000001  /*
000002  ** 2001 September 15
000003  **
000004  ** The author disclaims copyright to this source code.  In place of
000005  ** a legal notice, here is a blessing:
000006  **
000007  **    May you do good and not evil.
000008  **    May you find forgiveness for yourself and forgive others.
000009  **    May you share freely, never taking more than you give.
000010  **
000011  *************************************************************************
000012  ** The code in this file implements the function that runs the
000013  ** bytecode of a prepared statement.
000014  **
000015  ** Various scripts scan this source file in order to generate HTML
000016  ** documentation, headers files, or other derived files.  The formatting
000017  ** of the code in this file is, therefore, important.  See other comments
000018  ** in this file for details.  If in doubt, do not deviate from existing
000019  ** commenting and indentation practices when changing or adding code.
000020  */
000021  #include "sqliteInt.h"
000022  #include "vdbeInt.h"
000023  
000024  /*
000025  ** Invoke this macro on memory cells just prior to changing the
000026  ** value of the cell.  This macro verifies that shallow copies are
000027  ** not misused.  A shallow copy of a string or blob just copies a
000028  ** pointer to the string or blob, not the content.  If the original
000029  ** is changed while the copy is still in use, the string or blob might
000030  ** be changed out from under the copy.  This macro verifies that nothing
000031  ** like that ever happens.
000032  */
000033  #ifdef SQLITE_DEBUG
000034  # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
000035  #else
000036  # define memAboutToChange(P,M)
000037  #endif
000038  
000039  /*
000040  ** The following global variable is incremented every time a cursor
000041  ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
000042  ** procedures use this information to make sure that indices are
000043  ** working correctly.  This variable has no function other than to
000044  ** help verify the correct operation of the library.
000045  */
000046  #ifdef SQLITE_TEST
000047  int sqlite3_search_count = 0;
000048  #endif
000049  
000050  /*
000051  ** When this global variable is positive, it gets decremented once before
000052  ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
000053  ** field of the sqlite3 structure is set in order to simulate an interrupt.
000054  **
000055  ** This facility is used for testing purposes only.  It does not function
000056  ** in an ordinary build.
000057  */
000058  #ifdef SQLITE_TEST
000059  int sqlite3_interrupt_count = 0;
000060  #endif
000061  
000062  /*
000063  ** The next global variable is incremented each type the OP_Sort opcode
000064  ** is executed.  The test procedures use this information to make sure that
000065  ** sorting is occurring or not occurring at appropriate times.   This variable
000066  ** has no function other than to help verify the correct operation of the
000067  ** library.
000068  */
000069  #ifdef SQLITE_TEST
000070  int sqlite3_sort_count = 0;
000071  #endif
000072  
000073  /*
000074  ** The next global variable records the size of the largest MEM_Blob
000075  ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
000076  ** use this information to make sure that the zero-blob functionality
000077  ** is working correctly.   This variable has no function other than to
000078  ** help verify the correct operation of the library.
000079  */
000080  #ifdef SQLITE_TEST
000081  int sqlite3_max_blobsize = 0;
000082  static void updateMaxBlobsize(Mem *p){
000083    if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
000084      sqlite3_max_blobsize = p->n;
000085    }
000086  }
000087  #endif
000088  
000089  /*
000090  ** This macro evaluates to true if either the update hook or the preupdate
000091  ** hook are enabled for database connect DB.
000092  */
000093  #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
000094  # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
000095  #else
000096  # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
000097  #endif
000098  
000099  /*
000100  ** The next global variable is incremented each time the OP_Found opcode
000101  ** is executed. This is used to test whether or not the foreign key
000102  ** operation implemented using OP_FkIsZero is working. This variable
000103  ** has no function other than to help verify the correct operation of the
000104  ** library.
000105  */
000106  #ifdef SQLITE_TEST
000107  int sqlite3_found_count = 0;
000108  #endif
000109  
000110  /*
000111  ** Test a register to see if it exceeds the current maximum blob size.
000112  ** If it does, record the new maximum blob size.
000113  */
000114  #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
000115  # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
000116  #else
000117  # define UPDATE_MAX_BLOBSIZE(P)
000118  #endif
000119  
000120  #ifdef SQLITE_DEBUG
000121  /* This routine provides a convenient place to set a breakpoint during
000122  ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
000123  ** each opcode is printed.  Variables "pc" (program counter) and pOp are
000124  ** available to add conditionals to the breakpoint.  GDB example:
000125  **
000126  **         break test_trace_breakpoint if pc=22
000127  **
000128  ** Other useful labels for breakpoints include:
000129  **   test_addop_breakpoint(pc,pOp)
000130  **   sqlite3CorruptError(lineno)
000131  **   sqlite3MisuseError(lineno)
000132  **   sqlite3CantopenError(lineno)
000133  */
000134  static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
000135    static u64 n = 0;
000136    (void)pc;
000137    (void)pOp;
000138    (void)v;
000139    n++;
000140    if( n==LARGEST_UINT64 ) abort(); /* So that n is used, preventing a warning */
000141  }
000142  #endif
000143  
000144  /*
000145  ** Invoke the VDBE coverage callback, if that callback is defined.  This
000146  ** feature is used for test suite validation only and does not appear an
000147  ** production builds.
000148  **
000149  ** M is the type of branch.  I is the direction taken for this instance of
000150  ** the branch.
000151  **
000152  **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
000153  **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
000154  **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
000155  **
000156  ** In other words, if M is 2, then I is either 0 (for fall-through) or
000157  ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
000158  ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
000159  ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
000160  ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
000161  ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
000162  ** depending on if the operands are less than, equal, or greater than.
000163  **
000164  ** iSrcLine is the source code line (from the __LINE__ macro) that
000165  ** generated the VDBE instruction combined with flag bits.  The source
000166  ** code line number is in the lower 24 bits of iSrcLine and the upper
000167  ** 8 bytes are flags.  The lower three bits of the flags indicate
000168  ** values for I that should never occur.  For example, if the branch is
000169  ** always taken, the flags should be 0x05 since the fall-through and
000170  ** alternate branch are never taken.  If a branch is never taken then
000171  ** flags should be 0x06 since only the fall-through approach is allowed.
000172  **
000173  ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
000174  ** interested in equal or not-equal.  In other words, I==0 and I==2
000175  ** should be treated as equivalent
000176  **
000177  ** Since only a line number is retained, not the filename, this macro
000178  ** only works for amalgamation builds.  But that is ok, since these macros
000179  ** should be no-ops except for special builds used to measure test coverage.
000180  */
000181  #if !defined(SQLITE_VDBE_COVERAGE)
000182  # define VdbeBranchTaken(I,M)
000183  #else
000184  # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
000185    static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
000186      u8 mNever;
000187      assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
000188      assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
000189      assert( I<M );   /* I can only be 2 if M is 3 or 4 */
000190      /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
000191      I = 1<<I;
000192      /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
000193      ** the flags indicate directions that the branch can never go.  If
000194      ** a branch really does go in one of those directions, assert right
000195      ** away. */
000196      mNever = iSrcLine >> 24;
000197      assert( (I & mNever)==0 );
000198      if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
000199      /* Invoke the branch coverage callback with three arguments:
000200      **    iSrcLine - the line number of the VdbeCoverage() macro, with
000201      **               flags removed.
000202      **    I        - Mask of bits 0x07 indicating which cases are are
000203      **               fulfilled by this instance of the jump.  0x01 means
000204      **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
000205      **               impossible cases (ex: if the comparison is never NULL)
000206      **               are filled in automatically so that the coverage
000207      **               measurement logic does not flag those impossible cases
000208      **               as missed coverage.
000209      **    M        - Type of jump.  Same as M argument above
000210      */
000211      I |= mNever;
000212      if( M==2 ) I |= 0x04;
000213      if( M==4 ){
000214        I |= 0x08;
000215        if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
000216      }
000217      sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
000218                                      iSrcLine&0xffffff, I, M);
000219    }
000220  #endif
000221  
000222  /*
000223  ** An ephemeral string value (signified by the MEM_Ephem flag) contains
000224  ** a pointer to a dynamically allocated string where some other entity
000225  ** is responsible for deallocating that string.  Because the register
000226  ** does not control the string, it might be deleted without the register
000227  ** knowing it.
000228  **
000229  ** This routine converts an ephemeral string into a dynamically allocated
000230  ** string that the register itself controls.  In other words, it
000231  ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
000232  */
000233  #define Deephemeralize(P) \
000234     if( ((P)->flags&MEM_Ephem)!=0 \
000235         && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
000236  
000237  /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
000238  #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
000239  
000240  /*
000241  ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
000242  ** if we run out of memory.
000243  */
000244  static VdbeCursor *allocateCursor(
000245    Vdbe *p,              /* The virtual machine */
000246    int iCur,             /* Index of the new VdbeCursor */
000247    int nField,           /* Number of fields in the table or index */
000248    u8 eCurType           /* Type of the new cursor */
000249  ){
000250    /* Find the memory cell that will be used to store the blob of memory
000251    ** required for this VdbeCursor structure. It is convenient to use a
000252    ** vdbe memory cell to manage the memory allocation required for a
000253    ** VdbeCursor structure for the following reasons:
000254    **
000255    **   * Sometimes cursor numbers are used for a couple of different
000256    **     purposes in a vdbe program. The different uses might require
000257    **     different sized allocations. Memory cells provide growable
000258    **     allocations.
000259    **
000260    **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
000261    **     be freed lazily via the sqlite3_release_memory() API. This
000262    **     minimizes the number of malloc calls made by the system.
000263    **
000264    ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
000265    ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
000266    ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
000267    */
000268    Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
000269  
000270    int nByte;
000271    VdbeCursor *pCx = 0;
000272    nByte =
000273        ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
000274        (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
000275  
000276    assert( iCur>=0 && iCur<p->nCursor );
000277    if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
000278      sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
000279      p->apCsr[iCur] = 0;
000280    }
000281  
000282    /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
000283    ** the pMem used to hold space for the cursor has enough storage available
000284    ** in pMem->zMalloc.  But for the special case of the aMem[] entries used
000285    ** to hold cursors, it is faster to in-line the logic. */
000286    assert( pMem->flags==MEM_Undefined );
000287    assert( (pMem->flags & MEM_Dyn)==0 );
000288    assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
000289    if( pMem->szMalloc<nByte ){
000290      if( pMem->szMalloc>0 ){
000291        sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
000292      }
000293      pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
000294      if( pMem->zMalloc==0 ){
000295        pMem->szMalloc = 0;
000296        return 0;
000297      }
000298      pMem->szMalloc = nByte;
000299    }
000300  
000301    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
000302    memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
000303    pCx->eCurType = eCurType;
000304    pCx->nField = nField;
000305    pCx->aOffset = &pCx->aType[nField];
000306    if( eCurType==CURTYPE_BTREE ){
000307      pCx->uc.pCursor = (BtCursor*)
000308          &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
000309      sqlite3BtreeCursorZero(pCx->uc.pCursor);
000310    }
000311    return pCx;
000312  }
000313  
000314  /*
000315  ** The string in pRec is known to look like an integer and to have a
000316  ** floating point value of rValue.  Return true and set *piValue to the
000317  ** integer value if the string is in range to be an integer.  Otherwise,
000318  ** return false.
000319  */
000320  static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
000321    i64 iValue;
000322    iValue = sqlite3RealToI64(rValue);
000323    if( sqlite3RealSameAsInt(rValue,iValue) ){
000324      *piValue = iValue;
000325      return 1;
000326    }
000327    return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
000328  }
000329  
000330  /*
000331  ** Try to convert a value into a numeric representation if we can
000332  ** do so without loss of information.  In other words, if the string
000333  ** looks like a number, convert it into a number.  If it does not
000334  ** look like a number, leave it alone.
000335  **
000336  ** If the bTryForInt flag is true, then extra effort is made to give
000337  ** an integer representation.  Strings that look like floating point
000338  ** values but which have no fractional component (example: '48.00')
000339  ** will have a MEM_Int representation when bTryForInt is true.
000340  **
000341  ** If bTryForInt is false, then if the input string contains a decimal
000342  ** point or exponential notation, the result is only MEM_Real, even
000343  ** if there is an exact integer representation of the quantity.
000344  */
000345  static void applyNumericAffinity(Mem *pRec, int bTryForInt){
000346    double rValue;
000347    u8 enc = pRec->enc;
000348    int rc;
000349    assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
000350    rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
000351    if( rc<=0 ) return;
000352    if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
000353      pRec->flags |= MEM_Int;
000354    }else{
000355      pRec->u.r = rValue;
000356      pRec->flags |= MEM_Real;
000357      if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
000358    }
000359    /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
000360    ** string representation after computing a numeric equivalent, because the
000361    ** string representation might not be the canonical representation for the
000362    ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
000363    pRec->flags &= ~MEM_Str;
000364  }
000365  
000366  /*
000367  ** Processing is determine by the affinity parameter:
000368  **
000369  ** SQLITE_AFF_INTEGER:
000370  ** SQLITE_AFF_REAL:
000371  ** SQLITE_AFF_NUMERIC:
000372  **    Try to convert pRec to an integer representation or a
000373  **    floating-point representation if an integer representation
000374  **    is not possible.  Note that the integer representation is
000375  **    always preferred, even if the affinity is REAL, because
000376  **    an integer representation is more space efficient on disk.
000377  **
000378  ** SQLITE_AFF_FLEXNUM:
000379  **    If the value is text, then try to convert it into a number of
000380  **    some kind (integer or real) but do not make any other changes.
000381  **
000382  ** SQLITE_AFF_TEXT:
000383  **    Convert pRec to a text representation.
000384  **
000385  ** SQLITE_AFF_BLOB:
000386  ** SQLITE_AFF_NONE:
000387  **    No-op.  pRec is unchanged.
000388  */
000389  static void applyAffinity(
000390    Mem *pRec,          /* The value to apply affinity to */
000391    char affinity,      /* The affinity to be applied */
000392    u8 enc              /* Use this text encoding */
000393  ){
000394    if( affinity>=SQLITE_AFF_NUMERIC ){
000395      assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
000396               || affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM );
000397      if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
000398        if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){
000399          if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
000400        }else if( affinity<=SQLITE_AFF_REAL ){
000401          sqlite3VdbeIntegerAffinity(pRec);
000402        }
000403      }
000404    }else if( affinity==SQLITE_AFF_TEXT ){
000405      /* Only attempt the conversion to TEXT if there is an integer or real
000406      ** representation (blob and NULL do not get converted) but no string
000407      ** representation.  It would be harmless to repeat the conversion if
000408      ** there is already a string rep, but it is pointless to waste those
000409      ** CPU cycles. */
000410      if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
000411        if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
000412          testcase( pRec->flags & MEM_Int );
000413          testcase( pRec->flags & MEM_Real );
000414          testcase( pRec->flags & MEM_IntReal );
000415          sqlite3VdbeMemStringify(pRec, enc, 1);
000416        }
000417      }
000418      pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
000419    }
000420  }
000421  
000422  /*
000423  ** Try to convert the type of a function argument or a result column
000424  ** into a numeric representation.  Use either INTEGER or REAL whichever
000425  ** is appropriate.  But only do the conversion if it is possible without
000426  ** loss of information and return the revised type of the argument.
000427  */
000428  int sqlite3_value_numeric_type(sqlite3_value *pVal){
000429    int eType = sqlite3_value_type(pVal);
000430    if( eType==SQLITE_TEXT ){
000431      Mem *pMem = (Mem*)pVal;
000432      applyNumericAffinity(pMem, 0);
000433      eType = sqlite3_value_type(pVal);
000434    }
000435    return eType;
000436  }
000437  
000438  /*
000439  ** Exported version of applyAffinity(). This one works on sqlite3_value*,
000440  ** not the internal Mem* type.
000441  */
000442  void sqlite3ValueApplyAffinity(
000443    sqlite3_value *pVal,
000444    u8 affinity,
000445    u8 enc
000446  ){
000447    applyAffinity((Mem *)pVal, affinity, enc);
000448  }
000449  
000450  /*
000451  ** pMem currently only holds a string type (or maybe a BLOB that we can
000452  ** interpret as a string if we want to).  Compute its corresponding
000453  ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
000454  ** accordingly.
000455  */
000456  static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
000457    int rc;
000458    sqlite3_int64 ix;
000459    assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
000460    assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
000461    if( ExpandBlob(pMem) ){
000462      pMem->u.i = 0;
000463      return MEM_Int;
000464    }
000465    rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
000466    if( rc<=0 ){
000467      if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
000468        pMem->u.i = ix;
000469        return MEM_Int;
000470      }else{
000471        return MEM_Real;
000472      }
000473    }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
000474      pMem->u.i = ix;
000475      return MEM_Int;
000476    }
000477    return MEM_Real;
000478  }
000479  
000480  /*
000481  ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
000482  ** none. 
000483  **
000484  ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
000485  ** But it does set pMem->u.r and pMem->u.i appropriately.
000486  */
000487  static u16 numericType(Mem *pMem){
000488    assert( (pMem->flags & MEM_Null)==0
000489         || pMem->db==0 || pMem->db->mallocFailed );
000490    if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){
000491      testcase( pMem->flags & MEM_Int );
000492      testcase( pMem->flags & MEM_Real );
000493      testcase( pMem->flags & MEM_IntReal );
000494      return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null);
000495    }
000496    assert( pMem->flags & (MEM_Str|MEM_Blob) );
000497    testcase( pMem->flags & MEM_Str );
000498    testcase( pMem->flags & MEM_Blob );
000499    return computeNumericType(pMem);
000500    return 0;
000501  }
000502  
000503  #ifdef SQLITE_DEBUG
000504  /*
000505  ** Write a nice string representation of the contents of cell pMem
000506  ** into buffer zBuf, length nBuf.
