pointer to an
** instance of this structure is the first argument to the routines used
** implement the SQL functions.
**
19220
19221
19222
19223
19224
19225
19226



19227
19228
19229
19230
19231
19232
19233
19234
19235
static void computeYMD(DateTime *p){
  int Z, A, B, C, D, E, X1;
  if( p->validYMD ) return;
  if( !p->validJD ){
    p->Y = 2000;
    p->M = 1;
    p->D = 1;



  }else{
    assert( validJulianDay(p->iJD) );
    Z = (int)((p->iJD + 43200000)/86400000);
    A = (int)((Z - 1867216.25)/36524.25);
    A = Z + 1 + A - (A/4);
    B = A + 1524;
    C = (int)((B - 122.1)/365.25);
    D = (36525*(C&32767))/100;
    E = (int)((B-D)/30.6001);







>
>
>

<







19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255

19256
19257
19258
19259
19260
19261
19262
static void computeYMD(DateTime *p){
  int Z, A, B, C, D, E, X1;
  if( p->validYMD ) return;
  if( !p->validJD ){
    p->Y = 2000;
    p->M = 1;
    p->D = 1;
  }else if( !validJulianDay(p->iJD) ){
    datetimeError(p);
    return;
  }else{

    Z = (int)((p->iJD + 43200000)/86400000);
    A = (int)((Z - 1867216.25)/36524.25);
    A = Z + 1 + A - (A/4);
    B = A + 1524;
    C = (int)((B - 122.1)/365.25);
    D = (36525*(C&32767))/100;
    E = (int)((B-D)/30.6001);
24657
24658
24659
24660
24661
24662
24663
24664

24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
*/
static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
  *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
}

/*
** Free memory that might be associated with a particular database
** connection.

*/
SQLITE_PRIVATE void sqlite3DbFree(sqlite3 *db, void *p){
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  if( p==0 ) return;
  if( db ){
    if( db->pnBytesFreed ){
      measureAllocationSize(db, p);
      return;
    }
    if( isLookaside(db, p) ){
      LookasideSlot *pBuf = (LookasideSlot*)p;







|
>

|

|







24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
*/
static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
  *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
}

/*
** Free memory that might be associated with a particular database
** connection.  Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op.
** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL.
*/
SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3 *db, void *p){
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  assert( p!=0 );
  if( db ){
    if( db->pnBytesFreed ){
      measureAllocationSize(db, p);
      return;
    }
    if( isLookaside(db, p) ){
      LookasideSlot *pBuf = (LookasideSlot*)p;
24684
24685
24686
24687
24688
24689
24690




24691
24692
24693
24694
24695
24696
24697
    }
  }
  assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
  assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
  assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
  sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
  sqlite3_free(p);




}

/*
** Change the size of an existing memory allocation
*/
SQLITE_PRIVATE void *sqlite3Realloc(void *pOld, u64 nBytes){
  int nOld, nNew, nDiff;







>
>
>
>







24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
    }
  }
  assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
  assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
  assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
  sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
  sqlite3_free(p);
}
SQLITE_PRIVATE void sqlite3DbFree(sqlite3 *db, void *p){
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  if( p ) sqlite3DbFreeNN(db, p);
}

/*
** Change the size of an existing memory allocation
*/
SQLITE_PRIVATE void *sqlite3Realloc(void *pOld, u64 nBytes){
  int nOld, nNew, nDiff;
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391




26392

26393
26394
26395
26396
26397
26398
26399

/*
** Generate a human-readable explanation of an expression tree.
*/
SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
  const char *zBinOp = 0;   /* Binary operator */
  const char *zUniOp = 0;   /* Unary operator */
  char zFlgs[30];
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  if( pExpr==0 ){
    sqlite3TreeViewLine(pView, "nil");
    sqlite3TreeViewPop(pView);
    return;
  }
  if( pExpr->flags ){




    sqlite3_snprintf(sizeof(zFlgs),zFlgs,"  flags=0x%x",pExpr->flags);

  }else{
    zFlgs[0] = 0;
  }
  switch( pExpr->op ){
    case TK_AGG_COLUMN: {
      sqlite3TreeViewLine(pView, "AGG{%d:%d}%s",
            pExpr->iTable, pExpr->iColumn, zFlgs);







|







>
>
>
>
|
>







26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436

/*
** Generate a human-readable explanation of an expression tree.
*/
SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
  const char *zBinOp = 0;   /* Binary operator */
  const char *zUniOp = 0;   /* Unary operator */
  char zFlgs[60];
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  if( pExpr==0 ){
    sqlite3TreeViewLine(pView, "nil");
    sqlite3TreeViewPop(pView);
    return;
  }
  if( pExpr->flags ){
    if( ExprHasProperty(pExpr, EP_FromJoin) ){
      sqlite3_snprintf(sizeof(zFlgs),zFlgs,"  flags=0x%x iRJT=%d",
                       pExpr->flags, pExpr->iRightJoinTable);
    }else{
      sqlite3_snprintf(sizeof(zFlgs),zFlgs,"  flags=0x%x",pExpr->flags);
    }
  }else{
    zFlgs[0] = 0;
  }
  switch( pExpr->op ){
    case TK_AGG_COLUMN: {
      sqlite3TreeViewLine(pView, "AGG{%d:%d}%s",
            pExpr->iTable, pExpr->iColumn, zFlgs);
26603
26604
26605
26606
26607
26608
26609





26610
26611
26612
26613
26614
26615
26616
      sqlite3TreeViewBareExprList(pView, pExpr->x.pList, "VECTOR");
      break;
    }
    case TK_SELECT_COLUMN: {
      sqlite3TreeViewLine(pView, "SELECT-COLUMN %d", pExpr->iColumn);
      sqlite3TreeViewSelect(pView, pExpr->pLeft->x.pSelect, 0);
      break;





    }
    default: {
      sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
      break;
    }
  }
  if( zBinOp ){







>
>
>
>
>







26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
      sqlite3TreeViewBareExprList(pView, pExpr->x.pList, "VECTOR");
      break;
    }
    case TK_SELECT_COLUMN: {
      sqlite3TreeViewLine(pView, "SELECT-COLUMN %d", pExpr->iColumn);
      sqlite3TreeViewSelect(pView, pExpr->pLeft->x.pSelect, 0);
      break;
    }
    case TK_IF_NULL_ROW: {
      sqlite3TreeViewLine(pView, "IF-NULL-ROW %d", pExpr->iTable);
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
      break;
    }
    default: {
      sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
      break;
    }
  }
  if( zBinOp ){
28323
28324
28325
28326
28327
28328
28329

28330
28331
28332
28333
28334
28335
28336
      memcpy(pValue, &u, 4);
      return 1;
    }else{
      return 0;
    }
  }
#endif

  while( zNum[0]=='0' ) zNum++;
  for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
    v = v*10 + c;
  }

  /* The longest decimal representation of a 32 bit integer is 10 digits:
  **







>







28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
      memcpy(pValue, &u, 4);
      return 1;
    }else{
      return 0;
    }
  }
#endif
  if( !sqlite3Isdigit(zNum[0]) ) return 0;
  while( zNum[0]=='0' ) zNum++;
  for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
    v = v*10 + c;
  }

  /* The longest decimal representation of a 32 bit integer is 10 digits:
  **
29486
29487
29488
29489
29490
29491
29492

29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560


29561
29562
29563



















29564

29565
29566
29567

29568
29569
29570
29571
29572
29573
29574
29575
29576

29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602


29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
    /*  16 */ "Yield"            OpHelp(""),
    /*  17 */ "MustBeInt"        OpHelp(""),
    /*  18 */ "Jump"             OpHelp(""),
    /*  19 */ "Not"              OpHelp("r[P2]= !r[P1]"),
    /*  20 */ "Once"             OpHelp(""),
    /*  21 */ "If"               OpHelp(""),
    /*  22 */ "IfNot"            OpHelp(""),

    /*  23 */ "SeekLT"           OpHelp("key=r[P3@P4]"),
    /*  24 */ "SeekLE"           OpHelp("key=r[P3@P4]"),
    /*  25 */ "SeekGE"           OpHelp("key=r[P3@P4]"),
    /*  26 */ "SeekGT"           OpHelp("key=r[P3@P4]"),
    /*  27 */ "Or"               OpHelp("r[P3]=(r[P1] || r[P2])"),
    /*  28 */ "And"              OpHelp("r[P3]=(r[P1] && r[P2])"),
    /*  29 */ "NoConflict"       OpHelp("key=r[P3@P4]"),
    /*  30 */ "NotFound"         OpHelp("key=r[P3@P4]"),
    /*  31 */ "Found"            OpHelp("key=r[P3@P4]"),
    /*  32 */ "SeekRowid"        OpHelp("intkey=r[P3]"),
    /*  33 */ "NotExists"        OpHelp("intkey=r[P3]"),
    /*  34 */ "IsNull"           OpHelp("if r[P1]==NULL goto P2"),
    /*  35 */ "NotNull"          OpHelp("if r[P1]!=NULL goto P2"),
    /*  36 */ "Ne"               OpHelp("IF r[P3]!=r[P1]"),
    /*  37 */ "Eq"               OpHelp("IF r[P3]==r[P1]"),
    /*  38 */ "Gt"               OpHelp("IF r[P3]>r[P1]"),
    /*  39 */ "Le"               OpHelp("IF r[P3]<=r[P1]"),
    /*  40 */ "Lt"               OpHelp("IF r[P3]<r[P1]"),
    /*  41 */ "Ge"               OpHelp("IF r[P3]>=r[P1]"),
    /*  42 */ "ElseNotEq"        OpHelp(""),
    /*  43 */ "BitAnd"           OpHelp("r[P3]=r[P1]&r[P2]"),
    /*  44 */ "BitOr"            OpHelp("r[P3]=r[P1]|r[P2]"),
    /*  45 */ "ShiftLeft"        OpHelp("r[P3]=r[P2]<<r[P1]"),
    /*  46 */ "ShiftRight"       OpHelp("r[P3]=r[P2]>>r[P1]"),
    /*  47 */ "Add"              OpHelp("r[P3]=r[P1]+r[P2]"),
    /*  48 */ "Subtract"         OpHelp("r[P3]=r[P2]-r[P1]"),
    /*  49 */ "Multiply"         OpHelp("r[P3]=r[P1]*r[P2]"),
    /*  50 */ "Divide"           OpHelp("r[P3]=r[P2]/r[P1]"),
    /*  51 */ "Remainder"        OpHelp("r[P3]=r[P2]%r[P1]"),
    /*  52 */ "Concat"           OpHelp("r[P3]=r[P2]+r[P1]"),
    /*  53 */ "Last"             OpHelp(""),
    /*  54 */ "BitNot"           OpHelp("r[P1]= ~r[P1]"),
    /*  55 */ "IfSmaller"        OpHelp(""),
    /*  56 */ "SorterSort"       OpHelp(""),
    /*  57 */ "Sort"             OpHelp(""),
    /*  58 */ "Rewind"           OpHelp(""),
    /*  59 */ "IdxLE"            OpHelp("key=r[P3@P4]"),
    /*  60 */ "IdxGT"            OpHelp("key=r[P3@P4]"),
    /*  61 */ "IdxLT"            OpHelp("key=r[P3@P4]"),
    /*  62 */ "IdxGE"            OpHelp("key=r[P3@P4]"),
    /*  63 */ "RowSetRead"       OpHelp("r[P3]=rowset(P1)"),
    /*  64 */ "RowSetTest"       OpHelp("if r[P3] in rowset(P1) goto P2"),
    /*  65 */ "Program"          OpHelp(""),
    /*  66 */ "FkIfZero"         OpHelp("if fkctr[P1]==0 goto P2"),
    /*  67 */ "IfPos"            OpHelp("if r[P1]>0 then r[P1]-=P3, goto P2"),
    /*  68 */ "IfNotZero"        OpHelp("if r[P1]!=0 then r[P1]--, goto P2"),
    /*  69 */ "DecrJumpZero"     OpHelp("if (--r[P1])==0 goto P2"),
    /*  70 */ "IncrVacuum"       OpHelp(""),
    /*  71 */ "VNext"            OpHelp(""),
    /*  72 */ "Init"             OpHelp("Start at P2"),
    /*  73 */ "Return"           OpHelp(""),
    /*  74 */ "EndCoroutine"     OpHelp(""),
    /*  75 */ "HaltIfNull"       OpHelp("if r[P3]=null halt"),
    /*  76 */ "Halt"             OpHelp(""),
    /*  77 */ "Integer"          OpHelp("r[P2]=P1"),
    /*  78 */ "Int64"            OpHelp("r[P2]=P4"),
    /*  79 */ "String"           OpHelp("r[P2]='P4' (len=P1)"),
    /*  80 */ "Null"             OpHelp("r[P2..P3]=NULL"),
    /*  81 */ "SoftNull"         OpHelp("r[P1]=NULL"),
    /*  82 */ "Blob"             OpHelp("r[P2]=P4 (len=P1)"),
    /*  83 */ "Variable"         OpHelp("r[P2]=parameter(P1,P4)"),
    /*  84 */ "Move"             OpHelp("r[P2@P3]=r[P1@P3]"),
    /*  85 */ "Copy"             OpHelp("r[P2@P3+1]=r[P1@P3+1]"),
    /*  86 */ "SCopy"            OpHelp("r[P2]=r[P1]"),
    /*  87 */ "IntCopy"          OpHelp("r[P2]=r[P1]"),
    /*  88 */ "ResultRow"        OpHelp("output=r[P1@P2]"),
    /*  89 */ "CollSeq"          OpHelp(""),
    /*  90 */ "Function0"        OpHelp("r[P3]=func(r[P2@P5])"),


    /*  91 */ "Function"         OpHelp("r[P3]=func(r[P2@P5])"),
    /*  92 */ "AddImm"           OpHelp("r[P1]=r[P1]+P2"),
    /*  93 */ "RealAffinity"     OpHelp(""),



















    /*  94 */ "Cast"             OpHelp("affinity(r[P1])"),

    /*  95 */ "Permutation"      OpHelp(""),
    /*  96 */ "Compare"          OpHelp("r[P1@P3] <-> r[P2@P3]"),
    /*  97 */ "String8"          OpHelp("r[P2]='P4'"),

    /*  98 */ "Column"           OpHelp("r[P3]=PX"),
    /*  99 */ "Affinity"         OpHelp("affinity(r[P1@P2])"),
    /* 100 */ "MakeRecord"       OpHelp("r[P3]=mkrec(r[P1@P2])"),
    /* 101 */ "Count"            OpHelp("r[P2]=count()"),
    /* 102 */ "ReadCookie"       OpHelp(""),
    /* 103 */ "SetCookie"        OpHelp(""),
    /* 104 */ "ReopenIdx"        OpHelp("root=P2 iDb=P3"),
    /* 105 */ "OpenRead"         OpHelp("root=P2 iDb=P3"),
    /* 106 */ "OpenWrite"        OpHelp("root=P2 iDb=P3"),

    /* 107 */ "OpenAutoindex"    OpHelp("nColumn=P2"),
    /* 108 */ "OpenEphemeral"    OpHelp("nColumn=P2"),
    /* 109 */ "SorterOpen"       OpHelp(""),
    /* 110 */ "SequenceTest"     OpHelp("if( cursor[P1].ctr++ ) pc = P2"),
    /* 111 */ "OpenPseudo"       OpHelp("P3 columns in r[P2]"),
    /* 112 */ "Close"            OpHelp(""),
    /* 113 */ "ColumnsUsed"      OpHelp(""),
    /* 114 */ "Sequence"         OpHelp("r[P2]=cursor[P1].ctr++"),
    /* 115 */ "NewRowid"         OpHelp("r[P2]=rowid"),
    /* 116 */ "Insert"           OpHelp("intkey=r[P3] data=r[P2]"),
    /* 117 */ "InsertInt"        OpHelp("intkey=P3 data=r[P2]"),
    /* 118 */ "Delete"           OpHelp(""),
    /* 119 */ "ResetCount"       OpHelp(""),
    /* 120 */ "SorterCompare"    OpHelp("if key(P1)!=trim(r[P3],P4) goto P2"),
    /* 121 */ "SorterData"       OpHelp("r[P2]=data"),
    /* 122 */ "RowData"          OpHelp("r[P2]=data"),
    /* 123 */ "Rowid"            OpHelp("r[P2]=rowid"),
    /* 124 */ "NullRow"          OpHelp(""),
    /* 125 */ "SorterInsert"     OpHelp("key=r[P2]"),
    /* 126 */ "IdxInsert"        OpHelp("key=r[P2]"),
    /* 127 */ "IdxDelete"        OpHelp("key=r[P2@P3]"),
    /* 128 */ "Seek"             OpHelp("Move P3 to P1.rowid"),
    /* 129 */ "IdxRowid"         OpHelp("r[P2]=rowid"),
    /* 130 */ "Destroy"          OpHelp(""),
    /* 131 */ "Clear"            OpHelp(""),
    /* 132 */ "Real"             OpHelp("r[P2]=P4"),


    /* 133 */ "ResetSorter"      OpHelp(""),
    /* 134 */ "CreateIndex"      OpHelp("r[P2]=root iDb=P1"),
    /* 135 */ "CreateTable"      OpHelp("r[P2]=root iDb=P1"),
    /* 136 */ "SqlExec"          OpHelp(""),
    /* 137 */ "ParseSchema"      OpHelp(""),
    /* 138 */ "LoadAnalysis"     OpHelp(""),
    /* 139 */ "DropTable"        OpHelp(""),
    /* 140 */ "DropIndex"        OpHelp(""),
    /* 141 */ "DropTrigger"      OpHelp(""),
    /* 142 */ "IntegrityCk"      OpHelp(""),
    /* 143 */ "RowSetAdd"        OpHelp("rowset(P1)=r[P2]"),
    /* 144 */ "Param"            OpHelp(""),
    /* 145 */ "FkCounter"        OpHelp("fkctr[P1]+=P2"),
    /* 146 */ "MemMax"           OpHelp("r[P1]=max(r[P1],r[P2])"),
    /* 147 */ "OffsetLimit"      OpHelp("if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)"),
    /* 148 */ "AggStep0"         OpHelp("accum=r[P3] step(r[P2@P5])"),
    /* 149 */ "AggStep"          OpHelp("accum=r[P3] step(r[P2@P5])"),
    /* 150 */ "AggFinal"         OpHelp("accum=r[P1] N=P2"),
    /* 151 */ "Expire"           OpHelp(""),
    /* 152 */ "TableLock"        OpHelp("iDb=P1 root=P2 write=P3"),
    /* 153 */ "VBegin"           OpHelp(""),
    /* 154 */ "VCreate"          OpHelp(""),
    /* 155 */ "VDestroy"         OpHelp(""),
    /* 156 */ "VOpen"            OpHelp(""),
    /* 157 */ "VColumn"          OpHelp("r[P3]=vcolumn(P2)"),
    /* 158 */ "VRename"          OpHelp(""),
    /* 159 */ "Pagecount"        OpHelp(""),
    /* 160 */ "MaxPgcnt"         OpHelp(""),
    /* 161 */ "CursorHint"       OpHelp(""),
    /* 162 */ "Noop"             OpHelp(""),
    /* 163 */ "Explain"          OpHelp(""),
  };
  return azName[i];
}
#endif

/************** End of opcodes.c *********************************************/
/************** Begin file os_unix.c *****************************************/







>
|
|
|
|
<
<
|
|
|
|
|
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
|
<

>
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
<

>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540


29541
29542
29543
29544
29545




29546
















29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609

29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644


29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
    /*  16 */ "Yield"            OpHelp(""),
    /*  17 */ "MustBeInt"        OpHelp(""),
    /*  18 */ "Jump"             OpHelp(""),
    /*  19 */ "Not"              OpHelp("r[P2]= !r[P1]"),
    /*  20 */ "Once"             OpHelp(""),
    /*  21 */ "If"               OpHelp(""),
    /*  22 */ "IfNot"            OpHelp(""),
    /*  23 */ "IfNullRow"        OpHelp("if P1.nullRow then r[P3]=NULL, goto P2"),
    /*  24 */ "SeekLT"           OpHelp("key=r[P3@P4]"),
    /*  25 */ "SeekLE"           OpHelp("key=r[P3@P4]"),
    /*  26 */ "SeekGE"           OpHelp("key=r[P3@P4]"),
    /*  27 */ "SeekGT"           OpHelp("key=r[P3@P4]"),


    /*  28 */ "NoConflict"       OpHelp("key=r[P3@P4]"),
    /*  29 */ "NotFound"         OpHelp("key=r[P3@P4]"),
    /*  30 */ "Found"            OpHelp("key=r[P3@P4]"),
    /*  31 */ "SeekRowid"        OpHelp("intkey=r[P3]"),
    /*  32 */ "NotExists"        OpHelp("intkey=r[P3]"),




    /*  33 */ "Last"             OpHelp(""),
















    /*  34 */ "IfSmaller"        OpHelp(""),
    /*  35 */ "SorterSort"       OpHelp(""),
    /*  36 */ "Sort"             OpHelp(""),
    /*  37 */ "Rewind"           OpHelp(""),
    /*  38 */ "IdxLE"            OpHelp("key=r[P3@P4]"),
    /*  39 */ "IdxGT"            OpHelp("key=r[P3@P4]"),
    /*  40 */ "IdxLT"            OpHelp("key=r[P3@P4]"),
    /*  41 */ "IdxGE"            OpHelp("key=r[P3@P4]"),
    /*  42 */ "RowSetRead"       OpHelp("r[P3]=rowset(P1)"),
    /*  43 */ "RowSetTest"       OpHelp("if r[P3] in rowset(P1) goto P2"),
    /*  44 */ "Program"          OpHelp(""),
    /*  45 */ "FkIfZero"         OpHelp("if fkctr[P1]==0 goto P2"),
    /*  46 */ "IfPos"            OpHelp("if r[P1]>0 then r[P1]-=P3, goto P2"),
    /*  47 */ "IfNotZero"        OpHelp("if r[P1]!=0 then r[P1]--, goto P2"),
    /*  48 */ "DecrJumpZero"     OpHelp("if (--r[P1])==0 goto P2"),
    /*  49 */ "IncrVacuum"       OpHelp(""),
    /*  50 */ "VNext"            OpHelp(""),
    /*  51 */ "Init"             OpHelp("Start at P2"),
    /*  52 */ "Return"           OpHelp(""),
    /*  53 */ "EndCoroutine"     OpHelp(""),
    /*  54 */ "HaltIfNull"       OpHelp("if r[P3]=null halt"),
    /*  55 */ "Halt"             OpHelp(""),
    /*  56 */ "Integer"          OpHelp("r[P2]=P1"),
    /*  57 */ "Int64"            OpHelp("r[P2]=P4"),
    /*  58 */ "String"           OpHelp("r[P2]='P4' (len=P1)"),
    /*  59 */ "Null"             OpHelp("r[P2..P3]=NULL"),
    /*  60 */ "SoftNull"         OpHelp("r[P1]=NULL"),
    /*  61 */ "Blob"             OpHelp("r[P2]=P4 (len=P1)"),
    /*  62 */ "Variable"         OpHelp("r[P2]=parameter(P1,P4)"),
    /*  63 */ "Move"             OpHelp("r[P2@P3]=r[P1@P3]"),
    /*  64 */ "Copy"             OpHelp("r[P2@P3+1]=r[P1@P3+1]"),
    /*  65 */ "SCopy"            OpHelp("r[P2]=r[P1]"),
    /*  66 */ "IntCopy"          OpHelp("r[P2]=r[P1]"),
    /*  67 */ "ResultRow"        OpHelp("output=r[P1@P2]"),
    /*  68 */ "CollSeq"          OpHelp(""),
    /*  69 */ "Function0"        OpHelp("r[P3]=func(r[P2@P5])"),
    /*  70 */ "Or"               OpHelp("r[P3]=(r[P1] || r[P2])"),
    /*  71 */ "And"              OpHelp("r[P3]=(r[P1] && r[P2])"),
    /*  72 */ "Function"         OpHelp("r[P3]=func(r[P2@P5])"),
    /*  73 */ "AddImm"           OpHelp("r[P1]=r[P1]+P2"),
    /*  74 */ "RealAffinity"     OpHelp(""),
    /*  75 */ "IsNull"           OpHelp("if r[P1]==NULL goto P2"),
    /*  76 */ "NotNull"          OpHelp("if r[P1]!=NULL goto P2"),
    /*  77 */ "Ne"               OpHelp("IF r[P3]!=r[P1]"),
    /*  78 */ "Eq"               OpHelp("IF r[P3]==r[P1]"),
    /*  79 */ "Gt"               OpHelp("IF r[P3]>r[P1]"),
    /*  80 */ "Le"               OpHelp("IF r[P3]<=r[P1]"),
    /*  81 */ "Lt"               OpHelp("IF r[P3]<r[P1]"),
    /*  82 */ "Ge"               OpHelp("IF r[P3]>=r[P1]"),
    /*  83 */ "ElseNotEq"        OpHelp(""),
    /*  84 */ "BitAnd"           OpHelp("r[P3]=r[P1]&r[P2]"),
    /*  85 */ "BitOr"            OpHelp("r[P3]=r[P1]|r[P2]"),
    /*  86 */ "ShiftLeft"        OpHelp("r[P3]=r[P2]<<r[P1]"),
    /*  87 */ "ShiftRight"       OpHelp("r[P3]=r[P2]>>r[P1]"),
    /*  88 */ "Add"              OpHelp("r[P3]=r[P1]+r[P2]"),
    /*  89 */ "Subtract"         OpHelp("r[P3]=r[P2]-r[P1]"),
    /*  90 */ "Multiply"         OpHelp("r[P3]=r[P1]*r[P2]"),
    /*  91 */ "Divide"           OpHelp("r[P3]=r[P2]/r[P1]"),
    /*  92 */ "Remainder"        OpHelp("r[P3]=r[P2]%r[P1]"),
    /*  93 */ "Concat"           OpHelp("r[P3]=r[P2]+r[P1]"),
    /*  94 */ "Cast"             OpHelp("affinity(r[P1])"),
    /*  95 */ "BitNot"           OpHelp("r[P1]= ~r[P1]"),
    /*  96 */ "Permutation"      OpHelp(""),

    /*  97 */ "String8"          OpHelp("r[P2]='P4'"),
    /*  98 */ "Compare"          OpHelp("r[P1@P3] <-> r[P2@P3]"),
    /*  99 */ "Column"           OpHelp("r[P3]=PX"),
    /* 100 */ "Affinity"         OpHelp("affinity(r[P1@P2])"),
    /* 101 */ "MakeRecord"       OpHelp("r[P3]=mkrec(r[P1@P2])"),
    /* 102 */ "Count"            OpHelp("r[P2]=count()"),
    /* 103 */ "ReadCookie"       OpHelp(""),
    /* 104 */ "SetCookie"        OpHelp(""),
    /* 105 */ "ReopenIdx"        OpHelp("root=P2 iDb=P3"),
    /* 106 */ "OpenRead"         OpHelp("root=P2 iDb=P3"),
    /* 107 */ "OpenWrite"        OpHelp("root=P2 iDb=P3"),
    /* 108 */ "OpenDup"          OpHelp(""),
    /* 109 */ "OpenAutoindex"    OpHelp("nColumn=P2"),
    /* 110 */ "OpenEphemeral"    OpHelp("nColumn=P2"),
    /* 111 */ "SorterOpen"       OpHelp(""),
    /* 112 */ "SequenceTest"     OpHelp("if( cursor[P1].ctr++ ) pc = P2"),
    /* 113 */ "OpenPseudo"       OpHelp("P3 columns in r[P2]"),
    /* 114 */ "Close"            OpHelp(""),
    /* 115 */ "ColumnsUsed"      OpHelp(""),
    /* 116 */ "Sequence"         OpHelp("r[P2]=cursor[P1].ctr++"),
    /* 117 */ "NewRowid"         OpHelp("r[P2]=rowid"),
    /* 118 */ "Insert"           OpHelp("intkey=r[P3] data=r[P2]"),
    /* 119 */ "InsertInt"        OpHelp("intkey=P3 data=r[P2]"),
    /* 120 */ "Delete"           OpHelp(""),
    /* 121 */ "ResetCount"       OpHelp(""),
    /* 122 */ "SorterCompare"    OpHelp("if key(P1)!=trim(r[P3],P4) goto P2"),
    /* 123 */ "SorterData"       OpHelp("r[P2]=data"),
    /* 124 */ "RowData"          OpHelp("r[P2]=data"),
    /* 125 */ "Rowid"            OpHelp("r[P2]=rowid"),
    /* 126 */ "NullRow"          OpHelp(""),
    /* 127 */ "SorterInsert"     OpHelp("key=r[P2]"),
    /* 128 */ "IdxInsert"        OpHelp("key=r[P2]"),
    /* 129 */ "IdxDelete"        OpHelp("key=r[P2@P3]"),
    /* 130 */ "Seek"             OpHelp("Move P3 to P1.rowid"),
    /* 131 */ "IdxRowid"         OpHelp("r[P2]=rowid"),


    /* 132 */ "Real"             OpHelp("r[P2]=P4"),
    /* 133 */ "Destroy"          OpHelp(""),
    /* 134 */ "Clear"            OpHelp(""),
    /* 135 */ "ResetSorter"      OpHelp(""),
    /* 136 */ "CreateIndex"      OpHelp("r[P2]=root iDb=P1"),
    /* 137 */ "CreateTable"      OpHelp("r[P2]=root iDb=P1"),
    /* 138 */ "SqlExec"          OpHelp(""),
    /* 139 */ "ParseSchema"      OpHelp(""),
    /* 140 */ "LoadAnalysis"     OpHelp(""),
    /* 141 */ "DropTable"        OpHelp(""),
    /* 142 */ "DropIndex"        OpHelp(""),
    /* 143 */ "DropTrigger"      OpHelp(""),
    /* 144 */ "IntegrityCk"      OpHelp(""),
    /* 145 */ "RowSetAdd"        OpHelp("rowset(P1)=r[P2]"),
    /* 146 */ "Param"            OpHelp(""),
    /* 147 */ "FkCounter"        OpHelp("fkctr[P1]+=P2"),
    /* 148 */ "MemMax"           OpHelp("r[P1]=max(r[P1],r[P2])"),
    /* 149 */ "OffsetLimit"      OpHelp("if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)"),
    /* 150 */ "AggStep0"         OpHelp("accum=r[P3] step(r[P2@P5])"),
    /* 151 */ "AggStep"          OpHelp("accum=r[P3] step(r[P2@P5])"),
    /* 152 */ "AggFinal"         OpHelp("accum=r[P1] N=P2"),
    /* 153 */ "Expire"           OpHelp(""),
    /* 154 */ "TableLock"        OpHelp("iDb=P1 root=P2 write=P3"),
    /* 155 */ "VBegin"           OpHelp(""),
    /* 156 */ "VCreate"          OpHelp(""),
    /* 157 */ "VDestroy"         OpHelp(""),
    /* 158 */ "VOpen"            OpHelp(""),
    /* 159 */ "VColumn"          OpHelp("r[P3]=vcolumn(P2)"),
    /* 160 */ "VRename"          OpHelp(""),
    /* 161 */ "Pagecount"        OpHelp(""),
    /* 162 */ "MaxPgcnt"         OpHelp(""),
    /* 163 */ "CursorHint"       OpHelp(""),
    /* 164 */ "Noop"             OpHelp(""),
    /* 165 */ "Explain"          OpHelp(""),
  };
  return azName[i];
}
#endif

/************** End of opcodes.c *********************************************/
/************** Begin file os_unix.c *****************************************/
45241
45242
45243
45244
45245
45246
45247
45248
45249

45250
45251
45252
45253
45254
45255
45256
45257
45258
45259
45260
45261
45262
45263
45264
45265
  if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
    szBulk = pCache->szAlloc*(i64)pCache->nMax;
  }
  zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
  sqlite3EndBenignMalloc();
  if( zBulk ){
    int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
    int i;
    for(i=0; i<nBulk; i++){

      PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
      pX->page.pBuf = zBulk;
      pX->page.pExtra = &pX[1];
      pX->isBulkLocal = 1;
      pX->isAnchor = 0;
      pX->pNext = pCache->pFree;
      pCache->pFree = pX;
      zBulk += pCache->szAlloc;
    }
  }
  return pCache->pFree!=0;
}

/*
** Malloc function used within this file to allocate space from the buffer
** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 







<
<
>








|







45286
45287
45288
45289
45290
45291
45292


45293
45294
45295
45296
45297
45298
45299
45300
45301
45302
45303
45304
45305
45306
45307
45308
45309
  if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
    szBulk = pCache->szAlloc*(i64)pCache->nMax;
  }
  zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
  sqlite3EndBenignMalloc();
  if( zBulk ){
    int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;


    do{
      PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
      pX->page.pBuf = zBulk;
      pX->page.pExtra = &pX[1];
      pX->isBulkLocal = 1;
      pX->isAnchor = 0;
      pX->pNext = pCache->pFree;
      pCache->pFree = pX;
      zBulk += pCache->szAlloc;
    }while( --nBulk );
  }
  return pCache->pFree!=0;
}

/*
** Malloc function used within this file to allocate space from the buffer
** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 
46167
46168
46169
46170
46171
46172
46173
46174
46175
46176
46177
46178
46179
46180
46181
** been released, the function returns. The return value is the total number 
** of bytes of memory released.
*/
SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int nReq){
  int nFree = 0;
  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
  assert( sqlite3_mutex_notheld(pcache1.mutex) );
  if( sqlite3GlobalConfig.nPage==0 ){
    PgHdr1 *p;
    pcache1EnterMutex(&pcache1.grp);
    while( (nReq<0 || nFree<nReq)
       &&  (p=pcache1.grp.lru.pLruPrev)!=0
       &&  p->isAnchor==0
    ){
      nFree += pcache1MemSize(p->page.pBuf);







|







46211
46212
46213
46214
46215
46216
46217
46218
46219
46220
46221
46222
46223
46224
46225
** been released, the function returns. The return value is the total number 
** of bytes of memory released.
*/
SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int nReq){
  int nFree = 0;
  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
  assert( sqlite3_mutex_notheld(pcache1.mutex) );
  if( sqlite3GlobalConfig.pPage==0 ){
    PgHdr1 *p;
    pcache1EnterMutex(&pcache1.grp);
    while( (nReq<0 || nFree<nReq)
       &&  (p=pcache1.grp.lru.pLruPrev)!=0
       &&  p->isAnchor==0
    ){
      nFree += pcache1MemSize(p->page.pBuf);
49127
49128
49129
49130
49131
49132
49133





49134
49135
49136
49137
49138
49139
49140
  int rc;
  PgHdr *pPg;                   /* An existing page in the cache */
  Pgno pgno;                    /* The page number of a page in journal */
  u32 cksum;                    /* Checksum used for sanity checking */
  char *aData;                  /* Temporary storage for the page */
  sqlite3_file *jfd;            /* The file descriptor for the journal file */
  int isSynced;                 /* True if journal page is synced */






  assert( (isMainJrnl&~1)==0 );      /* isMainJrnl is 0 or 1 */
  assert( (isSavepnt&~1)==0 );       /* isSavepnt is 0 or 1 */
  assert( isMainJrnl || pDone );     /* pDone always used on sub-journals */
  assert( isSavepnt || pDone==0 );   /* pDone never used on non-savepoint */

  aData = pPager->pTmpSpace;







>
>
>
>
>







49171
49172
49173
49174
49175
49176
49177
49178
49179
49180
49181
49182
49183
49184
49185
49186
49187
49188
49189
  int rc;
  PgHdr *pPg;                   /* An existing page in the cache */
  Pgno pgno;                    /* The page number of a page in journal */
  u32 cksum;                    /* Checksum used for sanity checking */
  char *aData;                  /* Temporary storage for the page */
  sqlite3_file *jfd;            /* The file descriptor for the journal file */
  int isSynced;                 /* True if journal page is synced */
#ifdef SQLITE_HAS_CODEC
  /* The jrnlEnc flag is true if Journal pages should be passed through
  ** the codec.  It is false for pure in-memory journals. */
  const int jrnlEnc = (isMainJrnl || pPager->subjInMemory==0);
#endif

  assert( (isMainJrnl&~1)==0 );      /* isMainJrnl is 0 or 1 */
  assert( (isSavepnt&~1)==0 );       /* isSavepnt is 0 or 1 */
  assert( isMainJrnl || pDone );     /* pDone always used on sub-journals */
  assert( isSavepnt || pDone==0 );   /* pDone never used on non-savepoint */

  aData = pPager->pTmpSpace;
49250
49251
49252
49253
49254
49255
49256










49257





49258
49259
49260
49261


49262
49263
49264



49265
49266
49267
49268
49269
49270
49271
  if( isOpen(pPager->fd)
   && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
   && isSynced
  ){
    i64 ofst = (pgno-1)*(i64)pPager->pageSize;
    testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 );
    assert( !pagerUseWal(pPager) );










    rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst);





    if( pgno>pPager->dbFileSize ){
      pPager->dbFileSize = pgno;
    }
    if( pPager->pBackup ){


      CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM_BKPT);
      sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData);
      CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM_BKPT, aData);



    }
  }else if( !isMainJrnl && pPg==0 ){
    /* If this is a rollback of a savepoint and data was not written to
    ** the database and the page is not in-memory, there is a potential
    ** problem. When the page is next fetched by the b-tree layer, it 
    ** will be read from the database file, which may or may not be 
    ** current. 







>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>




>
>
|
|
|
>
>
>







49299
49300
49301
49302
49303
49304
49305
49306
49307
49308
49309
49310
49311
49312
49313
49314
49315
49316
49317
49318
49319
49320
49321
49322
49323
49324
49325
49326
49327
49328
49329
49330
49331
49332
49333
49334
49335
49336
49337
49338
49339
49340
  if( isOpen(pPager->fd)
   && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
   && isSynced
  ){
    i64 ofst = (pgno-1)*(i64)pPager->pageSize;
    testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 );
    assert( !pagerUseWal(pPager) );

    /* Write the data read from the journal back into the database file.
    ** This is usually safe even for an encrypted database - as the data
    ** was encrypted before it was written to the journal file. The exception
    ** is if the data was just read from an in-memory sub-journal. In that
    ** case it must be encrypted here before it is copied into the database
    ** file.  */
#ifdef SQLITE_HAS_CODEC
    if( !jrnlEnc ){
      CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM_BKPT, aData);
      rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst);
      CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM_BKPT);
    }else
#endif
    rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst);

    if( pgno>pPager->dbFileSize ){
      pPager->dbFileSize = pgno;
    }
    if( pPager->pBackup ){
#ifdef SQLITE_HAS_CODEC
      if( jrnlEnc ){
        CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM_BKPT);
        sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData);
        CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM_BKPT,aData);
      }else
#endif
      sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData);
    }
  }else if( !isMainJrnl && pPg==0 ){
    /* If this is a rollback of a savepoint and data was not written to
    ** the database and the page is not in-memory, there is a potential
    ** problem. When the page is next fetched by the b-tree layer, it 
    ** will be read from the database file, which may or may not be 
    ** current. 
49309
49310
49311
49312
49313
49314
49315

49316

49317
49318
49319
49320
49321
49322
49323
    /* If this was page 1, then restore the value of Pager.dbFileVers.
    ** Do this before any decoding. */
    if( pgno==1 ){
      memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
    }

    /* Decode the page just read from disk */

    CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM_BKPT);

    sqlite3PcacheRelease(pPg);
  }
  return rc;
}

/*
** Parameter zMaster is the name of a master journal file. A single journal







>
|
>







49378
49379
49380
49381
49382
49383
49384
49385
49386
49387
49388
49389
49390
49391
49392
49393
49394
    /* If this was page 1, then restore the value of Pager.dbFileVers.
    ** Do this before any decoding. */
    if( pgno==1 ){
      memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
    }

    /* Decode the page just read from disk */
#if SQLITE_HAS_CODEC
    if( jrnlEnc ){ CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM_BKPT); }
#endif
    sqlite3PcacheRelease(pPg);
  }
  return rc;
}

/*
** Parameter zMaster is the name of a master journal file. A single journal
51321
51322
51323
51324
51325
51326
51327
51328


51329



51330
51331
51332
51333
51334
51335
51336

    /* If the sub-journal was opened successfully (or was already open),
    ** write the journal record into the file.  */
    if( rc==SQLITE_OK ){
      void *pData = pPg->pData;
      i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize);
      char *pData2;
  


      CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM_BKPT, pData2);



      PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno));
      rc = write32bits(pPager->sjfd, offset, pPg->pgno);
      if( rc==SQLITE_OK ){
        rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4);
      }
    }
  }







|
>
>
|
>
>
>







51392
51393
51394
51395
51396
51397
51398
51399
51400
51401
51402
51403
51404
51405
51406
51407
51408
51409
51410
51411
51412

    /* If the sub-journal was opened successfully (or was already open),
    ** write the journal record into the file.  */
    if( rc==SQLITE_OK ){
      void *pData = pPg->pData;
      i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize);
      char *pData2;

#if SQLITE_HAS_CODEC   
      if( !pPager->subjInMemory ){
        CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM_BKPT, pData2);
      }else
#endif
      pData2 = pData;
      PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno));
      rc = write32bits(pPager->sjfd, offset, pPg->pgno);
      if( rc==SQLITE_OK ){
        rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4);
      }
    }
  }
58474
58475
58476
58477
58478
58479
58480
58481
58482
58483

58484
58485
58486
58487
58488
58489
58490
58491
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
  u8 hints;                 /* As configured by CursorSetHints() */
  /* All fields above are zeroed when the cursor is allocated.  See
  ** sqlite3BtreeCursorZero().  Fields that follow must be manually
  ** initialized. */
  i8 iPage;                 /* Index of current page in apPage */
  u8 curIntKey;             /* Value of apPage[0]->intKey */
  struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
  void *padding1;           /* Make object size a multiple of 16 */
  u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */

  MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
};

/*
** Legal values for BtCursor.curFlags
*/
#define BTCF_WriteFlag    0x01   /* True if a write cursor */
#define BTCF_ValidNKey    0x02   /* True if info.nKey is valid */







<
|
|
>
|







58550
58551
58552
58553
58554
58555
58556

58557
58558
58559
58560
58561
58562
58563
58564
58565
58566
58567
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
  u8 hints;                 /* As configured by CursorSetHints() */
  /* All fields above are zeroed when the cursor is allocated.  See
  ** sqlite3BtreeCursorZero().  Fields that follow must be manually
  ** initialized. */
  i8 iPage;                 /* Index of current page in apPage */
  u8 curIntKey;             /* Value of apPage[0]->intKey */

  u16 ix;                   /* Current index for apPage[iPage] */
  u16 aiIdx[BTCURSOR_MAX_DEPTH-1];     /* Current index in apPage[i] */
  struct KeyInfo *pKeyInfo;            /* Arg passed to comparison function */
  MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */
};

/*
** Legal values for BtCursor.curFlags
*/
#define BTCF_WriteFlag    0x01   /* True if a write cursor */
#define BTCF_ValidNKey    0x02   /* True if info.nKey is valid */
59453
59454
59455
59456
59457
59458
59459

59460
59461
59462
59463
59464
59465
59466
59467
59468
59469
59470
59471
59472
59473
59474
59475
59476
59477
59478
59479
59480
59481
59482
59483
59484
59485
59486
**
** Otherwise, if argument isClearTable is false, then the row with
** rowid iRow is being replaced or deleted. In this case invalidate
** only those incrblob cursors open on that specific row.
*/
static void invalidateIncrblobCursors(
  Btree *pBtree,          /* The database file to check */

  i64 iRow,               /* The rowid that might be changing */
  int isClearTable        /* True if all rows are being deleted */
){
  BtCursor *p;
  if( pBtree->hasIncrblobCur==0 ) return;
  assert( sqlite3BtreeHoldsMutex(pBtree) );
  pBtree->hasIncrblobCur = 0;
  for(p=pBtree->pBt->pCursor; p; p=p->pNext){
    if( (p->curFlags & BTCF_Incrblob)!=0 ){
      pBtree->hasIncrblobCur = 1;
      if( isClearTable || p->info.nKey==iRow ){
        p->eState = CURSOR_INVALID;
      }
    }
  }
}

#else
  /* Stub function when INCRBLOB is omitted */
  #define invalidateIncrblobCursors(x,y,z)
#endif /* SQLITE_OMIT_INCRBLOB */

/*
** Set bit pgno of the BtShared.pHasContent bitvec. This is called 
** when a page that previously contained data becomes a free-list leaf 
** page.
**







>










|








|







59529
59530
59531
59532
59533
59534
59535
59536
59537
59538
59539
59540
59541
59542
59543
59544
59545
59546
59547
59548
59549
59550
59551
59552
59553
59554
59555
59556
59557
59558
59559
59560
59561
59562
59563
**
** Otherwise, if argument isClearTable is false, then the row with
** rowid iRow is being replaced or deleted. In this case invalidate
** only those incrblob cursors open on that specific row.
*/
static void invalidateIncrblobCursors(
  Btree *pBtree,          /* The database file to check */
  Pgno pgnoRoot,          /* The table that might be changing */
  i64 iRow,               /* The rowid that might be changing */
  int isClearTable        /* True if all rows are being deleted */
){
  BtCursor *p;
  if( pBtree->hasIncrblobCur==0 ) return;
  assert( sqlite3BtreeHoldsMutex(pBtree) );
  pBtree->hasIncrblobCur = 0;
  for(p=pBtree->pBt->pCursor; p; p=p->pNext){
    if( (p->curFlags & BTCF_Incrblob)!=0 ){
      pBtree->hasIncrblobCur = 1;
      if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
        p->eState = CURSOR_INVALID;
      }
    }
  }
}

#else
  /* Stub function when INCRBLOB is omitted */
  #define invalidateIncrblobCursors(w,x,y,z)
#endif /* SQLITE_OMIT_INCRBLOB */

/*
** Set bit pgno of the BtShared.pHasContent bitvec. This is called 
** when a page that previously contained data becomes a free-list leaf 
** page.
**
63270
63271
63272
63273
63274
63275
63276
63277
63278
63279
63280
63281
63282
63283
63284
63285
63286
63287
63288
63289
63290
63291
63292
63293
63294
** Using this cache reduces the number of calls to btreeParseCell().
*/
#ifndef NDEBUG
  static void assertCellInfo(BtCursor *pCur){
    CellInfo info;
    int iPage = pCur->iPage;
    memset(&info, 0, sizeof(info));
    btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
    assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
  }
#else
  #define assertCellInfo(x)
#endif
static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
  if( pCur->info.nSize==0 ){
    int iPage = pCur->iPage;
    pCur->curFlags |= BTCF_ValidNKey;
    btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
  }else{
    assertCellInfo(pCur);
  }
}

#ifndef NDEBUG  /* The next routine used only within assert() statements */
/*







|









|







63347
63348
63349
63350
63351
63352
63353
63354
63355
63356
63357
63358
63359
63360
63361
63362
63363
63364
63365
63366
63367
63368
63369
63370
63371
** Using this cache reduces the number of calls to btreeParseCell().
*/
#ifndef NDEBUG
  static void assertCellInfo(BtCursor *pCur){
    CellInfo info;
    int iPage = pCur->iPage;
    memset(&info, 0, sizeof(info));
    btreeParseCell(pCur->apPage[iPage], pCur->ix, &info);
    assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
  }
#else
  #define assertCellInfo(x)
#endif
static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
  if( pCur->info.nSize==0 ){
    int iPage = pCur->iPage;
    pCur->curFlags |= BTCF_ValidNKey;
    btreeParseCell(pCur->apPage[iPage],pCur->ix,&pCur->info);
  }else{
    assertCellInfo(pCur);
  }
}

#ifndef NDEBUG  /* The next routine used only within assert() statements */
/*
63487
63488
63489
63490
63491
63492
63493
63494
63495
63496
63497
63498
63499
63500
63501
#ifdef SQLITE_DIRECT_OVERFLOW_READ
  unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
#endif

  assert( pPage );
  assert( eOp==0 || eOp==1 );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
  assert( cursorHoldsMutex(pCur) );

  getCellInfo(pCur);
  aPayload = pCur->info.pPayload;
  assert( offset+amt <= pCur->info.nPayload );

  assert( aPayload > pPage->aData );







|







63564
63565
63566
63567
63568
63569
63570
63571
63572
63573
63574
63575
63576
63577
63578
#ifdef SQLITE_DIRECT_OVERFLOW_READ
  unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
#endif

  assert( pPage );
  assert( eOp==0 || eOp==1 );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->ix<pPage->nCell );
  assert( cursorHoldsMutex(pCur) );

  getCellInfo(pCur);
  aPayload = pCur->info.pPayload;
  assert( offset+amt <= pCur->info.nPayload );

  assert( aPayload > pPage->aData );
63674
63675
63676
63677
63678
63679
63680
63681
63682
63683
63684
63685
63686
63687
63688
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
}

/*
** This variant of sqlite3BtreePayload() works even if the cursor has not
** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
** interface.







|







63751
63752
63753
63754
63755
63756
63757
63758
63759
63760
63761
63762
63763
63764
63765
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
  assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
  return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
}

/*
** This variant of sqlite3BtreePayload() works even if the cursor has not
** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
** interface.
63736
63737
63738
63739
63740
63741
63742
63743
63744
63745
63746
63747
63748
63749
63750
  u32 *pAmt            /* Write the number of available bytes here */
){
  u32 amt;
  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->info.nSize>0 );
  assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
  assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
  amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
  if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
  *pAmt = amt;
  return (void*)pCur->info.pPayload;







|







63813
63814
63815
63816
63817
63818
63819
63820
63821
63822
63823
63824
63825
63826
63827
  u32 *pAmt            /* Write the number of available bytes here */
){
  u32 amt;
  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->info.nSize>0 );
  assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
  assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
  amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
  if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
  *pAmt = amt;
  return (void*)pCur->info.pPayload;
63787
63788
63789
63790
63791
63792
63793
63794
63795

63796
63797
63798
63799
63800
63801
63802
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  pCur->iPage++;
  pCur->aiIdx[pCur->iPage] = 0;

  return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
                        pCur, pCur->curPagerFlags);
}

#ifdef SQLITE_DEBUG
/*
** Page pParent is an internal (non-leaf) tree page. This function 







<
|
>







63864
63865
63866
63867
63868
63869
63870

63871
63872
63873
63874
63875
63876
63877
63878
63879
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);

  pCur->aiIdx[pCur->iPage++] = pCur->ix;
  pCur->ix = 0;
  return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
                        pCur, pCur->curPagerFlags);
}

#ifdef SQLITE_DEBUG
/*
** Page pParent is an internal (non-leaf) tree page. This function 
63836
63837
63838
63839
63840
63841
63842

63843
63844
63845
63846
63847
63848
63849
    pCur->apPage[pCur->iPage-1], 
    pCur->aiIdx[pCur->iPage-1], 
    pCur->apPage[pCur->iPage]->pgno
  );
  testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);

  releasePageNotNull(pCur->apPage[pCur->iPage--]);
}

/*
** Move the cursor to point to the root page of its b-tree structure.
**
** If the table has a virtual root page, then the cursor is moved to point







>







63913
63914
63915
63916
63917
63918
63919
63920
63921
63922
63923
63924
63925
63926
63927
    pCur->apPage[pCur->iPage-1], 
    pCur->aiIdx[pCur->iPage-1], 
    pCur->apPage[pCur->iPage]->pgno
  );
  testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  pCur->ix = pCur->aiIdx[pCur->iPage-1];
  releasePageNotNull(pCur->apPage[pCur->iPage--]);
}

/*
** Move the cursor to point to the root page of its b-tree structure.
**
** If the table has a virtual root page, then the cursor is moved to point
63917
63918
63919
63920
63921
63922
63923
63924
63925
63926
63927
63928
63929
63930
63931
  ** (or the freelist).  */
  assert( pRoot->intKey==1 || pRoot->intKey==0 );
  if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
    return SQLITE_CORRUPT_BKPT;
  }

skip_init:  
  pCur->aiIdx[0] = 0;
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);

  pRoot = pCur->apPage[0];
  if( pRoot->nCell>0 ){
    pCur->eState = CURSOR_VALID;
  }else if( !pRoot->leaf ){







|







63995
63996
63997
63998
63999
64000
64001
64002
64003
64004
64005
64006
64007
64008
64009
  ** (or the freelist).  */
  assert( pRoot->intKey==1 || pRoot->intKey==0 );
  if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
    return SQLITE_CORRUPT_BKPT;
  }

skip_init:  
  pCur->ix = 0;
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);

  pRoot = pCur->apPage[0];
  if( pRoot->nCell>0 ){
    pCur->eState = CURSOR_VALID;
  }else if( !pRoot->leaf ){
63951
63952
63953
63954
63955
63956
63957
63958
63959
63960
63961
63962
63963
63964
63965
63966
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
    rc = moveToChild(pCur, pgno);
  }
  return rc;
}

/*
** Move the cursor down to the right-most leaf entry beneath the







|
|







64029
64030
64031
64032
64033
64034
64035
64036
64037
64038
64039
64040
64041
64042
64043
64044
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    assert( pCur->ix<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->ix));
    rc = moveToChild(pCur, pgno);
  }
  return rc;
}

/*
** Move the cursor down to the right-most leaf entry beneath the
63977
63978
63979
63980
63981
63982
63983
63984
63985
63986
63987
63988
63989
63990
63991
63992
63993
63994
63995
  int rc = SQLITE_OK;
  MemPage *pPage = 0;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->aiIdx[pCur->iPage] = pPage->nCell;
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
  assert( pCur->info.nSize==0 );
  assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
  return SQLITE_OK;
}

/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something







|



|







64055
64056
64057
64058
64059
64060
64061
64062
64063
64064
64065
64066
64067
64068
64069
64070
64071
64072
64073
  int rc = SQLITE_OK;
  MemPage *pPage = 0;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->ix = pPage->nCell;
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  pCur->ix = pPage->nCell-1;
  assert( pCur->info.nSize==0 );
  assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
  return SQLITE_OK;
}

/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
64029
64030
64031
64032
64033
64034
64035
64036
64037
64038
64039
64040
64041
64042
64043
#ifdef SQLITE_DEBUG
    /* This block serves to assert() that the cursor really does point 
    ** to the last entry in the b-tree. */
    int ii;
    for(ii=0; ii<pCur->iPage; ii++){
      assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
    }
    assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
    assert( pCur->apPage[pCur->iPage]->leaf );
#endif
    return SQLITE_OK;
  }

  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){







|







64107
64108
64109
64110
64111
64112
64113
64114
64115
64116
64117
64118
64119
64120
64121
#ifdef SQLITE_DEBUG
    /* This block serves to assert() that the cursor really does point 
    ** to the last entry in the b-tree. */
    int ii;
    for(ii=0; ii<pCur->iPage; ii++){
      assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
    }
    assert( pCur->ix==pCur->apPage[pCur->iPage]->nCell-1 );
    assert( pCur->apPage[pCur->iPage]->leaf );
#endif
    return SQLITE_OK;
  }

  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
64176
64177
64178
64179
64180
64181
64182
64183
64184
64185
64186
64187
64188
64189
64190
64191
64192
64193
64194
64195
64196
64197
64198
64199
64200
64201
64202
64203
64204
64205
64206
64207
64208
64209
    ** a moveToChild() or moveToRoot() call would have detected corruption.  */
    assert( pPage->nCell>0 );
    assert( pPage->intKey==(pIdxKey==0) );
    lwr = 0;
    upr = pPage->nCell-1;
    assert( biasRight==0 || biasRight==1 );
    idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
    pCur->aiIdx[pCur->iPage] = (u16)idx;
    if( xRecordCompare==0 ){
      for(;;){
        i64 nCellKey;
        pCell = findCellPastPtr(pPage, idx);
        if( pPage->intKeyLeaf ){
          while( 0x80 <= *(pCell++) ){
            if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
          }
        }
        getVarint(pCell, (u64*)&nCellKey);
        if( nCellKey<intKey ){
          lwr = idx+1;
          if( lwr>upr ){ c = -1; break; }
        }else if( nCellKey>intKey ){
          upr = idx-1;
          if( lwr>upr ){ c = +1; break; }
        }else{
          assert( nCellKey==intKey );
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          if( !pPage->leaf ){
            lwr = idx;
            goto moveto_next_layer;
          }else{
            pCur->curFlags |= BTCF_ValidNKey;
            pCur->info.nKey = nCellKey;
            pCur->info.nSize = 0;







|


















|







64254
64255
64256
64257
64258
64259
64260
64261
64262
64263
64264
64265
64266
64267
64268
64269
64270
64271
64272
64273
64274
64275
64276
64277
64278
64279
64280
64281
64282
64283
64284
64285
64286
64287
    ** a moveToChild() or moveToRoot() call would have detected corruption.  */
    assert( pPage->nCell>0 );
    assert( pPage->intKey==(pIdxKey==0) );
    lwr = 0;
    upr = pPage->nCell-1;
    assert( biasRight==0 || biasRight==1 );
    idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
    pCur->ix = (u16)idx;
    if( xRecordCompare==0 ){
      for(;;){
        i64 nCellKey;
        pCell = findCellPastPtr(pPage, idx);
        if( pPage->intKeyLeaf ){
          while( 0x80 <= *(pCell++) ){
            if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
          }
        }
        getVarint(pCell, (u64*)&nCellKey);
        if( nCellKey<intKey ){
          lwr = idx+1;
          if( lwr>upr ){ c = -1; break; }
        }else if( nCellKey>intKey ){
          upr = idx-1;
          if( lwr>upr ){ c = +1; break; }
        }else{
          assert( nCellKey==intKey );
          pCur->ix = (u16)idx;
          if( !pPage->leaf ){
            lwr = idx;
            goto moveto_next_layer;
          }else{
            pCur->curFlags |= BTCF_ValidNKey;
            pCur->info.nKey = nCellKey;
            pCur->info.nSize = 0;
64264
64265
64266
64267
64268
64269
64270
64271
64272
64273
64274
64275
64276
64277
64278
            goto moveto_finish;
          }
          pCellKey = sqlite3Malloc( nCell+18 );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM_BKPT;
            goto moveto_finish;
          }
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
          pCur->curFlags &= ~BTCF_ValidOvfl;
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = xRecordCompare(nCell, pCellKey, pIdxKey);







|







64342
64343
64344
64345
64346
64347
64348
64349
64350
64351
64352
64353
64354
64355
64356
            goto moveto_finish;
          }
          pCellKey = sqlite3Malloc( nCell+18 );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM_BKPT;
            goto moveto_finish;
          }
          pCur->ix = (u16)idx;
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
          pCur->curFlags &= ~BTCF_ValidOvfl;
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = xRecordCompare(nCell, pCellKey, pIdxKey);
64286
64287
64288
64289
64290
64291
64292
64293
64294
64295
64296
64297
64298
64299
64300
64301
64302
64303
64304
64305
64306
64307
64308
64309
64310
64311
64312
64313
64314
64315
64316
64317
64318
64319
64320
64321
64322
64323
64324
          lwr = idx+1;
        }else if( c>0 ){
          upr = idx-1;
        }else{
          assert( c==0 );
          *pRes = 0;
          rc = SQLITE_OK;
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
          goto moveto_finish;
        }
        if( lwr>upr ) break;
        assert( lwr+upr>=0 );
        idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
      }
    }
    assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
    assert( pPage->isInit );
    if( pPage->leaf ){
      assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
      pCur->aiIdx[pCur->iPage] = (u16)idx;
      *pRes = c;
      rc = SQLITE_OK;
      goto moveto_finish;
    }
moveto_next_layer:
    if( lwr>=pPage->nCell ){
      chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    }else{
      chldPg = get4byte(findCell(pPage, lwr));
    }
    pCur->aiIdx[pCur->iPage] = (u16)lwr;
    rc = moveToChild(pCur, chldPg);
    if( rc ) break;
  }
moveto_finish:
  pCur->info.nSize = 0;
  assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
  return rc;







|











|
|










|







64364
64365
64366
64367
64368
64369
64370
64371
64372
64373
64374
64375
64376
64377
64378
64379
64380
64381
64382
64383
64384
64385
64386
64387
64388
64389
64390
64391
64392
64393
64394
64395
64396
64397
64398
64399
64400
64401
64402
          lwr = idx+1;
        }else if( c>0 ){
          upr = idx-1;
        }else{
          assert( c==0 );
          *pRes = 0;
          rc = SQLITE_OK;
          pCur->ix = (u16)idx;
          if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
          goto moveto_finish;
        }
        if( lwr>upr ) break;
        assert( lwr+upr>=0 );
        idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
      }
    }
    assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
    assert( pPage->isInit );
    if( pPage->leaf ){
      assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
      pCur->ix = (u16)idx;
      *pRes = c;
      rc = SQLITE_OK;
      goto moveto_finish;
    }
moveto_next_layer:
    if( lwr>=pPage->nCell ){
      chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    }else{
      chldPg = get4byte(findCell(pPage, lwr));
    }
    pCur->ix = (u16)lwr;
    rc = moveToChild(pCur, chldPg);
    if( rc ) break;
  }
moveto_finish:
  pCur->info.nSize = 0;
  assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
  return rc;
64411
64412
64413
64414
64415
64416
64417
64418
64419
64420
64421
64422
64423
64424
64425
        return SQLITE_OK;
      }
      pCur->skipNext = 0;
    }
  }

  pPage = pCur->apPage[pCur->iPage];
  idx = ++pCur->aiIdx[pCur->iPage];
  assert( pPage->isInit );

  /* If the database file is corrupt, it is possible for the value of idx 
  ** to be invalid here. This can only occur if a second cursor modifies
  ** the page while cursor pCur is holding a reference to it. Which can
  ** only happen if the database is corrupt in such a way as to link the
  ** page into more than one b-tree structure. */







|







64489
64490
64491
64492
64493
64494
64495
64496
64497
64498
64499
64500
64501
64502
64503
        return SQLITE_OK;
      }
      pCur->skipNext = 0;
    }
  }

  pPage = pCur->apPage[pCur->iPage];
  idx = ++pCur->ix;
  assert( pPage->isInit );

  /* If the database file is corrupt, it is possible for the value of idx 
  ** to be invalid here. This can only occur if a second cursor modifies
  ** the page while cursor pCur is holding a reference to it. Which can
  ** only happen if the database is corrupt in such a way as to link the
  ** page into more than one b-tree structure. */
64435
64436
64437
64438
64439
64440
64441
64442
64443
64444
64445
64446
64447
64448
64449
      if( pCur->iPage==0 ){
        *pRes = 1;
        pCur->eState = CURSOR_INVALID;
        return SQLITE_OK;
      }
      moveToParent(pCur);
      pPage = pCur->apPage[pCur->iPage];
    }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
    if( pPage->intKey ){
      return sqlite3BtreeNext(pCur, pRes);
    }else{
      return SQLITE_OK;
    }
  }
  if( pPage->leaf ){







|







64513
64514
64515
64516
64517
64518
64519
64520
64521
64522
64523
64524
64525
64526
64527
      if( pCur->iPage==0 ){
        *pRes = 1;
        pCur->eState = CURSOR_INVALID;
        return SQLITE_OK;
      }
      moveToParent(pCur);
      pPage = pCur->apPage[pCur->iPage];
    }while( pCur->ix>=pPage->nCell );
    if( pPage->intKey ){
      return sqlite3BtreeNext(pCur, pRes);
    }else{
      return SQLITE_OK;
    }
  }
  if( pPage->leaf ){
64459
64460
64461
64462
64463
64464
64465
64466
64467
64468
64469
64470
64471
64472
64473
64474
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  *pRes = 0;
  if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
  pPage = pCur->apPage[pCur->iPage];
  if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
    pCur->aiIdx[pCur->iPage]--;
    return btreeNext(pCur, pRes);
  }
  if( pPage->leaf ){
    return SQLITE_OK;
  }else{
    return moveToLeftmost(pCur);
  }







|
|







64537
64538
64539
64540
64541
64542
64543
64544
64545
64546
64547
64548
64549
64550
64551
64552
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  *pRes = 0;
  if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
  pPage = pCur->apPage[pCur->iPage];
  if( (++pCur->ix)>=pPage->nCell ){
    pCur->ix--;
    return btreeNext(pCur, pRes);
  }
  if( pPage->leaf ){
    return SQLITE_OK;
  }else{
    return moveToLeftmost(pCur);
  }
64524
64525
64526
64527
64528
64529
64530
64531
64532
64533
64534
64535
64536
64537
64538
64539
64540
64541
64542
64543
64544
64545
64546
64547
64548
64549
64550
64551
64552
64553
64554
64555
64556
64557
64558
64559
64560
64561
64562
64563
64564
64565
64566
64567
64568
64569
64570
64571
64572
64573
64574
64575
64576
64577
64578
      pCur->skipNext = 0;
    }
  }

  pPage = pCur->apPage[pCur->iPage];
  assert( pPage->isInit );
  if( !pPage->leaf ){
    int idx = pCur->aiIdx[pCur->iPage];
    rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
    if( rc ) return rc;
    rc = moveToRightmost(pCur);
  }else{
    while( pCur->aiIdx[pCur->iPage]==0 ){
      if( pCur->iPage==0 ){
        pCur->eState = CURSOR_INVALID;
        *pRes = 1;
        return SQLITE_OK;
      }
      moveToParent(pCur);
    }
    assert( pCur->info.nSize==0 );
    assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );

    pCur->aiIdx[pCur->iPage]--;
    pPage = pCur->apPage[pCur->iPage];
    if( pPage->intKey && !pPage->leaf ){
      rc = sqlite3BtreePrevious(pCur, pRes);
    }else{
      rc = SQLITE_OK;
    }
  }
  return rc;
}
SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  assert( cursorOwnsBtShared(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  *pRes = 0;
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
  pCur->info.nSize = 0;
  if( pCur->eState!=CURSOR_VALID
   || pCur->aiIdx[pCur->iPage]==0
   || pCur->apPage[pCur->iPage]->leaf==0
  ){
    return btreePrevious(pCur, pRes);
  }
  pCur->aiIdx[pCur->iPage]--;
  return SQLITE_OK;
}

/*
** Allocate a new page from the database file.
**
** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()







|




|










|


















|




|







64602
64603
64604
64605
64606
64607
64608
64609
64610
64611
64612
64613
64614
64615
64616
64617
64618
64619
64620
64621
64622
64623
64624
64625
64626
64627
64628
64629
64630
64631
64632
64633
64634
64635
64636
64637
64638
64639
64640
64641
64642
64643
64644
64645
64646
64647
64648
64649
64650
64651
64652
64653
64654
64655
64656
      pCur->skipNext = 0;
    }
  }

  pPage = pCur->apPage[pCur->iPage];
  assert( pPage->isInit );
  if( !pPage->leaf ){
    int idx = pCur->ix;
    rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
    if( rc ) return rc;
    rc = moveToRightmost(pCur);
  }else{
    while( pCur->ix==0 ){
      if( pCur->iPage==0 ){
        pCur->eState = CURSOR_INVALID;
        *pRes = 1;
        return SQLITE_OK;
      }
      moveToParent(pCur);
    }
    assert( pCur->info.nSize==0 );
    assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );

    pCur->ix--;
    pPage = pCur->apPage[pCur->iPage];
    if( pPage->intKey && !pPage->leaf ){
      rc = sqlite3BtreePrevious(pCur, pRes);
    }else{
      rc = SQLITE_OK;
    }
  }
  return rc;
}
SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  assert( cursorOwnsBtShared(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  *pRes = 0;
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
  pCur->info.nSize = 0;
  if( pCur->eState!=CURSOR_VALID
   || pCur->ix==0
   || pCur->apPage[pCur->iPage]->leaf==0
  ){
    return btreePrevious(pCur, pRes);
  }
  pCur->ix--;
  return SQLITE_OK;
}

/*
** Allocate a new page from the database file.
**
** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
66886
66887
66888
66889
66890
66891
66892
66893
66894
66895
66896
66897
66898
66899
66900
66901
        ** next iteration of the do-loop will balance the child page.
        */ 
        assert( balance_deeper_called==0 );
        VVA_ONLY( balance_deeper_called++ );
        rc = balance_deeper(pPage, &pCur->apPage[1]);
        if( rc==SQLITE_OK ){
          pCur->iPage = 1;
          pCur->aiIdx[0] = 0;
          pCur->aiIdx[1] = 0;
          assert( pCur->apPage[1]->nOverflow );
        }
      }else{
        break;
      }
    }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
      break;







|
|







66964
66965
66966
66967
66968
66969
66970
66971
66972
66973
66974
66975
66976
66977
66978
66979
        ** next iteration of the do-loop will balance the child page.
        */ 
        assert( balance_deeper_called==0 );
        VVA_ONLY( balance_deeper_called++ );
        rc = balance_deeper(pPage, &pCur->apPage[1]);
        if( rc==SQLITE_OK ){
          pCur->iPage = 1;
          pCur->ix = 0;
          pCur->aiIdx[0] = 0;
          assert( pCur->apPage[1]->nOverflow );
        }
      }else{
        break;
      }
    }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
      break;
67064
67065
67066
67067
67068
67069
67070
67071
67072
67073
67074
67075
67076
67077
67078
67079
67080
67081
67082
67083
67084
67085
67086
67087
67088
67089
67090
67091
67092
    if( rc ) return rc;
  }

  if( pCur->pKeyInfo==0 ){
    assert( pX->pKey==0 );
    /* If this is an insert into a table b-tree, invalidate any incrblob 
    ** cursors open on the row being replaced */
    invalidateIncrblobCursors(p, pX->nKey, 0);

    /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 
    ** to a row with the same key as the new entry being inserted.  */
    assert( (flags & BTREE_SAVEPOSITION)==0 || 
            ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );

    /* If the cursor is currently on the last row and we are appending a
    ** new row onto the end, set the "loc" to avoid an unnecessary
    ** btreeMoveto() call */
    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
      loc = 0;
    }else if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0
               && pCur->info.nKey==pX->nKey-1 ){
      loc = -1;
    }else if( loc==0 ){
      rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
      if( rc ) return rc;
    }
  }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
    if( pX->nMem ){
      UnpackedRecord r;







|











<
<
<







67142
67143
67144
67145
67146
67147
67148
67149
67150
67151
67152
67153
67154
67155
67156
67157
67158
67159
67160