000507  */
000508  void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
000509    int f = pMem->flags;
000510    static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
000511    if( f&MEM_Blob ){
000512      int i;
000513      char c;
000514      if( f & MEM_Dyn ){
000515        c = 'z';
000516        assert( (f & (MEM_Static|MEM_Ephem))==0 );
000517      }else if( f & MEM_Static ){
000518        c = 't';
000519        assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
000520      }else if( f & MEM_Ephem ){
000521        c = 'e';
000522        assert( (f & (MEM_Static|MEM_Dyn))==0 );
000523      }else{
000524        c = 's';
000525      }
000526      sqlite3_str_appendf(pStr, "%cx[", c);
000527      for(i=0; i<25 && i<pMem->n; i++){
000528        sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
000529      }
000530      sqlite3_str_appendf(pStr, "|");
000531      for(i=0; i<25 && i<pMem->n; i++){
000532        char z = pMem->z[i];
000533        sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
000534      }
000535      sqlite3_str_appendf(pStr,"]");
000536      if( f & MEM_Zero ){
000537        sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
000538      }
000539    }else if( f & MEM_Str ){
000540      int j;
000541      u8 c;
000542      if( f & MEM_Dyn ){
000543        c = 'z';
000544        assert( (f & (MEM_Static|MEM_Ephem))==0 );
000545      }else if( f & MEM_Static ){
000546        c = 't';
000547        assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
000548      }else if( f & MEM_Ephem ){
000549        c = 'e';
000550        assert( (f & (MEM_Static|MEM_Dyn))==0 );
000551      }else{
000552        c = 's';
000553      }
000554      sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
000555      for(j=0; j<25 && j<pMem->n; j++){
000556        c = pMem->z[j];
000557        sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
000558      }
000559      sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
000560      if( f & MEM_Term ){
000561        sqlite3_str_appendf(pStr, "(0-term)");
000562      }
000563    }
000564  }
000565  #endif
000566  
000567  #ifdef SQLITE_DEBUG
000568  /*
000569  ** Print the value of a register for tracing purposes:
000570  */
000571  static void memTracePrint(Mem *p){
000572    if( p->flags & MEM_Undefined ){
000573      printf(" undefined");
000574    }else if( p->flags & MEM_Null ){
000575      printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
000576    }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
000577      printf(" si:%lld", p->u.i);
000578    }else if( (p->flags & (MEM_IntReal))!=0 ){
000579      printf(" ir:%lld", p->u.i);
000580    }else if( p->flags & MEM_Int ){
000581      printf(" i:%lld", p->u.i);
000582  #ifndef SQLITE_OMIT_FLOATING_POINT
000583    }else if( p->flags & MEM_Real ){
000584      printf(" r:%.17g", p->u.r);
000585  #endif
000586    }else if( sqlite3VdbeMemIsRowSet(p) ){
000587      printf(" (rowset)");
000588    }else{
000589      StrAccum acc;
000590      char zBuf[1000];
000591      sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
000592      sqlite3VdbeMemPrettyPrint(p, &acc);
000593      printf(" %s", sqlite3StrAccumFinish(&acc));
000594    }
000595    if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
000596  }
000597  static void registerTrace(int iReg, Mem *p){
000598    printf("R[%d] = ", iReg);
000599    memTracePrint(p);
000600    if( p->pScopyFrom ){
000601      printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
000602    }
000603    printf("\n");
000604    sqlite3VdbeCheckMemInvariants(p);
000605  }
000606  /**/ void sqlite3PrintMem(Mem *pMem){
000607    memTracePrint(pMem);
000608    printf("\n");
000609    fflush(stdout);
000610  }
000611  #endif
000612  
000613  #ifdef SQLITE_DEBUG
000614  /*
000615  ** Show the values of all registers in the virtual machine.  Used for
000616  ** interactive debugging.
000617  */
000618  void sqlite3VdbeRegisterDump(Vdbe *v){
000619    int i;
000620    for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
000621  }
000622  #endif /* SQLITE_DEBUG */
000623  
000624  
000625  #ifdef SQLITE_DEBUG
000626  #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
000627  #else
000628  #  define REGISTER_TRACE(R,M)
000629  #endif
000630  
000631  #ifndef NDEBUG
000632  /*
000633  ** This function is only called from within an assert() expression. It
000634  ** checks that the sqlite3.nTransaction variable is correctly set to
000635  ** the number of non-transaction savepoints currently in the
000636  ** linked list starting at sqlite3.pSavepoint.
000637  **
000638  ** Usage:
000639  **
000640  **     assert( checkSavepointCount(db) );
000641  */
000642  static int checkSavepointCount(sqlite3 *db){
000643    int n = 0;
000644    Savepoint *p;
000645    for(p=db->pSavepoint; p; p=p->pNext) n++;
000646    assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
000647    return 1;
000648  }
000649  #endif
000650  
000651  /*
000652  ** Return the register of pOp->p2 after first preparing it to be
000653  ** overwritten with an integer value.
000654  */
000655  static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
000656    sqlite3VdbeMemSetNull(pOut);
000657    pOut->flags = MEM_Int;
000658    return pOut;
000659  }
000660  static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
000661    Mem *pOut;
000662    assert( pOp->p2>0 );
000663    assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
000664    pOut = &p->aMem[pOp->p2];
000665    memAboutToChange(p, pOut);
000666    if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
000667      return out2PrereleaseWithClear(pOut);
000668    }else{
000669      pOut->flags = MEM_Int;
000670      return pOut;
000671    }
000672  }
000673  
000674  /*
000675  ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
000676  ** with pOp->p3.  Return the hash.
000677  */
000678  static u64 filterHash(const Mem *aMem, const Op *pOp){
000679    int i, mx;
000680    u64 h = 0;
000681  
000682    assert( pOp->p4type==P4_INT32 );
000683    for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
000684      const Mem *p = &aMem[i];
000685      if( p->flags & (MEM_Int|MEM_IntReal) ){
000686        h += p->u.i;
000687      }else if( p->flags & MEM_Real ){
000688        h += sqlite3VdbeIntValue(p);
000689      }else if( p->flags & (MEM_Str|MEM_Blob) ){
000690        /* All strings have the same hash and all blobs have the same hash,
000691        ** though, at least, those hashes are different from each other and
000692        ** from NULL. */
000693        h += 4093 + (p->flags & (MEM_Str|MEM_Blob));
000694      }
000695    }
000696    return h;
000697  }
000698  
000699  
000700  /*
000701  ** For OP_Column, factor out the case where content is loaded from
000702  ** overflow pages, so that the code to implement this case is separate
000703  ** the common case where all content fits on the page.  Factoring out
000704  ** the code reduces register pressure and helps the common case
000705  ** to run faster.
000706  */
000707  static SQLITE_NOINLINE int vdbeColumnFromOverflow(
000708    VdbeCursor *pC,       /* The BTree cursor from which we are reading */
000709    int iCol,             /* The column to read */
000710    int t,                /* The serial-type code for the column value */
000711    i64 iOffset,          /* Offset to the start of the content value */
000712    u32 cacheStatus,      /* Current Vdbe.cacheCtr value */
000713    u32 colCacheCtr,      /* Current value of the column cache counter */
000714    Mem *pDest            /* Store the value into this register. */
000715  ){
000716    int rc;
000717    sqlite3 *db = pDest->db;
000718    int encoding = pDest->enc;
000719    int len = sqlite3VdbeSerialTypeLen(t);
000720    assert( pC->eCurType==CURTYPE_BTREE );
000721    if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG;
000722    if( len > 4000 && pC->pKeyInfo==0 ){
000723      /* Cache large column values that are on overflow pages using
000724      ** an RCStr (reference counted string) so that if they are reloaded,
000725      ** that do not have to be copied a second time.  The overhead of
000726      ** creating and managing the cache is such that this is only
000727      ** profitable for larger TEXT and BLOB values.
000728      **
000729      ** Only do this on table-btrees so that writes to index-btrees do not
000730      ** need to clear the cache.  This buys performance in the common case
000731      ** in exchange for generality.
000732      */
000733      VdbeTxtBlbCache *pCache;
000734      char *pBuf;
000735      if( pC->colCache==0 ){
000736        pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) );
000737        if( pC->pCache==0 ) return SQLITE_NOMEM;
000738        pC->colCache = 1;
000739      }
000740      pCache = pC->pCache;
000741      if( pCache->pCValue==0
000742       || pCache->iCol!=iCol
000743       || pCache->cacheStatus!=cacheStatus
000744       || pCache->colCacheCtr!=colCacheCtr
000745       || pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor)
000746      ){
000747        if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue);
000748        pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 );
000749        if( pBuf==0 ) return SQLITE_NOMEM;
000750        rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf);
000751        if( rc ) return rc;
000752        pBuf[len] = 0;
000753        pBuf[len+1] = 0;
000754        pBuf[len+2] = 0;
000755        pCache->iCol = iCol;
000756        pCache->cacheStatus = cacheStatus;
000757        pCache->colCacheCtr = colCacheCtr;
000758        pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor);
000759      }else{
000760        pBuf = pCache->pCValue;
000761      }
000762      assert( t>=12 );
000763      sqlite3RCStrRef(pBuf);
000764      if( t&1 ){
000765        rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding,
000766                                  sqlite3RCStrUnref);
000767        pDest->flags |= MEM_Term;
000768      }else{
000769        rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0,
000770                                  sqlite3RCStrUnref);
000771      }
000772    }else{
000773      rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest);
000774      if( rc ) return rc;
000775      sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
000776      if( (t&1)!=0 && encoding==SQLITE_UTF8 ){
000777        pDest->z[len] = 0;
000778        pDest->flags |= MEM_Term;
000779      }
000780    }
000781    pDest->flags &= ~MEM_Ephem;
000782    return rc;
000783  }
000784  
000785  
000786  /*
000787  ** Return the symbolic name for the data type of a pMem
000788  */
000789  static const char *vdbeMemTypeName(Mem *pMem){
000790    static const char *azTypes[] = {
000791        /* SQLITE_INTEGER */ "INT",
000792        /* SQLITE_FLOAT   */ "REAL",
000793        /* SQLITE_TEXT    */ "TEXT",
000794        /* SQLITE_BLOB    */ "BLOB",
000795        /* SQLITE_NULL    */ "NULL"
000796    };
000797    return azTypes[sqlite3_value_type(pMem)-1];
000798  }
000799  
000800  /*
000801  ** Execute as much of a VDBE program as we can.
000802  ** This is the core of sqlite3_step(). 
000803  */
000804  int sqlite3VdbeExec(
000805    Vdbe *p                    /* The VDBE */
000806  ){
000807    Op *aOp = p->aOp;          /* Copy of p->aOp */
000808    Op *pOp = aOp;             /* Current operation */
000809  #ifdef SQLITE_DEBUG
000810    Op *pOrigOp;               /* Value of pOp at the top of the loop */
000811    int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
000812    u8 iCompareIsInit = 0;     /* iCompare is initialized */
000813  #endif
000814    int rc = SQLITE_OK;        /* Value to return */
000815    sqlite3 *db = p->db;       /* The database */
000816    u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
000817    u8 encoding = ENC(db);     /* The database encoding */
000818    int iCompare = 0;          /* Result of last comparison */
000819    u64 nVmStep = 0;           /* Number of virtual machine steps */
000820  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
000821    u64 nProgressLimit;        /* Invoke xProgress() when nVmStep reaches this */
000822  #endif
000823    Mem *aMem = p->aMem;       /* Copy of p->aMem */
000824    Mem *pIn1 = 0;             /* 1st input operand */
000825    Mem *pIn2 = 0;             /* 2nd input operand */
000826    Mem *pIn3 = 0;             /* 3rd input operand */
000827    Mem *pOut = 0;             /* Output operand */
000828    u32 colCacheCtr = 0;       /* Column cache counter */
000829  #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
000830    u64 *pnCycle = 0;
000831    int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0;
000832  #endif
000833    /*** INSERT STACK UNION HERE ***/
000834  
000835    assert( p->eVdbeState==VDBE_RUN_STATE );  /* sqlite3_step() verifies this */
000836    if( DbMaskNonZero(p->lockMask) ){
000837      sqlite3VdbeEnter(p);
000838    }
000839  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
000840    if( db->xProgress ){
000841      u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
000842      assert( 0 < db->nProgressOps );
000843      nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
000844    }else{
000845      nProgressLimit = LARGEST_UINT64;
000846    }
000847  #endif
000848    if( p->rc==SQLITE_NOMEM ){
000849      /* This happens if a malloc() inside a call to sqlite3_column_text() or
000850      ** sqlite3_column_text16() failed.  */
000851      goto no_mem;
000852    }
000853    assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
000854    testcase( p->rc!=SQLITE_OK );
000855    p->rc = SQLITE_OK;
000856    assert( p->bIsReader || p->readOnly!=0 );
000857    p->iCurrentTime = 0;
000858    assert( p->explain==0 );
000859    db->busyHandler.nBusy = 0;
000860    if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
000861    sqlite3VdbeIOTraceSql(p);
000862  #ifdef SQLITE_DEBUG
000863    sqlite3BeginBenignMalloc();
000864    if( p->pc==0
000865     && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
000866    ){
000867      int i;
000868      int once = 1;
000869      sqlite3VdbePrintSql(p);
000870      if( p->db->flags & SQLITE_VdbeListing ){
000871        printf("VDBE Program Listing:\n");
000872        for(i=0; i<p->nOp; i++){
000873          sqlite3VdbePrintOp(stdout, i, &aOp[i]);
000874        }
000875      }
000876      if( p->db->flags & SQLITE_VdbeEQP ){
000877        for(i=0; i<p->nOp; i++){
000878          if( aOp[i].opcode==OP_Explain ){
000879            if( once ) printf("VDBE Query Plan:\n");
000880            printf("%s\n", aOp[i].p4.z);
000881            once = 0;
000882          }
000883        }
000884      }
000885      if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
000886    }
000887    sqlite3EndBenignMalloc();
000888  #endif
000889    for(pOp=&aOp[p->pc]; 1; pOp++){
000890      /* Errors are detected by individual opcodes, with an immediate
000891      ** jumps to abort_due_to_error. */
000892      assert( rc==SQLITE_OK );
000893  
000894      assert( pOp>=aOp && pOp<&aOp[p->nOp]);
000895      nVmStep++;
000896  
000897  #if defined(VDBE_PROFILE)
000898      pOp->nExec++;
000899      pnCycle = &pOp->nCycle;
000900      if( sqlite3NProfileCnt==0 ) *pnCycle -= sqlite3Hwtime();
000901  #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
000902      if( bStmtScanStatus ){
000903        pOp->nExec++;
000904        pnCycle = &pOp->nCycle;
000905        *pnCycle -= sqlite3Hwtime();
000906      }
000907  #endif
000908  
000909      /* Only allow tracing if SQLITE_DEBUG is defined.
000910      */
000911  #ifdef SQLITE_DEBUG
000912      if( db->flags & SQLITE_VdbeTrace ){
000913        sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
000914        test_trace_breakpoint((int)(pOp - aOp),pOp,p);
000915      }
000916  #endif
000917       
000918  
000919      /* Check to see if we need to simulate an interrupt.  This only happens
000920      ** if we have a special test build.
000921      */
000922  #ifdef SQLITE_TEST
000923      if( sqlite3_interrupt_count>0 ){
000924        sqlite3_interrupt_count--;
000925        if( sqlite3_interrupt_count==0 ){
000926          sqlite3_interrupt(db);
000927        }
000928      }
000929  #endif
000930  
000931      /* Sanity checking on other operands */
000932  #ifdef SQLITE_DEBUG
000933      {
000934        u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
000935        if( (opProperty & OPFLG_IN1)!=0 ){
000936          assert( pOp->p1>0 );
000937          assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
000938          assert( memIsValid(&aMem[pOp->p1]) );
000939          assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
000940          REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
000941        }
000942        if( (opProperty & OPFLG_IN2)!=0 ){
000943          assert( pOp->p2>0 );
000944          assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
000945          assert( memIsValid(&aMem[pOp->p2]) );
000946          assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
000947          REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
000948        }
000949        if( (opProperty & OPFLG_IN3)!=0 ){
000950          assert( pOp->p3>0 );
000951          assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
000952          assert( memIsValid(&aMem[pOp->p3]) );
000953          assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
000954          REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
000955        }
000956        if( (opProperty & OPFLG_OUT2)!=0 ){
000957          assert( pOp->p2>0 );
000958          assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
000959          memAboutToChange(p, &aMem[pOp->p2]);
000960        }
000961        if( (opProperty & OPFLG_OUT3)!=0 ){
000962          assert( pOp->p3>0 );
000963          assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
000964          memAboutToChange(p, &aMem[pOp->p3]);
000965        }
000966      }
000967  #endif
000968  #ifdef SQLITE_DEBUG
000969      pOrigOp = pOp;
000970  #endif
000971   
000972      switch( pOp->opcode ){
000973  
000974  /*****************************************************************************
000975  ** What follows is a massive switch statement where each case implements a
000976  ** separate instruction in the virtual machine.  If we follow the usual
000977  ** indentation conventions, each case should be indented by 6 spaces.  But
000978  ** that is a lot of wasted space on the left margin.  So the code within
000979  ** the switch statement will break with convention and be flush-left. Another
000980  ** big comment (similar to this one) will mark the point in the code where
000981  ** we transition back to normal indentation.
000982  **
000983  ** The formatting of each case is important.  The makefile for SQLite
000984  ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
000985  ** file looking for lines that begin with "case OP_".  The opcodes.h files
000986  ** will be filled with #defines that give unique integer values to each
000987  ** opcode and the opcodes.c file is filled with an array of strings where
000988  ** each string is the symbolic name for the corresponding opcode.  If the
000989  ** case statement is followed by a comment of the form "/# same as ... #/"
000990  ** that comment is used to determine the particular value of the opcode.
000991  **
000992  ** Other keywords in the comment that follows each case are used to
000993  ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
000994  ** Keywords include: in1, in2, in3, out2, out3.  See
000995  ** the mkopcodeh.awk script for additional information.
000996  **
000997  ** Documentation about VDBE opcodes is generated by scanning this file
000998  ** for lines of that contain "Opcode:".  That line and all subsequent
000999  ** comment lines are used in the generation of the opcode.html documentation
001000  ** file.
001001  **
001002  ** SUMMARY:
001003  **
001004  **     Formatting is important to scripts that scan this file.
001005  **     Do not deviate from the formatting style currently in use.
001006  **
001007  *****************************************************************************/
001008  
001009  /* Opcode:  Goto * P2 * * *
001010  **
001011  ** An unconditional jump to address P2.
001012  ** The next instruction executed will be
001013  ** the one at index P2 from the beginning of
001014  ** the program.
001015  **
001016  ** The P1 parameter is not actually used by this opcode.  However, it
001017  ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
001018  ** that this Goto is the bottom of a loop and that the lines from P2 down
001019  ** to the current line should be indented for EXPLAIN output.
001020  */
001021  case OP_Goto: {             /* jump */
001022  
001023  #ifdef SQLITE_DEBUG
001024    /* In debugging mode, when the p5 flags is set on an OP_Goto, that
001025    ** means we should really jump back to the preceding OP_ReleaseReg
001026    ** instruction. */
001027    if( pOp->p5 ){
001028      assert( pOp->p2 < (int)(pOp - aOp) );
001029      assert( pOp->p2 > 1 );
001030      pOp = &aOp[pOp->p2 - 2];
001031      assert( pOp[1].opcode==OP_ReleaseReg );
001032      goto check_for_interrupt;
001033    }
001034  #endif
001035  
001036  jump_to_p2_and_check_for_interrupt:
001037    pOp = &aOp[pOp->p2 - 1];
001038  
001039    /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
001040    ** OP_VNext, or OP_SorterNext) all jump here upon
001041    ** completion.  Check to see if sqlite3_interrupt() has been called
001042    ** or if the progress callback needs to be invoked.