67161
67162
67163
67164
67165
67166
67167
    if( rc ) return rc;
  }

  if( pCur->pKeyInfo==0 ){
    assert( pX->pKey==0 );
    /* If this is an insert into a table b-tree, invalidate any incrblob 
    ** cursors open on the row being replaced */
    invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);

    /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 
    ** to a row with the same key as the new entry being inserted.  */
    assert( (flags & BTREE_SAVEPOSITION)==0 || 
            ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );

    /* If the cursor is currently on the last row and we are appending a
    ** new row onto the end, set the "loc" to avoid an unnecessary
    ** btreeMoveto() call */
    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
      loc = 0;



    }else if( loc==0 ){
      rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
      if( rc ) return rc;
    }
  }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
    if( pX->nMem ){
      UnpackedRecord r;
67116
67117
67118
67119
67120
67121
67122
67123
67124
67125
67126
67127
67128
67129
67130
  assert( pPage->isInit );
  newCell = pBt->pTmpSpace;
  assert( newCell!=0 );
  rc = fillInCell(pPage, newCell, pX, &szNew);
  if( rc ) goto end_insert;
  assert( szNew==pPage->xCellSize(pPage, newCell) );
  assert( szNew <= MX_CELL_SIZE(pBt) );
  idx = pCur->aiIdx[pCur->iPage];
  if( loc==0 ){
    CellInfo info;
    assert( idx<pPage->nCell );
    rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc ){
      goto end_insert;
    }







|







67191
67192
67193
67194
67195
67196
67197
67198
67199
67200
67201
67202
67203
67204
67205
  assert( pPage->isInit );
  newCell = pBt->pTmpSpace;
  assert( newCell!=0 );
  rc = fillInCell(pPage, newCell, pX, &szNew);
  if( rc ) goto end_insert;
  assert( szNew==pPage->xCellSize(pPage, newCell) );
  assert( szNew <= MX_CELL_SIZE(pBt) );
  idx = pCur->ix;
  if( loc==0 ){
    CellInfo info;
    assert( idx<pPage->nCell );
    rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc ){
      goto end_insert;
    }
67144
67145
67146
67147
67148
67149
67150
67151

67152
67153
67154
67155
67156
67157
67158
      memcpy(oldCell, newCell, szNew);
      return SQLITE_OK;
    }
    dropCell(pPage, idx, info.nSize, &rc);
    if( rc ) goto end_insert;
  }else if( loc<0 && pPage->nCell>0 ){
    assert( pPage->leaf );
    idx = ++pCur->aiIdx[pCur->iPage];

  }else{
    assert( pPage->leaf );
  }
  insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
  assert( pPage->nOverflow==0 || rc==SQLITE_OK );
  assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );








|
>







67219
67220
67221
67222
67223
67224
67225
67226
67227
67228
67229
67230
67231
67232
67233
67234
      memcpy(oldCell, newCell, szNew);
      return SQLITE_OK;
    }
    dropCell(pPage, idx, info.nSize, &rc);
    if( rc ) goto end_insert;
  }else if( loc<0 && pPage->nCell>0 ){
    assert( pPage->leaf );
    idx = ++pCur->ix;
    pCur->curFlags &= ~BTCF_ValidNKey;
  }else{
    assert( pPage->leaf );
  }
  insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
  assert( pPage->nOverflow==0 || rc==SQLITE_OK );
  assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );

67240
67241
67242
67243
67244
67245
67246
67247
67248
67249
67250
67251
67252
67253
67254
67255
67256
67257
67258
67259

  assert( cursorOwnsBtShared(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->eState==CURSOR_VALID );
  assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );

  iCellDepth = pCur->iPage;
  iCellIdx = pCur->aiIdx[iCellDepth];
  pPage = pCur->apPage[iCellDepth];
  pCell = findCell(pPage, iCellIdx);

  /* If the bPreserve flag is set to true, then the cursor position must
  ** be preserved following this delete operation. If the current delete
  ** will cause a b-tree rebalance, then this is done by saving the cursor
  ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 







|




|







67316
67317
67318
67319
67320
67321
67322
67323
67324
67325
67326
67327
67328
67329
67330
67331
67332
67333
67334
67335

  assert( cursorOwnsBtShared(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );
  assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->eState==CURSOR_VALID );
  assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );

  iCellDepth = pCur->iPage;
  iCellIdx = pCur->ix;
  pPage = pCur->apPage[iCellDepth];
  pCell = findCell(pPage, iCellIdx);

  /* If the bPreserve flag is set to true, then the cursor position must
  ** be preserved following this delete operation. If the current delete
  ** will cause a b-tree rebalance, then this is done by saving the cursor
  ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 
67294
67295
67296
67297
67298
67299
67300
67301
67302
67303
67304
67305
67306
67307
67308
    rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
    if( rc ) return rc;
  }

  /* If this is a delete operation to remove a row from a table b-tree,
  ** invalidate any incrblob cursors open on the row being deleted.  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, pCur->info.nKey, 0);
  }

  /* Make the page containing the entry to be deleted writable. Then free any
  ** overflow pages associated with the entry and finally remove the cell
  ** itself from within the page.  */
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc ) return rc;







|







67370
67371
67372
67373
67374
67375
67376
67377
67378
67379
67380
67381
67382
67383
67384
    rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
    if( rc ) return rc;
  }

  /* If this is a delete operation to remove a row from a table b-tree,
  ** invalidate any incrblob cursors open on the row being deleted.  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
  }

  /* Make the page containing the entry to be deleted writable. Then free any
  ** overflow pages associated with the entry and finally remove the cell
  ** itself from within the page.  */
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc ) return rc;
67362
67363
67364
67365
67366
67367
67368
67369
67370
67371
67372
67373
67374
67375
67376
    if( bSkipnext ){
      assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
      assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
      assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
      pCur->eState = CURSOR_SKIPNEXT;
      if( iCellIdx>=pPage->nCell ){
        pCur->skipNext = -1;
        pCur->aiIdx[iCellDepth] = pPage->nCell-1;
      }else{
        pCur->skipNext = 1;
      }
    }else{
      rc = moveToRoot(pCur);
      if( bPreserve ){
        pCur->eState = CURSOR_REQUIRESEEK;







|







67438
67439
67440
67441
67442
67443
67444
67445
67446
67447
67448
67449
67450
67451
67452
    if( bSkipnext ){
      assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
      assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
      assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
      pCur->eState = CURSOR_SKIPNEXT;
      if( iCellIdx>=pPage->nCell ){
        pCur->skipNext = -1;
        pCur->ix = pPage->nCell-1;
      }else{
        pCur->skipNext = 1;
      }
    }else{
      rc = moveToRoot(pCur);
      if( bPreserve ){
        pCur->eState = CURSOR_REQUIRESEEK;
67621
67622
67623
67624
67625
67626
67627
67628
67629
67630
67631
67632
67633
67634
67635

  rc = saveAllCursors(pBt, (Pgno)iTable, 0);

  if( SQLITE_OK==rc ){
    /* Invalidate all incrblob cursors open on table iTable (assuming iTable
    ** is the root of a table b-tree - if it is not, the following call is
    ** a no-op).  */
    invalidateIncrblobCursors(p, 0, 1);
    rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*







|







67697
67698
67699
67700
67701
67702
67703
67704
67705
67706
67707
67708
67709
67710
67711

  rc = saveAllCursors(pBt, (Pgno)iTable, 0);

  if( SQLITE_OK==rc ){
    /* Invalidate all incrblob cursors open on table iTable (assuming iTable
    ** is the root of a table b-tree - if it is not, the following call is
    ** a no-op).  */
    invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
    rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
67875
67876
67877
67878
67879
67880
67881
67882
67883
67884
67885
67886
67887
67888
67889
67890
67891
67892
67893
67894
67895
67896
67897
67898
      do {
        if( pCur->iPage==0 ){
          /* All pages of the b-tree have been visited. Return successfully. */
          *pnEntry = nEntry;
          return moveToRoot(pCur);
        }
        moveToParent(pCur);
      }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );

      pCur->aiIdx[pCur->iPage]++;
      pPage = pCur->apPage[pCur->iPage];
    }

    /* Descend to the child node of the cell that the cursor currently 
    ** points at. This is the right-child if (iIdx==pPage->nCell).
    */
    iIdx = pCur->aiIdx[pCur->iPage];
    if( iIdx==pPage->nCell ){
      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
    }else{
      rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
    }
  }








|

|






|







67951
67952
67953
67954
67955
67956
67957
67958
67959
67960
67961
67962
67963
67964
67965
67966
67967
67968
67969
67970
67971
67972
67973
67974
      do {
        if( pCur->iPage==0 ){
          /* All pages of the b-tree have been visited. Return successfully. */
          *pnEntry = nEntry;
          return moveToRoot(pCur);
        }
        moveToParent(pCur);
      }while ( pCur->ix>=pCur->apPage[pCur->iPage]->nCell );

      pCur->ix++;
      pPage = pCur->apPage[pCur->iPage];
    }

    /* Descend to the child node of the cell that the cursor currently 
    ** points at. This is the right-child if (iIdx==pPage->nCell).
    */
    iIdx = pCur->ix;
    if( iIdx==pPage->nCell ){
      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
    }else{
      rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
    }
  }

68269
68270
68271
68272
68273
68274
68275

68276
68277
68278
68279
68280
68281
68282

    /* Check for integer primary key out of range */
    if( pPage->intKey ){
      if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
        checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
      }
      maxKey = info.nKey;

    }

    /* Check the content overflow list */
    if( info.nPayload>info.nLocal ){
      int nPage;       /* Number of pages on the overflow chain */
      Pgno pgnoOvfl;   /* First page of the overflow chain */
      assert( pc + info.nSize - 4 <= usableSize );







>







68345
68346
68347
68348
68349
68350
68351
68352
68353
68354
68355
68356
68357
68358
68359

    /* Check for integer primary key out of range */
    if( pPage->intKey ){
      if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
        checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
      }
      maxKey = info.nKey;
      keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
    }

    /* Check the content overflow list */
    if( info.nPayload>info.nLocal ){
      int nPage;       /* Number of pages on the overflow chain */
      Pgno pgnoOvfl;   /* First page of the overflow chain */
      assert( pc + info.nSize - 4 <= usableSize );
69654
69655
69656
69657
69658
69659
69660




69661
69662
69663
69664
69665
69666
69667
  ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
  ** That saves a few cycles in inner loops. */
  assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );

  /* Cannot be both MEM_Int and MEM_Real at the same time */
  assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );





  /* The szMalloc field holds the correct memory allocation size */
  assert( p->szMalloc==0
       || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );

  /* If p holds a string or blob, the Mem.z must point to exactly
  ** one of the following:
  **







>
>
>
>







69731
69732
69733
69734
69735
69736
69737
69738
69739
69740
69741
69742
69743
69744
69745
69746
69747
69748
  ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
  ** That saves a few cycles in inner loops. */
  assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );

  /* Cannot be both MEM_Int and MEM_Real at the same time */
  assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );

  /* Cannot be both MEM_Null and some other type */
  assert( (p->flags & MEM_Null)==0 ||
          (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob))==0 );

  /* The szMalloc field holds the correct memory allocation size */
  assert( p->szMalloc==0
       || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );

  /* If p holds a string or blob, the Mem.z must point to exactly
  ** one of the following:
  **
69739
69740
69741
69742
69743
69744
69745
69746
69747
69748
69749
69750
69751
69752
69753
69754
69755
69756
69757
69758
69759
69760
69761
69762
69763
69764
69765
69766
69767
69768
69769
69770
69771
69772
  /* If the bPreserve flag is set to true, then the memory cell must already
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );

  assert( pMem->szMalloc==0
       || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
  if( pMem->szMalloc<n ){
    if( n<32 ) n = 32;
    if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
      bPreserve = 0;
    }else{
      if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
      pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
    }
    if( pMem->zMalloc==0 ){
      sqlite3VdbeMemSetNull(pMem);
      pMem->z = 0;
      pMem->szMalloc = 0;
      return SQLITE_NOMEM_BKPT;
    }else{
      pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
    }
  }

  if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){
    memcpy(pMem->zMalloc, pMem->z, pMem->n);
  }
  if( (pMem->flags&MEM_Dyn)!=0 ){
    assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
    pMem->xDel((void *)(pMem->z));
  }








<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|







69820
69821
69822
69823
69824
69825
69826

69827
69828
69829
69830
69831
69832
69833
69834
69835
69836
69837
69838
69839
69840
69841
69842
69843

69844
69845
69846
69847
69848
69849
69850
69851
  /* If the bPreserve flag is set to true, then the memory cell must already
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );

  assert( pMem->szMalloc==0
       || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );

  if( n<32 ) n = 32;
  if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
    pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
    bPreserve = 0;
  }else{
    if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
    pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
  }
  if( pMem->zMalloc==0 ){
    sqlite3VdbeMemSetNull(pMem);
    pMem->z = 0;
    pMem->szMalloc = 0;
    return SQLITE_NOMEM_BKPT;
  }else{
    pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
  }


  if( bPreserve && pMem->z && ALWAYS(pMem->z!=pMem->zMalloc) ){
    memcpy(pMem->zMalloc, pMem->z, pMem->n);
  }
  if( (pMem->flags&MEM_Dyn)!=0 ){
    assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
    pMem->xDel((void *)(pMem->z));
  }

69955
69956
69957
69958
69959
69960
69961
69962
69963
69964
69965
69966
69967
69968
69969
    t.flags = MEM_Null;
    t.db = pMem->db;
    ctx.pOut = &t;
    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
    assert( (pMem->flags & MEM_Dyn)==0 );
    if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
    memcpy(pMem, &t, sizeof(t));
    rc = ctx.isError;
  }
  return rc;
}

/*







|







70034
70035
70036
70037
70038
70039
70040
70041
70042
70043
70044
70045
70046
70047
70048
    t.flags = MEM_Null;
    t.db = pMem->db;
    ctx.pOut = &t;
    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
    assert( (pMem->flags & MEM_Dyn)==0 );
    if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
    memcpy(pMem, &t, sizeof(t));
    rc = ctx.isError;
  }
  return rc;
}

/*
70006
70007
70008
70009
70010
70011
70012
70013
70014
70015
70016
70017
70018
70019
70020
** to be freed.
*/
static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
  if( VdbeMemDynamic(p) ){
    vdbeMemClearExternAndSetNull(p);
  }
  if( p->szMalloc ){
    sqlite3DbFree(p->db, p->zMalloc);
    p->szMalloc = 0;
  }
  p->z = 0;
}

/*
** Release any memory resources held by the Mem.  Both the memory that is







|







70085
70086
70087
70088
70089
70090
70091
70092
70093
70094
70095
70096
70097
70098
70099
** to be freed.
*/
static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
  if( VdbeMemDynamic(p) ){
    vdbeMemClearExternAndSetNull(p);
  }
  if( p->szMalloc ){
    sqlite3DbFreeNN(p->db, p->zMalloc);
    p->szMalloc = 0;
  }
  p->z = 0;
}

/*
** Release any memory resources held by the Mem.  Both the memory that is
70034
70035
70036
70037
70038
70039
70040
70041
70042
70043
70044
70045
70046
70047
70048
}

/*
** Convert a 64-bit IEEE double into a 64-bit signed integer.
** If the double is out of range of a 64-bit signed integer then
** return the closest available 64-bit signed integer.
*/
static i64 doubleToInt64(double r){
#ifdef SQLITE_OMIT_FLOATING_POINT
  /* When floating-point is omitted, double and int64 are the same thing */
  return r;
#else
  /*
  ** Many compilers we encounter do not define constants for the
  ** minimum and maximum 64-bit integers, or they define them







|







70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
}

/*
** Convert a 64-bit IEEE double into a 64-bit signed integer.
** If the double is out of range of a 64-bit signed integer then
** return the closest available 64-bit signed integer.
*/
static SQLITE_NOINLINE i64 doubleToInt64(double r){
#ifdef SQLITE_OMIT_FLOATING_POINT
  /* When floating-point is omitted, double and int64 are the same thing */
  return r;
#else
  /*
  ** Many compilers we encounter do not define constants for the
  ** minimum and maximum 64-bit integers, or they define them
70070
70071
70072
70073
70074
70075
70076





70077
70078
70079
70080
70081
70082
70083
70084
70085
70086
70087
70088
70089
70090
70091
70092
70093
70094
70095
70096
70097
70098
70099
70100
70101






70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
** a floating-point then the value returned is the integer part.
** If pMem is a string or blob, then we make an attempt to convert
** it into an integer and return that.  If pMem represents an
** an SQL-NULL value, return 0.
**
** If pMem represents a string value, its encoding might be changed.
*/





SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem *pMem){
  int flags;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  flags = pMem->flags;
  if( flags & MEM_Int ){
    return pMem->u.i;
  }else if( flags & MEM_Real ){
    return doubleToInt64(pMem->u.r);
  }else if( flags & (MEM_Str|MEM_Blob) ){
    i64 value = 0;
    assert( pMem->z || pMem->n==0 );
    sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
    return value;
  }else{
    return 0;
  }
}

/*
** Return the best representation of pMem that we can get into a
** double.  If pMem is already a double or an integer, return its
** value.  If it is a string or blob, try to convert it to a double.
** If it is a NULL, return 0.0.
*/






SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  if( pMem->flags & MEM_Real ){
    return pMem->u.r;
  }else if( pMem->flags & MEM_Int ){
    return (double)pMem->u.i;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    double val = (double)0;
    sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
    return val;
  }else{
    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    return (double)0;
  }
}

/*







>
>
>
>
>










<

<
|











>
>
>
>
>
>








<
<
<
|







70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170

70171

70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197



70198
70199
70200
70201
70202
70203
70204
70205
** a floating-point then the value returned is the integer part.
** If pMem is a string or blob, then we make an attempt to convert
** it into an integer and return that.  If pMem represents an
** an SQL-NULL value, return 0.
**
** If pMem represents a string value, its encoding might be changed.
*/
static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
  i64 value = 0;
  sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
  return value;
}
SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem *pMem){
  int flags;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  flags = pMem->flags;
  if( flags & MEM_Int ){
    return pMem->u.i;
  }else if( flags & MEM_Real ){
    return doubleToInt64(pMem->u.r);
  }else if( flags & (MEM_Str|MEM_Blob) ){

    assert( pMem->z || pMem->n==0 );

    return memIntValue(pMem);
  }else{
    return 0;
  }
}

/*
** Return the best representation of pMem that we can get into a
** double.  If pMem is already a double or an integer, return its
** value.  If it is a string or blob, try to convert it to a double.
** If it is a NULL, return 0.0.
*/
static SQLITE_NOINLINE double memRealValue(Mem *pMem){
  /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
  double val = (double)0;
  sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
  return val;
}
SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  if( pMem->flags & MEM_Real ){
    return pMem->u.r;
  }else if( pMem->flags & MEM_Int ){
    return (double)pMem->u.i;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){



    return memRealValue(pMem);
  }else{
    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    return (double)0;
  }
}

/*
70731
70732
70733
70734
70735
70736
70737
70738
70739
70740
70741
70742
70743
70744
70745
          assert( pRec->pKeyInfo->enc==ENC(db) );
          pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
          for(i=0; i<nCol; i++){
            pRec->aMem[i].flags = MEM_Null;
            pRec->aMem[i].db = db;
          }
        }else{
          sqlite3DbFree(db, pRec);
          pRec = 0;
        }
      }
      if( pRec==0 ) return 0;
      p->ppRec[0] = pRec;
    }
  







|







70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
70826
70827
70828
70829
70830
          assert( pRec->pKeyInfo->enc==ENC(db) );
          pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
          for(i=0; i<nCol; i++){
            pRec->aMem[i].flags = MEM_Null;
            pRec->aMem[i].db = db;
          }
        }else{
          sqlite3DbFreeNN(db, pRec);
          pRec = 0;
        }
      }
      if( pRec==0 ) return 0;
      p->ppRec[0] = pRec;
    }
  
70843
70844
70845
70846
70847
70848
70849
70850
70851
70852
70853
70854
70855
70856
70857
  if( rc!=SQLITE_OK ){
    pVal = 0;
  }
  if( apVal ){
    for(i=0; i<nVal; i++){
      sqlite3ValueFree(apVal[i]);
    }
    sqlite3DbFree(db, apVal);
  }

  *ppVal = pVal;
  return rc;
}
#else
# define valueFromFunction(a,b,c,d,e,f) SQLITE_OK







|







70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
  if( rc!=SQLITE_OK ){
    pVal = 0;
  }
  if( apVal ){
    for(i=0; i<nVal; i++){
      sqlite3ValueFree(apVal[i]);
    }
    sqlite3DbFreeNN(db, apVal);
  }

  *ppVal = pVal;
  return rc;
}
#else
# define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
71042
71043
71044
71045
71046
71047
71048
71049
71050
71051
71052
71053
71054
71055
71056
  if( aRet==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    aRet[0] = nSerial+1;
    putVarint32(&aRet[1], iSerial);
    sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
    sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
    sqlite3DbFree(db, aRet);
  }
}

/*
** Register built-in functions used to help read ANALYZE data.
*/
SQLITE_PRIVATE void sqlite3AnalyzeFunctions(void){







|







71127
71128
71129
71130
71131
71132
71133
71134
71135
71136
71137
71138
71139
71140
71141
  if( aRet==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    aRet[0] = nSerial+1;
    putVarint32(&aRet[1], iSerial);
    sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
    sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
    sqlite3DbFreeNN(db, aRet);
  }
}

/*
** Register built-in functions used to help read ANALYZE data.
*/
SQLITE_PRIVATE void sqlite3AnalyzeFunctions(void){
71269
71270
71271
71272
71273
71274
71275
71276
71277
71278
71279
71280
71281
71282
71283
    int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
    Mem *aMem = pRec->aMem;
    sqlite3 *db = aMem[0].db;
    for(i=0; i<nCol; i++){
      sqlite3VdbeMemRelease(&aMem[i]);
    }
    sqlite3KeyInfoUnref(pRec->pKeyInfo);
    sqlite3DbFree(db, pRec);
  }
}
#endif /* ifdef SQLITE_ENABLE_STAT4 */

/*
** Change the string value of an sqlite3_value object
*/







|







71354
71355
71356
71357
71358
71359
71360
71361
71362
71363
71364
71365
71366
71367
71368
    int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
    Mem *aMem = pRec->aMem;
    sqlite3 *db = aMem[0].db;
    for(i=0; i<nCol; i++){
      sqlite3VdbeMemRelease(&aMem[i]);
    }
    sqlite3KeyInfoUnref(pRec->pKeyInfo);
    sqlite3DbFreeNN(db, pRec);
  }
}
#endif /* ifdef SQLITE_ENABLE_STAT4 */

/*
** Change the string value of an sqlite3_value object
*/
71293
71294
71295
71296
71297
71298
71299
71300
71301
71302
71303
71304
71305
71306
71307

/*
** Free an sqlite3_value object
*/
SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){
  if( !v ) return;
  sqlite3VdbeMemRelease((Mem *)v);
  sqlite3DbFree(((Mem*)v)->db, v);
}

/*
** The sqlite3ValueBytes() routine returns the number of bytes in the
** sqlite3_value object assuming that it uses the encoding "enc".
** The valueBytes() routine is a helper function.
*/







|







71378
71379
71380
71381
71382
71383
71384
71385
71386
71387
71388
71389
71390
71391
71392

/*
** Free an sqlite3_value object
*/
SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){
  if( !v ) return;
  sqlite3VdbeMemRelease((Mem *)v);
  sqlite3DbFreeNN(((Mem*)v)->db, v);
}

/*
** The sqlite3ValueBytes() routine returns the number of bytes in the
** sqlite3_value object assuming that it uses the encoding "enc".
** The valueBytes() routine is a helper function.
*/
72136
72137
72138
72139
72140
72141
72142
72143
72144
72145
72146
72147
72148
72149
72150
72151
72152
72153
72154
72155
72156
72157
72158
72159
72160
72161
72162
72163
72164
72165

/*
** If the input FuncDef structure is ephemeral, then free it.  If
** the FuncDef is not ephermal, then do nothing.
*/
static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
  if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
    sqlite3DbFree(db, pDef);
  }
}

static void vdbeFreeOpArray(sqlite3 *, Op *, int);

/*
** Delete a P4 value if necessary.
*/
static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
  if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
  sqlite3DbFree(db, p);
}
static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
  freeEphemeralFunction(db, p->pFunc);
  sqlite3DbFree(db, p);
}
static void freeP4(sqlite3 *db, int p4type, void *p4){
  assert( db );
  switch( p4type ){
    case P4_FUNCCTX: {
      freeP4FuncCtx(db, (sqlite3_context*)p4);
      break;







|










|



|







72221
72222
72223
72224
72225
72226
72227
72228
72229
72230
72231
72232
72233
72234
72235
72236
72237
72238
72239
72240
72241
72242
72243
72244
72245
72246
72247
72248
72249
72250

/*
** If the input FuncDef structure is ephemeral, then free it.  If
** the FuncDef is not ephermal, then do nothing.
*/
static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
  if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
    sqlite3DbFreeNN(db, pDef);
  }
}

static void vdbeFreeOpArray(sqlite3 *, Op *, int);

/*
** Delete a P4 value if necessary.
*/
static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
  if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
  sqlite3DbFreeNN(db, p);
}
static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
  freeEphemeralFunction(db, p->pFunc);
 sqlite3DbFreeNN(db, p);
}
static void freeP4(sqlite3 *db, int p4type, void *p4){
  assert( db );
  switch( p4type ){
    case P4_FUNCCTX: {
      freeP4FuncCtx(db, (sqlite3_context*)p4);
      break;
72204
72205
72206
72207
72208
72209
72210
72211
72212
72213
72214
72215
72216

72217
72218
72219
72220
72221
72222
72223
72224
72225
** Free the space allocated for aOp and any p4 values allocated for the
** opcodes contained within. If aOp is not NULL it is assumed to contain 
** nOp entries. 
*/
static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
  if( aOp ){
    Op *pOp;
    for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
      if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
      sqlite3DbFree(db, pOp->zComment);
#endif     
    }

  }
  sqlite3DbFree(db, aOp);
}

/*
** Link the SubProgram object passed as the second argument into the linked
** list at Vdbe.pSubProgram. This list is used to delete all sub-program
** objects when the VM is no longer required.
*/







|





>

<







72289
72290
72291
72292
72293
72294
72295
72296
72297
72298
72299
72300
72301
72302
72303

72304
72305
72306
72307
72308
72309
72310
** Free the space allocated for aOp and any p4 values allocated for the
** opcodes contained within. If aOp is not NULL it is assumed to contain 
** nOp entries. 
*/
static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
  if( aOp ){
    Op *pOp;
    for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
      if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
      sqlite3DbFree(db, pOp->zComment);
#endif     
    }
    sqlite3DbFreeNN(db, aOp);
  }

}

/*
** Link the SubProgram object passed as the second argument into the linked
** list at Vdbe.pSubProgram. This list is used to delete all sub-program
** objects when the VM is no longer required.
*/
72884
72885
72886
72887
72888
72889
72890
72891
72892
72893
72894
72895
72896
72897
72898
      testcase( p->flags & MEM_Agg );
      testcase( p->flags & MEM_Dyn );
      testcase( p->flags & MEM_Frame );
      testcase( p->flags & MEM_RowSet );
      if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
        sqlite3VdbeMemRelease(p);
      }else if( p->szMalloc ){
        sqlite3DbFree(db, p->zMalloc);
        p->szMalloc = 0;
      }

      p->flags = MEM_Undefined;
    }while( (++p)<pEnd );
  }
}







|







72969
72970
72971
72972
72973
72974
72975
72976
72977
72978
72979
72980
72981
72982
72983
      testcase( p->flags & MEM_Agg );
      testcase( p->flags & MEM_Dyn );
      testcase( p->flags & MEM_Frame );
      testcase( p->flags & MEM_RowSet );
      if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
        sqlite3VdbeMemRelease(p);
      }else if( p->szMalloc ){
        sqlite3DbFreeNN(db, p->zMalloc);
        p->szMalloc = 0;
      }

      p->flags = MEM_Undefined;
    }while( (++p)<pEnd );
  }
}
73360
73361
73362
73363
73364
73365
73366
73367
73368
73369
73370
73371
73372
73373
73374
73375
  assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
  switch( pCx->eCurType ){
    case CURTYPE_SORTER: {
      sqlite3VdbeSorterClose(p->db, pCx);
      break;
    }
    case CURTYPE_BTREE: {
      if( pCx->pBtx ){
        sqlite3BtreeClose(pCx->pBtx);
        /* The pCx->pCursor will be close automatically, if it exists, by
        ** the call above. */
      }else{
        assert( pCx->uc.pCursor!=0 );
        sqlite3BtreeCloseCursor(pCx->uc.pCursor);
      }
      break;







|
|







73445
73446
73447
73448
73449
73450
73451
73452
73453
73454
73455
73456
73457
73458
73459
73460
  assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
  switch( pCx->eCurType ){
    case CURTYPE_SORTER: {
      sqlite3VdbeSorterClose(p->db, pCx);
      break;
    }
    case CURTYPE_BTREE: {
      if( pCx->isEphemeral ){
        if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
        /* The pCx->pCursor will be close automatically, if it exists, by
        ** the call above. */
      }else{
        assert( pCx->uc.pCursor!=0 );
        sqlite3BtreeCloseCursor(pCx->uc.pCursor);
      }
      break;
74255
74256
74257
74258
74259
74260
74261
74262
74263
74264
74265
74266
74267
74268
74269
        fprintf(out, "%s", zHdr);
        sqlite3VdbePrintOp(out, i, &p->aOp[i]);
      }
      fclose(out);
    }
  }
#endif
  p->iCurrentTime = 0;
  p->magic = VDBE_MAGIC_RESET;
  return p->rc & db->errMask;
}
 
/*
** Clean up and delete a VDBE after execution.  Return an integer which is
** the result code.  Write any error message text into *pzErrMsg.







<







74340
74341
74342
74343
74344
74345
74346

74347
74348
74349
74350
74351
74352
74353
        fprintf(out, "%s", zHdr);
        sqlite3VdbePrintOp(out, i, &p->aOp[i]);
      }
      fclose(out);
    }
  }
#endif

  p->magic = VDBE_MAGIC_RESET;
  return p->rc & db->errMask;
}
 
/*
** Clean up and delete a VDBE after execution.  Return an integer which is
** the result code.  Write any error message text into *pzErrMsg.
74294
74295
74296
74297
74298
74299
74300


74301
74302
74303
74304
74305
74306
74307
74308
74309
74310
74311
74312
74313
74314
74315
74316
74317
**    * the corresponding bit in argument mask is clear (where the first
**      function parameter corresponds to bit 0 etc.).
*/
SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
  while( *pp ){
    AuxData *pAux = *pp;
    if( (iOp<0)


     || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
    ){
      testcase( pAux->iArg==31 );
      if( pAux->xDelete ){
        pAux->xDelete(pAux->pAux);
      }
      *pp = pAux->pNext;
      sqlite3DbFree(db, pAux);
    }else{
      pp= &pAux->pNext;
    }
  }
}

/*
** Free all memory associated with the Vdbe passed as the second argument,
** except for object itself, which is preserved.







>
>
|

|
|
|

|


|







74378
74379
74380
74381
74382
74383
74384
74385
74386
74387
74388
74389
74390
74391
74392
74393
74394
74395
74396
74397
74398
74399
74400
74401
74402
74403
**    * the corresponding bit in argument mask is clear (where the first
**      function parameter corresponds to bit 0 etc.).
*/
SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
  while( *pp ){
    AuxData *pAux = *pp;
    if( (iOp<0)
     || (pAux->iAuxOp==iOp
          && pAux->iAuxArg>=0
          && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
    ){
      testcase( pAux->iAuxArg==31 );
      if( pAux->xDeleteAux ){
        pAux->xDeleteAux(pAux->pAux);
      }
      *pp = pAux->pNextAux;
      sqlite3DbFree(db, pAux);
    }else{
      pp= &pAux->pNextAux;
    }
  }
}

/*
** Free all memory associated with the Vdbe passed as the second argument,
** except for object itself, which is preserved.
74365
74366
74367
74368
74369
74370
74371
74372
74373
74374
74375
74376
74377
74378
74379
    db->pVdbe = p->pNext;
  }
  if( p->pNext ){
    p->pNext->pPrev = p->pPrev;
  }
  p->magic = VDBE_MAGIC_DEAD;
  p->db = 0;
  sqlite3DbFree(db, p);
}

/*
** The cursor "p" has a pending seek operation that has not yet been
** carried out.  Seek the cursor now.  If an error occurs, return
** the appropriate error code.
*/







|







74451
74452
74453
74454
74455
74456
74457
74458
74459
74460
74461
74462
74463
74464
74465
    db->pVdbe = p->pNext;
  }
  if( p->pNext ){
    p->pNext->pPrev = p->pPrev;
  }
  p->magic = VDBE_MAGIC_DEAD;
  p->db = 0;
  sqlite3DbFreeNN(db, p);
}

/*
** The cursor "p" has a pending seek operation that has not yet been
** carried out.  Seek the cursor now.  If an error occurs, return
** the appropriate error code.
*/
75924
75925
75926
75927
75928
75929
75930
75931
75932
75933
75934
75935
75936
75937
75938
static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
  if( p ){
    int i;
    for(i=0; i<nField; i++){
      Mem *pMem = &p->aMem[i];
      if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
    }
    sqlite3DbFree(db, p);
  }
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */

#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,







|







76010
76011
76012
76013
76014
76015
76016
76017
76018
76019
76020
76021
76022
76023
76024
static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
  if( p ){
    int i;
    for(i=0; i<nField; i++){
      Mem *pMem = &p->aMem[i];
      if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
    }
    sqlite3DbFreeNN(db, p);
  }
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */

#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
75991
75992
75993
75994
75995
75996
75997
75998
75999
76000
76001
76002
76003
76004
76005
  vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pUnpacked);
  vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pNewUnpacked);
  if( preupdate.aNew ){
    int i;
    for(i=0; i<pCsr->nField; i++){
      sqlite3VdbeMemRelease(&preupdate.aNew[i]);
    }
    sqlite3DbFree(db, preupdate.aNew);
  }
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */

/************** End of vdbeaux.c *********************************************/
/************** Begin file vdbeapi.c *****************************************/
/*







|







76077
76078
76079
76080
76081
76082
76083
76084
76085
76086
76087
76088
76089
76090
76091
  vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pUnpacked);
  vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pNewUnpacked);
  if( preupdate.aNew ){
    int i;
    for(i=0; i<pCsr->nField; i++){
      sqlite3VdbeMemRelease(&preupdate.aNew[i]);
    }
    sqlite3DbFreeNN(db, preupdate.aNew);
  }
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */

/************** End of vdbeaux.c *********************************************/
/************** Begin file vdbeapi.c *****************************************/
/*
76804
76805
76806
76807
76808
76809
76810






76811
76812
76813
76814
76815
76816
76817
76818
76819
76820
76821

76822
76823
76824
76825
76826
76827
76828
76829
76830
76831






76832
76833
76834
76835
76836
76837
76838
76839
76840
76841
76842
76843
76844
76845
76846
76847
76848
76849
76850
76851


76852
76853
76854
76855
76856
76857
76858
76859
76860
76861
76862
76863
76864
76865
76866
76867
76868
76869
76870
76871
76872
76873
76874
76875
76876
    return (void*)p->pMem->z;
  }
}

/*
** Return the auxiliary data pointer, if any, for the iArg'th argument to
** the user-function defined by pCtx.






*/
SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
  AuxData *pAuxData;

  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
#if SQLITE_ENABLE_STAT3_OR_STAT4
  if( pCtx->pVdbe==0 ) return 0;
#else
  assert( pCtx->pVdbe!=0 );
#endif
  for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){

    if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
  }

  return (pAuxData ? pAuxData->pAux : 0);
}

/*
** Set the auxiliary data pointer and delete function, for the iArg'th
** argument to the user-function defined by pCtx. Any previous value is
** deleted by calling the delete function specified when it was set.






*/
SQLITE_API void sqlite3_set_auxdata(
  sqlite3_context *pCtx, 
  int iArg, 
  void *pAux, 
  void (*xDelete)(void*)
){
  AuxData *pAuxData;
  Vdbe *pVdbe = pCtx->pVdbe;

  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  if( iArg<0 ) goto failed;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( pVdbe==0 ) goto failed;
#else
  assert( pVdbe!=0 );
#endif

  for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
    if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;


  }
  if( pAuxData==0 ){
    pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
    if( !pAuxData ) goto failed;
    pAuxData->iOp = pCtx->iOp;
    pAuxData->iArg = iArg;
    pAuxData->pNext = pVdbe->pAuxData;
    pVdbe->pAuxData = pAuxData;
    if( pCtx->fErrorOrAux==0 ){
      pCtx->isError = 0;
      pCtx->fErrorOrAux = 1;
    }
  }else if( pAuxData->xDelete ){
    pAuxData->xDelete(pAuxData->pAux);
  }

  pAuxData->pAux = pAux;
  pAuxData->xDelete = xDelete;
  return;

failed:
  if( xDelete ){
    xDelete(pAux);
  }
}







>
>
>
>
>
>










|
>
|
|
|
|






>
>
>
>
>
>











<






|
|
>
>




|
|
|





|
|



|







76890
76891
76892
76893
76894
76895
76896
76897
76898
76899
76900
76901
76902
76903
76904
76905
76906
76907
76908
76909
76910
76911
76912
76913
76914
76915
76916
76917
76918
76919
76920
76921
76922
76923
76924
76925
76926
76927
76928
76929
76930
76931
76932
76933
76934
76935
76936
76937
76938
76939
76940
76941

76942
76943
76944
76945
76946
76947
76948
76949
76950
76951
76952
76953
76954
76955
76956
76957
76958
76959
76960
76961
76962
76963
76964
76965
76966
76967
76968
76969
76970
76971
76972
76973
76974
76975
76976
    return (void*)p->pMem->z;
  }
}

/*
** Return the auxiliary data pointer, if any, for the iArg'th argument to
** the user-function defined by pCtx.
**
** The left-most argument is 0.
**
** Undocumented behavior:  If iArg is negative then access a cache of
** auxiliary data pointers that is available to all functions within a
** single prepared statement.  The iArg values must match.
*/
SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
  AuxData *pAuxData;

  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
#if SQLITE_ENABLE_STAT3_OR_STAT4
  if( pCtx->pVdbe==0 ) return 0;
#else
  assert( pCtx->pVdbe!=0 );
#endif
  for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
    if(  pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
      return pAuxData->pAux;
    }
  }
  return 0;
}

/*
** Set the auxiliary data pointer and delete function, for the iArg'th
** argument to the user-function defined by pCtx. Any previous value is
** deleted by calling the delete function specified when it was set.
**
** The left-most argument is 0.
**
** Undocumented behavior:  If iArg is negative then make the data available
** to all functions within the current prepared statement using iArg as an
** access code.
*/
SQLITE_API void sqlite3_set_auxdata(
  sqlite3_context *pCtx, 
  int iArg, 
  void *pAux, 
  void (*xDelete)(void*)
){
  AuxData *pAuxData;
  Vdbe *pVdbe = pCtx->pVdbe;

  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( pVdbe==0 ) goto failed;
#else
  assert( pVdbe!=0 );
#endif

  for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
    if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
      break;
    }
  }
  if( pAuxData==0 ){
    pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
    if( !pAuxData ) goto failed;
    pAuxData->iAuxOp = pCtx->iOp;
    pAuxData->iAuxArg = iArg;
    pAuxData->pNextAux = pVdbe->pAuxData;
    pVdbe->pAuxData = pAuxData;
    if( pCtx->fErrorOrAux==0 ){
      pCtx->isError = 0;
      pCtx->fErrorOrAux = 1;
    }
  }else if( pAuxData->xDeleteAux ){
    pAuxData->xDeleteAux(pAuxData->pAux);
  }

  pAuxData->pAux = pAux;
  pAuxData->xDeleteAux = xDelete;
  return;

failed:
  if( xDelete ){
    xDelete(pAux);
  }
}
78577
78578
78579
78580
78581
78582
78583

78584
78585
78586
78587
78588
78589
78590
  }
  if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
}
static void registerTrace(int iReg, Mem *p){
  printf("REG[%d] = ", iReg);
  memTracePrint(p);
  printf("\n");

}
#endif

#ifdef SQLITE_DEBUG
#  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
#else
#  define REGISTER_TRACE(R,M)







>







78677
78678
78679
78680
78681
78682
78683
78684
78685
78686
78687
78688
78689
78690
78691
  }
  if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
}
static void registerTrace(int iReg, Mem *p){
  printf("REG[%d] = ", iReg);
  memTracePrint(p);
  printf("\n");
  sqlite3VdbeCheckMemInvariants(p);
}
#endif

#ifdef SQLITE_DEBUG
#  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
#else
#  define REGISTER_TRACE(R,M)
78943
78944
78945
78946
78947
78948
78949
78950
78951
78952
78953
78954
78955
78956
78957
** to the current line should be indented for EXPLAIN output.
*/
case OP_Goto: {             /* jump */
jump_to_p2_and_check_for_interrupt:
  pOp = &aOp[pOp->p2 - 1];

  /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
  ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
  ** completion.  Check to see if sqlite3_interrupt() has been called
  ** or if the progress callback needs to be invoked. 
  **
  ** This code uses unstructured "goto" statements and does not look clean.
  ** But that is not due to sloppy coding habits. The code is written this
  ** way for performance, to avoid having to run the interrupt and progress
  ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%







|







79044
79045
79046
79047
79048
79049
79050
79051
79052
79053
79054
79055
79056
79057
79058
** to the current line should be indented for EXPLAIN output.
*/
case OP_Goto: {             /* jump */
jump_to_p2_and_check_for_interrupt:
  pOp = &aOp[pOp->p2 - 1];

  /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
  ** OP_VNext, or OP_SorterNext) all jump here upon
  ** completion.  Check to see if sqlite3_interrupt() has been called
  ** or if the progress callback needs to be invoked. 
  **
  ** This code uses unstructured "goto" statements and does not look clean.
  ** But that is not due to sloppy coding habits. The code is written this
  ** way for performance, to avoid having to run the interrupt and progress
  ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
79331
79332
79333
79334
79335
79336
79337
79338
79339
79340
79341
79342
79343
79344
79345
** instruction, but do not free any string or blob memory associated with
** the register, so that if the value was a string or blob that was
** previously copied using OP_SCopy, the copies will continue to be valid.
*/
case OP_SoftNull: {
  assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
  pOut = &aMem[pOp->p1];
  pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
  break;
}

/* Opcode: Blob P1 P2 * P4 *
** Synopsis: r[P2]=P4 (len=P1)
**
** P4 points to a blob of data P1 bytes long.  Store this







|







79432
79433
79434
79435
79436
79437
79438
79439
79440
79441
79442
79443
79444
79445
79446
** instruction, but do not free any string or blob memory associated with
** the register, so that if the value was a string or blob that was
** previously copied using OP_SCopy, the copies will continue to be valid.
*/
case OP_SoftNull: {
  assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
  pOut = &aMem[pOp->p1];
  pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
  break;
}

/* Opcode: Blob P1 P2 * P4 *
** Synopsis: r[P2]=P4 (len=P1)
**
** P4 points to a blob of data P1 bytes long.  Store this
79674
79675
79676
79677
79678
79679
79680
79681
79682
79683
79684
79685
79686
79687
79688

  pIn1 = &aMem[pOp->p1];
  type1 = numericType(pIn1);
  pIn2 = &aMem[pOp->p2];
  type2 = numericType(pIn2);
  pOut = &aMem[pOp->p3];
  flags = pIn1->flags | pIn2->flags;
  if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
  if( (type1 & type2 & MEM_Int)!=0 ){
    iA = pIn1->u.i;
    iB = pIn2->u.i;
    bIntint = 1;
    switch( pOp->opcode ){
      case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
      case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;







<







79775
79776
79777
79778
79779
79780
79781

79782
79783
79784
79785
79786
79787
79788

  pIn1 = &aMem[pOp->p1];
  type1 = numericType(pIn1);
  pIn2 = &aMem[pOp->p2];
  type2 = numericType(pIn2);
  pOut = &aMem[pOp->p3];
  flags = pIn1->flags | pIn2->flags;

  if( (type1 & type2 & MEM_Int)!=0 ){
    iA = pIn1->u.i;
    iB = pIn2->u.i;
    bIntint = 1;
    switch( pOp->opcode ){
      case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
      case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
79698
79699
79700
79701
79702
79703
79704


79705
79706
79707
79708
79709
79710
79711
        if( iA==-1 ) iA = 1;
        iB %= iA;
        break;
      }
    }
    pOut->u.i = iB;
    MemSetTypeFlag(pOut, MEM_Int);


  }else{
    bIntint = 0;
fp_math:
    rA = sqlite3VdbeRealValue(pIn1);
    rB = sqlite3VdbeRealValue(pIn2);
    switch( pOp->opcode ){
      case OP_Add:         rB += rA;       break;







>
>







79798
79799
79800
79801
79802
79803
79804
79805
79806
79807
79808
79809
79810
79811
79812
79813
        if( iA==-1 ) iA = 1;
        iB %= iA;
        break;
      }
    }
    pOut->u.i = iB;
    MemSetTypeFlag(pOut, MEM_Int);
  }else if( (flags & MEM_Null)!=0 ){
    goto arithmetic_result_is_null;
  }else{
    bIntint = 0;
fp_math:
    rA = sqlite3VdbeRealValue(pIn1);
    rB = sqlite3VdbeRealValue(pIn2);
    switch( pOp->opcode ){
      case OP_Add:         rB += rA;       break;
79745
79746
79747
79748
79749
79750
79751
79752
79753
79754
79755
79756
79757
79758
79759
arithmetic_result_is_null:
  sqlite3VdbeMemSetNull(pOut);
  break;
}

/* Opcode: CollSeq P1 * * P4
**
** P4 is a pointer to a CollSeq struct. If the next call to a user function
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
** be returned. This is used by the built-in min(), max() and nullif()
** functions.
**
** If P1 is not zero, then it is a register that a subsequent min() or
** max() aggregate will set to 1 if the current row is not the minimum or
** maximum.  The P1 register is initialized to 0 by this instruction.







|







79847
79848
79849
79850
79851
79852
79853
79854
79855
79856
79857
79858
79859
79860
79861
arithmetic_result_is_null:
  sqlite3VdbeMemSetNull(pOut);
  break;
}

/* Opcode: CollSeq P1 * * P4
**
** P4 is a pointer to a CollSeq object. If the next call to a user function
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
** be returned. This is used by the built-in min(), max() and nullif()
** functions.
**
** If P1 is not zero, then it is a register that a subsequent min() or
** max() aggregate will set to 1 if the current row is not the minimum or
** maximum.  The P1 register is initialized to 0 by this instruction.
80026
80027
80028
80029
80030
80031
80032
80033
80034
80035
80036
80037
80038
80039
80040
80041
80042
80043
80044
#ifndef SQLITE_OMIT_CAST
/* Opcode: Cast P1 P2 * * *
** Synopsis: affinity(r[P1])
**
** Force the value in register P1 to be the type defined by P2.
** 
** <ul>
** <li value="97"> TEXT
** <li value="98"> BLOB
** <li value="99"> NUMERIC
** <li value="100"> INTEGER
** <li value="101"> REAL
** </ul>
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_Cast: {                  /* in1 */
  assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
  testcase( pOp->p2==SQLITE_AFF_TEXT );







|
|
|
|
|







80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
#ifndef SQLITE_OMIT_CAST
/* Opcode: Cast P1 P2 * * *
** Synopsis: affinity(r[P1])
**
** Force the value in register P1 to be the type defined by P2.
** 
** <ul>
** <li> P2=='A' &rarr; BLOB
** <li> P2=='B' &rarr; TEXT
** <li> P2=='C' &rarr; NUMERIC
** <li> P2=='D' &rarr; INTEGER
** <li> P2=='E' &rarr; REAL
** </ul>
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_Cast: {                  /* in1 */
  assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
  testcase( pOp->p2==SQLITE_AFF_TEXT );
80608
80609
80610
80611
80612
80613
80614

















80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
  pIn1 = &aMem[pOp->p1];
  VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
  if( (pIn1->flags & MEM_Null)==0 ){
    goto jump_to_p2;
  }
  break;
}


















/* Opcode: Column P1 P2 P3 P4 P5
** Synopsis: r[P3]=PX
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction.  (See the MakeRecord opcode for additional
** information about the format of the data.)  Extract the P2-th column
** from this record.  If there are less that (P2+1) 
** values in the record, extract a NULL.
**
** The value extracted is stored in register P3.
**
** If the column contains fewer than P2 fields, then extract a NULL.  Or,
** if the P4 argument is a P4_MEM use the value of the P4 argument as
** the result.
**
** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
** then the cache of the cursor is reset prior to extracting the column.
** The first OP_Column against a pseudo-table after the value of the content
** register has changed should have this bit set.
**
** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
** the result is guaranteed to only be used as the argument of a length()
** or typeof() function, respectively.  The loading of large blobs can be
** skipped for length() and all content loading can be skipped for typeof().
*/
case OP_Column: {
  int p2;            /* column number to retrieve */
  VdbeCursor *pC;    /* The VDBE cursor */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>












|








|







80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
  pIn1 = &aMem[pOp->p1];
  VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
  if( (pIn1->flags & MEM_Null)==0 ){
    goto jump_to_p2;
  }
  break;
}

/* Opcode: IfNullRow P1 P2 P3 * *
** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
**
** Check the cursor P1 to see if it is currently pointing at a NULL row.
** If it is, then set register P3 to NULL and jump immediately to P2.
** If P1 is not on a NULL row, then fall through without making any
** changes.
*/
case OP_IfNullRow: {         /* jump */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  if( p->apCsr[pOp->p1]->nullRow ){
    sqlite3VdbeMemSetNull(aMem + pOp->p3);
    goto jump_to_p2;
  }
  break;
}

/* Opcode: Column P1 P2 P3 P4 P5
** Synopsis: r[P3]=PX
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction.  (See the MakeRecord opcode for additional
** information about the format of the data.)  Extract the P2-th column
** from this record.  If there are less that (P2+1) 
** values in the record, extract a NULL.
**
** The value extracted is stored in register P3.
**
** If the record contains fewer than P2 fields, then extract a NULL.  Or,
** if the P4 argument is a P4_MEM use the value of the P4 argument as
** the result.
**
** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
** then the cache of the cursor is reset prior to extracting the column.
** The first OP_Column against a pseudo-table after the value of the content
** register has changed should have this bit set.
**
** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
** the result is guaranteed to only be used as the argument of a length()
** or typeof() function, respectively.  The loading of large blobs can be
** skipped for length() and all content loading can be skipped for typeof().
*/
case OP_Column: {
  int p2;            /* column number to retrieve */
  VdbeCursor *pC;    /* The VDBE cursor */
80884
80885
80886
80887
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900

80901
80902
80903

80904
80905
80906
80907
80908

80909
80910
80911
80912
80913
80914
80915
80916
80917
80918
80919
80920
80921
80922
80923
80924
80925
80926
80927
}

/* Opcode: Affinity P1 P2 * P4 *
** Synopsis: affinity(r[P1@P2])
**
** Apply affinities to a range of P2 registers starting with P1.
**
** P4 is a string that is P2 characters long. The nth character of the
** string indicates the column affinity that should be used for the nth
** memory cell in the range.
*/
case OP_Affinity: {
  const char *zAffinity;   /* The affinity to be applied */
  char cAff;               /* A single character of affinity */

  zAffinity = pOp->p4.z;
  assert( zAffinity!=0 );

  assert( zAffinity[pOp->p2]==0 );
  pIn1 = &aMem[pOp->p1];
  while( (cAff = *(zAffinity++))!=0 ){

    assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
    assert( memIsValid(pIn1) );
    applyAffinity(pIn1, cAff, encoding);
    pIn1++;
  }

  break;
}

/* Opcode: MakeRecord P1 P2 P3 P4 *
** Synopsis: r[P3]=mkrec(r[P1@P2])
**
** Convert P2 registers beginning with P1 into the [record format]
** use as a data record in a database table or as a key
** in an index.  The OP_Column opcode can decode the record later.
**
** P4 may be a string that is P2 characters long.  The nth character of the
** string indicates the column affinity that should be used for the nth
** field of the index key.
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
** If P4 is NULL then all index fields have the affinity BLOB.
*/







|
|




<



>


<
>


|

<
>










|
|







81003
81004
81005
81006
81007
81008
81009
81010
81011
81012
81013
81014
81015

81016
81017
81018
81019
81020
81021

81022
81023
81024
81025
81026

81027
81028
81029
81030
81031
81032
81033
81034
81035
81036
81037
81038
81039
81040
81041
81042
81043
81044
81045
81046
}

/* Opcode: Affinity P1 P2 * P4 *
** Synopsis: affinity(r[P1@P2])
**
** Apply affinities to a range of P2 registers starting with P1.
**
** P4 is a string that is P2 characters long. The N-th character of the
** string indicates the column affinity that should be used for the N-th
** memory cell in the range.
*/
case OP_Affinity: {
  const char *zAffinity;   /* The affinity to be applied */


  zAffinity = pOp->p4.z;
  assert( zAffinity!=0 );
  assert( pOp->p2>0 );
  assert( zAffinity[pOp->p2]==0 );
  pIn1 = &aMem[pOp->p1];

  do{
    assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
    assert( memIsValid(pIn1) );
    applyAffinity(pIn1, *(zAffinity++), encoding);
    pIn1++;

  }while( zAffinity[0] );
  break;
}

/* Opcode: MakeRecord P1 P2 P3 P4 *
** Synopsis: r[P3]=mkrec(r[P1@P2])
**
** Convert P2 registers beginning with P1 into the [record format]
** use as a data record in a database table or as a key
** in an index.  The OP_Column opcode can decode the record later.
**
** P4 may be a string that is P2 characters long.  The N-th character of the
** string indicates the column affinity that should be used for the N-th
** field of the index key.
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
** If P4 is NULL then all index fields have the affinity BLOB.
*/
81072
81073
81074
81075
81076
81077
81078
81079
81080
81081
81082
81083
81084
81085
81086
  assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob;
  if( nZero ){
    pOut->u.nZero = nZero;
    pOut->flags |= MEM_Zero;
  }
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
  REGISTER_TRACE(pOp->p3, pOut);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Count P1 P2 * * *
** Synopsis: r[P2]=count()







<







81191
81192
81193
81194
81195
81196
81197

81198
81199
81200
81201
81202
81203
81204
  assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob;
  if( nZero ){
    pOut->u.nZero = nZero;
    pOut->flags |= MEM_Zero;
  }

  REGISTER_TRACE(pOp->p3, pOut);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Count P1 P2 * * *
** Synopsis: r[P2]=count()
81701
81702
81703
81704
81705
81706
81707































81708
81709
81710
81711
81712
81713
81714
  testcase( pOp->p2 & OPFLAG_SEEKEQ );
#endif
  sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
                               (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
  if( rc ) goto abort_due_to_error;
  break;
}
































/* Opcode: OpenEphemeral P1 P2 * P4 P5
** Synopsis: nColumn=P2
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if 
** the main database is read-only.  The ephemeral







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







81819
81820
81821
81822
81823
81824
81825
81826
81827
81828
81829
81830
81831
81832
81833
81834
81835
81836
81837
81838
81839
81840
81841
81842
81843
81844
81845
81846
81847
81848
81849
81850
81851
81852
81853
81854
81855
81856
81857
81858
81859
81860
81861
81862
81863
  testcase( pOp->p2 & OPFLAG_SEEKEQ );
#endif
  sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
                               (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
  if( rc ) goto abort_due_to_error;
  break;
}

/* Opcode: OpenDup P1 P2 * * *
**
** Open a new cursor P1 that points to the same ephemeral table as
** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
** opcode.  Only ephemeral cursors may be duplicated.
**
** Duplicate ephemeral cursors are used for self-joins of materialized views.
*/
case OP_OpenDup: {
  VdbeCursor *pOrig;    /* The original cursor to be duplicated */
  VdbeCursor *pCx;      /* The new cursor */

  pOrig = p->apCsr[pOp->p2];
  assert( pOrig->pBtx!=0 );  /* Only ephemeral cursors can be duplicated */

  pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->isEphemeral = 1;
  pCx->pKeyInfo = pOrig->pKeyInfo;
  pCx->isTable = pOrig->isTable;
  rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR,
                          pCx->pKeyInfo, pCx->uc.pCursor);
  /* The sqlite3BtreeCursor() routine can only fail for the first cursor
  ** opened for a database.  Since there is already an open cursor when this
  ** opcode is run, the sqlite3BtreeCursor() cannot fail */
  assert( rc==SQLITE_OK );
  break;
}


/* Opcode: OpenEphemeral P1 P2 * P4 P5
** Synopsis: nColumn=P2
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if 
** the main database is read-only.  The ephemeral
82237
82238
82239
82240
82241
82242
82243




82244
82245
82246
82247
82248
82249
82250
82251
82252
82253
82254
82255
82256
82257
82258
82259
82260
82261
82262
82263
82264
82265
82266
82267
82268
82269
82270
82271
      assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
      if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
    }
#endif
    pIdxKey = &r;
    pFree = 0;
  }else{




    pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
    if( pIdxKey==0 ) goto no_mem;
    assert( pIn3->flags & MEM_Blob );
    (void)ExpandBlob(pIn3);
    sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
  }
  pIdxKey->default_rc = 0;
  takeJump = 0;
  if( pOp->opcode==OP_NoConflict ){
    /* For the OP_NoConflict opcode, take the jump if any of the
    ** input fields are NULL, since any key with a NULL will not
    ** conflict */
    for(ii=0; ii<pIdxKey->nField; ii++){
      if( pIdxKey->aMem[ii].flags & MEM_Null ){
        takeJump = 1;
        break;
      }
    }
  }
  rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
  if( pFree ) sqlite3DbFree(db, pFree);
  if( rc!=SQLITE_OK ){
    goto abort_due_to_error;
  }
  pC->seekResult = res;
  alreadyExists = (res==0);
  pC->nullRow = 1-alreadyExists;
  pC->deferredMoveto = 0;







>
>
>
>


<
<
















|







82386
82387
82388
82389
82390
82391
82392
82393
82394
82395
82396
82397
82398


82399
82400
82401
82402
82403
82404
82405
82406
82407
82408
82409
82410
82411
82412
82413
82414
82415
82416
82417
82418
82419
82420
82421
82422
      assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
      if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
    }
#endif
    pIdxKey = &r;
    pFree = 0;
  }else{
    assert( pIn3->flags & MEM_Blob );
    rc = ExpandBlob(pIn3);
    assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
    if( rc ) goto no_mem;
    pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
    if( pIdxKey==0 ) goto no_mem;


    sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
  }
  pIdxKey->default_rc = 0;
  takeJump = 0;
  if( pOp->opcode==OP_NoConflict ){
    /* For the OP_NoConflict opcode, take the jump if any of the
    ** input fields are NULL, since any key with a NULL will not
    ** conflict */
    for(ii=0; ii<pIdxKey->nField; ii++){
      if( pIdxKey->aMem[ii].flags & MEM_Null ){
        takeJump = 1;
        break;
      }
    }
  }
  rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
  if( pFree ) sqlite3DbFreeNN(db, pFree);
  if( rc!=SQLITE_OK ){
    goto abort_due_to_error;
  }
  pC->seekResult = res;
  alreadyExists = (res==0);
  pC->nullRow = 1-alreadyExists;
  pC->deferredMoveto = 0;
83567
83568
83569
83570
83571
83572
83573
83574
83575
83576
83577







83578
83579
83580
83581
83582
83583
83584
** P3==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** If AUTOVACUUM is enabled then it is possible that another root page
** might be moved into the newly deleted root page in order to keep all
** root pages contiguous at the beginning of the database.  The former
** value of the root page that moved - its value before the move occurred -
** is stored in register P2.  If no page 
** movement was required (because the table being dropped was already 
** the last one in the database) then a zero is stored in register P2.
** If AUTOVACUUM is disabled then a zero is stored in register P2.







**
** See also: Clear
*/
case OP_Destroy: {     /* out2 */
  int iMoved;
  int iDb;








|
|
|
|
>
>
>
>
>
>
>







83718
83719
83720
83721
83722
83723
83724
83725
83726
83727
83728
83729
83730
83731
83732
83733
83734
83735
83736
83737
83738
83739
83740
83741
83742
** P3==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** If AUTOVACUUM is enabled then it is possible that another root page
** might be moved into the newly deleted root page in order to keep all
** root pages contiguous at the beginning of the database.  The former
** value of the root page that moved - its value before the move occurred -
** is stored in register P2. If no page movement was required (because the
** table being dropped was already the last one in the database) then a 
** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero 
** is stored in register P2.
**
** This opcode throws an error if there are any active reader VMs when
** it is invoked. This is done to avoid the difficulty associated with 
** updating existing cursors when a root page is moved in an AUTOVACUUM 
** database. This error is thrown even if the database is not an AUTOVACUUM 
** db in order to avoid introducing an incompatibility between autovacuum 
** and non-autovacuum modes.
**
** See also: Clear
*/
case OP_Destroy: {     /* out2 */
  int iMoved;
  int iDb;

83775
83776
83777
83778
83779
83780
83781
83782
83783
83784
83785
83786
83787
83788
83789
    }else{
      assert( db->init.busy==0 );
      db->init.busy = 1;
      initData.rc = SQLITE_OK;
      assert( !db->mallocFailed );
      rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
      if( rc==SQLITE_OK ) rc = initData.rc;
      sqlite3DbFree(db, zSql);
      db->init.busy = 0;
    }
  }
  if( rc ){
    sqlite3ResetAllSchemasOfConnection(db);
    if( rc==SQLITE_NOMEM ){
      goto no_mem;







|







83933
83934
83935
83936
83937
83938
83939
83940
83941
83942
83943
83944
83945
83946
83947
    }else{
      assert( db->init.busy==0 );
      db->init.busy = 1;
      initData.rc = SQLITE_OK;
      assert( !db->mallocFailed );
      rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
      if( rc==SQLITE_OK ) rc = initData.rc;
      sqlite3DbFreeNN(db, zSql);
      db->init.busy = 0;
    }
  }
  if( rc ){
    sqlite3ResetAllSchemasOfConnection(db);
    if( rc==SQLITE_NOMEM ){
      goto no_mem;
83903
83904
83905
83906
83907
83908
83909
83910
83911
83912
83913
83914
83915
83916
83917
83918
83919
83920
83921
83922
83923
83924
83925
83926
83927
83928
83929
83930

83931
83932
83933
83934
83935
83936
83937
83938
  break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/* Opcode: RowSetAdd P1 P2 * * *
** Synopsis: rowset(P1)=r[P2]
**
** Insert the integer value held by register P2 into a boolean index
** held in register P1.
**
** An assertion fails if P2 is not an integer.
*/
case OP_RowSetAdd: {       /* in1, in2 */
  pIn1 = &aMem[pOp->p1];
  pIn2 = &aMem[pOp->p2];
  assert( (pIn2->flags & MEM_Int)!=0 );
  if( (pIn1->flags & MEM_RowSet)==0 ){
    sqlite3VdbeMemSetRowSet(pIn1);
    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
  }
  sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
  break;
}

/* Opcode: RowSetRead P1 P2 P3 * *
** Synopsis: r[P3]=rowset(P1)
**
** Extract the smallest value from boolean index P1 and put that value into

** register P3.  Or, if boolean index P1 is initially empty, leave P3
** unchanged and jump to instruction P2.
*/
case OP_RowSetRead: {       /* jump, in1, out3 */
  i64 val;

  pIn1 = &aMem[pOp->p1];
  if( (pIn1->flags & MEM_RowSet)==0 







|



















|
>
|







84061
84062
84063
84064
84065
84066
84067
84068
84069
84070
84071
84072
84073
84074
84075
84076
84077
84078
84079
84080
84081
84082
84083
84084
84085
84086
84087
84088
84089
84090
84091
84092
84093
84094
84095
84096
84097
  break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/* Opcode: RowSetAdd P1 P2 * * *
** Synopsis: rowset(P1)=r[P2]
**
** Insert the integer value held by register P2 into a RowSet object
** held in register P1.
**
** An assertion fails if P2 is not an integer.
*/
case OP_RowSetAdd: {       /* in1, in2 */
  pIn1 = &aMem[pOp->p1];
  pIn2 = &aMem[pOp->p2];
  assert( (pIn2->flags & MEM_Int)!=0 );
  if( (pIn1->flags & MEM_RowSet)==0 ){
    sqlite3VdbeMemSetRowSet(pIn1);
    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
  }
  sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
  break;
}

/* Opcode: RowSetRead P1 P2 P3 * *
** Synopsis: r[P3]=rowset(P1)
**
** Extract the smallest value from the RowSet object in P1
** and put that value into register P3.
** Or, if RowSet object P1 is initially empty, leave P3
** unchanged and jump to instruction P2.
*/
case OP_RowSetRead: {       /* jump, in1, out3 */
  i64 val;

  pIn1 = &aMem[pOp->p1];
  if( (pIn1->flags & MEM_RowSet)==0 
83955
83956
83957
83958
83959
83960
83961
83962
83963
83964
83965
83966
83967
83968
83969
83970
83971
83972
83973
83974
83975
83976
83977
**
** Register P3 is assumed to hold a 64-bit integer value. If register P1
** contains a RowSet object and that RowSet object contains
** the value held in P3, jump to register P2. Otherwise, insert the
** integer in P3 into the RowSet and continue on to the
** next opcode.
**
** The RowSet object is optimized for the case where successive sets
** of integers, where each set contains no duplicates. Each set
** of values is identified by a unique P4 value. The first set
** must have P4==0, the final set P4=-1.  P4 must be either -1 or
** non-negative.  For non-negative values of P4 only the lower 4
** bits are significant.
**
** This allows optimizations: (a) when P4==0 there is no need to test
** the rowset object for P3, as it is guaranteed not to contain it,
** (b) when P4==-1 there is no need to insert the value, as it will
** never be tested for, and (c) when a value that is part of set X is
** inserted, there is no need to search to see if the same value was
** previously inserted as part of set X (only if it was previously
** inserted as part of some other set).
*/
case OP_RowSetTest: {                     /* jump, in1, in3 */







|
|
|
|
<
|


|







84114
84115
84116
84117
84118
84119
84120
84121
84122
84123
84124

84125
84126
84127
84128
84129
84130
84131
84132
84133
84134
84135
**
** Register P3 is assumed to hold a 64-bit integer value. If register P1
** contains a RowSet object and that RowSet object contains
** the value held in P3, jump to register P2. Otherwise, insert the
** integer in P3 into the RowSet and continue on to the
** next opcode.
**
** The RowSet object is optimized for the case where sets of integers
** are inserted in distinct phases, which each set contains no duplicates.
** Each set is identified by a unique P4 value. The first set
** must have P4==0, the final set must have P4==-1, and for all other sets

** must have P4>0.
**
** This allows optimizations: (a) when P4==0 there is no need to test
** the RowSet object for P3, as it is guaranteed not to contain it,
** (b) when P4==-1 there is no need to insert the value, as it will
** never be tested for, and (c) when a value that is part of set X is
** inserted, there is no need to search to see if the same value was
** previously inserted as part of set X (only if it was previously
** inserted as part of some other set).
*/
case OP_RowSetTest: {                     /* jump, in1, in3 */
86703
86704
86705
86706
86707
86708
86709
86710
86711
86712
86713
86714
86715
86716
86717
86718
86719

86720
86721
86722
86723


86724

86725



86726
86727
86728
86729
86730
86731
86732
86733
86734
86735
86736
86737
86738
86739
86740
86741
86742
86743
86744
86745
86746
86747
  const u8 * const v1 = &p1[ p1[0] ];   /* Pointer to value 1 */
  const u8 * const v2 = &p2[ p2[0] ];   /* Pointer to value 2 */
  int res;                              /* Return value */

  assert( (s1>0 && s1<7) || s1==8 || s1==9 );
  assert( (s2>0 && s2<7) || s2==8 || s2==9 );

  if( s1>7 && s2>7 ){
    res = s1 - s2;
  }else{
    if( s1==s2 ){
      if( (*v1 ^ *v2) & 0x80 ){
        /* The two values have different signs */
        res = (*v1 & 0x80) ? -1 : +1;
      }else{
        /* The two values have the same sign. Compare using memcmp(). */
        static const u8 aLen[] = {0, 1, 2, 3, 4, 6, 8 };

        int i;
        res = 0;
        for(i=0; i<aLen[s1]; i++){
          if( (res = v1[i] - v2[i]) ) break;


        }

      }



    }else{
      if( s2>7 ){
        res = +1;
      }else if( s1>7 ){
        res = -1;
      }else{
        res = s1 - s2;
      }
      assert( res!=0 );

      if( res>0 ){
        if( *v1 & 0x80 ) res = -1;
      }else{
        if( *v2 & 0x80 ) res = +1;
      }
    }
  }

  if( res==0 ){
    if( pTask->pSorter->pKeyInfo->nField>1 ){
      res = vdbeSorterCompareTail(
          pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2







<
<
<
|
<
<
<
<
|
|
>
|
|
|
|
>
>

>

>
>
>
|
|
|
|
|
|
|
|
|

|
|
|
|
<







86861
86862
86863
86864
86865
86866
86867



86868




86869
86870
86871
86872
86873
86874
86875
86876
86877
86878
86879
86880
86881
86882
86883
86884
86885
86886
86887
86888
86889
86890
86891
86892
86893
86894
86895
86896
86897

86898
86899
86900
86901
86902
86903
86904
  const u8 * const v1 = &p1[ p1[0] ];   /* Pointer to value 1 */
  const u8 * const v2 = &p2[ p2[0] ];   /* Pointer to value 2 */
  int res;                              /* Return value */

  assert( (s1>0 && s1<7) || s1==8 || s1==9 );
  assert( (s2>0 && s2<7) || s2==8 || s2==9 );




  if( s1==s2 ){




    /* The two values have the same sign. Compare using memcmp(). */
    static const u8 aLen[] = {0, 1, 2, 3, 4, 6, 8, 0, 0, 0 };
    const u8 n = aLen[s1];
    int i;
    res = 0;
    for(i=0; i<n; i++){
      if( (res = v1[i] - v2[i])!=0 ){
        if( ((v1[0] ^ v2[0]) & 0x80)!=0 ){
          res = v1[0] & 0x80 ? -1 : +1;
        }
        break;
      }
    }
  }else if( s1>7 && s2>7 ){
    res = s1 - s2;
  }else{
    if( s2>7 ){
      res = +1;
    }else if( s1>7 ){
      res = -1;
    }else{
      res = s1 - s2;
    }
    assert( res!=0 );

    if( res>0 ){
      if( *v1 & 0x80 ) res = -1;
    }else{
      if( *v2 & 0x80 ) res = +1;

    }
  }

  if( res==0 ){
    if( pTask->pSorter->pKeyInfo->nField>1 ){
      res = vdbeSorterCompareTail(
          pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2
90788
90789
90790
90791
90792
90793
90794
90795
90796
90797
90798
90799
90800
90801
90802
  if( op==TK_REGISTER ) op = pExpr->op2;
#ifndef SQLITE_OMIT_CAST
  if( op==TK_CAST ){
    assert( !ExprHasProperty(pExpr, EP_IntValue) );
    return sqlite3AffinityType(pExpr->u.zToken, 0);
  }
#endif
  if( op==TK_AGG_COLUMN || op==TK_COLUMN ){
    return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
  }
  if( op==TK_SELECT_COLUMN ){
    assert( pExpr->pLeft->flags&EP_xIsSelect );
    return sqlite3ExprAffinity(
        pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
    );







|







90945
90946
90947
90948
90949
90950
90951
90952
90953
90954
90955
90956
90957
90958
90959
  if( op==TK_REGISTER ) op = pExpr->op2;
#ifndef SQLITE_OMIT_CAST
  if( op==TK_CAST ){
    assert( !ExprHasProperty(pExpr, EP_IntValue) );
    return sqlite3AffinityType(pExpr->u.zToken, 0);
  }
#endif
  if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){
    return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
  }
  if( op==TK_SELECT_COLUMN ){
    assert( pExpr->pLeft->flags&EP_xIsSelect );
    return sqlite3ExprAffinity(
        pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
    );
91082
91083
91084
91085
91086
91087
91088
91089
91090
91091
91092
91093
91094
91095
91096
  }else if( op==TK_SELECT ){
    return pExpr->x.pSelect->pEList->nExpr;
  }else{
    return 1;
  }
}

#ifndef SQLITE_OMIT_SUBQUERY
/*
** Return a pointer to a subexpression of pVector that is the i-th
** column of the vector (numbered starting with 0).  The caller must
** ensure that i is within range.
**
** If pVector is really a scalar (and "scalar" here includes subqueries
** that return a single column!) then return pVector unmodified.







<







91239
91240
91241
91242
91243
91244
91245

91246
91247
91248
91249
91250
91251
91252
  }else if( op==TK_SELECT ){
    return pExpr->x.pSelect->pEList->nExpr;
  }else{
    return 1;
  }
}


/*
** Return a pointer to a subexpression of pVector that is the i-th
** column of the vector (numbered starting with 0).  The caller must
** ensure that i is within range.
**
** If pVector is really a scalar (and "scalar" here includes subqueries
** that return a single column!) then return pVector unmodified.
91110
91111
91112
91113
91114
91115
91116
91117
91118
91119
91120
91121
91122
91123
91124
91125
91126
      return pVector->x.pSelect->pEList->a[i].pExpr;
    }else{
      return pVector->x.pList->a[i].pExpr;
    }
  }
  return pVector;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) */

#ifndef SQLITE_OMIT_SUBQUERY
/*
** Compute and return a new Expr object which when passed to
** sqlite3ExprCode() will generate all necessary code to compute
** the iField-th column of the vector expression pVector.
**
** It is ok for pVector to be a scalar (as long as iField==0).  
** In that case, this routine works like sqlite3ExprDup().







<

<







91266
91267
91268
91269
91270
91271
91272

91273

91274
91275
91276
91277
91278
91279
91280
      return pVector->x.pSelect->pEList->a[i].pExpr;
    }else{
      return pVector->x.pList->a[i].pExpr;
    }
  }
  return pVector;
}



/*
** Compute and return a new Expr object which when passed to
** sqlite3ExprCode() will generate all necessary code to compute
** the iField-th column of the vector expression pVector.
**
** It is ok for pVector to be a scalar (as long as iField==0).  
** In that case, this routine works like sqlite3ExprDup().
91170
91171
91172
91173
91174
91175
91176
91177
91178
91179
91180
91181
91182
91183
91184
    assert( pRet==0 || pRet->iTable==0 );
  }else{
    if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
    pRet = sqlite3ExprDup(pParse->db, pVector, 0);
  }
  return pRet;
}
#endif /* !define(SQLITE_OMIT_SUBQUERY) */

/*
** If expression pExpr is of type TK_SELECT, generate code to evaluate
** it. Return the register in which the result is stored (or, if the 
** sub-select returns more than one column, the first in an array
** of registers in which the result is stored).
**







<







91324
91325
91326
91327
91328
91329
91330

91331
91332
91333
91334
91335
91336
91337
    assert( pRet==0 || pRet->iTable==0 );
  }else{
    if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
    pRet = sqlite3ExprDup(pParse->db, pVector, 0);
  }
  return pRet;
}


/*
** If expression pExpr is of type TK_SELECT, generate code to evaluate
** it. Return the register in which the result is stored (or, if the 
** sub-select returns more than one column, the first in an array
** of registers in which the result is stored).
**
91686
91687
91688
91689
91690
91691
91692
91693
91694
91695
91696
91697
91698
91699
91700
  ynVar x;

  if( pExpr==0 ) return;
  assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
  z = pExpr->u.zToken;
  assert( z!=0 );
  assert( z[0]!=0 );
  assert( n==sqlite3Strlen30(z) );
  if( z[1]==0 ){
    /* Wildcard of the form "?".  Assign the next variable number */
    assert( z[0]=='?' );
    x = (ynVar)(++pParse->nVar);
  }else{
    int doAdd = 0;
    if( z[0]=='?' ){







|







91839
91840
91841
91842
91843
91844
91845
91846
91847
91848
91849
91850
91851
91852
91853
  ynVar x;

  if( pExpr==0 ) return;
  assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
  z = pExpr->u.zToken;
  assert( z!=0 );
  assert( z[0]!=0 );
  assert( n==(u32)sqlite3Strlen30(z) );
  if( z[1]==0 ){
    /* Wildcard of the form "?".  Assign the next variable number */
    assert( z[0]=='?' );
    x = (ynVar)(++pParse->nVar);
  }else{
    int doAdd = 0;
    if( z[0]=='?' ){
91768
91769
91770
91771
91772
91773
91774
91775
91776
91777
91778
91779
91780
91781
91782
      sqlite3SelectDelete(db, p->x.pSelect);
    }else{
      sqlite3ExprListDelete(db, p->x.pList);
    }
  }
  if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
  if( !ExprHasProperty(p, EP_Static) ){
    sqlite3DbFree(db, p);
  }
}
SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){
  if( p ) sqlite3ExprDeleteNN(db, p);
}

/*







|







91921
91922
91923
91924
91925
91926
91927
91928
91929
91930
91931
91932
91933
91934
91935
      sqlite3SelectDelete(db, p->x.pSelect);
    }else{
      sqlite3ExprListDelete(db, p->x.pList);
    }
  }
  if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
  if( !ExprHasProperty(p, EP_Static) ){
    sqlite3DbFreeNN(db, p);
  }
}
SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){
  if( p ) sqlite3ExprDeleteNN(db, p);
}

/*
92035
92036
92037
92038
92039
92040
92041
92042

92043
92044
92045
92046
92047
92048
92049
92050
92051
92052
92053
92054
92055
92056
92057
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
  ExprList *pNew;
  struct ExprList_item *pItem, *pOldItem;
  int i;
  Expr *pPriorSelectCol = 0;
  assert( db!=0 );
  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );

  if( pNew==0 ) return 0;
  pNew->nExpr = i = p->nExpr;
  if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
  pNew->a = pItem = sqlite3DbMallocRawNN(db,  i*sizeof(p->a[0]) );
  if( pItem==0 ){
    sqlite3DbFree(db, pNew);
    return 0;
  } 
  pOldItem = p->a;
  for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
    Expr *pOldExpr = pOldItem->pExpr;
    Expr *pNewExpr;
    pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
    if( pOldExpr 
     && pOldExpr->op==TK_SELECT_COLUMN







|
>

|
<
<
|
<
<
<







92188
92189
92190
92191
92192
92193
92194
92195
92196
92197
92198


92199



92200
92201
92202
92203
92204
92205
92206
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
  ExprList *pNew;
  struct ExprList_item *pItem, *pOldItem;
  int i;
  Expr *pPriorSelectCol = 0;
  assert( db!=0 );
  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRawNN(db, 
             sizeof(*pNew)+sizeof(pNew->a[0])*(p->nExpr-1) );
  if( pNew==0 ) return 0;
  pNew->nAlloc = pNew->nExpr = p->nExpr;


  pItem = pNew->a;



  pOldItem = p->a;
  for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
    Expr *pOldExpr = pOldItem->pExpr;
    Expr *pNewExpr;
    pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
    if( pOldExpr 
     && pOldExpr->op==TK_SELECT_COLUMN
92134
92135
92136
92137
92138
92139
92140
92141
92142
92143
92144
92145
92146
92147
92148
  assert( db!=0 );
  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
  if( pNew==0 ) return 0;
  pNew->nId = p->nId;
  pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
  if( pNew->a==0 ){
    sqlite3DbFree(db, pNew);
    return 0;
  }
  /* Note that because the size of the allocation for p->a[] is not
  ** necessarily a power of two, sqlite3IdListAppend() may not be called
  ** on the duplicate created by this function. */
  for(i=0; i<p->nId; i++){
    struct IdList_item *pNewItem = &pNew->a[i];







|







92283
92284
92285
92286
92287
92288
92289
92290
92291
92292
92293
92294
92295
92296
92297
  assert( db!=0 );
  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
  if( pNew==0 ) return 0;
  pNew->nId = p->nId;
  pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
  if( pNew->a==0 ){
    sqlite3DbFreeNN(db, pNew);
    return 0;
  }
  /* Note that because the size of the allocation for p->a[] is not
  ** necessarily a power of two, sqlite3IdListAppend() may not be called
  ** on the duplicate created by this function. */
  for(i=0; i<p->nId; i++){
    struct IdList_item *pNewItem = &pNew->a[i];
92205
92206
92207
92208
92209
92210
92211

92212
92213
92214
92215
92216
92217
92218
92219
92220
92221
92222
92223
92224
92225

92226
92227
92228

92229
92230
92231
92232
92233
92234
92235
92236
92237
92238
92239
92240
92241
92242
92243
** that the new entry was successfully appended.
*/
SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(
  Parse *pParse,          /* Parsing context */
  ExprList *pList,        /* List to which to append. Might be NULL */
  Expr *pExpr             /* Expression to be appended. Might be NULL */
){

  sqlite3 *db = pParse->db;
  assert( db!=0 );
  if( pList==0 ){
    pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
    if( pList==0 ){
      goto no_mem;
    }
    pList->nExpr = 0;
    pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0]));
    if( pList->a==0 ) goto no_mem;
  }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
    struct ExprList_item *a;
    assert( pList->nExpr>0 );
    a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));

    if( a==0 ){
      goto no_mem;
    }

    pList->a = a;
  }
  assert( pList->a!=0 );
  if( 1 ){
    struct ExprList_item *pItem = &pList->a[pList->nExpr++];
    memset(pItem, 0, sizeof(*pItem));
    pItem->pExpr = pExpr;
  }
  return pList;

no_mem:     
  /* Avoid leaking memory if malloc has failed. */
  sqlite3ExprDelete(db, pExpr);
  sqlite3ExprListDelete(db, pList);
  return 0;







>








<
|
|
|
<
|
>
|


>
|

<
<
|
|
|
<







92354
92355
92356
92357
92358
92359
92360
92361
92362
92363
92364
92365
92366
92367
92368
92369

92370
92371
92372

92373
92374
92375
92376
92377
92378
92379
92380


92381
92382
92383

92384
92385
92386
92387
92388
92389
92390
** that the new entry was successfully appended.
*/
SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(
  Parse *pParse,          /* Parsing context */
  ExprList *pList,        /* List to which to append. Might be NULL */
  Expr *pExpr             /* Expression to be appended. Might be NULL */
){
  struct ExprList_item *pItem;
  sqlite3 *db = pParse->db;
  assert( db!=0 );
  if( pList==0 ){
    pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
    if( pList==0 ){
      goto no_mem;
    }
    pList->nExpr = 0;

    pList->nAlloc = 1;
  }else if( pList->nExpr==pList->nAlloc ){
    ExprList *pNew;

    pNew = sqlite3DbRealloc(db, pList, 
             sizeof(*pList)+(2*pList->nAlloc - 1)*sizeof(pList->a[0]));
    if( pNew==0 ){
      goto no_mem;
    }
    pList = pNew;
    pList->nAlloc *= 2;
  }


  pItem = &pList->a[pList->nExpr++];
  memset(pItem, 0, sizeof(*pItem));
  pItem->pExpr = pExpr;

  return pList;

no_mem:     
  /* Avoid leaking memory if malloc has failed. */
  sqlite3ExprDelete(db, pExpr);
  sqlite3ExprListDelete(db, pList);
  return 0;
92286
92287
92288
92289
92290
92291
92292
92293
92294
92295

92296
92297
92298
92299
92300
92301
92302
92303
92304
92305
92306
92307
92308
92309
92310
92311
92312
92313
    if( pList ){
      assert( pList->nExpr==iFirst+i+1 );
      pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
      pColumns->a[i].zName = 0;
    }
  }

  if( pExpr->op==TK_SELECT ){
    if( pList && pList->a[iFirst].pExpr ){
      Expr *pFirst = pList->a[iFirst].pExpr;

      assert( pFirst->op==TK_SELECT_COLUMN );
     
      /* Store the SELECT statement in pRight so it will be deleted when
      ** sqlite3ExprListDelete() is called */
      pFirst->pRight = pExpr;
      pExpr = 0;

      /* Remember the size of the LHS in iTable so that we can check that
      ** the RHS and LHS sizes match during code generation. */
      pFirst->iTable = pColumns->nId;
    }
  }

vector_append_error:
  sqlite3ExprDelete(db, pExpr);
  sqlite3IdListDelete(db, pColumns);
  return pList;
}







|
<
|
>
|

|
|
|
|

|
|
|
<







92433
92434
92435
92436
92437
92438
92439
92440

92441
92442
92443
92444
92445
92446
92447
92448
92449
92450
92451
92452

92453
92454
92455
92456
92457
92458
92459
    if( pList ){
      assert( pList->nExpr==iFirst+i+1 );
      pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
      pColumns->a[i].zName = 0;
    }
  }

  if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){

    Expr *pFirst = pList->a[iFirst].pExpr;
    assert( pFirst!=0 );
    assert( pFirst->op==TK_SELECT_COLUMN );
     
    /* Store the SELECT statement in pRight so it will be deleted when
    ** sqlite3ExprListDelete() is called */
    pFirst->pRight = pExpr;
    pExpr = 0;

    /* Remember the size of the LHS in iTable so that we can check that
    ** the RHS and LHS sizes match during code generation. */
    pFirst->iTable = pColumns->nId;

  }

vector_append_error:
  sqlite3ExprDelete(db, pExpr);
  sqlite3IdListDelete(db, pColumns);
  return pList;
}
92393
92394
92395
92396
92397
92398
92399
92400
92401
92402
92403
92404
92405
92406

92407
92408
92409
92410
92411
92412
92413
92414
92415
92416
  }
}

/*
** Delete an entire expression list.
*/
static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
  int i;
  struct ExprList_item *pItem;
  assert( pList->a!=0 || pList->nExpr==0 );
  for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
    sqlite3ExprDelete(db, pItem->pExpr);
    sqlite3DbFree(db, pItem->zName);
    sqlite3DbFree(db, pItem->zSpan);

  }
  sqlite3DbFree(db, pList->a);
  sqlite3DbFree(db, pList);
}
SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
  if( pList ) exprListDeleteNN(db, pList);
}

/*
** Return the bitwise-OR of all Expr.flags fields in the given







|
|
|
|



>
|
<
|







92539
92540
92541
92542
92543
92544
92545
92546
92547
92548
92549
92550
92551
92552
92553
92554

92555
92556
92557
92558
92559
92560
92561
92562
  }
}

/*
** Delete an entire expression list.
*/
static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
  int i = pList->nExpr;
  struct ExprList_item *pItem =  pList->a;
  assert( pList->nExpr>0 );
  do{
    sqlite3ExprDelete(db, pItem->pExpr);
    sqlite3DbFree(db, pItem->zName);
    sqlite3DbFree(db, pItem->zSpan);
    pItem++;
  }while( --i>0 );

  sqlite3DbFreeNN(db, pList);
}
SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
  if( pList ) exprListDeleteNN(db, pList);
}

/*
** Return the bitwise-OR of all Expr.flags fields in the given
92552
92553
92554
92555
92556
92557
92558



























































92559
92560
92561
92562
92563
92564
92565
** expression must not refer to any non-deterministic function nor any
** table other than iCur.
*/
SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr *p, int iCur){
  return exprIsConst(p, 3, iCur);
}




























































/*
** Walk an expression tree.  Return non-zero if the expression is constant
** or a function call with constant arguments.  Return and 0 if there
** are any variables.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







92698
92699
92700
92701
92702
92703
92704
92705
92706
92707
92708
92709
92710
92711
92712
92713
92714
92715
92716
92717
92718
92719
92720
92721
92722
92723
92724
92725
92726
92727
92728
92729
92730
92731
92732
92733
92734
92735
92736
92737
92738
92739
92740
92741
92742
92743
92744
92745
92746
92747
92748
92749
92750
92751
92752
92753
92754
92755
92756
92757
92758
92759
92760
92761
92762
92763
92764
92765
92766
92767
92768
92769
92770
** expression must not refer to any non-deterministic function nor any
** table other than iCur.
*/
SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr *p, int iCur){
  return exprIsConst(p, 3, iCur);
}


/*
** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
*/
static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
  ExprList *pGroupBy = pWalker->u.pGroupBy;
  int i;

  /* Check if pExpr is identical to any GROUP BY term. If so, consider
  ** it constant.  */
  for(i=0; i<pGroupBy->nExpr; i++){
    Expr *p = pGroupBy->a[i].pExpr;
    if( sqlite3ExprCompare(pExpr, p, -1)<2 ){
      CollSeq *pColl = sqlite3ExprCollSeq(pWalker->pParse, p);
      if( pColl==0 || sqlite3_stricmp("BINARY", pColl->zName)==0 ){
        return WRC_Prune;
      }
    }
  }

  /* Check if pExpr is a sub-select. If so, consider it variable. */
  if( ExprHasProperty(pExpr, EP_xIsSelect) ){
    pWalker->eCode = 0;
    return WRC_Abort;
  }

  return exprNodeIsConstant(pWalker, pExpr);
}

/*
** Walk the expression tree passed as the first argument. Return non-zero
** if the expression consists entirely of constants or copies of terms 
** in pGroupBy that sort with the BINARY collation sequence.
**
** This routine is used to determine if a term of the HAVING clause can
** be promoted into the WHERE clause.  In order for such a promotion to work,
** the value of the HAVING clause term must be the same for all members of
** a "group".  The requirement that the GROUP BY term must be BINARY
** assumes that no other collating sequence will have a finer-grained
** grouping than binary.  In other words (A=B COLLATE binary) implies
** A=B in every other collating sequence.  The requirement that the
** GROUP BY be BINARY is stricter than necessary.  It would also work
** to promote HAVING clauses that use the same alternative collating
** sequence as the GROUP BY term, but that is much harder to check,
** alternative collating sequences are uncommon, and this is only an
** optimization, so we take the easy way out and simply require the
** GROUP BY to use the BINARY collating sequence.
*/
SQLITE_PRIVATE int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
  Walker w;
  memset(&w, 0, sizeof(w));
  w.eCode = 1;
  w.xExprCallback = exprNodeIsConstantOrGroupBy;
  w.u.pGroupBy = pGroupBy;
  w.pParse = pParse;
  sqlite3WalkExpr(&w, p);
  return w.eCode;
}

/*
** Walk an expression tree.  Return non-zero if the expression is constant
** or a function call with constant arguments.  Return and 0 if there
** are any variables.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
93929
93930
93931
93932
93933
93934
93935




93936
93937
93938
93939
93940
93941
93942
SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(
  Vdbe *v,        /* The VDBE under construction */
  Table *pTab,    /* The table containing the value */
  int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
  int iCol,       /* Index of the column to extract */
  int regOut      /* Extract the value into this register */
){




  if( iCol<0 || iCol==pTab->iPKey ){
    sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
  }else{
    int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
    int x = iCol;
    if( !HasRowid(pTab) && !IsVirtual(pTab) ){
      x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);







>
>
>
>







94134
94135
94136
94137
94138
94139
94140
94141
94142
94143
94144
94145
94146
94147
94148
94149
94150
94151
SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(
  Vdbe *v,        /* The VDBE under construction */
  Table *pTab,    /* The table containing the value */
  int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
  int iCol,       /* Index of the column to extract */
  int regOut      /* Extract the value into this register */
){
  if( pTab==0 ){
    sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
    return;
  }
  if( iCol<0 || iCol==pTab->iPKey ){
    sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
  }else{
    int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
    int x = iCol;
    if( !HasRowid(pTab) && !IsVirtual(pTab) ){
      x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
94085
94086
94087
94088
94089
94090
94091



94092

94093
94094
94095
94096
94097
94098
94099
  int iResult;
  int nResult = sqlite3ExprVectorSize(p);
  if( nResult==1 ){
    iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
  }else{
    *piFreeable = 0;
    if( p->op==TK_SELECT ){



      iResult = sqlite3CodeSubselect(pParse, p, 0, 0);

    }else{
      int i;
      iResult = pParse->nMem+1;
      pParse->nMem += nResult;
      for(i=0; i<nResult; i++){
        sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
      }







>
>
>

>







94294
94295
94296
94297
94298
94299
94300
94301
94302
94303
94304
94305
94306
94307
94308
94309
94310
94311
94312
  int iResult;
  int nResult = sqlite3ExprVectorSize(p);
  if( nResult==1 ){
    iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
  }else{
    *piFreeable = 0;
    if( p->op==TK_SELECT ){
#if SQLITE_OMIT_SUBQUERY
      iResult = 0;
#else
      iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
#endif
    }else{
      int i;
      iResult = pParse->nMem+1;
      pParse->nMem += nResult;
      for(i=0; i<nResult; i++){
        sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
      }
94621
94622
94623
94624
94625
94626
94627











94628
94629
94630
94631
94632
94633
94634
      break;
    }

    case TK_VECTOR: {
      sqlite3ErrorMsg(pParse, "row value misused");
      break;
    }












    /*
    ** Form A:
    **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
    **
    ** Form B:
    **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END







>
>
>
>
>
>
>
>
>
>
>







94834
94835
94836
94837
94838
94839
94840
94841
94842
94843
94844
94845
94846
94847
94848
94849
94850
94851
94852
94853
94854
94855
94856
94857
94858
      break;
    }

    case TK_VECTOR: {
      sqlite3ErrorMsg(pParse, "row value misused");
      break;
    }

    case TK_IF_NULL_ROW: {
      int addrINR;
      addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
      sqlite3ExprCachePush(pParse);
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
      sqlite3ExprCachePop(pParse);
      sqlite3VdbeJumpHere(v, addrINR);
      sqlite3VdbeChangeP3(v, addrINR, inReg);
      break;
    }

    /*
    ** Form A:
    **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
    **
    ** Form B:
    **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
99399
99400
99401
99402
99403
99404
99405












99406
99407
99408
99409
99410
99411
99412
  if( db->init.busy || IN_DECLARE_VTAB ){
    return SQLITE_OK;
  }

  if( db->xAuth==0 ){
    return SQLITE_OK;
  }












  rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext
#ifdef SQLITE_USER_AUTHENTICATION
                 ,db->auth.zAuthUser
#endif
                );
  if( rc==SQLITE_DENY ){
    sqlite3ErrorMsg(pParse, "not authorized");







>
>
>
>
>
>
>
>
>
>
>
>







99623
99624
99625
99626
99627
99628
99629
99630
99631
99632
99633
99634
99635
99636
99637
99638
99639
99640
99641
99642
99643
99644
99645
99646
99647
99648
  if( db->init.busy || IN_DECLARE_VTAB ){
    return SQLITE_OK;
  }

  if( db->xAuth==0 ){
    return SQLITE_OK;
  }

  /* EVIDENCE-OF: R-43249-19882 The third through sixth parameters to the
  ** callback are either NULL pointers or zero-terminated strings that
  ** contain additional details about the action to be authorized.
  **
  ** The following testcase() macros show that any of the 3rd through 6th
  ** parameters can be either NULL or a string. */
  testcase( zArg1==0 );
  testcase( zArg2==0 );
  testcase( zArg3==0 );
  testcase( pParse->zAuthContext==0 );

  rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext
#ifdef SQLITE_USER_AUTHENTICATION
                 ,db->auth.zAuthUser
#endif
                );
  if( rc==SQLITE_DENY ){
    sqlite3ErrorMsg(pParse, "not authorized");
103070
103071
103072
103073
103074
103075
103076
103077
103078
103079
103080
103081
103082
103083
103084
SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
  int i;
  if( pList==0 ) return;
  for(i=0; i<pList->nId; i++){
    sqlite3DbFree(db, pList->a[i].zName);
  }
  sqlite3DbFree(db, pList->a);
  sqlite3DbFree(db, pList);
}

/*
** Return the index in pList of the identifier named zId.  Return -1
** if not found.
*/
SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){







|







103306
103307
103308
103309
103310
103311
103312
103313
103314
103315
103316
103317
103318
103319
103320
SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
  int i;
  if( pList==0 ) return;
  for(i=0; i<pList->nId; i++){
    sqlite3DbFree(db, pList->a[i].zName);
  }
  sqlite3DbFree(db, pList->a);
  sqlite3DbFreeNN(db, pList);
}

/*
** Return the index in pList of the identifier named zId.  Return -1
** if not found.
*/
SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){
103260
103261
103262
103263
103264
103265
103266
103267
103268
103269
103270
103271
103272
103273
103274
    if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
    if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
    sqlite3DeleteTable(db, pItem->pTab);
    sqlite3SelectDelete(db, pItem->pSelect);
    sqlite3ExprDelete(db, pItem->pOn);
    sqlite3IdListDelete(db, pItem->pUsing);
  }
  sqlite3DbFree(db, pList);
}

/*
** This routine is called by the parser to add a new term to the
** end of a growing FROM clause.  The "p" parameter is the part of
** the FROM clause that has already been constructed.  "p" is NULL
** if this is the first term of the FROM clause.  pTable and pDatabase







|







103496
103497
103498
103499
103500
103501
103502
103503
103504
103505
103506
103507
103508
103509
103510
    if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
    if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
    sqlite3DeleteTable(db, pItem->pTab);
    sqlite3SelectDelete(db, pItem->pSelect);
    sqlite3ExprDelete(db, pItem->pOn);
    sqlite3IdListDelete(db, pItem->pUsing);
  }
  sqlite3DbFreeNN(db, pList);
}

/*
** This routine is called by the parser to add a new term to the
** end of a growing FROM clause.  The "p" parameter is the part of
** the FROM clause that has already been constructed.  "p" is NULL
** if this is the first term of the FROM clause.  pTable and pDatabase
104734
104735
104736
104737
104738
104739
104740
104741







104742
104743
104744
104745
104746
104747
104748
    sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
  }

#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
  /* Special case: A DELETE without a WHERE clause deletes everything.
  ** It is easier just to erase the whole table. Prior to version 3.6.5,
  ** this optimization caused the row change count (the value returned by 
  ** API function sqlite3_count_changes) to be set incorrectly.  */







  if( rcauth==SQLITE_OK
   && pWhere==0
   && !bComplex
   && !IsVirtual(pTab)
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
   && db->xPreUpdateCallback==0
#endif







|
>
>
>
>
>
>
>







104970
104971
104972
104973
104974
104975
104976
104977
104978
104979
104980
104981
104982
104983
104984
104985
104986
104987
104988
104989
104990
104991
    sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
  }

#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
  /* Special case: A DELETE without a WHERE clause deletes everything.
  ** It is easier just to erase the whole table. Prior to version 3.6.5,
  ** this optimization caused the row change count (the value returned by 
  ** API function sqlite3_count_changes) to be set incorrectly.
  **
  ** The "rcauth==SQLITE_OK" terms is the
  ** IMPLEMENATION-OF: R-17228-37124 If the action code is SQLITE_DELETE and
  ** the callback returns SQLITE_IGNORE then the DELETE operation proceeds but
  ** the truncate optimization is disabled and all rows are deleted
  ** individually.
  */
  if( rcauth==SQLITE_OK
   && pWhere==0
   && !bComplex
   && !IsVirtual(pTab)
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
   && db->xPreUpdateCallback==0
#endif
108244
108245
108246
108247
108248
108249
108250
108251
108252








108253
108254
108255
108256
108257
108258
108259

108260
108261
108262
108263
108264
108265
108266
108267
108268
108269
108270
108271
108272

108273


108274
108275
108276
108277
108278



108279
108280
108281
108282
108283
108284
108285
108286
108287
108288
108289
** to an array of size N, where N is the number of columns in table pTab.
** If the i'th column is not modified by the UPDATE, then the corresponding 
** entry in the aChange[] array is set to -1. If the column is modified,
** the value is 0 or greater. Parameter chngRowid is set to true if the
** UPDATE statement modifies the rowid fields of the table.
**
** If any foreign key processing will be required, this function returns
** true. If there is no foreign key related processing, this function 
** returns false.








*/
SQLITE_PRIVATE int sqlite3FkRequired(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being modified */
  int *aChange,                   /* Non-NULL for UPDATE operations */
  int chngRowid                   /* True for UPDATE that affects rowid */
){

  if( pParse->db->flags&SQLITE_ForeignKeys ){
    if( !aChange ){
      /* A DELETE operation. Foreign key processing is required if the 
      ** table in question is either the child or parent table for any 
      ** foreign key constraint.  */
      return (sqlite3FkReferences(pTab) || pTab->pFKey);
    }else{
      /* This is an UPDATE. Foreign key processing is only required if the
      ** operation modifies one or more child or parent key columns. */
      FKey *p;

      /* Check if any child key columns are being modified. */
      for(p=pTab->pFKey; p; p=p->pNextFrom){

        if( fkChildIsModified(pTab, p, aChange, chngRowid) ) return 1;


      }

      /* Check if any parent key columns are being modified. */
      for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
        if( fkParentIsModified(pTab, p, aChange, chngRowid) ) return 1;



      }
    }
  }
  return 0;
}

/*
** This function is called when an UPDATE or DELETE operation is being 
** compiled on table pTab, which is the parent table of foreign-key pFKey.
** If the current operation is an UPDATE, then the pChanges parameter is
** passed a pointer to the list of columns being modified. If it is a







|
|
>
>
>
>
>
>
>
>







>





|







>
|
>
>




|
>
>
>



|







108487
108488
108489
108490
108491
108492
108493
108494
108495
108496
108497
108498
108499
108500
108501
108502
108503
108504
108505
108506
108507
108508
108509
108510
108511
108512
108513
108514
108515
108516
108517
108518
108519
108520
108521
108522
108523
108524
108525
108526
108527
108528
108529
108530
108531
108532
108533
108534
108535
108536
108537
108538
108539
108540
108541
108542
108543
108544
108545
108546
108547
** to an array of size N, where N is the number of columns in table pTab.
** If the i'th column is not modified by the UPDATE, then the corresponding 
** entry in the aChange[] array is set to -1. If the column is modified,
** the value is 0 or greater. Parameter chngRowid is set to true if the
** UPDATE statement modifies the rowid fields of the table.
**
** If any foreign key processing will be required, this function returns
** non-zero. If there is no foreign key related processing, this function 
** returns zero.
**
** For an UPDATE, this function returns 2 if:
**
**   * There are any FKs for which pTab is the child and the parent table, or
**   * the UPDATE modifies one or more parent keys for which the action is
**     not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL).
**
** Or, assuming some other foreign key processing is required, 1.
*/
SQLITE_PRIVATE int sqlite3FkRequired(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being modified */
  int *aChange,                   /* Non-NULL for UPDATE operations */
  int chngRowid                   /* True for UPDATE that affects rowid */
){
  int eRet = 0;
  if( pParse->db->flags&SQLITE_ForeignKeys ){
    if( !aChange ){
      /* A DELETE operation. Foreign key processing is required if the 
      ** table in question is either the child or parent table for any 
      ** foreign key constraint.  */
      eRet = (sqlite3FkReferences(pTab) || pTab->pFKey);
    }else{
      /* This is an UPDATE. Foreign key processing is only required if the
      ** operation modifies one or more child or parent key columns. */
      FKey *p;

      /* Check if any child key columns are being modified. */
      for(p=pTab->pFKey; p; p=p->pNextFrom){
        if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) return 2;
        if( fkChildIsModified(pTab, p, aChange, chngRowid) ){
          eRet = 1;
        }
      }

      /* Check if any parent key columns are being modified. */
      for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
        if( fkParentIsModified(pTab, p, aChange, chngRowid) ){
          if( p->aAction[1]!=OE_None ) return 2;
          eRet = 1;
        }
      }
    }
  }
  return eRet;
}

/*
** This function is called when an UPDATE or DELETE operation is being 
** compiled on table pTab, which is the parent table of foreign-key pFKey.
** If the current operation is an UPDATE, then the pChanges parameter is
** passed a pointer to the list of columns being modified. If it is a
112785
112786
112787
112788
112789
112790
112791
112792
112793
112794
112795
112796
112797
112798
112799
  /* ePragTyp:  */ PragTyp_MMAP_SIZE,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
 {/* zName:     */ "optimize",
  /* ePragTyp:  */ PragTyp_OPTIMIZE,
  /* ePragFlg:  */ PragFlg_Result1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
 {/* zName:     */ "page_count",
  /* ePragTyp:  */ PragTyp_PAGE_COUNT,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq,
  /* ColNames:  */ 0, 0,







|







113043
113044
113045
113046
113047
113048
113049
113050
113051
113052
113053
113054
113055
113056
113057
  /* ePragTyp:  */ PragTyp_MMAP_SIZE,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
 {/* zName:     */ "optimize",
  /* ePragTyp:  */ PragTyp_OPTIMIZE,
  /* ePragFlg:  */ PragFlg_Result1|PragFlg_NeedSchema,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
 {/* zName:     */ "page_count",
  /* ePragTyp:  */ PragTyp_PAGE_COUNT,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq,
  /* ColNames:  */ 0, 0,
114285
114286
114287
114288
114289
114290
114291
114292
114293
114294
114295
114296
114297
114298
114299
114300
114301

114302
114303
114304

114305
114306

114307
114308
114309
114310



114311
114312
114313
114314
114315





114316
114317


114318



114319
114320
114321
114322
114323
114324
114325
        pIdx = 0;
        aiCols = 0;
        if( pParent ){
          x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
          assert( x==0 );
        }
        addrOk = sqlite3VdbeMakeLabel(v);
        if( pParent && pIdx==0 ){
          int iKey = pFK->aCol[0].iFrom;
          assert( iKey>=0 && iKey<pTab->nCol );
          if( iKey!=pTab->iPKey ){
            sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow);
            sqlite3ColumnDefault(v, pTab, iKey, regRow);
            sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk); VdbeCoverage(v);
          }else{
            sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow);
          }

          sqlite3VdbeAddOp3(v, OP_SeekRowid, i, 0, regRow); VdbeCoverage(v);
          sqlite3VdbeGoto(v, addrOk);
          sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);

        }else{
          for(j=0; j<pFK->nCol; j++){

            sqlite3ExprCodeGetColumnOfTable(v, pTab, 0,
                            aiCols ? aiCols[j] : pFK->aCol[j].iFrom, regRow+j);
            sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
          }



          if( pParent ){
            sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
                              sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
            sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
            VdbeCoverage(v);





          }
        }


        sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);



        sqlite3VdbeMultiLoad(v, regResult+2, "si", pFK->zTo, i-1);
        sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
        sqlite3VdbeResolveLabel(v, addrOk);
        sqlite3DbFree(db, aiCols);
      }
      sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
      sqlite3VdbeJumpHere(v, addrTop);







<
<
<
<
<
<
<
<
<
|
>
|
<
<
>
|
|
>
|
<
|
|
>
>
>
|
|
|
|
|
>
>
>
>
>
|
|
>
>
|
>
>
>







114543
114544
114545
114546
114547
114548
114549









114550
114551
114552


114553
114554
114555
114556
114557

114558
114559
114560
114561
114562
114563
114564
114565
114566
114567
114568
114569
114570
114571
114572
114573
114574
114575
114576
114577
114578
114579
114580
114581
114582
114583
114584
114585
114586
114587
        pIdx = 0;
        aiCols = 0;
        if( pParent ){
          x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
          assert( x==0 );
        }
        addrOk = sqlite3VdbeMakeLabel(v);










        /* Generate code to read the child key values into registers
        ** regRow..regRow+n. If any of the child key values are NULL, this 


        ** row cannot cause an FK violation. Jump directly to addrOk in 
        ** this case. */
        for(j=0; j<pFK->nCol; j++){
          int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
          sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);

          sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
        }

        /* Generate code to query the parent index for a matching parent
        ** key. If a match is found, jump to addrOk. */
        if( pIdx ){
          sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
              sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
          sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
          VdbeCoverage(v);
        }else if( pParent ){
          int jmp = sqlite3VdbeCurrentAddr(v)+2;
          sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
          sqlite3VdbeGoto(v, addrOk);
          assert( pFK->nCol==1 );
        }

        /* Generate code to report an FK violation to the caller. */
        if( HasRowid(pTab) ){
          sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
        }else{
          sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
        }
        sqlite3VdbeMultiLoad(v, regResult+2, "si", pFK->zTo, i-1);
        sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
        sqlite3VdbeResolveLabel(v, addrOk);
        sqlite3DbFree(db, aiCols);
      }
      sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
      sqlite3VdbeJumpHere(v, addrTop);
114497
114498
114499
114500
114501
114502
114503


114504
114505
114506
114507
114508
114509
114510
114511
114512
114513
114514
114515
114516
114517
114518
114519
114520
114521
114522


114523
114524
114525
114526
114527
114528
114529
                              pTab->aCol[j].zName);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
          integrityCheckResultRow(v, 3);
          sqlite3VdbeJumpHere(v, jmp2);
        }
        /* Verify CHECK constraints */
        if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){


          int addrCkFault = sqlite3VdbeMakeLabel(v);
          int addrCkOk = sqlite3VdbeMakeLabel(v);
          ExprList *pCheck = pTab->pCheck;
          char *zErr;
          int k;
          pParse->iSelfTab = iDataCur;
          sqlite3ExprCachePush(pParse);
          for(k=pCheck->nExpr-1; k>0; k--){
            sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
          }
          sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk, 
                            SQLITE_JUMPIFNULL);
          sqlite3VdbeResolveLabel(v, addrCkFault);
          zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
                                pTab->zName);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
          integrityCheckResultRow(v, 3);
          sqlite3VdbeResolveLabel(v, addrCkOk);
          sqlite3ExprCachePop(pParse);


        }
        /* Validate index entries for the current row */
        for(j=0, pIdx=pTab->pIndex; pIdx && !isQuick; pIdx=pIdx->pNext, j++){
          int jmp2, jmp3, jmp4, jmp5;
          int ckUniq = sqlite3VdbeMakeLabel(v);
          if( pPk==pIdx ) continue;
          r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,







>
>
|
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>







114759
114760
114761
114762
114763
114764
114765
114766
114767
114768
114769

114770
114771
114772
114773
114774
114775
114776
114777
114778
114779
114780
114781
114782
114783
114784
114785
114786
114787
114788
114789
114790
114791
114792
114793
114794
                              pTab->aCol[j].zName);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
          integrityCheckResultRow(v, 3);
          sqlite3VdbeJumpHere(v, jmp2);
        }
        /* Verify CHECK constraints */
        if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
          ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0);
          if( db->mallocFailed==0 ){
            int addrCkFault = sqlite3VdbeMakeLabel(v);
            int addrCkOk = sqlite3VdbeMakeLabel(v);

            char *zErr;
            int k;
            pParse->iSelfTab = iDataCur;
            sqlite3ExprCachePush(pParse);
            for(k=pCheck->nExpr-1; k>0; k--){
              sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
            }
            sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk, 
                SQLITE_JUMPIFNULL);
            sqlite3VdbeResolveLabel(v, addrCkFault);
            zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
                pTab->zName);
            sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
            integrityCheckResultRow(v, 3);
            sqlite3VdbeResolveLabel(v, addrCkOk);
            sqlite3ExprCachePop(pParse);
          }
          sqlite3ExprListDelete(db, pCheck);
        }
        /* Validate index entries for the current row */
        for(j=0, pIdx=pTab->pIndex; pIdx && !isQuick; pIdx=pIdx->pNext, j++){
          int jmp2, jmp3, jmp4, jmp5;
          int ckUniq = sqlite3VdbeMakeLabel(v);
          if( pPk==pIdx ) continue;
          r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
116319
116320
116321
116322
116323
116324
116325
116326
116327
116328
116329
116330
116331
116332
116333
    sqlite3ExprDelete(db, p->pWhere);
    sqlite3ExprListDelete(db, p->pGroupBy);
    sqlite3ExprDelete(db, p->pHaving);
    sqlite3ExprListDelete(db, p->pOrderBy);
    sqlite3ExprDelete(db, p->pLimit);
    sqlite3ExprDelete(db, p->pOffset);
    if( p->pWith ) sqlite3WithDelete(db, p->pWith);
    if( bFree ) sqlite3DbFree(db, p);
    p = pPrior;
    bFree = 1;
  }
}

/*
** Initialize a SelectDest structure.







|







116584
116585
116586
116587
116588
116589
116590
116591
116592
116593
116594
116595
116596
116597
116598
    sqlite3ExprDelete(db, p->pWhere);
    sqlite3ExprListDelete(db, p->pGroupBy);
    sqlite3ExprDelete(db, p->pHaving);
    sqlite3ExprListDelete(db, p->pOrderBy);
    sqlite3ExprDelete(db, p->pLimit);
    sqlite3ExprDelete(db, p->pOffset);
    if( p->pWith ) sqlite3WithDelete(db, p->pWith);
    if( bFree ) sqlite3DbFreeNN(db, p);
    p = pPrior;
    bFree = 1;
  }
}

/*
** Initialize a SelectDest structure.
116355
116356
116357
116358
116359
116360
116361
116362
116363
116364
116365
116366
116367
116368
116369
116370
116371
116372
116373
116374
116375
116376
116377
116378
116379
116380
116381
116382
116383
116384
116385
116386
116387
116388
116389
116390
116391
116392
116393
116394
116395
116396
116397
116398
116399
116400
116401
116402
  ExprList *pOrderBy,   /* the ORDER BY clause */
  u32 selFlags,         /* Flag parameters, such as SF_Distinct */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;
  sqlite3 *db = pParse->db;
  pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
  if( pNew==0 ){
    assert( db->mallocFailed );
    pNew = &standin;
  }
  if( pEList==0 ){
    pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0));
  }
  pNew->pEList = pEList;
  pNew->op = TK_SELECT;
  pNew->selFlags = selFlags;
  pNew->iLimit = 0;
  pNew->iOffset = 0;
#if SELECTTRACE_ENABLED
  pNew->zSelName[0] = 0;
#endif
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->nSelectRow = 0;
  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->pPrior = 0;
  pNew->pNext = 0;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  pNew->pWith = 0;
  assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
  if( db->mallocFailed ) {
    clearSelect(db, pNew, pNew!=&standin);
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );
  return pNew;
}







<
|

|



|












|










|
|
|







116620
116621
116622
116623
116624
116625
116626

116627
116628
116629
116630
116631
116632
116633
116634
116635
116636
116637
116638
116639
116640
116641
116642
116643
116644
116645
116646
116647
116648
116649
116650
116651
116652
116653
116654
116655
116656
116657
116658
116659
116660
116661
116662
116663
116664
116665
116666
  ExprList *pOrderBy,   /* the ORDER BY clause */
  u32 selFlags,         /* Flag parameters, such as SF_Distinct */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;

  pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
  if( pNew==0 ){
    assert( pParse->db->mallocFailed );
    pNew = &standin;
  }
  if( pEList==0 ){
    pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(pParse->db,TK_ASTERISK,0));
  }
  pNew->pEList = pEList;
  pNew->op = TK_SELECT;
  pNew->selFlags = selFlags;
  pNew->iLimit = 0;
  pNew->iOffset = 0;
#if SELECTTRACE_ENABLED
  pNew->zSelName[0] = 0;
#endif
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->nSelectRow = 0;
  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->pPrior = 0;
  pNew->pNext = 0;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  pNew->pWith = 0;
  assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || pParse->db->mallocFailed!=0 );
  if( pParse->db->mallocFailed ) {
    clearSelect(pParse->db, pNew, pNew!=&standin);
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );
  return pNew;
}
117298
117299
117300
117301
117302
117303
117304
117305
117306
117307
117308
117309
117310
117311
117312
/*
** Deallocate a KeyInfo object
*/
SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo *p){
  if( p ){
    assert( p->nRef>0 );
    p->nRef--;
    if( p->nRef==0 ) sqlite3DbFree(p->db, p);
  }
}

/*
** Make a new pointer to a KeyInfo object
*/
SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){







|







117562
117563
117564
117565
117566
117567
117568
117569
117570
117571
117572
117573
117574
117575
117576
/*
** Deallocate a KeyInfo object
*/
SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo *p){
  if( p ){
    assert( p->nRef>0 );
    p->nRef--;
    if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
  }
}

/*
** Make a new pointer to a KeyInfo object
*/
SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
117773
117774
117775
117776
117777
117778
117779

117780
117781
117782
117783
117784
117785
117786
){
#ifndef SQLITE_OMIT_DECLTYPE
  Vdbe *v = pParse->pVdbe;
  int i;
  NameContext sNC;
  sNC.pSrcList = pTabList;
  sNC.pParse = pParse;

  for(i=0; i<pEList->nExpr; i++){
    Expr *p = pEList->a[i].pExpr;
    const char *zType;
#ifdef SQLITE_ENABLE_COLUMN_METADATA
    const char *zOrigDb = 0;
    const char *zOrigTab = 0;
    const char *zOrigCol = 0;







>







118037
118038
118039
118040
118041
118042
118043
118044
118045
118046
118047
118048
118049
118050
118051
){
#ifndef SQLITE_OMIT_DECLTYPE
  Vdbe *v = pParse->pVdbe;
  int i;
  NameContext sNC;
  sNC.pSrcList = pTabList;
  sNC.pParse = pParse;
  sNC.pNext = 0;
  for(i=0; i<pEList->nExpr; i++){
    Expr *p = pEList->a[i].pExpr;
    const char *zType;
#ifdef SQLITE_ENABLE_COLUMN_METADATA
    const char *zOrigDb = 0;
    const char *zOrigTab = 0;
    const char *zOrigCol = 0;
117796
117797
117798
117799
117800
117801
117802













117803
117804
117805
117806
117807
117808
117809
117810
117811
117812
117813
117814
117815

117816
117817
117818
117819
117820
117821
117822
#else
    zType = columnType(&sNC, p, 0, 0, 0, 0);
#endif
    sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
  }
#endif /* !defined(SQLITE_OMIT_DECLTYPE) */
}














/*
** Generate code that will tell the VDBE the names of columns
** in the result set.  This information is used to provide the
** azCol[] values in the callback.
*/
static void generateColumnNames(
  Parse *pParse,      /* Parser context */
  SrcList *pTabList,  /* List of tables */
  ExprList *pEList    /* Expressions defining the result set */
){
  Vdbe *v = pParse->pVdbe;
  int i, j;

  sqlite3 *db = pParse->db;
  int fullNames, shortNames;

#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;







>
>
>
>
>
>
>
>
>
>
>
>
>












|
>







118061
118062
118063
118064
118065
118066
118067
118068
118069
118070
118071
118072
118073
118074
118075
118076
118077
118078
118079
118080
118081
118082
118083
118084
118085
118086
118087
118088
118089
118090
118091
118092
118093
118094
118095
118096
118097
118098
118099
118100
118101
#else
    zType = columnType(&sNC, p, 0, 0, 0, 0);
#endif
    sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
  }
#endif /* !defined(SQLITE_OMIT_DECLTYPE) */
}

/*
** Return the Table objecct in the SrcList that has cursor iCursor.
** Or return NULL if no such Table object exists in the SrcList.
*/
static Table *tableWithCursor(SrcList *pList, int iCursor){
  int j;
  for(j=0; j<pList->nSrc; j++){
    if( pList->a[j].iCursor==iCursor ) return pList->a[j].pTab;
  }
  return 0;
}


/*
** Generate code that will tell the VDBE the names of columns
** in the result set.  This information is used to provide the
** azCol[] values in the callback.
*/
static void generateColumnNames(
  Parse *pParse,      /* Parser context */
  SrcList *pTabList,  /* List of tables */
  ExprList *pEList    /* Expressions defining the result set */
){
  Vdbe *v = pParse->pVdbe;
  int i;
  Table *pTab;
  sqlite3 *db = pParse->db;
  int fullNames, shortNames;

#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;
117833
117834
117835
117836
117837
117838
117839
117840
117841

117842
117843
117844
117845
117846
117847
117848
117849
117850
117851
117852
117853
117854
117855
  for(i=0; i<pEList->nExpr; i++){
    Expr *p;
    p = pEList->a[i].pExpr;
    if( NEVER(p==0) ) continue;
    if( pEList->a[i].zName ){
      char *zName = pEList->a[i].zName;
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
    }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){
      Table *pTab;

      char *zCol;
      int iCol = p->iColumn;
      for(j=0; ALWAYS(j<pTabList->nSrc); j++){
        if( pTabList->a[j].iCursor==p->iTable ) break;
      }
      assert( j<pTabList->nSrc );
      pTab = pTabList->a[j].pTab;
      if( iCol<0 ) iCol = pTab->iPKey;
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
      if( iCol<0 ){
        zCol = "rowid";
      }else{
        zCol = pTab->aCol[iCol].zName;
      }







|
|
>


<
<
<
<
<







118112
118113
118114
118115
118116
118117
118118
118119
118120
118121
118122
118123





118124
118125
118126
118127
118128
118129
118130
  for(i=0; i<pEList->nExpr; i++){
    Expr *p;
    p = pEList->a[i].pExpr;
    if( NEVER(p==0) ) continue;
    if( pEList->a[i].zName ){
      char *zName = pEList->a[i].zName;
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
    }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
           && (pTab = tableWithCursor(pTabList, p->iTable))!=0
    ){
      char *zCol;
      int iCol = p->iColumn;





      if( iCol<0 ) iCol = pTab->iPKey;
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
      if( iCol<0 ){
        zCol = "rowid";
      }else{
        zCol = pTab->aCol[iCol].zName;
      }
117923
117924
117925
117926
117927
117928
117929
117930
117931
117932
117933
117934
117935
117936
117937
    }else{
      Expr *pColExpr = p;  /* The expression that is the result column name */
      Table *pTab;         /* Table associated with this expression */
      while( pColExpr->op==TK_DOT ){
        pColExpr = pColExpr->pRight;
        assert( pColExpr!=0 );
      }
      if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
        /* For columns use the column name name */
        int iCol = pColExpr->iColumn;
        pTab = pColExpr->pTab;
        if( iCol<0 ) iCol = pTab->iPKey;
        zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
      }else if( pColExpr->op==TK_ID ){
        assert( !ExprHasProperty(pColExpr, EP_IntValue) );







|







118198
118199
118200
118201
118202
118203
118204
118205
118206
118207
118208
118209
118210
118211
118212
    }else{
      Expr *pColExpr = p;  /* The expression that is the result column name */
      Table *pTab;         /* Table associated with this expression */
      while( pColExpr->op==TK_DOT ){
        pColExpr = pColExpr->pRight;
        assert( pColExpr!=0 );
      }
      if( pColExpr->op==TK_COLUMN && pColExpr->pTab!=0 ){
        /* For columns use the column name name */
        int iCol = pColExpr->iColumn;
        pTab = pColExpr->pTab;
        if( iCol<0 ) iCol = pTab->iPKey;
        zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
      }else if( pColExpr->op==TK_ID ){
        assert( !ExprHasProperty(pColExpr, EP_IntValue) );
119143
119144
119145
119146
119147
119148
119149
119150
119151
119152
119153
119154
119155
119156
119157
        if( pItem->u.x.iOrderByCol==i ) break;
      }
      if( j==nOrderBy ){
        Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
        if( pNew==0 ) return SQLITE_NOMEM_BKPT;
        pNew->flags |= EP_IntValue;
        pNew->u.iValue = i;
        pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
        if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
      }
    }
  }

  /* Compute the comparison permutation and keyinfo that is used with
  ** the permutation used to determine if the next







|







119418
119419
119420
119421
119422
119423
119424
119425
119426
119427
119428
119429
119430
119431
119432
        if( pItem->u.x.iOrderByCol==i ) break;
      }
      if( j==nOrderBy ){
        Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
        if( pNew==0 ) return SQLITE_NOMEM_BKPT;
        pNew->flags |= EP_IntValue;
        pNew->u.iValue = i;
        p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
        if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
      }
    }
  }

  /* Compute the comparison permutation and keyinfo that is used with
  ** the permutation used to determine if the next
119377
119378
119379
119380
119381
119382
119383















119384
119385
119386
119387
119388
119389
119390
119391
119392
119393
119394
119395
119396
119397
119398
119399
119400
119401
119402
119403
119404
119405
119406
119407
119408



119409
119410
119411
119412
119413
119414

119415
119416
119417
119418
119419








119420
119421
119422
119423
119424
119425
119426
119427
119428
119429
119430
119431
119432
119433
119434
119435
119436
119437
119438
119439
119440
119441
119442
119443
119444
119445
119446
119447
119448
119449
119450
119451
119452
119453
119454
119455
119456
119457
119458
119459
119460
119461
119462
119463
119464
119465
119466
119467
119468
119469
119470
119471
119472
119473
119474
119475
119476
119477
119478
119479
119480
119481
  **** subqueries ****/
  explainComposite(pParse, p->op, iSub1, iSub2, 0);
  return pParse->nErr!=0;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)















/* Forward Declarations */
static void substExprList(Parse*, ExprList*, int, ExprList*);
static void substSelect(Parse*, Select *, int, ExprList*, int);

/*
** Scan through the expression pExpr.  Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList.  (But leave references to the ROWID column 
** unchanged.)
**
** This routine is part of the flattening procedure.  A subquery
** whose result set is defined by pEList appears as entry in the
** FROM clause of a SELECT such that the VDBE cursor assigned to that
** FORM clause entry is iTable.  This routine make the necessary 
** changes to pExpr so that it refers directly to the source table
** of the subquery rather the result set of the subquery.
*/
static Expr *substExpr(
  Parse *pParse,      /* Report errors here */
  Expr *pExpr,        /* Expr in which substitution occurs */
  int iTable,         /* Table to be substituted */
  ExprList *pEList    /* Substitute expressions */
){
  sqlite3 *db = pParse->db;
  if( pExpr==0 ) return 0;



  if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
    if( pExpr->iColumn<0 ){
      pExpr->op = TK_NULL;
    }else{
      Expr *pNew;
      Expr *pCopy = pEList->a[pExpr->iColumn].pExpr;

      assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
      assert( pExpr->pLeft==0 && pExpr->pRight==0 );
      if( sqlite3ExprIsVector(pCopy) ){
        sqlite3VectorErrorMsg(pParse, pCopy);
      }else{








        pNew = sqlite3ExprDup(db, pCopy, 0);
        if( pNew && (pExpr->flags & EP_FromJoin) ){
          pNew->iRightJoinTable = pExpr->iRightJoinTable;
          pNew->flags |= EP_FromJoin;
        }
        sqlite3ExprDelete(db, pExpr);
        pExpr = pNew;
      }
    }
  }else{
    pExpr->pLeft = substExpr(pParse, pExpr->pLeft, iTable, pEList);
    pExpr->pRight = substExpr(pParse, pExpr->pRight, iTable, pEList);
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      substSelect(pParse, pExpr->x.pSelect, iTable, pEList, 1);
    }else{
      substExprList(pParse, pExpr->x.pList, iTable, pEList);
    }
  }
  return pExpr;
}
static void substExprList(
  Parse *pParse,       /* Report errors here */
  ExprList *pList,     /* List to scan and in which to make substitutes */
  int iTable,          /* Table to be substituted */
  ExprList *pEList     /* Substitute values */
){
  int i;
  if( pList==0 ) return;
  for(i=0; i<pList->nExpr; i++){
    pList->a[i].pExpr = substExpr(pParse, pList->a[i].pExpr, iTable, pEList);
  }
}
static void substSelect(
  Parse *pParse,       /* Report errors here */
  Select *p,           /* SELECT statement in which to make substitutions */
  int iTable,          /* Table to be replaced */
  ExprList *pEList,    /* Substitute values */
  int doPrior          /* Do substitutes on p->pPrior too */
){
  SrcList *pSrc;
  struct SrcList_item *pItem;
  int i;
  if( !p ) return;
  do{
    substExprList(pParse, p->pEList, iTable, pEList);
    substExprList(pParse, p->pGroupBy, iTable, pEList);
    substExprList(pParse, p->pOrderBy, iTable, pEList);
    p->pHaving = substExpr(pParse, p->pHaving, iTable, pEList);
    p->pWhere = substExpr(pParse, p->pWhere, iTable, pEList);
    pSrc = p->pSrc;
    assert( pSrc!=0 );
    for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
      substSelect(pParse, pItem->pSelect, iTable, pEList, 1);
      if( pItem->fg.isTabFunc ){
        substExprList(pParse, pItem->u1.pFuncArg, iTable, pEList);
      }
    }
  }while( doPrior && (p = p->pPrior)!=0 );
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|
|










|




|
|
<
<

<

>
>
>
|




|
>
|


|

>
>
>
>
>
>
>
>










|
|

|

|





|
|
<
<




|



|
|
<
<
|






|
|
|
|
|



|

|







119652
119653
119654
119655
119656
119657
119658
119659
119660
119661
119662
119663
119664
119665
119666
119667
119668
119669
119670
119671
119672
119673
119674
119675
119676
119677
119678
119679
119680
119681
119682
119683
119684
119685
119686
119687
119688
119689
119690
119691
119692
119693


119694

119695
119696
119697
119698
119699
119700
119701
119702
119703
119704
119705
119706
119707
119708
119709
119710
119711
119712
119713
119714
119715
119716
119717
119718
119719
119720
119721
119722
119723
119724
119725
119726
119727
119728
119729
119730
119731
119732
119733
119734
119735
119736
119737
119738
119739
119740
119741


119742
119743
119744
119745
119746
119747
119748
119749
119750
119751


119752
119753
119754
119755
119756
119757
119758
119759
119760
119761
119762
119763
119764
119765
119766
119767
119768
119769
119770
119771
119772
119773
119774
119775
119776
  **** subqueries ****/
  explainComposite(pParse, p->op, iSub1, iSub2, 0);
  return pParse->nErr!=0;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)

/* An instance of the SubstContext object describes an substitution edit
** to be performed on a parse tree.
**
** All references to columns in table iTable are to be replaced by corresponding
** expressions in pEList.
*/
typedef struct SubstContext {
  Parse *pParse;            /* The parsing context */
  int iTable;               /* Replace references to this table */
  int iNewTable;            /* New table number */
  int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
  ExprList *pEList;         /* Replacement expressions */
} SubstContext;

/* Forward Declarations */
static void substExprList(SubstContext*, ExprList*);
static void substSelect(SubstContext*, Select*, int);

/*
** Scan through the expression pExpr.  Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList.  (But leave references to the ROWID column 
** unchanged.)
**
** This routine is part of the flattening procedure.  A subquery
** whose result set is defined by pEList appears as entry in the
** FROM clause of a SELECT such that the VDBE cursor assigned to that
** FORM clause entry is iTable.  This routine makes the necessary 
** changes to pExpr so that it refers directly to the source table
** of the subquery rather the result set of the subquery.
*/
static Expr *substExpr(
  SubstContext *pSubst,  /* Description of the substitution */
  Expr *pExpr            /* Expr in which substitution occurs */


){

  if( pExpr==0 ) return 0;
  if( ExprHasProperty(pExpr, EP_FromJoin) && pExpr->iRightJoinTable==pSubst->iTable ){
    pExpr->iRightJoinTable = pSubst->iNewTable;
  }
  if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
    if( pExpr->iColumn<0 ){
      pExpr->op = TK_NULL;
    }else{
      Expr *pNew;
      Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
      Expr ifNullRow;
      assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
      assert( pExpr->pLeft==0 && pExpr->pRight==0 );
      if( sqlite3ExprIsVector(pCopy) ){
        sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
      }else{
        sqlite3 *db = pSubst->pParse->db;
        if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
          memset(&ifNullRow, 0, sizeof(ifNullRow));
          ifNullRow.op = TK_IF_NULL_ROW;
          ifNullRow.pLeft = pCopy;
          ifNullRow.iTable = pSubst->iNewTable;
          pCopy = &ifNullRow;
        }
        pNew = sqlite3ExprDup(db, pCopy, 0);
        if( pNew && (pExpr->flags & EP_FromJoin) ){
          pNew->iRightJoinTable = pExpr->iRightJoinTable;
          pNew->flags |= EP_FromJoin;
        }
        sqlite3ExprDelete(db, pExpr);
        pExpr = pNew;
      }
    }
  }else{
    pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
    pExpr->pRight = substExpr(pSubst, pExpr->pRight);
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      substSelect(pSubst, pExpr->x.pSelect, 1);
    }else{
      substExprList(pSubst, pExpr->x.pList);
    }
  }
  return pExpr;
}
static void substExprList(
  SubstContext *pSubst, /* Description of the substitution */
  ExprList *pList       /* List to scan and in which to make substitutes */


){
  int i;
  if( pList==0 ) return;
  for(i=0; i<pList->nExpr; i++){
    pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
  }
}
static void substSelect(
  SubstContext *pSubst, /* Description of the substitution */
  Select *p,            /* SELECT statement in which to make substitutions */


  int doPrior           /* Do substitutes on p->pPrior too */
){
  SrcList *pSrc;
  struct SrcList_item *pItem;
  int i;
  if( !p ) return;
  do{
    substExprList(pSubst, p->pEList);
    substExprList(pSubst, p->pGroupBy);
    substExprList(pSubst, p->pOrderBy);
    p->pHaving = substExpr(pSubst, p->pHaving);
    p->pWhere = substExpr(pSubst, p->pWhere);
    pSrc = p->pSrc;
    assert( pSrc!=0 );
    for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
      substSelect(pSubst, pItem->pSelect, 1);
      if( pItem->fg.isTabFunc ){
        substExprList(pSubst, pItem->u1.pFuncArg);
      }
    }
  }while( doPrior && (p = p->pPrior)!=0 );
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
119510
119511
119512
119513
119514
119515
119516
119517
119518
119519
119520
119521
119522
119523
119524
119525
119526
119527
119528
119529
119530
119531
119532
119533
119534
119535
119536
119537
**   (1)  The subquery and the outer query do not both use aggregates.
**
**   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
**        and (2b) the outer query does not use subqueries other than the one
**        FROM-clause subquery that is a candidate for flattening.  (2b is
**        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
**
**   (3)  The subquery is not the right operand of a left outer join
**        (Originally ticket #306.  Strengthened by ticket #3300)
**
**   (4)  The subquery is not DISTINCT.
**
**  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
**        sub-queries that were excluded from this optimization. Restriction 
**        (4) has since been expanded to exclude all DISTINCT subqueries.
**
**   (6)  The subquery does not use aggregates or the outer query is not
**        DISTINCT.
**
**   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
**        A FROM clause, consider adding a FROM close with the special
**        table sqlite_once that consists of a single row containing a
**        single NULL.
**
**   (8)  The subquery does not use LIMIT or the outer query is not a join.
**
**   (9)  The subquery does not use LIMIT or the outer query does not use
**        aggregates.







|
|











|







119805
119806
119807
119808
119809
119810
119811
119812
119813
119814
119815
119816
119817
119818
119819
119820
119821
119822
119823
119824
119825
119826
119827
119828
119829
119830
119831
119832
**   (1)  The subquery and the outer query do not both use aggregates.
**
**   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
**        and (2b) the outer query does not use subqueries other than the one
**        FROM-clause subquery that is a candidate for flattening.  (2b is
**        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
**
**   (3)  The subquery is not the right operand of a LEFT JOIN
**        or the subquery is not itself a join.
**
**   (4)  The subquery is not DISTINCT.
**
**  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
**        sub-queries that were excluded from this optimization. Restriction 
**        (4) has since been expanded to exclude all DISTINCT subqueries.
**
**   (6)  The subquery does not use aggregates or the outer query is not
**        DISTINCT.
**
**   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
**        A FROM clause, consider adding a FROM clause with the special
**        table sqlite_once that consists of a single row containing a
**        single NULL.
**
**   (8)  The subquery does not use LIMIT or the outer query is not a join.
**
**   (9)  The subquery does not use LIMIT or the outer query does not use
**        aggregates.
119629
119630
119631
119632
119633
119634
119635


119636
119637
119638
119639
119640
119641
119642
  Select *pParent;    /* Current UNION ALL term of the other query */
  Select *pSub;       /* The inner query or "subquery" */
  Select *pSub1;      /* Pointer to the rightmost select in sub-query */
  SrcList *pSrc;      /* The FROM clause of the outer query */
  SrcList *pSubSrc;   /* The FROM clause of the subquery */
  ExprList *pList;    /* The result set of the outer query */
  int iParent;        /* VDBE cursor number of the pSub result set temp table */


  int i;              /* Loop counter */
  Expr *pWhere;                    /* The WHERE clause */
  struct SrcList_item *pSubitem;   /* The subquery */
  sqlite3 *db = pParse->db;

  /* Check to see if flattening is permitted.  Return 0 if not.
  */







>
>







119924
119925
119926
119927
119928
119929
119930
119931
119932
119933
119934
119935
119936
119937
119938
119939
  Select *pParent;    /* Current UNION ALL term of the other query */
  Select *pSub;       /* The inner query or "subquery" */
  Select *pSub1;      /* Pointer to the rightmost select in sub-query */
  SrcList *pSrc;      /* The FROM clause of the outer query */
  SrcList *pSubSrc;   /* The FROM clause of the subquery */
  ExprList *pList;    /* The result set of the outer query */
  int iParent;        /* VDBE cursor number of the pSub result set temp table */
  int iNewParent = -1;/* Replacement table for iParent */
  int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */    
  int i;              /* Loop counter */
  Expr *pWhere;                    /* The WHERE clause */
  struct SrcList_item *pSubitem;   /* The subquery */
  sqlite3 *db = pParse->db;

  /* Check to see if flattening is permitted.  Return 0 if not.
  */
119655
119656
119657
119658
119659
119660
119661
119662
119663
119664
119665
119666
119667
119668
119669
    if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
     || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
     || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
    ){
      return 0;                                          /* Restriction (2b)  */
    }
  }
    
  pSubSrc = pSub->pSrc;
  assert( pSubSrc );
  /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
  ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
  ** because they could be computed at compile-time.  But when LIMIT and OFFSET
  ** became arbitrary expressions, we were forced to add restrictions (13)
  ** and (14). */







|







119952
119953
119954
119955
119956
119957
119958
119959
119960
119961
119962
119963
119964
119965
119966
    if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
     || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
     || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
    ){
      return 0;                                          /* Restriction (2b)  */
    }
  }

  pSubSrc = pSub->pSrc;
  assert( pSubSrc );
  /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
  ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
  ** because they could be computed at compile-time.  But when LIMIT and OFFSET
  ** became arbitrary expressions, we were forced to add restrictions (13)
  ** and (14). */
119693
119694
119695
119696
119697
119698
119699
119700
119701
119702
119703
119704
119705
119706
119707
119708
119709
119710
119711
119712
119713
119714
119715
119716
119717
119718
119719
119720
119721
119722
119723
119724
119725
119726
119727
119728
119729
119730
119731
119732


119733

119734
119735
119736
119737
119738
119739
119740
  if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
    return 0; /* Restrictions (22) and (24) */
  }
  if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
    return 0; /* Restriction (23) */
  }

  /* OBSOLETE COMMENT 1:
  ** Restriction 3:  If the subquery is a join, make sure the subquery is 
  ** not used as the right operand of an outer join.  Examples of why this
  ** is not allowed:
  **
  **         t1 LEFT OUTER JOIN (t2 JOIN t3)
  **
  ** If we flatten the above, we would get
  **
  **         (t1 LEFT OUTER JOIN t2) JOIN t3
  **
  ** which is not at all the same thing.
  **
  ** OBSOLETE COMMENT 2:
  ** Restriction 12:  If the subquery is the right operand of a left outer
  ** join, make sure the subquery has no WHERE clause.
  ** An examples of why this is not allowed:
  **
  **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
  **
  ** If we flatten the above, we would get
  **
  **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
  **
  ** But the t2.x>0 test will always fail on a NULL row of t2, which
  ** effectively converts the OUTER JOIN into an INNER JOIN.
  **
  ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
  ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
  ** is fraught with danger.  Best to avoid the whole thing.  If the
  ** subquery is the right term of a LEFT JOIN, then do not flatten.
  */
  if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){


    return 0;

  }

  /* Restriction 17: If the sub-query is a compound SELECT, then it must
  ** use only the UNION ALL operator. And none of the simple select queries
  ** that make up the compound SELECT are allowed to be aggregate or distinct
  ** queries.
  */







|
|
|
<









|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


>
>
|
>







119990
119991
119992
119993
119994
119995
119996
119997
119998
119999

120000
120001
120002
120003
120004
120005
120006
120007
120008
120009

















120010
120011
120012
120013
120014
120015
120016
120017
120018
120019
120020
120021
120022
  if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
    return 0; /* Restrictions (22) and (24) */
  }
  if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
    return 0; /* Restriction (23) */
  }

  /*
  ** If the subquery is the right operand of a LEFT JOIN, then the
  ** subquery may not be a join itself.  Example of why this is not allowed:

  **
  **         t1 LEFT OUTER JOIN (t2 JOIN t3)
  **
  ** If we flatten the above, we would get
  **
  **         (t1 LEFT OUTER JOIN t2) JOIN t3
  **
  ** which is not at all the same thing.
  **
  ** See also tickets #306, #350, and #3300.

