001043    **
001044    ** This code uses unstructured "goto" statements and does not look clean.
001045    ** But that is not due to sloppy coding habits. The code is written this
001046    ** way for performance, to avoid having to run the interrupt and progress
001047    ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
001048    ** faster according to "valgrind --tool=cachegrind" */
001049  check_for_interrupt:
001050    if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
001051  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
001052    /* Call the progress callback if it is configured and the required number
001053    ** of VDBE ops have been executed (either since this invocation of
001054    ** sqlite3VdbeExec() or since last time the progress callback was called).
001055    ** If the progress callback returns non-zero, exit the virtual machine with
001056    ** a return code SQLITE_ABORT.
001057    */
001058    while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
001059      assert( db->nProgressOps!=0 );
001060      nProgressLimit += db->nProgressOps;
001061      if( db->xProgress(db->pProgressArg) ){
001062        nProgressLimit = LARGEST_UINT64;
001063        rc = SQLITE_INTERRUPT;
001064        goto abort_due_to_error;
001065      }
001066    }
001067  #endif
001068   
001069    break;
001070  }
001071  
001072  /* Opcode:  Gosub P1 P2 * * *
001073  **
001074  ** Write the current address onto register P1
001075  ** and then jump to address P2.
001076  */
001077  case OP_Gosub: {            /* jump */
001078    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
001079    pIn1 = &aMem[pOp->p1];
001080    assert( VdbeMemDynamic(pIn1)==0 );
001081    memAboutToChange(p, pIn1);
001082    pIn1->flags = MEM_Int;
001083    pIn1->u.i = (int)(pOp-aOp);
001084    REGISTER_TRACE(pOp->p1, pIn1);
001085    goto jump_to_p2_and_check_for_interrupt;
001086  }
001087  
001088  /* Opcode:  Return P1 P2 P3 * *
001089  **
001090  ** Jump to the address stored in register P1.  If P1 is a return address
001091  ** register, then this accomplishes a return from a subroutine.
001092  **
001093  ** If P3 is 1, then the jump is only taken if register P1 holds an integer
001094  ** values, otherwise execution falls through to the next opcode, and the
001095  ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
001096  ** integer or else an assert() is raised.  P3 should be set to 1 when
001097  ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
001098  ** otherwise.
001099  **
001100  ** The value in register P1 is unchanged by this opcode.
001101  **
001102  ** P2 is not used by the byte-code engine.  However, if P2 is positive
001103  ** and also less than the current address, then the "EXPLAIN" output
001104  ** formatter in the CLI will indent all opcodes from the P2 opcode up
001105  ** to be not including the current Return.   P2 should be the first opcode
001106  ** in the subroutine from which this opcode is returning.  Thus the P2
001107  ** value is a byte-code indentation hint.  See tag-20220407a in
001108  ** wherecode.c and shell.c.
001109  */
001110  case OP_Return: {           /* in1 */
001111    pIn1 = &aMem[pOp->p1];
001112    if( pIn1->flags & MEM_Int ){
001113      if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
001114      pOp = &aOp[pIn1->u.i];
001115    }else if( ALWAYS(pOp->p3) ){
001116      VdbeBranchTaken(0, 2);
001117    }
001118    break;
001119  }
001120  
001121  /* Opcode: InitCoroutine P1 P2 P3 * *
001122  **
001123  ** Set up register P1 so that it will Yield to the coroutine
001124  ** located at address P3.
001125  **
001126  ** If P2!=0 then the coroutine implementation immediately follows
001127  ** this opcode.  So jump over the coroutine implementation to
001128  ** address P2.
001129  **
001130  ** See also: EndCoroutine
001131  */
001132  case OP_InitCoroutine: {     /* jump */
001133    assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
001134    assert( pOp->p2>=0 && pOp->p2<p->nOp );
001135    assert( pOp->p3>=0 && pOp->p3<p->nOp );
001136    pOut = &aMem[pOp->p1];
001137    assert( !VdbeMemDynamic(pOut) );
001138    pOut->u.i = pOp->p3 - 1;
001139    pOut->flags = MEM_Int;
001140    if( pOp->p2==0 ) break;
001141  
001142    /* Most jump operations do a goto to this spot in order to update
001143    ** the pOp pointer. */
001144  jump_to_p2:
001145    assert( pOp->p2>0 );       /* There are never any jumps to instruction 0 */
001146    assert( pOp->p2<p->nOp );  /* Jumps must be in range */
001147    pOp = &aOp[pOp->p2 - 1];
001148    break;
001149  }
001150  
001151  /* Opcode:  EndCoroutine P1 * * * *
001152  **
001153  ** The instruction at the address in register P1 is a Yield.
001154  ** Jump to the P2 parameter of that Yield.
001155  ** After the jump, register P1 becomes undefined.
001156  **
001157  ** See also: InitCoroutine
001158  */
001159  case OP_EndCoroutine: {           /* in1 */
001160    VdbeOp *pCaller;
001161    pIn1 = &aMem[pOp->p1];
001162    assert( pIn1->flags==MEM_Int );
001163    assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
001164    pCaller = &aOp[pIn1->u.i];
001165    assert( pCaller->opcode==OP_Yield );
001166    assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
001167    pOp = &aOp[pCaller->p2 - 1];
001168    pIn1->flags = MEM_Undefined;
001169    break;
001170  }
001171  
001172  /* Opcode:  Yield P1 P2 * * *
001173  **
001174  ** Swap the program counter with the value in register P1.  This
001175  ** has the effect of yielding to a coroutine.
001176  **
001177  ** If the coroutine that is launched by this instruction ends with
001178  ** Yield or Return then continue to the next instruction.  But if
001179  ** the coroutine launched by this instruction ends with
001180  ** EndCoroutine, then jump to P2 rather than continuing with the
001181  ** next instruction.
001182  **
001183  ** See also: InitCoroutine
001184  */
001185  case OP_Yield: {            /* in1, jump */
001186    int pcDest;
001187    pIn1 = &aMem[pOp->p1];
001188    assert( VdbeMemDynamic(pIn1)==0 );
001189    pIn1->flags = MEM_Int;
001190    pcDest = (int)pIn1->u.i;
001191    pIn1->u.i = (int)(pOp - aOp);
001192    REGISTER_TRACE(pOp->p1, pIn1);
001193    pOp = &aOp[pcDest];
001194    break;
001195  }
001196  
001197  /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
001198  ** Synopsis: if r[P3]=null halt
001199  **
001200  ** Check the value in register P3.  If it is NULL then Halt using
001201  ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
001202  ** value in register P3 is not NULL, then this routine is a no-op.
001203  ** The P5 parameter should be 1.
001204  */
001205  case OP_HaltIfNull: {      /* in3 */
001206    pIn3 = &aMem[pOp->p3];
001207  #ifdef SQLITE_DEBUG
001208    if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
001209  #endif
001210    if( (pIn3->flags & MEM_Null)==0 ) break;
001211    /* Fall through into OP_Halt */
001212    /* no break */ deliberate_fall_through
001213  }
001214  
001215  /* Opcode:  Halt P1 P2 * P4 P5
001216  **
001217  ** Exit immediately.  All open cursors, etc are closed
001218  ** automatically.
001219  **
001220  ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
001221  ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
001222  ** For errors, it can be some other value.  If P1!=0 then P2 will determine
001223  ** whether or not to rollback the current transaction.  Do not rollback
001224  ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
001225  ** then back out all changes that have occurred during this execution of the
001226  ** VDBE, but do not rollback the transaction.
001227  **
001228  ** If P4 is not null then it is an error message string.
001229  **
001230  ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
001231  **
001232  **    0:  (no change)
001233  **    1:  NOT NULL constraint failed: P4
001234  **    2:  UNIQUE constraint failed: P4
001235  **    3:  CHECK constraint failed: P4
001236  **    4:  FOREIGN KEY constraint failed: P4
001237  **
001238  ** If P5 is not zero and P4 is NULL, then everything after the ":" is
001239  ** omitted.
001240  **
001241  ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
001242  ** every program.  So a jump past the last instruction of the program
001243  ** is the same as executing Halt.
001244  */
001245  case OP_Halt: {
001246    VdbeFrame *pFrame;
001247    int pcx;
001248  
001249  #ifdef SQLITE_DEBUG
001250    if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
001251  #endif
001252  
001253    /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates
001254    ** something is wrong with the code generator.  Raise an assertion in order
001255    ** to bring this to the attention of fuzzers and other testing tools. */
001256    assert( pOp->p1!=SQLITE_INTERNAL );
001257  
001258    if( p->pFrame && pOp->p1==SQLITE_OK ){
001259      /* Halt the sub-program. Return control to the parent frame. */
001260      pFrame = p->pFrame;
001261      p->pFrame = pFrame->pParent;
001262      p->nFrame--;
001263      sqlite3VdbeSetChanges(db, p->nChange);
001264      pcx = sqlite3VdbeFrameRestore(pFrame);
001265      if( pOp->p2==OE_Ignore ){
001266        /* Instruction pcx is the OP_Program that invoked the sub-program
001267        ** currently being halted. If the p2 instruction of this OP_Halt
001268        ** instruction is set to OE_Ignore, then the sub-program is throwing
001269        ** an IGNORE exception. In this case jump to the address specified
001270        ** as the p2 of the calling OP_Program.  */
001271        pcx = p->aOp[pcx].p2-1;
001272      }
001273      aOp = p->aOp;
001274      aMem = p->aMem;
001275      pOp = &aOp[pcx];
001276      break;
001277    }
001278    p->rc = pOp->p1;
001279    p->errorAction = (u8)pOp->p2;
001280    assert( pOp->p5<=4 );
001281    if( p->rc ){
001282      if( pOp->p5 ){
001283        static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
001284                                               "FOREIGN KEY" };
001285        testcase( pOp->p5==1 );
001286        testcase( pOp->p5==2 );
001287        testcase( pOp->p5==3 );
001288        testcase( pOp->p5==4 );
001289        sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
001290        if( pOp->p4.z ){
001291          p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
001292        }
001293      }else{
001294        sqlite3VdbeError(p, "%s", pOp->p4.z);
001295      }
001296      pcx = (int)(pOp - aOp);
001297      sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
001298    }
001299    rc = sqlite3VdbeHalt(p);
001300    assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
001301    if( rc==SQLITE_BUSY ){
001302      p->rc = SQLITE_BUSY;
001303    }else{
001304      assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
001305      assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
001306      rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
001307    }
001308    goto vdbe_return;
001309  }
001310  
001311  /* Opcode: Integer P1 P2 * * *
001312  ** Synopsis: r[P2]=P1
001313  **
001314  ** The 32-bit integer value P1 is written into register P2.
001315  */
001316  case OP_Integer: {         /* out2 */
001317    pOut = out2Prerelease(p, pOp);
001318    pOut->u.i = pOp->p1;
001319    break;
001320  }
001321  
001322  /* Opcode: Int64 * P2 * P4 *
001323  ** Synopsis: r[P2]=P4
001324  **
001325  ** P4 is a pointer to a 64-bit integer value.
001326  ** Write that value into register P2.
001327  */
001328  case OP_Int64: {           /* out2 */
001329    pOut = out2Prerelease(p, pOp);
001330    assert( pOp->p4.pI64!=0 );
001331    pOut->u.i = *pOp->p4.pI64;
001332    break;
001333  }
001334  
001335  #ifndef SQLITE_OMIT_FLOATING_POINT
001336  /* Opcode: Real * P2 * P4 *
001337  ** Synopsis: r[P2]=P4
001338  **
001339  ** P4 is a pointer to a 64-bit floating point value.
001340  ** Write that value into register P2.
001341  */
001342  case OP_Real: {            /* same as TK_FLOAT, out2 */
001343    pOut = out2Prerelease(p, pOp);
001344    pOut->flags = MEM_Real;
001345    assert( !sqlite3IsNaN(*pOp->p4.pReal) );
001346    pOut->u.r = *pOp->p4.pReal;
001347    break;
001348  }
001349  #endif
001350  
001351  /* Opcode: String8 * P2 * P4 *
001352  ** Synopsis: r[P2]='P4'
001353  **
001354  ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
001355  ** into a String opcode before it is executed for the first time.  During
001356  ** this transformation, the length of string P4 is computed and stored
001357  ** as the P1 parameter.
001358  */
001359  case OP_String8: {         /* same as TK_STRING, out2 */
001360    assert( pOp->p4.z!=0 );
001361    pOut = out2Prerelease(p, pOp);
001362    pOp->p1 = sqlite3Strlen30(pOp->p4.z);
001363  
001364  #ifndef SQLITE_OMIT_UTF16
001365    if( encoding!=SQLITE_UTF8 ){
001366      rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
001367      assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
001368      if( rc ) goto too_big;
001369      if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
001370      assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
001371      assert( VdbeMemDynamic(pOut)==0 );
001372      pOut->szMalloc = 0;
001373      pOut->flags |= MEM_Static;
001374      if( pOp->p4type==P4_DYNAMIC ){
001375        sqlite3DbFree(db, pOp->p4.z);
001376      }
001377      pOp->p4type = P4_DYNAMIC;
001378      pOp->p4.z = pOut->z;
001379      pOp->p1 = pOut->n;
001380    }
001381  #endif
001382    if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
001383      goto too_big;
001384    }
001385    pOp->opcode = OP_String;
001386    assert( rc==SQLITE_OK );
001387    /* Fall through to the next case, OP_String */
001388    /* no break */ deliberate_fall_through
001389  }
001390   
001391  /* Opcode: String P1 P2 P3 P4 P5
001392  ** Synopsis: r[P2]='P4' (len=P1)
001393  **
001394  ** The string value P4 of length P1 (bytes) is stored in register P2.
001395  **
001396  ** If P3 is not zero and the content of register P3 is equal to P5, then
001397  ** the datatype of the register P2 is converted to BLOB.  The content is
001398  ** the same sequence of bytes, it is merely interpreted as a BLOB instead
001399  ** of a string, as if it had been CAST.  In other words:
001400  **
001401  ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
001402  */
001403  case OP_String: {          /* out2 */
001404    assert( pOp->p4.z!=0 );
001405    pOut = out2Prerelease(p, pOp);
001406    pOut->flags = MEM_Str|MEM_Static|MEM_Term;
001407    pOut->z = pOp->p4.z;
001408    pOut->n = pOp->p1;
001409    pOut->enc = encoding;
001410    UPDATE_MAX_BLOBSIZE(pOut);
001411  #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
001412    if( pOp->p3>0 ){
001413      assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
001414      pIn3 = &aMem[pOp->p3];
001415      assert( pIn3->flags & MEM_Int );
001416      if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
001417    }
001418  #endif
001419    break;
001420  }
001421  
001422  /* Opcode: BeginSubrtn * P2 * * *
001423  ** Synopsis: r[P2]=NULL
001424  **
001425  ** Mark the beginning of a subroutine that can be entered in-line
001426  ** or that can be called using OP_Gosub.  The subroutine should
001427  ** be terminated by an OP_Return instruction that has a P1 operand that
001428  ** is the same as the P2 operand to this opcode and that has P3 set to 1.
001429  ** If the subroutine is entered in-line, then the OP_Return will simply
001430  ** fall through.  But if the subroutine is entered using OP_Gosub, then
001431  ** the OP_Return will jump back to the first instruction after the OP_Gosub.
001432  **
001433  ** This routine works by loading a NULL into the P2 register.  When the
001434  ** return address register contains a NULL, the OP_Return instruction is
001435  ** a no-op that simply falls through to the next instruction (assuming that
001436  ** the OP_Return opcode has a P3 value of 1).  Thus if the subroutine is
001437  ** entered in-line, then the OP_Return will cause in-line execution to
001438  ** continue.  But if the subroutine is entered via OP_Gosub, then the
001439  ** OP_Return will cause a return to the address following the OP_Gosub.
001440  **
001441  ** This opcode is identical to OP_Null.  It has a different name
001442  ** only to make the byte code easier to read and verify.
001443  */
001444  /* Opcode: Null P1 P2 P3 * *
001445  ** Synopsis: r[P2..P3]=NULL
001446  **
001447  ** Write a NULL into registers P2.  If P3 greater than P2, then also write
001448  ** NULL into register P3 and every register in between P2 and P3.  If P3
001449  ** is less than P2 (typically P3 is zero) then only register P2 is
001450  ** set to NULL.
001451  **
001452  ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
001453  ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
001454  ** OP_Ne or OP_Eq.
001455  */
001456  case OP_BeginSubrtn:
001457  case OP_Null: {           /* out2 */
001458    int cnt;
001459    u16 nullFlag;
001460    pOut = out2Prerelease(p, pOp);
001461    cnt = pOp->p3-pOp->p2;
001462    assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
001463    pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
001464    pOut->n = 0;
001465  #ifdef SQLITE_DEBUG
001466    pOut->uTemp = 0;
001467  #endif
001468    while( cnt>0 ){
001469      pOut++;
001470      memAboutToChange(p, pOut);
001471      sqlite3VdbeMemSetNull(pOut);
001472      pOut->flags = nullFlag;
001473      pOut->n = 0;
001474      cnt--;
001475    }
001476    break;
001477  }
001478  
001479  /* Opcode: SoftNull P1 * * * *
001480  ** Synopsis: r[P1]=NULL
001481  **
001482  ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
001483  ** instruction, but do not free any string or blob memory associated with
001484  ** the register, so that if the value was a string or blob that was
001485  ** previously copied using OP_SCopy, the copies will continue to be valid.
001486  */
001487  case OP_SoftNull: {
001488    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
001489    pOut = &aMem[pOp->p1];
001490    pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
001491    break;
001492  }
001493  
001494  /* Opcode: Blob P1 P2 * P4 *
001495  ** Synopsis: r[P2]=P4 (len=P1)
001496  **
001497  ** P4 points to a blob of data P1 bytes long.  Store this
001498  ** blob in register P2.  If P4 is a NULL pointer, then construct
001499  ** a zero-filled blob that is P1 bytes long in P2.
001500  */
001501  case OP_Blob: {                /* out2 */
001502    assert( pOp->p1 <= SQLITE_MAX_LENGTH );
001503    pOut = out2Prerelease(p, pOp);
001504    if( pOp->p4.z==0 ){
001505      sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
001506      if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
001507    }else{
001508      sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
001509    }
001510    pOut->enc = encoding;
001511    UPDATE_MAX_BLOBSIZE(pOut);
001512    break;
001513  }
001514  
001515  /* Opcode: Variable P1 P2 * P4 *
001516  ** Synopsis: r[P2]=parameter(P1,P4)
001517  **
001518  ** Transfer the values of bound parameter P1 into register P2
001519  **
001520  ** If the parameter is named, then its name appears in P4.
001521  ** The P4 value is used by sqlite3_bind_parameter_name().