  */
  if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
    isLeftJoin = 1;
    if( pSubSrc->nSrc>1 ){
      return 0; /* Restriction (3) */
    }
  }

  /* Restriction 17: If the sub-query is a compound SELECT, then it must
  ** use only the UNION ALL operator. And none of the simple select queries
  ** that make up the compound SELECT are allowed to be aggregate or distinct
  ** queries.
  */
119935
119936
119937
119938
119939
119940
119941

119942
119943
119944
119945
119946
119947
119948
    /* Transfer the FROM clause terms from the subquery into the
    ** outer query.
    */
    for(i=0; i<nSubSrc; i++){
      sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
      assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
      pSrc->a[i+iFrom] = pSubSrc->a[i];

      memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
    }
    pSrc->a[iFrom].fg.jointype = jointype;
  
    /* Now begin substituting subquery result set expressions for 
    ** references to the iParent in the outer query.
    ** 







>







120217
120218
120219
120220
120221
120222
120223
120224
120225
120226
120227
120228
120229
120230
120231
    /* Transfer the FROM clause terms from the subquery into the
    ** outer query.
    */
    for(i=0; i<nSubSrc; i++){
      sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
      assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
      pSrc->a[i+iFrom] = pSubSrc->a[i];
      iNewParent = pSubSrc->a[i].iCursor;
      memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
    }
    pSrc->a[iFrom].fg.jointype = jointype;
  
    /* Now begin substituting subquery result set expressions for 
    ** references to the iParent in the outer query.
    ** 
119980
119981
119982
119983
119984
119985
119986



119987
119988
119989
119990
119991
119992
119993
119994
119995
119996
119997
119998
119999






120000
120001
120002
120003
120004
120005
120006
120007
      }
      assert( pParent->pOrderBy==0 );
      assert( pSub->pPrior==0 );
      pParent->pOrderBy = pOrderBy;
      pSub->pOrderBy = 0;
    }
    pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);



    if( subqueryIsAgg ){
      assert( pParent->pHaving==0 );
      pParent->pHaving = pParent->pWhere;
      pParent->pWhere = pWhere;
      pParent->pHaving = sqlite3ExprAnd(db, 
          sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving
      );
      assert( pParent->pGroupBy==0 );
      pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
    }else{
      pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
    }
    if( db->mallocFailed==0 ){






      substSelect(pParse, pParent, iParent, pSub->pEList, 0);
    }
  
    /* The flattened query is distinct if either the inner or the
    ** outer query is distinct. 
    */
    pParent->selFlags |= pSub->selFlags & SF_Distinct;
  







>
>
>













>
>
>
>
>
>
|







120263
120264
120265
120266
120267
120268
120269
120270
120271
120272
120273
120274
120275
120276
120277
120278
120279
120280
120281
120282
120283
120284
120285
120286
120287
120288
120289
120290
120291
120292
120293
120294
120295
120296
120297
120298
120299
      }
      assert( pParent->pOrderBy==0 );
      assert( pSub->pPrior==0 );
      pParent->pOrderBy = pOrderBy;
      pSub->pOrderBy = 0;
    }
    pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
    if( isLeftJoin ){
      setJoinExpr(pWhere, iNewParent);
    }
    if( subqueryIsAgg ){
      assert( pParent->pHaving==0 );
      pParent->pHaving = pParent->pWhere;
      pParent->pWhere = pWhere;
      pParent->pHaving = sqlite3ExprAnd(db, 
          sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving
      );
      assert( pParent->pGroupBy==0 );
      pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
    }else{
      pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
    }
    if( db->mallocFailed==0 ){
      SubstContext x;
      x.pParse = pParse;
      x.iTable = iParent;
      x.iNewTable = iNewParent;
      x.isLeftJoin = isLeftJoin;
      x.pEList = pSub->pEList;
      substSelect(&x, pParent, 0);
    }
  
    /* The flattened query is distinct if either the inner or the
    ** outer query is distinct. 
    */
    pParent->selFlags |= pSub->selFlags & SF_Distinct;
  
120096
120097
120098
120099
120100
120101
120102

120103





120104
120105
120106
120107
120108
120109
120110
120111
    nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
    pWhere = pWhere->pLeft;
  }
  if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
  if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
    nChng++;
    while( pSubq ){

      pNew = sqlite3ExprDup(pParse->db, pWhere, 0);





      pNew = substExpr(pParse, pNew, iCursor, pSubq->pEList);
      pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
      pSubq = pSubq->pPrior;
    }
  }
  return nChng;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */







>

>
>
>
>
>
|







120388
120389
120390
120391
120392
120393
120394
120395
120396
120397
120398
120399
120400
120401
120402
120403
120404
120405
120406
120407
120408
120409
    nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
    pWhere = pWhere->pLeft;
  }
  if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
  if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
    nChng++;
    while( pSubq ){
      SubstContext x;
      pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
      x.pParse = pParse;
      x.iTable = iCursor;
      x.iNewTable = iCursor;
      x.isLeftJoin = 0;
      x.pEList = pSubq->pEList;
      pNew = substExpr(&x, pNew);
      pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
      pSubq = pSubq->pPrior;
    }
  }
  return nChng;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
121088
121089
121090
121091
121092
121093
121094

































































































121095
121096
121097
121098
121099
121100
121101
        pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
    );
  }
}
#else
# define explainSimpleCount(a,b,c)
#endif


































































































/*
** Generate code for the SELECT statement given in the p argument.  
**
** The results are returned according to the SelectDest structure.
** See comments in sqliteInt.h for further information.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







121386
121387
121388
121389
121390
121391
121392
121393
121394
121395
121396
121397
121398
121399
121400
121401
121402
121403
121404
121405
121406
121407
121408
121409
121410
121411
121412
121413
121414
121415
121416
121417
121418
121419
121420
121421
121422
121423
121424
121425
121426
121427
121428
121429
121430
121431
121432
121433
121434
121435
121436
121437
121438
121439
121440
121441
121442
121443
121444
121445
121446
121447
121448
121449
121450
121451
121452
121453
121454
121455
121456
121457
121458
121459
121460
121461
121462
121463
121464
121465
121466
121467
121468
121469
121470
121471
121472
121473
121474
121475
121476
121477
121478
121479
121480
121481
121482
121483
121484
121485
121486
121487
121488
121489
121490
121491
121492
121493
121494
121495
121496
        pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
    );
  }
}
#else
# define explainSimpleCount(a,b,c)
#endif

/*
** Context object for havingToWhereExprCb().
*/
struct HavingToWhereCtx {
  Expr **ppWhere;
  ExprList *pGroupBy;
};

/*
** sqlite3WalkExpr() callback used by havingToWhere().
**
** If the node passed to the callback is a TK_AND node, return 
** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
**
** Otherwise, return WRC_Prune. In this case, also check if the 
** sub-expression matches the criteria for being moved to the WHERE
** clause. If so, add it to the WHERE clause and replace the sub-expression
** within the HAVING expression with a constant "1".
*/
static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
  if( pExpr->op!=TK_AND ){
    struct HavingToWhereCtx *p = pWalker->u.pHavingCtx;
    if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){
      sqlite3 *db = pWalker->pParse->db;
      Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
      if( pNew ){
        Expr *pWhere = *(p->ppWhere);
        SWAP(Expr, *pNew, *pExpr);
        pNew = sqlite3ExprAnd(db, pWhere, pNew);
        *(p->ppWhere) = pNew;
      }
    }
    return WRC_Prune;
  }
  return WRC_Continue;
}

/*
** Transfer eligible terms from the HAVING clause of a query, which is
** processed after grouping, to the WHERE clause, which is processed before
** grouping. For example, the query:
**
**   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
**
** can be rewritten as:
**
**   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
**
** A term of the HAVING expression is eligible for transfer if it consists
** entirely of constants and expressions that are also GROUP BY terms that
** use the "BINARY" collation sequence.
*/
static void havingToWhere(
  Parse *pParse,
  ExprList *pGroupBy,
  Expr *pHaving, 
  Expr **ppWhere
){
  struct HavingToWhereCtx sCtx;
  Walker sWalker;

  sCtx.ppWhere = ppWhere;
  sCtx.pGroupBy = pGroupBy;

  memset(&sWalker, 0, sizeof(sWalker));
  sWalker.pParse = pParse;
  sWalker.xExprCallback = havingToWhereExprCb;
  sWalker.u.pHavingCtx = &sCtx;
  sqlite3WalkExpr(&sWalker, pHaving);
}

/*
** Check to see if the pThis entry of pTabList is a self-join of a prior view.
** If it is, then return the SrcList_item for the prior view.  If it is not,
** then return 0.
*/
static struct SrcList_item *isSelfJoinView(
  SrcList *pTabList,           /* Search for self-joins in this FROM clause */
  struct SrcList_item *pThis   /* Search for prior reference to this subquery */
){
  struct SrcList_item *pItem;
  for(pItem = pTabList->a; pItem<pThis; pItem++){
    if( pItem->pSelect==0 ) continue;
    if( pItem->fg.viaCoroutine ) continue;
    if( pItem->zName==0 ) continue;
    if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
    if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
    if( sqlite3ExprCompare(pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) ){
      /* The view was modified by some other optimization such as
      ** pushDownWhereTerms() */
      continue;
    }
    return pItem;
  }
  return 0;
}

/*
** Generate code for the SELECT statement given in the p argument.  
**
** The results are returned according to the SelectDest structure.
** See comments in sqliteInt.h for further information.
**
121228
121229
121230
121231
121232
121233
121234


121235
121236
121237
121238
121239
121240
121241
























121242
121243
121244
121245
121246
121247
121248
121249
121250
121251




121252
121253
121254
121255
121256
121257
121258
    SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
    pParse->nSelectIndent--;
#endif
    return rc;
  }
#endif



  /* Generate code for all sub-queries in the FROM clause
  */
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  for(i=0; i<pTabList->nSrc; i++){
    struct SrcList_item *pItem = &pTabList->a[i];
    SelectDest dest;
    Select *pSub = pItem->pSelect;
























    if( pSub==0 ) continue;

    /* Sometimes the code for a subquery will be generated more than
    ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
    ** for example.  In that case, do not regenerate the code to manifest
    ** a view or the co-routine to implement a view.  The first instance
    ** is sufficient, though the subroutine to manifest the view does need
    ** to be invoked again. */
    if( pItem->addrFillSub ){
      if( pItem->fg.viaCoroutine==0 ){




        sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
      }
      continue;
    }

    /* Increment Parse.nHeight by the height of the largest expression
    ** tree referred to by this, the parent select. The child select







>
>
|

<



|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>










>
>
>
>







121623
121624
121625
121626
121627
121628
121629
121630
121631
121632
121633

121634
121635
121636
121637
121638
121639
121640
121641
121642
121643
121644
121645
121646
121647
121648
121649
121650
121651
121652
121653
121654
121655
121656
121657
121658
121659
121660
121661
121662
121663
121664
121665
121666
121667
121668
121669
121670
121671
121672
121673
121674
121675
121676
121677
121678
121679
121680
121681
121682
    SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
    pParse->nSelectIndent--;
#endif
    return rc;
  }
#endif

  /* For each term in the FROM clause, do two things:
  ** (1) Authorized unreferenced tables
  ** (2) Generate code for all sub-queries
  */

  for(i=0; i<pTabList->nSrc; i++){
    struct SrcList_item *pItem = &pTabList->a[i];
    SelectDest dest;
    Select *pSub;

    /* Issue SQLITE_READ authorizations with a fake column name for any tables that
    ** are referenced but from which no values are extracted. Examples of where these
    ** kinds of null SQLITE_READ authorizations would occur:
    **
    **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
    **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
    **
    ** The fake column name is an empty string.  It is possible for a table to
    ** have a column named by the empty string, in which case there is no way to
    ** distinguish between an unreferenced table and an actual reference to the
    ** "" column.  The original design was for the fake column name to be a NULL,
    ** which would be unambiguous.  But legacy authorization callbacks might
    ** assume the column name is non-NULL and segfault.  The use of an empty string
    ** for the fake column name seems safer.
    */
    if( pItem->colUsed==0 ){
      sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
    }

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
    /* Generate code for all sub-queries in the FROM clause
    */
    pSub = pItem->pSelect;
    if( pSub==0 ) continue;

    /* Sometimes the code for a subquery will be generated more than
    ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
    ** for example.  In that case, do not regenerate the code to manifest
    ** a view or the co-routine to implement a view.  The first instance
    ** is sufficient, though the subroutine to manifest the view does need
    ** to be invoked again. */
    if( pItem->addrFillSub ){
      if( pItem->fg.viaCoroutine==0 ){
        /* The subroutine that manifests the view might be a one-time routine,
        ** or it might need to be rerun on each iteration because it
        ** encodes a correlated subquery. */
        testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
        sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
      }
      continue;
    }

    /* Increment Parse.nHeight by the height of the largest expression
    ** tree referred to by this, the parent select. The child select
121319
121320
121321
121322
121323
121324
121325


121326
121327
121328
121329
121330
121331
121332
121333
121334
121335
121336
121337
121338




121339
121340
121341

121342
121343
121344
121345
121346
121347
121348
121349
121350
121351
121352

121353
121354
121355
121356
121357
121358
121359
      ** the content of this subquery.  pItem->addrFillSub will point
      ** to the address of the generated subroutine.  pItem->regReturn
      ** is a register allocated to hold the subroutine return address
      */
      int topAddr;
      int onceAddr = 0;
      int retAddr;


      assert( pItem->addrFillSub==0 );
      pItem->regReturn = ++pParse->nMem;
      topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
      pItem->addrFillSub = topAddr+1;
      if( pItem->fg.isCorrelated==0 ){
        /* If the subquery is not correlated and if we are not inside of
        ** a trigger, then we only need to compute the value of the subquery
        ** once. */
        onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
        VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }else{
        VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }




      sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
      explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
      sqlite3Select(pParse, pSub, &dest);

      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
      retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
      VdbeComment((v, "end %s", pItem->pTab->zName));
      sqlite3VdbeChangeP1(v, topAddr, retAddr);
      sqlite3ClearTempRegCache(pParse);
    }
    if( db->mallocFailed ) goto select_end;
    pParse->nHeight -= sqlite3SelectExprHeight(p);
  }
#endif


  /* Various elements of the SELECT copied into local variables for
  ** convenience */
  pEList = p->pEList;
  pWhere = p->pWhere;
  pGroupBy = p->pGroupBy;
  pHaving = p->pHaving;







>
>













>
>
>
>
|
|
|
>









<

>







121743
121744
121745
121746
121747
121748
121749
121750
121751
121752
121753
121754
121755
121756
121757
121758
121759
121760
121761
121762
121763
121764
121765
121766
121767
121768
121769
121770
121771
121772
121773
121774
121775
121776
121777
121778
121779
121780
121781

121782
121783
121784
121785
121786
121787
121788
121789
121790
      ** the content of this subquery.  pItem->addrFillSub will point
      ** to the address of the generated subroutine.  pItem->regReturn
      ** is a register allocated to hold the subroutine return address
      */
      int topAddr;
      int onceAddr = 0;
      int retAddr;
      struct SrcList_item *pPrior;

      assert( pItem->addrFillSub==0 );
      pItem->regReturn = ++pParse->nMem;
      topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
      pItem->addrFillSub = topAddr+1;
      if( pItem->fg.isCorrelated==0 ){
        /* If the subquery is not correlated and if we are not inside of
        ** a trigger, then we only need to compute the value of the subquery
        ** once. */
        onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
        VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }else{
        VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }
      pPrior = isSelfJoinView(pTabList, pItem);
      if( pPrior ){
        sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
      }else{
        sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
        explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
        sqlite3Select(pParse, pSub, &dest);
      }
      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
      retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
      VdbeComment((v, "end %s", pItem->pTab->zName));
      sqlite3VdbeChangeP1(v, topAddr, retAddr);
      sqlite3ClearTempRegCache(pParse);
    }
    if( db->mallocFailed ) goto select_end;
    pParse->nHeight -= sqlite3SelectExprHeight(p);

#endif
  }

  /* Various elements of the SELECT copied into local variables for
  ** convenience */
  pEList = p->pEList;
  pWhere = p->pWhere;
  pGroupBy = p->pGroupBy;
  pHaving = p->pHaving;
121553
121554
121555
121556
121557
121558
121559





121560
121561
121562
121563
121564
121565
121566
    sNC.pAggInfo = &sAggInfo;
    sAggInfo.mnReg = pParse->nMem+1;
    sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
    sAggInfo.pGroupBy = pGroupBy;
    sqlite3ExprAnalyzeAggList(&sNC, pEList);
    sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
    if( pHaving ){





      sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
    }
    sAggInfo.nAccumulator = sAggInfo.nColumn;
    for(i=0; i<sAggInfo.nFunc; i++){
      assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
      sNC.ncFlags |= NC_InAggFunc;
      sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);







>
>
>
>
>







121984
121985
121986
121987
121988
121989
121990
121991
121992
121993
121994
121995
121996
121997
121998
121999
122000
122001
122002
    sNC.pAggInfo = &sAggInfo;
    sAggInfo.mnReg = pParse->nMem+1;
    sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
    sAggInfo.pGroupBy = pGroupBy;
    sqlite3ExprAnalyzeAggList(&sNC, pEList);
    sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
    if( pHaving ){
      if( pGroupBy ){
        assert( pWhere==p->pWhere );
        havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere);
        pWhere = p->pWhere;
      }
      sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
    }
    sAggInfo.nAccumulator = sAggInfo.nColumn;
    for(i=0; i<sAggInfo.nFunc; i++){
      assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
      sNC.ncFlags |= NC_InAggFunc;
      sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
123565
123566
123567
123568
123569
123570
123571
123572
123573
123574
123575
123576
123577
123578
123579
  ** being updated.  Fill in aRegIdx[] with a register number that will hold
  ** the key for accessing each index.
  **
  ** FIXME:  Be smarter about omitting indexes that use expressions.
  */
  for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
    int reg;
    if( chngKey || hasFK || pIdx->pPartIdxWhere || pIdx==pPk ){
      reg = ++pParse->nMem;
      pParse->nMem += pIdx->nColumn;
    }else{
      reg = 0;
      for(i=0; i<pIdx->nKeyCol; i++){
        i16 iIdxCol = pIdx->aiColumn[i];
        if( iIdxCol<0 || aXRef[iIdxCol]>=0 ){







|







124001
124002
124003
124004
124005
124006
124007
124008
124009
124010
124011
124012
124013
124014
124015
  ** being updated.  Fill in aRegIdx[] with a register number that will hold
  ** the key for accessing each index.
  **
  ** FIXME:  Be smarter about omitting indexes that use expressions.
  */
  for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
    int reg;
    if( chngKey || hasFK>1 || pIdx->pPartIdxWhere || pIdx==pPk ){
      reg = ++pParse->nMem;
      pParse->nMem += pIdx->nColumn;
    }else{
      reg = 0;
      for(i=0; i<pIdx->nKeyCol; i++){
        i16 iIdxCol = pIdx->aiColumn[i];
        if( iIdxCol<0 || aXRef[iIdxCol]>=0 ){
123920
123921
123922
123923
123924
123925
123926
123927
123928
123929
123930
123931
123932
123933
123934
123935
123936
123937
123938
123939
123940
123941
123942
123943
123944
123945
    ** pre-update hook. If the caller invokes preupdate_new(), the returned
    ** value is copied from memory cell (regNewRowid+1+iCol), where iCol
    ** is the column index supplied by the user.
    */
    assert( regNew==regNewRowid+1 );
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
    sqlite3VdbeAddOp3(v, OP_Delete, iDataCur,
        OPFLAG_ISUPDATE | ((hasFK || chngKey) ? 0 : OPFLAG_ISNOOP),
        regNewRowid
    );
    if( eOnePass==ONEPASS_MULTI ){
      assert( hasFK==0 && chngKey==0 );
      sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
    }
    if( !pParse->nested ){
      sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
    }
#else
    if( hasFK || chngKey ){
      sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0);
    }
#endif
    if( bReplace || chngKey ){
      sqlite3VdbeJumpHere(v, addr1);
    }








|










|







124356
124357
124358
124359
124360
124361
124362
124363
124364
124365
124366
124367
124368
124369
124370
124371
124372
124373
124374
124375
124376
124377
124378
124379
124380
124381
    ** pre-update hook. If the caller invokes preupdate_new(), the returned
    ** value is copied from memory cell (regNewRowid+1+iCol), where iCol
    ** is the column index supplied by the user.
    */
    assert( regNew==regNewRowid+1 );
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
    sqlite3VdbeAddOp3(v, OP_Delete, iDataCur,
        OPFLAG_ISUPDATE | ((hasFK>1 || chngKey) ? 0 : OPFLAG_ISNOOP),
        regNewRowid
    );
    if( eOnePass==ONEPASS_MULTI ){
      assert( hasFK==0 && chngKey==0 );
      sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
    }
    if( !pParse->nested ){
      sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
    }
#else
    if( hasFK>1 || chngKey ){
      sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0);
    }
#endif
    if( bReplace || chngKey ){
      sqlite3VdbeJumpHere(v, addr1);
    }

125574
125575
125576
125577
125578
125579
125580
125581
125582
125583
125584
125585
125586
125587
125588
  unsigned char *z;


  /* Check to see the left operand is a column in a virtual table */
  if( NEVER(pExpr==0) ) return pDef;
  if( pExpr->op!=TK_COLUMN ) return pDef;
  pTab = pExpr->pTab;
  if( NEVER(pTab==0) ) return pDef;
  if( !IsVirtual(pTab) ) return pDef;
  pVtab = sqlite3GetVTable(db, pTab)->pVtab;
  assert( pVtab!=0 );
  assert( pVtab->pModule!=0 );
  pMod = (sqlite3_module *)pVtab->pModule;
  if( pMod->xFindFunction==0 ) return pDef;
 







|







126010
126011
126012
126013
126014
126015
126016
126017
126018
126019
126020
126021
126022
126023
126024
  unsigned char *z;


  /* Check to see the left operand is a column in a virtual table */
  if( NEVER(pExpr==0) ) return pDef;
  if( pExpr->op!=TK_COLUMN ) return pDef;
  pTab = pExpr->pTab;
  if( pTab==0 ) return pDef;
  if( !IsVirtual(pTab) ) return pDef;
  pVtab = sqlite3GetVTable(db, pTab)->pVtab;
  assert( pVtab!=0 );
  assert( pVtab->pModule!=0 );
  pMod = (sqlite3_module *)pVtab->pModule;
  if( pMod->xFindFunction==0 ) return pDef;
 
125909
125910
125911
125912
125913
125914
125915

125916
125917
125918
125919
125920
125921
125922
  LogEst rRun;          /* Cost of running each loop */
  LogEst nOut;          /* Estimated number of output rows */
  union {
    struct {               /* Information for internal btree tables */
      u16 nEq;               /* Number of equality constraints */
      u16 nBtm;              /* Size of BTM vector */
      u16 nTop;              /* Size of TOP vector */

      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      i8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */







>







126345
126346
126347
126348
126349
126350
126351
126352
126353
126354
126355
126356
126357
126358
126359
  LogEst rRun;          /* Cost of running each loop */
  LogEst nOut;          /* Estimated number of output rows */
  union {
    struct {               /* Information for internal btree tables */
      u16 nEq;               /* Number of equality constraints */
      u16 nBtm;              /* Size of BTM vector */
      u16 nTop;              /* Size of TOP vector */
      u16 nIdxCol;           /* Index column used for ORDER BY */
      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      i8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */
126202
126203
126204
126205
126206
126207
126208

126209
126210
126211
126212
126213
126214
126215
** planner.
*/
struct WhereInfo {
  Parse *pParse;            /* Parsing and code generating context */
  SrcList *pTabList;        /* List of tables in the join */
  ExprList *pOrderBy;       /* The ORDER BY clause or NULL */
  ExprList *pResultSet;     /* Result set of the query */

  LogEst iLimit;            /* LIMIT if wctrlFlags has WHERE_USE_LIMIT */
  int aiCurOnePass[2];      /* OP_OpenWrite cursors for the ONEPASS opt */
  int iContinue;            /* Jump here to continue with next record */
  int iBreak;               /* Jump here to break out of the loop */
  int savedNQueryLoop;      /* pParse->nQueryLoop outside the WHERE loop */
  u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
  u8 nLevel;                /* Number of nested loop */







>







126639
126640
126641
126642
126643
126644
126645
126646
126647
126648
126649
126650
126651
126652
126653
** planner.
*/
struct WhereInfo {
  Parse *pParse;            /* Parsing and code generating context */
  SrcList *pTabList;        /* List of tables in the join */
  ExprList *pOrderBy;       /* The ORDER BY clause or NULL */
  ExprList *pResultSet;     /* Result set of the query */
  Expr *pWhere;             /* The complete WHERE clause */
  LogEst iLimit;            /* LIMIT if wctrlFlags has WHERE_USE_LIMIT */
  int aiCurOnePass[2];      /* OP_OpenWrite cursors for the ONEPASS opt */
  int iContinue;            /* Jump here to continue with next record */
  int iBreak;               /* Jump here to break out of the loop */
  int savedNQueryLoop;      /* pParse->nQueryLoop outside the WHERE loop */
  u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
  u8 nLevel;                /* Number of nested loop */
127361
127362
127363
127364
127365
127366
127367































































127368
127369
127370
127371
127372
127373
127374
      }
    }
  }else{
    assert( nReg==1 );
    sqlite3ExprCode(pParse, p, iReg);
  }
}
































































/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







127799
127800
127801
127802
127803
127804
127805
127806
127807
127808
127809
127810
127811
127812
127813
127814
127815
127816
127817
127818
127819
127820
127821
127822
127823
127824
127825
127826
127827
127828
127829
127830
127831
127832
127833
127834
127835
127836
127837
127838
127839
127840
127841
127842
127843
127844
127845
127846
127847
127848
127849
127850
127851
127852
127853
127854
127855
127856
127857
127858
127859
127860
127861
127862
127863
127864
127865
127866
127867
127868
127869
127870
127871
127872
127873
127874
127875
      }
    }
  }else{
    assert( nReg==1 );
    sqlite3ExprCode(pParse, p, iReg);
  }
}

/* An instance of the IdxExprTrans object carries information about a
** mapping from an expression on table columns into a column in an index
** down through the Walker.
*/
typedef struct IdxExprTrans {
  Expr *pIdxExpr;    /* The index expression */
  int iTabCur;       /* The cursor of the corresponding table */
  int iIdxCur;       /* The cursor for the index */
  int iIdxCol;       /* The column for the index */
} IdxExprTrans;

/* The walker node callback used to transform matching expressions into
** a reference to an index column for an index on an expression.
**
** If pExpr matches, then transform it into a reference to the index column
** that contains the value of pExpr.
*/
static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
  IdxExprTrans *pX = p->u.pIdxTrans;
  if( sqlite3ExprCompare(pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
    pExpr->op = TK_COLUMN;
    pExpr->iTable = pX->iIdxCur;
    pExpr->iColumn = pX->iIdxCol;
    pExpr->pTab = 0;
    return WRC_Prune;
  }else{
    return WRC_Continue;
  }
}

/*
** For an indexes on expression X, locate every instance of expression X in pExpr
** and change that subexpression into a reference to the appropriate column of
** the index.
*/
static void whereIndexExprTrans(
  Index *pIdx,      /* The Index */
  int iTabCur,      /* Cursor of the table that is being indexed */
  int iIdxCur,      /* Cursor of the index itself */
  WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
){
  int iIdxCol;               /* Column number of the index */
  ExprList *aColExpr;        /* Expressions that are indexed */
  Walker w;
  IdxExprTrans x;
  aColExpr = pIdx->aColExpr;
  if( aColExpr==0 ) return;  /* Not an index on expressions */
  memset(&w, 0, sizeof(w));
  w.xExprCallback = whereIndexExprTransNode;
  w.u.pIdxTrans = &x;
  x.iTabCur = iTabCur;
  x.iIdxCur = iIdxCur;
  for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){
    if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue;
    assert( aColExpr->a[iIdxCol].pExpr!=0 );
    x.iIdxCol = iIdxCol;
    x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
    sqlite3WalkExpr(&w, pWInfo->pWhere);
    sqlite3WalkExprList(&w, pWInfo->pOrderBy);
    sqlite3WalkExprList(&w, pWInfo->pResultSet);
  }
}

/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
127389
127390
127391
127392
127393
127394
127395


127396
127397
127398
127399
127400
127401
127402
  Vdbe *v;                        /* The prepared stmt under constructions */
  struct SrcList_item *pTabItem;  /* FROM clause term being coded */
  int addrBrk;                    /* Jump here to break out of the loop */
  int addrHalt;                   /* addrBrk for the outermost loop */
  int addrCont;                   /* Jump here to continue with next cycle */
  int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
  int iReleaseReg = 0;      /* Temp register to free before returning */



  pParse = pWInfo->pParse;
  v = pParse->pVdbe;
  pWC = &pWInfo->sWC;
  db = pParse->db;
  pLevel = &pWInfo->a[iLevel];
  pLoop = pLevel->pWLoop;







>
>







127890
127891
127892
127893
127894
127895
127896
127897
127898
127899
127900
127901
127902
127903
127904
127905
  Vdbe *v;                        /* The prepared stmt under constructions */
  struct SrcList_item *pTabItem;  /* FROM clause term being coded */
  int addrBrk;                    /* Jump here to break out of the loop */
  int addrHalt;                   /* addrBrk for the outermost loop */
  int addrCont;                   /* Jump here to continue with next cycle */
  int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
  int iReleaseReg = 0;      /* Temp register to free before returning */
  Index *pIdx = 0;          /* Index used by loop (if any) */
  int loopAgain;            /* True if constraint generator loop should repeat */

  pParse = pWInfo->pParse;
  v = pParse->pVdbe;
  pWC = &pWInfo->sWC;
  db = pParse->db;
  pLevel = &pWInfo->a[iLevel];
  pLoop = pLevel->pWLoop;
127714
127715
127716
127717
127718
127719
127720
127721
127722
127723
127724
127725
127726
127727
127728
    int regBase;                 /* Base register holding constraint values */
    WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
    WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
    int startEq;                 /* True if range start uses ==, >= or <= */
    int endEq;                   /* True if range end uses ==, >= or <= */
    int start_constraints;       /* Start of range is constrained */
    int nConstraint;             /* Number of constraint terms */
    Index *pIdx;                 /* The index we will be using */
    int iIdxCur;                 /* The VDBE cursor for the index */
    int nExtraReg = 0;           /* Number of extra registers needed */
    int op;                      /* Instruction opcode */
    char *zStartAff;             /* Affinity for start of range constraint */
    char *zEndAff = 0;           /* Affinity for end of range constraint */
    u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
    u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */







<







128217
128218
128219
128220
128221
128222
128223

128224
128225
128226
128227
128228
128229
128230
    int regBase;                 /* Base register holding constraint values */
    WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
    WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
    int startEq;                 /* True if range start uses ==, >= or <= */
    int endEq;                   /* True if range end uses ==, >= or <= */
    int start_constraints;       /* Start of range is constrained */
    int nConstraint;             /* Number of constraint terms */

    int iIdxCur;                 /* The VDBE cursor for the index */
    int nExtraReg = 0;           /* Number of extra registers needed */
    int op;                      /* Instruction opcode */
    char *zStartAff;             /* Affinity for start of range constraint */
    char *zEndAff = 0;           /* Affinity for end of range constraint */
    u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
    u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
127942
127943
127944
127945
127946
127947
127948







127949
127950
127951
127952
127953
127954
127955
127956
127957
127958
127959
127960
127961
127962
127963
127964

127965
127966
127967
127968
127969
127970
127971
      for(j=0; j<pPk->nKeyCol; j++){
        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
      }
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
                           iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
    }








    /* Record the instruction used to terminate the loop. */
    if( pLoop->wsFlags & WHERE_ONEROW ){
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{
      pLevel->op = OP_Next;
    }
    pLevel->p1 = iIdxCur;
    pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
    if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }else{
      assert( pLevel->p5==0 );
    }

  }else

#ifndef SQLITE_OMIT_OR_OPTIMIZATION
  if( pLoop->wsFlags & WHERE_MULTI_OR ){
    /* Case 5:  Two or more separately indexed terms connected by OR
    **
    ** Example:







>
>
>
>
>
>
>
















>







128444
128445
128446
128447
128448
128449
128450
128451
128452
128453
128454
128455
128456
128457
128458
128459
128460
128461
128462
128463
128464
128465
128466
128467
128468
128469
128470
128471
128472
128473
128474
128475
128476
128477
128478
128479
128480
128481
      for(j=0; j<pPk->nKeyCol; j++){
        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
      }
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
                           iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
    }

    /* If pIdx is an index on one or more expressions, then look through
    ** all the expressions in pWInfo and try to transform matching expressions
    ** into reference to index columns.
    */
    whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);


    /* Record the instruction used to terminate the loop. */
    if( pLoop->wsFlags & WHERE_ONEROW ){
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{
      pLevel->op = OP_Next;
    }
    pLevel->p1 = iIdxCur;
    pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
    if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }else{
      assert( pLevel->p5==0 );
    }
    if( omitTable ) pIdx = 0;
  }else

#ifndef SQLITE_OMIT_OR_OPTIMIZATION
  if( pLoop->wsFlags & WHERE_MULTI_OR ){
    /* Case 5:  Two or more separately indexed terms connected by OR
    **
    ** Example:
128275
128276
128277
128278
128279
128280
128281





128282


128283
128284
128285
128286
128287
128288
128289
128290
128291
128292
128293
128294
128295
128296
128297
128298
128299




128300
128301
128302
128303
128304
128305
128306
128307
128308
128309
128310
128311
128312
128313
128314
128315
128316
128317
128318


128319
128320
128321
128322
128323
128324
128325

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
#endif

  /* Insert code to test every subexpression that can be completely
  ** computed using the current set of tables.





  */


  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
    Expr *pE;
    int skipLikeAddr = 0;
    testcase( pTerm->wtFlags & TERM_VIRTUAL );
    testcase( pTerm->wtFlags & TERM_CODED );
    if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
    if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
      testcase( pWInfo->untestedTerms==0
               && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
      pWInfo->untestedTerms = 1;
      continue;
    }
    pE = pTerm->pExpr;
    assert( pE!=0 );
    if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
      continue;
    }




    if( pTerm->wtFlags & TERM_LIKECOND ){
      /* If the TERM_LIKECOND flag is set, that means that the range search
      ** is sufficient to guarantee that the LIKE operator is true, so we
      ** can skip the call to the like(A,B) function.  But this only works
      ** for strings.  So do not skip the call to the function on the pass
      ** that compares BLOBs. */
#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
      continue;
#else
      u32 x = pLevel->iLikeRepCntr;
      assert( x>0 );
      skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)? OP_IfNot : OP_If, (int)(x>>1));
      VdbeCoverage(v);
#endif
    }
    sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
    if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
    pTerm->wtFlags |= TERM_CODED;
  }



  /* Insert code to test for implied constraints based on transitivity
  ** of the "==" operator.
  **
  ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
  ** and we are coding the t1 loop and the t2 loop has not yet coded,
  ** then we cannot use the "t1.a=t2.b" constraint, but we can code







>
>
>
>
>

>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
>
>







128785
128786
128787
128788
128789
128790
128791
128792
128793
128794
128795
128796
128797
128798
128799
128800
128801
128802
128803
128804
128805
128806
128807
128808
128809
128810
128811
128812
128813
128814
128815
128816
128817
128818
128819
128820
128821
128822
128823
128824
128825
128826
128827
128828
128829
128830
128831
128832
128833
128834
128835
128836
128837
128838
128839
128840
128841
128842
128843
128844
128845
128846
128847
128848

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
#endif

  /* Insert code to test every subexpression that can be completely
  ** computed using the current set of tables.
  **
  ** This loop may run either once (pIdx==0) or twice (pIdx!=0). If
  ** it is run twice, then the first iteration codes those sub-expressions
  ** that can be computed using columns from pIdx only (without seeking
  ** the main table cursor). 
  */
  do{
    loopAgain = 0;
    for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
      Expr *pE;
      int skipLikeAddr = 0;
      testcase( pTerm->wtFlags & TERM_VIRTUAL );
      testcase( pTerm->wtFlags & TERM_CODED );
      if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
      if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
        testcase( pWInfo->untestedTerms==0
            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
        pWInfo->untestedTerms = 1;
        continue;
      }
      pE = pTerm->pExpr;
      assert( pE!=0 );
      if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
        continue;
      }
      if( pIdx && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
        loopAgain = 1;
        continue;
      }
      if( pTerm->wtFlags & TERM_LIKECOND ){
        /* If the TERM_LIKECOND flag is set, that means that the range search
        ** is sufficient to guarantee that the LIKE operator is true, so we
        ** can skip the call to the like(A,B) function.  But this only works
        ** for strings.  So do not skip the call to the function on the pass
        ** that compares BLOBs. */
#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
        continue;
#else
        u32 x = pLevel->iLikeRepCntr;
        assert( x>0 );
        skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If, (int)(x>>1));
        VdbeCoverage(v);
#endif
      }
      sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
      if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
      pTerm->wtFlags |= TERM_CODED;
    }
    pIdx = 0;
  }while( loopAgain );

  /* Insert code to test for implied constraints based on transitivity
  ** of the "==" operator.
  **
  ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
  ** and we are coding the t1 loop and the t2 loop has not yet coded,
  ** then we cannot use the "t1.a=t2.b" constraint, but we can code
129204
129205
129206
129207
129208
129209
129210
129211
129212
129213
129214
129215
129216
129217
129218
129219
129220
129221
129222
129223

129224
129225
129226
129227
129228
129229
129230










129231











129232
129233
129234
129235
129236
129237
129238
129239
129240
129241
129242
129243
129244
129245
129246
129247
129248
129249
129250
129251
129252
129253
129254
129255
129256
129257
129258
129259
129260
129261
129262
129263
129264
129265
129266
129267
129268
129269
  return mask;
}

/*
** Expression pExpr is one operand of a comparison operator that might
** be useful for indexing.  This routine checks to see if pExpr appears
** in any index.  Return TRUE (1) if pExpr is an indexed term and return
** FALSE (0) if not.  If TRUE is returned, also set *piCur to the cursor
** number of the table that is indexed and *piColumn to the column number
** of the column that is indexed, or XN_EXPR (-2) if an expression is being
** indexed.
**
** If pExpr is a TK_COLUMN column reference, then this routine always returns
** true even if that particular column is not indexed, because the column
** might be added to an automatic index later.
*/
static int exprMightBeIndexed(
  SrcList *pFrom,        /* The FROM clause */
  int op,                /* The specific comparison operator */
  Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */

  Expr *pExpr,           /* An operand of a comparison operator */
  int *piCur,            /* Write the referenced table cursor number here */
  int *piColumn          /* Write the referenced table column number here */
){
  Index *pIdx;
  int i;
  int iCur;






















  /* If this expression is a vector to the left or right of a 
  ** inequality constraint (>, <, >= or <=), perform the processing 
  ** on the first element of the vector.  */
  assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
  assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
  assert( op<=TK_GE );
  if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
    pExpr = pExpr->x.pList->a[0].pExpr;
  }

  if( pExpr->op==TK_COLUMN ){
    *piCur = pExpr->iTable;
    *piColumn = pExpr->iColumn;
    return 1;
  }
  if( mPrereq==0 ) return 0;                 /* No table references */
  if( (mPrereq&(mPrereq-1))!=0 ) return 0;   /* Refs more than one table */
  for(i=0; mPrereq>1; i++, mPrereq>>=1){}
  iCur = pFrom->a[i].iCursor;
  for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    if( pIdx->aColExpr==0 ) continue;
    for(i=0; i<pIdx->nKeyCol; i++){
      if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
      if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
        *piCur = iCur;
        *piColumn = XN_EXPR;
        return 1;
      }
    }
  }
  return 0;
}

/*
** The input to this routine is an WhereTerm structure with only the
** "pExpr" field filled in.  The job of this routine is to analyze the
** subexpression and populate all the other fields of the WhereTerm
** structure.







|
|







|

<

>
|
<
<




>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>











|
|




<
<
<
<
<
<
<
<
<
|
<
<
<
<







129727
129728
129729
129730
129731
129732
129733
129734
129735
129736
129737
129738
129739
129740
129741
129742
129743
129744

129745
129746
129747


129748
129749
129750
129751
129752
129753
129754
129755
129756
129757
129758
129759
129760
129761
129762
129763
129764
129765
129766
129767
129768
129769
129770
129771
129772
129773
129774
129775
129776
129777
129778
129779
129780
129781
129782
129783
129784
129785
129786
129787
129788
129789
129790









129791




129792
129793
129794
129795
129796
129797
129798
  return mask;
}

/*
** Expression pExpr is one operand of a comparison operator that might
** be useful for indexing.  This routine checks to see if pExpr appears
** in any index.  Return TRUE (1) if pExpr is an indexed term and return
** FALSE (0) if not.  If TRUE is returned, also set aiCurCol[0] to the cursor
** number of the table that is indexed and aiCurCol[1] to the column number
** of the column that is indexed, or XN_EXPR (-2) if an expression is being
** indexed.
**
** If pExpr is a TK_COLUMN column reference, then this routine always returns
** true even if that particular column is not indexed, because the column
** might be added to an automatic index later.
*/
static SQLITE_NOINLINE int exprMightBeIndexed2(
  SrcList *pFrom,        /* The FROM clause */

  Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
  int *aiCurCol,         /* Write the referenced table cursor and column here */
  Expr *pExpr            /* An operand of a comparison operator */


){
  Index *pIdx;
  int i;
  int iCur;
  for(i=0; mPrereq>1; i++, mPrereq>>=1){}
  iCur = pFrom->a[i].iCursor;
  for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    if( pIdx->aColExpr==0 ) continue;
    for(i=0; i<pIdx->nKeyCol; i++){
      if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
      if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
        aiCurCol[0] = iCur;
        aiCurCol[1] = XN_EXPR;
        return 1;
      }
    }
  }
  return 0;
}
static int exprMightBeIndexed(
  SrcList *pFrom,        /* The FROM clause */
  Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
  int *aiCurCol,         /* Write the referenced table cursor & column here */
  Expr *pExpr,           /* An operand of a comparison operator */
  int op                 /* The specific comparison operator */
){
  /* If this expression is a vector to the left or right of a 
  ** inequality constraint (>, <, >= or <=), perform the processing 
  ** on the first element of the vector.  */
  assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
  assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
  assert( op<=TK_GE );
  if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
    pExpr = pExpr->x.pList->a[0].pExpr;
  }

  if( pExpr->op==TK_COLUMN ){
    aiCurCol[0] = pExpr->iTable;
    aiCurCol[1] = pExpr->iColumn;
    return 1;
  }
  if( mPrereq==0 ) return 0;                 /* No table references */
  if( (mPrereq&(mPrereq-1))!=0 ) return 0;   /* Refs more than one table */









  return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr);




}

/*
** The input to this routine is an WhereTerm structure with only the
** "pExpr" field filled in.  The job of this routine is to analyze the
** subexpression and populate all the other fields of the WhereTerm
** structure.
129335
129336
129337
129338
129339
129340
129341
129342
129343
129344
129345
129346
129347
129348
129349
129350
129351
129352
129353
129354
129355
129356
129357
129358
129359
129360
129361
129362
129363
129364
129365
129366
129367
    }
  }
  pTerm->prereqAll = prereqAll;
  pTerm->leftCursor = -1;
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) ){
    int iCur, iColumn;
    Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
    Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
    u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;

    if( pTerm->iField>0 ){
      assert( op==TK_IN );
      assert( pLeft->op==TK_VECTOR );
      pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr;
    }

    if( exprMightBeIndexed(pSrc, op, prereqLeft, pLeft, &iCur, &iColumn) ){
      pTerm->leftCursor = iCur;
      pTerm->u.leftColumn = iColumn;
      pTerm->eOperator = operatorMask(op) & opMask;
    }
    if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
    if( pRight 
     && exprMightBeIndexed(pSrc, op, pTerm->prereqRight, pRight, &iCur,&iColumn)
    ){
      WhereTerm *pNew;
      Expr *pDup;
      u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
      assert( pTerm->iField==0 );
      if( pTerm->leftCursor>=0 ){
        int idxNew;







|










|
|
|




|







129864
129865
129866
129867
129868
129869
129870
129871
129872
129873
129874
129875
129876
129877
129878
129879
129880
129881
129882
129883
129884
129885
129886
129887
129888
129889
129890
129891
129892
129893
129894
129895
129896
    }
  }
  pTerm->prereqAll = prereqAll;
  pTerm->leftCursor = -1;
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) ){
    int aiCurCol[2];
    Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
    Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
    u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;

    if( pTerm->iField>0 ){
      assert( op==TK_IN );
      assert( pLeft->op==TK_VECTOR );
      pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr;
    }

    if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){
      pTerm->leftCursor = aiCurCol[0];
      pTerm->u.leftColumn = aiCurCol[1];
      pTerm->eOperator = operatorMask(op) & opMask;
    }
    if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
    if( pRight 
     && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op)
    ){
      WhereTerm *pNew;
      Expr *pDup;
      u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
      assert( pTerm->iField==0 );
      if( pTerm->leftCursor>=0 ){
        int idxNew;
129383
129384
129385
129386
129387
129388
129389
129390
129391
129392
129393
129394
129395
129396
129397
129398
          eExtraOp = WO_EQUIV;
        }
      }else{
        pDup = pExpr;
        pNew = pTerm;
      }
      exprCommute(pParse, pDup);
      pNew->leftCursor = iCur;
      pNew->u.leftColumn = iColumn;
      testcase( (prereqLeft | extraRight) != prereqLeft );
      pNew->prereqRight = prereqLeft | extraRight;
      pNew->prereqAll = prereqAll;
      pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
    }
  }








|
|







129912
129913
129914
129915
129916
129917
129918
129919
129920
129921
129922
129923
129924
129925
129926
129927
          eExtraOp = WO_EQUIV;
        }
      }else{
        pDup = pExpr;
        pNew = pTerm;
      }
      exprCommute(pParse, pDup);
      pNew->leftCursor = aiCurCol[0];
      pNew->u.leftColumn = aiCurCol[1];
      testcase( (prereqLeft | extraRight) != prereqLeft );
      pNew->prereqRight = prereqLeft | extraRight;
      pNew->prereqAll = prereqAll;
      pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
    }
  }

131616
131617
131618
131619
131620
131621
131622
131623
131624
131625
131626
131627
131628
131629
131630
131631
131632
131633
131634
131635
131636
131637
131638
131639
131640
131641
131642
131643
131644
131645
131646
131647
131648
131649
131650
131651
131652
131653
131654
131655
  if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
    if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
      sqlite3_free(p->u.vtab.idxStr);
      p->u.vtab.needFree = 0;
      p->u.vtab.idxStr = 0;
    }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
      sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
      sqlite3DbFree(db, p->u.btree.pIndex);
      p->u.btree.pIndex = 0;
    }
  }
}

/*
** Deallocate internal memory used by a WhereLoop object
*/
static void whereLoopClear(sqlite3 *db, WhereLoop *p){
  if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
  whereLoopClearUnion(db, p);
  whereLoopInit(p);
}

/*
** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
*/
static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
  WhereTerm **paNew;
  if( p->nLSlot>=n ) return SQLITE_OK;
  n = (n+7)&~7;
  paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
  if( paNew==0 ) return SQLITE_NOMEM_BKPT;
  memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
  if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
  p->aLTerm = paNew;
  p->nLSlot = n;
  return SQLITE_OK;
}

/*
** Transfer content from the second pLoop into the first.







|









|














|







132145
132146
132147
132148
132149
132150
132151
132152
132153
132154
132155
132156
132157
132158
132159
132160
132161
132162
132163
132164
132165
132166
132167
132168
132169
132170
132171
132172
132173
132174
132175
132176
132177
132178
132179
132180
132181
132182
132183
132184
  if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
    if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
      sqlite3_free(p->u.vtab.idxStr);
      p->u.vtab.needFree = 0;
      p->u.vtab.idxStr = 0;
    }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
      sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
      sqlite3DbFreeNN(db, p->u.btree.pIndex);
      p->u.btree.pIndex = 0;
    }
  }
}

/*
** Deallocate internal memory used by a WhereLoop object
*/
static void whereLoopClear(sqlite3 *db, WhereLoop *p){
  if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
  whereLoopClearUnion(db, p);
  whereLoopInit(p);
}

/*
** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
*/
static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
  WhereTerm **paNew;
  if( p->nLSlot>=n ) return SQLITE_OK;
  n = (n+7)&~7;
  paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
  if( paNew==0 ) return SQLITE_NOMEM_BKPT;
  memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
  if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
  p->aLTerm = paNew;
  p->nLSlot = n;
  return SQLITE_OK;
}

/*
** Transfer content from the second pLoop into the first.
131671
131672
131673
131674
131675
131676
131677
131678
131679
131680
131681
131682
131683
131684
131685
131686
131687
131688
131689
131690
131691
131692
131693
131694
131695
131696
131697
131698
131699
131700
131701
131702
131703
131704
131705
131706
}

/*
** Delete a WhereLoop object
*/
static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
  whereLoopClear(db, p);
  sqlite3DbFree(db, p);
}

/*
** Free a WhereInfo structure
*/
static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
  if( ALWAYS(pWInfo) ){
    int i;
    for(i=0; i<pWInfo->nLevel; i++){
      WhereLevel *pLevel = &pWInfo->a[i];
      if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
        sqlite3DbFree(db, pLevel->u.in.aInLoop);
      }
    }
    sqlite3WhereClauseClear(&pWInfo->sWC);
    while( pWInfo->pLoops ){
      WhereLoop *p = pWInfo->pLoops;
      pWInfo->pLoops = p->pNextLoop;
      whereLoopDelete(db, p);
    }
    sqlite3DbFree(db, pWInfo);
  }
}

/*
** Return TRUE if all of the following are true:
**
**   (1)  X has the same or lower cost that Y







|




















|







132200
132201
132202
132203
132204
132205
132206
132207
132208
132209
132210
132211
132212
132213
132214
132215
132216
132217
132218
132219
132220
132221
132222
132223
132224
132225
132226
132227
132228
132229
132230
132231
132232
132233
132234
132235
}

/*
** Delete a WhereLoop object
*/
static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
  whereLoopClear(db, p);
  sqlite3DbFreeNN(db, p);
}

/*
** Free a WhereInfo structure
*/
static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
  if( ALWAYS(pWInfo) ){
    int i;
    for(i=0; i<pWInfo->nLevel; i++){
      WhereLevel *pLevel = &pWInfo->a[i];
      if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
        sqlite3DbFree(db, pLevel->u.in.aInLoop);
      }
    }
    sqlite3WhereClauseClear(&pWInfo->sWC);
    while( pWInfo->pLoops ){
      WhereLoop *p = pWInfo->pLoops;
      pWInfo->pLoops = p->pNextLoop;
      whereLoopDelete(db, p);
    }
    sqlite3DbFreeNN(db, pWInfo);
  }
}

/*
** Return TRUE if all of the following are true:
**
**   (1)  X has the same or lower cost that Y
133083
133084
133085
133086
133087
133088
133089
133090
133091
133092
133093
133094
133095
133096
133097
      WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
      rc = whereLoopAddVirtualOne(
          pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
    }
  }

  if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
  sqlite3DbFree(pParse->db, p);
  return rc;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** Add WhereLoop entries to handle OR terms.  This works for either
** btrees or virtual tables.







|







133612
133613
133614
133615
133616
133617
133618
133619
133620
133621
133622
133623
133624
133625
133626
      WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
      rc = whereLoopAddVirtualOne(
          pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
    }
  }

  if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
  sqlite3DbFreeNN(pParse->db, p);
  return rc;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** Add WhereLoop entries to handle OR terms.  This works for either
** btrees or virtual tables.
133267
133268
133269
133270
133271
133272
133273
133274
133275
133276
133277
133278
133279
133280
133281
  }

  whereLoopClear(db, pNew);
  return rc;
}

/*
** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
** parameters) to see if it outputs rows in the requested ORDER BY
** (or GROUP BY) without requiring a separate sort operation.  Return N:
** 
**   N>0:   N terms of the ORDER BY clause are satisfied
**   N==0:  No terms of the ORDER BY clause are satisfied
**   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.   
**







|







133796
133797
133798
133799
133800
133801
133802
133803
133804
133805
133806
133807
133808
133809
133810
  }

  whereLoopClear(db, pNew);
  return rc;
}

/*
** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
** parameters) to see if it outputs rows in the requested ORDER BY
** (or GROUP BY) without requiring a separate sort operation.  Return N:
** 
**   N>0:   N terms of the ORDER BY clause are satisfied
**   N==0:  No terms of the ORDER BY clause are satisfied
**   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.   
**
133362
133363
133364
133365
133366
133367
133368


133369
133370
133371
133372
133373
133374
133375
      if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
    }else{
      pLoop = pLast;
    }
    if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
      if( pLoop->u.vtab.isOrdered ) obSat = obDone;
      break;


    }
    iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;

    /* Mark off any ORDER BY term X that is a column in the table of
    ** the current loop for which there is term in the WHERE
    ** clause of the form X IS NULL or X=? that reference only outer
    ** loops.







>
>







133891
133892
133893
133894
133895
133896
133897
133898
133899
133900
133901
133902
133903
133904
133905
133906
      if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
    }else{
      pLoop = pLast;
    }
    if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
      if( pLoop->u.vtab.isOrdered ) obSat = obDone;
      break;
    }else{
      pLoop->u.btree.nIdxCol = 0;
    }
    iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;

    /* Mark off any ORDER BY term X that is a column in the table of
    ** the current loop for which there is term in the WHERE
    ** clause of the form X IS NULL or X=? that reference only outer
    ** loops.
133507
133508
133509
133510
133511
133512
133513

133514
133515
133516
133517
133518
133519
133520
            }
          }
          if( iColumn>=0 ){
            pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
            if( !pColl ) pColl = db->pDfltColl;
            if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
          }

          isMatch = 1;
          break;
        }
        if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
          /* Make sure the sort order is compatible in an ORDER BY clause.
          ** Sort order is irrelevant for a GROUP BY clause. */
          if( revSet ){







>







134038
134039
134040
134041
134042
134043
134044
134045
134046
134047
134048
134049
134050
134051
134052
            }
          }
          if( iColumn>=0 ){
            pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
            if( !pColl ) pColl = db->pDfltColl;
            if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
          }
          pLoop->u.btree.nIdxCol = j+1;
          isMatch = 1;
          break;
        }
        if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
          /* Make sure the sort order is compatible in an ORDER BY clause.
          ** Sort order is irrelevant for a GROUP BY clause. */
          if( revSet ){
133938
133939
133940
133941
133942
133943
133944
133945
133946
133947
133948
133949
133950
133951
133952
    aTo = aFrom;
    aFrom = pFrom;
    nFrom = nTo;
  }

  if( nFrom==0 ){
    sqlite3ErrorMsg(pParse, "no query solution");
    sqlite3DbFree(db, pSpace);
    return SQLITE_ERROR;
  }
  
  /* Find the lowest cost path.  pFrom will be left pointing to that path */
  pFrom = aFrom;
  for(ii=1; ii<nFrom; ii++){
    if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];







|







134470
134471
134472
134473
134474
134475
134476
134477
134478
134479
134480
134481
134482
134483
134484
    aTo = aFrom;
    aFrom = pFrom;
    nFrom = nTo;
  }

  if( nFrom==0 ){
    sqlite3ErrorMsg(pParse, "no query solution");
    sqlite3DbFreeNN(db, pSpace);
    return SQLITE_ERROR;
  }
  
  /* Find the lowest cost path.  pFrom will be left pointing to that path */
  pFrom = aFrom;
  for(ii=1; ii<nFrom; ii++){
    if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
134014
134015
134016
134017
134018
134019
134020
134021
134022
134023
134024
134025
134026
134027
134028
    }
  }


  pWInfo->nRowOut = pFrom->nRow;

  /* Free temporary memory and return success */
  sqlite3DbFree(db, pSpace);
  return SQLITE_OK;
}

/*
** Most queries use only a single table (they are not joins) and have
** simple == constraints against indexed fields.  This routine attempts
** to plan those simple cases using much less ceremony than the







|







134546
134547
134548
134549
134550
134551
134552
134553
134554
134555
134556
134557
134558
134559
134560
    }
  }


  pWInfo->nRowOut = pFrom->nRow;

  /* Free temporary memory and return success */
  sqlite3DbFreeNN(db, pSpace);
  return SQLITE_OK;
}

/*
** Most queries use only a single table (they are not joins) and have
** simple == constraints against indexed fields.  This routine attempts
** to plan those simple cases using much less ceremony than the
134092
134093
134094
134095
134096
134097
134098

134099
134100
134101
134102
134103
134104
134105
134106
      pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
      break;
    }
  }
  if( pLoop->wsFlags ){
    pLoop->nOut = (LogEst)1;
    pWInfo->a[0].pWLoop = pLoop;

    pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
    pWInfo->a[0].iTabCur = iCur;
    pWInfo->nRowOut = 1;
    if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
    if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
    }
#ifdef SQLITE_DEBUG







>
|







134624
134625
134626
134627
134628
134629
134630
134631
134632
134633
134634
134635
134636
134637
134638
134639
      pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
      break;
    }
  }
  if( pLoop->wsFlags ){
    pLoop->nOut = (LogEst)1;
    pWInfo->a[0].pWLoop = pLoop;
    assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
    pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
    pWInfo->a[0].iTabCur = iCur;
    pWInfo->nRowOut = 1;
    if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
    if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
    }
#ifdef SQLITE_DEBUG
134276
134277
134278
134279
134280
134281
134282

134283
134284
134285
134286
134287
134288
134289
    sqlite3DbFree(db, pWInfo);
    pWInfo = 0;
    goto whereBeginError;
  }
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->pOrderBy = pOrderBy;

  pWInfo->pResultSet = pResultSet;
  pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
  pWInfo->nLevel = nTabList;
  pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->iLimit = iAuxArg;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;







>







134809
134810
134811
134812
134813
134814
134815
134816
134817
134818
134819
134820
134821
134822
134823
    sqlite3DbFree(db, pWInfo);
    pWInfo = 0;
    goto whereBeginError;
  }
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->pOrderBy = pOrderBy;
  pWInfo->pWhere = pWhere;
  pWInfo->pResultSet = pResultSet;
  pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
  pWInfo->nLevel = nTabList;
  pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->iLimit = iAuxArg;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;
134586
134587
134588
134589
134590
134591
134592

134593
134594
134595
134596
134597
134598
134599
      assert( iIndexCur>=0 );
      if( op ){
        sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
        sqlite3VdbeSetP4KeyInfo(pParse, pIx);
        if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
         && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
         && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0

        ){
          sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
        }
        VdbeComment((v, "%s", pIx->zName));
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
        {
          u64 colUsed = 0;







>







135120
135121
135122
135123
135124
135125
135126
135127
135128
135129
135130
135131
135132
135133
135134
      assert( iIndexCur>=0 );
      if( op ){
        sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
        sqlite3VdbeSetP4KeyInfo(pParse, pIx);
        if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
         && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
         && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
         && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
        ){
          sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
        }
        VdbeComment((v, "%s", pIx->zName));
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
        {
          u64 colUsed = 0;
134674
134675
134676
134677
134678
134679
134680
134681
134682

























134683
134684
134685
134686
134687
134688





134689
134690
134691
134692
134693
134694
134695
  */
  VdbeModuleComment((v, "End WHERE-core"));
  sqlite3ExprCacheClear(pParse);
  for(i=pWInfo->nLevel-1; i>=0; i--){
    int addr;
    pLevel = &pWInfo->a[i];
    pLoop = pLevel->pWLoop;
    sqlite3VdbeResolveLabel(v, pLevel->addrCont);
    if( pLevel->op!=OP_Noop ){

























      sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
      sqlite3VdbeChangeP5(v, pLevel->p5);
      VdbeCoverage(v);
      VdbeCoverageIf(v, pLevel->op==OP_Next);
      VdbeCoverageIf(v, pLevel->op==OP_Prev);
      VdbeCoverageIf(v, pLevel->op==OP_VNext);





    }
    if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);







<

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






>
>
>
>
>







135209
135210
135211
135212
135213
135214
135215

135216
135217
135218
135219
135220
135221
135222
135223
135224
135225
135226
135227
135228
135229
135230
135231
135232
135233
135234
135235
135236
135237
135238
135239
135240
135241
135242
135243
135244
135245
135246
135247
135248
135249
135250
135251
135252
135253
135254
135255
135256
135257
135258
135259
  */
  VdbeModuleComment((v, "End WHERE-core"));
  sqlite3ExprCacheClear(pParse);
  for(i=pWInfo->nLevel-1; i>=0; i--){
    int addr;
    pLevel = &pWInfo->a[i];
    pLoop = pLevel->pWLoop;

    if( pLevel->op!=OP_Noop ){
#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
      int addrSeek = 0;
      Index *pIdx;
      int n;
      if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
       && (pLoop->wsFlags & WHERE_INDEXED)!=0
       && (pIdx = pLoop->u.btree.pIndex)->hasStat1
       && (n = pLoop->u.btree.nIdxCol)>0
       && pIdx->aiRowLogEst[n]>=36
      ){
        int r1 = pParse->nMem+1;
        int j, op;
        for(j=0; j<n; j++){
          sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
        }
        pParse->nMem += n+1;
        op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
        addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
        VdbeCoverageIf(v, op==OP_SeekLT);
        VdbeCoverageIf(v, op==OP_SeekGT);
        sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
      }
#endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
      /* The common case: Advance to the next row */
      sqlite3VdbeResolveLabel(v, pLevel->addrCont);
      sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
      sqlite3VdbeChangeP5(v, pLevel->p5);
      VdbeCoverage(v);
      VdbeCoverageIf(v, pLevel->op==OP_Next);
      VdbeCoverageIf(v, pLevel->op==OP_Prev);
      VdbeCoverageIf(v, pLevel->op==OP_VNext);
#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
      if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
#endif
    }else{
      sqlite3VdbeResolveLabel(v, pLevel->addrCont);
    }
    if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
134804
134805
134806
134807
134808
134809
134810


134811
134812
134813
134814
134815
134816
134817
            pOp->p1 = pLevel->iIdxCur;
          }
          assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 
              || pWInfo->eOnePass );
        }else if( pOp->opcode==OP_Rowid ){
          pOp->p1 = pLevel->iIdxCur;
          pOp->opcode = OP_IdxRowid;


        }
      }
    }
  }

  /* Final cleanup
  */







>
>







135368
135369
135370
135371
135372
135373
135374
135375
135376
135377
135378
135379
135380
135381
135382
135383
            pOp->p1 = pLevel->iIdxCur;
          }
          assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 
              || pWInfo->eOnePass );
        }else if( pOp->opcode==OP_Rowid ){
          pOp->p1 = pLevel->iIdxCur;
          pOp->opcode = OP_IdxRowid;
        }else if( pOp->opcode==OP_IfNullRow ){
          pOp->p1 = pLevel->iIdxCur;
        }
      }
    }
  }

  /* Final cleanup
  */
135113
135114
135115
135116
135117
135118
135119
135120
135121
135122
135123
135124
135125
135126
135127
#ifndef INTERFACE
# define INTERFACE 1
#endif
/************* Begin control #defines *****************************************/
#define YYCODETYPE unsigned char
#define YYNOCODE 252
#define YYACTIONTYPE unsigned short int
#define YYWILDCARD 96
#define sqlite3ParserTOKENTYPE Token
typedef union {
  int yyinit;
  sqlite3ParserTOKENTYPE yy0;
  Expr* yy72;
  TriggerStep* yy145;
  ExprList* yy148;







|







135679
135680
135681
135682
135683
135684
135685
135686
135687
135688
135689
135690
135691
135692
135693
#ifndef INTERFACE
# define INTERFACE 1
#endif
/************* Begin control #defines *****************************************/
#define YYCODETYPE unsigned char
#define YYNOCODE 252
#define YYACTIONTYPE unsigned short int
#define YYWILDCARD 69
#define sqlite3ParserTOKENTYPE Token
typedef union {
  int yyinit;
  sqlite3ParserTOKENTYPE yy0;
  Expr* yy72;
  TriggerStep* yy145;
  ExprList* yy148;
135220
135221
135222
135223
135224
135225
135226
135227
135228
135229
135230
135231
135232
135233
135234
135235


135236
135237
135238
135239
135240
135241
135242
135243
135244
135245




135246
135247

135248
135249
135250
135251
135252
135253
135254
135255
135256
135257
135258
135259
135260
135261
135262
135263
135264
135265

135266



135267
135268
135269
135270
135271
135272
135273
135274
135275
135276
135277
135278
135279
135280

135281
135282
135283
135284
135285
135286
135287
135288
135289
135290




135291
135292
135293
135294
135295
135296
135297
135298
135299
135300
135301
135302
135303
135304
135305
135306
135307
135308

135309
135310
135311
135312
135313
135314
135315
135316
135317
135318
135319
135320
135321
135322
135323
135324
135325
135326
135327
135328
135329
135330
135331






135332
135333
135334
135335
135336
135337
135338
135339
135340
135341
135342
135343
135344
135345
135346
135347
135348
135349
135350
135351
135352
135353
135354
135355
135356
135357
135358
135359
135360
135361
135362
135363
135364
135365
135366
135367
135368
135369
135370
135371
135372
135373
135374
135375
135376
135377
135378
135379
135380
135381
135382
135383
135384
135385
135386
135387
135388
135389
135390
135391
135392
135393
135394
135395
135396
135397
135398
135399
135400
135401
135402
135403
135404
135405
135406
135407
135408
135409
135410
135411
135412
135413
135414
135415
135416
135417
135418
135419
135420
135421
135422
135423
135424
135425
135426
135427
135428
135429
135430
135431
135432
135433
135434
135435
135436
135437
135438
135439
135440
135441
135442
135443
135444
135445
135446
135447
135448
135449
135450
135451
135452
135453
135454
135455
135456
135457
135458
135459
135460
135461
135462
135463
135464
135465
135466
135467
135468
135469
135470
135471
135472
135473
135474
135475
135476
135477
135478
135479
135480
135481
135482
135483
135484
135485
135486
135487
135488
135489
135490
135491
135492
135493
135494
135495
135496
135497
135498
135499
135500
135501
135502
135503
135504
135505
135506
135507
135508
135509
135510
135511
135512
135513
135514
135515
135516
135517
135518
135519
135520
135521
135522
135523
135524
135525
135526
135527
135528
135529
135530
135531
135532
135533
135534
135535
135536
135537
135538
135539
135540
135541
135542
135543
135544
135545
135546
135547
135548
135549
135550
135551
135552
135553
135554
135555
135556
135557
135558
135559
135560
135561
135562
135563
135564
135565
135566
135567
135568
135569
135570
135571
135572
135573
135574
135575
135576
135577
135578
135579
135580
135581
135582
135583
135584
135585
135586
135587
135588
135589
135590
135591
135592
135593
135594
135595
135596
135597
135598
135599
135600
135601
135602
135603
135604
135605
135606
135607
135608
135609
135610
135611
135612
135613
135614
135615
135616
135617
135618
135619
135620
135621
135622
135623
135624
135625
135626
135627
135628
135629
135630
135631
135632
135633
135634
135635
135636
135637
135638
135639
135640
135641
135642
**  yy_shift_ofst[]    For each state, the offset into yy_action for
**                     shifting terminals.
**  yy_reduce_ofst[]   For each state, the offset into yy_action for
**                     shifting non-terminals after a reduce.
**  yy_default[]       Default action for each state.
**
*********** Begin parsing tables **********************************************/
#define YY_ACTTAB_COUNT (1567)
static const YYACTIONTYPE yy_action[] = {
 /*     0 */   325,  832,  351,  825,    5,  203,  203,  819,   99,  100,
 /*    10 */    90,  978,  978,  853,  856,  845,  845,   97,   97,   98,
 /*    20 */    98,   98,   98,  301,   96,   96,   96,   96,   95,   95,
 /*    30 */    94,   94,   94,   93,  351,  325,  976,  976,  824,  824,
 /*    40 */   826,  946,  354,   99,  100,   90,  978,  978,  853,  856,
 /*    50 */   845,  845,   97,   97,   98,   98,   98,   98,  338,   96,
 /*    60 */    96,   96,   96,   95,   95,   94,   94,   94,   93,  351,


 /*    70 */    95,   95,   94,   94,   94,   93,  351,  791,  976,  976,
 /*    80 */   325,   94,   94,   94,   93,  351,  792,   75,   99,  100,
 /*    90 */    90,  978,  978,  853,  856,  845,  845,   97,   97,   98,
 /*   100 */    98,   98,   98,  450,   96,   96,   96,   96,   95,   95,
 /*   110 */    94,   94,   94,   93,  351, 1333,  155,  155,    2,  325,
 /*   120 */   275,  146,  132,   52,   52,   93,  351,   99,  100,   90,
 /*   130 */   978,  978,  853,  856,  845,  845,   97,   97,   98,   98,
 /*   140 */    98,   98,  101,   96,   96,   96,   96,   95,   95,   94,
 /*   150 */    94,   94,   93,  351,  957,  957,  325,  268,  428,  413,
 /*   160 */   411,   61,  752,  752,   99,  100,   90,  978,  978,  853,




 /*   170 */   856,  845,  845,   97,   97,   98,   98,   98,   98,   60,
 /*   180 */    96,   96,   96,   96,   95,   95,   94,   94,   94,   93,