001522  */
001523  case OP_Variable: {            /* out2 */
001524    Mem *pVar;       /* Value being transferred */
001525  
001526    assert( pOp->p1>0 && pOp->p1<=p->nVar );
001527    assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
001528    pVar = &p->aVar[pOp->p1 - 1];
001529    if( sqlite3VdbeMemTooBig(pVar) ){
001530      goto too_big;
001531    }
001532    pOut = &aMem[pOp->p2];
001533    if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
001534    memcpy(pOut, pVar, MEMCELLSIZE);
001535    pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
001536    pOut->flags |= MEM_Static|MEM_FromBind;
001537    UPDATE_MAX_BLOBSIZE(pOut);
001538    break;
001539  }
001540  
001541  /* Opcode: Move P1 P2 P3 * *
001542  ** Synopsis: r[P2@P3]=r[P1@P3]
001543  **
001544  ** Move the P3 values in register P1..P1+P3-1 over into
001545  ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
001546  ** left holding a NULL.  It is an error for register ranges
001547  ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
001548  ** for P3 to be less than 1.
001549  */
001550  case OP_Move: {
001551    int n;           /* Number of registers left to copy */
001552    int p1;          /* Register to copy from */
001553    int p2;          /* Register to copy to */
001554  
001555    n = pOp->p3;
001556    p1 = pOp->p1;
001557    p2 = pOp->p2;
001558    assert( n>0 && p1>0 && p2>0 );
001559    assert( p1+n<=p2 || p2+n<=p1 );
001560  
001561    pIn1 = &aMem[p1];
001562    pOut = &aMem[p2];
001563    do{
001564      assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
001565      assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
001566      assert( memIsValid(pIn1) );
001567      memAboutToChange(p, pOut);
001568      sqlite3VdbeMemMove(pOut, pIn1);
001569  #ifdef SQLITE_DEBUG
001570      pIn1->pScopyFrom = 0;
001571      { int i;
001572        for(i=1; i<p->nMem; i++){
001573          if( aMem[i].pScopyFrom==pIn1 ){
001574            aMem[i].pScopyFrom = pOut;
001575          }
001576        }
001577      }
001578  #endif
001579      Deephemeralize(pOut);
001580      REGISTER_TRACE(p2++, pOut);
001581      pIn1++;
001582      pOut++;
001583    }while( --n );
001584    break;
001585  }
001586  
001587  /* Opcode: Copy P1 P2 P3 * P5
001588  ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
001589  **
001590  ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
001591  **
001592  ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
001593  ** destination.  The 0x0001 bit of P5 indicates that this Copy opcode cannot
001594  ** be merged.  The 0x0001 bit is used by the query planner and does not
001595  ** come into play during query execution.
001596  **
001597  ** This instruction makes a deep copy of the value.  A duplicate
001598  ** is made of any string or blob constant.  See also OP_SCopy.
001599  */
001600  case OP_Copy: {
001601    int n;
001602  
001603    n = pOp->p3;
001604    pIn1 = &aMem[pOp->p1];
001605    pOut = &aMem[pOp->p2];
001606    assert( pOut!=pIn1 );
001607    while( 1 ){
001608      memAboutToChange(p, pOut);
001609      sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
001610      Deephemeralize(pOut);
001611      if( (pOut->flags & MEM_Subtype)!=0 &&  (pOp->p5 & 0x0002)!=0 ){
001612        pOut->flags &= ~MEM_Subtype;
001613      }
001614  #ifdef SQLITE_DEBUG
001615      pOut->pScopyFrom = 0;
001616  #endif
001617      REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
001618      if( (n--)==0 ) break;
001619      pOut++;
001620      pIn1++;
001621    }
001622    break;
001623  }
001624  
001625  /* Opcode: SCopy P1 P2 * * *
001626  ** Synopsis: r[P2]=r[P1]
001627  **
001628  ** Make a shallow copy of register P1 into register P2.
001629  **
001630  ** This instruction makes a shallow copy of the value.  If the value
001631  ** is a string or blob, then the copy is only a pointer to the
001632  ** original and hence if the original changes so will the copy.
001633  ** Worse, if the original is deallocated, the copy becomes invalid.
001634  ** Thus the program must guarantee that the original will not change
001635  ** during the lifetime of the copy.  Use OP_Copy to make a complete
001636  ** copy.
001637  */
001638  case OP_SCopy: {            /* out2 */
001639    pIn1 = &aMem[pOp->p1];
001640    pOut = &aMem[pOp->p2];
001641    assert( pOut!=pIn1 );
001642    sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
001643  #ifdef SQLITE_DEBUG
001644    pOut->pScopyFrom = pIn1;
001645    pOut->mScopyFlags = pIn1->flags;
001646  #endif
001647    break;
001648  }
001649  
001650  /* Opcode: IntCopy P1 P2 * * *
001651  ** Synopsis: r[P2]=r[P1]
001652  **
001653  ** Transfer the integer value held in register P1 into register P2.
001654  **
001655  ** This is an optimized version of SCopy that works only for integer
001656  ** values.
001657  */
001658  case OP_IntCopy: {            /* out2 */
001659    pIn1 = &aMem[pOp->p1];
001660    assert( (pIn1->flags & MEM_Int)!=0 );
001661    pOut = &aMem[pOp->p2];
001662    sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
001663    break;
001664  }
001665  
001666  /* Opcode: FkCheck * * * * *
001667  **
001668  ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
001669  ** foreign key constraint violations.  If there are no foreign key
001670  ** constraint violations, this is a no-op.
001671  **
001672  ** FK constraint violations are also checked when the prepared statement
001673  ** exits.  This opcode is used to raise foreign key constraint errors prior
001674  ** to returning results such as a row change count or the result of a
001675  ** RETURNING clause.
001676  */
001677  case OP_FkCheck: {
001678    if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
001679      goto abort_due_to_error;
001680    }
001681    break;
001682  }
001683  
001684  /* Opcode: ResultRow P1 P2 * * *
001685  ** Synopsis: output=r[P1@P2]
001686  **
001687  ** The registers P1 through P1+P2-1 contain a single row of
001688  ** results. This opcode causes the sqlite3_step() call to terminate
001689  ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
001690  ** structure to provide access to the r(P1)..r(P1+P2-1) values as
001691  ** the result row.
001692  */
001693  case OP_ResultRow: {
001694    assert( p->nResColumn==pOp->p2 );
001695    assert( pOp->p1>0 || CORRUPT_DB );
001696    assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
001697  
001698    p->cacheCtr = (p->cacheCtr + 2)|1;
001699    p->pResultRow = &aMem[pOp->p1];
001700  #ifdef SQLITE_DEBUG
001701    {
001702      Mem *pMem = p->pResultRow;
001703      int i;
001704      for(i=0; i<pOp->p2; i++){
001705        assert( memIsValid(&pMem[i]) );
001706        REGISTER_TRACE(pOp->p1+i, &pMem[i]);
001707        /* The registers in the result will not be used again when the
001708        ** prepared statement restarts.  This is because sqlite3_column()
001709        ** APIs might have caused type conversions of made other changes to
001710        ** the register values.  Therefore, we can go ahead and break any
001711        ** OP_SCopy dependencies. */
001712        pMem[i].pScopyFrom = 0;
001713      }
001714    }
001715  #endif
001716    if( db->mallocFailed ) goto no_mem;
001717    if( db->mTrace & SQLITE_TRACE_ROW ){
001718      db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
001719    }
001720    p->pc = (int)(pOp - aOp) + 1;
001721    rc = SQLITE_ROW;
001722    goto vdbe_return;
001723  }
001724  
001725  /* Opcode: Concat P1 P2 P3 * *
001726  ** Synopsis: r[P3]=r[P2]+r[P1]
001727  **
001728  ** Add the text in register P1 onto the end of the text in
001729  ** register P2 and store the result in register P3.
001730  ** If either the P1 or P2 text are NULL then store NULL in P3.
001731  **
001732  **   P3 = P2 || P1
001733  **
001734  ** It is illegal for P1 and P3 to be the same register. Sometimes,
001735  ** if P3 is the same register as P2, the implementation is able
001736  ** to avoid a memcpy().
001737  */
001738  case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
001739    i64 nByte;          /* Total size of the output string or blob */
001740    u16 flags1;         /* Initial flags for P1 */
001741    u16 flags2;         /* Initial flags for P2 */
001742  
001743    pIn1 = &aMem[pOp->p1];
001744    pIn2 = &aMem[pOp->p2];
001745    pOut = &aMem[pOp->p3];
001746    testcase( pOut==pIn2 );
001747    assert( pIn1!=pOut );
001748    flags1 = pIn1->flags;
001749    testcase( flags1 & MEM_Null );
001750    testcase( pIn2->flags & MEM_Null );
001751    if( (flags1 | pIn2->flags) & MEM_Null ){
001752      sqlite3VdbeMemSetNull(pOut);
001753      break;
001754    }
001755    if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
001756      if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
001757      flags1 = pIn1->flags & ~MEM_Str;
001758    }else if( (flags1 & MEM_Zero)!=0 ){
001759      if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
001760      flags1 = pIn1->flags & ~MEM_Str;
001761    }
001762    flags2 = pIn2->flags;
001763    if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
001764      if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
001765      flags2 = pIn2->flags & ~MEM_Str;
001766    }else if( (flags2 & MEM_Zero)!=0 ){
001767      if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
001768      flags2 = pIn2->flags & ~MEM_Str;
001769    }
001770    nByte = pIn1->n + pIn2->n;
001771    if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
001772      goto too_big;
001773    }
001774    if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
001775      goto no_mem;
001776    }
001777    MemSetTypeFlag(pOut, MEM_Str);
001778    if( pOut!=pIn2 ){
001779      memcpy(pOut->z, pIn2->z, pIn2->n);
001780      assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
001781      pIn2->flags = flags2;
001782    }
001783    memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
001784    assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
001785    pIn1->flags = flags1;
001786    if( encoding>SQLITE_UTF8 ) nByte &= ~1;
001787    pOut->z[nByte]=0;
001788    pOut->z[nByte+1] = 0;
001789    pOut->flags |= MEM_Term;
001790    pOut->n = (int)nByte;
001791    pOut->enc = encoding;
001792    UPDATE_MAX_BLOBSIZE(pOut);
001793    break;
001794  }
001795  
001796  /* Opcode: Add P1 P2 P3 * *
001797  ** Synopsis: r[P3]=r[P1]+r[P2]
001798  **
001799  ** Add the value in register P1 to the value in register P2
001800  ** and store the result in register P3.
001801  ** If either input is NULL, the result is NULL.
001802  */
001803  /* Opcode: Multiply P1 P2 P3 * *
001804  ** Synopsis: r[P3]=r[P1]*r[P2]
001805  **
001806  **
001807  ** Multiply the value in register P1 by the value in register P2
001808  ** and store the result in register P3.
001809  ** If either input is NULL, the result is NULL.
001810  */
001811  /* Opcode: Subtract P1 P2 P3 * *
001812  ** Synopsis: r[P3]=r[P2]-r[P1]
001813  **
001814  ** Subtract the value in register P1 from the value in register P2
001815  ** and store the result in register P3.
001816  ** If either input is NULL, the result is NULL.
001817  */
001818  /* Opcode: Divide P1 P2 P3 * *
001819  ** Synopsis: r[P3]=r[P2]/r[P1]
001820  **
001821  ** Divide the value in register P1 by the value in register P2
001822  ** and store the result in register P3 (P3=P2/P1). If the value in
001823  ** register P1 is zero, then the result is NULL. If either input is
001824  ** NULL, the result is NULL.
001825  */
001826  /* Opcode: Remainder P1 P2 P3 * *
001827  ** Synopsis: r[P3]=r[P2]%r[P1]
001828  **
001829  ** Compute the remainder after integer register P2 is divided by
001830  ** register P1 and store the result in register P3.
001831  ** If the value in register P1 is zero the result is NULL.
001832  ** If either operand is NULL, the result is NULL.
001833  */
001834  case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
001835  case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
001836  case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
001837  case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
001838  case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
001839    u16 type1;      /* Numeric type of left operand */
001840    u16 type2;      /* Numeric type of right operand */
001841    i64 iA;         /* Integer value of left operand */
001842    i64 iB;         /* Integer value of right operand */
001843    double rA;      /* Real value of left operand */
001844    double rB;      /* Real value of right operand */
001845  
001846    pIn1 = &aMem[pOp->p1];
001847    type1 = pIn1->flags;
001848    pIn2 = &aMem[pOp->p2];
001849    type2 = pIn2->flags;
001850    pOut = &aMem[pOp->p3];
001851    if( (type1 & type2 & MEM_Int)!=0 ){
001852  int_math:
001853      iA = pIn1->u.i;
001854      iB = pIn2->u.i;
001855      switch( pOp->opcode ){
001856        case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
001857        case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
001858        case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
001859        case OP_Divide: {
001860          if( iA==0 ) goto arithmetic_result_is_null;
001861          if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
001862          iB /= iA;
001863          break;
001864        }
001865        default: {
001866          if( iA==0 ) goto arithmetic_result_is_null;
001867          if( iA==-1 ) iA = 1;
001868          iB %= iA;
001869          break;
001870        }
001871      }
001872      pOut->u.i = iB;
001873      MemSetTypeFlag(pOut, MEM_Int);
001874    }else if( ((type1 | type2) & MEM_Null)!=0 ){
001875      goto arithmetic_result_is_null;
001876    }else{
001877      type1 = numericType(pIn1);
001878      type2 = numericType(pIn2);
001879      if( (type1 & type2 & MEM_Int)!=0 ) goto int_math;
001880  fp_math:
001881      rA = sqlite3VdbeRealValue(pIn1);
001882      rB = sqlite3VdbeRealValue(pIn2);
001883      switch( pOp->opcode ){
001884        case OP_Add:         rB += rA;       break;
001885        case OP_Subtract:    rB -= rA;       break;
001886        case OP_Multiply:    rB *= rA;       break;
001887        case OP_Divide: {
001888          /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
001889          if( rA==(double)0 ) goto arithmetic_result_is_null;
001890          rB /= rA;
001891          break;
001892        }
001893        default: {
001894          iA = sqlite3VdbeIntValue(pIn1);
001895          iB = sqlite3VdbeIntValue(pIn2);
001896          if( iA==0 ) goto arithmetic_result_is_null;
001897          if( iA==-1 ) iA = 1;
001898          rB = (double)(iB % iA);
001899          break;
001900        }
001901      }
001902  #ifdef SQLITE_OMIT_FLOATING_POINT
001903      pOut->u.i = rB;
001904      MemSetTypeFlag(pOut, MEM_Int);
001905  #else
001906      if( sqlite3IsNaN(rB) ){
001907        goto arithmetic_result_is_null;
001908      }
001909      pOut->u.r = rB;
001910      MemSetTypeFlag(pOut, MEM_Real);
001911  #endif
001912    }
001913    break;
001914  
001915  arithmetic_result_is_null:
001916    sqlite3VdbeMemSetNull(pOut);
001917    break;
001918  }
001919  
001920  /* Opcode: CollSeq P1 * * P4
001921  **
001922  ** P4 is a pointer to a CollSeq object. If the next call to a user function
001923  ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
001924  ** be returned. This is used by the built-in min(), max() and nullif()
001925  ** functions.
001926  **
001927  ** If P1 is not zero, then it is a register that a subsequent min() or
001928  ** max() aggregate will set to 1 if the current row is not the minimum or
001929  ** maximum.  The P1 register is initialized to 0 by this instruction.
001930  **
001931  ** The interface used by the implementation of the aforementioned functions
001932  ** to retrieve the collation sequence set by this opcode is not available
001933  ** publicly.  Only built-in functions have access to this feature.
001934  */
001935  case OP_CollSeq: {
001936    assert( pOp->p4type==P4_COLLSEQ );
001937    if( pOp->p1 ){
001938      sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
001939    }
001940    break;
001941  }
001942  
001943  /* Opcode: BitAnd P1 P2 P3 * *
001944  ** Synopsis: r[P3]=r[P1]&r[P2]
001945  **
001946  ** Take the bit-wise AND of the values in register P1 and P2 and
001947  ** store the result in register P3.
001948  ** If either input is NULL, the result is NULL.
001949  */
001950  /* Opcode: BitOr P1 P2 P3 * *
001951  ** Synopsis: r[P3]=r[P1]|r[P2]
001952  **
001953  ** Take the bit-wise OR of the values in register P1 and P2 and
001954  ** store the result in register P3.
001955  ** If either input is NULL, the result is NULL.
001956  */
001957  /* Opcode: ShiftLeft P1 P2 P3 * *
001958  ** Synopsis: r[P3]=r[P2]<<r[P1]
001959  **
001960  ** Shift the integer value in register P2 to the left by the
001961  ** number of bits specified by the integer in register P1.
001962  ** Store the result in register P3.
001963  ** If either input is NULL, the result is NULL.
001964  */
001965  /* Opcode: ShiftRight P1 P2 P3 * *
001966  ** Synopsis: r[P3]=r[P2]>>r[P1]
001967  **
001968  ** Shift the integer value in register P2 to the right by the
001969  ** number of bits specified by the integer in register P1.
001970  ** Store the result in register P3.
001971  ** If either input is NULL, the result is NULL.
001972  */
001973  case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
001974  case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
001975  case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
001976  case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
001977    i64 iA;
001978    u64 uA;
001979    i64 iB;
001980    u8 op;
001981  
001982    pIn1 = &aMem[pOp->p1];
001983    pIn2 = &aMem[pOp->p2];
001984    pOut = &aMem[pOp->p3];
001985    if( (pIn1->flags | pIn2->flags) & MEM_Null ){
001986      sqlite3VdbeMemSetNull(pOut);
001987      break;
001988    }
001989    iA = sqlite3VdbeIntValue(pIn2);
001990    iB = sqlite3VdbeIntValue(pIn1);
001991    op = pOp->opcode;
001992    if( op==OP_BitAnd ){
001993      iA &= iB;
001994    }else if( op==OP_BitOr ){
001995      iA |= iB;
001996    }else if( iB!=0 ){
001997      assert( op==OP_ShiftRight || op==OP_ShiftLeft );
001998  
001999      /* If shifting by a negative amount, shift in the other direction */
002000      if( iB<0 ){
002001        assert( OP_ShiftRight==OP_ShiftLeft+1 );
002002        op = 2*OP_ShiftLeft + 1 - op;
002003        iB = iB>(-64) ? -iB : 64;
002004      }
002005  
002006      if( iB>=64 ){
002007        iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
002008      }else{
002009        memcpy(&uA, &iA, sizeof(uA));
002010        if( op==OP_ShiftLeft ){
002011          uA <<= iB;
002012        }else{
002013          uA >>= iB;
002014          /* Sign-extend on a right shift of a negative number */
002015          if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
002016        }
002017        memcpy(&iA, &uA, sizeof(iA));
002018      }
002019    }
002020    pOut->u.i = iA;
002021    MemSetTypeFlag(pOut, MEM_Int);
002022    break;
002023  }
002024  
002025  /* Opcode: AddImm  P1 P2 * * *
002026  ** Synopsis: r[P1]=r[P1]+P2
002027  **
002028  ** Add the constant P2 to the value in register P1.
002029  ** The result is always an integer.
002030  **
002031  ** To force any register to be an integer, just add 0.
002032  */
002033  case OP_AddImm: {            /* in1 */
002034    pIn1 = &aMem[pOp->p1];
002035    memAboutToChange(p, pIn1);
002036    sqlite3VdbeMemIntegerify(pIn1);
002037    *(u64*)&pIn1->u.i += (u64)pOp->p2;
002038    break;
002039  }
002040  
002041  /* Opcode: MustBeInt P1 P2 * * *
002042  **
002043  ** Force the value in register P1 to be an integer.  If the value
002044  ** in P1 is not an integer and cannot be converted into an integer
002045  ** without data loss, then jump immediately to P2, or if P2==0
002046  ** raise an SQLITE_MISMATCH exception.
002047  */
002048  case OP_MustBeInt: {            /* jump, in1 */
002049    pIn1 = &aMem[pOp->p1];
002050    if( (pIn1->flags & MEM_Int)==0 ){
002051      applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
002052      if( (pIn1->flags & MEM_Int)==0 ){
002053        VdbeBranchTaken(1, 2);
002054        if( pOp->p2==0 ){
002055          rc = SQLITE_MISMATCH;
002056          goto abort_due_to_error;
002057        }else{
002058          goto jump_to_p2;
002059        }
002060      }
002061    }
002062    VdbeBranchTaken(0, 2);
002063    MemSetTypeFlag(pIn1, MEM_Int);
002064    break;
002065  }
002066  
002067  #ifndef SQLITE_OMIT_FLOATING_POINT
002068  /* Opcode: RealAffinity P1 * * * *
002069  **
002070  ** If register P1 holds an integer convert it to a real value.
002071  **
002072  ** This opcode is used when extracting information from a column that
002073  ** has REAL affinity.  Such column values may still be stored as
002074  ** integers, for space efficiency, but after extraction we want them
002075  ** to have only a real value.
002076  */
002077  case OP_RealAffinity: {                  /* in1 */
002078    pIn1 = &aMem[pOp->p1];
002079    if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
002080      testcase( pIn1->flags & MEM_Int );
002081      testcase( pIn1->flags & MEM_IntReal );
002082      sqlite3VdbeMemRealify(pIn1);
002083      REGISTER_TRACE(pOp->p1, pIn1);
002084    }
002085    break;
002086  }
002087  #endif
002088  
002089  #ifndef SQLITE_OMIT_CAST
002090  /* Opcode: Cast P1 P2 * * *
002091  ** Synopsis: affinity(r[P1])
002092  **
002093  ** Force the value in register P1 to be the type defined by P2.
002094  **
002095  ** <ul>
002096  ** <li> P2=='A' &rarr; BLOB
002097  ** <li> P2=='B' &rarr; TEXT
002098  ** <li> P2=='C' &rarr; NUMERIC
002099  ** <li> P2=='D' &rarr; INTEGER
002100  ** <li> P2=='E' &rarr; REAL
002101  ** </ul>
002102  **
002103  ** A NULL value is not changed by this routine.  It remains NULL.
002104  */
002105  case OP_Cast: {                  /* in1 */
002106    assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
002107    testcase( pOp->p2==SQLITE_AFF_TEXT );
002108    testcase( pOp->p2==SQLITE_AFF_BLOB );
002109    testcase( pOp->p2==SQLITE_AFF_NUMERIC );
002110    testcase( pOp->p2==SQLITE_AFF_INTEGER );
002111    testcase( pOp->p2==SQLITE_AFF_REAL );
002112    pIn1 = &aMem[pOp->p1];
002113    memAboutToChange(p, pIn1);
002114    rc = ExpandBlob(pIn1);
002115    if( rc ) goto abort_due_to_error;
002116    rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
002117    if( rc ) goto abort_due_to_error;
002118    UPDATE_MAX_BLOBSIZE(pIn1);
002119    REGISTER_TRACE(pOp->p1, pIn1);
002120    break;
002121  }
002122  #endif /* SQLITE_OMIT_CAST */
002123  
002124  /* Opcode: Eq P1 P2 P3 P4 P5
002125  ** Synopsis: IF r[P3]==r[P1]
002126  **
002127  ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
002128  ** jump to address P2.
002129  **
002130  ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
002131  ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
002132  ** to coerce both inputs according to this affinity before the
002133  ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
002134  ** affinity is used. Note that the affinity conversions are stored
002135  ** back into the input registers P1 and P3.  So this opcode can cause
002136  ** persistent changes to registers P1 and P3.
002137  **
002138  ** Once any conversions have taken place, and neither value is NULL,
002139  ** the values are compared. If both values are blobs then memcmp() is
002140  ** used to determine the results of the comparison.  If both values
002141  ** are text, then the appropriate collating function specified in
002142  ** P4 is used to do the comparison.  If P4 is not specified then
002143  ** memcmp() is used to compare text string.  If both values are
002144  ** numeric, then a numeric comparison is used. If the two values
002145  ** are of different types, then numbers are considered less than
002146  ** strings and strings are considered less than blobs.
002147  **
002148  ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
002149  ** true or false and is never NULL.  If both operands are NULL then the result
002150  ** of comparison is true.  If either operand is NULL then the result is false.
002151  ** If neither operand is NULL the result is the same as it would be if
002152  ** the SQLITE_NULLEQ flag were omitted from P5.
002153  **
002154  ** This opcode saves the result of comparison for use by the new
002155  ** OP_Jump opcode.
002156  */
002157  /* Opcode: Ne P1 P2 P3 P4 P5
002158  ** Synopsis: IF r[P3]!=r[P1]
002159  **
002160  ** This works just like the Eq opcode except that the jump is taken if
002161  ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
002162  ** additional information.
002163  */
002164  /* Opcode: Lt P1 P2 P3 P4 P5
002165  ** Synopsis: IF r[P3]<r[P1]
002166  **
002167  ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
002168  ** jump to address P2.
002169  **
002170  ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
002171  ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
002172  ** bit is clear then fall through if either operand is NULL.
002173  **
002174  ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
002175  ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
002176  ** to coerce both inputs according to this affinity before the
002177  ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
002178  ** affinity is used. Note that the affinity conversions are stored
002179  ** back into the input registers P1 and P3.  So this opcode can cause
002180  ** persistent changes to registers P1 and P3.
002181  **
002182  ** Once any conversions have taken place, and neither value is NULL,
002183  ** the values are compared. If both values are blobs then memcmp() is
002184  ** used to determine the results of the comparison.  If both values
002185  ** are text, then the appropriate collating function specified in
002186  ** P4 is  used to do the comparison.  If P4 is not specified then
002187  ** memcmp() is used to compare text string.  If both values are
002188  ** numeric, then a numeric comparison is used. If the two values
002189  ** are of different types, then numbers are considered less than
002190  ** strings and strings are considered less than blobs.
002191  **
002192  ** This opcode saves the result of comparison for use by the new
002193  ** OP_Jump opcode.
002194  */
002195  /* Opcode: Le P1 P2 P3 P4 P5
002196  ** Synopsis: IF r[P3]<=r[P1]
002197  **
002198  ** This works just like the Lt opcode except that the jump is taken if
002199  ** the content of register P3 is less than or equal to the content of
002200  ** register P1.  See the Lt opcode for additional information.
002201  */
002202  /* Opcode: Gt P1 P2 P3 P4 P5
002203  ** Synopsis: IF r[P3]>r[P1]
002204  **
002205  ** This works just like the Lt opcode except that the jump is taken if
002206  ** the content of register P3 is greater than the content of
002207  ** register P1.  See the Lt opcode for additional information.
002208  */
002209  /* Opcode: Ge P1 P2 P3 P4 P5
002210  ** Synopsis: IF r[P3]>=r[P1]
002211  **
002212  ** This works just like the Lt opcode except that the jump is taken if
002213  ** the content of register P3 is greater than or equal to the content of
002214  ** register P1.  See the Lt opcode for additional information.
002215  */
002216  case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
002217  case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
002218  case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
002219  case OP_Le:               /* same as TK_LE, jump, in1, in3 */
002220  case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
002221  case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
002222    int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
002223    char affinity;      /* Affinity to use for comparison */
002224    u16 flags1;         /* Copy of initial value of pIn1->flags */
002225    u16 flags3;         /* Copy of initial value of pIn3->flags */
002226  
002227    pIn1 = &aMem[pOp->p1];
002228    pIn3 = &aMem[pOp->p3];
002229    flags1 = pIn1->flags;
002230    flags3 = pIn3->flags;
002231    if( (flags1 & flags3 & MEM_Int)!=0 ){
002232      /* Common case of comparison of two integers */
002233      if( pIn3->u.i > pIn1->u.i ){
002234        if( sqlite3aGTb[pOp->opcode] ){
002235          VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002236          goto jump_to_p2;
002237        }
002238        iCompare = +1;
002239        VVA_ONLY( iCompareIsInit = 1; )
002240      }else if( pIn3->u.i < pIn1->u.i ){
002241        if( sqlite3aLTb[pOp->opcode] ){
002242          VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002243          goto jump_to_p2;
002244        }
002245        iCompare = -1;
002246        VVA_ONLY( iCompareIsInit = 1; )
002247      }else{
002248        if( sqlite3aEQb[pOp->opcode] ){
002249          VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002250          goto jump_to_p2;
002251        }
002252        iCompare = 0;
002253        VVA_ONLY( iCompareIsInit = 1; )
002254      }
002255      VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002256      break;
002257    }
002258    if( (flags1 | flags3)&MEM_Null ){
002259      /* One or both operands are NULL */
002260      if( pOp->p5 & SQLITE_NULLEQ ){
002261        /* If SQLITE_NULLEQ is set (which will only happen if the operator is
002262        ** OP_Eq or OP_Ne) then take the jump or not depending on whether
002263        ** or not both operands are null.
002264        */
002265        assert( (flags1 & MEM_Cleared)==0 );
002266        assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
002267        testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
002268        if( (flags1&flags3&MEM_Null)!=0
002269         && (flags3&MEM_Cleared)==0
002270        ){
002271          res = 0;  /* Operands are equal */
002272        }else{
002273          res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
002274        }
002275      }else{
002276        /* SQLITE_NULLEQ is clear and at least one operand is NULL,
002277        ** then the result is always NULL.
002278        ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
002279        */
002280        VdbeBranchTaken(2,3);
002281        if( pOp->p5 & SQLITE_JUMPIFNULL ){
002282          goto jump_to_p2;
002283        }
002284        iCompare = 1;    /* Operands are not equal */
002285        VVA_ONLY( iCompareIsInit = 1; )
002286        break;
002287      }
002288    }else{
002289      /* Neither operand is NULL and we couldn't do the special high-speed
002290      ** integer comparison case.  So do a general-case comparison. */
002291      affinity = pOp->p5 & SQLITE_AFF_MASK;
002292      if( affinity>=SQLITE_AFF_NUMERIC ){
002293        if( (flags1 | flags3)&MEM_Str ){
002294          if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
002295            applyNumericAffinity(pIn1,0);
002296            assert( flags3==pIn3->flags || CORRUPT_DB );
002297            flags3 = pIn3->flags;
002298          }
002299          if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
002300            applyNumericAffinity(pIn3,0);
002301          }
002302        }
002303      }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){
002304        if( (flags1 & MEM_Str)!=0 ){
002305          pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
002306        }else if( (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
002307          testcase( pIn1->flags & MEM_Int );
002308          testcase( pIn1->flags & MEM_Real );
002309          testcase( pIn1->flags & MEM_IntReal );
002310          sqlite3VdbeMemStringify(pIn1, encoding, 1);
002311          testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
002312          flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
002313          if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
002314        }
002315        if( (flags3 & MEM_Str)!=0 ){
002316          pIn3->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
002317        }else if( (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
002318          testcase( pIn3->flags & MEM_Int );
002319          testcase( pIn3->flags & MEM_Real );
002320          testcase( pIn3->flags & MEM_IntReal );
002321          sqlite3VdbeMemStringify(pIn3, encoding, 1);
002322          testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
002323          flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
002324        }
002325      }
002326      assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
002327      res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
002328    }
002329  
002330    /* At this point, res is negative, zero, or positive if reg[P1] is
002331    ** less than, equal to, or greater than reg[P3], respectively.  Compute
002332    ** the answer to this operator in res2, depending on what the comparison
002333    ** operator actually is.  The next block of code depends on the fact
002334    ** that the 6 comparison operators are consecutive integers in this
002335    ** order:  NE, EQ, GT, LE, LT, GE */
002336    assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
002337    assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
002338    if( res<0 ){
002339      res2 = sqlite3aLTb[pOp->opcode];
002340    }else if( res==0 ){
002341      res2 = sqlite3aEQb[pOp->opcode];
002342    }else{
002343      res2 = sqlite3aGTb[pOp->opcode];
002344    }
002345    iCompare = res;
002346    VVA_ONLY( iCompareIsInit = 1; )
002347  
002348    /* Undo any changes made by applyAffinity() to the input registers. */
002349    assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
002350    pIn3->flags = flags3;
002351    assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
002352    pIn1->flags = flags1;
002353  
002354    VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002355    if( res2 ){
002356      goto jump_to_p2;
002357    }
002358    break;
002359  }
002360  
002361  /* Opcode: ElseEq * P2 * * *
002362  **
002363  ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
002364  ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
002365  ** opcodes are allowed to occur between this instruction and the previous
002366  ** OP_Lt or OP_Gt.
002367  **
002368  ** If the result of an OP_Eq comparison on the same two operands as
002369  ** the prior OP_Lt or OP_Gt would have been true, then jump to P2.  If
002370  ** the result of an OP_Eq comparison on the two previous operands
002371  ** would have been false or NULL, then fall through.
002372  */
002373  case OP_ElseEq: {       /* same as TK_ESCAPE, jump */
002374  
002375  #ifdef SQLITE_DEBUG
002376    /* Verify the preconditions of this opcode - that it follows an OP_Lt or
002377    ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
002378    int iAddr;
002379    for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
002380      if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
002381      assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
002382      break;
002383    }
002384  #endif /* SQLITE_DEBUG */
002385    assert( iCompareIsInit );
002386    VdbeBranchTaken(iCompare==0, 2);
002387    if( iCompare==0 ) goto jump_to_p2;
002388    break;
002389  }
002390  
002391  
002392  /* Opcode: Permutation * * * P4 *
002393  **
002394  ** Set the permutation used by the OP_Compare operator in the next
002395  ** instruction.  The permutation is stored in the P4 operand.
002396  **
002397  ** The permutation is only valid for the next opcode which must be
002398  ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
002399  **
002400  ** The first integer in the P4 integer array is the length of the array
002401  ** and does not become part of the permutation.
002402  */
002403  case OP_Permutation: {
002404    assert( pOp->p4type==P4_INTARRAY );
002405    assert( pOp->p4.ai );
002406    assert( pOp[1].opcode==OP_Compare );
002407    assert( pOp[1].p5 & OPFLAG_PERMUTE );
002408    break;
002409  }
002410  
002411  /* Opcode: Compare P1 P2 P3 P4 P5
002412  ** Synopsis: r[P1@P3] <-> r[P2@P3]
002413  **
002414  ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
002415  ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
002416  ** the comparison for use by the next OP_Jump instruct.
002417  **
002418  ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
002419  ** determined by the most recent OP_Permutation operator.  If the
002420  ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
002421  ** order.
002422  **
002423  ** P4 is a KeyInfo structure that defines collating sequences and sort
002424  ** orders for the comparison.  The permutation applies to registers
002425  ** only.  The KeyInfo elements are used sequentially.
002426  **
002427  ** The comparison is a sort comparison, so NULLs compare equal,
002428  ** NULLs are less than numbers, numbers are less than strings,
002429  ** and strings are less than blobs.
002430  **
002431  ** This opcode must be immediately followed by an OP_Jump opcode.
002432  */
002433  case OP_Compare: {
002434    int n;
002435    int i;
002436    int p1;
002437    int p2;
002438    const KeyInfo *pKeyInfo;
002439    u32 idx;
002440    CollSeq *pColl;    /* Collating sequence to use on this term */
002441    int bRev;          /* True for DESCENDING sort order */
002442    u32 *aPermute;     /* The permutation */
002443  
002444    if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
002445      aPermute = 0;
002446    }else{
002447      assert( pOp>aOp );
002448      assert( pOp[-1].opcode==OP_Permutation );
002449      assert( pOp[-1].p4type==P4_INTARRAY );
002450      aPermute = pOp[-1].p4.ai + 1;
002451      assert( aPermute!=0 );
002452    }
002453    n = pOp->p3;
002454    pKeyInfo = pOp->p4.pKeyInfo;
002455    assert( n>0 );
002456    assert( pKeyInfo!=0 );
002457    p1 = pOp->p1;
002458    p2 = pOp->p2;
002459  #ifdef SQLITE_DEBUG
002460    if( aPermute ){
002461      int k, mx = 0;
002462      for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
002463      assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
002464      assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
002465    }else{
002466      assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
002467      assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
002468    }
002469  #endif /* SQLITE_DEBUG */
002470    for(i=0; i<n; i++){
002471      idx = aPermute ? aPermute[i] : (u32)i;
002472      assert( memIsValid(&aMem[p1+idx]) );
002473      assert( memIsValid(&aMem[p2+idx]) );
002474      REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
002475      REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
002476      assert( i<pKeyInfo->nKeyField );
002477      pColl = pKeyInfo->aColl[i];
002478      bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
002479      iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
002480      VVA_ONLY( iCompareIsInit = 1; )
002481      if( iCompare ){
002482        if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
002483         && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
002484        ){
002485          iCompare = -iCompare;
002486        }
002487        if( bRev ) iCompare = -iCompare;
002488        break;
002489      }
002490    }
002491    assert( pOp[1].opcode==OP_Jump );
002492    break;
002493  }
002494  
002495  /* Opcode: Jump P1 P2 P3 * *
002496  **
002497  ** Jump to the instruction at address P1, P2, or P3 depending on whether
002498  ** in the most recent OP_Compare instruction the P1 vector was less than,
002499  ** equal to, or greater than the P2 vector, respectively.
002500  **
002501  ** This opcode must immediately follow an OP_Compare opcode.