 /*   190 */   351,  325,  270,  329,  273,  277,  958,  959,  250,   99,
 /*   200 */   100,   90,  978,  978,  853,  856,  845,  845,   97,   97,
 /*   210 */    98,   98,   98,   98,  301,   96,   96,   96,   96,   95,
 /*   220 */    95,   94,   94,   94,   93,  351,  325,  937, 1326,  698,
 /*   230 */   706, 1326,  242,  412,   99,  100,   90,  978,  978,  853,
 /*   240 */   856,  845,  845,   97,   97,   98,   98,   98,   98,  347,
 /*   250 */    96,   96,   96,   96,   95,   95,   94,   94,   94,   93,
 /*   260 */   351,  325,  937, 1327,  384,  699, 1327,  381,  379,   99,
 /*   270 */   100,   90,  978,  978,  853,  856,  845,  845,   97,   97,
 /*   280 */    98,   98,   98,   98,  701,   96,   96,   96,   96,   95,
 /*   290 */    95,   94,   94,   94,   93,  351,  325,   92,   89,  178,
 /*   300 */   833,  935,  373,  700,   99,  100,   90,  978,  978,  853,
 /*   310 */   856,  845,  845,   97,   97,   98,   98,   98,   98,  375,
 /*   320 */    96,   96,   96,   96,   95,   95,   94,   94,   94,   93,
 /*   330 */   351,  325, 1275,  946,  354,  818,  935,  739,  739,   99,
 /*   340 */   100,   90,  978,  978,  853,  856,  845,  845,   97,   97,
 /*   350 */    98,   98,   98,   98,  230,   96,   96,   96,   96,   95,
 /*   360 */    95,   94,   94,   94,   93,  351,  325,  968,  227,   92,

 /*   370 */    89,  178,  373,  300,   99,  100,   90,  978,  978,  853,



 /*   380 */   856,  845,  845,   97,   97,   98,   98,   98,   98,  920,
 /*   390 */    96,   96,   96,   96,   95,   95,   94,   94,   94,   93,
 /*   400 */   351,  325,  449,  447,  447,  447,  147,  737,  737,   99,
 /*   410 */   100,   90,  978,  978,  853,  856,  845,  845,   97,   97,
 /*   420 */    98,   98,   98,   98,  296,   96,   96,   96,   96,   95,
 /*   430 */    95,   94,   94,   94,   93,  351,  325,  419,  231,  957,
 /*   440 */   957,  158,   25,  422,   99,  100,   90,  978,  978,  853,
 /*   450 */   856,  845,  845,   97,   97,   98,   98,   98,   98,  450,
 /*   460 */    96,   96,   96,   96,   95,   95,   94,   94,   94,   93,
 /*   470 */   351,  443,  224,  224,  420,  957,  957,  961,  325,   52,
 /*   480 */    52,  958,  959,  176,  415,   78,   99,  100,   90,  978,
 /*   490 */   978,  853,  856,  845,  845,   97,   97,   98,   98,   98,
 /*   500 */    98,  379,   96,   96,   96,   96,   95,   95,   94,   94,
 /*   510 */    94,   93,  351,  325,  428,  418,  298,  958,  959,  961,

 /*   520 */    81,   99,   88,   90,  978,  978,  853,  856,  845,  845,
 /*   530 */    97,   97,   98,   98,   98,   98,  717,   96,   96,   96,
 /*   540 */    96,   95,   95,   94,   94,   94,   93,  351,  325,  842,
 /*   550 */   842,  854,  857,  996,  318,  343,  379,  100,   90,  978,
 /*   560 */   978,  853,  856,  845,  845,   97,   97,   98,   98,   98,
 /*   570 */    98,  450,   96,   96,   96,   96,   95,   95,   94,   94,
 /*   580 */    94,   93,  351,  325,  350,  350,  350,  260,  377,  340,
 /*   590 */   928,   52,   52,   90,  978,  978,  853,  856,  845,  845,
 /*   600 */    97,   97,   98,   98,   98,   98,  361,   96,   96,   96,
 /*   610 */    96,   95,   95,   94,   94,   94,   93,  351,   86,  445,




 /*   620 */   846,    3, 1202,  361,  360,  378,  344,  813,  957,  957,
 /*   630 */  1299,   86,  445,  729,    3,  212,  169,  287,  405,  282,
 /*   640 */   404,  199,  232,  450,  300,  760,   83,   84,  280,  245,
 /*   650 */   262,  365,  251,   85,  352,  352,   92,   89,  178,   83,
 /*   660 */    84,  242,  412,   52,   52,  448,   85,  352,  352,  246,
 /*   670 */   958,  959,  194,  455,  670,  402,  399,  398,  448,  243,
 /*   680 */   221,  114,  434,  776,  361,  450,  397,  268,  747,  224,
 /*   690 */   224,  132,  132,  198,  832,  434,  452,  451,  428,  427,
 /*   700 */   819,  415,  734,  713,  132,   52,   52,  832,  268,  452,
 /*   710 */   451,  734,  194,  819,  363,  402,  399,  398,  450, 1270,
 /*   720 */  1270,   23,  957,  957,   86,  445,  397,    3,  228,  429,
 /*   730 */   894,  824,  824,  826,  827,   19,  203,  720,   52,   52,
 /*   740 */   428,  408,  439,  249,  824,  824,  826,  827,   19,  229,
 /*   750 */   403,  153,   83,   84,  761,  177,  241,  450,  721,   85,
 /*   760 */   352,  352,  120,  157,  958,  959,   58,  976,  409,  355,
 /*   770 */   330,  448,  268,  428,  430,  320,  790,   32,   32,   86,
 /*   780 */   445,  776,    3,  341,   98,   98,   98,   98,  434,   96,
 /*   790 */    96,   96,   96,   95,   95,   94,   94,   94,   93,  351,

 /*   800 */   832,  120,  452,  451,  813,  886,  819,   83,   84,  976,
 /*   810 */   813,  132,  410,  919,   85,  352,  352,  132,  407,  789,
 /*   820 */   957,  957,   92,   89,  178,  916,  448,  262,  370,  261,
 /*   830 */    82,  913,   80,  262,  370,  261,  776,  824,  824,  826,
 /*   840 */   827,   19,  933,  434,   96,   96,   96,   96,   95,   95,
 /*   850 */    94,   94,   94,   93,  351,  832,   74,  452,  451,  957,
 /*   860 */   957,  819,  958,  959,  120,   92,   89,  178,  944,    2,
 /*   870 */   917,  964,  268,    1,  975,   76,  445,  762,    3,  708,
 /*   880 */   900,  900,  387,  957,  957,  757,  918,  371,  740,  778,
 /*   890 */   756,  257,  824,  824,  826,  827,   19,  417,  741,  450,
 /*   900 */    24,  958,  959,   83,   84,  369,  957,  957,  177,  226,
 /*   910 */    85,  352,  352,  884,  315,  314,  313,  215,  311,   10,
 /*   920 */    10,  683,  448,  349,  348,  958,  959,  908,  777,  157,
 /*   930 */   120,  957,  957,  337,  776,  416,  711,  310,  450,  434,
 /*   940 */   450,  321,  450,  791,  103,  200,  175,  450,  958,  959,
 /*   950 */   907,  832,  792,  452,  451,    9,    9,  819,   10,   10,
 /*   960 */    52,   52,   51,   51,  180,  716,  248,   10,   10,  171,
 /*   970 */   170,  167,  339,  958,  959,  247,  984,  702,  702,  450,
 /*   980 */   715,  233,  686,  982,  888,  983,  182,  913,  824,  824,
 /*   990 */   826,  827,   19,  183,  256,  423,  132,  181,  394,   10,
 /*  1000 */    10,  888,  890,  749,  957,  957,  916,  268,  985,  198,
 /*  1010 */   985,  349,  348,  425,  415,  299,  817,  832,  326,  825,
 /*  1020 */   120,  332,  133,  819,  268,   98,   98,   98,   98,   91,






 /*  1030 */    96,   96,   96,   96,   95,   95,   94,   94,   94,   93,
 /*  1040 */   351,  157,  810,  371,  382,  359,  958,  959,  358,  268,
 /*  1050 */   450,  917,  368,  324,  824,  824,  826,  450,  709,  450,
 /*  1060 */   264,  380,  888,  450,  876,  746,  253,  918,  255,  433,
 /*  1070 */    36,   36,  234,  450,  234,  120,  269,   37,   37,   12,
 /*  1080 */    12,  334,  272,   27,   27,  450,  330,  118,  450,  162,
 /*  1090 */   742,  280,  450,   38,   38,  450,  985,  356,  985,  450,
 /*  1100 */   709, 1209,  450,  132,  450,   39,   39,  450,   40,   40,
 /*  1110 */   450,  362,   41,   41,  450,   42,   42,  450,  254,   28,
 /*  1120 */    28,  450,   29,   29,   31,   31,  450,   43,   43,  450,
 /*  1130 */    44,   44,  450,  714,   45,   45,  450,   11,   11,  767,
 /*  1140 */   450,   46,   46,  450,  268,  450,  105,  105,  450,   47,
 /*  1150 */    47,  450,   48,   48,  450,  237,   33,   33,  450,  172,
 /*  1160 */    49,   49,  450,   50,   50,   34,   34,  274,  122,  122,
 /*  1170 */   450,  123,  123,  450,  124,  124,  450,  897,   56,   56,
 /*  1180 */   450,  896,   35,   35,  450,  267,  450,  817,  450,  817,
 /*  1190 */   106,  106,  450,   53,   53,  385,  107,  107,  450,  817,
 /*  1200 */   108,  108,  817,  450,  104,  104,  121,  121,  119,  119,
 /*  1210 */   450,  117,  112,  112,  450,  276,  450,  225,  111,  111,
 /*  1220 */   450,  730,  450,  109,  109,  450,  673,  674,  675,  911,
 /*  1230 */   110,  110,  317,  998,   55,   55,   57,   57,  692,  331,
 /*  1240 */    54,   54,   26,   26,  696,   30,   30,  317,  936,  197,
 /*  1250 */   196,  195,  335,  281,  336,  446,  331,  745,  689,  436,
 /*  1260 */   440,  444,  120,   72,  386,  223,  175,  345,  757,  932,
 /*  1270 */    20,  286,  319,  756,  815,  372,  374,  202,  202,  202,
 /*  1280 */   263,  395,  285,   74,  208,   21,  696,  719,  718,  883,
 /*  1290 */   120,  120,  120,  120,  120,  754,  278,  828,   77,   74,
 /*  1300 */   726,  727,  785,  783,  879,  202,  999,  208,  893,  892,
 /*  1310 */   893,  892,  694,  816,  763,  116,  774, 1289,  431,  432,
 /*  1320 */   302,  999,  390,  303,  823,  697,  691,  680,  159,  289,
 /*  1330 */   679,  883,  681,  951,  291,  218,  293,    7,  316,  828,
 /*  1340 */   173,  805,  259,  364,  252,  910,  376,  713,  295,  435,
 /*  1350 */   308,  168,  954,  993,  135,  400,  990,  284,  881,  880,
 /*  1360 */   205,  927,  925,   59,  333,   62,  144,  156,  130,   72,
 /*  1370 */   802,  366,  367,  393,  137,  185,  189,  160,  139,  383,
 /*  1380 */    67,  895,  140,  141,  142,  148,  389,  812,  775,  266,
 /*  1390 */   219,  190,  154,  391,  912,  875,  271,  406,  191,  322,
 /*  1400 */   682,  733,  192,  342,  732,  724,  731,  711,  723,  421,
 /*  1410 */   705,   71,  323,    6,  204,  771,  288,   79,  297,  346,
 /*  1420 */   772,  704,  290,  283,  703,  770,  292,  294,  966,  239,
 /*  1430 */   769,  102,  861,  438,  426,  240,  424,  442,   73,  213,
 /*  1440 */   688,  238,   22,  453,  952,  214,  217,  216,  454,  677,
 /*  1450 */   676,  671,  753,  125,  115,  235,  126,  669,  353,  166,
 /*  1460 */   127,  244,  179,  357,  306,  304,  305,  307,  113,  891,
 /*  1470 */   327,  889,  811,  328,  134,  128,  136,  138,  743,  258,
 /*  1480 */   906,  184,  143,  129,  909,  186,   63,   64,  145,  187,
 /*  1490 */   905,   65,    8,   66,   13,  188,  202,  898,  265,  149,
 /*  1500 */   987,  388,  150,  685,  161,  392,  285,  193,  279,  396,
 /*  1510 */   151,  401,   68,   14,   15,  722,   69,  236,  831,  131,
 /*  1520 */   830,  859,   70,  751,   16,  414,  755,    4,  174,  220,
 /*  1530 */   222,  784,  201,  152,  779,   77,   74,   17,   18,  874,
 /*  1540 */   860,  858,  915,  863,  914,  207,  206,  941,  163,  437,
 /*  1550 */   947,  942,  164,  209, 1002,  441,  862,  165,  210,  829,
 /*  1560 */   695,   87,  312,  211, 1291, 1290,  309,
};
static const YYCODETYPE yy_lookahead[] = {
 /*     0 */    19,   95,   53,   97,   22,   24,   24,  101,   27,   28,
 /*    10 */    29,   30,   31,   32,   33,   34,   35,   36,   37,   38,
 /*    20 */    39,   40,   41,  152,   43,   44,   45,   46,   47,   48,
 /*    30 */    49,   50,   51,   52,   53,   19,   55,   55,  132,  133,
 /*    40 */   134,    1,    2,   27,   28,   29,   30,   31,   32,   33,
 /*    50 */    34,   35,   36,   37,   38,   39,   40,   41,  187,   43,
 /*    60 */    44,   45,   46,   47,   48,   49,   50,   51,   52,   53,
 /*    70 */    47,   48,   49,   50,   51,   52,   53,   61,   97,   97,
 /*    80 */    19,   49,   50,   51,   52,   53,   70,   26,   27,   28,
 /*    90 */    29,   30,   31,   32,   33,   34,   35,   36,   37,   38,
 /*   100 */    39,   40,   41,  152,   43,   44,   45,   46,   47,   48,
 /*   110 */    49,   50,   51,   52,   53,  144,  145,  146,  147,   19,
 /*   120 */    16,   22,   92,  172,  173,   52,   53,   27,   28,   29,
 /*   130 */    30,   31,   32,   33,   34,   35,   36,   37,   38,   39,
 /*   140 */    40,   41,   81,   43,   44,   45,   46,   47,   48,   49,
 /*   150 */    50,   51,   52,   53,   55,   56,   19,  152,  207,  208,
 /*   160 */   115,   24,  117,  118,   27,   28,   29,   30,   31,   32,
 /*   170 */    33,   34,   35,   36,   37,   38,   39,   40,   41,   79,
 /*   180 */    43,   44,   45,   46,   47,   48,   49,   50,   51,   52,
 /*   190 */    53,   19,   88,  157,   90,   23,   97,   98,  193,   27,
 /*   200 */    28,   29,   30,   31,   32,   33,   34,   35,   36,   37,
 /*   210 */    38,   39,   40,   41,  152,   43,   44,   45,   46,   47,
 /*   220 */    48,   49,   50,   51,   52,   53,   19,   22,   23,  172,
 /*   230 */    23,   26,  119,  120,   27,   28,   29,   30,   31,   32,
 /*   240 */    33,   34,   35,   36,   37,   38,   39,   40,   41,  187,
 /*   250 */    43,   44,   45,   46,   47,   48,   49,   50,   51,   52,
 /*   260 */    53,   19,   22,   23,  228,   23,   26,  231,  152,   27,
 /*   270 */    28,   29,   30,   31,   32,   33,   34,   35,   36,   37,
 /*   280 */    38,   39,   40,   41,  172,   43,   44,   45,   46,   47,
 /*   290 */    48,   49,   50,   51,   52,   53,   19,  221,  222,  223,
 /*   300 */    23,   96,  152,  172,   27,   28,   29,   30,   31,   32,
 /*   310 */    33,   34,   35,   36,   37,   38,   39,   40,   41,  152,
 /*   320 */    43,   44,   45,   46,   47,   48,   49,   50,   51,   52,
 /*   330 */    53,   19,    0,    1,    2,   23,   96,  190,  191,   27,
 /*   340 */    28,   29,   30,   31,   32,   33,   34,   35,   36,   37,
 /*   350 */    38,   39,   40,   41,  238,   43,   44,   45,   46,   47,
 /*   360 */    48,   49,   50,   51,   52,   53,   19,  185,  218,  221,
 /*   370 */   222,  223,  152,  152,   27,   28,   29,   30,   31,   32,
 /*   380 */    33,   34,   35,   36,   37,   38,   39,   40,   41,  241,
 /*   390 */    43,   44,   45,   46,   47,   48,   49,   50,   51,   52,
 /*   400 */    53,   19,  152,  168,  169,  170,   22,  190,  191,   27,
 /*   410 */    28,   29,   30,   31,   32,   33,   34,   35,   36,   37,
 /*   420 */    38,   39,   40,   41,  152,   43,   44,   45,   46,   47,
 /*   430 */    48,   49,   50,   51,   52,   53,   19,   19,  218,   55,
 /*   440 */    56,   24,   22,  152,   27,   28,   29,   30,   31,   32,
 /*   450 */    33,   34,   35,   36,   37,   38,   39,   40,   41,  152,
 /*   460 */    43,   44,   45,   46,   47,   48,   49,   50,   51,   52,
 /*   470 */    53,  250,  194,  195,   56,   55,   56,   55,   19,  172,
 /*   480 */   173,   97,   98,  152,  206,  138,   27,   28,   29,   30,
 /*   490 */    31,   32,   33,   34,   35,   36,   37,   38,   39,   40,
 /*   500 */    41,  152,   43,   44,   45,   46,   47,   48,   49,   50,
 /*   510 */    51,   52,   53,   19,  207,  208,  152,   97,   98,   97,
 /*   520 */   138,   27,   28,   29,   30,   31,   32,   33,   34,   35,
 /*   530 */    36,   37,   38,   39,   40,   41,  181,   43,   44,   45,
 /*   540 */    46,   47,   48,   49,   50,   51,   52,   53,   19,   30,
 /*   550 */    31,   32,   33,  247,  248,   19,  152,   28,   29,   30,
 /*   560 */    31,   32,   33,   34,   35,   36,   37,   38,   39,   40,
 /*   570 */    41,  152,   43,   44,   45,   46,   47,   48,   49,   50,
 /*   580 */    51,   52,   53,   19,  168,  169,  170,  238,   19,   53,
 /*   590 */   152,  172,  173,   29,   30,   31,   32,   33,   34,   35,
 /*   600 */    36,   37,   38,   39,   40,   41,  152,   43,   44,   45,
 /*   610 */    46,   47,   48,   49,   50,   51,   52,   53,   19,   20,
 /*   620 */   101,   22,   23,  169,  170,   56,  207,   85,   55,   56,
 /*   630 */    23,   19,   20,   26,   22,   99,  100,  101,  102,  103,
 /*   640 */   104,  105,  238,  152,  152,  210,   47,   48,  112,  152,
 /*   650 */   108,  109,  110,   54,   55,   56,  221,  222,  223,   47,
 /*   660 */    48,  119,  120,  172,  173,   66,   54,   55,   56,  152,
 /*   670 */    97,   98,   99,  148,  149,  102,  103,  104,   66,  154,
 /*   680 */    23,  156,   83,   26,  230,  152,  113,  152,  163,  194,
 /*   690 */   195,   92,   92,   30,   95,   83,   97,   98,  207,  208,
 /*   700 */   101,  206,  179,  180,   92,  172,  173,   95,  152,   97,
 /*   710 */    98,  188,   99,  101,  219,  102,  103,  104,  152,  119,
 /*   720 */   120,  196,   55,   56,   19,   20,  113,   22,  193,  163,
 /*   730 */    11,  132,  133,  134,  135,  136,   24,   65,  172,  173,
 /*   740 */   207,  208,  250,  152,  132,  133,  134,  135,  136,  193,
 /*   750 */    78,   84,   47,   48,   49,   98,  199,  152,   86,   54,
 /*   760 */    55,   56,  196,  152,   97,   98,  209,   55,  163,  244,
 /*   770 */   107,   66,  152,  207,  208,  164,  175,  172,  173,   19,
 /*   780 */    20,  124,   22,  111,   38,   39,   40,   41,   83,   43,
 /*   790 */    44,   45,   46,   47,   48,   49,   50,   51,   52,   53,
 /*   800 */    95,  196,   97,   98,   85,  152,  101,   47,   48,   97,
 /*   810 */    85,   92,  207,  193,   54,   55,   56,   92,   49,  175,
 /*   820 */    55,   56,  221,  222,  223,   12,   66,  108,  109,  110,
 /*   830 */   137,  163,  139,  108,  109,  110,   26,  132,  133,  134,
 /*   840 */   135,  136,  152,   83,   43,   44,   45,   46,   47,   48,
 /*   850 */    49,   50,   51,   52,   53,   95,   26,   97,   98,   55,
 /*   860 */    56,  101,   97,   98,  196,  221,  222,  223,  146,  147,
 /*   870 */    57,  171,  152,   22,   26,   19,   20,   49,   22,  179,
 /*   880 */   108,  109,  110,   55,   56,  116,   73,  219,   75,  124,
 /*   890 */   121,  152,  132,  133,  134,  135,  136,  163,   85,  152,
 /*   900 */   232,   97,   98,   47,   48,  237,   55,   56,   98,    5,
 /*   910 */    54,   55,   56,  193,   10,   11,   12,   13,   14,  172,
 /*   920 */   173,   17,   66,   47,   48,   97,   98,  152,  124,  152,
 /*   930 */   196,   55,   56,  186,  124,  152,  106,  160,  152,   83,
 /*   940 */   152,  164,  152,   61,   22,  211,  212,  152,   97,   98,
 /*   950 */   152,   95,   70,   97,   98,  172,  173,  101,  172,  173,
 /*   960 */   172,  173,  172,  173,   60,  181,   62,  172,  173,   47,
 /*   970 */    48,  123,  186,   97,   98,   71,  100,   55,   56,  152,
 /*   980 */   181,  186,   21,  107,  152,  109,   82,  163,  132,  133,
 /*   990 */   134,  135,  136,   89,   16,  207,   92,   93,   19,  172,
 /*  1000 */   173,  169,  170,  195,   55,   56,   12,  152,  132,   30,
 /*  1010 */   134,   47,   48,  186,  206,  225,  152,   95,  114,   97,
 /*  1020 */   196,  245,  246,  101,  152,   38,   39,   40,   41,   42,
 /*  1030 */    43,   44,   45,   46,   47,   48,   49,   50,   51,   52,
 /*  1040 */    53,  152,  163,  219,  152,  141,   97,   98,  193,  152,
 /*  1050 */   152,   57,   91,  164,  132,  133,  134,  152,   55,  152,
 /*  1060 */   152,  237,  230,  152,  103,  193,   88,   73,   90,   75,
 /*  1070 */   172,  173,  183,  152,  185,  196,  152,  172,  173,  172,
 /*  1080 */   173,  217,  152,  172,  173,  152,  107,   22,  152,   24,
 /*  1090 */   193,  112,  152,  172,  173,  152,  132,  242,  134,  152,
 /*  1100 */    97,  140,  152,   92,  152,  172,  173,  152,  172,  173,
 /*  1110 */   152,  100,  172,  173,  152,  172,  173,  152,  140,  172,
 /*  1120 */   173,  152,  172,  173,  172,  173,  152,  172,  173,  152,
 /*  1130 */   172,  173,  152,  152,  172,  173,  152,  172,  173,  213,
 /*  1140 */   152,  172,  173,  152,  152,  152,  172,  173,  152,  172,
 /*  1150 */   173,  152,  172,  173,  152,  210,  172,  173,  152,   26,
 /*  1160 */   172,  173,  152,  172,  173,  172,  173,  152,  172,  173,
 /*  1170 */   152,  172,  173,  152,  172,  173,  152,   59,  172,  173,
 /*  1180 */   152,   63,  172,  173,  152,  193,  152,  152,  152,  152,
 /*  1190 */   172,  173,  152,  172,  173,   77,  172,  173,  152,  152,
 /*  1200 */   172,  173,  152,  152,  172,  173,  172,  173,  172,  173,
 /*  1210 */   152,   22,  172,  173,  152,  152,  152,   22,  172,  173,
 /*  1220 */   152,  152,  152,  172,  173,  152,    7,    8,    9,  163,
 /*  1230 */   172,  173,   22,   23,  172,  173,  172,  173,  166,  167,
 /*  1240 */   172,  173,  172,  173,   55,  172,  173,   22,   23,  108,
 /*  1250 */   109,  110,  217,  152,  217,  166,  167,  163,  163,  163,
 /*  1260 */   163,  163,  196,  130,  217,  211,  212,  217,  116,   23,
 /*  1270 */    22,  101,   26,  121,   23,   23,   23,   26,   26,   26,
 /*  1280 */    23,   23,  112,   26,   26,   37,   97,  100,  101,   55,
 /*  1290 */   196,  196,  196,  196,  196,   23,   23,   55,   26,   26,
 /*  1300 */     7,    8,   23,  152,   23,   26,   96,   26,  132,  132,
 /*  1310 */   134,  134,   23,  152,  152,   26,  152,  122,  152,  191,
 /*  1320 */   152,   96,  234,  152,  152,  152,  152,  152,  197,  210,
 /*  1330 */   152,   97,  152,  152,  210,  233,  210,  198,  150,   97,
 /*  1340 */   184,  201,  239,  214,  214,  201,  239,  180,  214,  227,
 /*  1350 */   200,  198,  155,   67,  243,  176,   69,  175,  175,  175,
 /*  1360 */   122,  159,  159,  240,  159,  240,   22,  220,   27,  130,
 /*  1370 */   201,   18,  159,   18,  189,  158,  158,  220,  192,  159,
 /*  1380 */   137,  236,  192,  192,  192,  189,   74,  189,  159,  235,
 /*  1390 */   159,  158,   22,  177,  201,  201,  159,  107,  158,  177,
 /*  1400 */   159,  174,  158,   76,  174,  182,  174,  106,  182,  125,
 /*  1410 */   174,  107,  177,   22,  159,  216,  215,  137,  159,   53,
 /*  1420 */   216,  176,  215,  174,  174,  216,  215,  215,  174,  229,
 /*  1430 */   216,  129,  224,  177,  126,  229,  127,  177,  128,   25,
 /*  1440 */   162,  226,   26,  161,   13,  153,    6,  153,  151,  151,
 /*  1450 */   151,  151,  205,  165,  178,  178,  165,    4,    3,   22,
 /*  1460 */   165,  142,   15,   94,  202,  204,  203,  201,   16,   23,
 /*  1470 */   249,   23,  120,  249,  246,  111,  131,  123,   20,   16,
 /*  1480 */     1,  125,  123,  111,   56,   64,   37,   37,  131,  122,
 /*  1490 */     1,   37,    5,   37,   22,  107,   26,   80,  140,   80,
 /*  1500 */    87,   72,  107,   20,   24,   19,  112,  105,   23,   79,
 /*  1510 */    22,   79,   22,   22,   22,   58,   22,   79,   23,   68,
 /*  1520 */    23,   23,   26,  116,   22,   26,   23,   22,  122,   23,
 /*  1530 */    23,   56,   64,   22,  124,   26,   26,   64,   64,   23,
 /*  1540 */    23,   23,   23,   11,   23,   22,   26,   23,   22,   24,
 /*  1550 */     1,   23,   22,   26,  251,   24,   23,   22,  122,   23,
 /*  1560 */    23,   22,   15,  122,  122,  122,   23,
};
#define YY_SHIFT_USE_DFLT (1567)
#define YY_SHIFT_COUNT    (455)
#define YY_SHIFT_MIN      (-94)
#define YY_SHIFT_MAX      (1549)
static const short yy_shift_ofst[] = {
 /*     0 */    40,  599,  904,  612,  760,  760,  760,  760,  725,  -19,
 /*    10 */    16,   16,  100,  760,  760,  760,  760,  760,  760,  760,
 /*    20 */   876,  876,  573,  542,  719,  600,   61,  137,  172,  207,
 /*    30 */   242,  277,  312,  347,  382,  417,  459,  459,  459,  459,
 /*    40 */   459,  459,  459,  459,  459,  459,  459,  459,  459,  459,
 /*    50 */   459,  459,  459,  494,  459,  529,  564,  564,  705,  760,
 /*    60 */   760,  760,  760,  760,  760,  760,  760,  760,  760,  760,
 /*    70 */   760,  760,  760,  760,  760,  760,  760,  760,  760,  760,
 /*    80 */   760,  760,  760,  760,  760,  760,  760,  760,  760,  760,
 /*    90 */   856,  760,  760,  760,  760,  760,  760,  760,  760,  760,
 /*   100 */   760,  760,  760,  760,  987,  746,  746,  746,  746,  746,
 /*   110 */   801,   23,   32,  949,  961,  979,  964,  964,  949,   73,
 /*   120 */   113,  -51, 1567, 1567, 1567,  536,  536,  536,   99,   99,
 /*   130 */   813,  813,  667,  205,  240,  949,  949,  949,  949,  949,
 /*   140 */   949,  949,  949,  949,  949,  949,  949,  949,  949,  949,
 /*   150 */   949,  949,  949,  949,  949,  332, 1011,  422,  422,  113,
 /*   160 */    30,   30,   30,   30,   30,   30, 1567, 1567, 1567,  922,
 /*   170 */   -94,  -94,  384,  613,  828,  420,  765,  804,  851,  949,
 /*   180 */   949,  949,  949,  949,  949,  949,  949,  949,  949,  949,
 /*   190 */   949,  949,  949,  949,  949,  672,  672,  672,  949,  949,
 /*   200 */   657,  949,  949,  949,  -18,  949,  949,  994,  949,  949,
 /*   210 */   949,  949,  949,  949,  949,  949,  949,  949,  772, 1118,
 /*   220 */   712,  712,  712,  810,   45,  769, 1219, 1133,  418,  418,
 /*   230 */   569, 1133,  569,  830,  607,  663,  882,  418,  693,  882,
 /*   240 */   882,  848, 1152, 1065, 1286, 1238, 1238, 1287, 1287, 1238,
 /*   250 */  1344, 1341, 1239, 1353, 1353, 1353, 1353, 1238, 1355, 1239,
 /*   260 */  1344, 1341, 1341, 1239, 1238, 1355, 1243, 1312, 1238, 1238,
 /*   270 */  1355, 1370, 1238, 1355, 1238, 1355, 1370, 1290, 1290, 1290,
 /*   280 */  1327, 1370, 1290, 1301, 1290, 1327, 1290, 1290, 1284, 1304,
 /*   290 */  1284, 1304, 1284, 1304, 1284, 1304, 1238, 1391, 1238, 1280,
 /*   300 */  1370, 1366, 1366, 1370, 1302, 1308, 1310, 1309, 1239, 1414,
 /*   310 */  1416, 1431, 1431, 1440, 1440, 1440, 1440, 1567, 1567, 1567,
 /*   320 */  1567, 1567, 1567, 1567, 1567,  519,  978, 1210, 1225,  104,
 /*   330 */  1141, 1189, 1246, 1248, 1251, 1252, 1253, 1257, 1258, 1273,
 /*   340 */  1003, 1187, 1293, 1170, 1272, 1279, 1234, 1281, 1176, 1177,
 /*   350 */  1289, 1242, 1195, 1453, 1455, 1437, 1319, 1447, 1369, 1452,
 /*   360 */  1446, 1448, 1352, 1345, 1364, 1354, 1458, 1356, 1463, 1479,
 /*   370 */  1359, 1357, 1449, 1450, 1454, 1456, 1372, 1428, 1421, 1367,
 /*   380 */  1489, 1487, 1472, 1388, 1358, 1417, 1470, 1419, 1413, 1429,
 /*   390 */  1395, 1480, 1483, 1486, 1394, 1402, 1488, 1430, 1490, 1491,
 /*   400 */  1485, 1492, 1432, 1457, 1494, 1438, 1451, 1495, 1497, 1498,
 /*   410 */  1496, 1407, 1502, 1503, 1505, 1499, 1406, 1506, 1507, 1475,
 /*   420 */  1468, 1511, 1410, 1509, 1473, 1510, 1474, 1516, 1509, 1517,
 /*   430 */  1518, 1519, 1520, 1521, 1523, 1532, 1524, 1526, 1525, 1527,
 /*   440 */  1528, 1530, 1531, 1527, 1533, 1535, 1536, 1537, 1539, 1436,
 /*   450 */  1441, 1442, 1443, 1543, 1547, 1549,
};
#define YY_REDUCE_USE_DFLT (-130)
#define YY_REDUCE_COUNT (324)
#define YY_REDUCE_MIN   (-129)
#define YY_REDUCE_MAX   (1300)
static const short yy_reduce_ofst[] = {
 /*     0 */   -29,  566,  525,  605,  -49,  307,  491,  533,  668,  435,
 /*    10 */   601,  644,  148,  747,  786,  795,  419,  788,  827,  790,
 /*    20 */   454,  832,  889,  495,  824,  734,   76,   76,   76,   76,
 /*    30 */    76,   76,   76,   76,   76,   76,   76,   76,   76,   76,
 /*    40 */    76,   76,   76,   76,   76,   76,   76,   76,   76,   76,
 /*    50 */    76,   76,   76,   76,   76,   76,   76,   76,  783,  898,
 /*    60 */   905,  907,  911,  921,  933,  936,  940,  943,  947,  950,
 /*    70 */   952,  955,  958,  962,  965,  969,  974,  977,  980,  984,
 /*    80 */   988,  991,  993,  996,  999, 1002, 1006, 1010, 1018, 1021,
 /*    90 */  1024, 1028, 1032, 1034, 1036, 1040, 1046, 1051, 1058, 1062,
 /*   100 */  1064, 1068, 1070, 1073,   76,   76,   76,   76,   76,   76,
 /*   110 */    76,   76,   76,  855,   36,  523,  235,  416,  777,   76,
 /*   120 */   278,   76,   76,   76,   76,  700,  700,  700,  150,  220,
 /*   130 */   147,  217,  221,  306,  306,  611,    5,  535,  556,  620,
 /*   140 */   720,  872,  897,  116,  864,  349, 1035, 1037,  404, 1047,
 /*   150 */   992, -129, 1050,  492,   62,  722,  879, 1072, 1089,  808,
 /*   160 */  1066, 1094, 1095, 1096, 1097, 1098,  776, 1054,  557,   57,
 /*   170 */   112,  131,  167,  182,  250,  272,  291,  331,  364,  438,
 /*   180 */   497,  517,  591,  653,  690,  739,  775,  798,  892,  908,
 /*   190 */   924,  930, 1015, 1063, 1069,  355,  784,  799,  981, 1101,
 /*   200 */   926, 1151, 1161, 1162,  945, 1164, 1166, 1128, 1168, 1171,
 /*   210 */  1172,  250, 1173, 1174, 1175, 1178, 1180, 1181, 1088, 1102,
 /*   220 */  1119, 1124, 1126,  926, 1131, 1139, 1188, 1140, 1129, 1130,
 /*   230 */  1103, 1144, 1107, 1179, 1156, 1167, 1182, 1134, 1122, 1183,
 /*   240 */  1184, 1150, 1153, 1197, 1111, 1202, 1203, 1123, 1125, 1205,
 /*   250 */  1147, 1185, 1169, 1186, 1190, 1191, 1192, 1213, 1217, 1193,
 /*   260 */  1157, 1196, 1198, 1194, 1220, 1218, 1145, 1154, 1229, 1231,
 /*   270 */  1233, 1216, 1237, 1240, 1241, 1244, 1222, 1227, 1230, 1232,
 /*   280 */  1223, 1235, 1236, 1245, 1249, 1226, 1250, 1254, 1199, 1201,
 /*   290 */  1204, 1207, 1209, 1211, 1214, 1212, 1255, 1208, 1259, 1215,
 /*   300 */  1256, 1200, 1206, 1260, 1247, 1261, 1263, 1262, 1266, 1278,
 /*   310 */  1282, 1292, 1294, 1297, 1298, 1299, 1300, 1221, 1224, 1228,
 /*   320 */  1288, 1291, 1276, 1277, 1295,
};
static const YYACTIONTYPE yy_default[] = {
 /*     0 */  1280, 1270, 1270, 1270, 1202, 1202, 1202, 1202, 1270, 1096,
 /*    10 */  1125, 1125, 1254, 1332, 1332, 1332, 1332, 1332, 1332, 1201,
 /*    20 */  1332, 1332, 1332, 1332, 1270, 1100, 1131, 1332, 1332, 1332,
 /*    30 */  1332, 1203, 1204, 1332, 1332, 1332, 1253, 1255, 1141, 1140,
 /*    40 */  1139, 1138, 1236, 1112, 1136, 1129, 1133, 1203, 1197, 1198,







|

|
<
|
|
|
<
|
>
>
|
|
|
|
|
|
|
|
|
|
>
>
>
>
|
|
>
|
|
<
<
<
|
|
<
<
|
|
|
|
|
<
|
|
|
>
|
>
>
>
|
|
<
<
<
|
|
|
|
|
<
|
|
|
>
|
|
|
|
<
<
<
<
|
|
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
<
<
<
<
<
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|


|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







135786
135787
135788
135789
135790
135791
135792
135793
135794
135795

135796
135797
135798

135799
135800
135801
135802
135803
135804
135805
135806
135807
135808
135809
135810
135811
135812
135813
135814
135815
135816
135817
135818
135819
135820



135821
135822


135823
135824
135825
135826
135827

135828
135829
135830
135831
135832
135833
135834
135835
135836
135837



135838
135839
135840
135841
135842

135843
135844
135845
135846
135847
135848
135849
135850




135851
135852
135853
135854
135855
135856
135857
135858
135859
135860
135861
135862
135863
135864
135865
135866
135867
135868
135869
135870
135871
135872

135873
135874
135875
135876
135877
135878
135879
135880
135881
135882
135883
135884
135885
135886
135887
135888
135889
135890
135891






135892
135893
135894
135895
135896
135897
135898
135899
135900
135901
135902
135903
135904
135905
135906
135907
135908
135909
135910
135911
135912
135913
135914
135915
135916
135917
135918
135919
135920
135921
135922
135923
135924
135925
135926
135927
135928
135929
135930
135931
135932
135933
135934
135935
135936
135937
135938
135939
135940
135941
135942
135943
135944
135945
135946
135947
135948
135949
135950
135951
135952
135953
135954
135955
135956
135957
135958
135959
135960
135961
135962
135963
135964
135965
135966
135967
135968
135969
135970
135971
135972
135973
135974
135975
135976
135977
135978
135979
135980
135981
135982
135983
135984
135985
135986
135987
135988
135989
135990
135991
135992
135993
135994
135995
135996
135997
135998
135999
136000
136001
136002
136003
136004
136005
136006
136007
136008
136009
136010
136011
136012
136013
136014
136015
136016
136017
136018
136019
136020
136021
136022
136023
136024
136025
136026
136027
136028
136029
136030
136031
136032
136033
136034
136035
136036
136037
136038
136039
136040
136041
136042
136043
136044
136045
136046
136047
136048
136049
136050
136051
136052
136053
136054
136055
136056
136057
136058
136059
136060
136061
136062
136063
136064
136065
136066
136067
136068
136069
136070
136071
136072
136073
136074
136075
136076
136077
136078
136079
136080
136081
136082
136083
136084
136085
136086
136087
136088
136089
136090
136091
136092
136093
136094
136095
136096
136097
136098
136099
136100
136101
136102
136103
136104
136105
136106
136107
136108
136109
136110
136111
136112
136113
136114
136115
136116
136117
136118
136119
136120
136121
136122
136123
136124
136125
136126
136127
136128
136129
136130
136131
136132
136133
136134
136135
136136
136137
136138
136139
136140
136141
136142
136143
136144
136145
136146
136147
136148
136149
136150
136151
136152
136153
136154
136155
136156
136157
136158
136159
136160
136161
136162
136163
136164
136165
136166
136167
136168
136169
136170
136171
136172
136173
136174
136175
136176
136177
136178
136179
136180
136181
136182
136183
136184
136185
136186
136187
136188
136189
136190
136191
136192
136193
136194
136195
136196
136197
136198
136199
136200
136201
136202
136203
136204
136205
136206
136207
136208
**  yy_shift_ofst[]    For each state, the offset into yy_action for
**                     shifting terminals.
**  yy_reduce_ofst[]   For each state, the offset into yy_action for
**                     shifting non-terminals after a reduce.
**  yy_default[]       Default action for each state.
**
*********** Begin parsing tables **********************************************/
#define YY_ACTTAB_COUNT (1566)
static const YYACTIONTYPE yy_action[] = {
 /*     0 */   325,  411,  343,  752,  752,  203,  946,  354,  976,   98,

 /*    10 */    98,   98,   98,   91,   96,   96,   96,   96,   95,   95,
 /*    20 */    94,   94,   94,   93,  351, 1333,  155,  155,    2,  813,
 /*    30 */   978,  978,   98,   98,   98,   98,   20,   96,   96,   96,

 /*    40 */    96,   95,   95,   94,   94,   94,   93,  351,   92,   89,
 /*    50 */   178,   99,  100,   90,  853,  856,  845,  845,   97,   97,
 /*    60 */    98,   98,   98,   98,  351,   96,   96,   96,   96,   95,
 /*    70 */    95,   94,   94,   94,   93,  351,  325,  340,  976,  262,
 /*    80 */   365,  251,  212,  169,  287,  405,  282,  404,  199,  791,
 /*    90 */   242,  412,   21,  957,  379,  280,   93,  351,  792,   95,
 /*   100 */    95,   94,   94,   94,   93,  351,  978,  978,   96,   96,
 /*   110 */    96,   96,   95,   95,   94,   94,   94,   93,  351,  813,
 /*   120 */   329,  242,  412,  913,  832,  913,  132,   99,  100,   90,
 /*   130 */   853,  856,  845,  845,   97,   97,   98,   98,   98,   98,
 /*   140 */   450,   96,   96,   96,   96,   95,   95,   94,   94,   94,
 /*   150 */    93,  351,  325,  825,  349,  348,  120,  819,  120,   75,
 /*   160 */    52,   52,  957,  958,  959,  760,  984,  146,  361,  262,
 /*   170 */   370,  261,  957,  982,  961,  983,   92,   89,  178,  371,
 /*   180 */   230,  371,  978,  978,  817,  361,  360,  101,  824,  824,
 /*   190 */   826,  384,   24,  964,  381,  428,  413,  369,  985,  380,
 /*   200 */   985,  708,  325,   99,  100,   90,  853,  856,  845,  845,
 /*   210 */    97,   97,   98,   98,   98,   98,  373,   96,   96,   96,
 /*   220 */    96,   95,   95,   94,   94,   94,   93,  351,  957,  132,
 /*   230 */   897,  450,  978,  978,  896,   60,   94,   94,   94,   93,
 /*   240 */   351,  957,  958,  959,  961,  103,  361,  957,  385,  334,
 /*   250 */   702,   52,   52,   99,  100,   90,  853,  856,  845,  845,



 /*   260 */    97,   97,   98,   98,   98,   98,  698,   96,   96,   96,
 /*   270 */    96,   95,   95,   94,   94,   94,   93,  351,  325,  455,


 /*   280 */   670,  450,  227,   61,  157,  243,  344,  114,  701,  888,
 /*   290 */   147,  832,  957,  373,  747,  957,  320,  957,  958,  959,
 /*   300 */   194,   10,   10,  402,  399,  398,  888,  890,  978,  978,
 /*   310 */   762,  171,  170,  157,  397,  337,  957,  958,  959,  702,
 /*   320 */   825,  310,  153,  957,  819,  321,   82,   23,   80,   99,

 /*   330 */   100,   90,  853,  856,  845,  845,   97,   97,   98,   98,
 /*   340 */    98,   98,  894,   96,   96,   96,   96,   95,   95,   94,
 /*   350 */    94,   94,   93,  351,  325,  824,  824,  826,  277,  231,
 /*   360 */   300,  957,  958,  959,  957,  958,  959,  888,  194,   25,
 /*   370 */   450,  402,  399,  398,  957,  355,  300,  450,  957,   74,
 /*   380 */   450,    1,  397,  132,  978,  978,  957,  224,  224,  813,
 /*   390 */    10,   10,  957,  958,  959,  968,  132,   52,   52,  415,
 /*   400 */    52,   52,  739,  739,  339,   99,  100,   90,  853,  856,
 /*   410 */   845,  845,   97,   97,   98,   98,   98,   98,  790,   96,
 /*   420 */    96,   96,   96,   95,   95,   94,   94,   94,   93,  351,



 /*   430 */   325,  789,  428,  418,  706,  428,  427, 1270, 1270,  262,
 /*   440 */   370,  261,  957,  957,  958,  959,  757,  957,  958,  959,
 /*   450 */   450,  756,  450,  734,  713,  957,  958,  959,  443,  711,
 /*   460 */   978,  978,  734,  394,   92,   89,  178,  447,  447,  447,
 /*   470 */    51,   51,   52,   52,  439,  778,  700,   92,   89,  178,

 /*   480 */   172,   99,  100,   90,  853,  856,  845,  845,   97,   97,
 /*   490 */    98,   98,   98,   98,  198,   96,   96,   96,   96,   95,
 /*   500 */    95,   94,   94,   94,   93,  351,  325,  428,  408,  916,
 /*   510 */   699,  957,  958,  959,   92,   89,  178,  224,  224,  157,
 /*   520 */   241,  221,  419,  299,  776,  917,  416,  375,  450,  415,
 /*   530 */    58,  324,  737,  737,  920,  379,  978,  978,  379,  777,
 /*   540 */   449,  918,  363,  740,  296,  686,    9,    9,   52,   52,
 /*   550 */   234,  330,  234,  256,  417,  741,  280,   99,  100,   90,




 /*   560 */   853,  856,  845,  845,   97,   97,   98,   98,   98,   98,
 /*   570 */   450,   96,   96,   96,   96,   95,   95,   94,   94,   94,
 /*   580 */    93,  351,  325,  423,   72,  450,  833,  120,  368,  450,
 /*   590 */    10,   10,    5,  301,  203,  450,  177,  976,  253,  420,
 /*   600 */   255,  776,  200,  175,  233,   10,   10,  842,  842,   36,
 /*   610 */    36, 1299,  978,  978,  729,   37,   37,  349,  348,  425,
 /*   620 */   203,  260,  776,  976,  232,  937, 1326,  876,  338, 1326,
 /*   630 */   422,  854,  857,   99,  100,   90,  853,  856,  845,  845,
 /*   640 */    97,   97,   98,   98,   98,   98,  268,   96,   96,   96,
 /*   650 */    96,   95,   95,   94,   94,   94,   93,  351,  325,  846,
 /*   660 */   450,  985,  818,  985, 1209,  450,  916,  976,  720,  350,
 /*   670 */   350,  350,  935,  177,  450,  937, 1327,  254,  198, 1327,
 /*   680 */    12,   12,  917,  403,  450,   27,   27,  250,  978,  978,
 /*   690 */   118,  721,  162,  976,   38,   38,  268,  176,  918,  776,
 /*   700 */   433, 1275,  946,  354,   39,   39,  317,  998,  325,   99,
 /*   710 */   100,   90,  853,  856,  845,  845,   97,   97,   98,   98,
 /*   720 */    98,   98,  935,   96,   96,   96,   96,   95,   95,   94,
 /*   730 */    94,   94,   93,  351,  450,  330,  450,  358,  978,  978,
 /*   740 */   717,  317,  936,  341,  900,  900,  387,  673,  674,  675,
 /*   750 */   275,  996,  318,  999,   40,   40,   41,   41,  268,   99,
 /*   760 */   100,   90,  853,  856,  845,  845,   97,   97,   98,   98,
 /*   770 */    98,   98,  450,   96,   96,   96,   96,   95,   95,   94,

 /*   780 */    94,   94,   93,  351,  325,  450,  356,  450,  999,  450,
 /*   790 */   692,  331,   42,   42,  791,  270,  450,  273,  450,  228,
 /*   800 */   450,  298,  450,  792,  450,   28,   28,   29,   29,   31,
 /*   810 */    31,  450,  817,  450,  978,  978,   43,   43,   44,   44,
 /*   820 */    45,   45,   11,   11,   46,   46,  893,   78,  893,  268,
 /*   830 */   268,  105,  105,   47,   47,   99,  100,   90,  853,  856,
 /*   840 */   845,  845,   97,   97,   98,   98,   98,   98,  450,   96,
 /*   850 */    96,   96,   96,   95,   95,   94,   94,   94,   93,  351,
 /*   860 */   325,  450,  117,  450,  749,  158,  450,  696,   48,   48,
 /*   870 */   229,  919,  450,  928,  450,  415,  450,  335,  450,  245,
 /*   880 */   450,   33,   33,   49,   49,  450,   50,   50,  246,  817,
 /*   890 */   978,  978,   34,   34,  122,  122,  123,  123,  124,  124,
 /*   900 */    56,   56,  268,   81,  249,   35,   35,  197,  196,  195,
 /*   910 */   325,   99,  100,   90,  853,  856,  845,  845,   97,   97,
 /*   920 */    98,   98,   98,   98,  450,   96,   96,   96,   96,   95,
 /*   930 */    95,   94,   94,   94,   93,  351,  450,  696,  450,  817,
 /*   940 */   978,  978,  975,  884,  106,  106,  268,  886,  268,  944,
 /*   950 */     2,  892,  268,  892,  336,  716,   53,   53,  107,  107,
 /*   960 */   325,   99,  100,   90,  853,  856,  845,  845,   97,   97,






 /*   970 */    98,   98,   98,   98,  450,   96,   96,   96,   96,   95,
 /*   980 */    95,   94,   94,   94,   93,  351,  450,  746,  450,  742,
 /*   990 */   978,  978,  715,  267,  108,  108,  446,  331,  332,  133,
 /*  1000 */   223,  175,  301,  225,  386,  933,  104,  104,  121,  121,
 /*  1010 */   325,   99,   88,   90,  853,  856,  845,  845,   97,   97,
 /*  1020 */    98,   98,   98,   98,  817,   96,   96,   96,   96,   95,
 /*  1030 */    95,   94,   94,   94,   93,  351,  450,  347,  450,  167,
 /*  1040 */   978,  978,  932,  815,  372,  319,  202,  202,  374,  263,
 /*  1050 */   395,  202,   74,  208,  726,  727,  119,  119,  112,  112,
 /*  1060 */   325,  407,  100,   90,  853,  856,  845,  845,   97,   97,
 /*  1070 */    98,   98,   98,   98,  450,   96,   96,   96,   96,   95,
 /*  1080 */    95,   94,   94,   94,   93,  351,  450,  757,  450,  345,
 /*  1090 */   978,  978,  756,  278,  111,  111,   74,  719,  718,  709,
 /*  1100 */   286,  883,  754, 1289,  257,   77,  109,  109,  110,  110,
 /*  1110 */   908,  285,  810,   90,  853,  856,  845,  845,   97,   97,
 /*  1120 */    98,   98,   98,   98,  911,   96,   96,   96,   96,   95,
 /*  1130 */    95,   94,   94,   94,   93,  351,   86,  445,  450,    3,
 /*  1140 */  1202,  450,  745,  132,  352,  120,  689,   86,  445,  785,
 /*  1150 */     3,  767,  202,  377,  448,  352,  907,  120,   55,   55,
 /*  1160 */   450,   57,   57,  828,  879,  448,  450,  208,  450,  709,
 /*  1170 */   450,  883,  237,  434,  436,  120,  440,  429,  362,  120,
 /*  1180 */    54,   54,  132,  450,  434,  832,   52,   52,   26,   26,
 /*  1190 */    30,   30,  382,  132,  409,  444,  832,  694,  264,  390,
 /*  1200 */   116,  269,  272,   32,   32,   83,   84,  120,  274,  120,
 /*  1210 */   120,  276,   85,  352,  452,  451,   83,   84,  819,  730,
 /*  1220 */   714,  428,  430,   85,  352,  452,  451,  120,  120,  819,
 /*  1230 */   378,  218,  281,  828,  783,  816,   86,  445,  410,    3,
 /*  1240 */   763,  774,  431,  432,  352,  302,  303,  823,  697,  824,
 /*  1250 */   824,  826,  827,   19,  448,  691,  680,  679,  681,  951,
 /*  1260 */   824,  824,  826,  827,   19,  289,  159,  291,  293,    7,
 /*  1270 */   316,  173,  259,  434,  805,  364,  252,  910,  376,  713,
 /*  1280 */   295,  435,  168,  993,  400,  832,  284,  881,  880,  205,
 /*  1290 */   954,  308,  927,   86,  445,  990,    3,  925,  333,  144,
 /*  1300 */   130,  352,   72,  135,   59,   83,   84,  761,  137,  366,
 /*  1310 */   802,  448,   85,  352,  452,  451,  139,  226,  819,  140,
 /*  1320 */   156,   62,  315,  314,  313,  215,  311,  367,  393,  683,
 /*  1330 */   434,  185,  141,  912,  142,  160,  148,  812,  875,  383,
 /*  1340 */   189,   67,  832,  180,  389,  248,  895,  775,  219,  824,
 /*  1350 */   824,  826,  827,   19,  247,  190,  266,  154,  391,  271,
 /*  1360 */   191,  192,   83,   84,  682,  406,  733,  182,  322,   85,
 /*  1370 */   352,  452,  451,  732,  183,  819,  342,  132,  181,  711,
 /*  1380 */   731,  421,   76,  445,  705,    3,  323,  704,  283,  724,
 /*  1390 */   352,  771,  703,  966,  723,   71,  204,    6,  288,  290,
 /*  1400 */   448,  772,  770,  769,   79,  292,  824,  824,  826,  827,
 /*  1410 */    19,  294,  297,  438,  346,  442,  102,  861,  753,  434,
 /*  1420 */   238,  426,   73,  305,  239,  304,  326,  240,  424,  306,
 /*  1430 */   307,  832,  213,  688,   22,  952,  453,  214,  216,  217,
 /*  1440 */   454,  677,  115,  676,  671,  125,  126,  235,  127,  669,
 /*  1450 */   327,   83,   84,  359,  353,  244,  166,  328,   85,  352,
 /*  1460 */   452,  451,  134,  179,  819,  357,  113,  891,  811,  889,
 /*  1470 */   136,  128,  138,  743,  258,  184,  906,  143,  145,   63,
 /*  1480 */    64,   65,   66,  129,  909,  905,  187,  186,    8,   13,
 /*  1490 */   188,  265,  898,  149,  202,  824,  824,  826,  827,   19,
 /*  1500 */   388,  987,  150,  161,  285,  685,  392,  396,  151,  722,
 /*  1510 */   193,   68,   14,  401,  279,   15,   69,  236,  831,  830,
 /*  1520 */   131,  859,  751,   70,   16,  414,  755,    4,  784,  220,
 /*  1530 */   222,  174,  152,  437,  779,  201,   17,   77,   74,   18,
 /*  1540 */   874,  860,  858,  915,  863,  914,  207,  206,  941,  163,
 /*  1550 */   210,  942,  209,  164,  441,  862,  165,  211,  829,  695,
 /*  1560 */    87,  312,  309,  947, 1291, 1290,
};
static const YYCODETYPE yy_lookahead[] = {
 /*     0 */    19,  115,   19,  117,  118,   24,    1,    2,   27,   79,
 /*    10 */    80,   81,   82,   83,   84,   85,   86,   87,   88,   89,
 /*    20 */    90,   91,   92,   93,   94,  144,  145,  146,  147,   58,
 /*    30 */    49,   50,   79,   80,   81,   82,   22,   84,   85,   86,
 /*    40 */    87,   88,   89,   90,   91,   92,   93,   94,  221,  222,
 /*    50 */   223,   70,   71,   72,   73,   74,   75,   76,   77,   78,
 /*    60 */    79,   80,   81,   82,   94,   84,   85,   86,   87,   88,
 /*    70 */    89,   90,   91,   92,   93,   94,   19,   94,   97,  108,
 /*    80 */   109,  110,   99,  100,  101,  102,  103,  104,  105,   32,
 /*    90 */   119,  120,   78,   27,  152,  112,   93,   94,   41,   88,
 /*   100 */    89,   90,   91,   92,   93,   94,   49,   50,   84,   85,
 /*   110 */    86,   87,   88,   89,   90,   91,   92,   93,   94,   58,
 /*   120 */   157,  119,  120,  163,   68,  163,   65,   70,   71,   72,
 /*   130 */    73,   74,   75,   76,   77,   78,   79,   80,   81,   82,
 /*   140 */   152,   84,   85,   86,   87,   88,   89,   90,   91,   92,
 /*   150 */    93,   94,   19,   97,   88,   89,  196,  101,  196,   26,
 /*   160 */   172,  173,   96,   97,   98,  210,  100,   22,  152,  108,
 /*   170 */   109,  110,   27,  107,   27,  109,  221,  222,  223,  219,
 /*   180 */   238,  219,   49,   50,  152,  169,  170,   54,  132,  133,
 /*   190 */   134,  228,  232,  171,  231,  207,  208,  237,  132,  237,
 /*   200 */   134,  179,   19,   70,   71,   72,   73,   74,   75,   76,
 /*   210 */    77,   78,   79,   80,   81,   82,  152,   84,   85,   86,
 /*   220 */    87,   88,   89,   90,   91,   92,   93,   94,   27,   65,
 /*   230 */    30,  152,   49,   50,   34,   52,   90,   91,   92,   93,
 /*   240 */    94,   96,   97,   98,   97,   22,  230,   27,   48,  217,
 /*   250 */    27,  172,  173,   70,   71,   72,   73,   74,   75,   76,
 /*   260 */    77,   78,   79,   80,   81,   82,  172,   84,   85,   86,
 /*   270 */    87,   88,   89,   90,   91,   92,   93,   94,   19,  148,
 /*   280 */   149,  152,  218,   24,  152,  154,  207,  156,  172,  152,
 /*   290 */    22,   68,   27,  152,  163,   27,  164,   96,   97,   98,
 /*   300 */    99,  172,  173,  102,  103,  104,  169,  170,   49,   50,
 /*   310 */    90,   88,   89,  152,  113,  186,   96,   97,   98,   96,
 /*   320 */    97,  160,   57,   27,  101,  164,  137,  196,  139,   70,
 /*   330 */    71,   72,   73,   74,   75,   76,   77,   78,   79,   80,
 /*   340 */    81,   82,   11,   84,   85,   86,   87,   88,   89,   90,
 /*   350 */    91,   92,   93,   94,   19,  132,  133,  134,   23,  218,
 /*   360 */   152,   96,   97,   98,   96,   97,   98,  230,   99,   22,
 /*   370 */   152,  102,  103,  104,   27,  244,  152,  152,   27,   26,
 /*   380 */   152,   22,  113,   65,   49,   50,   27,  194,  195,   58,
 /*   390 */   172,  173,   96,   97,   98,  185,   65,  172,  173,  206,
 /*   400 */   172,  173,  190,  191,  186,   70,   71,   72,   73,   74,
 /*   410 */    75,   76,   77,   78,   79,   80,   81,   82,  175,   84,
 /*   420 */    85,   86,   87,   88,   89,   90,   91,   92,   93,   94,
 /*   430 */    19,  175,  207,  208,   23,  207,  208,  119,  120,  108,
 /*   440 */   109,  110,   27,   96,   97,   98,  116,   96,   97,   98,
 /*   450 */   152,  121,  152,  179,  180,   96,   97,   98,  250,  106,
 /*   460 */    49,   50,  188,   19,  221,  222,  223,  168,  169,  170,
 /*   470 */   172,  173,  172,  173,  250,  124,  172,  221,  222,  223,
 /*   480 */    26,   70,   71,   72,   73,   74,   75,   76,   77,   78,
 /*   490 */    79,   80,   81,   82,   50,   84,   85,   86,   87,   88,
 /*   500 */    89,   90,   91,   92,   93,   94,   19,  207,  208,   12,
 /*   510 */    23,   96,   97,   98,  221,  222,  223,  194,  195,  152,
 /*   520 */   199,   23,   19,  225,   26,   28,  152,  152,  152,  206,
 /*   530 */   209,  164,  190,  191,  241,  152,   49,   50,  152,  124,
 /*   540 */   152,   44,  219,   46,  152,   21,  172,  173,  172,  173,
 /*   550 */   183,  107,  185,   16,  163,   58,  112,   70,   71,   72,
 /*   560 */    73,   74,   75,   76,   77,   78,   79,   80,   81,   82,
 /*   570 */   152,   84,   85,   86,   87,   88,   89,   90,   91,   92,
 /*   580 */    93,   94,   19,  207,  130,  152,   23,  196,   64,  152,
 /*   590 */   172,  173,   22,  152,   24,  152,   98,   27,   61,   96,
 /*   600 */    63,   26,  211,  212,  186,  172,  173,   49,   50,  172,
 /*   610 */   173,   23,   49,   50,   26,  172,  173,   88,   89,  186,
 /*   620 */    24,  238,  124,   27,  238,   22,   23,  103,  187,   26,
 /*   630 */   152,   73,   74,   70,   71,   72,   73,   74,   75,   76,
 /*   640 */    77,   78,   79,   80,   81,   82,  152,   84,   85,   86,
 /*   650 */    87,   88,   89,   90,   91,   92,   93,   94,   19,  101,
 /*   660 */   152,  132,   23,  134,  140,  152,   12,   97,   36,  168,
 /*   670 */   169,  170,   69,   98,  152,   22,   23,  140,   50,   26,
 /*   680 */   172,  173,   28,   51,  152,  172,  173,  193,   49,   50,
 /*   690 */    22,   59,   24,   97,  172,  173,  152,  152,   44,  124,
 /*   700 */    46,    0,    1,    2,  172,  173,   22,   23,   19,   70,
 /*   710 */    71,   72,   73,   74,   75,   76,   77,   78,   79,   80,
 /*   720 */    81,   82,   69,   84,   85,   86,   87,   88,   89,   90,
 /*   730 */    91,   92,   93,   94,  152,  107,  152,  193,   49,   50,
 /*   740 */   181,   22,   23,  111,  108,  109,  110,    7,    8,    9,
 /*   750 */    16,  247,  248,   69,  172,  173,  172,  173,  152,   70,
 /*   760 */    71,   72,   73,   74,   75,   76,   77,   78,   79,   80,
 /*   770 */    81,   82,  152,   84,   85,   86,   87,   88,   89,   90,
 /*   780 */    91,   92,   93,   94,   19,  152,  242,  152,   69,  152,
 /*   790 */   166,  167,  172,  173,   32,   61,  152,   63,  152,  193,
 /*   800 */   152,  152,  152,   41,  152,  172,  173,  172,  173,  172,
 /*   810 */   173,  152,  152,  152,   49,   50,  172,  173,  172,  173,
 /*   820 */   172,  173,  172,  173,  172,  173,  132,  138,  134,  152,
 /*   830 */   152,  172,  173,  172,  173,   70,   71,   72,   73,   74,
 /*   840 */    75,   76,   77,   78,   79,   80,   81,   82,  152,   84,
 /*   850 */    85,   86,   87,   88,   89,   90,   91,   92,   93,   94,
 /*   860 */    19,  152,   22,  152,  195,   24,  152,   27,  172,  173,
 /*   870 */   193,  193,  152,  152,  152,  206,  152,  217,  152,  152,
 /*   880 */   152,  172,  173,  172,  173,  152,  172,  173,  152,  152,
 /*   890 */    49,   50,  172,  173,  172,  173,  172,  173,  172,  173,
 /*   900 */   172,  173,  152,  138,  152,  172,  173,  108,  109,  110,
 /*   910 */    19,   70,   71,   72,   73,   74,   75,   76,   77,   78,
 /*   920 */    79,   80,   81,   82,  152,   84,   85,   86,   87,   88,
 /*   930 */    89,   90,   91,   92,   93,   94,  152,   97,  152,  152,
 /*   940 */    49,   50,   26,  193,  172,  173,  152,  152,  152,  146,
 /*   950 */   147,  132,  152,  134,  217,  181,  172,  173,  172,  173,
 /*   960 */    19,   70,   71,   72,   73,   74,   75,   76,   77,   78,
 /*   970 */    79,   80,   81,   82,  152,   84,   85,   86,   87,   88,
 /*   980 */    89,   90,   91,   92,   93,   94,  152,  193,  152,  193,
 /*   990 */    49,   50,  181,  193,  172,  173,  166,  167,  245,  246,
 /*  1000 */   211,  212,  152,   22,  217,  152,  172,  173,  172,  173,
 /*  1010 */    19,   70,   71,   72,   73,   74,   75,   76,   77,   78,
 /*  1020 */    79,   80,   81,   82,  152,   84,   85,   86,   87,   88,
 /*  1030 */    89,   90,   91,   92,   93,   94,  152,  187,  152,  123,
 /*  1040 */    49,   50,   23,   23,   23,   26,   26,   26,   23,   23,
 /*  1050 */    23,   26,   26,   26,    7,    8,  172,  173,  172,  173,
 /*  1060 */    19,   90,   71,   72,   73,   74,   75,   76,   77,   78,
 /*  1070 */    79,   80,   81,   82,  152,   84,   85,   86,   87,   88,
 /*  1080 */    89,   90,   91,   92,   93,   94,  152,  116,  152,  217,
 /*  1090 */    49,   50,  121,   23,  172,  173,   26,  100,  101,   27,
 /*  1100 */   101,   27,   23,  122,  152,   26,  172,  173,  172,  173,
 /*  1110 */   152,  112,  163,   72,   73,   74,   75,   76,   77,   78,
 /*  1120 */    79,   80,   81,   82,  163,   84,   85,   86,   87,   88,
 /*  1130 */    89,   90,   91,   92,   93,   94,   19,   20,  152,   22,
 /*  1140 */    23,  152,  163,   65,   27,  196,  163,   19,   20,   23,
 /*  1150 */    22,  213,   26,   19,   37,   27,  152,  196,  172,  173,
 /*  1160 */   152,  172,  173,   27,   23,   37,  152,   26,  152,   97,
 /*  1170 */   152,   97,  210,   56,  163,  196,  163,  163,  100,  196,
 /*  1180 */   172,  173,   65,  152,   56,   68,  172,  173,  172,  173,
 /*  1190 */   172,  173,  152,   65,  163,  163,   68,   23,  152,  234,
 /*  1200 */    26,  152,  152,  172,  173,   88,   89,  196,  152,  196,
 /*  1210 */   196,  152,   95,   96,   97,   98,   88,   89,  101,  152,
 /*  1220 */   152,  207,  208,   95,   96,   97,   98,  196,  196,  101,
 /*  1230 */    96,  233,  152,   97,  152,  152,   19,   20,  207,   22,
 /*  1240 */   152,  152,  152,  191,   27,  152,  152,  152,  152,  132,
 /*  1250 */   133,  134,  135,  136,   37,  152,  152,  152,  152,  152,
 /*  1260 */   132,  133,  134,  135,  136,  210,  197,  210,  210,  198,
 /*  1270 */   150,  184,  239,   56,  201,  214,  214,  201,  239,  180,
 /*  1280 */   214,  227,  198,   38,  176,   68,  175,  175,  175,  122,
 /*  1290 */   155,  200,  159,   19,   20,   40,   22,  159,  159,   22,
 /*  1300 */    70,   27,  130,  243,  240,   88,   89,   90,  189,   18,
 /*  1310 */   201,   37,   95,   96,   97,   98,  192,    5,  101,  192,
 /*  1320 */   220,  240,   10,   11,   12,   13,   14,  159,   18,   17,
 /*  1330 */    56,  158,  192,  201,  192,  220,  189,  189,  201,  159,
 /*  1340 */   158,  137,   68,   31,   45,   33,  236,  159,  159,  132,
 /*  1350 */   133,  134,  135,  136,   42,  158,  235,   22,  177,  159,
 /*  1360 */   158,  158,   88,   89,  159,  107,  174,   55,  177,   95,
 /*  1370 */    96,   97,   98,  174,   62,  101,   47,   65,   66,  106,
 /*  1380 */   174,  125,   19,   20,  174,   22,  177,  176,  174,  182,
 /*  1390 */    27,  216,  174,  174,  182,  107,  159,   22,  215,  215,
 /*  1400 */    37,  216,  216,  216,  137,  215,  132,  133,  134,  135,
 /*  1410 */   136,  215,  159,  177,   94,  177,  129,  224,  205,   56,
 /*  1420 */   226,  126,  128,  203,  229,  204,  114,  229,  127,  202,
 /*  1430 */   201,   68,   25,  162,   26,   13,  161,  153,  153,    6,
 /*  1440 */   151,  151,  178,  151,  151,  165,  165,  178,  165,    4,
 /*  1450 */   249,   88,   89,  141,    3,  142,   22,  249,   95,   96,
 /*  1460 */    97,   98,  246,   15,  101,   67,   16,   23,  120,   23,
 /*  1470 */   131,  111,  123,   20,   16,  125,    1,  123,  131,   78,
 /*  1480 */    78,   78,   78,  111,   96,    1,  122,   35,    5,   22,
 /*  1490 */   107,  140,   53,   53,   26,  132,  133,  134,  135,  136,
 /*  1500 */    43,   60,  107,   24,  112,   20,   19,   52,   22,   29,
 /*  1510 */   105,   22,   22,   52,   23,   22,   22,   52,   23,   23,
 /*  1520 */    39,   23,  116,   26,   22,   26,   23,   22,   96,   23,
 /*  1530 */    23,  122,   22,   24,  124,   35,   35,   26,   26,   35,
 /*  1540 */    23,   23,   23,   23,   11,   23,   22,   26,   23,   22,
 /*  1550 */   122,   23,   26,   22,   24,   23,   22,  122,   23,   23,
 /*  1560 */    22,   15,   23,    1,  122,  122,
};
#define YY_SHIFT_USE_DFLT (1566)
#define YY_SHIFT_COUNT    (455)
#define YY_SHIFT_MIN      (-114)
#define YY_SHIFT_MAX      (1562)
static const short yy_shift_ofst[] = {
 /*     0 */     5, 1117, 1312, 1128, 1274, 1274, 1274, 1274,   61,  -19,
 /*    10 */    57,   57,  183, 1274, 1274, 1274, 1274, 1274, 1274, 1274,
 /*    20 */    66,   66,  201,  -29,  331,  318,  133,  259,  335,  411,
 /*    30 */   487,  563,  639,  689,  765,  841,  891,  891,  891,  891,
 /*    40 */   891,  891,  891,  891,  891,  891,  891,  891,  891,  891,
 /*    50 */   891,  891,  891,  941,  891,  991, 1041, 1041, 1217, 1274,
 /*    60 */  1274, 1274, 1274, 1274, 1274, 1274, 1274, 1274, 1274, 1274,
 /*    70 */  1274, 1274, 1274, 1274, 1274, 1274, 1274, 1274, 1274, 1274,
 /*    80 */  1274, 1274, 1274, 1274, 1274, 1274, 1274, 1274, 1274, 1274,
 /*    90 */  1363, 1274, 1274, 1274, 1274, 1274, 1274, 1274, 1274, 1274,
 /*   100 */  1274, 1274, 1274, 1274,  -70,  -47,  -47,  -47,  -47,  -47,
 /*   110 */    24,   11,  146,  296,  524,  444,  529,  529,  296,    3,
 /*   120 */     2,  -30, 1566, 1566, 1566,  -17,  -17,  -17,  145,  145,
 /*   130 */   497,  497,  265,  603,  653,  296,  296,  296,  296,  296,
 /*   140 */   296,  296,  296,  296,  296,  296,  296,  296,  296,  296,
 /*   150 */   296,  296,  296,  296,  296,  701, 1078,  147,  147,    2,
 /*   160 */   164,  164,  164,  164,  164,  164, 1566, 1566, 1566,  223,
 /*   170 */    56,   56,  268,  269,  220,  347,  351,  415,  359,  296,
 /*   180 */   296,  296,  296,  296,  296,  296,  296,  296,  296,  296,
 /*   190 */   296,  296,  296,  296,  296,  632,  632,  632,  296,  296,
 /*   200 */   498,  296,  296,  296,  570,  296,  296,  654,  296,  296,
 /*   210 */   296,  296,  296,  296,  296,  296,  296,  296,  636,  200,
 /*   220 */   596,  596,  596,  575, -114,  971,  740,  454,  503,  503,
 /*   230 */  1134,  454, 1134,  353,  588,  628,  762,  503,  189,  762,
 /*   240 */   762,  916,  330,  668, 1245, 1167, 1167, 1255, 1255, 1167,
 /*   250 */  1277, 1230, 1172, 1291, 1291, 1291, 1291, 1167, 1310, 1172,
 /*   260 */  1277, 1230, 1230, 1172, 1167, 1310, 1204, 1299, 1167, 1167,
 /*   270 */  1310, 1335, 1167, 1310, 1167, 1310, 1335, 1258, 1258, 1258,
 /*   280 */  1329, 1335, 1258, 1273, 1258, 1329, 1258, 1258, 1256, 1288,
 /*   290 */  1256, 1288, 1256, 1288, 1256, 1288, 1167, 1375, 1167, 1267,
 /*   300 */  1335, 1320, 1320, 1335, 1287, 1295, 1294, 1301, 1172, 1407,
 /*   310 */  1408, 1422, 1422, 1433, 1433, 1433, 1433, 1566, 1566, 1566,
 /*   320 */  1566, 1566, 1566, 1566, 1566,  558,  537,  684,  719,  734,
 /*   330 */   799,  840, 1019,   14, 1020, 1021, 1025, 1026, 1027, 1070,
 /*   340 */  1072,  997, 1047,  999, 1079, 1126, 1074, 1141,  694,  819,
 /*   350 */  1174, 1136,  981, 1445, 1451, 1434, 1313, 1448, 1398, 1450,
 /*   360 */  1444, 1446, 1348, 1339, 1360, 1349, 1453, 1350, 1458, 1475,
 /*   370 */  1354, 1347, 1401, 1402, 1403, 1404, 1372, 1388, 1452, 1364,
 /*   380 */  1484, 1483, 1467, 1383, 1351, 1439, 1468, 1440, 1441, 1457,
 /*   390 */  1395, 1479, 1485, 1487, 1392, 1405, 1486, 1455, 1489, 1490,
 /*   400 */  1491, 1493, 1461, 1480, 1494, 1465, 1481, 1495, 1496, 1498,
 /*   410 */  1497, 1406, 1502, 1503, 1505, 1499, 1409, 1506, 1507, 1432,
 /*   420 */  1500, 1510, 1410, 1511, 1501, 1512, 1504, 1517, 1511, 1518,
 /*   430 */  1519, 1520, 1521, 1522, 1524, 1533, 1525, 1527, 1509, 1526,
 /*   440 */  1528, 1531, 1530, 1526, 1532, 1534, 1535, 1536, 1538, 1428,
 /*   450 */  1435, 1442, 1443, 1539, 1546, 1562,
};
#define YY_REDUCE_USE_DFLT (-174)
#define YY_REDUCE_COUNT (324)
#define YY_REDUCE_MIN   (-173)
#define YY_REDUCE_MAX   (1293)
static const short yy_reduce_ofst[] = {
 /*     0 */  -119, 1014,  131, 1031,  -12,  225,  228,  300,  -40,  -45,
 /*    10 */   243,  256,  293,  129,  218,  418,   79,  376,  433,  298,
 /*    20 */    16,  137,  367,  323,  -38,  391, -173, -173, -173, -173,
 /*    30 */  -173, -173, -173, -173, -173, -173, -173, -173, -173, -173,
 /*    40 */  -173, -173, -173, -173, -173, -173, -173, -173, -173, -173,
 /*    50 */  -173, -173, -173, -173, -173, -173, -173, -173,  374,  437,
 /*    60 */   443,  508,  513,  522,  532,  582,  584,  620,  633,  635,
 /*    70 */   637,  644,  646,  648,  650,  652,  659,  661,  696,  709,
 /*    80 */   711,  714,  720,  722,  724,  726,  728,  733,  772,  784,
 /*    90 */   786,  822,  834,  836,  884,  886,  922,  934,  936,  986,
 /*   100 */   989, 1008, 1016, 1018, -173, -173, -173, -173, -173, -173,
 /*   110 */  -173, -173, -173,  544,  -37,  274,  299,  501,  161, -173,
 /*   120 */   193, -173, -173, -173, -173,   22,   22,   22,   64,  141,
 /*   130 */   212,  342,  208,  504,  504,  132,  494,  606,  677,  678,
 /*   140 */   750,  794,  796,  -58,   32,  383,  660,  737,  386,  787,
 /*   150 */   800,  441,  872,  224,  850,  803,  949,  624,  830,  669,
 /*   160 */   961,  979,  983, 1011, 1013, 1032,  753,  789,  321,   94,
 /*   170 */   116,  304,  375,  210,  388,  392,  478,  545,  649,  721,
 /*   180 */   727,  736,  752,  795,  853,  952,  958, 1004, 1040, 1046,
 /*   190 */  1049, 1050, 1056, 1059, 1067,  559,  774,  811, 1068, 1080,
 /*   200 */   938, 1082, 1083, 1088,  962, 1089, 1090, 1052, 1093, 1094,
 /*   210 */  1095,  388, 1096, 1103, 1104, 1105, 1106, 1107,  965,  998,
 /*   220 */  1055, 1057, 1058,  938, 1069, 1071, 1120, 1073, 1061, 1062,
 /*   230 */  1033, 1076, 1039, 1108, 1087, 1099, 1111, 1066, 1054, 1112,
 /*   240 */  1113, 1091, 1084, 1135, 1060, 1133, 1138, 1064, 1081, 1139,
 /*   250 */  1100, 1119, 1109, 1124, 1127, 1140, 1142, 1168, 1173, 1132,
 /*   260 */  1115, 1147, 1148, 1137, 1180, 1182, 1110, 1121, 1188, 1189,
 /*   270 */  1197, 1181, 1200, 1202, 1205, 1203, 1191, 1192, 1199, 1206,
 /*   280 */  1207, 1209, 1210, 1211, 1214, 1212, 1218, 1219, 1175, 1183,
 /*   290 */  1185, 1184, 1186, 1190, 1187, 1196, 1237, 1193, 1253, 1194,
 /*   300 */  1236, 1195, 1198, 1238, 1213, 1221, 1220, 1227, 1229, 1271,
 /*   310 */  1275, 1284, 1285, 1289, 1290, 1292, 1293, 1201, 1208, 1216,
 /*   320 */  1280, 1281, 1264, 1269, 1283,
};
static const YYACTIONTYPE yy_default[] = {
 /*     0 */  1280, 1270, 1270, 1270, 1202, 1202, 1202, 1202, 1270, 1096,
 /*    10 */  1125, 1125, 1254, 1332, 1332, 1332, 1332, 1332, 1332, 1201,
 /*    20 */  1332, 1332, 1332, 1332, 1270, 1100, 1131, 1332, 1332, 1332,
 /*    30 */  1332, 1203, 1204, 1332, 1332, 1332, 1253, 1255, 1141, 1140,
 /*    40 */  1139, 1138, 1236, 1112, 1136, 1129, 1133, 1203, 1197, 1198,
135698
135699
135700
135701
135702
135703
135704
135705
135706
135707
135708
135709
135710
135711
135712
135713
135714
135715
135716
135717
135718
135719
135720
135721
135722
135723
135724
135725
135726
135727
135728
135729
135730
135731
135732
135733
135734
135735
135736
135737
135738
135739
135740
135741
135742
135743
135744
135745
135746
135747
135748
135749
135750
135751
135752
135753
135754
135755
135756
135757
135758
135759
135760
135761
135762
135763
135764
135765
135766
135767
135768
135769
135770
135771
135772
135773
135774
135775
135776
135777
135778
135779
135780