002502  */
002503  case OP_Jump: {             /* jump */
002504    assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
002505    assert( iCompareIsInit );
002506    if( iCompare<0 ){
002507      VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
002508    }else if( iCompare==0 ){
002509      VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
002510    }else{
002511      VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
002512    }
002513    break;
002514  }
002515  
002516  /* Opcode: And P1 P2 P3 * *
002517  ** Synopsis: r[P3]=(r[P1] && r[P2])
002518  **
002519  ** Take the logical AND of the values in registers P1 and P2 and
002520  ** write the result into register P3.
002521  **
002522  ** If either P1 or P2 is 0 (false) then the result is 0 even if
002523  ** the other input is NULL.  A NULL and true or two NULLs give
002524  ** a NULL output.
002525  */
002526  /* Opcode: Or P1 P2 P3 * *
002527  ** Synopsis: r[P3]=(r[P1] || r[P2])
002528  **
002529  ** Take the logical OR of the values in register P1 and P2 and
002530  ** store the answer in register P3.
002531  **
002532  ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
002533  ** even if the other input is NULL.  A NULL and false or two NULLs
002534  ** give a NULL output.
002535  */
002536  case OP_And:              /* same as TK_AND, in1, in2, out3 */
002537  case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
002538    int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
002539    int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
002540  
002541    v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
002542    v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
002543    if( pOp->opcode==OP_And ){
002544      static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
002545      v1 = and_logic[v1*3+v2];
002546    }else{
002547      static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
002548      v1 = or_logic[v1*3+v2];
002549    }
002550    pOut = &aMem[pOp->p3];
002551    if( v1==2 ){
002552      MemSetTypeFlag(pOut, MEM_Null);
002553    }else{
002554      pOut->u.i = v1;
002555      MemSetTypeFlag(pOut, MEM_Int);
002556    }
002557    break;
002558  }
002559  
002560  /* Opcode: IsTrue P1 P2 P3 P4 *
002561  ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
002562  **
002563  ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
002564  ** IS NOT FALSE operators.
002565  **
002566  ** Interpret the value in register P1 as a boolean value.  Store that
002567  ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
002568  ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
002569  ** is 1.
002570  **
002571  ** The logic is summarized like this:
002572  **
002573  ** <ul>
002574  ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
002575  ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
002576  ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
002577  ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
002578  ** </ul>
002579  */
002580  case OP_IsTrue: {               /* in1, out2 */
002581    assert( pOp->p4type==P4_INT32 );
002582    assert( pOp->p4.i==0 || pOp->p4.i==1 );
002583    assert( pOp->p3==0 || pOp->p3==1 );
002584    sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
002585        sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
002586    break;
002587  }
002588  
002589  /* Opcode: Not P1 P2 * * *
002590  ** Synopsis: r[P2]= !r[P1]
002591  **
002592  ** Interpret the value in register P1 as a boolean value.  Store the
002593  ** boolean complement in register P2.  If the value in register P1 is
002594  ** NULL, then a NULL is stored in P2.
002595  */
002596  case OP_Not: {                /* same as TK_NOT, in1, out2 */
002597    pIn1 = &aMem[pOp->p1];
002598    pOut = &aMem[pOp->p2];
002599    if( (pIn1->flags & MEM_Null)==0 ){
002600      sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
002601    }else{
002602      sqlite3VdbeMemSetNull(pOut);
002603    }
002604    break;
002605  }
002606  
002607  /* Opcode: BitNot P1 P2 * * *
002608  ** Synopsis: r[P2]= ~r[P1]
002609  **
002610  ** Interpret the content of register P1 as an integer.  Store the
002611  ** ones-complement of the P1 value into register P2.  If P1 holds
002612  ** a NULL then store a NULL in P2.
002613  */
002614  case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
002615    pIn1 = &aMem[pOp->p1];
002616    pOut = &aMem[pOp->p2];
002617    sqlite3VdbeMemSetNull(pOut);
002618    if( (pIn1->flags & MEM_Null)==0 ){
002619      pOut->flags = MEM_Int;
002620      pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
002621    }
002622    break;
002623  }
002624  
002625  /* Opcode: Once P1 P2 * * *
002626  **
002627  ** Fall through to the next instruction the first time this opcode is
002628  ** encountered on each invocation of the byte-code program.  Jump to P2
002629  ** on the second and all subsequent encounters during the same invocation.
002630  **
002631  ** Top-level programs determine first invocation by comparing the P1
002632  ** operand against the P1 operand on the OP_Init opcode at the beginning
002633  ** of the program.  If the P1 values differ, then fall through and make
002634  ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
002635  ** the same then take the jump.
002636  **
002637  ** For subprograms, there is a bitmask in the VdbeFrame that determines
002638  ** whether or not the jump should be taken.  The bitmask is necessary
002639  ** because the self-altering code trick does not work for recursive
002640  ** triggers.
002641  */
002642  case OP_Once: {             /* jump */
002643    u32 iAddr;                /* Address of this instruction */
002644    assert( p->aOp[0].opcode==OP_Init );
002645    if( p->pFrame ){
002646      iAddr = (int)(pOp - p->aOp);
002647      if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
002648        VdbeBranchTaken(1, 2);
002649        goto jump_to_p2;
002650      }
002651      p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
002652    }else{
002653      if( p->aOp[0].p1==pOp->p1 ){
002654        VdbeBranchTaken(1, 2);
002655        goto jump_to_p2;
002656      }
002657    }
002658    VdbeBranchTaken(0, 2);
002659    pOp->p1 = p->aOp[0].p1;
002660    break;
002661  }
002662  
002663  /* Opcode: If P1 P2 P3 * *
002664  **
002665  ** Jump to P2 if the value in register P1 is true.  The value
002666  ** is considered true if it is numeric and non-zero.  If the value
002667  ** in P1 is NULL then take the jump if and only if P3 is non-zero.
002668  */
002669  case OP_If:  {               /* jump, in1 */
002670    int c;
002671    c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
002672    VdbeBranchTaken(c!=0, 2);
002673    if( c ) goto jump_to_p2;
002674    break;
002675  }
002676  
002677  /* Opcode: IfNot P1 P2 P3 * *
002678  **
002679  ** Jump to P2 if the value in register P1 is False.  The value
002680  ** is considered false if it has a numeric value of zero.  If the value
002681  ** in P1 is NULL then take the jump if and only if P3 is non-zero.
002682  */
002683  case OP_IfNot: {            /* jump, in1 */
002684    int c;
002685    c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
002686    VdbeBranchTaken(c!=0, 2);
002687    if( c ) goto jump_to_p2;
002688    break;
002689  }
002690  
002691  /* Opcode: IsNull P1 P2 * * *
002692  ** Synopsis: if r[P1]==NULL goto P2
002693  **
002694  ** Jump to P2 if the value in register P1 is NULL.
002695  */
002696  case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
002697    pIn1 = &aMem[pOp->p1];
002698    VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
002699    if( (pIn1->flags & MEM_Null)!=0 ){
002700      goto jump_to_p2;
002701    }
002702    break;
002703  }
002704  
002705  /* Opcode: IsType P1 P2 P3 P4 P5
002706  ** Synopsis: if typeof(P1.P3) in P5 goto P2
002707  **
002708  ** Jump to P2 if the type of a column in a btree is one of the types specified
002709  ** by the P5 bitmask.
002710  **
002711  ** P1 is normally a cursor on a btree for which the row decode cache is
002712  ** valid through at least column P3.  In other words, there should have been
002713  ** a prior OP_Column for column P3 or greater.  If the cursor is not valid,
002714  ** then this opcode might give spurious results.
002715  ** The the btree row has fewer than P3 columns, then use P4 as the
002716  ** datatype.
002717  **
002718  ** If P1 is -1, then P3 is a register number and the datatype is taken
002719  ** from the value in that register.
002720  **
002721  ** P5 is a bitmask of data types.  SQLITE_INTEGER is the least significant
002722  ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
002723  ** SQLITE_BLOB is 0x08.  SQLITE_NULL is 0x10.
002724  **
002725  ** WARNING: This opcode does not reliably distinguish between NULL and REAL
002726  ** when P1>=0.  If the database contains a NaN value, this opcode will think
002727  ** that the datatype is REAL when it should be NULL.  When P1<0 and the value
002728  ** is already stored in register P3, then this opcode does reliably
002729  ** distinguish between NULL and REAL.  The problem only arises then P1>=0.
002730  **
002731  ** Take the jump to address P2 if and only if the datatype of the
002732  ** value determined by P1 and P3 corresponds to one of the bits in the
002733  ** P5 bitmask.
002734  **
002735  */
002736  case OP_IsType: {        /* jump */
002737    VdbeCursor *pC;
002738    u16 typeMask;
002739    u32 serialType;
002740  
002741    assert( pOp->p1>=(-1) && pOp->p1<p->nCursor );
002742    assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) );
002743    if( pOp->p1>=0 ){
002744      pC = p->apCsr[pOp->p1];
002745      assert( pC!=0 );
002746      assert( pOp->p3>=0 );
002747      if( pOp->p3<pC->nHdrParsed ){
002748        serialType = pC->aType[pOp->p3];
002749        if( serialType>=12 ){
002750          if( serialType&1 ){
002751            typeMask = 0x04;   /* SQLITE_TEXT */
002752          }else{
002753            typeMask = 0x08;   /* SQLITE_BLOB */
002754          }
002755        }else{
002756          static const unsigned char aMask[] = {
002757             0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
002758             0x01, 0x01, 0x10, 0x10
002759          };
002760          testcase( serialType==0 );
002761          testcase( serialType==1 );
002762          testcase( serialType==2 );
002763          testcase( serialType==3 );
002764          testcase( serialType==4 );
002765          testcase( serialType==5 );
002766          testcase( serialType==6 );
002767          testcase( serialType==7 );
002768          testcase( serialType==8 );
002769          testcase( serialType==9 );
002770          testcase( serialType==10 );
002771          testcase( serialType==11 );
002772          typeMask = aMask[serialType];
002773        }
002774      }else{
002775        typeMask = 1 << (pOp->p4.i - 1);
002776        testcase( typeMask==0x01 );
002777        testcase( typeMask==0x02 );
002778        testcase( typeMask==0x04 );
002779        testcase( typeMask==0x08 );
002780        testcase( typeMask==0x10 );
002781      }
002782    }else{
002783      assert( memIsValid(&aMem[pOp->p3]) );
002784      typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1);
002785      testcase( typeMask==0x01 );
002786      testcase( typeMask==0x02 );
002787      testcase( typeMask==0x04 );
002788      testcase( typeMask==0x08 );
002789      testcase( typeMask==0x10 );
002790    }
002791    VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2);
002792    if( typeMask & pOp->p5 ){
002793      goto jump_to_p2;
002794    }
002795    break;
002796  }
002797  
002798  /* Opcode: ZeroOrNull P1 P2 P3 * *
002799  ** Synopsis: r[P2] = 0 OR NULL
002800  **
002801  ** If both registers P1 and P3 are NOT NULL, then store a zero in
002802  ** register P2.  If either registers P1 or P3 are NULL then put
002803  ** a NULL in register P2.
002804  */
002805  case OP_ZeroOrNull: {            /* in1, in2, out2, in3 */
002806    if( (aMem[pOp->p1].flags & MEM_Null)!=0
002807     || (aMem[pOp->p3].flags & MEM_Null)!=0
002808    ){
002809      sqlite3VdbeMemSetNull(aMem + pOp->p2);
002810    }else{
002811      sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
002812    }
002813    break;
002814  }
002815  
002816  /* Opcode: NotNull P1 P2 * * *
002817  ** Synopsis: if r[P1]!=NULL goto P2
002818  **
002819  ** Jump to P2 if the value in register P1 is not NULL. 
002820  */
002821  case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
002822    pIn1 = &aMem[pOp->p1];
002823    VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
002824    if( (pIn1->flags & MEM_Null)==0 ){
002825      goto jump_to_p2;
002826    }
002827    break;
002828  }
002829  
002830  /* Opcode: IfNullRow P1 P2 P3 * *
002831  ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
002832  **
002833  ** Check the cursor P1 to see if it is currently pointing at a NULL row.
002834  ** If it is, then set register P3 to NULL and jump immediately to P2.
002835  ** If P1 is not on a NULL row, then fall through without making any
002836  ** changes.
002837  **
002838  ** If P1 is not an open cursor, then this opcode is a no-op.
002839  */
002840  case OP_IfNullRow: {         /* jump */
002841    VdbeCursor *pC;
002842    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
002843    pC = p->apCsr[pOp->p1];
002844    if( pC && pC->nullRow ){
002845      sqlite3VdbeMemSetNull(aMem + pOp->p3);
002846      goto jump_to_p2;
002847    }
002848    break;
002849  }
002850  
002851  #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
002852  /* Opcode: Offset P1 P2 P3 * *
002853  ** Synopsis: r[P3] = sqlite_offset(P1)
002854  **
002855  ** Store in register r[P3] the byte offset into the database file that is the
002856  ** start of the payload for the record at which that cursor P1 is currently
002857  ** pointing.
002858  **
002859  ** P2 is the column number for the argument to the sqlite_offset() function.
002860  ** This opcode does not use P2 itself, but the P2 value is used by the
002861  ** code generator.  The P1, P2, and P3 operands to this opcode are the
002862  ** same as for OP_Column.
002863  **
002864  ** This opcode is only available if SQLite is compiled with the
002865  ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
002866  */
002867  case OP_Offset: {          /* out3 */
002868    VdbeCursor *pC;    /* The VDBE cursor */
002869    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
002870    pC = p->apCsr[pOp->p1];
002871    pOut = &p->aMem[pOp->p3];
002872    if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
002873      sqlite3VdbeMemSetNull(pOut);
002874    }else{
002875      if( pC->deferredMoveto ){
002876        rc = sqlite3VdbeFinishMoveto(pC);
002877        if( rc ) goto abort_due_to_error;
002878      }
002879      if( sqlite3BtreeEof(pC->uc.pCursor) ){
002880        sqlite3VdbeMemSetNull(pOut);
002881      }else{
002882        sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
002883      }
002884    }
002885    break;
002886  }
002887  #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
002888  
002889  /* Opcode: Column P1 P2 P3 P4 P5
002890  ** Synopsis: r[P3]=PX cursor P1 column P2
002891  **
002892  ** Interpret the data that cursor P1 points to as a structure built using
002893  ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
002894  ** information about the format of the data.)  Extract the P2-th column
002895  ** from this record.  If there are less than (P2+1)
002896  ** values in the record, extract a NULL.
002897  **
002898  ** The value extracted is stored in register P3.
002899  **
002900  ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
002901  ** if the P4 argument is a P4_MEM use the value of the P4 argument as
002902  ** the result.
002903  **
002904  ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
002905  ** to only be used by the length() function or the equivalent.  The content
002906  ** of large blobs is not loaded, thus saving CPU cycles.  If the
002907  ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
002908  ** typeof() function or the IS NULL or IS NOT NULL operators or the
002909  ** equivalent.  In this case, all content loading can be omitted.
002910  */
002911  case OP_Column: {            /* ncycle */
002912    u32 p2;            /* column number to retrieve */
002913    VdbeCursor *pC;    /* The VDBE cursor */
002914    BtCursor *pCrsr;   /* The B-Tree cursor corresponding to pC */
002915    u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
002916    int len;           /* The length of the serialized data for the column */
002917    int i;             /* Loop counter */
002918    Mem *pDest;        /* Where to write the extracted value */
002919    Mem sMem;          /* For storing the record being decoded */
002920    const u8 *zData;   /* Part of the record being decoded */
002921    const u8 *zHdr;    /* Next unparsed byte of the header */
002922    const u8 *zEndHdr; /* Pointer to first byte after the header */
002923    u64 offset64;      /* 64-bit offset */
002924    u32 t;             /* A type code from the record header */
002925    Mem *pReg;         /* PseudoTable input register */
002926  
002927    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
002928    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
002929    pC = p->apCsr[pOp->p1];
002930    p2 = (u32)pOp->p2;
002931  
002932  op_column_restart:
002933    assert( pC!=0 );
002934    assert( p2<(u32)pC->nField
002935         || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
002936    aOffset = pC->aOffset;
002937    assert( aOffset==pC->aType+pC->nField );
002938    assert( pC->eCurType!=CURTYPE_VTAB );
002939    assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
002940    assert( pC->eCurType!=CURTYPE_SORTER );
002941  
002942    if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
002943      if( pC->nullRow ){
002944        if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
002945          /* For the special case of as pseudo-cursor, the seekResult field
002946          ** identifies the register that holds the record */
002947          pReg = &aMem[pC->seekResult];
002948          assert( pReg->flags & MEM_Blob );
002949          assert( memIsValid(pReg) );
002950          pC->payloadSize = pC->szRow = pReg->n;
002951          pC->aRow = (u8*)pReg->z;
002952        }else{
002953          pDest = &aMem[pOp->p3];
002954          memAboutToChange(p, pDest);
002955          sqlite3VdbeMemSetNull(pDest);
002956          goto op_column_out;
002957        }
002958      }else{
002959        pCrsr = pC->uc.pCursor;
002960        if( pC->deferredMoveto ){
002961          u32 iMap;
002962          assert( !pC->isEphemeral );
002963          if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0  ){
002964            pC = pC->pAltCursor;
002965            p2 = iMap - 1;
002966            goto op_column_restart;
002967          }
002968          rc = sqlite3VdbeFinishMoveto(pC);
002969          if( rc ) goto abort_due_to_error;
002970        }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
002971          rc = sqlite3VdbeHandleMovedCursor(pC);
002972          if( rc ) goto abort_due_to_error;
002973          goto op_column_restart;
002974        }
002975        assert( pC->eCurType==CURTYPE_BTREE );
002976        assert( pCrsr );
002977        assert( sqlite3BtreeCursorIsValid(pCrsr) );
002978        pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
002979        pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
002980        assert( pC->szRow<=pC->payloadSize );
002981        assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
002982      }
002983      pC->cacheStatus = p->cacheCtr;
002984      if( (aOffset[0] = pC->aRow[0])<0x80 ){
002985        pC->iHdrOffset = 1;
002986      }else{
002987        pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
002988      }
002989      pC->nHdrParsed = 0;
002990  
002991      if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
002992        /* pC->aRow does not have to hold the entire row, but it does at least
002993        ** need to cover the header of the record.  If pC->aRow does not contain
002994        ** the complete header, then set it to zero, forcing the header to be
002995        ** dynamically allocated. */
002996        pC->aRow = 0;
002997        pC->szRow = 0;
002998  
002999        /* Make sure a corrupt database has not given us an oversize header.
003000        ** Do this now to avoid an oversize memory allocation.
003001        **
003002        ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
003003        ** types use so much data space that there can only be 4096 and 32 of
003004        ** them, respectively.  So the maximum header length results from a
003005        ** 3-byte type for each of the maximum of 32768 columns plus three
003006        ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
003007        */
003008        if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
003009          goto op_column_corrupt;
003010        }
003011      }else{
003012        /* This is an optimization.  By skipping over the first few tests
003013        ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
003014        ** measurable performance gain.
003015        **
003016        ** This branch is taken even if aOffset[0]==0.  Such a record is never
003017        ** generated by SQLite, and could be considered corruption, but we
003018        ** accept it for historical reasons.  When aOffset[0]==0, the code this
003019        ** branch jumps to reads past the end of the record, but never more
003020        ** than a few bytes.  Even if the record occurs at the end of the page
003021        ** content area, the "page header" comes after the page content and so
003022        ** this overread is harmless.  Similar overreads can occur for a corrupt
003023        ** database file.
003024        */
003025        zData = pC->aRow;
003026        assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
003027        testcase( aOffset[0]==0 );
003028        goto op_column_read_header;
003029      }
003030    }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
003031      rc = sqlite3VdbeHandleMovedCursor(pC);
003032      if( rc ) goto abort_due_to_error;
003033      goto op_column_restart;
003034    }
003035  
003036    /* Make sure at least the first p2+1 entries of the header have been
003037    ** parsed and valid information is in aOffset[] and pC->aType[].
003038    */
003039    if( pC->nHdrParsed<=p2 ){
003040      /* If there is more header available for parsing in the record, try
003041      ** to extract additional fields up through the p2+1-th field
003042      */
003043      if( pC->iHdrOffset<aOffset[0] ){
003044        /* Make sure zData points to enough of the record to cover the header. */
003045        if( pC->aRow==0 ){
003046          memset(&sMem, 0, sizeof(sMem));
003047          rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
003048          if( rc!=SQLITE_OK ) goto abort_due_to_error;
003049          zData = (u8*)sMem.z;
003050        }else{
003051          zData = pC->aRow;
003052        }
003053   
003054        /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
003055      op_column_read_header:
003056        i = pC->nHdrParsed;
003057        offset64 = aOffset[i];
003058        zHdr = zData + pC->iHdrOffset;
003059        zEndHdr = zData + aOffset[0];
003060        testcase( zHdr>=zEndHdr );
003061        do{
003062          if( (pC->aType[i] = t = zHdr[0])<0x80 ){
003063            zHdr++;
003064            offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
003065          }else{
003066            zHdr += sqlite3GetVarint32(zHdr, &t);
003067            pC->aType[i] = t;
003068            offset64 += sqlite3VdbeSerialTypeLen(t);
003069          }
003070          aOffset[++i] = (u32)(offset64 & 0xffffffff);
003071        }while( (u32)i<=p2 && zHdr<zEndHdr );
003072  
003073        /* The record is corrupt if any of the following are true:
003074        ** (1) the bytes of the header extend past the declared header size
003075        ** (2) the entire header was used but not all data was used
003076        ** (3) the end of the data extends beyond the end of the record.
003077        */
003078        if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
003079         || (offset64 > pC->payloadSize)
003080        ){
003081          if( aOffset[0]==0 ){
003082            i = 0;
003083            zHdr = zEndHdr;
003084          }else{
003085            if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
003086            goto op_column_corrupt;
003087          }
003088        }
003089  
003090        pC->nHdrParsed = i;
003091        pC->iHdrOffset = (u32)(zHdr - zData);
003092        if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
003093      }else{
003094        t = 0;
003095      }
003096  
003097      /* If after trying to extract new entries from the header, nHdrParsed is
003098      ** still not up to p2, that means that the record has fewer than p2
003099      ** columns.  So the result will be either the default value or a NULL.
003100      */
003101      if( pC->nHdrParsed<=p2 ){
003102        pDest = &aMem[pOp->p3];
003103        memAboutToChange(p, pDest);
003104        if( pOp->p4type==P4_MEM ){
003105          sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
003106        }else{
003107          sqlite3VdbeMemSetNull(pDest);
003108        }
003109        goto op_column_out;
003110      }
003111    }else{
003112      t = pC->aType[p2];
003113    }
003114  
003115    /* Extract the content for the p2+1-th column.  Control can only
003116    ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
003117    ** all valid.
003118    */
003119    assert( p2<pC->nHdrParsed );
003120    assert( rc==SQLITE_OK );
003121    pDest = &aMem[pOp->p3];
003122    memAboutToChange(p, pDest);
003123    assert( sqlite3VdbeCheckMemInvariants(pDest) );
003124    if( VdbeMemDynamic(pDest) ){
003125      sqlite3VdbeMemSetNull(pDest);
003126    }
003127    assert( t==pC->aType[p2] );
003128    if( pC->szRow>=aOffset[p2+1] ){
003129      /* This is the common case where the desired content fits on the original
003130      ** page - where the content is not on an overflow page */
003131      zData = pC->aRow + aOffset[p2];
003132      if( t<12 ){
003133        sqlite3VdbeSerialGet(zData, t, pDest);
003134      }else{
003135        /* If the column value is a string, we need a persistent value, not
003136        ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
003137        ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
003138        */
003139        static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
003140        pDest->n = len = (t-12)/2;
003141        pDest->enc = encoding;
003142        if( pDest->szMalloc < len+2 ){
003143          if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
003144          pDest->flags = MEM_Null;
003145          if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
003146        }else{
003147          pDest->z = pDest->zMalloc;
003148        }
003149        memcpy(pDest->z, zData, len);
003150        pDest->z[len] = 0;
003151        pDest->z[len+1] = 0;
003152        pDest->flags = aFlag[t&1];
003153      }
003154    }else{
003155      u8 p5;
003156      pDest->enc = encoding;
003157      assert( pDest->db==db );
003158      /* This branch happens only when content is on overflow pages */
003159      if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0
003160            && (p5==OPFLAG_TYPEOFARG
003161                || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG))
003162               )
003163          )
003164       || sqlite3VdbeSerialTypeLen(t)==0
003165      ){
003166        /* Content is irrelevant for
003167        **    1. the typeof() function,
003168        **    2. the length(X) function if X is a blob, and
003169        **    3. if the content length is zero.
003170        ** So we might as well use bogus content rather than reading
003171        ** content from disk.
003172        **
003173        ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
003174        ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
003175        ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
003176        ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
003177        ** and it begins with a bunch of zeros.
003178        */
003179        sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
003180      }else{
003181        rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2],
003182                  p->cacheCtr, colCacheCtr, pDest);
003183        if( rc ){
003184          if( rc==SQLITE_NOMEM ) goto no_mem;
003185          if( rc==SQLITE_TOOBIG ) goto too_big;
003186          goto abort_due_to_error;
003187        }
003188      }
003189    }
003190  
003191  op_column_out:
003192    UPDATE_MAX_BLOBSIZE(pDest);
003193    REGISTER_TRACE(pOp->p3, pDest);
003194    break;
003195  
003196  op_column_corrupt:
003197    if( aOp[0].p3>0 ){
003198      pOp = &aOp[aOp[0].p3-1];
003199      break;
003200    }else{
003201      rc = SQLITE_CORRUPT_BKPT;
003202      goto abort_due_to_error;
003203    }
003204  }
003205  
003206  /* Opcode: TypeCheck P1 P2 P3 P4 *
003207  ** Synopsis: typecheck(r[P1@P2])
003208  **
003209  ** Apply affinities to the range of P2 registers beginning with P1.
003210  ** Take the affinities from the Table object in P4.  If any value
003211  ** cannot be coerced into the correct type, then raise an error.
003212  **
003213  ** This opcode is similar to OP_Affinity except that this opcode
003214  ** forces the register type to the Table column type.  This is used
003215  ** to implement "strict affinity".
003216  **
003217  ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
003218  ** is zero.  When P3 is non-zero, no type checking occurs for
003219  ** static generated columns.  Virtual columns are computed at query time
003220  ** and so they are never checked.
003221  **
003222  ** Preconditions:
003223  **
003224  ** <ul>
003225  ** <li> P2 should be the number of non-virtual columns in the
003226  **      table of P4.
003227  ** <li> Table P4 should be a STRICT table.
003228  ** </ul>
003229  **
003230  ** If any precondition is false, an assertion fault occurs.
003231  */
003232  case OP_TypeCheck: {
003233    Table *pTab;
003234    Column *aCol;
003235    int i;
003236  
003237    assert( pOp->p4type==P4_TABLE );
003238    pTab = pOp->p4.pTab;
003239    assert( pTab->tabFlags & TF_Strict );
003240    assert( pTab->nNVCol==pOp->p2 );
003241    aCol = pTab->aCol;
003242    pIn1 = &aMem[pOp->p1];
003243    for(i=0; i<pTab->nCol; i++){
003244      if( aCol[i].colFlags & COLFLAG_GENERATED ){
003245        if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
003246        if( pOp->p3 ){ pIn1++; continue; }
003247      }
003248      assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
003249      applyAffinity(pIn1, aCol[i].affinity, encoding);
003250      if( (pIn1->flags & MEM_Null)==0 ){
003251        switch( aCol[i].eCType ){
003252          case COLTYPE_BLOB: {
003253            if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
003254            break;
003255          }
003256          case COLTYPE_INTEGER:
003257          case COLTYPE_INT: {
003258            if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
003259            break;
003260          }
003261          case COLTYPE_TEXT: {
003262            if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
003263            break;
003264          }
003265          case COLTYPE_REAL: {
003266            testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
003267            assert( (pIn1->flags & MEM_IntReal)==0 );
003268            if( pIn1->flags & MEM_Int ){
003269              /* When applying REAL affinity, if the result is still an MEM_Int
003270              ** that will fit in 6 bytes, then change the type to MEM_IntReal
003271              ** so that we keep the high-resolution integer value but know that
003272              ** the type really wants to be REAL. */
003273              testcase( pIn1->u.i==140737488355328LL );
003274              testcase( pIn1->u.i==140737488355327LL );
003275              testcase( pIn1->u.i==-140737488355328LL );
003276              testcase( pIn1->u.i==-140737488355329LL );
003277              if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
003278                pIn1->flags |= MEM_IntReal;
003279                pIn1->flags &= ~MEM_Int;
003280              }else{
003281                pIn1->u.r = (double)pIn1->u.i;
003282                pIn1->flags |= MEM_Real;
003283                pIn1->flags &= ~MEM_Int;
003284              }
003285            }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
003286              goto vdbe_type_error;
003287            }
003288            break;
003289          }
003290          default: {
003291            /* COLTYPE_ANY.  Accept anything. */
003292            break;
003293          }
003294        }
003295      }
003296      REGISTER_TRACE((int)(pIn1-aMem), pIn1);
003297      pIn1++;
003298    }
003299    assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
003300    break;
003301  
003302  vdbe_type_error:
003303    sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
003304       vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
003305       pTab->zName, aCol[i].zCnName);
003306    rc = SQLITE_CONSTRAINT_DATATYPE;
003307    goto abort_due_to_error;
003308  }
003309  
003310  /* Opcode: Affinity P1 P2 * P4 *
003311  ** Synopsis: affinity(r[P1@P2])
003312  **
003313  ** Apply affinities to a range of P2 registers starting with P1.
003314  **
003315  ** P4 is a string that is P2 characters long. The N-th character of the
003316  ** string indicates the column affinity that should be used for the N-th
003317  ** memory cell in the range.
003318  */
003319  case OP_Affinity: {
003320    const char *zAffinity;   /* The affinity to be applied */
003321  
003322    zAffinity = pOp->p4.z;
003323    assert( zAffinity!=0 );
003324    assert( pOp->p2>0 );
003325    assert( zAffinity[pOp->p2]==0 );
003326    pIn1 = &aMem[pOp->p1];
003327    while( 1 /*exit-by-break*/ ){
003328      assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
003329      assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
003330      applyAffinity(pIn1, zAffinity[0], encoding);
003331      if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
003332        /* When applying REAL affinity, if the result is still an MEM_Int
003333        ** that will fit in 6 bytes, then change the type to MEM_IntReal
003334        ** so that we keep the high-resolution integer value but know that
003335        ** the type really wants to be REAL. */
003336        testcase( pIn1->u.i==140737488355328LL );
003337        testcase( pIn1->u.i==140737488355327LL );
003338        testcase( pIn1->u.i==-140737488355328LL );
003339        testcase( pIn1->u.i==-140737488355329LL );
003340        if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
003341          pIn1->flags |= MEM_IntReal;
003342          pIn1->flags &= ~MEM_Int;
003343        }else{
003344          pIn1->u.r = (double)pIn1->u.i;
003345          pIn1->flags |= MEM_Real;
003346          pIn1->flags &= ~(MEM_Int|MEM_Str);
003347        }
003348      }
003349      REGISTER_TRACE((int)(pIn1-aMem), pIn1);
003350      zAffinity++;
003351      if( zAffinity[0]==0 ) break;
003352      pIn1++;
003353    }
003354    break;
003355  }
003356  
003357  /* Opcode: MakeRecord P1 P2 P3 P4 *
003358  ** Synopsis: r[P3]=mkrec(r[P1@P2])
003359  **
003360  ** Convert P2 registers beginning with P1 into the [record format]
003361  ** use as a data record in a database table or as a key
003362  ** in an index.  The OP_Column opcode can decode the record later.
003363  **
003364  ** P4 may be a string that is P2 characters long.  The N-th character of the
003365  ** string indicates the column affinity that should be used for the N-th
003366  ** field of the index key.
003367  **
003368  ** The mapping from character to affinity is given by the SQLITE_AFF_
003369  ** macros defined in sqliteInt.h.
003370  **
003371  ** If P4 is NULL then all index fields have the affinity BLOB.
003372  **
003373  ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
003374  ** compile-time option is enabled:
003375  **
003376  **   * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
003377  **     of the right-most table that can be null-trimmed.
003378  **
003379  **   * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
003380  **     OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
003381  **     accept no-change records with serial_type 10.  This value is
003382  **     only used inside an assert() and does not affect the end result.
003383  */
003384  case OP_MakeRecord: {
003385    Mem *pRec;             /* The new record */
003386    u64 nData;             /* Number of bytes of data space */
003387    int nHdr;              /* Number of bytes of header space */
003388    i64 nByte;             /* Data space required for this record */
003389    i64 nZero;             /* Number of zero bytes at the end of the record */
003390    int nVarint;           /* Number of bytes in a varint */
003391    u32 serial_type;       /* Type field */
003392    Mem *pData0;           /* First field to be combined into the record */
003393    Mem *pLast;            /* Last field of the record */
003394    int nField;            /* Number of fields in the record */
003395    char *zAffinity;       /* The affinity string for the record */
003396    u32 len;               /* Length of a field */
003397    u8 *zHdr;              /* Where to write next byte of the header */
003398    u8 *zPayload;          /* Where to write next byte of the payload */
003399  
003400    /* Assuming the record contains N fields, the record format looks
003401    ** like this:
003402    **
003403    ** ------------------------------------------------------------------------
003404    ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
003405    ** ------------------------------------------------------------------------
003406    **
003407    ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
003408    ** and so forth.
003409    **
003410    ** Each type field is a varint representing the serial type of the
003411    ** corresponding data element (see sqlite3VdbeSerialType()). The
003412    ** hdr-size field is also a varint which is the offset from the beginning
003413    ** of the record to data0.
003414    */
003415    nData = 0;         /* Number of bytes of data space */
003416    nHdr = 0;          /* Number of bytes of header space */
003417    nZero = 0;         /* Number of zero bytes at the end of the record */
003418    nField = pOp->p1;
003419    zAffinity = pOp->p4.z;
003420    assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
003421    pData0 = &aMem[nField];
003422    nField = pOp->p2;
003423    pLast = &pData0[nField-1];
003424  
003425    /* Identify the output register */
003426    assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
003427    pOut = &aMem[pOp->p3];
003428    memAboutToChange(p, pOut);
003429  
003430    /* Apply the requested affinity to all inputs
003431    */
003432    assert( pData0<=pLast );
003433    if( zAffinity ){
003434      pRec = pData0;
003435      do{
003436        applyAffinity(pRec, zAffinity[0], encoding);
003437        if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
003438          pRec->flags |= MEM_IntReal;
003439          pRec->flags &= ~(MEM_Int);
003440        }
003441        REGISTER_TRACE((int)(pRec-aMem), pRec);
003442        zAffinity++;
003443        pRec++;
003444        assert( zAffinity[0]==0 || pRec<=pLast );
003445      }while( zAffinity[0] );
003446    }
003447  
003448  #ifdef SQLITE_ENABLE_NULL_TRIM
003449    /* NULLs can be safely trimmed from the end of the record, as long as
003450    ** as the schema format is 2 or more and none of the omitted columns
003451    ** have a non-NULL default value.  Also, the record must be left with
003452    ** at least one field.  If P5>0 then it will be one more than the
003453    ** index of the right-most column with a non-NULL default value */
003454    if( pOp->p5 ){
003455      while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
003456        pLast--;
003457        nField--;
003458      }
003459    }
003460  #endif
003461  
003462    /* Loop through the elements that will make up the record to figure
003463    ** out how much space is required for the new record.  After this loop,
003464    ** the Mem.uTemp field of each term should hold the serial-type that will
003465    ** be used for that term in the generated record:
003466    **
003467    **   Mem.uTemp value    type
003468    **   ---------------    ---------------
003469    **      0               NULL
003470    **      1               1-byte signed integer
003471    **      2               2-byte signed integer
003472    **      3               3-byte signed integer
003473    **      4               4-byte signed integer
003474    **      5               6-byte signed integer
003475    **      6               8-byte signed integer
003476    **      7               IEEE float
003477    **      8               Integer constant 0
003478    **      9               Integer constant 1
003479    **     10,11            reserved for expansion
003480    **    N>=12 and even    BLOB
003481    **    N>=13 and odd     text
003482    **
003483    ** The following additional values are computed:
003484    **     nHdr        Number of bytes needed for the record header
003485    **     nData       Number of bytes of data space needed for the record
003486    **     nZero       Zero bytes at the end of the record
003487    */
003488    pRec = pLast;
003489    do{
003490      assert( memIsValid(pRec) );
003491      if( pRec->flags & MEM_Null ){
003492        if( pRec->flags & MEM_Zero ){
003493          /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
003494          ** table methods that never invoke sqlite3_result_xxxxx() while
003495          ** computing an unchanging column value in an UPDATE statement.