135781
135782
135783
135784
135785
135786
135787
135788
135789
135790
135791
135792
135793
135794
135795
135796
135797
135798
135799
135800
135801
135802
135803
135804
135805
** to revert to identifiers if they keyword does not apply in the context where
** it appears.
*/
#ifdef YYFALLBACK
static const YYCODETYPE yyFallback[] = {
    0,  /*          $ => nothing */
    0,  /*       SEMI => nothing */
   55,  /*    EXPLAIN => ID */
   55,  /*      QUERY => ID */
   55,  /*       PLAN => ID */
   55,  /*      BEGIN => ID */
    0,  /* TRANSACTION => nothing */
   55,  /*   DEFERRED => ID */
   55,  /*  IMMEDIATE => ID */
   55,  /*  EXCLUSIVE => ID */
    0,  /*     COMMIT => nothing */
   55,  /*        END => ID */
   55,  /*   ROLLBACK => ID */
   55,  /*  SAVEPOINT => ID */
   55,  /*    RELEASE => ID */
    0,  /*         TO => nothing */
    0,  /*      TABLE => nothing */
    0,  /*     CREATE => nothing */
   55,  /*         IF => ID */
    0,  /*        NOT => nothing */
    0,  /*     EXISTS => nothing */
   55,  /*       TEMP => ID */
    0,  /*         LP => nothing */
    0,  /*         RP => nothing */
    0,  /*         AS => nothing */
   55,  /*    WITHOUT => ID */
    0,  /*      COMMA => nothing */
    0,  /*         OR => nothing */
    0,  /*        AND => nothing */
    0,  /*         IS => nothing */
   55,  /*      MATCH => ID */
   55,  /*    LIKE_KW => ID */
    0,  /*    BETWEEN => nothing */
    0,  /*         IN => nothing */
    0,  /*     ISNULL => nothing */
    0,  /*    NOTNULL => nothing */
    0,  /*         NE => nothing */
    0,  /*         EQ => nothing */
    0,  /*         GT => nothing */
    0,  /*         LE => nothing */
    0,  /*         LT => nothing */
    0,  /*         GE => nothing */
    0,  /*     ESCAPE => nothing */
    0,  /*     BITAND => nothing */
    0,  /*      BITOR => nothing */
    0,  /*     LSHIFT => nothing */
    0,  /*     RSHIFT => nothing */
    0,  /*       PLUS => nothing */
    0,  /*      MINUS => nothing */
    0,  /*       STAR => nothing */
    0,  /*      SLASH => nothing */
    0,  /*        REM => nothing */
    0,  /*     CONCAT => nothing */
    0,  /*    COLLATE => nothing */
    0,  /*     BITNOT => nothing */
    0,  /*         ID => nothing */
    0,  /*    INDEXED => nothing */
   55,  /*      ABORT => ID */
   55,  /*     ACTION => ID */
   55,  /*      AFTER => ID */
   55,  /*    ANALYZE => ID */
   55,  /*        ASC => ID */
   55,  /*     ATTACH => ID */
   55,  /*     BEFORE => ID */
   55,  /*         BY => ID */
   55,  /*    CASCADE => ID */
   55,  /*       CAST => ID */
   55,  /*   COLUMNKW => ID */
   55,  /*   CONFLICT => ID */
   55,  /*   DATABASE => ID */
   55,  /*       DESC => ID */
   55,  /*     DETACH => ID */
   55,  /*       EACH => ID */
   55,  /*       FAIL => ID */
   55,  /*        FOR => ID */
   55,  /*     IGNORE => ID */
   55,  /*  INITIALLY => ID */
   55,  /*    INSTEAD => ID */


   55,  /*         NO => ID */
   55,  /*        KEY => ID */
   55,  /*         OF => ID */
   55,  /*     OFFSET => ID */
   55,  /*     PRAGMA => ID */
   55,  /*      RAISE => ID */
   55,  /*  RECURSIVE => ID */
   55,  /*    REPLACE => ID */
   55,  /*   RESTRICT => ID */
   55,  /*        ROW => ID */
   55,  /*    TRIGGER => ID */
   55,  /*     VACUUM => ID */
   55,  /*       VIEW => ID */
   55,  /*    VIRTUAL => ID */
   55,  /*       WITH => ID */
   55,  /*    REINDEX => ID */
   55,  /*     RENAME => ID */
   55,  /*   CTIME_KW => ID */
};
#endif /* YYFALLBACK */

/* The following structure represents a single element of the
** parser's stack.  Information stored includes:
**
**   +  The state number for the parser at this level of the stack.







|
|
|
|

|
|
|

|
|
|
|



|


|



|

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







136264
136265
136266
136267
136268
136269
136270
136271
136272
136273
136274
136275
136276
136277
136278
136279
136280
136281
136282
136283
136284
136285
136286
136287
136288
136289
136290
136291
136292
136293
136294
136295




























136296

136297
136298
136299
136300
136301
136302
136303
136304
136305
136306
136307
136308
136309
136310
136311
136312
136313
136314
136315
136316
136317
136318
136319
136320
136321
136322
136323
136324
136325
136326
136327
136328
136329
136330
136331
136332
136333
136334
136335
136336
136337
136338
136339
136340
136341
136342
136343
136344
** to revert to identifiers if they keyword does not apply in the context where
** it appears.
*/
#ifdef YYFALLBACK
static const YYCODETYPE yyFallback[] = {
    0,  /*          $ => nothing */
    0,  /*       SEMI => nothing */
   27,  /*    EXPLAIN => ID */
   27,  /*      QUERY => ID */
   27,  /*       PLAN => ID */
   27,  /*      BEGIN => ID */
    0,  /* TRANSACTION => nothing */
   27,  /*   DEFERRED => ID */
   27,  /*  IMMEDIATE => ID */
   27,  /*  EXCLUSIVE => ID */
    0,  /*     COMMIT => nothing */
   27,  /*        END => ID */
   27,  /*   ROLLBACK => ID */
   27,  /*  SAVEPOINT => ID */
   27,  /*    RELEASE => ID */
    0,  /*         TO => nothing */
    0,  /*      TABLE => nothing */
    0,  /*     CREATE => nothing */
   27,  /*         IF => ID */
    0,  /*        NOT => nothing */
    0,  /*     EXISTS => nothing */
   27,  /*       TEMP => ID */
    0,  /*         LP => nothing */
    0,  /*         RP => nothing */
    0,  /*         AS => nothing */
   27,  /*    WITHOUT => ID */
    0,  /*      COMMA => nothing */




























    0,  /*         ID => nothing */

   27,  /*      ABORT => ID */
   27,  /*     ACTION => ID */
   27,  /*      AFTER => ID */
   27,  /*    ANALYZE => ID */
   27,  /*        ASC => ID */
   27,  /*     ATTACH => ID */
   27,  /*     BEFORE => ID */
   27,  /*         BY => ID */
   27,  /*    CASCADE => ID */
   27,  /*       CAST => ID */
   27,  /*   COLUMNKW => ID */
   27,  /*   CONFLICT => ID */
   27,  /*   DATABASE => ID */
   27,  /*       DESC => ID */
   27,  /*     DETACH => ID */
   27,  /*       EACH => ID */
   27,  /*       FAIL => ID */
   27,  /*        FOR => ID */
   27,  /*     IGNORE => ID */
   27,  /*  INITIALLY => ID */
   27,  /*    INSTEAD => ID */
   27,  /*    LIKE_KW => ID */
   27,  /*      MATCH => ID */
   27,  /*         NO => ID */
   27,  /*        KEY => ID */
   27,  /*         OF => ID */
   27,  /*     OFFSET => ID */
   27,  /*     PRAGMA => ID */
   27,  /*      RAISE => ID */
   27,  /*  RECURSIVE => ID */
   27,  /*    REPLACE => ID */
   27,  /*   RESTRICT => ID */
   27,  /*        ROW => ID */
   27,  /*    TRIGGER => ID */
   27,  /*     VACUUM => ID */
   27,  /*       VIEW => ID */
   27,  /*    VIRTUAL => ID */
   27,  /*       WITH => ID */
   27,  /*    REINDEX => ID */
   27,  /*     RENAME => ID */
   27,  /*   CTIME_KW => ID */
};
#endif /* YYFALLBACK */

/* The following structure represents a single element of the
** parser's stack.  Information stored includes:
**
**   +  The state number for the parser at this level of the stack.
135883
135884
135885
135886
135887
135888
135889
135890
135891
135892
135893
135894
135895
135896
135897
135898
135899
135900
135901
135902
135903
135904
135905
135906
135907







135908
135909
135910
135911
135912
135913
135914
135915
static const char *const yyTokenName[] = { 
  "$",             "SEMI",          "EXPLAIN",       "QUERY",       
  "PLAN",          "BEGIN",         "TRANSACTION",   "DEFERRED",    
  "IMMEDIATE",     "EXCLUSIVE",     "COMMIT",        "END",         
  "ROLLBACK",      "SAVEPOINT",     "RELEASE",       "TO",          
  "TABLE",         "CREATE",        "IF",            "NOT",         
  "EXISTS",        "TEMP",          "LP",            "RP",          
  "AS",            "WITHOUT",       "COMMA",         "OR",          
  "AND",           "IS",            "MATCH",         "LIKE_KW",     
  "BETWEEN",       "IN",            "ISNULL",        "NOTNULL",     
  "NE",            "EQ",            "GT",            "LE",          
  "LT",            "GE",            "ESCAPE",        "BITAND",      
  "BITOR",         "LSHIFT",        "RSHIFT",        "PLUS",        
  "MINUS",         "STAR",          "SLASH",         "REM",         
  "CONCAT",        "COLLATE",       "BITNOT",        "ID",          
  "INDEXED",       "ABORT",         "ACTION",        "AFTER",       
  "ANALYZE",       "ASC",           "ATTACH",        "BEFORE",      
  "BY",            "CASCADE",       "CAST",          "COLUMNKW",    
  "CONFLICT",      "DATABASE",      "DESC",          "DETACH",      
  "EACH",          "FAIL",          "FOR",           "IGNORE",      
  "INITIALLY",     "INSTEAD",       "NO",            "KEY",         
  "OF",            "OFFSET",        "PRAGMA",        "RAISE",       
  "RECURSIVE",     "REPLACE",       "RESTRICT",      "ROW",         
  "TRIGGER",       "VACUUM",        "VIEW",          "VIRTUAL",     
  "WITH",          "REINDEX",       "RENAME",        "CTIME_KW",    







  "ANY",           "STRING",        "JOIN_KW",       "CONSTRAINT",  
  "DEFAULT",       "NULL",          "PRIMARY",       "UNIQUE",      
  "CHECK",         "REFERENCES",    "AUTOINCR",      "ON",          
  "INSERT",        "DELETE",        "UPDATE",        "SET",         
  "DEFERRABLE",    "FOREIGN",       "DROP",          "UNION",       
  "ALL",           "EXCEPT",        "INTERSECT",     "SELECT",      
  "VALUES",        "DISTINCT",      "DOT",           "FROM",        
  "JOIN",          "USING",         "ORDER",         "GROUP",       







|
<
<
<
<
<
<
<
|
|
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>
|







136422
136423
136424
136425
136426
136427
136428
136429







136430
136431
136432
136433
136434
136435
136436
136437
136438
136439
136440
136441
136442
136443
136444
136445
136446
136447
136448
136449
136450
136451
136452
136453
136454
static const char *const yyTokenName[] = { 
  "$",             "SEMI",          "EXPLAIN",       "QUERY",       
  "PLAN",          "BEGIN",         "TRANSACTION",   "DEFERRED",    
  "IMMEDIATE",     "EXCLUSIVE",     "COMMIT",        "END",         
  "ROLLBACK",      "SAVEPOINT",     "RELEASE",       "TO",          
  "TABLE",         "CREATE",        "IF",            "NOT",         
  "EXISTS",        "TEMP",          "LP",            "RP",          
  "AS",            "WITHOUT",       "COMMA",         "ID",          







  "ABORT",         "ACTION",        "AFTER",         "ANALYZE",     
  "ASC",           "ATTACH",        "BEFORE",        "BY",          
  "CASCADE",       "CAST",          "COLUMNKW",      "CONFLICT",    
  "DATABASE",      "DESC",          "DETACH",        "EACH",        
  "FAIL",          "FOR",           "IGNORE",        "INITIALLY",   
  "INSTEAD",       "LIKE_KW",       "MATCH",         "NO",          
  "KEY",           "OF",            "OFFSET",        "PRAGMA",      
  "RAISE",         "RECURSIVE",     "REPLACE",       "RESTRICT",    
  "ROW",           "TRIGGER",       "VACUUM",        "VIEW",        
  "VIRTUAL",       "WITH",          "REINDEX",       "RENAME",      
  "CTIME_KW",      "ANY",           "OR",            "AND",         
  "IS",            "BETWEEN",       "IN",            "ISNULL",      
  "NOTNULL",       "NE",            "EQ",            "GT",          
  "LE",            "LT",            "GE",            "ESCAPE",      
  "BITAND",        "BITOR",         "LSHIFT",        "RSHIFT",      
  "PLUS",          "MINUS",         "STAR",          "SLASH",       
  "REM",           "CONCAT",        "COLLATE",       "BITNOT",      
  "INDEXED",       "STRING",        "JOIN_KW",       "CONSTRAINT",  
  "DEFAULT",       "NULL",          "PRIMARY",       "UNIQUE",      
  "CHECK",         "REFERENCES",    "AUTOINCR",      "ON",          
  "INSERT",        "DELETE",        "UPDATE",        "SET",         
  "DEFERRABLE",    "FOREIGN",       "DROP",          "UNION",       
  "ALL",           "EXCEPT",        "INTERSECT",     "SELECT",      
  "VALUES",        "DISTINCT",      "DOT",           "FROM",        
  "JOIN",          "USING",         "ORDER",         "GROUP",       
139378
139379
139380
139381
139382
139383
139384
139385
139386
139387
139388
139389
139390
139391
139392
139393
139394
139395
139396
139397
139398
139399
139400
139401
139402
139403
139404
139405
  void *pEngine;                  /* The LEMON-generated LALR(1) parser */
  int n = 0;                      /* Length of the next token token */
  int tokenType;                  /* type of the next token */
  int lastTokenParsed = -1;       /* type of the previous token */
  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
  unsigned char zSpace[sizeof(yyParser)];  /* Space for parser engine object */
#endif

  assert( zSql!=0 );
  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  assert( pzErrMsg!=0 );
  /* sqlite3ParserTrace(stdout, "parser: "); */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
  pEngine = zSpace;
  sqlite3ParserInit(pEngine);
#else
  pEngine = sqlite3ParserAlloc(sqlite3Malloc);
  if( pEngine==0 ){
    sqlite3OomFault(db);
    return SQLITE_NOMEM_BKPT;
  }







|












|







139917
139918
139919
139920
139921
139922
139923
139924
139925
139926
139927
139928
139929
139930
139931
139932
139933
139934
139935
139936
139937
139938
139939
139940
139941
139942
139943
139944
  void *pEngine;                  /* The LEMON-generated LALR(1) parser */
  int n = 0;                      /* Length of the next token token */
  int tokenType;                  /* type of the next token */
  int lastTokenParsed = -1;       /* type of the previous token */
  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
  yyParser sEngine;    /* Space to hold the Lemon-generated Parser object */
#endif

  assert( zSql!=0 );
  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  assert( pzErrMsg!=0 );
  /* sqlite3ParserTrace(stdout, "parser: "); */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
  pEngine = &sEngine;
  sqlite3ParserInit(pEngine);
#else
  pEngine = sqlite3ParserAlloc(sqlite3Malloc);
  if( pEngine==0 ){
    sqlite3OomFault(db);
    return SQLITE_NOMEM_BKPT;
  }
139500
139501
139502
139503
139504
139505
139506
139507
139508
139509
139510
139511
139512
139513
139514

  if( pParse->pWithToFree ) sqlite3WithDelete(db, pParse->pWithToFree);
  sqlite3DeleteTrigger(db, pParse->pNewTrigger);
  sqlite3DbFree(db, pParse->pVList);
  while( pParse->pAinc ){
    AutoincInfo *p = pParse->pAinc;
    pParse->pAinc = p->pNext;
    sqlite3DbFree(db, p);
  }
  while( pParse->pZombieTab ){
    Table *p = pParse->pZombieTab;
    pParse->pZombieTab = p->pNextZombie;
    sqlite3DeleteTable(db, p);
  }
  assert( nErr==0 || pParse->rc!=SQLITE_OK );







|







140039
140040
140041
140042
140043
140044
140045
140046
140047
140048
140049
140050
140051
140052
140053

  if( pParse->pWithToFree ) sqlite3WithDelete(db, pParse->pWithToFree);
  sqlite3DeleteTrigger(db, pParse->pNewTrigger);
  sqlite3DbFree(db, pParse->pVList);
  while( pParse->pAinc ){
    AutoincInfo *p = pParse->pAinc;
    pParse->pAinc = p->pNext;
    sqlite3DbFreeNN(db, p);
  }
  while( pParse->pZombieTab ){
    Table *p = pParse->pZombieTab;
    pParse->pZombieTab = p->pNextZombie;
    sqlite3DeleteTable(db, p);
  }
  assert( nErr==0 || pParse->rc!=SQLITE_OK );
142994
142995
142996
142997
142998
142999
143000

143001
143002
143003
143004
143005
143006
143007
143008
143009


143010
143011
143012
143013
143014
143015
143016
143017
    /* Opening a db handle. Fourth parameter is passed 0. */
    void *pArg = sqlite3GlobalConfig.pSqllogArg;
    sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0);
  }
#endif
#if defined(SQLITE_HAS_CODEC)
  if( rc==SQLITE_OK ){

    const char *zHexKey = sqlite3_uri_parameter(zOpen, "hexkey");
    if( zHexKey && zHexKey[0] ){
      u8 iByte;
      int i;
      char zKey[40];
      for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zHexKey[i]); i++){
        iByte = (iByte<<4) + sqlite3HexToInt(zHexKey[i]);
        if( (i&1)!=0 ) zKey[i/2] = iByte;
      }


      sqlite3_key_v2(db, 0, zKey, i/2);
    }
  }
#endif
  sqlite3_free(zOpen);
  return rc & 0xff;
}








>
|
<


|
|
|
|

>
>
|







143533
143534
143535
143536
143537
143538
143539
143540
143541

143542
143543
143544
143545
143546
143547
143548
143549
143550
143551
143552
143553
143554
143555
143556
143557
143558
    /* Opening a db handle. Fourth parameter is passed 0. */
    void *pArg = sqlite3GlobalConfig.pSqllogArg;
    sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0);
  }
#endif
#if defined(SQLITE_HAS_CODEC)
  if( rc==SQLITE_OK ){
    const char *zKey;
    if( (zKey = sqlite3_uri_parameter(zOpen, "hexkey"))!=0 && zKey[0] ){;

      u8 iByte;
      int i;
      char zDecoded[40];
      for(i=0, iByte=0; i<sizeof(zDecoded)*2 && sqlite3Isxdigit(zKey[i]); i++){
        iByte = (iByte<<4) + sqlite3HexToInt(zKey[i]);
        if( (i&1)!=0 ) zDecoded[i/2] = iByte;
      }
      sqlite3_key_v2(db, 0, zDecoded, i/2);
    }else if( (zKey = sqlite3_uri_parameter(zOpen, "key"))!=0 ){
      sqlite3_key_v2(db, 0, zKey, sqlite3Strlen30(zKey));
    }
  }
#endif
  sqlite3_free(zOpen);
  return rc & 0xff;
}

145608
145609
145610
145611
145612
145613
145614
145615
145616
145617
145618
145619
145620
145621
145622
145623
145624
145625
145626
145627
145628
145629
145630
145631
145632


145633
145634
145635
145636
145637
145638
145639
    if( (c & 0x80)==0 ) break;
  }
  *v = b;
  return (int)(p - pStart);
}

/*
** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a
** 32-bit integer before it is returned.
*/
SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *p, int *pi){
  u32 a;

#ifndef fts3GetVarint32
  GETVARINT_INIT(a, p, 0,  0x00,     0x80, *pi, 1);
#else
  a = (*p++);
  assert( a & 0x80 );
#endif

  GETVARINT_STEP(a, p, 7,  0x7F,     0x4000, *pi, 2);
  GETVARINT_STEP(a, p, 14, 0x3FFF,   0x200000, *pi, 3);
  GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *pi, 4);
  a = (a & 0x0FFFFFFF );
  *pi = (int)(a | ((u32)(*p & 0x0F) << 28));


  return 5;
}

/*
** Return the number of bytes required to encode v as a varint
*/
SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64 v){







|
|















|
>
>







146149
146150
146151
146152
146153
146154
146155
146156
146157
146158
146159
146160
146161
146162
146163
146164
146165
146166
146167
146168
146169
146170
146171
146172
146173
146174
146175
146176
146177
146178
146179
146180
146181
146182
    if( (c & 0x80)==0 ) break;
  }
  *v = b;
  return (int)(p - pStart);
}

/*
** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to 
** a non-negative 32-bit integer before it is returned.
*/
SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *p, int *pi){
  u32 a;

#ifndef fts3GetVarint32
  GETVARINT_INIT(a, p, 0,  0x00,     0x80, *pi, 1);
#else
  a = (*p++);
  assert( a & 0x80 );
#endif

  GETVARINT_STEP(a, p, 7,  0x7F,     0x4000, *pi, 2);
  GETVARINT_STEP(a, p, 14, 0x3FFF,   0x200000, *pi, 3);
  GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *pi, 4);
  a = (a & 0x0FFFFFFF );
  *pi = (int)(a | ((u32)(*p & 0x07) << 28));
  assert( 0==(a & 0x80000000) );
  assert( *pi>=0 );
  return 5;
}

/*
** Return the number of bytes required to encode v as a varint
*/
SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64 v){
146455
146456
146457
146458
146459
146460
146461
146462
146463
146464
146465
146466
146467
146468
146469
146470
146471
146472
146473
146474
146475
146476
146477
146478
146479
146480
146481
146482
146483
146484
146485
146486
146487
146488
146489
146490
146491
146492
146493
146494
146495
146496
146497
146498
146499
146500
146501
146502
146503
146504
146505
146506
146507
146508
146509
146510
146511
146512
146513
146514
146515
146516
146517
146518
146519
146520





146521
146522
146523
146524
146525
146526
146527
      }else{
        for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
          struct Fts4Option *pOp = &aFts4Opt[iOpt];
          if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){
            break;
          }
        }
        if( iOpt==SizeofArray(aFts4Opt) ){
          sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z);
          rc = SQLITE_ERROR;
        }else{
          switch( iOpt ){
            case 0:               /* MATCHINFO */
              if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){
                sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal);
                rc = SQLITE_ERROR;
              }
              bNoDocsize = 1;
              break;

            case 1:               /* PREFIX */
              sqlite3_free(zPrefix);
              zPrefix = zVal;
              zVal = 0;
              break;

            case 2:               /* COMPRESS */
              sqlite3_free(zCompress);
              zCompress = zVal;
              zVal = 0;
              break;

            case 3:               /* UNCOMPRESS */
              sqlite3_free(zUncompress);
              zUncompress = zVal;
              zVal = 0;
              break;

            case 4:               /* ORDER */
              if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3)) 
               && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4)) 
              ){
                sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal);
                rc = SQLITE_ERROR;
              }
              bDescIdx = (zVal[0]=='d' || zVal[0]=='D');
              break;

            case 5:              /* CONTENT */
              sqlite3_free(zContent);
              zContent = zVal;
              zVal = 0;
              break;

            case 6:              /* LANGUAGEID */
              assert( iOpt==6 );
              sqlite3_free(zLanguageid);
              zLanguageid = zVal;
              zVal = 0;
              break;

            case 7:              /* NOTINDEXED */
              azNotindexed[nNotindexed++] = zVal;
              zVal = 0;
              break;
          }





        }
        sqlite3_free(zVal);
      }
    }

    /* Otherwise, the argument is a column name. */
    else {







<
<
<
<
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
>
>
>
>
>







146998
146999
147000
147001
147002
147003
147004




147005
147006
147007
147008
147009
147010
147011
147012
147013
147014
147015
147016
147017
147018
147019
147020
147021
147022
147023
147024
147025
147026
147027
147028
147029
147030
147031
147032
147033
147034
147035
147036
147037
147038
147039
147040
147041
147042
147043
147044
147045
147046
147047
147048
147049
147050
147051
147052
147053
147054
147055
147056
147057
147058
147059
147060
147061
147062
147063
147064
147065
147066
147067
147068
147069
147070
147071
      }else{
        for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
          struct Fts4Option *pOp = &aFts4Opt[iOpt];
          if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){
            break;
          }
        }




        switch( iOpt ){
          case 0:               /* MATCHINFO */
            if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){
              sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal);
              rc = SQLITE_ERROR;
            }
            bNoDocsize = 1;
            break;

          case 1:               /* PREFIX */
            sqlite3_free(zPrefix);
            zPrefix = zVal;
            zVal = 0;
            break;

          case 2:               /* COMPRESS */
            sqlite3_free(zCompress);
            zCompress = zVal;
            zVal = 0;
            break;

          case 3:               /* UNCOMPRESS */
            sqlite3_free(zUncompress);
            zUncompress = zVal;
            zVal = 0;
            break;

          case 4:               /* ORDER */
            if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3)) 
             && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4)) 
            ){
              sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal);
              rc = SQLITE_ERROR;
            }
            bDescIdx = (zVal[0]=='d' || zVal[0]=='D');
            break;

          case 5:              /* CONTENT */
            sqlite3_free(zContent);
            zContent = zVal;
            zVal = 0;
            break;

          case 6:              /* LANGUAGEID */
            assert( iOpt==6 );
            sqlite3_free(zLanguageid);
            zLanguageid = zVal;
            zVal = 0;
            break;

          case 7:              /* NOTINDEXED */
            azNotindexed[nNotindexed++] = zVal;
            zVal = 0;
            break;

          default:
            assert( iOpt==SizeofArray(aFts4Opt) );
            sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z);
            rc = SQLITE_ERROR;
            break;
        }
        sqlite3_free(zVal);
      }
    }

    /* Otherwise, the argument is a column name. */
    else {
147082
147083
147084
147085
147086
147087
147088

147089
147090
147091
147092
147093
147094
147095
147096
    ** the size of zBuffer if required.  */
    if( !isFirstTerm ){
      zCsr += fts3GetVarint32(zCsr, &nPrefix);
    }
    isFirstTerm = 0;
    zCsr += fts3GetVarint32(zCsr, &nSuffix);
    

    if( nPrefix<0 || nSuffix<0 || &zCsr[nSuffix]>zEnd ){
      rc = FTS_CORRUPT_VTAB;
      goto finish_scan;
    }
    if( nPrefix+nSuffix>nAlloc ){
      char *zNew;
      nAlloc = (nPrefix+nSuffix) * 2;
      zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);







>
|







147626
147627
147628
147629
147630
147631
147632
147633
147634
147635
147636
147637
147638
147639
147640
147641
    ** the size of zBuffer if required.  */
    if( !isFirstTerm ){
      zCsr += fts3GetVarint32(zCsr, &nPrefix);
    }
    isFirstTerm = 0;
    zCsr += fts3GetVarint32(zCsr, &nSuffix);
    
    assert( nPrefix>=0 && nSuffix>=0 );
    if( &zCsr[nSuffix]>zEnd ){
      rc = FTS_CORRUPT_VTAB;
      goto finish_scan;
    }
    if( nPrefix+nSuffix>nAlloc ){
      char *zNew;
      nAlloc = (nPrefix+nSuffix) * 2;
      zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
147892
147893
147894
147895
147896
147897
147898
147899
147900
147901
147902
147903
147904
147905
147906
      nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
      pOut[nOut++] = 0x02;
      bWritten = 1;
    }
    fts3ColumnlistCopy(0, &p);
  }

  while( p<pEnd && *p==0x01 ){
    sqlite3_int64 iCol;
    p++;
    p += sqlite3Fts3GetVarint(p, &iCol);
    if( *p==0x02 ){
      if( bWritten==0 ){
        nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
        bWritten = 1;







|







148437
148438
148439
148440
148441
148442
148443
148444
148445
148446
148447
148448
148449
148450
148451
      nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
      pOut[nOut++] = 0x02;
      bWritten = 1;
    }
    fts3ColumnlistCopy(0, &p);
  }

  while( p<pEnd ){
    sqlite3_int64 iCol;
    p++;
    p += sqlite3Fts3GetVarint(p, &iCol);
    if( *p==0x02 ){
      if( bWritten==0 ){
        nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
        bWritten = 1;
148572
148573
148574
148575
148576
148577
148578
148579
148580
148581



148582


148583

148584
148585
148586
148587
148588
148589




148590
148591
148592
148593

148594
148595
148596
148597
148598
148599
148600
148601



148602
148603
148604
148605

148606
148607
148608
148609
148610
148611
148612
  int rc = SQLITE_OK;             /* Return Code */
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  Fts3Table *p = (Fts3Table *)pCursor->pVtab;

  /* The column value supplied by SQLite must be in range. */
  assert( iCol>=0 && iCol<=p->nColumn+2 );

  if( iCol==p->nColumn+1 ){
    /* This call is a request for the "docid" column. Since "docid" is an 
    ** alias for "rowid", use the xRowid() method to obtain the value.



    */


    sqlite3_result_int64(pCtx, pCsr->iPrevId);

  }else if( iCol==p->nColumn ){
    /* The extra column whose name is the same as the table.
    ** Return a blob which is a pointer to the cursor.  */
    sqlite3_result_blob(pCtx, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);
  }else if( iCol==p->nColumn+2 && pCsr->pExpr ){
    sqlite3_result_int64(pCtx, pCsr->iLangid);




  }else{
    /* The requested column is either a user column (one that contains 
    ** indexed data), or the language-id column.  */
    rc = fts3CursorSeek(0, pCsr);


    if( rc==SQLITE_OK ){
      if( iCol==p->nColumn+2 ){
        int iLangid = 0;
        if( p->zLanguageid ){
          iLangid = sqlite3_column_int(pCsr->pStmt, p->nColumn+1);
        }
        sqlite3_result_int(pCtx, iLangid);



      }else if( sqlite3_data_count(pCsr->pStmt)>(iCol+1) ){
        sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
      }
    }

  }

  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  return rc;
}

/* 







|
|
|
>
>
>
|
>
>
|
>
|
|
<
<
|
|
>
>
>
>
|
<
|
<
>
|
<
<
<
<
<
|
|
>
>
>
|


<
>







149117
149118
149119
149120
149121
149122
149123
149124
149125
149126
149127
149128
149129
149130
149131
149132
149133
149134
149135
149136


149137
149138
149139
149140
149141
149142
149143

149144

149145
149146





149147
149148
149149
149150
149151
149152
149153
149154

149155
149156
149157
149158
149159
149160
149161
149162
  int rc = SQLITE_OK;             /* Return Code */
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  Fts3Table *p = (Fts3Table *)pCursor->pVtab;

  /* The column value supplied by SQLite must be in range. */
  assert( iCol>=0 && iCol<=p->nColumn+2 );

  switch( iCol-p->nColumn ){
    case 0:
      /* The special 'table-name' column */
      sqlite3_result_blob(pCtx, &pCsr, sizeof(Fts3Cursor*), SQLITE_TRANSIENT);
      sqlite3_result_subtype(pCtx, SQLITE_BLOB);
      break;

    case 1:
      /* The docid column */
      sqlite3_result_int64(pCtx, pCsr->iPrevId);
      break;

    case 2:


      if( pCsr->pExpr ){
        sqlite3_result_int64(pCtx, pCsr->iLangid);
        break;
      }else if( p->zLanguageid==0 ){
        sqlite3_result_int(pCtx, 0);
        break;
      }else{

        iCol = p->nColumn;

        /* fall-through */
      }






    default:
      /* A user column. Or, if this is a full-table scan, possibly the
      ** language-id column. Seek the cursor. */
      rc = fts3CursorSeek(0, pCsr);
      if( rc==SQLITE_OK && sqlite3_data_count(pCsr->pStmt)-1>iCol ){
        sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
      }

      break;
  }

  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  return rc;
}

/* 
148678
148679
148680
148681
148682
148683
148684
148685
148686
148687
148688
148689
148690
148691
148692
148693
148694
148695

148696
148697
148698
148699
148700
148701
148702
** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
** if an error occurs.
*/
static int fts3SetHasStat(Fts3Table *p){
  int rc = SQLITE_OK;
  if( p->bHasStat==2 ){
    const char *zFmt ="SELECT 1 FROM %Q.sqlite_master WHERE tbl_name='%q_stat'";
    char *zSql = sqlite3_mprintf(zFmt, p->zDb, p->zName);
    if( zSql ){
      sqlite3_stmt *pStmt = 0;
      rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
      if( rc==SQLITE_OK ){
        int bHasStat = (sqlite3_step(pStmt)==SQLITE_ROW);
        rc = sqlite3_finalize(pStmt);
        if( rc==SQLITE_OK ) p->bHasStat = (u8)bHasStat;
      }
      sqlite3_free(zSql);

    }else{
      rc = SQLITE_NOMEM;
    }
  }
  return rc;
}








<
|
|
<
<
<
<
|
<
<
|
>







149228
149229
149230
149231
149232
149233
149234

149235
149236




149237


149238
149239
149240
149241
149242
149243
149244
149245
149246
** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
** if an error occurs.
*/
static int fts3SetHasStat(Fts3Table *p){
  int rc = SQLITE_OK;
  if( p->bHasStat==2 ){

    char *zTbl = sqlite3_mprintf("%s_stat", p->zName);
    if( zTbl ){




      int res = sqlite3_table_column_metadata(p->db, p->zDb, zTbl, 0,0,0,0,0,0);


      sqlite3_free(zTbl);
      p->bHasStat = (res==SQLITE_OK);
    }else{
      rc = SQLITE_NOMEM;
    }
  }
  return rc;
}

148795
148796
148797
148798
148799
148800
148801
148802
148803
148804
148805

148806
148807
148808
148809
148810
148811
148812
148813
148814
148815
148816
148817
148818
148819
148820
*/
static int fts3FunctionArg(
  sqlite3_context *pContext,      /* SQL function call context */
  const char *zFunc,              /* Function name */
  sqlite3_value *pVal,            /* argv[0] passed to function */
  Fts3Cursor **ppCsr              /* OUT: Store cursor handle here */
){
  Fts3Cursor *pRet;
  if( sqlite3_value_type(pVal)!=SQLITE_BLOB 
   || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *)
  ){

    char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
    sqlite3_result_error(pContext, zErr, -1);
    sqlite3_free(zErr);
    return SQLITE_ERROR;
  }
  memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *));
  *ppCsr = pRet;
  return SQLITE_OK;
}

/*
** Implementation of the snippet() function for FTS3
*/
static void fts3SnippetFunc(
  sqlite3_context *pContext,      /* SQLite function call context */







|
|
|
<
>



|

<
<
|







149339
149340
149341
149342
149343
149344
149345
149346
149347
149348

149349
149350
149351
149352
149353
149354


149355
149356
149357
149358
149359
149360
149361
149362
*/
static int fts3FunctionArg(
  sqlite3_context *pContext,      /* SQL function call context */
  const char *zFunc,              /* Function name */
  sqlite3_value *pVal,            /* argv[0] passed to function */
  Fts3Cursor **ppCsr              /* OUT: Store cursor handle here */
){
  int rc = SQLITE_OK;
  if( sqlite3_value_subtype(pVal)==SQLITE_BLOB ){
    *ppCsr = *(Fts3Cursor**)sqlite3_value_blob(pVal);

  }else{
    char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
    sqlite3_result_error(pContext, zErr, -1);
    sqlite3_free(zErr);
    rc = SQLITE_ERROR;
  }


  return rc;
}

/*
** Implementation of the snippet() function for FTS3
*/
static void fts3SnippetFunc(
  sqlite3_context *pContext,      /* SQLite function call context */
149193
149194
149195
149196
149197
149198
149199
149200
149201
149202
149203
149204
149205
149206
149207
#ifdef SQLITE_TEST
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3ExprInitTestInterface(db);
  }
#endif

  /* Create the virtual table wrapper around the hash-table and overload 
  ** the two scalar functions. If this is successful, register the
  ** module with sqlite.
  */
  if( SQLITE_OK==rc 
   && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
   && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
   && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
   && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))







|







149735
149736
149737
149738
149739
149740
149741
149742
149743
149744
149745
149746
149747
149748
149749
#ifdef SQLITE_TEST
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3ExprInitTestInterface(db);
  }
#endif

  /* Create the virtual table wrapper around the hash-table and overload 
  ** the four scalar functions. If this is successful, register the
  ** module with sqlite.
  */
  if( SQLITE_OK==rc 
   && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
   && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
   && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
   && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
149776
149777
149778
149779
149780
149781
149782
149783
149784
149785
149786
149787
149788
149789
149790
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  u8 bEof = 0;

  /* This is only called if it is guaranteed that the phrase has at least
  ** one incremental token. In which case the bIncr flag is set. */
  assert( p->bIncr==1 );

  if( p->nToken==1 && p->bIncr ){
    rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr, 
        &pDL->iDocid, &pDL->pList, &pDL->nList
    );
    if( pDL->pList==0 ) bEof = 1;
  }else{
    int bDescDoclist = pCsr->bDesc;
    struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS];







|







150318
150319
150320
150321
150322
150323
150324
150325
150326
150327
150328
150329
150330
150331
150332
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  u8 bEof = 0;

  /* This is only called if it is guaranteed that the phrase has at least
  ** one incremental token. In which case the bIncr flag is set. */
  assert( p->bIncr==1 );

  if( p->nToken==1 ){
    rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr, 
        &pDL->iDocid, &pDL->pList, &pDL->nList
    );
    if( pDL->pList==0 ) bEof = 1;
  }else{
    int bDescDoclist = pCsr->bDesc;
    struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS];
150009
150010
150011
150012
150013
150014
150015

150016
150017
150018
150019
150020
150021
150022
150023
150024
150025
150026
150027
150028
150029
150030
150031
150032
150033
150034
150035
** The average document size in pages is calculated by first calculating 
** determining the average size in bytes, B. If B is less than the amount
** of data that will fit on a single leaf page of an intkey table in
** this database, then the average docsize is 1. Otherwise, it is 1 plus
** the number of overflow pages consumed by a record B bytes in size.
*/
static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){

  if( pCsr->nRowAvg==0 ){
    /* The average document size, which is required to calculate the cost
    ** of each doclist, has not yet been determined. Read the required 
    ** data from the %_stat table to calculate it.
    **
    ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 
    ** varints, where nCol is the number of columns in the FTS3 table.
    ** The first varint is the number of documents currently stored in
    ** the table. The following nCol varints contain the total amount of
    ** data stored in all rows of each column of the table, from left
    ** to right.
    */
    int rc;
    Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
    sqlite3_stmt *pStmt;
    sqlite3_int64 nDoc = 0;
    sqlite3_int64 nByte = 0;
    const char *pEnd;
    const char *a;








>












<







150551
150552
150553
150554
150555
150556
150557
150558
150559
150560
150561
150562
150563
150564
150565
150566
150567
150568
150569
150570

150571
150572
150573
150574
150575
150576
150577
** The average document size in pages is calculated by first calculating 
** determining the average size in bytes, B. If B is less than the amount
** of data that will fit on a single leaf page of an intkey table in
** this database, then the average docsize is 1. Otherwise, it is 1 plus
** the number of overflow pages consumed by a record B bytes in size.
*/
static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){
  int rc = SQLITE_OK;
  if( pCsr->nRowAvg==0 ){
    /* The average document size, which is required to calculate the cost
    ** of each doclist, has not yet been determined. Read the required 
    ** data from the %_stat table to calculate it.
    **
    ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 
    ** varints, where nCol is the number of columns in the FTS3 table.
    ** The first varint is the number of documents currently stored in
    ** the table. The following nCol varints contain the total amount of
    ** data stored in all rows of each column of the table, from left
    ** to right.
    */

    Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
    sqlite3_stmt *pStmt;
    sqlite3_int64 nDoc = 0;
    sqlite3_int64 nByte = 0;
    const char *pEnd;
    const char *a;

150048
150049
150050
150051
150052
150053
150054
150055
150056
150057
150058
150059
150060
150061
150062
150063
150064
150065
150066
      return FTS_CORRUPT_VTAB;
    }

    pCsr->nDoc = nDoc;
    pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz);
    assert( pCsr->nRowAvg>0 ); 
    rc = sqlite3_reset(pStmt);
    if( rc!=SQLITE_OK ) return rc;
  }

  *pnPage = pCsr->nRowAvg;
  return SQLITE_OK;
}

/*
** This function is called to select the tokens (if any) that will be 
** deferred. The array aTC[] has already been populated when this is
** called.
**







<



|







150590
150591
150592
150593
150594
150595
150596

150597
150598
150599
150600
150601
150602
150603
150604
150605
150606
150607
      return FTS_CORRUPT_VTAB;
    }

    pCsr->nDoc = nDoc;
    pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz);
    assert( pCsr->nRowAvg>0 ); 
    rc = sqlite3_reset(pStmt);

  }

  *pnPage = pCsr->nRowAvg;
  return rc;
}

/*
** This function is called to select the tokens (if any) that will be 
** deferred. The array aTC[] has already been populated when this is
** called.
**
150402
150403
150404
150405
150406
150407
150408

150409
150410
150411
150412
150413
150414
150415
150416
            }else{
              fts3EvalNextRow(pCsr, pRight, pRc);
            }
          }
          pExpr->iDocid = pLeft->iDocid;
          pExpr->bEof = (pLeft->bEof || pRight->bEof);
          if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){

            if( pRight->pPhrase && pRight->pPhrase->doclist.aAll ){
              Fts3Doclist *pDl = &pRight->pPhrase->doclist;
              while( *pRc==SQLITE_OK && pRight->bEof==0 ){
                memset(pDl->pList, 0, pDl->nList);
                fts3EvalNextRow(pCsr, pRight, pRc);
              }
            }
            if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){







>
|







150943
150944
150945
150946
150947
150948
150949
150950
150951
150952
150953
150954
150955
150956
150957
150958
            }else{
              fts3EvalNextRow(pCsr, pRight, pRc);
            }
          }
          pExpr->iDocid = pLeft->iDocid;
          pExpr->bEof = (pLeft->bEof || pRight->bEof);
          if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){
            assert( pRight->eType==FTSQUERY_PHRASE );
            if( pRight->pPhrase->doclist.aAll ){
              Fts3Doclist *pDl = &pRight->pPhrase->doclist;
              while( *pRc==SQLITE_OK && pRight->bEof==0 ){
                memset(pDl->pList, 0, pDl->nList);
                fts3EvalNextRow(pCsr, pRight, pRc);
              }
            }
            if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){
150431
150432
150433
150434
150435
150436
150437
150438
150439
150440
150441
150442
150443
150444
150445
        sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);

        assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
        assert( pRight->bStart || pLeft->iDocid==pRight->iDocid );

        if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
          fts3EvalNextRow(pCsr, pLeft, pRc);
        }else if( pLeft->bEof || (pRight->bEof==0 && iCmp>0) ){
          fts3EvalNextRow(pCsr, pRight, pRc);
        }else{
          fts3EvalNextRow(pCsr, pLeft, pRc);
          fts3EvalNextRow(pCsr, pRight, pRc);
        }

        pExpr->bEof = (pLeft->bEof && pRight->bEof);







|







150973
150974
150975
150976
150977
150978
150979
150980
150981
150982
150983
150984
150985
150986
150987
        sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);

        assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
        assert( pRight->bStart || pLeft->iDocid==pRight->iDocid );

        if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
          fts3EvalNextRow(pCsr, pLeft, pRc);
        }else if( pLeft->bEof || iCmp>0 ){
          fts3EvalNextRow(pCsr, pRight, pRc);
        }else{
          fts3EvalNextRow(pCsr, pLeft, pRc);
          fts3EvalNextRow(pCsr, pRight, pRc);
        }

        pExpr->bEof = (pLeft->bEof && pRight->bEof);
150523
150524
150525
150526
150527
150528
150529
150530
150531
150532
150533
150534
150535
150536
150537
150538

150539
150540
150541
150542
150543
150544
150545
150546
150547
150548
150549
150550
150551
150552
150553
150554
150555
150556
150557
150558
150559
150560
150561
150562
150563
150564
150565
150566
150567
150568
150569
150570
150571
150572
150573
150574
150575
150576
150577
150578
150579
150580
150581
  **
  ** The right-hand child of a NEAR node is always a phrase. The 
  ** left-hand child may be either a phrase or a NEAR node. There are
  ** no exceptions to this - it's the way the parser in fts3_expr.c works.
  */
  if( *pRc==SQLITE_OK 
   && pExpr->eType==FTSQUERY_NEAR 
   && pExpr->bEof==0
   && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
  ){
    Fts3Expr *p; 
    int nTmp = 0;                 /* Bytes of temp space */
    char *aTmp;                   /* Temp space for PoslistNearMerge() */

    /* Allocate temporary working space. */
    for(p=pExpr; p->pLeft; p=p->pLeft){

      nTmp += p->pRight->pPhrase->doclist.nList;
    }
    nTmp += p->pPhrase->doclist.nList;
    if( nTmp==0 ){
      res = 0;
    }else{
      aTmp = sqlite3_malloc(nTmp*2);
      if( !aTmp ){
        *pRc = SQLITE_NOMEM;
        res = 0;
      }else{
        char *aPoslist = p->pPhrase->doclist.pList;
        int nToken = p->pPhrase->nToken;

        for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
          Fts3Phrase *pPhrase = p->pRight->pPhrase;
          int nNear = p->nNear;
          res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
        }

        aPoslist = pExpr->pRight->pPhrase->doclist.pList;
        nToken = pExpr->pRight->pPhrase->nToken;
        for(p=pExpr->pLeft; p && res; p=p->pLeft){
          int nNear;
          Fts3Phrase *pPhrase;
          assert( p->pParent && p->pParent->pLeft==p );
          nNear = p->pParent->nNear;
          pPhrase = (
              p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
              );
          res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
        }
      }

      sqlite3_free(aTmp);
    }
  }

  return res;
}

/*
** This function is a helper function for sqlite3Fts3EvalTestDeferred().







<








>



<
<
<
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
<







151065
151066
151067
151068
151069
151070
151071

151072
151073
151074
151075
151076
151077
151078
151079
151080
151081
151082
151083



151084
151085
151086
151087
151088
151089
151090
151091
151092
151093
151094
151095
151096
151097
151098
151099
151100
151101
151102
151103
151104
151105
151106
151107
151108
151109
151110
151111
151112

151113
151114
151115
151116
151117
151118
151119
  **
  ** The right-hand child of a NEAR node is always a phrase. The 
  ** left-hand child may be either a phrase or a NEAR node. There are
  ** no exceptions to this - it's the way the parser in fts3_expr.c works.
  */
  if( *pRc==SQLITE_OK 
   && pExpr->eType==FTSQUERY_NEAR 

   && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
  ){
    Fts3Expr *p; 
    int nTmp = 0;                 /* Bytes of temp space */
    char *aTmp;                   /* Temp space for PoslistNearMerge() */

    /* Allocate temporary working space. */
    for(p=pExpr; p->pLeft; p=p->pLeft){
      assert( p->pRight->pPhrase->doclist.nList>0 );
      nTmp += p->pRight->pPhrase->doclist.nList;
    }
    nTmp += p->pPhrase->doclist.nList;



    aTmp = sqlite3_malloc(nTmp*2);
    if( !aTmp ){
      *pRc = SQLITE_NOMEM;
      res = 0;
    }else{
      char *aPoslist = p->pPhrase->doclist.pList;
      int nToken = p->pPhrase->nToken;

      for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
        Fts3Phrase *pPhrase = p->pRight->pPhrase;
        int nNear = p->nNear;
        res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
      }

      aPoslist = pExpr->pRight->pPhrase->doclist.pList;
      nToken = pExpr->pRight->pPhrase->nToken;
      for(p=pExpr->pLeft; p && res; p=p->pLeft){
        int nNear;
        Fts3Phrase *pPhrase;
        assert( p->pParent && p->pParent->pLeft==p );
        nNear = p->pParent->nNear;
        pPhrase = (
            p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
        );
        res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
      }
    }

    sqlite3_free(aTmp);

  }

  return res;
}

/*
** This function is a helper function for sqlite3Fts3EvalTestDeferred().
166674
166675
166676
166677
166678
166679
166680

166681
166682
166683
166684
166685
166686























166687
166688
166689
166690
166691
166692
166693
    "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
    "ALTER TABLE %Q.'%q_rowid'  RENAME TO \"%w_rowid\";"
    , pRtree->zDb, pRtree->zName, zNewName 
    , pRtree->zDb, pRtree->zName, zNewName 
    , pRtree->zDb, pRtree->zName, zNewName
  );
  if( zSql ){

    rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
    sqlite3_free(zSql);
  }
  return rc;
}

























/*
** This function populates the pRtree->nRowEst variable with an estimate
** of the number of rows in the virtual table. If possible, this is based
** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
*/
static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){







>






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







167212
167213
167214
167215
167216
167217
167218
167219
167220
167221
167222
167223
167224
167225
167226
167227
167228
167229
167230
167231
167232
167233
167234
167235
167236
167237
167238
167239
167240
167241
167242
167243
167244
167245
167246
167247
167248
167249
167250
167251
167252
167253
167254
167255
    "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
    "ALTER TABLE %Q.'%q_rowid'  RENAME TO \"%w_rowid\";"
    , pRtree->zDb, pRtree->zName, zNewName 
    , pRtree->zDb, pRtree->zName, zNewName 
    , pRtree->zDb, pRtree->zName, zNewName
  );
  if( zSql ){
    nodeBlobReset(pRtree);
    rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
    sqlite3_free(zSql);
  }
  return rc;
}

/*
** The xSavepoint method.
**
** This module does not need to do anything to support savepoints. However,
** it uses this hook to close any open blob handle. This is done because a 
** DROP TABLE command - which fortunately always opens a savepoint - cannot 
** succeed if there are any open blob handles. i.e. if the blob handle were
** not closed here, the following would fail:
**
**   BEGIN;
**     INSERT INTO rtree...
**     DROP TABLE <tablename>;    -- Would fail with SQLITE_LOCKED
**   COMMIT;
*/
static int rtreeSavepoint(sqlite3_vtab *pVtab, int iSavepoint){
  Rtree *pRtree = (Rtree *)pVtab;
  int iwt = pRtree->inWrTrans;
  UNUSED_PARAMETER(iSavepoint);
  pRtree->inWrTrans = 0;
  nodeBlobReset(pRtree);
  pRtree->inWrTrans = iwt;
  return SQLITE_OK;
}

/*
** This function populates the pRtree->nRowEst variable with an estimate
** of the number of rows in the virtual table. If possible, this is based
** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
*/
static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){
166726
166727
166728
166729
166730
166731
166732
166733
166734
166735
166736
166737
166738
166739
166740
166741
166742
166743
166744
166745
166746
166747
166748
166749
166750
166751
166752
166753
166754
166755
166756
166757
166758
166759
166760
    sqlite3_free(zSql);
  }

  return rc;
}

static sqlite3_module rtreeModule = {
  0,                          /* iVersion */
  rtreeCreate,                /* xCreate - create a table */
  rtreeConnect,               /* xConnect - connect to an existing table */
  rtreeBestIndex,             /* xBestIndex - Determine search strategy */
  rtreeDisconnect,            /* xDisconnect - Disconnect from a table */
  rtreeDestroy,               /* xDestroy - Drop a table */
  rtreeOpen,                  /* xOpen - open a cursor */
  rtreeClose,                 /* xClose - close a cursor */
  rtreeFilter,                /* xFilter - configure scan constraints */
  rtreeNext,                  /* xNext - advance a cursor */
  rtreeEof,                   /* xEof */
  rtreeColumn,                /* xColumn - read data */
  rtreeRowid,                 /* xRowid - read data */
  rtreeUpdate,                /* xUpdate - write data */
  rtreeBeginTransaction,      /* xBegin - begin transaction */
  rtreeEndTransaction,        /* xSync - sync transaction */
  rtreeEndTransaction,        /* xCommit - commit transaction */
  rtreeEndTransaction,        /* xRollback - rollback transaction */
  0,                          /* xFindFunction - function overloading */
  rtreeRename,                /* xRename - rename the table */
  0,                          /* xSavepoint */
  0,                          /* xRelease */
  0,                          /* xRollbackTo */
};

static int rtreeSqlInit(
  Rtree *pRtree, 
  sqlite3 *db, 







|



















|







167288
167289
167290
167291
167292
167293
167294
167295
167296
167297
167298
167299
167300
167301
167302
167303
167304
167305
167306
167307
167308
167309
167310
167311
167312
167313
167314
167315
167316
167317
167318
167319
167320
167321
167322
    sqlite3_free(zSql);
  }

  return rc;
}

static sqlite3_module rtreeModule = {
  2,                          /* iVersion */
  rtreeCreate,                /* xCreate - create a table */
  rtreeConnect,               /* xConnect - connect to an existing table */
  rtreeBestIndex,             /* xBestIndex - Determine search strategy */
  rtreeDisconnect,            /* xDisconnect - Disconnect from a table */
  rtreeDestroy,               /* xDestroy - Drop a table */
  rtreeOpen,                  /* xOpen - open a cursor */
  rtreeClose,                 /* xClose - close a cursor */
  rtreeFilter,                /* xFilter - configure scan constraints */
  rtreeNext,                  /* xNext - advance a cursor */
  rtreeEof,                   /* xEof */
  rtreeColumn,                /* xColumn - read data */
  rtreeRowid,                 /* xRowid - read data */
  rtreeUpdate,                /* xUpdate - write data */
  rtreeBeginTransaction,      /* xBegin - begin transaction */
  rtreeEndTransaction,        /* xSync - sync transaction */
  rtreeEndTransaction,        /* xCommit - commit transaction */
  rtreeEndTransaction,        /* xRollback - rollback transaction */
  0,                          /* xFindFunction - function overloading */
  rtreeRename,                /* xRename - rename the table */
  rtreeSavepoint,             /* xSavepoint */
  0,                          /* xRelease */
  0,                          /* xRollbackTo */
};

static int rtreeSqlInit(
  Rtree *pRtree, 
  sqlite3 *db, 
178903
178904
178905
178906
178907
178908
178909

178910
178911
178912
178913
178914
178915
178916
#define safe_isspace(x) (jsonIsSpace[(unsigned char)x])

#ifndef SQLITE_AMALGAMATION
  /* Unsigned integer types.  These are already defined in the sqliteInt.h,
  ** but the definitions need to be repeated for separate compilation. */
  typedef sqlite3_uint64 u64;
  typedef unsigned int u32;

  typedef unsigned char u8;
#endif

/* Objects */
typedef struct JsonString JsonString;
typedef struct JsonNode JsonNode;
typedef struct JsonParse JsonParse;







>







179465
179466
179467
179468
179469
179470
179471
179472
179473
179474
179475
179476
179477
179478
179479
#define safe_isspace(x) (jsonIsSpace[(unsigned char)x])

#ifndef SQLITE_AMALGAMATION
  /* Unsigned integer types.  These are already defined in the sqliteInt.h,
  ** but the definitions need to be repeated for separate compilation. */
  typedef sqlite3_uint64 u64;
  typedef unsigned int u32;
  typedef unsigned short int u16;
  typedef unsigned char u8;
#endif

/* Objects */
typedef struct JsonString JsonString;
typedef struct JsonNode JsonNode;
typedef struct JsonParse JsonParse;
178982
178983
178984
178985
178986
178987
178988


178989
178990









178991
178992
178993
178994
178995
178996
178997
  u32 nNode;         /* Number of slots of aNode[] used */
  u32 nAlloc;        /* Number of slots of aNode[] allocated */
  JsonNode *aNode;   /* Array of nodes containing the parse */
  const char *zJson; /* Original JSON string */
  u32 *aUp;          /* Index of parent of each node */
  u8 oom;            /* Set to true if out of memory */
  u8 nErr;           /* Number of errors seen */


};










/**************************************************************************
** Utility routines for dealing with JsonString objects
**************************************************************************/

/* Set the JsonString object to an empty string
*/
static void jsonZero(JsonString *p){







>
>


>
>
>
>
>
>
>
>
>







179545
179546
179547
179548
179549
179550
179551
179552
179553
179554
179555
179556
179557
179558
179559
179560
179561
179562
179563
179564
179565
179566
179567
179568
179569
179570
179571
  u32 nNode;         /* Number of slots of aNode[] used */
  u32 nAlloc;        /* Number of slots of aNode[] allocated */
  JsonNode *aNode;   /* Array of nodes containing the parse */
  const char *zJson; /* Original JSON string */
  u32 *aUp;          /* Index of parent of each node */
  u8 oom;            /* Set to true if out of memory */
  u8 nErr;           /* Number of errors seen */
  u16 iDepth;        /* Nesting depth */
  int nJson;         /* Length of the zJson string in bytes */
};

/*
** Maximum nesting depth of JSON for this implementation.
**
** This limit is needed to avoid a stack overflow in the recursive
** descent parser.  A depth of 2000 is far deeper than any sane JSON
** should go.
*/
#define JSON_MAX_DEPTH  2000

/**************************************************************************
** Utility routines for dealing with JsonString objects
**************************************************************************/

/* Set the JsonString object to an empty string
*/
static void jsonZero(JsonString *p){
179214
179215
179216
179217
179218
179219
179220








179221
179222
179223
179224
179225
179226
179227
  sqlite3_free(pParse->aNode);
  pParse->aNode = 0;
  pParse->nNode = 0;
  pParse->nAlloc = 0;
  sqlite3_free(pParse->aUp);
  pParse->aUp = 0;
}









/*
** Convert the JsonNode pNode into a pure JSON string and
** append to pOut.  Subsubstructure is also included.  Return
** the number of JsonNode objects that are encoded.
*/
static void jsonRenderNode(







>
>
>
>
>
>
>
>







179788
179789
179790
179791
179792
179793
179794
179795
179796
179797
179798
179799
179800
179801
179802
179803
179804
179805
179806
179807
179808
179809
  sqlite3_free(pParse->aNode);
  pParse->aNode = 0;
  pParse->nNode = 0;
  pParse->nAlloc = 0;
  sqlite3_free(pParse->aUp);
  pParse->aUp = 0;
}

/*
** Free a JsonParse object that was obtained from sqlite3_malloc().
*/
static void jsonParseFree(JsonParse *pParse){
  jsonParseReset(pParse);
  sqlite3_free(pParse);
}

/*
** Convert the JsonNode pNode into a pure JSON string and
** append to pOut.  Subsubstructure is also included.  Return
** the number of JsonNode objects that are encoded.
*/
static void jsonRenderNode(
179540
179541
179542
179543
179544
179545
179546

179547
179548
179549
179550
179551
179552
179553

179554
179555

179556
179557
179558
179559
179560
179561
179562
179563
179564
179565
179566
179567

179568
179569
179570
179571
179572
179573
179574
179575
179576
179577
179578
179579
179580
179581
179582
179583

179584

179585
179586
179587
179588
179589
179590
179591
179592
179593
179594
179595
179596
179597
179598
179599
179600
179601
179602
179603


179604

179605
179606
179607
179608
179609
179610
179611
179612
179613
179614
179615
179616
179617
179618
179619
179620
179621
179622
179623
179624
179625
179626
179627
179628
179629
179630
179631
179632
179633
179634
179635
179636
179637
179638
179639
179640





179641
179642
179643
179644
179645
179646
179647
179648
179649
179650
179651
179652
179653
179654
179655
179656
179657
179658
179659
179660
179661
179662
179663
179664
179665
179666
179667
179668
179669
179670
179671
179672
179673
179674
*/
static int jsonParseValue(JsonParse *pParse, u32 i){
  char c;
  u32 j;
  int iThis;
  int x;
  JsonNode *pNode;

  while( safe_isspace(pParse->zJson[i]) ){ i++; }
  if( (c = pParse->zJson[i])=='{' ){
    /* Parse object */
    iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
    if( iThis<0 ) return -1;
    for(j=i+1;;j++){
      while( safe_isspace(pParse->zJson[j]) ){ j++; }

      x = jsonParseValue(pParse, j);
      if( x<0 ){

        if( x==(-2) && pParse->nNode==(u32)iThis+1 ) return j+1;
        return -1;
      }
      if( pParse->oom ) return -1;
      pNode = &pParse->aNode[pParse->nNode-1];
      if( pNode->eType!=JSON_STRING ) return -1;
      pNode->jnFlags |= JNODE_LABEL;
      j = x;
      while( safe_isspace(pParse->zJson[j]) ){ j++; }
      if( pParse->zJson[j]!=':' ) return -1;
      j++;
      x = jsonParseValue(pParse, j);

      if( x<0 ) return -1;
      j = x;
      while( safe_isspace(pParse->zJson[j]) ){ j++; }
      c = pParse->zJson[j];
      if( c==',' ) continue;
      if( c!='}' ) return -1;
      break;
    }
    pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1;
    return j+1;
  }else if( c=='[' ){
    /* Parse array */
    iThis = jsonParseAddNode(pParse, JSON_ARRAY, 0, 0);
    if( iThis<0 ) return -1;
    for(j=i+1;;j++){
      while( safe_isspace(pParse->zJson[j]) ){ j++; }

      x = jsonParseValue(pParse, j);

      if( x<0 ){
        if( x==(-3) && pParse->nNode==(u32)iThis+1 ) return j+1;
        return -1;
      }
      j = x;
      while( safe_isspace(pParse->zJson[j]) ){ j++; }
      c = pParse->zJson[j];
      if( c==',' ) continue;
      if( c!=']' ) return -1;
      break;
    }
    pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1;
    return j+1;
  }else if( c=='"' ){
    /* Parse string */
    u8 jnFlags = 0;
    j = i+1;
    for(;;){
      c = pParse->zJson[j];


      if( c==0 ) return -1;

      if( c=='\\' ){
        c = pParse->zJson[++j];
        if( c=='"' || c=='\\' || c=='/' || c=='b' || c=='f'
           || c=='n' || c=='r' || c=='t'
           || (c=='u' && jsonIs4Hex(pParse->zJson+j+1)) ){
          jnFlags = JNODE_ESCAPE;
        }else{
          return -1;
        }
      }else if( c=='"' ){
        break;
      }
      j++;
    }
    jsonParseAddNode(pParse, JSON_STRING, j+1-i, &pParse->zJson[i]);
    if( !pParse->oom ) pParse->aNode[pParse->nNode-1].jnFlags = jnFlags;
    return j+1;
  }else if( c=='n'
         && strncmp(pParse->zJson+i,"null",4)==0
         && !safe_isalnum(pParse->zJson[i+4]) ){
    jsonParseAddNode(pParse, JSON_NULL, 0, 0);
    return i+4;
  }else if( c=='t'
         && strncmp(pParse->zJson+i,"true",4)==0
         && !safe_isalnum(pParse->zJson[i+4]) ){
    jsonParseAddNode(pParse, JSON_TRUE, 0, 0);
    return i+4;
  }else if( c=='f'
         && strncmp(pParse->zJson+i,"false",5)==0
         && !safe_isalnum(pParse->zJson[i+5]) ){
    jsonParseAddNode(pParse, JSON_FALSE, 0, 0);
    return i+5;
  }else if( c=='-' || (c>='0' && c<='9') ){
    /* Parse number */
    u8 seenDP = 0;
    u8 seenE = 0;





    j = i+1;
    for(;; j++){
      c = pParse->zJson[j];
      if( c>='0' && c<='9' ) continue;
      if( c=='.' ){
        if( pParse->zJson[j-1]=='-' ) return -1;
        if( seenDP ) return -1;
        seenDP = 1;
        continue;
      }
      if( c=='e' || c=='E' ){
        if( pParse->zJson[j-1]<'0' ) return -1;
        if( seenE ) return -1;
        seenDP = seenE = 1;
        c = pParse->zJson[j+1];
        if( c=='+' || c=='-' ){
          j++;
          c = pParse->zJson[j+1];
        }
        if( c<'0' || c>'9' ) return -1;
        continue;
      }
      break;
    }
    if( pParse->zJson[j-1]<'0' ) return -1;
    jsonParseAddNode(pParse, seenDP ? JSON_REAL : JSON_INT,
                        j - i, &pParse->zJson[i]);
    return j;
  }else if( c=='}' ){
    return -2;  /* End of {...} */
  }else if( c==']' ){
    return -3;  /* End of [...] */
  }else if( c==0 ){
    return 0;   /* End of file */







>
|
|




|
>


>








|
|


>


|
|











|
>

>





|
|











|
>
>
|
>

|


|









|



|
|



|
|



|
|






>
>
>
>
>


|


|





|


|


|






|

|







180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
*/
static int jsonParseValue(JsonParse *pParse, u32 i){
  char c;
  u32 j;
  int iThis;
  int x;
  JsonNode *pNode;
  const char *z = pParse->zJson;
  while( safe_isspace(z[i]) ){ i++; }
  if( (c = z[i])=='{' ){
    /* Parse object */
    iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
    if( iThis<0 ) return -1;
    for(j=i+1;;j++){
      while( safe_isspace(z[j]) ){ j++; }
      if( ++pParse->iDepth > JSON_MAX_DEPTH ) return -1;
      x = jsonParseValue(pParse, j);
      if( x<0 ){
        pParse->iDepth--;
        if( x==(-2) && pParse->nNode==(u32)iThis+1 ) return j+1;
        return -1;
      }
      if( pParse->oom ) return -1;
      pNode = &pParse->aNode[pParse->nNode-1];
      if( pNode->eType!=JSON_STRING ) return -1;
      pNode->jnFlags |= JNODE_LABEL;
      j = x;
      while( safe_isspace(z[j]) ){ j++; }
      if( z[j]!=':' ) return -1;
      j++;
      x = jsonParseValue(pParse, j);
      pParse->iDepth--;
      if( x<0 ) return -1;
      j = x;
      while( safe_isspace(z[j]) ){ j++; }
      c = z[j];
      if( c==',' ) continue;
      if( c!='}' ) return -1;
      break;
    }
    pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1;
    return j+1;
  }else if( c=='[' ){
    /* Parse array */
    iThis = jsonParseAddNode(pParse, JSON_ARRAY, 0, 0);
    if( iThis<0 ) return -1;
    for(j=i+1;;j++){
      while( safe_isspace(z[j]) ){ j++; }
      if( ++pParse->iDepth > JSON_MAX_DEPTH ) return -1;
      x = jsonParseValue(pParse, j);
      pParse->iDepth--;
      if( x<0 ){
        if( x==(-3) && pParse->nNode==(u32)iThis+1 ) return j+1;
        return -1;
      }
      j = x;
      while( safe_isspace(z[j]) ){ j++; }
      c = z[j];
      if( c==',' ) continue;
      if( c!=']' ) return -1;
      break;
    }
    pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1;
    return j+1;
  }else if( c=='"' ){
    /* Parse string */
    u8 jnFlags = 0;
    j = i+1;
    for(;;){
      c = z[j];
      if( (c & ~0x1f)==0 ){
        /* Control characters are not allowed in strings */
        return -1;
      }
      if( c=='\\' ){
        c = z[++j];
        if( c=='"' || c=='\\' || c=='/' || c=='b' || c=='f'
           || c=='n' || c=='r' || c=='t'
           || (c=='u' && jsonIs4Hex(z+j+1)) ){
          jnFlags = JNODE_ESCAPE;
        }else{
          return -1;
        }
      }else if( c=='"' ){
        break;
      }
      j++;
    }
    jsonParseAddNode(pParse, JSON_STRING, j+1-i, &z[i]);
    if( !pParse->oom ) pParse->aNode[pParse->nNode-1].jnFlags = jnFlags;
    return j+1;
  }else if( c=='n'
         && strncmp(z+i,"null",4)==0
         && !safe_isalnum(z[i+4]) ){
    jsonParseAddNode(pParse, JSON_NULL, 0, 0);
    return i+4;
  }else if( c=='t'
         && strncmp(z+i,"true",4)==0
         && !safe_isalnum(z[i+4]) ){
    jsonParseAddNode(pParse, JSON_TRUE, 0, 0);
    return i+4;
  }else if( c=='f'
         && strncmp(z+i,"false",5)==0
         && !safe_isalnum(z[i+5]) ){
    jsonParseAddNode(pParse, JSON_FALSE, 0, 0);
    return i+5;
  }else if( c=='-' || (c>='0' && c<='9') ){
    /* Parse number */
    u8 seenDP = 0;
    u8 seenE = 0;
    assert( '-' < '0' );
    if( c<='0' ){
      j = c=='-' ? i+1 : i;
      if( z[j]=='0' && z[j+1]>='0' && z[j+1]<='9' ) return -1;
    }
    j = i+1;
    for(;; j++){
      c = z[j];
      if( c>='0' && c<='9' ) continue;
      if( c=='.' ){
        if( z[j-1]=='-' ) return -1;
        if( seenDP ) return -1;
        seenDP = 1;
        continue;
      }
      if( c=='e' || c=='E' ){
        if( z[j-1]<'0' ) return -1;
        if( seenE ) return -1;
        seenDP = seenE = 1;
        c = z[j+1];
        if( c=='+' || c=='-' ){
          j++;
          c = z[j+1];
        }
        if( c<'0' || c>'9' ) return -1;
        continue;
      }
      break;
    }
    if( z[j-1]<'0' ) return -1;
    jsonParseAddNode(pParse, seenDP ? JSON_REAL : JSON_INT,
                        j - i, &z[i]);
    return j;
  }else if( c=='}' ){
    return -2;  /* End of {...} */
  }else if( c==']' ){
    return -3;  /* End of [...] */
  }else if( c==0 ){
    return 0;   /* End of file */
179692
179693
179694
179695
179696
179697
179698

179699
179700
179701
179702
179703
179704
179705
  int i;
  memset(pParse, 0, sizeof(*pParse));
  if( zJson==0 ) return 1;
  pParse->zJson = zJson;
  i = jsonParseValue(pParse, 0);
  if( pParse->oom ) i = -1;
  if( i>0 ){

    while( safe_isspace(zJson[i]) ) i++;
    if( zJson[i] ) i = -1;
  }
  if( i<=0 ){
    if( pCtx!=0 ){
      if( pParse->oom ){
        sqlite3_result_error_nomem(pCtx);







>







180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
  int i;
  memset(pParse, 0, sizeof(*pParse));
  if( zJson==0 ) return 1;
  pParse->zJson = zJson;
  i = jsonParseValue(pParse, 0);
  if( pParse->oom ) i = -1;
  if( i>0 ){
    assert( pParse->iDepth==0 );
    while( safe_isspace(zJson[i]) ) i++;
    if( zJson[i] ) i = -1;
  }
  if( i<=0 ){
    if( pCtx!=0 ){
      if( pParse->oom ){
        sqlite3_result_error_nomem(pCtx);
179750
179751
179752
179753
179754
179755
179756











































179757
179758
179759
179760
179761
179762
179763
  if( aUp==0 ){
    pParse->oom = 1;
    return SQLITE_NOMEM;
  }
  jsonParseFillInParentage(pParse, 0, 0);
  return SQLITE_OK;
}












































/*
** Compare the OBJECT label at pNode against zKey,nKey.  Return true on
** a match.
*/
static int jsonLabelCompare(JsonNode *pNode, const char *zKey, u32 nKey){
  if( pNode->jnFlags & JNODE_RAW ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
  if( aUp==0 ){
    pParse->oom = 1;
    return SQLITE_NOMEM;
  }
  jsonParseFillInParentage(pParse, 0, 0);
  return SQLITE_OK;
}

/*
** Magic number used for the JSON parse cache in sqlite3_get_auxdata()
*/
#define JSON_CACHE_ID  (-429938)

/*
** Obtain a complete parse of the JSON found in the first argument
** of the argv array.  Use the sqlite3_get_auxdata() cache for this
** parse if it is available.  If the cache is not available or if it
** is no longer valid, parse the JSON again and return the new parse,
** and also register the new parse so that it will be available for
** future sqlite3_get_auxdata() calls.
*/
static JsonParse *jsonParseCached(
  sqlite3_context *pCtx,
  sqlite3_value **argv
){
  const char *zJson = (const char*)sqlite3_value_text(argv[0]);
  int nJson = sqlite3_value_bytes(argv[0]);
  JsonParse *p;
  if( zJson==0 ) return 0;
  p = (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID);
  if( p && p->nJson==nJson && memcmp(p->zJson,zJson,nJson)==0 ){
    p->nErr = 0;
    return p; /* The cached entry matches, so return it */
  }
  p = sqlite3_malloc( sizeof(*p) + nJson + 1 );
  if( p==0 ){
    sqlite3_result_error_nomem(pCtx);
    return 0;
  }
  memset(p, 0, sizeof(*p));
  p->zJson = (char*)&p[1];
  memcpy((char*)p->zJson, zJson, nJson+1);
  if( jsonParse(p, pCtx, p->zJson) ){
    sqlite3_free(p);
    return 0;
  }
  p->nJson = nJson;
  sqlite3_set_auxdata(pCtx, JSON_CACHE_ID, p, (void(*)(void*))jsonParseFree);
  return (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID);
}

/*
** Compare the OBJECT label at pNode against zKey,nKey.  Return true on
** a match.
*/
static int jsonLabelCompare(JsonNode *pNode, const char *zKey, u32 nKey){
  if( pNode->jnFlags & JNODE_RAW ){
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128

180129
180130
180131
180132
180133
180134
180135
180136
180137

180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168

180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
** Return 0 if the input is not a well-formed JSON array.
*/
static void jsonArrayLengthFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse x;          /* The parse */
  sqlite3_int64 n = 0;
  u32 i;
  JsonNode *pNode;

  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;

  assert( x.nNode );
  if( argc==2 ){
    const char *zPath = (const char*)sqlite3_value_text(argv[1]);
    pNode = jsonLookup(&x, zPath, 0, ctx);
  }else{
    pNode = x.aNode;
  }
  if( pNode==0 ){
    x.nErr = 1;

  }else if( pNode->eType==JSON_ARRAY ){
    assert( (pNode->jnFlags & JNODE_APPEND)==0 );
    for(i=1; i<=pNode->n; n++){
      i += jsonNodeSize(&pNode[i]);
    }
  }
  if( x.nErr==0 ) sqlite3_result_int64(ctx, n);
  jsonParseReset(&x);
}

/*
** json_extract(JSON, PATH, ...)
**
** Return the element described by PATH.  Return NULL if there is no
** PATH element.  If there are multiple PATHs, then return a JSON array
** with the result from each path.  Throw an error if the JSON or any PATH
** is malformed.
*/
static void jsonExtractFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse x;          /* The parse */
  JsonNode *pNode;
  const char *zPath;
  JsonString jx;
  int i;

  if( argc<2 ) return;
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;

  jsonInit(&jx, ctx);
  jsonAppendChar(&jx, '[');
  for(i=1; i<argc; i++){
    zPath = (const char*)sqlite3_value_text(argv[i]);
    pNode = jsonLookup(&x, zPath, 0, ctx);
    if( x.nErr ) break;
    if( argc>2 ){
      jsonAppendSeparator(&jx);
      if( pNode ){
        jsonRenderNode(pNode, &jx, 0);
      }else{
        jsonAppendRaw(&jx, "null", 4);
      }
    }else if( pNode ){
      jsonReturn(pNode, ctx, 0);
    }
  }
  if( argc>2 && i==argc ){
    jsonAppendChar(&jx, ']');
    jsonResult(&jx);
    sqlite3_result_subtype(ctx, JSON_SUBTYPE);
  }
  jsonReset(&jx);
  jsonParseReset(&x);
}

/* This is the RFC 7396 MergePatch algorithm.
*/
static JsonNode *jsonMergePatch(
  JsonParse *pParse,   /* The JSON parser that contains the TARGET */
  int iTarget,         /* Node of the TARGET in pParse */
  JsonNode *pPatch     /* The PATCH */
){
  u32 i, j;
  u32 iRoot;
  JsonNode *pTarget;
  if( pPatch->eType!=JSON_OBJECT ){
    return pPatch;







|




|
>
|


|

|


|
>
|





|
<















|






|
>




|
|

















<






|







180756
180757
180758
180759
180760
180761
180762
180763
180764
180765
180766
180767
180768
180769
180770
180771
180772
180773
180774
180775
180776
180777
180778
180779
180780
180781
180782
180783
180784
180785
180786

180787
180788
180789
180790
180791
180792
180793
180794
180795
180796
180797
180798
180799
180800
180801
180802
180803
180804
180805
180806
180807
180808
180809
180810
180811
180812
180813
180814
180815
180816
180817
180818
180819
180820
180821
180822
180823
180824
180825
180826
180827
180828
180829
180830
180831
180832
180833

180834
180835
180836
180837
180838
180839
180840
180841
180842
180843
180844
180845
180846
180847
** Return 0 if the input is not a well-formed JSON array.
*/
static void jsonArrayLengthFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *p;          /* The parse */
  sqlite3_int64 n = 0;
  u32 i;
  JsonNode *pNode;

  p = jsonParseCached(ctx, argv);
  if( p==0 ) return;
  assert( p->nNode );
  if( argc==2 ){
    const char *zPath = (const char*)sqlite3_value_text(argv[1]);
    pNode = jsonLookup(p, zPath, 0, ctx);
  }else{
    pNode = p->aNode;
  }
  if( pNode==0 ){
    return;
  }
  if( pNode->eType==JSON_ARRAY ){
    assert( (pNode->jnFlags & JNODE_APPEND)==0 );
    for(i=1; i<=pNode->n; n++){
      i += jsonNodeSize(&pNode[i]);
    }
  }
  sqlite3_result_int64(ctx, n);

}

/*
** json_extract(JSON, PATH, ...)
**
** Return the element described by PATH.  Return NULL if there is no
** PATH element.  If there are multiple PATHs, then return a JSON array
** with the result from each path.  Throw an error if the JSON or any PATH
** is malformed.
*/
static void jsonExtractFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *p;          /* The parse */
  JsonNode *pNode;
  const char *zPath;
  JsonString jx;
  int i;

  if( argc<2 ) return;
  p = jsonParseCached(ctx, argv);
  if( p==0 ) return;
  jsonInit(&jx, ctx);
  jsonAppendChar(&jx, '[');
  for(i=1; i<argc; i++){
    zPath = (const char*)sqlite3_value_text(argv[i]);
    pNode = jsonLookup(p, zPath, 0, ctx);
    if( p->nErr ) break;
    if( argc>2 ){
      jsonAppendSeparator(&jx);
      if( pNode ){
        jsonRenderNode(pNode, &jx, 0);
      }else{
        jsonAppendRaw(&jx, "null", 4);
      }
    }else if( pNode ){
      jsonReturn(pNode, ctx, 0);
    }
  }
  if( argc>2 && i==argc ){
    jsonAppendChar(&jx, ']');
    jsonResult(&jx);
    sqlite3_result_subtype(ctx, JSON_SUBTYPE);
  }
  jsonReset(&jx);

}

/* This is the RFC 7396 MergePatch algorithm.
*/
static JsonNode *jsonMergePatch(
  JsonParse *pParse,   /* The JSON parser that contains the TARGET */
  u32 iTarget,         /* Node of the TARGET in pParse */
  JsonNode *pPatch     /* The PATCH */
){
  u32 i, j;
  u32 iRoot;
  JsonNode *pTarget;
  if( pPatch->eType!=JSON_OBJECT ){
    return pPatch;
182201
182202
182203
182204
182205
182206
182207
182208
182209
182210
182211
182212
182213
182214
182215
182216
182217
  Fts5Index *p,                   /* Index to write to */
  int bDelete,                    /* True if current operation is a delete */
  i64 iDocid                      /* Docid to add or remove data from */
);

/*
** Flush any data stored in the in-memory hash tables to the database.
** If the bCommit flag is true, also close any open blob handles.
*/
static int sqlite3Fts5IndexSync(Fts5Index *p, int bCommit);

/*
** Discard any data stored in the in-memory hash tables. Do not write it
** to the database. Additionally, assume that the contents of the %_data
** table may have changed on disk. So any in-memory caches of %_data 
** records must be invalidated.
*/







|

|







182842
182843
182844
182845
182846
182847
182848
182849
182850
182851
182852
182853
182854
182855
182856
182857
182858
  Fts5Index *p,                   /* Index to write to */
  int bDelete,                    /* True if current operation is a delete */
  i64 iDocid                      /* Docid to add or remove data from */
);

/*
** Flush any data stored in the in-memory hash tables to the database.
** Also close any open blob handles.
*/
static int sqlite3Fts5IndexSync(Fts5Index *p);

/*
** Discard any data stored in the in-memory hash tables. Do not write it
** to the database. Additionally, assume that the contents of the %_data
** table may have changed on disk. So any in-memory caches of %_data 
** records must be invalidated.
*/
182373
182374
182375
182376
182377
182378
182379
182380
182381
182382
182383
182384
182385
182386
182387
static int sqlite3Fts5StorageStmt(Fts5Storage *p, int eStmt, sqlite3_stmt**, char**);
static void sqlite3Fts5StorageStmtRelease(Fts5Storage *p, int eStmt, sqlite3_stmt*);

static int sqlite3Fts5StorageDocsize(Fts5Storage *p, i64 iRowid, int *aCol);
static int sqlite3Fts5StorageSize(Fts5Storage *p, int iCol, i64 *pnAvg);
static int sqlite3Fts5StorageRowCount(Fts5Storage *p, i64 *pnRow);

static int sqlite3Fts5StorageSync(Fts5Storage *p, int bCommit);
static int sqlite3Fts5StorageRollback(Fts5Storage *p);

static int sqlite3Fts5StorageConfigValue(
    Fts5Storage *p, const char*, sqlite3_value*, int
);

static int sqlite3Fts5StorageDeleteAll(Fts5Storage *p);







|







183014
183015
183016
183017
183018
183019
183020
183021
183022
183023
183024
183025
183026
183027
183028
static int sqlite3Fts5StorageStmt(Fts5Storage *p, int eStmt, sqlite3_stmt**, char**);
static void sqlite3Fts5StorageStmtRelease(Fts5Storage *p, int eStmt, sqlite3_stmt*);

static int sqlite3Fts5StorageDocsize(Fts5Storage *p, i64 iRowid, int *aCol);
static int sqlite3Fts5StorageSize(Fts5Storage *p, int iCol, i64 *pnAvg);
static int sqlite3Fts5StorageRowCount(Fts5Storage *p, i64 *pnRow);

static int sqlite3Fts5StorageSync(Fts5Storage *p);
static int sqlite3Fts5StorageRollback(Fts5Storage *p);

static int sqlite3Fts5StorageConfigValue(
    Fts5Storage *p, const char*, sqlite3_value*, int
);

static int sqlite3Fts5StorageDeleteAll(Fts5Storage *p);
182409
182410
182411
182412
182413
182414
182415

182416
182417
182418
182419
182420
182421
182422
  const char *p;                  /* Token text (not NULL terminated) */
  int n;                          /* Size of buffer p in bytes */
};

/* Parse a MATCH expression. */
static int sqlite3Fts5ExprNew(
  Fts5Config *pConfig, 

  const char *zExpr,
  Fts5Expr **ppNew, 
  char **pzErr
);

/*
** for(rc = sqlite3Fts5ExprFirst(pExpr, pIdx, bDesc);







>







183050
183051
183052
183053
183054
183055
183056
183057
183058
183059
183060
183061
183062
183063
183064
  const char *p;                  /* Token text (not NULL terminated) */
  int n;                          /* Size of buffer p in bytes */
};

/* Parse a MATCH expression. */
static int sqlite3Fts5ExprNew(
  Fts5Config *pConfig, 
  int iCol,                       /* Column on LHS of MATCH operator */
  const char *zExpr,
  Fts5Expr **ppNew, 
  char **pzErr
);

/*
** for(rc = sqlite3Fts5ExprFirst(pExpr, pIdx, bDesc);
182493
182494
182495
182496
182497
182498
182499
182500
182501
182502
182503
182504
182505
182506
182507
);

static void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase*);
static void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset*);
static void sqlite3Fts5ParseNodeFree(Fts5ExprNode*);

static void sqlite3Fts5ParseSetDistance(Fts5Parse*, Fts5ExprNearset*, Fts5Token*);
static void sqlite3Fts5ParseSetColset(Fts5Parse*, Fts5ExprNearset*, Fts5Colset*);
static Fts5Colset *sqlite3Fts5ParseColsetInvert(Fts5Parse*, Fts5Colset*);
static void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p);
static void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token*);

/*
** End of interface to code in fts5_expr.c.
**************************************************************************/







|







183135
183136
183137
183138
183139
183140
183141
183142
183143
183144
183145
183146
183147
183148
183149
);

static void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase*);
static void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset*);
static void sqlite3Fts5ParseNodeFree(Fts5ExprNode*);

static void sqlite3Fts5ParseSetDistance(Fts5Parse*, Fts5ExprNearset*, Fts5Token*);
static void sqlite3Fts5ParseSetColset(Fts5Parse*, Fts5ExprNode*, Fts5Colset*);
static Fts5Colset *sqlite3Fts5ParseColsetInvert(Fts5Parse*, Fts5Colset*);
static void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p);
static void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token*);

/*
** End of interface to code in fts5_expr.c.
**************************************************************************/
182550
182551
182552
182553
182554
182555
182556
182557
182558
182559
182560
182561
182562


182563
182564
182565
182566
182567
182568
182569
#endif

#define FTS5_OR                               1
#define FTS5_AND                              2
#define FTS5_NOT                              3
#define FTS5_TERM                             4
#define FTS5_COLON                            5
#define FTS5_LP                               6
#define FTS5_RP                               7
#define FTS5_MINUS                            8
#define FTS5_LCP                              9
#define FTS5_RCP                             10
#define FTS5_STRING                          11


#define FTS5_COMMA                           12
#define FTS5_PLUS                            13
#define FTS5_STAR                            14

/*
** 2000-05-29
**







<
<
|
|
|
|
>
>







183192
183193
183194
183195
183196
183197
183198


183199
183200
183201
183202
183203
183204
183205
183206
183207
183208
183209
183210
183211
#endif

#define FTS5_OR                               1
#define FTS5_AND                              2
#define FTS5_NOT                              3
#define FTS5_TERM                             4
#define FTS5_COLON                            5


#define FTS5_MINUS                            6
#define FTS5_LCP                              7
#define FTS5_RCP                              8
#define FTS5_STRING                           9
#define FTS5_LP                              10
#define FTS5_RP                              11
#define FTS5_COMMA                           12
#define FTS5_PLUS                            13
#define FTS5_STAR                            14

/*
** 2000-05-29
**
182691
182692
182693
182694
182695
182696
182697
182698
182699
182700
182701
182702
182703
182704
182705
182706
182707
182708
182709
182710
182711
182712
182713
182714
#ifndef fts5YYSTACKDEPTH
#define fts5YYSTACKDEPTH 100
#endif
#define sqlite3Fts5ParserARG_SDECL Fts5Parse *pParse;
#define sqlite3Fts5ParserARG_PDECL ,Fts5Parse *pParse
#define sqlite3Fts5ParserARG_FETCH Fts5Parse *pParse = fts5yypParser->pParse
#define sqlite3Fts5ParserARG_STORE fts5yypParser->pParse = pParse
#define fts5YYNSTATE             29
#define fts5YYNRULE              26
#define fts5YY_MAX_SHIFT         28
#define fts5YY_MIN_SHIFTREDUCE   45
#define fts5YY_MAX_SHIFTREDUCE   70
#define fts5YY_MIN_REDUCE        71
#define fts5YY_MAX_REDUCE        96
#define fts5YY_ERROR_ACTION      97
#define fts5YY_ACCEPT_ACTION     98
#define fts5YY_NO_ACTION         99
/************* End control #defines *******************************************/

/* Define the fts5yytestcase() macro to be a no-op if is not already defined
** otherwise.
**
** Applications can choose to define fts5yytestcase() in the %include section
** to a macro that can assist in verifying code coverage.  For production







|
|
|
|
|
|
|
|
|
|







183333
183334
183335
183336
183337
183338
183339
183340
183341
183342
183343
183344
183345
183346
183347
183348
183349
183350
183351
183352
183353
183354
183355
183356
#ifndef fts5YYSTACKDEPTH
#define fts5YYSTACKDEPTH 100
#endif
#define sqlite3Fts5ParserARG_SDECL Fts5Parse *pParse;
#define sqlite3Fts5ParserARG_PDECL ,Fts5Parse *pParse
#define sqlite3Fts5ParserARG_FETCH Fts5Parse *pParse = fts5yypParser->pParse
#define sqlite3Fts5ParserARG_STORE fts5yypParser->pParse = pParse
#define fts5YYNSTATE             33
#define fts5YYNRULE              27
#define fts5YY_MAX_SHIFT         32
#define fts5YY_MIN_SHIFTREDUCE   50
#define fts5YY_MAX_SHIFTREDUCE   76
#define fts5YY_MIN_REDUCE        77
#define fts5YY_MAX_REDUCE        103
#define fts5YY_ERROR_ACTION      104
#define fts5YY_ACCEPT_ACTION     105
#define fts5YY_NO_ACTION         106
/************* End control #defines *******************************************/

/* Define the fts5yytestcase() macro to be a no-op if is not already defined
** otherwise.
**
** Applications can choose to define fts5yytestcase() in the %include section
** to a macro that can assist in verifying code coverage.  For production
182772
182773
182774
182775
182776
182777
182778
182779
182780
182781
182782
182783
182784
182785
182786
182787
182788
182789

182790
182791
182792
182793
182794
182795
182796
182797
182798
182799
182800

182801
182802
182803
182804
182805
182806
182807
182808
182809

182810
182811
182812
182813
182814
182815
182816
182817
182818
182819
182820
182821
182822

182823
182824
182825
182826
182827
182828
182829
**  fts5yy_shift_ofst[]    For each state, the offset into fts5yy_action for
**                     shifting terminals.
**  fts5yy_reduce_ofst[]   For each state, the offset into fts5yy_action for
**                     shifting non-terminals after a reduce.
**  fts5yy_default[]       Default action for each state.
**
*********** Begin parsing tables **********************************************/
#define fts5YY_ACTTAB_COUNT (85)
static const fts5YYACTIONTYPE fts5yy_action[] = {
 /*     0 */    98,   16,   51,    5,   53,   27,   83,    7,   26,   15,
 /*    10 */    51,    5,   53,   27,   13,   69,   26,   48,   51,    5,
 /*    20 */    53,   27,   19,   11,   26,    9,   20,   51,    5,   53,
 /*    30 */    27,   13,   22,   26,   28,   51,    5,   53,   27,   68,
 /*    40 */     1,   26,   19,   11,   17,    9,   52,   10,   53,   27,
 /*    50 */    23,   24,   26,   54,    3,    4,    2,   26,    6,   21,
 /*    60 */    49,   71,    3,    4,    2,    7,   56,   59,   55,   59,
 /*    70 */     4,    2,   12,   69,   58,   60,   18,   67,   62,   69,
 /*    80 */    25,   66,    8,   14,    2,

};
static const fts5YYCODETYPE fts5yy_lookahead[] = {
 /*     0 */    16,   17,   18,   19,   20,   21,    5,    6,   24,   17,
 /*    10 */    18,   19,   20,   21,   11,   14,   24,   17,   18,   19,
 /*    20 */    20,   21,    8,    9,   24,   11,   17,   18,   19,   20,
 /*    30 */    21,   11,   12,   24,   17,   18,   19,   20,   21,   26,
 /*    40 */     6,   24,    8,    9,   22,   11,   18,   11,   20,   21,
 /*    50 */    24,   25,   24,   20,    1,    2,    3,   24,   23,   24,
 /*    60 */     7,    0,    1,    2,    3,    6,   10,   11,   10,   11,
 /*    70 */     2,    3,    9,   14,   11,   11,   22,   26,    7,   14,
 /*    80 */    13,   11,    5,   11,    3,

};
#define fts5YY_SHIFT_USE_DFLT (85)
#define fts5YY_SHIFT_COUNT    (28)
#define fts5YY_SHIFT_MIN      (0)
#define fts5YY_SHIFT_MAX      (81)
static const unsigned char fts5yy_shift_ofst[] = {
 /*     0 */    34,   34,   34,   34,   34,   14,   20,    3,   36,    1,
 /*    10 */    59,   64,   64,   65,   65,   53,   61,   56,   58,   63,
 /*    20 */    68,   67,   70,   67,   71,   72,   67,   77,   81,

};
#define fts5YY_REDUCE_USE_DFLT (-17)
#define fts5YY_REDUCE_COUNT (14)
#define fts5YY_REDUCE_MIN   (-16)
#define fts5YY_REDUCE_MAX   (54)
static const signed char fts5yy_reduce_ofst[] = {
 /*     0 */   -16,   -8,    0,    9,   17,   28,   26,   35,   33,   13,
 /*    10 */    13,   22,   54,   13,   51,
};
static const fts5YYACTIONTYPE fts5yy_default[] = {
 /*     0 */    97,   97,   97,   97,   97,   76,   91,   97,   97,   96,
 /*    10 */    96,   97,   97,   96,   96,   97,   97,   97,   97,   97,
 /*    20 */    73,   89,   97,   90,   97,   97,   87,   97,   72,

};
/********** End of lemon-generated parsing tables *****************************/

/* The next table maps tokens (terminal symbols) into fallback tokens.  
** If a construct like the following:
** 
**      %fallback ID X Y Z.







|

|
|
|
|
|
|
|
|
|
>


|
|
|
|
|
|
|
|
|
>

|
|

|

|
|
|
>

|
|
|
|

|
|


|
|
|
>







183414
183415
183416
183417
183418
183419
183420
183421
183422
183423
183424
183425
183426
183427
183428
183429
183430
183431
183432
183433
183434
183435
183436
183437
183438
183439
183440
183441
183442
183443
183444
183445
183446
183447
183448
183449
183450
183451
183452
183453
183454
183455
183456
183457
183458
183459
183460
183461
183462
183463
183464
183465
183466
183467
183468
183469
183470
183471
183472
183473
183474
183475
**  fts5yy_shift_ofst[]    For each state, the offset into fts5yy_action for
**                     shifting terminals.
**  fts5yy_reduce_ofst[]   For each state, the offset into fts5yy_action for
**                     shifting non-terminals after a reduce.
**  fts5yy_default[]       Default action for each state.
**
*********** Begin parsing tables **********************************************/
#define fts5YY_ACTTAB_COUNT (98)
static const fts5YYACTIONTYPE fts5yy_action[] = {
 /*     0 */   105,   19,   63,    6,   26,   66,   65,   24,   24,   17,
 /*    10 */    63,    6,   26,   16,   65,   54,   24,   18,   63,    6,
 /*    20 */    26,   10,   65,   12,   24,   75,   59,   63,    6,   26,
 /*    30 */    13,   65,   75,   24,   20,   63,    6,   26,   74,   65,
 /*    40 */    56,   24,   27,   63,    6,   26,   73,   65,   21,   24,
 /*    50 */    23,   15,   30,   11,    1,   64,   22,   25,    9,   65,
 /*    60 */     7,   24,    3,    4,    5,    3,    4,    5,    3,   77,
 /*    70 */     4,    5,    3,   61,   23,   15,   60,   11,   80,   12,
 /*    80 */     2,   13,   68,   10,   29,   52,   55,   75,   31,   32,
 /*    90 */     8,   28,    5,    3,   51,   55,   72,   14,
};
static const fts5YYCODETYPE fts5yy_lookahead[] = {
 /*     0 */    16,   17,   18,   19,   20,   22,   22,   24,   24,   17,
 /*    10 */    18,   19,   20,    7,   22,    9,   24,   17,   18,   19,
 /*    20 */    20,   10,   22,    9,   24,   14,   17,   18,   19,   20,
 /*    30 */     9,   22,   14,   24,   17,   18,   19,   20,   26,   22,
 /*    40 */     9,   24,   17,   18,   19,   20,   26,   22,   21,   24,
 /*    50 */     6,    7,   13,    9,   10,   18,   21,   20,    5,   22,
 /*    60 */     5,   24,    3,    1,    2,    3,    1,    2,    3,    0,
 /*    70 */     1,    2,    3,   11,    6,    7,   11,    9,    5,    9,
 /*    80 */    10,    9,   11,   10,   12,    8,    9,   14,   24,   25,
 /*    90 */    23,   24,    2,    3,    8,    9,    9,    9,
};
#define fts5YY_SHIFT_USE_DFLT (98)
#define fts5YY_SHIFT_COUNT    (32)
#define fts5YY_SHIFT_MIN      (0)
#define fts5YY_SHIFT_MAX      (90)
static const unsigned char fts5yy_shift_ofst[] = {
 /*     0 */    44,   44,   44,   44,   44,   44,   68,   70,   72,   14,
 /*    10 */    21,   73,   11,   18,   18,   31,   31,   62,   65,   69,
 /*    20 */    90,   77,   86,    6,   39,   53,   55,   59,   39,   87,
 /*    30 */    88,   39,   71,
};
#define fts5YY_REDUCE_USE_DFLT (-18)
#define fts5YY_REDUCE_COUNT (16)
#define fts5YY_REDUCE_MIN   (-17)
#define fts5YY_REDUCE_MAX   (67)
static const signed char fts5yy_reduce_ofst[] = {
 /*     0 */   -16,   -8,    0,    9,   17,   25,   37,  -17,   64,  -17,
 /*    10 */    67,   12,   12,   12,   20,   27,   35,
};
static const fts5YYACTIONTYPE fts5yy_default[] = {
 /*     0 */   104,  104,  104,  104,  104,  104,   89,  104,   98,  104,
 /*    10 */   104,  103,  103,  103,  103,  104,  104,  104,  104,  104,
 /*    20 */    85,  104,  104,  104,   94,  104,  104,   84,   96,  104,
 /*    30 */   104,   97,  104,
};
/********** End of lemon-generated parsing tables *****************************/

/* The next table maps tokens (terminal symbols) into fallback tokens.  
** If a construct like the following:
** 
**      %fallback ID X Y Z.
182921
182922
182923
182924
182925
182926
182927
182928
182929
182930
182931
182932
182933
182934
182935
182936
182937
182938
182939
182940
182941






182942
182943
182944

182945
182946
182947
182948
182949
182950
182951
182952
182953
182954
182955
182956
182957
182958
182959
182960
182961
182962
182963
182964
182965
182966
182967
182968
182969
182970
182971
182972
182973
#endif /* NDEBUG */

#ifndef NDEBUG
/* For tracing shifts, the names of all terminals and nonterminals
** are required.  The following table supplies these names */
static const char *const fts5yyTokenName[] = { 
  "$",             "OR",            "AND",           "NOT",         
  "TERM",          "COLON",         "LP",            "RP",          
  "MINUS",         "LCP",           "RCP",           "STRING",      
  "COMMA",         "PLUS",          "STAR",          "error",       
  "input",         "expr",          "cnearset",      "exprlist",    
  "nearset",       "colset",        "colsetlist",    "nearphrases", 
  "phrase",        "neardist_opt",  "star_opt",    
};
#endif /* NDEBUG */

#ifndef NDEBUG
/* For tracing reduce actions, the names of all rules are required.
*/
static const char *const fts5yyRuleName[] = {
 /*   0 */ "input ::= expr",






 /*   1 */ "expr ::= expr AND expr",
 /*   2 */ "expr ::= expr OR expr",
 /*   3 */ "expr ::= expr NOT expr",

 /*   4 */ "expr ::= LP expr RP",
 /*   5 */ "expr ::= exprlist",
 /*   6 */ "exprlist ::= cnearset",
 /*   7 */ "exprlist ::= exprlist cnearset",
 /*   8 */ "cnearset ::= nearset",
 /*   9 */ "cnearset ::= colset COLON nearset",
 /*  10 */ "colset ::= MINUS LCP colsetlist RCP",
 /*  11 */ "colset ::= LCP colsetlist RCP",
 /*  12 */ "colset ::= STRING",
 /*  13 */ "colset ::= MINUS STRING",
 /*  14 */ "colsetlist ::= colsetlist STRING",
 /*  15 */ "colsetlist ::= STRING",
 /*  16 */ "nearset ::= phrase",
 /*  17 */ "nearset ::= STRING LP nearphrases neardist_opt RP",
 /*  18 */ "nearphrases ::= phrase",
 /*  19 */ "nearphrases ::= nearphrases phrase",
 /*  20 */ "neardist_opt ::=",
 /*  21 */ "neardist_opt ::= COMMA STRING",
 /*  22 */ "phrase ::= phrase PLUS STRING star_opt",
 /*  23 */ "phrase ::= STRING star_opt",
 /*  24 */ "star_opt ::= STAR",
 /*  25 */ "star_opt ::=",
};
#endif /* NDEBUG */


#if fts5YYSTACKDEPTH<=0
/*
** Try to increase the size of the parser stack.  Return the number







|
|


|









>
>
>
>
>
>
|
|
|
>
|
|
|
|
|
|
<
<
<
<
<
<
|
|
|
|
|
|
|
|
|
|







183567
183568
183569
183570
183571
183572
183573
183574
183575
183576
183577
183578
183579
183580
183581
183582
183583
183584
183585
183586
183587
183588
183589
183590
183591
183592
183593
183594
183595
183596
183597
183598
183599
183600
183601
183602
183603






183604
183605
183606
183607
183608
183609
183610
183611
183612
183613
183614
183615
183616
183617
183618
183619
183620
#endif /* NDEBUG */

#ifndef NDEBUG
/* For tracing shifts, the names of all terminals and nonterminals
** are required.  The following table supplies these names */
static const char *const fts5yyTokenName[] = { 
  "$",             "OR",            "AND",           "NOT",         
  "TERM",          "COLON",         "MINUS",         "LCP",         
  "RCP",           "STRING",        "LP",            "RP",          
  "COMMA",         "PLUS",          "STAR",          "error",       
  "input",         "expr",          "cnearset",      "exprlist",    
  "colset",        "colsetlist",    "nearset",       "nearphrases", 
  "phrase",        "neardist_opt",  "star_opt",    
};
#endif /* NDEBUG */

#ifndef NDEBUG
/* For tracing reduce actions, the names of all rules are required.
*/
static const char *const fts5yyRuleName[] = {
 /*   0 */ "input ::= expr",
 /*   1 */ "colset ::= MINUS LCP colsetlist RCP",
 /*   2 */ "colset ::= LCP colsetlist RCP",
 /*   3 */ "colset ::= STRING",
 /*   4 */ "colset ::= MINUS STRING",
 /*   5 */ "colsetlist ::= colsetlist STRING",
 /*   6 */ "colsetlist ::= STRING",
 /*   7 */ "expr ::= expr AND expr",
 /*   8 */ "expr ::= expr OR expr",
 /*   9 */ "expr ::= expr NOT expr",
 /*  10 */ "expr ::= colset COLON LP expr RP",
 /*  11 */ "expr ::= LP expr RP",
 /*  12 */ "expr ::= exprlist",
 /*  13 */ "exprlist ::= cnearset",
 /*  14 */ "exprlist ::= exprlist cnearset",
 /*  15 */ "cnearset ::= nearset",
 /*  16 */ "cnearset ::= colset COLON nearset",






 /*  17 */ "nearset ::= phrase",
 /*  18 */ "nearset ::= STRING LP nearphrases neardist_opt RP",
 /*  19 */ "nearphrases ::= phrase",
 /*  20 */ "nearphrases ::= nearphrases phrase",
 /*  21 */ "neardist_opt ::=",
 /*  22 */ "neardist_opt ::= COMMA STRING",
 /*  23 */ "phrase ::= phrase PLUS STRING star_opt",
 /*  24 */ "phrase ::= STRING star_opt",
 /*  25 */ "star_opt ::= STAR",
 /*  26 */ "star_opt ::=",
};
#endif /* NDEBUG */


#if fts5YYSTACKDEPTH<=0
/*
** Try to increase the size of the parser stack.  Return the number
183089
183090
183091
183092
183093
183094
183095
183096






183097
183098
183099
183100
183101
183102
183103
183104
183105
183106
183107
183108
183109
183110
183111
183112
183113
    case 17: /* expr */
    case 18: /* cnearset */
    case 19: /* exprlist */
{
 sqlite3Fts5ParseNodeFree((fts5yypminor->fts5yy24)); 
}
      break;
    case 20: /* nearset */






    case 23: /* nearphrases */
{
 sqlite3Fts5ParseNearsetFree((fts5yypminor->fts5yy46)); 
}
      break;
    case 21: /* colset */
    case 22: /* colsetlist */
{
 sqlite3_free((fts5yypminor->fts5yy11)); 
}
      break;
    case 24: /* phrase */
{
 sqlite3Fts5ParsePhraseFree((fts5yypminor->fts5yy53)); 
}
      break;
/********* End destructor definitions *****************************************/







|
>
>
>
>
>
>




<
<
<
<
<
<







183736
183737
183738
183739
183740
183741
183742
183743
183744
183745
183746
183747
183748
183749
183750
183751
183752
183753






183754
183755
183756
183757
183758
183759
183760
    case 17: /* expr */
    case 18: /* cnearset */
    case 19: /* exprlist */
{
 sqlite3Fts5ParseNodeFree((fts5yypminor->fts5yy24)); 
}
      break;
    case 20: /* colset */
    case 21: /* colsetlist */
{
 sqlite3_free((fts5yypminor->fts5yy11)); 
}
      break;
    case 22: /* nearset */
    case 23: /* nearphrases */
{
 sqlite3Fts5ParseNearsetFree((fts5yypminor->fts5yy46)); 
}






      break;
    case 24: /* phrase */
{
 sqlite3Fts5ParsePhraseFree((fts5yypminor->fts5yy53)); 
}
      break;
/********* End destructor definitions *****************************************/
183358
183359
183360
183361
183362
183363
183364






183365
183366
183367

183368
183369
183370
183371
183372
183373
183374
183375
183376
183377
183378
183379
183380
183381
183382
183383
183384
183385
183386
183387
183388
** is used during the reduce.
*/
static const struct {
  fts5YYCODETYPE lhs;         /* Symbol on the left-hand side of the rule */
  unsigned char nrhs;     /* Number of right-hand side symbols in the rule */
} fts5yyRuleInfo[] = {
  { 16, 1 },






  { 17, 3 },
  { 17, 3 },
  { 17, 3 },

  { 17, 3 },
  { 17, 1 },
  { 19, 1 },
  { 19, 2 },
  { 18, 1 },
  { 18, 3 },
  { 21, 4 },
  { 21, 3 },
  { 21, 1 },
  { 21, 2 },
  { 22, 2 },
  { 22, 1 },
  { 20, 1 },
  { 20, 5 },
  { 23, 1 },
  { 23, 2 },
  { 25, 0 },
  { 25, 2 },
  { 24, 4 },
  { 24, 2 },
  { 26, 1 },







>
>
>
>
>
>



>






<
<
<
<
<

<
|







184005
184006
184007
184008
184009
184010
184011
184012
184013
184014
184015
184016
184017
184018
184019
184020
184021
184022
184023
184024
184025
184026
184027





184028

184029
184030
184031
184032
184033
184034
184035
184036
** is used during the reduce.
*/
static const struct {
  fts5YYCODETYPE lhs;         /* Symbol on the left-hand side of the rule */
  unsigned char nrhs;     /* Number of right-hand side symbols in the rule */
} fts5yyRuleInfo[] = {
  { 16, 1 },
  { 20, 4 },
  { 20, 3 },
  { 20, 1 },
  { 20, 2 },
  { 21, 2 },
  { 21, 1 },
  { 17, 3 },
  { 17, 3 },
  { 17, 3 },
  { 17, 5 },
  { 17, 3 },
  { 17, 1 },
  { 19, 1 },
  { 19, 2 },
  { 18, 1 },
  { 18, 3 },





  { 22, 1 },

  { 22, 5 },
  { 23, 1 },
  { 23, 2 },
  { 25, 0 },
  { 25, 2 },
  { 24, 4 },
  { 24, 2 },
  { 26, 1 },
183449
183450
183451
183452
183453
183454
183455































183456
183457
183458
183459
183460
183461
183462
183463
183464
183465
183466
183467
183468
183469
183470
183471
183472
183473







183474
183475
183476
183477
183478
183479
183480
183481
183482
183483
183484
183485
183486
183487
183488
183489
183490
183491
183492
183493
183494
183495
183496
183497

183498
183499
183500
183501
183502
183503
183504
183505
183506
183507
183508
183509
183510
183511
183512
183513
183514
183515
183516
183517
183518
183519
183520
183521
183522
183523
183524
183525
183526
183527
183528
183529
183530
183531
183532
183533
183534
183535
183536
183537
183538
183539
183540
183541
183542
183543
183544
183545
183546
183547
183548
183549
183550
183551
183552
183553
183554
183555
183556
183557
183558
183559
183560
183561
183562
183563
183564
183565
183566
183567
183568
183569
183570
183571
183572
183573
183574
183575
183576
183577
183578
183579
183580
183581
183582
183583
183584
  **     break;
  */
/********** Begin reduce actions **********************************************/
        fts5YYMINORTYPE fts5yylhsminor;
      case 0: /* input ::= expr */
{ sqlite3Fts5ParseFinished(pParse, fts5yymsp[0].minor.fts5yy24); }
        break;































      case 1: /* expr ::= expr AND expr */
{
  fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_AND, fts5yymsp[-2].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24, 0);
}
  fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;
      case 2: /* expr ::= expr OR expr */
{
  fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_OR, fts5yymsp[-2].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24, 0);
}
  fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;
      case 3: /* expr ::= expr NOT expr */
{
  fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_NOT, fts5yymsp[-2].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24, 0);
}
  fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;







      case 4: /* expr ::= LP expr RP */
{fts5yymsp[-2].minor.fts5yy24 = fts5yymsp[-1].minor.fts5yy24;}
        break;
      case 5: /* expr ::= exprlist */
      case 6: /* exprlist ::= cnearset */ fts5yytestcase(fts5yyruleno==6);
{fts5yylhsminor.fts5yy24 = fts5yymsp[0].minor.fts5yy24;}
  fts5yymsp[0].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;
      case 7: /* exprlist ::= exprlist cnearset */
{
  fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseImplicitAnd(pParse, fts5yymsp[-1].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24);
}
  fts5yymsp[-1].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;
      case 8: /* cnearset ::= nearset */
{ 
  fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy46); 
}
  fts5yymsp[0].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;
      case 9: /* cnearset ::= colset COLON nearset */
{ 
  sqlite3Fts5ParseSetColset(pParse, fts5yymsp[0].minor.fts5yy46, fts5yymsp[-2].minor.fts5yy11);
  fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy46); 

}
  fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;
      case 10: /* colset ::= MINUS LCP colsetlist RCP */
{ 
    fts5yymsp[-3].minor.fts5yy11 = sqlite3Fts5ParseColsetInvert(pParse, fts5yymsp[-1].minor.fts5yy11);
}
        break;
      case 11: /* colset ::= LCP colsetlist RCP */
{ fts5yymsp[-2].minor.fts5yy11 = fts5yymsp[-1].minor.fts5yy11; }
        break;
      case 12: /* colset ::= STRING */
{
  fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
}
  fts5yymsp[0].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
        break;
      case 13: /* colset ::= MINUS STRING */
{
  fts5yymsp[-1].minor.fts5yy11 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
  fts5yymsp[-1].minor.fts5yy11 = sqlite3Fts5ParseColsetInvert(pParse, fts5yymsp[-1].minor.fts5yy11);
}
        break;
      case 14: /* colsetlist ::= colsetlist STRING */
{ 
  fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseColset(pParse, fts5yymsp[-1].minor.fts5yy11, &fts5yymsp[0].minor.fts5yy0); }
  fts5yymsp[-1].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
        break;
      case 15: /* colsetlist ::= STRING */
{ 
  fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0); 
}
  fts5yymsp[0].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
        break;
      case 16: /* nearset ::= phrase */
{ fts5yylhsminor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy53); }
  fts5yymsp[0].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
        break;
      case 17: /* nearset ::= STRING LP nearphrases neardist_opt RP */
{
  sqlite3Fts5ParseNear(pParse, &fts5yymsp[-4].minor.fts5yy0);
  sqlite3Fts5ParseSetDistance(pParse, fts5yymsp[-2].minor.fts5yy46, &fts5yymsp[-1].minor.fts5yy0);
  fts5yylhsminor.fts5yy46 = fts5yymsp[-2].minor.fts5yy46;
}
  fts5yymsp[-4].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
        break;
      case 18: /* nearphrases ::= phrase */
{ 
  fts5yylhsminor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy53); 
}
  fts5yymsp[0].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
        break;
      case 19: /* nearphrases ::= nearphrases phrase */
{
  fts5yylhsminor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, fts5yymsp[-1].minor.fts5yy46, fts5yymsp[0].minor.fts5yy53);
}
  fts5yymsp[-1].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
        break;
      case 20: /* neardist_opt ::= */
{ fts5yymsp[1].minor.fts5yy0.p = 0; fts5yymsp[1].minor.fts5yy0.n = 0; }
        break;
      case 21: /* neardist_opt ::= COMMA STRING */
{ fts5yymsp[-1].minor.fts5yy0 = fts5yymsp[0].minor.fts5yy0; }
        break;
      case 22: /* phrase ::= phrase PLUS STRING star_opt */
{ 
  fts5yylhsminor.fts5yy53 = sqlite3Fts5ParseTerm(pParse, fts5yymsp[-3].minor.fts5yy53, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy4);
}
  fts5yymsp[-3].minor.fts5yy53 = fts5yylhsminor.fts5yy53;
        break;
      case 23: /* phrase ::= STRING star_opt */
{ 
  fts5yylhsminor.fts5yy53 = sqlite3Fts5ParseTerm(pParse, 0, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy4);
}
  fts5yymsp[-1].minor.fts5yy53 = fts5yylhsminor.fts5yy53;
        break;
      case 24: /* star_opt ::= STAR */
{ fts5yymsp[0].minor.fts5yy4 = 1; }
        break;
      case 25: /* star_opt ::= */
{ fts5yymsp[1].minor.fts5yy4 = 0; }
        break;
      default:
        break;
/********** End reduce actions ************************************************/
  };
  assert( fts5yyruleno<sizeof(fts5yyRuleInfo)/sizeof(fts5yyRuleInfo[0]) );







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|





|





|





>
>
>
>
>
>
>
|


|
|



|





|





|

<

>



<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|



|







|





|





|


|


|





|





|


|







184097
184098
184099
184100
184101
184102
184103
184104
184105
184106
184107
184108
184109
184110
184111
184112
184113
184114
184115
184116
184117
184118
184119
184120
184121
184122
184123
184124
184125
184126
184127
184128
184129
184130
184131
184132
184133
184134
184135
184136
184137
184138
184139
184140
184141
184142
184143
184144
184145
184146
184147
184148
184149
184150
184151
184152
184153
184154
184155
184156
184157
184158
184159
184160
184161
184162
184163
184164
184165
184166
184167
184168
184169
184170
184171
184172
184173
184174
184175
184176
184177
184178
184179
184180
184181

184182
184183
184184
184185
184186































184187
184188
184189
184190
184191
184192
184193
184194
184195
184196
184197
184198
184199
184200
184201
184202
184203
184204
184205
184206
184207
184208
184209
184210
184211
184212
184213
184214
184215
184216
184217
184218
184219
184220
184221
184222
184223
184224
184225
184226
184227
184228
184229
184230
184231
184232
184233
184234
184235
184236
184237
184238
184239
  **     break;
  */
/********** Begin reduce actions **********************************************/
        fts5YYMINORTYPE fts5yylhsminor;
      case 0: /* input ::= expr */
{ sqlite3Fts5ParseFinished(pParse, fts5yymsp[0].minor.fts5yy24); }
        break;
      case 1: /* colset ::= MINUS LCP colsetlist RCP */
{ 
    fts5yymsp[-3].minor.fts5yy11 = sqlite3Fts5ParseColsetInvert(pParse, fts5yymsp[-1].minor.fts5yy11);
}
        break;
      case 2: /* colset ::= LCP colsetlist RCP */
{ fts5yymsp[-2].minor.fts5yy11 = fts5yymsp[-1].minor.fts5yy11; }
        break;
      case 3: /* colset ::= STRING */
{
  fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
}
  fts5yymsp[0].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
        break;
      case 4: /* colset ::= MINUS STRING */
{
  fts5yymsp[-1].minor.fts5yy11 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
  fts5yymsp[-1].minor.fts5yy11 = sqlite3Fts5ParseColsetInvert(pParse, fts5yymsp[-1].minor.fts5yy11);
}
        break;
      case 5: /* colsetlist ::= colsetlist STRING */
{ 
  fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseColset(pParse, fts5yymsp[-1].minor.fts5yy11, &fts5yymsp[0].minor.fts5yy0); }
  fts5yymsp[-1].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
        break;
      case 6: /* colsetlist ::= STRING */
{ 
  fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0); 
}
  fts5yymsp[0].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
        break;
      case 7: /* expr ::= expr AND expr */
{
  fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_AND, fts5yymsp[-2].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24, 0);
}
  fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;
      case 8: /* expr ::= expr OR expr */
{
  fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_OR, fts5yymsp[-2].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24, 0);
}
  fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;
      case 9: /* expr ::= expr NOT expr */
{
  fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_NOT, fts5yymsp[-2].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24, 0);
}
  fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;
      case 10: /* expr ::= colset COLON LP expr RP */
{
  sqlite3Fts5ParseSetColset(pParse, fts5yymsp[-1].minor.fts5yy24, fts5yymsp[-4].minor.fts5yy11);
  fts5yylhsminor.fts5yy24 = fts5yymsp[-1].minor.fts5yy24;
}
  fts5yymsp[-4].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;
      case 11: /* expr ::= LP expr RP */
{fts5yymsp[-2].minor.fts5yy24 = fts5yymsp[-1].minor.fts5yy24;}
        break;
      case 12: /* expr ::= exprlist */
      case 13: /* exprlist ::= cnearset */ fts5yytestcase(fts5yyruleno==13);
{fts5yylhsminor.fts5yy24 = fts5yymsp[0].minor.fts5yy24;}
  fts5yymsp[0].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;
      case 14: /* exprlist ::= exprlist cnearset */
{
  fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseImplicitAnd(pParse, fts5yymsp[-1].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24);
}
  fts5yymsp[-1].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;
      case 15: /* cnearset ::= nearset */
{ 
  fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy46); 
}
  fts5yymsp[0].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;
      case 16: /* cnearset ::= colset COLON nearset */
{ 

  fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy46); 
  sqlite3Fts5ParseSetColset(pParse, fts5yylhsminor.fts5yy24, fts5yymsp[-2].minor.fts5yy11);
}
  fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
        break;































      case 17: /* nearset ::= phrase */
{ fts5yylhsminor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy53); }
  fts5yymsp[0].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
        break;
      case 18: /* nearset ::= STRING LP nearphrases neardist_opt RP */
{
  sqlite3Fts5ParseNear(pParse, &fts5yymsp[-4].minor.fts5yy0);
  sqlite3Fts5ParseSetDistance(pParse, fts5yymsp[-2].minor.fts5yy46, &fts5yymsp[-1].minor.fts5yy0);
  fts5yylhsminor.fts5yy46 = fts5yymsp[-2].minor.fts5yy46;
}
  fts5yymsp[-4].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
        break;
      case 19: /* nearphrases ::= phrase */
{ 
  fts5yylhsminor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy53); 
}
  fts5yymsp[0].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
        break;
      case 20: /* nearphrases ::= nearphrases phrase */
{
  fts5yylhsminor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, fts5yymsp[-1].minor.fts5yy46, fts5yymsp[0].minor.fts5yy53);
}
  fts5yymsp[-1].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
        break;
      case 21: /* neardist_opt ::= */
{ fts5yymsp[1].minor.fts5yy0.p = 0; fts5yymsp[1].minor.fts5yy0.n = 0; }
        break;
      case 22: /* neardist_opt ::= COMMA STRING */
{ fts5yymsp[-1].minor.fts5yy0 = fts5yymsp[0].minor.fts5yy0; }
        break;
      case 23: /* phrase ::= phrase PLUS STRING star_opt */
{ 
  fts5yylhsminor.fts5yy53 = sqlite3Fts5ParseTerm(pParse, fts5yymsp[-3].minor.fts5yy53, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy4);
}
  fts5yymsp[-3].minor.fts5yy53 = fts5yylhsminor.fts5yy53;
        break;
      case 24: /* phrase ::= STRING star_opt */
{ 
  fts5yylhsminor.fts5yy53 = sqlite3Fts5ParseTerm(pParse, 0, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy4);
}
  fts5yymsp[-1].minor.fts5yy53 = fts5yylhsminor.fts5yy53;
        break;
      case 25: /* star_opt ::= STAR */
{ fts5yymsp[0].minor.fts5yy4 = 1; }
        break;
      case 26: /* star_opt ::= */
{ fts5yymsp[1].minor.fts5yy4 = 0; }
        break;
      default:
        break;
/********** End reduce actions ************************************************/
  };
  assert( fts5yyruleno<sizeof(fts5yyRuleInfo)/sizeof(fts5yyRuleInfo[0]) );
184612
184613
184614
184615
184616
184617
184618

184619
184620
184621

184622
184623
184624
184625
184626
184627
184628
static void sqlite3Fts5BufferAppendBlob(
  int *pRc,
  Fts5Buffer *pBuf, 
  u32 nData, 
  const u8 *pData
){
  assert_nc( *pRc || nData>=0 );

  if( fts5BufferGrow(pRc, pBuf, nData) ) return;
  memcpy(&pBuf->p[pBuf->n], pData, nData);
  pBuf->n += nData;

}

/*
** Append the nul-terminated string zStr to the buffer pBuf. This function
** ensures that the byte following the buffer data is set to 0x00, even 
** though this byte is not included in the pBuf->n count.
*/







>
|
|
|
>







185267
185268
185269
185270
185271
185272
185273
185274
185275
185276
185277
185278
185279
185280
185281
185282
185283
185284
185285
static void sqlite3Fts5BufferAppendBlob(
  int *pRc,
  Fts5Buffer *pBuf, 
  u32 nData, 
  const u8 *pData
){
  assert_nc( *pRc || nData>=0 );
  if( nData ){
    if( fts5BufferGrow(pRc, pBuf, nData) ) return;
    memcpy(&pBuf->p[pBuf->n], pData, nData);
    pBuf->n += nData;
  }
}

/*
** Append the nul-terminated string zStr to the buffer pBuf. This function
** ensures that the byte following the buffer data is set to 0x00, even 
** though this byte is not included in the pBuf->n count.
*/
184791
184792
184793
184794
184795
184796
184797
184798
184799
184800
184801
184802
184803
184804
184805
184806
  return SQLITE_OK;
}

static void *sqlite3Fts5MallocZero(int *pRc, int nByte){
  void *pRet = 0;
  if( *pRc==SQLITE_OK ){
    pRet = sqlite3_malloc(nByte);
    if( pRet==0 && nByte>0 ){
      *pRc = SQLITE_NOMEM;
    }else{
      memset(pRet, 0, nByte);
    }
  }
  return pRet;
}








|
|







185448
185449
185450
185451
185452
185453
185454
185455
185456
185457
185458
185459
185460
185461
185462
185463
  return SQLITE_OK;
}

static void *sqlite3Fts5MallocZero(int *pRc, int nByte){
  void *pRet = 0;
  if( *pRc==SQLITE_OK ){
    pRet = sqlite3_malloc(nByte);
    if( pRet==0 ){
      if( nByte>0 ) *pRc = SQLITE_NOMEM;
    }else{
      memset(pRet, 0, nByte);
    }
  }
  return pRet;
}

186113
186114
186115
186116
186117
186118
186119

186120
186121
186122
186123
186124
186125
186126
}

static void *fts5ParseAlloc(u64 t){ return sqlite3_malloc((int)t); }
static void fts5ParseFree(void *p){ sqlite3_free(p); }

static int sqlite3Fts5ExprNew(
  Fts5Config *pConfig,            /* FTS5 Configuration */

  const char *zExpr,              /* Expression text */
  Fts5Expr **ppNew, 
  char **pzErr
){
  Fts5Parse sParse;
  Fts5Token token;
  const char *z = zExpr;







>







186770
186771
186772
186773
186774
186775
186776
186777
186778
186779
186780
186781
186782
186783
186784
}

static void *fts5ParseAlloc(u64 t){ return sqlite3_malloc((int)t); }
static void fts5ParseFree(void *p){ sqlite3_free(p); }

static int sqlite3Fts5ExprNew(
  Fts5Config *pConfig,            /* FTS5 Configuration */
  int iCol,
  const char *zExpr,              /* Expression text */
  Fts5Expr **ppNew, 
  char **pzErr
){
  Fts5Parse sParse;
  Fts5Token token;
  const char *z = zExpr;
186136
186137
186138
186139
186140
186141
186142












186143
186144
186145
186146
186147
186148
186149
  sParse.pConfig = pConfig;

  do {
    t = fts5ExprGetToken(&sParse, &z, &token);
    sqlite3Fts5Parser(pEngine, t, token, &sParse);
  }while( sParse.rc==SQLITE_OK && t!=FTS5_EOF );
  sqlite3Fts5ParserFree(pEngine, fts5ParseFree);













  assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
  if( sParse.rc==SQLITE_OK ){
    *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
    if( pNew==0 ){
      sParse.rc = SQLITE_NOMEM;
      sqlite3Fts5ParseNodeFree(sParse.pExpr);







>
>
>
>
>
>
>
>
>
>
>
>







186794
186795
186796
186797
186798
186799
186800
186801
186802
186803
186804
186805
186806
186807
186808
186809
186810
186811
186812
186813
186814
186815
186816
186817
186818
186819
  sParse.pConfig = pConfig;

  do {
    t = fts5ExprGetToken(&sParse, &z, &token);
    sqlite3Fts5Parser(pEngine, t, token, &sParse);
  }while( sParse.rc==SQLITE_OK && t!=FTS5_EOF );
  sqlite3Fts5ParserFree(pEngine, fts5ParseFree);

  /* If the LHS of the MATCH expression was a user column, apply the
  ** implicit column-filter.  */
  if( iCol<pConfig->nCol && sParse.pExpr && sParse.rc==SQLITE_OK ){
    int n = sizeof(Fts5Colset);
    Fts5Colset *pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&sParse.rc, n);
    if( pColset ){
      pColset->nCol = 1;
      pColset->aiCol[0] = iCol;
      sqlite3Fts5ParseSetColset(&sParse, sParse.pExpr, pColset);
    }
  }

  assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
  if( sParse.rc==SQLITE_OK ){
    *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
    if( pNew==0 ){
      sParse.rc = SQLITE_NOMEM;
      sqlite3Fts5ParseNodeFree(sParse.pExpr);
187786
187787
187788
187789
187790
187791
187792

























































































187793
187794
187795
187796
187797

187798
187799
187800
187801
187802
187803
187804
187805

187806
187807
187808
187809
187810
187811
187812
187813
187814
187815
187816
187817
187818
    assert( pParse->rc!=SQLITE_OK );
    sqlite3_free(pColset);
  }

  return pRet;
}


























































































static void sqlite3Fts5ParseSetColset(
  Fts5Parse *pParse, 
  Fts5ExprNearset *pNear, 
  Fts5Colset *pColset 
){

  if( pParse->pConfig->eDetail==FTS5_DETAIL_NONE ){
    pParse->rc = SQLITE_ERROR;
    pParse->zErr = sqlite3_mprintf(
      "fts5: column queries are not supported (detail=none)"
    );
    sqlite3_free(pColset);
    return;
  }


  if( pNear ){
    pNear->pColset = pColset;
  }else{
    sqlite3_free(pColset);
  }
}

static void fts5ExprAssignXNext(Fts5ExprNode *pNode){
  switch( pNode->eType ){
    case FTS5_STRING: {
      Fts5ExprNearset *pNear = pNode->pNear;
      if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|


>





<
<
|
>
|
<
<
<
|
<







188456
188457
188458
188459
188460
188461
188462
188463
188464
188465
188466
188467
188468
188469
188470
188471
188472
188473
188474
188475
188476
188477
188478
188479
188480
188481
188482
188483
188484
188485
188486
188487
188488
188489
188490
188491
188492
188493
188494
188495
188496
188497
188498
188499
188500
188501
188502
188503
188504
188505
188506
188507
188508
188509
188510
188511
188512
188513
188514
188515
188516
188517
188518
188519
188520
188521
188522
188523
188524
188525
188526
188527
188528
188529
188530
188531
188532
188533
188534
188535
188536
188537
188538
188539
188540
188541
188542
188543
188544
188545
188546
188547
188548
188549
188550
188551
188552
188553
188554
188555
188556
188557
188558
188559
188560
188561
188562


188563
188564
188565



188566

188567
188568
188569
188570
188571
188572
188573
    assert( pParse->rc!=SQLITE_OK );
    sqlite3_free(pColset);
  }

  return pRet;
}

/*
** If argument pOrig is NULL, or if (*pRc) is set to anything other than
** SQLITE_OK when this function is called, NULL is returned. 
**
** Otherwise, a copy of (*pOrig) is made into memory obtained from
** sqlite3Fts5MallocZero() and a pointer to it returned. If the allocation
** fails, (*pRc) is set to SQLITE_NOMEM and NULL is returned.
*/
static Fts5Colset *fts5CloneColset(int *pRc, Fts5Colset *pOrig){
  Fts5Colset *pRet;
  if( pOrig ){
    int nByte = sizeof(Fts5Colset) + (pOrig->nCol-1) * sizeof(int);
    pRet = (Fts5Colset*)sqlite3Fts5MallocZero(pRc, nByte);
    if( pRet ){ 
      memcpy(pRet, pOrig, nByte);
    }
  }else{
    pRet = 0;
  }
  return pRet;
}

/*
** Remove from colset pColset any columns that are not also in colset pMerge.
*/
static void fts5MergeColset(Fts5Colset *pColset, Fts5Colset *pMerge){
  int iIn = 0;          /* Next input in pColset */
  int iMerge = 0;       /* Next input in pMerge */
  int iOut = 0;         /* Next output slot in pColset */

  while( iIn<pColset->nCol && iMerge<pMerge->nCol ){
    int iDiff = pColset->aiCol[iIn] - pMerge->aiCol[iMerge];
    if( iDiff==0 ){
      pColset->aiCol[iOut++] = pMerge->aiCol[iMerge];
      iMerge++;
      iIn++;
    }else if( iDiff>0 ){
      iMerge++;
    }else{
      iIn++;
    }
  }
  pColset->nCol = iOut;
}

/*
** Recursively apply colset pColset to expression node pNode and all of
** its decendents. If (*ppFree) is not NULL, it contains a spare copy
** of pColset. This function may use the spare copy and set (*ppFree) to
** zero, or it may create copies of pColset using fts5CloneColset().
*/
static void fts5ParseSetColset(
  Fts5Parse *pParse, 
  Fts5ExprNode *pNode, 
  Fts5Colset *pColset,
  Fts5Colset **ppFree
){
  if( pParse->rc==SQLITE_OK ){
    assert( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING 
         || pNode->eType==FTS5_AND  || pNode->eType==FTS5_OR
         || pNode->eType==FTS5_NOT  || pNode->eType==FTS5_EOF
    );
    if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
      Fts5ExprNearset *pNear = pNode->pNear;
      if( pNear->pColset ){
        fts5MergeColset(pNear->pColset, pColset);
        if( pNear->pColset->nCol==0 ){
          pNode->eType = FTS5_EOF;
          pNode->xNext = 0;
        }
      }else if( *ppFree ){
        pNear->pColset = pColset;
        *ppFree = 0;
      }else{
        pNear->pColset = fts5CloneColset(&pParse->rc, pColset);
      }
    }else{
      int i;
      assert( pNode->eType!=FTS5_EOF || pNode->nChild==0 );
      for(i=0; i<pNode->nChild; i++){
        fts5ParseSetColset(pParse, pNode->apChild[i], pColset, ppFree);
      }
    }
  }
}

/*
** Apply colset pColset to expression node pExpr and all of its descendents.
*/
static void sqlite3Fts5ParseSetColset(
  Fts5Parse *pParse, 
  Fts5ExprNode *pExpr, 
  Fts5Colset *pColset 
){
  Fts5Colset *pFree = pColset;
  if( pParse->pConfig->eDetail==FTS5_DETAIL_NONE ){
    pParse->rc = SQLITE_ERROR;
    pParse->zErr = sqlite3_mprintf(
      "fts5: column queries are not supported (detail=none)"
    );


  }else{
    fts5ParseSetColset(pParse, pExpr, pColset, &pFree);
  }



  sqlite3_free(pFree);

}

static void fts5ExprAssignXNext(Fts5ExprNode *pNode){
  switch( pNode->eType ){
    case FTS5_STRING: {
      Fts5ExprNearset *pNear = pNode->pNear;
      if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1 
188258
188259
188260
188261
188262
188263
188264
188265
188266
188267
188268
188269
188270
188271
188272
    azConfig[i++] = (const char*)sqlite3_value_text(apVal[iArg]);
  }

  zExpr = (const char*)sqlite3_value_text(apVal[0]);

  rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5ExprNew(pConfig, zExpr, &pExpr, &zErr);
  }
  if( rc==SQLITE_OK ){
    char *zText;
    if( pExpr->pRoot->xNext==0 ){
      zText = sqlite3_mprintf("");
    }else if( bTcl ){
      zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);







|







189013
189014
189015
189016
189017
189018
189019
189020
189021
189022
189023
189024
189025
189026
189027
    azConfig[i++] = (const char*)sqlite3_value_text(apVal[iArg]);
  }

  zExpr = (const char*)sqlite3_value_text(apVal[0]);

  rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5ExprNew(pConfig, pConfig->nCol, zExpr, &pExpr, &zErr);
  }
  if( rc==SQLITE_OK ){
    char *zText;
    if( pExpr->pRoot->xNext==0 ){
      zText = sqlite3_mprintf("");
    }else if( bTcl ){
      zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);
188655
188656
188657
188658
188659
188660
188661
188662
188663

188664
188665
188666
188667
188668
188669
188670
188671
  int nSlot;                      /* Size of aSlot[] array */
  Fts5HashEntry *pScan;           /* Current ordered scan item */
  Fts5HashEntry **aSlot;          /* Array of hash slots */
};

/*
** Each entry in the hash table is represented by an object of the 
** following type. Each object, its key (zKey[]) and its current data
** are stored in a single memory allocation. The position list data 

** immediately follows the key data in memory.
**
** The data that follows the key is in a similar, but not identical format
** to the doclist data stored in the database. It is:
**
**   * Rowid, as a varint
**   * Position list, without 0x00 terminator.
**   * Size of previous position list and rowid, as a 4 byte







|
|
>
|







189410
189411
189412
189413
189414
189415
189416
189417
189418
189419
189420
189421
189422
189423
189424
189425
189426
189427
  int nSlot;                      /* Size of aSlot[] array */
  Fts5HashEntry *pScan;           /* Current ordered scan item */
  Fts5HashEntry **aSlot;          /* Array of hash slots */
};

/*
** Each entry in the hash table is represented by an object of the 
** following type. Each object, its key (a nul-terminated string) and 
** its current data are stored in a single memory allocation. The 
** key immediately follows the object in memory. The position list
** data immediately follows the key data in memory.
**
** The data that follows the key is in a similar, but not identical format
** to the doclist data stored in the database. It is:
**
**   * Rowid, as a varint
**   * Position list, without 0x00 terminator.
**   * Size of previous position list and rowid, as a 4 byte
188681
188682
188683
188684
188685
188686
188687
188688
188689
188690
188691
188692
188693
188694
188695
188696
188697


188698
188699
188700
188701
188702
188703
188704
188705
188706
188707
188708
struct Fts5HashEntry {
  Fts5HashEntry *pHashNext;       /* Next hash entry with same hash-key */
  Fts5HashEntry *pScanNext;       /* Next entry in sorted order */
  
  int nAlloc;                     /* Total size of allocation */
  int iSzPoslist;                 /* Offset of space for 4-byte poslist size */
  int nData;                      /* Total bytes of data (incl. structure) */
  int nKey;                       /* Length of zKey[] in bytes */
  u8 bDel;                        /* Set delete-flag @ iSzPoslist */
  u8 bContent;                    /* Set content-flag (detail=none mode) */
  i16 iCol;                       /* Column of last value written */
  int iPos;                       /* Position of last value written */
  i64 iRowid;                     /* Rowid of last value written */
  char zKey[8];                   /* Nul-terminated entry key */
};

/*


** Size of Fts5HashEntry without the zKey[] array.
*/
#define FTS5_HASHENTRYSIZE (sizeof(Fts5HashEntry)-8)



/*
** Allocate a new hash table.
*/
static int sqlite3Fts5HashNew(Fts5Config *pConfig, Fts5Hash **ppNew, int *pnByte){
  int rc = SQLITE_OK;







|





<



>
>
|

<
|







189437
189438
189439
189440
189441
189442
189443
189444
189445
189446
189447
189448
189449

189450
189451
189452
189453
189454
189455
189456

189457
189458
189459
189460
189461
189462
189463
189464
struct Fts5HashEntry {
  Fts5HashEntry *pHashNext;       /* Next hash entry with same hash-key */
  Fts5HashEntry *pScanNext;       /* Next entry in sorted order */
  
  int nAlloc;                     /* Total size of allocation */
  int iSzPoslist;                 /* Offset of space for 4-byte poslist size */
  int nData;                      /* Total bytes of data (incl. structure) */
  int nKey;                       /* Length of key in bytes */
  u8 bDel;                        /* Set delete-flag @ iSzPoslist */
  u8 bContent;                    /* Set content-flag (detail=none mode) */
  i16 iCol;                       /* Column of last value written */
  int iPos;                       /* Position of last value written */
  i64 iRowid;                     /* Rowid of last value written */

};

/*
** Eqivalent to:
**
**   char *fts5EntryKey(Fts5HashEntry *pEntry){ return zKey; }
*/

#define fts5EntryKey(p) ( ((char *)(&(p)[1])) )


/*
** Allocate a new hash table.
*/
static int sqlite3Fts5HashNew(Fts5Config *pConfig, Fts5Hash **ppNew, int *pnByte){
  int rc = SQLITE_OK;
188792
188793
188794
188795
188796
188797
188798
188799
188800
188801
188802
188803
188804
188805
188806
  memset(apNew, 0, nNew*sizeof(Fts5HashEntry*));

  for(i=0; i<pHash->nSlot; i++){
    while( apOld[i] ){
      int iHash;
      Fts5HashEntry *p = apOld[i];
      apOld[i] = p->pHashNext;
      iHash = fts5HashKey(nNew, (u8*)p->zKey, (int)strlen(p->zKey));
      p->pHashNext = apNew[iHash];
      apNew[iHash] = p;
    }
  }

  sqlite3_free(apOld);
  pHash->nSlot = nNew;







|







189548
189549
189550
189551
189552
189553
189554
189555
189556
189557
189558
189559
189560
189561
189562
  memset(apNew, 0, nNew*sizeof(Fts5HashEntry*));

  for(i=0; i<pHash->nSlot; i++){
    while( apOld[i] ){
      int iHash;
      Fts5HashEntry *p = apOld[i];
      apOld[i] = p->pHashNext;
      iHash = fts5HashKey(nNew, (u8*)fts5EntryKey(p), strlen(fts5EntryKey(p)));
      p->pHashNext = apNew[iHash];
      apNew[iHash] = p;
    }
  }

  sqlite3_free(apOld);
  pHash->nSlot = nNew;
188863
188864
188865
188866
188867
188868
188869

188870
188871
188872
188873
188874
188875
188876
188877
188878
188879
188880

188881
188882
188883
188884
188885
188886
188887
188888
188889
188890
188891
188892
188893
188894
188895

188896
188897
188898
188899
188900
188901
188902
188903
188904
188905
188906
188907
188908
  int bNew;                       /* If non-delete entry should be written */
  
  bNew = (pHash->eDetail==FTS5_DETAIL_FULL);

  /* Attempt to locate an existing hash entry */
  iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){

    if( p->zKey[0]==bByte 
     && p->nKey==nToken
     && memcmp(&p->zKey[1], pToken, nToken)==0 
    ){
      break;
    }
  }

  /* If an existing hash entry cannot be found, create a new one. */
  if( p==0 ){
    /* Figure out how much space to allocate */

    int nByte = FTS5_HASHENTRYSIZE + (nToken+1) + 1 + 64;
    if( nByte<128 ) nByte = 128;

    /* Grow the Fts5Hash.aSlot[] array if necessary. */
    if( (pHash->nEntry*2)>=pHash->nSlot ){
      int rc = fts5HashResize(pHash);
      if( rc!=SQLITE_OK ) return rc;
      iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
    }

    /* Allocate new Fts5HashEntry and add it to the hash table. */
    p = (Fts5HashEntry*)sqlite3_malloc(nByte);
    if( !p ) return SQLITE_NOMEM;
    memset(p, 0, FTS5_HASHENTRYSIZE);
    p->nAlloc = nByte;

    p->zKey[0] = bByte;
    memcpy(&p->zKey[1], pToken, nToken);
    assert( iHash==fts5HashKey(pHash->nSlot, (u8*)p->zKey, nToken+1) );
    p->nKey = nToken;
    p->zKey[nToken+1] = '\0';
    p->nData = nToken+1 + 1 + FTS5_HASHENTRYSIZE;
    p->pHashNext = pHash->aSlot[iHash];
    pHash->aSlot[iHash] = p;
    pHash->nEntry++;

    /* Add the first rowid field to the hash-entry */
    p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
    p->iRowid = iRowid;







>
|

|








>
|












|

>
|
|
|

|
|







189619
189620
189621
189622
189623
189624
189625
189626
189627
189628
189629
189630
189631
189632
189633
189634
189635
189636
189637
189638
189639
189640
189641
189642
189643
189644
189645
189646
189647
189648
189649
189650
189651
189652
189653
189654
189655
189656
189657
189658
189659
189660
189661
189662
189663
189664
189665
189666
189667
  int bNew;                       /* If non-delete entry should be written */
  
  bNew = (pHash->eDetail==FTS5_DETAIL_FULL);

  /* Attempt to locate an existing hash entry */
  iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    char *zKey = fts5EntryKey(p);
    if( zKey[0]==bByte 
     && p->nKey==nToken
     && memcmp(&zKey[1], pToken, nToken)==0 
    ){
      break;
    }
  }

  /* If an existing hash entry cannot be found, create a new one. */
  if( p==0 ){
    /* Figure out how much space to allocate */
    char *zKey;
    int nByte = sizeof(Fts5HashEntry) + (nToken+1) + 1 + 64;
    if( nByte<128 ) nByte = 128;

    /* Grow the Fts5Hash.aSlot[] array if necessary. */
    if( (pHash->nEntry*2)>=pHash->nSlot ){
      int rc = fts5HashResize(pHash);
      if( rc!=SQLITE_OK ) return rc;
      iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
    }

    /* Allocate new Fts5HashEntry and add it to the hash table. */
    p = (Fts5HashEntry*)sqlite3_malloc(nByte);
    if( !p ) return SQLITE_NOMEM;
    memset(p, 0, sizeof(Fts5HashEntry));
    p->nAlloc = nByte;
    zKey = fts5EntryKey(p);
    zKey[0] = bByte;
    memcpy(&zKey[1], pToken, nToken);
    assert( iHash==fts5HashKey(pHash->nSlot, (u8*)zKey, nToken+1) );
    p->nKey = nToken;
    zKey[nToken+1] = '\0';
    p->nData = nToken+1 + 1 + sizeof(Fts5HashEntry);
    p->pHashNext = pHash->aSlot[iHash];
    pHash->aSlot[iHash] = p;
    pHash->nEntry++;

    /* Add the first rowid field to the hash-entry */
    p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
    p->iRowid = iRowid;
189012
189013
189014
189015
189016
189017
189018


189019
189020
189021
189022
189023
189024
189025
189026
189027
189028
      *ppOut = p2;
      p2 = 0;
    }else if( p2==0 ){
      *ppOut = p1;
      p1 = 0;
    }else{
      int i = 0;


      while( p1->zKey[i]==p2->zKey[i] ) i++;

      if( ((u8)p1->zKey[i])>((u8)p2->zKey[i]) ){
        /* p2 is smaller */
        *ppOut = p2;
        ppOut = &p2->pScanNext;
        p2 = p2->pScanNext;
      }else{
        /* p1 is smaller */
        *ppOut = p1;







>
>
|

|







189771
189772
189773
189774
189775
189776
189777
189778
189779
189780
189781
189782
189783
189784
189785
189786
189787
189788
189789
      *ppOut = p2;
      p2 = 0;
    }else if( p2==0 ){
      *ppOut = p1;
      p1 = 0;
    }else{
      int i = 0;
      char *zKey1 = fts5EntryKey(p1);
      char *zKey2 = fts5EntryKey(p2);
      while( zKey1[i]==zKey2[i] ) i++;

      if( ((u8)zKey1[i])>((u8)zKey2[i]) ){
        /* p2 is smaller */
        *ppOut = p2;
        ppOut = &p2->pScanNext;
        p2 = p2->pScanNext;
      }else{
        /* p1 is smaller */
        *ppOut = p1;
189057
189058
189059
189060
189061
189062
189063
189064
189065
189066
189067
189068
189069
189070
189071
  ap = sqlite3_malloc(sizeof(Fts5HashEntry*) * nMergeSlot);
  if( !ap ) return SQLITE_NOMEM;
  memset(ap, 0, sizeof(Fts5HashEntry*) * nMergeSlot);

  for(iSlot=0; iSlot<pHash->nSlot; iSlot++){
    Fts5HashEntry *pIter;
    for(pIter=pHash->aSlot[iSlot]; pIter; pIter=pIter->pHashNext){
      if( pTerm==0 || 0==memcmp(pIter->zKey, pTerm, nTerm) ){
        Fts5HashEntry *pEntry = pIter;
        pEntry->pScanNext = 0;
        for(i=0; ap[i]; i++){
          pEntry = fts5HashEntryMerge(pEntry, ap[i]);
          ap[i] = 0;
        }
        ap[i] = pEntry;







|







189818
189819
189820
189821
189822
189823
189824
189825
189826
189827
189828
189829
189830
189831
189832
  ap = sqlite3_malloc(sizeof(Fts5HashEntry*) * nMergeSlot);
  if( !ap ) return SQLITE_NOMEM;
  memset(ap, 0, sizeof(Fts5HashEntry*) * nMergeSlot);

  for(iSlot=0; iSlot<pHash->nSlot; iSlot++){
    Fts5HashEntry *pIter;
    for(pIter=pHash->aSlot[iSlot]; pIter; pIter=pIter->pHashNext){
      if( pTerm==0 || 0==memcmp(fts5EntryKey(pIter), pTerm, nTerm) ){
        Fts5HashEntry *pEntry = pIter;
        pEntry->pScanNext = 0;
        for(i=0; ap[i]; i++){
          pEntry = fts5HashEntryMerge(pEntry, ap[i]);
          ap[i] = 0;
        }
        ap[i] = pEntry;
189090
189091
189092
189093
189094
189095
189096

189097
189098
189099

189100
189101
189102
189103
189104
189105
189106
189107
189108
189109
189110
189111
189112
189113
static int sqlite3Fts5HashQuery(
  Fts5Hash *pHash,                /* Hash table to query */
  const char *pTerm, int nTerm,   /* Query term */
  const u8 **ppDoclist,           /* OUT: Pointer to doclist for pTerm */
  int *pnDoclist                  /* OUT: Size of doclist in bytes */
){
  unsigned int iHash = fts5HashKey(pHash->nSlot, (const u8*)pTerm, nTerm);

  Fts5HashEntry *p;

  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){

    if( memcmp(p->zKey, pTerm, nTerm)==0 && p->zKey[nTerm]==0 ) break;
  }

  if( p ){
    fts5HashAddPoslistSize(pHash, p);
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *ppDoclist = 0;
    *pnDoclist = 0;
  }

  return SQLITE_OK;
}







>



>
|




|
|







189851
189852
189853
189854
189855
189856
189857
189858
189859
189860
189861
189862
189863
189864
189865
189866
189867
189868
189869
189870
189871
189872
189873
189874
189875
189876
static int sqlite3Fts5HashQuery(
  Fts5Hash *pHash,                /* Hash table to query */
  const char *pTerm, int nTerm,   /* Query term */
  const u8 **ppDoclist,           /* OUT: Pointer to doclist for pTerm */
  int *pnDoclist                  /* OUT: Size of doclist in bytes */
){
  unsigned int iHash = fts5HashKey(pHash->nSlot, (const u8*)pTerm, nTerm);
  char *zKey;
  Fts5HashEntry *p;

  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    zKey = fts5EntryKey(p);
    if( memcmp(zKey, pTerm, nTerm)==0 && zKey[nTerm]==0 ) break;
  }

  if( p ){
    fts5HashAddPoslistSize(pHash, p);
    *ppDoclist = (const u8*)&zKey[nTerm+1];
    *pnDoclist = p->nData - (sizeof(Fts5HashEntry) + nTerm + 1);
  }else{
    *ppDoclist = 0;
    *pnDoclist = 0;
  }

  return SQLITE_OK;
}
189132
189133
189134
189135
189136
189137
189138

189139
189140
189141
189142
189143
189144
189145
189146
189147
189148
189149
189150
  Fts5Hash *pHash,
  const char **pzTerm,            /* OUT: term (nul-terminated) */
  const u8 **ppDoclist,           /* OUT: pointer to doclist */
  int *pnDoclist                  /* OUT: size of doclist in bytes */
){
  Fts5HashEntry *p;
  if( (p = pHash->pScan) ){

    int nTerm = (int)strlen(p->zKey);
    fts5HashAddPoslistSize(pHash, p);
    *pzTerm = p->zKey;
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *pzTerm = 0;
    *ppDoclist = 0;
    *pnDoclist = 0;
  }
}








>
|

|
|
|







189895
189896
189897
189898
189899
189900
189901
189902
189903
189904
189905
189906
189907
189908
189909
189910
189911
189912
189913
189914
  Fts5Hash *pHash,
  const char **pzTerm,            /* OUT: term (nul-terminated) */
  const u8 **ppDoclist,           /* OUT: pointer to doclist */
  int *pnDoclist                  /* OUT: size of doclist in bytes */
){
  Fts5HashEntry *p;
  if( (p = pHash->pScan) ){
    char *zKey = fts5EntryKey(p);
    int nTerm = (int)strlen(zKey);
    fts5HashAddPoslistSize(pHash, p);
    *pzTerm = zKey;
    *ppDoclist = (const u8*)&zKey[nTerm+1];
    *pnDoclist = p->nData - (sizeof(Fts5HashEntry) + nTerm + 1);
  }else{
    *pzTerm = 0;
    *ppDoclist = 0;
    *pnDoclist = 0;
  }
}

189774
189775
189776
189777
189778
189779
189780
189781
189782
189783
189784
189785
189786
189787
189788
static void fts5CloseReader(Fts5Index *p){
  if( p->pReader ){
    sqlite3_blob *pReader = p->pReader;
    p->pReader = 0;
    sqlite3_blob_close(pReader);
  }
}


/*
** Retrieve a record from the %_data table.
**
** If an error occurs, NULL is returned and an error left in the 
** Fts5Index object.
*/







<







190538
190539
190540
190541
190542
190543
190544

190545
190546
190547
190548
190549
190550
190551
static void fts5CloseReader(Fts5Index *p){
  if( p->pReader ){
    sqlite3_blob *pReader = p->pReader;
    p->pReader = 0;
    sqlite3_blob_close(pReader);
  }
}


/*
** Retrieve a record from the %_data table.
**
** If an error occurs, NULL is returned and an error left in the 
** Fts5Index object.
*/
192026
192027
192028
192029
192030
192031
192032

192033
192034
192035
192036
192037
192038
192039
192040
192041
192042
192043
192044
192045
192046
192047
192048
192049
192050
192051
192052
192053
192054
static void fts5MultiIterNext2(
  Fts5Index *p, 
  Fts5Iter *pIter,
  int *pbNewTerm                  /* OUT: True if *might* be new term */
){
  assert( pIter->bSkipEmpty );
  if( p->rc==SQLITE_OK ){

    do {
      int iFirst = pIter->aFirst[1].iFirst;
      Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
      int bNewTerm = 0;

      assert( p->rc==SQLITE_OK );
      pSeg->xNext(p, pSeg, &bNewTerm);
      if( pSeg->pLeaf==0 || bNewTerm 
       || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
      ){
        fts5MultiIterAdvanced(p, pIter, iFirst, 1);
        fts5MultiIterSetEof(pIter);
        *pbNewTerm = 1;
      }else{
        *pbNewTerm = 0;
      }
      fts5AssertMultiIterSetup(p, pIter);

    }while( fts5MultiIterIsEmpty(p, pIter) );
  }
}








>
|












<
<







192789
192790
192791
192792
192793
192794
192795
192796
192797
192798
192799
192800
192801
192802
192803
192804
192805
192806
192807
192808
192809


192810
192811
192812
192813
192814
192815
192816
static void fts5MultiIterNext2(
  Fts5Index *p, 
  Fts5Iter *pIter,
  int *pbNewTerm                  /* OUT: True if *might* be new term */
){
  assert( pIter->bSkipEmpty );
  if( p->rc==SQLITE_OK ){
    *pbNewTerm = 0;
    do{
      int iFirst = pIter->aFirst[1].iFirst;
      Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
      int bNewTerm = 0;

      assert( p->rc==SQLITE_OK );
      pSeg->xNext(p, pSeg, &bNewTerm);
      if( pSeg->pLeaf==0 || bNewTerm 
       || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
      ){
        fts5MultiIterAdvanced(p, pIter, iFirst, 1);
        fts5MultiIterSetEof(pIter);
        *pbNewTerm = 1;


      }
      fts5AssertMultiIterSetup(p, pIter);

    }while( fts5MultiIterIsEmpty(p, pIter) );
  }
}

192306
192307
192308
192309
192310
192311
192312
192313

192314
192315
192316
192317
192318
192319
192320
192321
192322
192323
192324
192325
192326
192327
192328
192329

192330
192331
192332
192333
192334
192335
192336
  while( p<pEnd && *p!=0x01 ){
    while( *p++ & 0x80 );
  }

  return p - (*pa);
}

static int fts5IndexExtractColset (

  Fts5Colset *pColset,            /* Colset to filter on */
  const u8 *pPos, int nPos,       /* Position list */
  Fts5Buffer *pBuf                /* Output buffer */
){
  int rc = SQLITE_OK;
  int i;

  fts5BufferZero(pBuf);
  for(i=0; i<pColset->nCol; i++){
    const u8 *pSub = pPos;
    int nSub = fts5IndexExtractCol(&pSub, nPos, pColset->aiCol[i]);
    if( nSub ){
      fts5BufferAppendBlob(&rc, pBuf, nSub, pSub);
    }
  }
  return rc;

}

/*
** xSetOutputs callback used by detail=none tables.
*/
static void fts5IterSetOutputs_None(Fts5Iter *pIter, Fts5SegIter *pSeg){
  assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_NONE );







|
>




|
|
<
|
|
|
|
|
|
|
|
<
>







193068
193069
193070
193071
193072
193073
193074
193075
193076
193077
193078
193079
193080
193081
193082

193083
193084
193085
193086
193087
193088
193089
193090

193091
193092
193093
193094
193095
193096
193097
193098
  while( p<pEnd && *p!=0x01 ){
    while( *p++ & 0x80 );
  }

  return p - (*pa);
}

static void fts5IndexExtractColset(
  int *pRc,
  Fts5Colset *pColset,            /* Colset to filter on */
  const u8 *pPos, int nPos,       /* Position list */
  Fts5Buffer *pBuf                /* Output buffer */
){
  if( *pRc==SQLITE_OK ){
    int i;

    fts5BufferZero(pBuf);
    for(i=0; i<pColset->nCol; i++){
      const u8 *pSub = pPos;
      int nSub = fts5IndexExtractCol(&pSub, nPos, pColset->aiCol[i]);
      if( nSub ){
        fts5BufferAppendBlob(pRc, pBuf, nSub, pSub);
      }
    }

  }
}

/*
** xSetOutputs callback used by detail=none tables.
*/
static void fts5IterSetOutputs_None(Fts5Iter *pIter, Fts5SegIter *pSeg){
  assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_NONE );
192446
192447
192448
192449
192450
192451
192452

192453
192454
192455
192456
192457
192458
192459
192460
192461
    /* All data is stored on the current page. Populate the output 
    ** variables to point into the body of the page object. */
    const u8 *a = &pSeg->pLeaf->p[pSeg->iLeafOffset];
    if( pColset->nCol==1 ){
      pIter->base.nData = fts5IndexExtractCol(&a, pSeg->nPos,pColset->aiCol[0]);
      pIter->base.pData = a;
    }else{

      fts5BufferZero(&pIter->poslist);
      fts5IndexExtractColset(pColset, a, pSeg->nPos, &pIter->poslist);
      pIter->base.pData = pIter->poslist.p;
      pIter->base.nData = pIter->poslist.n;
    }
  }else{
    /* The data is distributed over two or more pages. Copy it into the
    ** Fts5Iter.poslist buffer and then set the output pointer to point
    ** to this buffer.  */







>

|







193208
193209
193210
193211
193212
193213
193214
193215
193216
193217
193218
193219
193220
193221
193222
193223
193224
    /* All data is stored on the current page. Populate the output 
    ** variables to point into the body of the page object. */
    const u8 *a = &pSeg->pLeaf->p[pSeg->iLeafOffset];
    if( pColset->nCol==1 ){
      pIter->base.nData = fts5IndexExtractCol(&a, pSeg->nPos,pColset->aiCol[0]);
      pIter->base.pData = a;
    }else{
      int *pRc = &pIter->pIndex->rc;
      fts5BufferZero(&pIter->poslist);
      fts5IndexExtractColset(pRc, pColset, a, pSeg->nPos, &pIter->poslist);
      pIter->base.pData = pIter->poslist.p;
      pIter->base.nData = pIter->poslist.n;
    }
  }else{
    /* The data is distributed over two or more pages. Copy it into the
    ** Fts5Iter.poslist buffer and then set the output pointer to point
    ** to this buffer.  */
192992
192993
192994
192995
192996
192997
192998
192999
193000
193001
193002
193003
193004
193005
193006
193007
193008
}

static void fts5WriteFlushLeaf(Fts5Index *p, Fts5SegWriter *pWriter){
  static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
  Fts5PageWriter *pPage = &pWriter->writer;
  i64 iRowid;

static int nCall = 0;
nCall++;

  assert( (pPage->pgidx.n==0)==(pWriter->bFirstTermInPage) );

  /* Set the szLeaf header field. */
  assert( 0==fts5GetU16(&pPage->buf.p[2]) );
  fts5PutU16(&pPage->buf.p[2], (u16)pPage->buf.n);

  if( pWriter->bFirstTermInPage ){







<
<
<







193755
193756
193757
193758
193759
193760
193761



193762
193763
193764
193765
193766
193767
193768
}

static void fts5WriteFlushLeaf(Fts5Index *p, Fts5SegWriter *pWriter){
  static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
  Fts5PageWriter *pPage = &pWriter->writer;
  i64 iRowid;




  assert( (pPage->pgidx.n==0)==(pWriter->bFirstTermInPage) );

  /* Set the szLeaf header field. */
  assert( 0==fts5GetU16(&pPage->buf.p[2]) );
  fts5PutU16(&pPage->buf.p[2], (u16)pPage->buf.n);

  if( pWriter->bFirstTermInPage ){
193343
193344
193345
193346
193347
193348
193349

193350
193351
193352
193353
193354
193355
193356
  int nInput;                     /* Number of input segments */
  Fts5SegWriter writer;           /* Writer object */
  Fts5StructureSegment *pSeg;     /* Output segment */
  Fts5Buffer term;
  int bOldest;                    /* True if the output segment is the oldest */
  int eDetail = p->pConfig->eDetail;
  const int flags = FTS5INDEX_QUERY_NOOUTPUT;


  assert( iLvl<pStruct->nLevel );
  assert( pLvl->nMerge<=pLvl->nSeg );

  memset(&writer, 0, sizeof(Fts5SegWriter));
  memset(&term, 0, sizeof(Fts5Buffer));
  if( pLvl->nMerge ){







>







194103
194104
194105
194106
194107
194108
194109
194110
194111
194112
194113
194114
194115
194116
194117
  int nInput;                     /* Number of input segments */
  Fts5SegWriter writer;           /* Writer object */
  Fts5StructureSegment *pSeg;     /* Output segment */
  Fts5Buffer term;
  int bOldest;                    /* True if the output segment is the oldest */
  int eDetail = p->pConfig->eDetail;
  const int flags = FTS5INDEX_QUERY_NOOUTPUT;
  int bTermWritten = 0;           /* True if current term already output */

  assert( iLvl<pStruct->nLevel );
  assert( pLvl->nMerge<=pLvl->nSeg );

  memset(&writer, 0, sizeof(Fts5SegWriter));
  memset(&term, 0, sizeof(Fts5Buffer));
  if( pLvl->nMerge ){
193396
193397
193398
193399
193400
193401
193402
193403
193404
193405
193406
193407
193408
193409
193410


193411





193412
193413
193414
193415
193416
193417
193418
193419
193420
193421
      fts5MultiIterNext(p, pIter, 0, 0)
  ){
    Fts5SegIter *pSegIter = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    int nPos;                     /* position-list size field value */
    int nTerm;
    const u8 *pTerm;

    /* Check for key annihilation. */
    if( pSegIter->nPos==0 && (bOldest || pSegIter->bDel==0) ) continue;

    pTerm = fts5MultiIterTerm(pIter, &nTerm);
    if( nTerm!=term.n || memcmp(pTerm, term.p, nTerm) ){
      if( pnRem && writer.nLeafWritten>nRem ){
        break;
      }








      /* This is a new term. Append a term to the output segment. */
      fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
      fts5BufferSet(&p->rc, &term, nTerm, pTerm);
    }

    /* Append the rowid to the output */
    /* WRITEPOSLISTSIZE */
    fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter));

    if( eDetail==FTS5_DETAIL_NONE ){







<
<
<





>
>
|
>
>
>
>
>


|







194157
194158
194159
194160
194161
194162
194163



194164
194165
194166
194167
194168
194169
194170
194171
194172
194173
194174
194175
194176
194177
194178
194179
194180
194181
194182
194183
194184
194185
194186
      fts5MultiIterNext(p, pIter, 0, 0)
  ){
    Fts5SegIter *pSegIter = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
    int nPos;                     /* position-list size field value */
    int nTerm;
    const u8 *pTerm;




    pTerm = fts5MultiIterTerm(pIter, &nTerm);
    if( nTerm!=term.n || memcmp(pTerm, term.p, nTerm) ){
      if( pnRem && writer.nLeafWritten>nRem ){
        break;
      }
      fts5BufferSet(&p->rc, &term, nTerm, pTerm);
      bTermWritten =0;
    }

    /* Check for key annihilation. */
    if( pSegIter->nPos==0 && (bOldest || pSegIter->bDel==0) ) continue;

    if( p->rc==SQLITE_OK && bTermWritten==0 ){
      /* This is a new term. Append a term to the output segment. */
      fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
      bTermWritten = 1;
    }

    /* Append the rowid to the output */
    /* WRITEPOSLISTSIZE */
    fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter));

    if( eDetail==FTS5_DETAIL_NONE ){
194239
194240
194241
194242
194243
194244
194245
194246
194247
194248
194249
194250
194251
194252
194253
    }
    fts5MultiIterFree(p1);

    pData = fts5IdxMalloc(p, sizeof(Fts5Data) + doclist.n);
    if( pData ){
      pData->p = (u8*)&pData[1];
      pData->nn = pData->szLeaf = doclist.n;
      memcpy(pData->p, doclist.p, doclist.n);
      fts5MultiIterNew2(p, pData, bDesc, ppIter);
    }
    fts5BufferFree(&doclist);
  }

  fts5StructureRelease(pStruct);
  sqlite3_free(aBuf);







|







195004
195005
195006
195007
195008
195009
195010
195011
195012
195013
195014
195015
195016
195017
195018
    }
    fts5MultiIterFree(p1);

    pData = fts5IdxMalloc(p, sizeof(Fts5Data) + doclist.n);
    if( pData ){
      pData->p = (u8*)&pData[1];
      pData->nn = pData->szLeaf = doclist.n;
      if( doclist.n ) memcpy(pData->p, doclist.p, doclist.n);
      fts5MultiIterNew2(p, pData, bDesc, ppIter);
    }
    fts5BufferFree(&doclist);
  }

  fts5StructureRelease(pStruct);
  sqlite3_free(aBuf);
194278
194279
194280
194281
194282
194283
194284
194285
194286
194287
194288
194289
194290
194291
194292
194293
194294
194295
  p->bDelete = bDelete;
  return fts5IndexReturn(p);
}

/*
** Commit data to disk.
*/
static int sqlite3Fts5IndexSync(Fts5Index *p, int bCommit){
  assert( p->rc==SQLITE_OK );
  fts5IndexFlush(p);
  if( bCommit ) fts5CloseReader(p);
  return fts5IndexReturn(p);
}

/*
** Discard any data stored in the in-memory hash tables. Do not write it
** to the database. Additionally, assume that the contents of the %_data
** table may have changed on disk. So any in-memory caches of %_data 







|


|







195043
195044
195045
195046
195047
195048
195049
195050
195051
195052
195053
195054
195055
195056
195057
195058
195059
195060
  p->bDelete = bDelete;
  return fts5IndexReturn(p);
}

/*
** Commit data to disk.
*/
static int sqlite3Fts5IndexSync(Fts5Index *p){
  assert( p->rc==SQLITE_OK );
  fts5IndexFlush(p);
  fts5CloseReader(p);
  return fts5IndexReturn(p);
}

/*
** Discard any data stored in the in-memory hash tables. Do not write it
** to the database. Additionally, assume that the contents of the %_data
** table may have changed on disk. So any in-memory caches of %_data 
194478
194479
194480
194481
194482
194483
194484
194485
194486
194487
194488
194489
194490
194491
194492
  Fts5Buffer buf = {0, 0, 0};

  /* If the QUERY_SCAN flag is set, all other flags must be clear. */
  assert( (flags & FTS5INDEX_QUERY_SCAN)==0 || flags==FTS5INDEX_QUERY_SCAN );

  if( sqlite3Fts5BufferSize(&p->rc, &buf, nToken+1)==0 ){
    int iIdx = 0;                 /* Index to search */
    memcpy(&buf.p[1], pToken, nToken);

    /* Figure out which index to search and set iIdx accordingly. If this
    ** is a prefix query for which there is no prefix index, set iIdx to
    ** greater than pConfig->nPrefix to indicate that the query will be
    ** satisfied by scanning multiple terms in the main index.
    **
    ** If the QUERY_TEST_NOIDX flag was specified, then this must be a







|







195243
195244
195245
195246
195247
195248
195249
195250
195251
195252
195253
195254
195255
195256
195257
  Fts5Buffer buf = {0, 0, 0};

  /* If the QUERY_SCAN flag is set, all other flags must be clear. */
  assert( (flags & FTS5INDEX_QUERY_SCAN)==0 || flags==FTS5INDEX_QUERY_SCAN );

  if( sqlite3Fts5BufferSize(&p->rc, &buf, nToken+1)==0 ){
    int iIdx = 0;                 /* Index to search */
    if( nToken ) memcpy(&buf.p[1], pToken, nToken);

    /* Figure out which index to search and set iIdx accordingly. If this
    ** is a prefix query for which there is no prefix index, set iIdx to
    ** greater than pConfig->nPrefix to indicate that the query will be
    ** satisfied by scanning multiple terms in the main index.
    **
    ** If the QUERY_TEST_NOIDX flag was specified, then this must be a
194527
194528
194529
194530
194531
194532
194533
194534
194535
194536
194537
194538
194539
194540
194541
      if( p->rc==SQLITE_OK ){
        Fts5SegIter *pSeg = &pRet->aSeg[pRet->aFirst[1].iFirst];
        if( pSeg->pLeaf ) pRet->xSetOutputs(pRet, pSeg);
      }
    }

    if( p->rc ){
      sqlite3Fts5IterClose(&pRet->base);
      pRet = 0;
      fts5CloseReader(p);
    }

    *ppIter = &pRet->base;
    sqlite3Fts5BufferFree(&buf);
  }







|







195292
195293
195294
195295
195296
195297
195298
195299
195300
195301
195302
195303
195304
195305
195306
      if( p->rc==SQLITE_OK ){
        Fts5SegIter *pSeg = &pRet->aSeg[pRet->aFirst[1].iFirst];
        if( pSeg->pLeaf ) pRet->xSetOutputs(pRet, pSeg);
      }
    }

    if( p->rc ){
      sqlite3Fts5IterClose((Fts5IndexIter*)pRet);
      pRet = 0;
      fts5CloseReader(p);
    }

    *ppIter = &pRet->base;
    sqlite3Fts5BufferFree(&buf);
  }
196145
196146
196147
196148
196149
196150
196151

196152
196153
196154
196155
196156
196157
196158
**       * An == rowid constraint:       cost=10.0
**
** Costs are not modified by the ORDER BY clause.
*/
static int fts5BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
  Fts5Table *pTab = (Fts5Table*)pVTab;
  Fts5Config *pConfig = pTab->pConfig;

  int idxFlags = 0;               /* Parameter passed through to xFilter() */
  int bHasMatch;
  int iNext;
  int i;

  struct Constraint {
    int op;                       /* Mask against sqlite3_index_constraint.op */







>







196910
196911
196912
196913
196914
196915
196916
196917
196918
196919
196920
196921
196922
196923
196924
**       * An == rowid constraint:       cost=10.0
**
** Costs are not modified by the ORDER BY clause.
*/
static int fts5BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
  Fts5Table *pTab = (Fts5Table*)pVTab;
  Fts5Config *pConfig = pTab->pConfig;
  const int nCol = pConfig->nCol;
  int idxFlags = 0;               /* Parameter passed through to xFilter() */
  int bHasMatch;
  int iNext;
  int i;

  struct Constraint {
    int op;                       /* Mask against sqlite3_index_constraint.op */
196170
196171
196172
196173
196174
196175
196176
196177
196178
196179
196180
196181
196182
196183
196184
196185
196186


196187

196188
196189
196190
196191
196192
196193
196194








196195
196196
196197
196198
196199
196200
196201
                                    FTS5_BI_ROWID_LE, 0, 0, -1},
    {SQLITE_INDEX_CONSTRAINT_GT|SQLITE_INDEX_CONSTRAINT_GE, 
                                    FTS5_BI_ROWID_GE, 0, 0, -1},
  };

  int aColMap[3];
  aColMap[0] = -1;
  aColMap[1] = pConfig->nCol;
  aColMap[2] = pConfig->nCol+1;

  /* Set idxFlags flags for all WHERE clause terms that will be used. */
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    int j;
    for(j=0; j<ArraySize(aConstraint); j++){
      struct Constraint *pC = &aConstraint[j];
      if( p->iColumn==aColMap[pC->iCol] && p->op & pC->op ){


        if( p->usable ){

          pC->iConsIndex = i;
          idxFlags |= pC->fts5op;
        }else if( j==0 ){
          /* As there exists an unusable MATCH constraint this is an 
          ** unusable plan. Set a prohibitively high cost. */
          pInfo->estimatedCost = 1e50;
          return SQLITE_OK;








        }
      }
    }
  }

  /* Set idxFlags flags for the ORDER BY clause */
  if( pInfo->nOrderBy==1 ){







|
|




|
|
|
|
>
>
|
>
|
<
|
|
|
|
|
>
>
>
>
>
>
>
>







196936
196937
196938
196939
196940
196941
196942
196943
196944
196945
196946
196947
196948
196949
196950
196951
196952
196953
196954
196955
196956
196957

196958
196959
196960
196961
196962
196963
196964
196965
196966
196967
196968
196969
196970
196971
196972
196973
196974
196975
196976
196977
                                    FTS5_BI_ROWID_LE, 0, 0, -1},
    {SQLITE_INDEX_CONSTRAINT_GT|SQLITE_INDEX_CONSTRAINT_GE, 
                                    FTS5_BI_ROWID_GE, 0, 0, -1},
  };

  int aColMap[3];
  aColMap[0] = -1;
  aColMap[1] = nCol;
  aColMap[2] = nCol+1;

  /* Set idxFlags flags for all WHERE clause terms that will be used. */
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    int iCol = p->iColumn;

    if( (p->op==SQLITE_INDEX_CONSTRAINT_MATCH && iCol>=0 && iCol<=nCol)
     || (p->op==SQLITE_INDEX_CONSTRAINT_EQ && iCol==nCol)
    ){
      /* A MATCH operator or equivalent */
      if( p->usable ){
        idxFlags = (idxFlags & 0xFFFF) | FTS5_BI_MATCH | (iCol << 16);
        aConstraint[0].iConsIndex = i;

      }else{
        /* As there exists an unusable MATCH constraint this is an 
        ** unusable plan. Set a prohibitively high cost. */
        pInfo->estimatedCost = 1e50;
        return SQLITE_OK;
      }
    }else{
      int j;
      for(j=1; j<ArraySize(aConstraint); j++){
        struct Constraint *pC = &aConstraint[j];
        if( iCol==aColMap[pC->iCol] && p->op & pC->op && p->usable ){
          pC->iConsIndex = i;
          idxFlags |= pC->fts5op;
        }
      }
    }
  }

  /* Set idxFlags flags for the ORDER BY clause */
  if( pInfo->nOrderBy==1 ){
196762
196763
196764
196765
196766
196767
196768

196769
196770
196771
196772
196773
196774
196775
  int bDesc;                      /* True if ORDER BY [rank|rowid] DESC */
  int bOrderByRank;               /* True if ORDER BY rank */
  sqlite3_value *pMatch = 0;      /* <tbl> MATCH ? expression (or NULL) */
  sqlite3_value *pRank = 0;       /* rank MATCH ? expression (or NULL) */
  sqlite3_value *pRowidEq = 0;    /* rowid = ? expression (or NULL) */
  sqlite3_value *pRowidLe = 0;    /* rowid <= ? expression (or NULL) */
  sqlite3_value *pRowidGe = 0;    /* rowid >= ? expression (or NULL) */

  char **pzErrmsg = pConfig->pzErrmsg;

  UNUSED_PARAM(zUnused);
  UNUSED_PARAM(nVal);

  if( pCsr->ePlan ){
    fts5FreeCursorComponents(pCsr);







>







197538
197539
197540
197541
197542
197543
197544
197545
197546
197547
197548
197549
197550
197551
197552
  int bDesc;                      /* True if ORDER BY [rank|rowid] DESC */
  int bOrderByRank;               /* True if ORDER BY rank */
  sqlite3_value *pMatch = 0;      /* <tbl> MATCH ? expression (or NULL) */
  sqlite3_value *pRank = 0;       /* rank MATCH ? expression (or NULL) */
  sqlite3_value *pRowidEq = 0;    /* rowid = ? expression (or NULL) */
  sqlite3_value *pRowidLe = 0;    /* rowid <= ? expression (or NULL) */
  sqlite3_value *pRowidGe = 0;    /* rowid >= ? expression (or NULL) */
  int iCol;                       /* Column on LHS of MATCH operator */
  char **pzErrmsg = pConfig->pzErrmsg;

  UNUSED_PARAM(zUnused);
  UNUSED_PARAM(nVal);

  if( pCsr->ePlan ){
    fts5FreeCursorComponents(pCsr);
196792
196793
196794
196795
196796
196797
196798


196799
196800
196801
196802
196803
196804
196805
  ** order as the corresponding entries in the struct at the top of
  ** fts5BestIndexMethod().  */
  if( BitFlagTest(idxNum, FTS5_BI_MATCH) ) pMatch = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_RANK) ) pRank = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_ROWID_EQ) ) pRowidEq = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_ROWID_LE) ) pRowidLe = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_ROWID_GE) ) pRowidGe = apVal[iVal++];


  assert( iVal==nVal );
  bOrderByRank = ((idxNum & FTS5_BI_ORDER_RANK) ? 1 : 0);
  pCsr->bDesc = bDesc = ((idxNum & FTS5_BI_ORDER_DESC) ? 1 : 0);

  /* Set the cursor upper and lower rowid limits. Only some strategies 
  ** actually use them. This is ok, as the xBestIndex() method leaves the
  ** sqlite3_index_constraint.omit flag clear for range constraints







>
>







197569
197570
197571
197572
197573
197574
197575
197576
197577
197578
197579
197580
197581
197582
197583
197584
  ** order as the corresponding entries in the struct at the top of
  ** fts5BestIndexMethod().  */
  if( BitFlagTest(idxNum, FTS5_BI_MATCH) ) pMatch = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_RANK) ) pRank = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_ROWID_EQ) ) pRowidEq = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_ROWID_LE) ) pRowidLe = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_ROWID_GE) ) pRowidGe = apVal[iVal++];
  iCol = (idxNum>>16);
  assert( iCol>=0 && iCol<=pConfig->nCol );
  assert( iVal==nVal );
  bOrderByRank = ((idxNum & FTS5_BI_ORDER_RANK) ? 1 : 0);
  pCsr->bDesc = bDesc = ((idxNum & FTS5_BI_ORDER_DESC) ? 1 : 0);

  /* Set the cursor upper and lower rowid limits. Only some strategies 
  ** actually use them. This is ok, as the xBestIndex() method leaves the
  ** sqlite3_index_constraint.omit flag clear for range constraints
196838
196839
196840
196841
196842
196843
196844
196845
196846
196847
196848
196849
196850
196851
196852
      if( zExpr[0]=='*' ){
        /* The user has issued a query of the form "MATCH '*...'". This
        ** indicates that the MATCH expression is not a full text query,
        ** but a request for an internal parameter.  */
        rc = fts5SpecialMatch(pTab, pCsr, &zExpr[1]);
      }else{
        char **pzErr = &pTab->base.zErrMsg;
        rc = sqlite3Fts5ExprNew(pConfig, zExpr, &pCsr->pExpr, pzErr);
        if( rc==SQLITE_OK ){
          if( bOrderByRank ){
            pCsr->ePlan = FTS5_PLAN_SORTED_MATCH;
            rc = fts5CursorFirstSorted(pTab, pCsr, bDesc);
          }else{
            pCsr->ePlan = FTS5_PLAN_MATCH;
            rc = fts5CursorFirst(pTab, pCsr, bDesc);







|







197617
197618
197619
197620
197621
197622
197623
197624
197625
197626
197627
197628
197629
197630
197631
      if( zExpr[0]=='*' ){
        /* The user has issued a query of the form "MATCH '*...'". This
        ** indicates that the MATCH expression is not a full text query,
        ** but a request for an internal parameter.  */
        rc = fts5SpecialMatch(pTab, pCsr, &zExpr[1]);
      }else{
        char **pzErr = &pTab->base.zErrMsg;
        rc = sqlite3Fts5ExprNew(pConfig, iCol, zExpr, &pCsr->pExpr, pzErr);
        if( rc==SQLITE_OK ){
          if( bOrderByRank ){
            pCsr->ePlan = FTS5_PLAN_SORTED_MATCH;
            rc = fts5CursorFirstSorted(pTab, pCsr, bDesc);
          }else{
            pCsr->ePlan = FTS5_PLAN_MATCH;
            rc = fts5CursorFirst(pTab, pCsr, bDesc);
197218
197219
197220
197221
197222
197223
197224
197225
197226
197227
197228
197229
197230
197231
197232
*/
static int fts5SyncMethod(sqlite3_vtab *pVtab){
  int rc;
  Fts5Table *pTab = (Fts5Table*)pVtab;
  fts5CheckTransactionState(pTab, FTS5_SYNC, 0);
  pTab->pConfig->pzErrmsg = &pTab->base.zErrMsg;
  fts5TripCursors(pTab);
  rc = sqlite3Fts5StorageSync(pTab->pStorage, 1);
  pTab->pConfig->pzErrmsg = 0;
  return rc;
}

/*
** Implementation of xBegin() method. 
*/







|







197997
197998
197999
198000
198001
198002
198003
198004
198005
198006
198007
198008
198009
198010
198011
*/
static int fts5SyncMethod(sqlite3_vtab *pVtab){
  int rc;
  Fts5Table *pTab = (Fts5Table*)pVtab;
  fts5CheckTransactionState(pTab, FTS5_SYNC, 0);
  pTab->pConfig->pzErrmsg = &pTab->base.zErrMsg;
  fts5TripCursors(pTab);
  rc = sqlite3Fts5StorageSync(pTab->pStorage);
  pTab->pConfig->pzErrmsg = 0;
  return rc;
}

/*
** Implementation of xBegin() method. 
*/
198029
198030
198031
198032
198033
198034
198035
198036
198037
198038
198039
198040
198041
198042
198043
198044
198045
198046
198047
198048
198049
198050
198051
198052
198053
198054
198055
198056
** Flush the contents of the pending-terms table to disk.
*/
static int fts5SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  UNUSED_PARAM(iSavepoint);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState(pTab, FTS5_SAVEPOINT, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageSync(pTab->pStorage, 0);
}

/*
** The xRelease() method.
**
** This is a no-op.
*/
static int fts5ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  UNUSED_PARAM(iSavepoint);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState(pTab, FTS5_RELEASE, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageSync(pTab->pStorage, 0);
}

/*
** The xRollbackTo() method.
**
** Discard the contents of the pending terms table.
*/







|












|







198808
198809
198810
198811
198812
198813
198814
198815
198816
198817
198818
198819
198820
198821
198822
198823
198824
198825
198826
198827
198828
198829
198830
198831
198832
198833
198834
198835
** Flush the contents of the pending-terms table to disk.
*/
static int fts5SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  UNUSED_PARAM(iSavepoint);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState(pTab, FTS5_SAVEPOINT, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageSync(pTab->pStorage);
}

/*
** The xRelease() method.
**
** This is a no-op.
*/
static int fts5ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts5Table *pTab = (Fts5Table*)pVtab;
  UNUSED_PARAM(iSavepoint);  /* Call below is a no-op for NDEBUG builds */
  fts5CheckTransactionState(pTab, FTS5_RELEASE, iSavepoint);
  fts5TripCursors(pTab);
  return sqlite3Fts5StorageSync(pTab->pStorage);
}

/*
** The xRollbackTo() method.
**
** Discard the contents of the pending terms table.
*/
198253
198254
198255
198256
198257
198258
198259
198260
198261
198262
198263
198264
198265
198266
198267
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2017-03-29 15:18:40 5d902b7fea3144bf57f02aca87b9795fdcec4774310ade6ef01f37d206c3d74f", -1, SQLITE_TRANSIENT);
}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 2,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,







|







199032
199033
199034
199035
199036
199037
199038
199039
199040
199041
199042
199043
199044
199045
199046
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2017-05-22 13:58:13 28a94eb282822cad1d1420f2dad6bf65e4b8b9062eda4a0b9ee8270b2c608e40", -1, SQLITE_TRANSIENT);
}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 2,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,
198589
198590
198591
198592
198593
198594
198595
198596
198597
198598
198599
198600
198601
198602
198603
        pConfig->zDb, pConfig->zName, zTail, zName, zTail
    );
  }
}

static int sqlite3Fts5StorageRename(Fts5Storage *pStorage, const char *zName){
  Fts5Config *pConfig = pStorage->pConfig;
  int rc = sqlite3Fts5StorageSync(pStorage, 1);

  fts5StorageRenameOne(pConfig, &rc, "data", zName);
  fts5StorageRenameOne(pConfig, &rc, "idx", zName);
  fts5StorageRenameOne(pConfig, &rc, "config", zName);
  if( pConfig->bColumnsize ){
    fts5StorageRenameOne(pConfig, &rc, "docsize", zName);
  }







|







199368
199369
199370
199371
199372
199373
199374
199375
199376
199377
199378
199379
199380
199381
199382
        pConfig->zDb, pConfig->zName, zTail, zName, zTail
    );
  }
}

static int sqlite3Fts5StorageRename(Fts5Storage *pStorage, const char *zName){
  Fts5Config *pConfig = pStorage->pConfig;
  int rc = sqlite3Fts5StorageSync(pStorage);

  fts5StorageRenameOne(pConfig, &rc, "data", zName);
  fts5StorageRenameOne(pConfig, &rc, "idx", zName);
  fts5StorageRenameOne(pConfig, &rc, "config", zName);
  if( pConfig->bColumnsize ){
    fts5StorageRenameOne(pConfig, &rc, "docsize", zName);
  }
199452
199453
199454
199455
199456
199457
199458
199459
199460
199461
199462
199463
199464
199465
199466
199467
199468
199469
199470
199471
199472
199473
199474
  }
  return rc;
}

/*
** Flush any data currently held in-memory to disk.
*/
static int sqlite3Fts5StorageSync(Fts5Storage *p, int bCommit){
  int rc = SQLITE_OK;
  i64 iLastRowid = sqlite3_last_insert_rowid(p->pConfig->db);
  if( p->bTotalsValid ){
    rc = fts5StorageSaveTotals(p);
    if( bCommit ) p->bTotalsValid = 0;
  }
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5IndexSync(p->pIndex, bCommit);
  }
  sqlite3_set_last_insert_rowid(p->pConfig->db, iLastRowid);
  return rc;
}

static int sqlite3Fts5StorageRollback(Fts5Storage *p){
  p->bTotalsValid = 0;







|




|


|







200231
200232
200233
200234
200235
200236
200237
200238
200239
200240
200241
200242
200243
200244
200245
200246
200247
200248
200249
200250
200251
200252
200253
  }
  return rc;
}

/*
** Flush any data currently held in-memory to disk.
*/
static int sqlite3Fts5StorageSync(Fts5Storage *p){
  int rc = SQLITE_OK;
  i64 iLastRowid = sqlite3_last_insert_rowid(p->pConfig->db);
  if( p->bTotalsValid ){
    rc = fts5StorageSaveTotals(p);
    p->bTotalsValid = 0;
  }
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5IndexSync(p->pIndex);
  }
  sqlite3_set_last_insert_rowid(p->pConfig->db, iLastRowid);
  return rc;
}

static int sqlite3Fts5StorageRollback(Fts5Storage *p){
  p->bTotalsValid = 0;
Changes to sqlite3/src/main/jni/sqlite/sqlite3.h.
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
** string contains the date and time of the check-in (UTC) and a SHA1
** or SHA3-256 hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.18.0"
#define SQLITE_VERSION_NUMBER 3018000
#define SQLITE_SOURCE_ID      "2017-03-28 18:48:43 424a0d380332858ee55bdebc4af3789f74e70a2b3ba1cf29d84b9b4bcf3e2e37"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
** string contains the date and time of the check-in (UTC) and a SHA1
** or SHA3-256 hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.19.0"
#define SQLITE_VERSION_NUMBER 3019000
#define SQLITE_SOURCE_ID      "2017-05-22 13:58:13 28a94eb282822cad1d1420f2dad6bf65e4b8b9062eda4a0b9ee8270b2c608e40"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
** anti-virus programs.  By default, the windows VFS will retry file read,
** file write, and file delete operations up to 10 times, with a delay
** of 25 milliseconds before the first retry and with the delay increasing
** by an additional 25 milliseconds with each subsequent retry.  This
** opcode allows these two values (10 retries and 25 milliseconds of delay)
** to be adjusted.  The values are changed for all database connections
** within the same process.  The argument is a pointer to an array of two
** integers where the first integer i the new retry count and the second
** integer is the delay.  If either integer is negative, then the setting
** is not changed but instead the prior value of that setting is written
** into the array entry, allowing the current retry settings to be
** interrogated.  The zDbName parameter is ignored.
**
** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the







|







853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
** anti-virus programs.  By default, the windows VFS will retry file read,
** file write, and file delete operations up to 10 times, with a delay
** of 25 milliseconds before the first retry and with the delay increasing
** by an additional 25 milliseconds with each subsequent retry.  This
** opcode allows these two values (10 retries and 25 milliseconds of delay)
** to be adjusted.  The values are changed for all database connections
** within the same process.  The argument is a pointer to an array of two
** integers where the first integer is the new retry count and the second
** integer is the delay.  If either integer is negative, then the setting
** is not changed but instead the prior value of that setting is written
** into the array entry, allowing the current retry settings to be
** interrogated.  The zDbName parameter is ignored.
**
** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
** running statements reaches zero are interrupted as if they had been
** running prior to the sqlite3_interrupt() call.  ^New SQL statements
** that are started after the running statement count reaches zero are
** not effected by the sqlite3_interrupt().
** ^A call to sqlite3_interrupt(D) that occurs when there are no running
** SQL statements is a no-op and has no effect on SQL statements
** that are started after the sqlite3_interrupt() call returns.
**
** If the database connection closes while [sqlite3_interrupt()]
** is running then bad things will likely happen.
*/
SQLITE_API void sqlite3_interrupt(sqlite3*);

/*
** CAPI3REF: Determine If An SQL Statement Is Complete
**
** These routines are useful during command-line input to determine if the







<
<
<







2207
2208
2209
2210
2211
2212
2213



2214
2215
2216
2217
2218
2219
2220
** running statements reaches zero are interrupted as if they had been
** running prior to the sqlite3_interrupt() call.  ^New SQL statements
** that are started after the running statement count reaches zero are
** not effected by the sqlite3_interrupt().
** ^A call to sqlite3_interrupt(D) that occurs when there are no running
** SQL statements is a no-op and has no effect on SQL statements
** that are started after the sqlite3_interrupt() call returns.



*/
SQLITE_API void sqlite3_interrupt(sqlite3*);

/*
** CAPI3REF: Determine If An SQL Statement Is Complete
**
** These routines are useful during command-line input to determine if the
2672
2673
2674
2675
2676
2677
2678

2679
2680
2681
2682
2683
2684
2685
** method.
*/
SQLITE_API void sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks
** METHOD: sqlite3

**
** ^This routine registers an authorizer callback with a particular
** [database connection], supplied in the first argument.
** ^The authorizer callback is invoked as SQL statements are being compiled
** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()].  ^At various
** points during the compilation process, as logic is being created







>







2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
** method.
*/
SQLITE_API void sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks
** METHOD: sqlite3
** KEYWORDS: {authorizer callback}
**
** ^This routine registers an authorizer callback with a particular
** [database connection], supplied in the first argument.
** ^The authorizer callback is invoked as SQL statements are being compiled
** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()].  ^At various
** points during the compilation process, as logic is being created
2699
2700
2701
2702
2703
2704
2705
2706
2707


2708
2709
2710
2711
2712
2713
2714
2715




2716
2717
2718
2719
2720
2721
2722
** authorizer will fail with an error message explaining that
** access is denied. 
**
** ^The first parameter to the authorizer callback is a copy of the third
** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
** to the callback is an integer [SQLITE_COPY | action code] that specifies
** the particular action to be authorized. ^The third through sixth parameters
** to the callback are zero-terminated strings that contain additional
** details about the action to be authorized.


**
** ^If the action code is [SQLITE_READ]
** and the callback returns [SQLITE_IGNORE] then the
** [prepared statement] statement is constructed to substitute
** a NULL value in place of the table column that would have
** been read if [SQLITE_OK] had been returned.  The [SQLITE_IGNORE]
** return can be used to deny an untrusted user access to individual
** columns of a table.




** ^If the action code is [SQLITE_DELETE] and the callback returns
** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
** [truncate optimization] is disabled and all rows are deleted individually.
**
** An authorizer is used when [sqlite3_prepare | preparing]
** SQL statements from an untrusted source, to ensure that the SQL statements
** do not try to access data they are not allowed to see, or that they do not







|
|
>
>








>
>
>
>







2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
** authorizer will fail with an error message explaining that
** access is denied. 
**
** ^The first parameter to the authorizer callback is a copy of the third
** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
** to the callback is an integer [SQLITE_COPY | action code] that specifies
** the particular action to be authorized. ^The third through sixth parameters
** to the callback are either NULL pointers or zero-terminated strings
** that contain additional details about the action to be authorized.
** Applications must always be prepared to encounter a NULL pointer in any
** of the third through the sixth parameters of the authorization callback.
**
** ^If the action code is [SQLITE_READ]
** and the callback returns [SQLITE_IGNORE] then the
** [prepared statement] statement is constructed to substitute
** a NULL value in place of the table column that would have
** been read if [SQLITE_OK] had been returned.  The [SQLITE_IGNORE]
** return can be used to deny an untrusted user access to individual
** columns of a table.
** ^When a table is referenced by a [SELECT] but no column values are
** extracted from that table (for example in a query like
** "SELECT count(*) FROM tab") then the [SQLITE_READ] authorizer callback
** is invoked once for that table with a column name that is an empty string.
** ^If the action code is [SQLITE_DELETE] and the callback returns
** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
** [truncate optimization] is disabled and all rows are deleted individually.
**
** An authorizer is used when [sqlite3_prepare | preparing]
** SQL statements from an untrusted source, to ensure that the SQL statements
** do not try to access data they are not allowed to see, or that they do not
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
** ^The sqlite3_value object returned by
** [sqlite3_column_value()] is unprotected.
** Unprotected sqlite3_value objects may only be used with
** [sqlite3_result_value()] and [sqlite3_bind_value()].
** The [sqlite3_value_blob | sqlite3_value_type()] family of
** interfaces require protected sqlite3_value objects.
*/
typedef struct Mem sqlite3_value;

/*
** CAPI3REF: SQL Function Context Object
**
** The context in which an SQL function executes is stored in an
** sqlite3_context object.  ^A pointer to an sqlite3_context object
** is always first parameter to [application-defined SQL functions].







|







3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
** ^The sqlite3_value object returned by
** [sqlite3_column_value()] is unprotected.
** Unprotected sqlite3_value objects may only be used with
** [sqlite3_result_value()] and [sqlite3_bind_value()].
** The [sqlite3_value_blob | sqlite3_value_type()] family of
** interfaces require protected sqlite3_value objects.
*/
typedef struct sqlite3_value sqlite3_value;

/*
** CAPI3REF: SQL Function Context Object
**
** The context in which an SQL function executes is stored in an
** sqlite3_context object.  ^A pointer to an sqlite3_context object
** is always first parameter to [application-defined SQL functions].
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764

4765
4766
4767
4768
4769
4770
4771
4772
** of where this might be useful is in a regular-expression matching
** function. The compiled version of the regular expression can be stored as
** metadata associated with the pattern string.  
** Then as long as the pattern string remains the same,
** the compiled regular expression can be reused on multiple
** invocations of the same function.
**
** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata
** associated by the sqlite3_set_auxdata() function with the Nth argument
** value to the application-defined function. ^If there is no metadata

** associated with the function argument, this sqlite3_get_auxdata() interface
** returns a NULL pointer.
**
** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as metadata for the N-th
** argument of the application-defined function.  ^Subsequent
** calls to sqlite3_get_auxdata(C,N) return P from the most recent
** sqlite3_set_auxdata(C,N,P,X) call if the metadata is still valid or
** NULL if the metadata has been discarded.







|
|
|
>
|







4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
** of where this might be useful is in a regular-expression matching
** function. The compiled version of the regular expression can be stored as
** metadata associated with the pattern string.  
** Then as long as the pattern string remains the same,
** the compiled regular expression can be reused on multiple
** invocations of the same function.
**
** ^The sqlite3_get_auxdata(C,N) interface returns a pointer to the metadata
** associated by the sqlite3_set_auxdata(C,N,P,X) function with the Nth argument
** value to the application-defined function.  ^N is zero for the left-most
** function argument.  ^If there is no metadata
** associated with the function argument, the sqlite3_get_auxdata(C,N) interface
** returns a NULL pointer.
**
** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as metadata for the N-th
** argument of the application-defined function.  ^Subsequent
** calls to sqlite3_get_auxdata(C,N) return P from the most recent
** sqlite3_set_auxdata(C,N,P,X) call if the metadata is still valid or
** NULL if the metadata has been discarded.
4788
4789
4790
4791
4792
4793
4794




4795
4796
4797
4798
4799
4800
4801
** should be called near the end of the function implementation and the
** function implementation should not make any use of P after
** sqlite3_set_auxdata() has been called.
**
** ^(In practice, metadata is preserved between function calls for
** function parameters that are compile-time constants, including literal
** values and [parameters] and expressions composed from the same.)^




**
** These routines must be called from the same thread in which
** the SQL function is running.
*/
SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));








>
>
>
>







4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
** should be called near the end of the function implementation and the
** function implementation should not make any use of P after
** sqlite3_set_auxdata() has been called.
**
** ^(In practice, metadata is preserved between function calls for
** function parameters that are compile-time constants, including literal
** values and [parameters] and expressions composed from the same.)^
**
** The value of the N parameter to these interfaces should be non-negative.
** Future enhancements may make use of negative N values to define new
** kinds of function caching behavior.
**
** These routines must be called from the same thread in which
** the SQL function is running.
*/
SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));

9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
** Any number of calls to add() and output() may be made between the calls to
** new() and delete(), and in any order.
**
** As well as the regular sqlite3changegroup_add() and 
** sqlite3changegroup_output() functions, also available are the streaming
** versions sqlite3changegroup_add_strm() and sqlite3changegroup_output_strm().
*/
int sqlite3changegroup_new(sqlite3_changegroup **pp);

/*
** CAPI3REF: Add A Changeset To A Changegroup
**
** Add all changes within the changeset (or patchset) in buffer pData (size
** nData bytes) to the changegroup. 
**







|







9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
** Any number of calls to add() and output() may be made between the calls to
** new() and delete(), and in any order.
**
** As well as the regular sqlite3changegroup_add() and 
** sqlite3changegroup_output() functions, also available are the streaming
** versions sqlite3changegroup_add_strm() and sqlite3changegroup_output_strm().
*/
SQLITE_API int sqlite3changegroup_new(sqlite3_changegroup **pp);

/*
** CAPI3REF: Add A Changeset To A Changegroup
**
** Add all changes within the changeset (or patchset) in buffer pData (size
** nData bytes) to the changegroup. 
**
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
** appears to be corrupt and the corruption is detected, SQLITE_CORRUPT is
** returned. Or, if an out-of-memory condition occurs during processing, this
** function returns SQLITE_NOMEM. In all cases, if an error occurs the
** final contents of the changegroup is undefined.
**
** If no error occurs, SQLITE_OK is returned.
*/
int sqlite3changegroup_add(sqlite3_changegroup*, int nData, void *pData);

/*
** CAPI3REF: Obtain A Composite Changeset From A Changegroup
**
** Obtain a buffer containing a changeset (or patchset) representing the
** current contents of the changegroup. If the inputs to the changegroup
** were themselves changesets, the output is a changeset. Or, if the







|







9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
** appears to be corrupt and the corruption is detected, SQLITE_CORRUPT is
** returned. Or, if an out-of-memory condition occurs during processing, this
** function returns SQLITE_NOMEM. In all cases, if an error occurs the
** final contents of the changegroup is undefined.
**
** If no error occurs, SQLITE_OK is returned.
*/
SQLITE_API int sqlite3changegroup_add(sqlite3_changegroup*, int nData, void *pData);

/*
** CAPI3REF: Obtain A Composite Changeset From A Changegroup
**
** Obtain a buffer containing a changeset (or patchset) representing the
** current contents of the changegroup. If the inputs to the changegroup
** were themselves changesets, the output is a changeset. Or, if the
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
** If an error occurs, an SQLite error code is returned and the output
** variables (*pnData) and (*ppData) are set to 0. Otherwise, SQLITE_OK
** is returned and the output variables are set to the size of and a 
** pointer to the output buffer, respectively. In this case it is the
** responsibility of the caller to eventually free the buffer using a
** call to sqlite3_free().
*/
int sqlite3changegroup_output(
  sqlite3_changegroup*,
  int *pnData,                    /* OUT: Size of output buffer in bytes */
  void **ppData                   /* OUT: Pointer to output buffer */
);

/*
** CAPI3REF: Delete A Changegroup Object
*/
void sqlite3changegroup_delete(sqlite3_changegroup*);

/*
** CAPI3REF: Apply A Changeset To A Database
**
** Apply a changeset to a database. This function attempts to update the
** "main" database attached to handle db with the changes found in the
** changeset passed via the second and third arguments.







|








|







9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
** If an error occurs, an SQLite error code is returned and the output
** variables (*pnData) and (*ppData) are set to 0. Otherwise, SQLITE_OK
** is returned and the output variables are set to the size of and a 
** pointer to the output buffer, respectively. In this case it is the
** responsibility of the caller to eventually free the buffer using a
** call to sqlite3_free().
*/
SQLITE_API int sqlite3changegroup_output(
  sqlite3_changegroup*,
  int *pnData,                    /* OUT: Size of output buffer in bytes */
  void **ppData                   /* OUT: Pointer to output buffer */
);

/*
** CAPI3REF: Delete A Changegroup Object
*/
SQLITE_API void sqlite3changegroup_delete(sqlite3_changegroup*);

/*
** CAPI3REF: Apply A Changeset To A Database
**
** Apply a changeset to a database. This function attempts to update the
** "main" database attached to handle db with the changes found in the
** changeset passed via the second and third arguments.
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
  void *pOut
);
SQLITE_API int sqlite3session_patchset_strm(
  sqlite3_session *pSession,
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);
int sqlite3changegroup_add_strm(sqlite3_changegroup*, 
    int (*xInput)(void *pIn, void *pData, int *pnData),
    void *pIn
);
int sqlite3changegroup_output_strm(sqlite3_changegroup*,
    int (*xOutput)(void *pOut, const void *pData, int nData), 
    void *pOut
);


/*
** Make sure we can call this stuff from C++.







|



|







9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
  void *pOut
);
SQLITE_API int sqlite3session_patchset_strm(
  sqlite3_session *pSession,
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);
SQLITE_API int sqlite3changegroup_add_strm(sqlite3_changegroup*, 
    int (*xInput)(void *pIn, void *pData, int *pnData),
    void *pIn
);
SQLITE_API int sqlite3changegroup_output_strm(sqlite3_changegroup*,
    int (*xOutput)(void *pOut, const void *pData, int nData), 
    void *pOut
);


/*
** Make sure we can call this stuff from C++.