003496          ** Give such values a special internal-use-only serial-type of 10
003497          ** so that they can be passed through to xUpdate and have
003498          ** a true sqlite3_value_nochange(). */
003499  #ifndef SQLITE_ENABLE_NULL_TRIM
003500          assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
003501  #endif
003502          pRec->uTemp = 10;
003503        }else{
003504          pRec->uTemp = 0;
003505        }
003506        nHdr++;
003507      }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
003508        /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
003509        i64 i = pRec->u.i;
003510        u64 uu;
003511        testcase( pRec->flags & MEM_Int );
003512        testcase( pRec->flags & MEM_IntReal );
003513        if( i<0 ){
003514          uu = ~i;
003515        }else{
003516          uu = i;
003517        }
003518        nHdr++;
003519        testcase( uu==127 );               testcase( uu==128 );
003520        testcase( uu==32767 );             testcase( uu==32768 );
003521        testcase( uu==8388607 );           testcase( uu==8388608 );
003522        testcase( uu==2147483647 );        testcase( uu==2147483648LL );
003523        testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
003524        if( uu<=127 ){
003525          if( (i&1)==i && p->minWriteFileFormat>=4 ){
003526            pRec->uTemp = 8+(u32)uu;
003527          }else{
003528            nData++;
003529            pRec->uTemp = 1;
003530          }
003531        }else if( uu<=32767 ){
003532          nData += 2;
003533          pRec->uTemp = 2;
003534        }else if( uu<=8388607 ){
003535          nData += 3;
003536          pRec->uTemp = 3;
003537        }else if( uu<=2147483647 ){
003538          nData += 4;
003539          pRec->uTemp = 4;
003540        }else if( uu<=140737488355327LL ){
003541          nData += 6;
003542          pRec->uTemp = 5;
003543        }else{
003544          nData += 8;
003545          if( pRec->flags & MEM_IntReal ){
003546            /* If the value is IntReal and is going to take up 8 bytes to store
003547            ** as an integer, then we might as well make it an 8-byte floating
003548            ** point value */
003549            pRec->u.r = (double)pRec->u.i;
003550            pRec->flags &= ~MEM_IntReal;
003551            pRec->flags |= MEM_Real;
003552            pRec->uTemp = 7;
003553          }else{
003554            pRec->uTemp = 6;
003555          }
003556        }
003557      }else if( pRec->flags & MEM_Real ){
003558        nHdr++;
003559        nData += 8;
003560        pRec->uTemp = 7;
003561      }else{
003562        assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
003563        assert( pRec->n>=0 );
003564        len = (u32)pRec->n;
003565        serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
003566        if( pRec->flags & MEM_Zero ){
003567          serial_type += pRec->u.nZero*2;
003568          if( nData ){
003569            if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
003570            len += pRec->u.nZero;
003571          }else{
003572            nZero += pRec->u.nZero;
003573          }
003574        }
003575        nData += len;
003576        nHdr += sqlite3VarintLen(serial_type);
003577        pRec->uTemp = serial_type;
003578      }
003579      if( pRec==pData0 ) break;
003580      pRec--;
003581    }while(1);
003582  
003583    /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
003584    ** which determines the total number of bytes in the header. The varint
003585    ** value is the size of the header in bytes including the size varint
003586    ** itself. */
003587    testcase( nHdr==126 );
003588    testcase( nHdr==127 );
003589    if( nHdr<=126 ){
003590      /* The common case */
003591      nHdr += 1;
003592    }else{
003593      /* Rare case of a really large header */
003594      nVarint = sqlite3VarintLen(nHdr);
003595      nHdr += nVarint;
003596      if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
003597    }
003598    nByte = nHdr+nData;
003599  
003600    /* Make sure the output register has a buffer large enough to store
003601    ** the new record. The output register (pOp->p3) is not allowed to
003602    ** be one of the input registers (because the following call to
003603    ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
003604    */
003605    if( nByte+nZero<=pOut->szMalloc ){
003606      /* The output register is already large enough to hold the record.
003607      ** No error checks or buffer enlargement is required */
003608      pOut->z = pOut->zMalloc;
003609    }else{
003610      /* Need to make sure that the output is not too big and then enlarge
003611      ** the output register to hold the full result */
003612      if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
003613        goto too_big;
003614      }
003615      if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
003616        goto no_mem;
003617      }
003618    }
003619    pOut->n = (int)nByte;
003620    pOut->flags = MEM_Blob;
003621    if( nZero ){
003622      pOut->u.nZero = nZero;
003623      pOut->flags |= MEM_Zero;
003624    }
003625    UPDATE_MAX_BLOBSIZE(pOut);
003626    zHdr = (u8 *)pOut->z;
003627    zPayload = zHdr + nHdr;
003628  
003629    /* Write the record */
003630    if( nHdr<0x80 ){
003631      *(zHdr++) = nHdr;
003632    }else{
003633      zHdr += sqlite3PutVarint(zHdr,nHdr);
003634    }
003635    assert( pData0<=pLast );
003636    pRec = pData0;
003637    while( 1 /*exit-by-break*/ ){
003638      serial_type = pRec->uTemp;
003639      /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
003640      ** additional varints, one per column.
003641      ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
003642      ** immediately follow the header. */
003643      if( serial_type<=7 ){
003644        *(zHdr++) = serial_type;
003645        if( serial_type==0 ){
003646          /* NULL value.  No change in zPayload */
003647        }else{
003648          u64 v;
003649          if( serial_type==7 ){
003650            assert( sizeof(v)==sizeof(pRec->u.r) );
003651            memcpy(&v, &pRec->u.r, sizeof(v));
003652            swapMixedEndianFloat(v);
003653          }else{
003654            v = pRec->u.i;
003655          }
003656          len = sqlite3SmallTypeSizes[serial_type];
003657          assert( len>=1 && len<=8 && len!=5 && len!=7 );
003658          switch( len ){
003659            default: zPayload[7] = (u8)(v&0xff); v >>= 8;
003660                     zPayload[6] = (u8)(v&0xff); v >>= 8;
003661            case 6:  zPayload[5] = (u8)(v&0xff); v >>= 8;
003662                     zPayload[4] = (u8)(v&0xff); v >>= 8;
003663            case 4:  zPayload[3] = (u8)(v&0xff); v >>= 8;
003664            case 3:  zPayload[2] = (u8)(v&0xff); v >>= 8;
003665            case 2:  zPayload[1] = (u8)(v&0xff); v >>= 8;
003666            case 1:  zPayload[0] = (u8)(v&0xff);
003667          }
003668          zPayload += len;
003669        }
003670      }else if( serial_type<0x80 ){
003671        *(zHdr++) = serial_type;
003672        if( serial_type>=14 && pRec->n>0 ){
003673          assert( pRec->z!=0 );
003674          memcpy(zPayload, pRec->z, pRec->n);
003675          zPayload += pRec->n;
003676        }
003677      }else{
003678        zHdr += sqlite3PutVarint(zHdr, serial_type);
003679        if( pRec->n ){
003680          assert( pRec->z!=0 );
003681          memcpy(zPayload, pRec->z, pRec->n);
003682          zPayload += pRec->n;
003683        }
003684      }
003685      if( pRec==pLast ) break;
003686      pRec++;
003687    }
003688    assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
003689    assert( nByte==(int)(zPayload - (u8*)pOut->z) );
003690  
003691    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
003692    REGISTER_TRACE(pOp->p3, pOut);
003693    break;
003694  }
003695  
003696  /* Opcode: Count P1 P2 P3 * *
003697  ** Synopsis: r[P2]=count()
003698  **
003699  ** Store the number of entries (an integer value) in the table or index
003700  ** opened by cursor P1 in register P2.
003701  **
003702  ** If P3==0, then an exact count is obtained, which involves visiting
003703  ** every btree page of the table.  But if P3 is non-zero, an estimate
003704  ** is returned based on the current cursor position. 
003705  */
003706  case OP_Count: {         /* out2 */
003707    i64 nEntry;
003708    BtCursor *pCrsr;
003709  
003710    assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
003711    pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
003712    assert( pCrsr );
003713    if( pOp->p3 ){
003714      nEntry = sqlite3BtreeRowCountEst(pCrsr);
003715    }else{
003716      nEntry = 0;  /* Not needed.  Only used to silence a warning. */
003717      rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
003718      if( rc ) goto abort_due_to_error;
003719    }
003720    pOut = out2Prerelease(p, pOp);
003721    pOut->u.i = nEntry;
003722    goto check_for_interrupt;
003723  }
003724  
003725  /* Opcode: Savepoint P1 * * P4 *
003726  **
003727  ** Open, release or rollback the savepoint named by parameter P4, depending
003728  ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
003729  ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
003730  ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
003731  */
003732  case OP_Savepoint: {
003733    int p1;                         /* Value of P1 operand */
003734    char *zName;                    /* Name of savepoint */
003735    int nName;
003736    Savepoint *pNew;
003737    Savepoint *pSavepoint;
003738    Savepoint *pTmp;
003739    int iSavepoint;
003740    int ii;
003741  
003742    p1 = pOp->p1;
003743    zName = pOp->p4.z;
003744  
003745    /* Assert that the p1 parameter is valid. Also that if there is no open
003746    ** transaction, then there cannot be any savepoints.
003747    */
003748    assert( db->pSavepoint==0 || db->autoCommit==0 );
003749    assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
003750    assert( db->pSavepoint || db->isTransactionSavepoint==0 );
003751    assert( checkSavepointCount(db) );
003752    assert( p->bIsReader );
003753  
003754    if( p1==SAVEPOINT_BEGIN ){
003755      if( db->nVdbeWrite>0 ){
003756        /* A new savepoint cannot be created if there are active write
003757        ** statements (i.e. open read/write incremental blob handles).
003758        */
003759        sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
003760        rc = SQLITE_BUSY;
003761      }else{
003762        nName = sqlite3Strlen30(zName);
003763  
003764  #ifndef SQLITE_OMIT_VIRTUALTABLE
003765        /* This call is Ok even if this savepoint is actually a transaction
003766        ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
003767        ** If this is a transaction savepoint being opened, it is guaranteed
003768        ** that the db->aVTrans[] array is empty.  */
003769        assert( db->autoCommit==0 || db->nVTrans==0 );
003770        rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
003771                                  db->nStatement+db->nSavepoint);
003772        if( rc!=SQLITE_OK ) goto abort_due_to_error;
003773  #endif
003774  
003775        /* Create a new savepoint structure. */
003776        pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
003777        if( pNew ){
003778          pNew->zName = (char *)&pNew[1];
003779          memcpy(pNew->zName, zName, nName+1);
003780     
003781          /* If there is no open transaction, then mark this as a special
003782          ** "transaction savepoint". */
003783          if( db->autoCommit ){
003784            db->autoCommit = 0;
003785            db->isTransactionSavepoint = 1;
003786          }else{
003787            db->nSavepoint++;
003788          }
003789  
003790          /* Link the new savepoint into the database handle's list. */
003791          pNew->pNext = db->pSavepoint;
003792          db->pSavepoint = pNew;
003793          pNew->nDeferredCons = db->nDeferredCons;
003794          pNew->nDeferredImmCons = db->nDeferredImmCons;
003795        }
003796      }
003797    }else{
003798      assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
003799      iSavepoint = 0;
003800  
003801      /* Find the named savepoint. If there is no such savepoint, then an
003802      ** an error is returned to the user.  */
003803      for(
003804        pSavepoint = db->pSavepoint;
003805        pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
003806        pSavepoint = pSavepoint->pNext
003807      ){
003808        iSavepoint++;
003809      }
003810      if( !pSavepoint ){
003811        sqlite3VdbeError(p, "no such savepoint: %s", zName);
003812        rc = SQLITE_ERROR;
003813      }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
003814        /* It is not possible to release (commit) a savepoint if there are
003815        ** active write statements.
003816        */
003817        sqlite3VdbeError(p, "cannot release savepoint - "
003818                            "SQL statements in progress");
003819        rc = SQLITE_BUSY;
003820      }else{
003821  
003822        /* Determine whether or not this is a transaction savepoint. If so,
003823        ** and this is a RELEASE command, then the current transaction
003824        ** is committed.
003825        */
003826        int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
003827        if( isTransaction && p1==SAVEPOINT_RELEASE ){
003828          if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
003829            goto vdbe_return;
003830          }
003831          db->autoCommit = 1;
003832          if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
003833            p->pc = (int)(pOp - aOp);
003834            db->autoCommit = 0;
003835            p->rc = rc = SQLITE_BUSY;
003836            goto vdbe_return;
003837          }
003838          rc = p->rc;
003839          if( rc ){
003840            db->autoCommit = 0;
003841          }else{
003842            db->isTransactionSavepoint = 0;
003843          }
003844        }else{
003845          int isSchemaChange;
003846          iSavepoint = db->nSavepoint - iSavepoint - 1;
003847          if( p1==SAVEPOINT_ROLLBACK ){
003848            isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
003849            for(ii=0; ii<db->nDb; ii++){
003850              rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
003851                                         SQLITE_ABORT_ROLLBACK,
003852                                         isSchemaChange==0);
003853              if( rc!=SQLITE_OK ) goto abort_due_to_error;
003854            }
003855          }else{
003856            assert( p1==SAVEPOINT_RELEASE );
003857            isSchemaChange = 0;
003858          }
003859          for(ii=0; ii<db->nDb; ii++){
003860            rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
003861            if( rc!=SQLITE_OK ){
003862              goto abort_due_to_error;
003863            }
003864          }
003865          if( isSchemaChange ){
003866            sqlite3ExpirePreparedStatements(db, 0);
003867            sqlite3ResetAllSchemasOfConnection(db);
003868            db->mDbFlags |= DBFLAG_SchemaChange;
003869          }
003870        }
003871        if( rc ) goto abort_due_to_error;
003872   
003873        /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
003874        ** savepoints nested inside of the savepoint being operated on. */
003875        while( db->pSavepoint!=pSavepoint ){
003876          pTmp = db->pSavepoint;
003877          db->pSavepoint = pTmp->pNext;
003878          sqlite3DbFree(db, pTmp);
003879          db->nSavepoint--;
003880        }
003881  
003882        /* If it is a RELEASE, then destroy the savepoint being operated on
003883        ** too. If it is a ROLLBACK TO, then set the number of deferred
003884        ** constraint violations present in the database to the value stored
003885        ** when the savepoint was created.  */
003886        if( p1==SAVEPOINT_RELEASE ){
003887          assert( pSavepoint==db->pSavepoint );
003888          db->pSavepoint = pSavepoint->pNext;
003889          sqlite3DbFree(db, pSavepoint);
003890          if( !isTransaction ){
003891            db->nSavepoint--;
003892          }
003893        }else{
003894          assert( p1==SAVEPOINT_ROLLBACK );
003895          db->nDeferredCons = pSavepoint->nDeferredCons;
003896          db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
003897        }
003898  
003899        if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
003900          rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
003901          if( rc!=SQLITE_OK ) goto abort_due_to_error;
003902        }
003903      }
003904    }
003905    if( rc ) goto abort_due_to_error;
003906    if( p->eVdbeState==VDBE_HALT_STATE ){
003907      rc = SQLITE_DONE;
003908      goto vdbe_return;
003909    }
003910    break;
003911  }
003912  
003913  /* Opcode: AutoCommit P1 P2 * * *
003914  **
003915  ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
003916  ** back any currently active btree transactions. If there are any active
003917  ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
003918  ** there are active writing VMs or active VMs that use shared cache.
003919  **
003920  ** This instruction causes the VM to halt.
003921  */
003922  case OP_AutoCommit: {
003923    int desiredAutoCommit;
003924    int iRollback;
003925  
003926    desiredAutoCommit = pOp->p1;
003927    iRollback = pOp->p2;
003928    assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
003929    assert( desiredAutoCommit==1 || iRollback==0 );
003930    assert( db->nVdbeActive>0 );  /* At least this one VM is active */
003931    assert( p->bIsReader );
003932  
003933    if( desiredAutoCommit!=db->autoCommit ){
003934      if( iRollback ){
003935        assert( desiredAutoCommit==1 );
003936        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
003937        db->autoCommit = 1;
003938      }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
003939        /* If this instruction implements a COMMIT and other VMs are writing
003940        ** return an error indicating that the other VMs must complete first.
003941        */
003942        sqlite3VdbeError(p, "cannot commit transaction - "
003943                            "SQL statements in progress");
003944        rc = SQLITE_BUSY;
003945        goto abort_due_to_error;
003946      }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
003947        goto vdbe_return;
003948      }else{
003949        db->autoCommit = (u8)desiredAutoCommit;
003950      }
003951      if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
003952        p->pc = (int)(pOp - aOp);
003953        db->autoCommit = (u8)(1-desiredAutoCommit);
003954        p->rc = rc = SQLITE_BUSY;
003955        goto vdbe_return;
003956      }
003957      sqlite3CloseSavepoints(db);
003958      if( p->rc==SQLITE_OK ){
003959        rc = SQLITE_DONE;
003960      }else{
003961        rc = SQLITE_ERROR;
003962      }
003963      goto vdbe_return;
003964    }else{
003965      sqlite3VdbeError(p,
003966          (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
003967          (iRollback)?"cannot rollback - no transaction is active":
003968                     "cannot commit - no transaction is active"));
003969          
003970      rc = SQLITE_ERROR;
003971      goto abort_due_to_error;
003972    }
003973    /*NOTREACHED*/ assert(0);
003974  }
003975  
003976  /* Opcode: Transaction P1 P2 P3 P4 P5
003977  **
003978  ** Begin a transaction on database P1 if a transaction is not already
003979  ** active.
003980  ** If P2 is non-zero, then a write-transaction is started, or if a
003981  ** read-transaction is already active, it is upgraded to a write-transaction.
003982  ** If P2 is zero, then a read-transaction is started.  If P2 is 2 or more
003983  ** then an exclusive transaction is started.
003984  **
003985  ** P1 is the index of the database file on which the transaction is
003986  ** started.  Index 0 is the main database file and index 1 is the
003987  ** file used for temporary tables.  Indices of 2 or more are used for
003988  ** attached databases.
003989  **
003990  ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
003991  ** true (this flag is set if the Vdbe may modify more than one row and may
003992  ** throw an ABORT exception), a statement transaction may also be opened.
003993  ** More specifically, a statement transaction is opened iff the database
003994  ** connection is currently not in autocommit mode, or if there are other
003995  ** active statements. A statement transaction allows the changes made by this
003996  ** VDBE to be rolled back after an error without having to roll back the
003997  ** entire transaction. If no error is encountered, the statement transaction
003998  ** will automatically commit when the VDBE halts.
003999  **
004000  ** If P5!=0 then this opcode also checks the schema cookie against P3
004001  ** and the schema generation counter against P4.
004002  ** The cookie changes its value whenever the database schema changes.
004003  ** This operation is used to detect when that the cookie has changed
004004  ** and that the current process needs to reread the schema.  If the schema
004005  ** cookie in P3 differs from the schema cookie in the database header or
004006  ** if the schema generation counter in P4 differs from the current
004007  ** generation counter, then an SQLITE_SCHEMA error is raised and execution
004008  ** halts.  The sqlite3_step() wrapper function might then reprepare the
004009  ** statement and rerun it from the beginning.
004010  */
004011  case OP_Transaction: {
004012    Btree *pBt;
004013    Db *pDb;
004014    int iMeta = 0;
004015  
004016    assert( p->bIsReader );
004017    assert( p->readOnly==0 || pOp->p2==0 );
004018    assert( pOp->p2>=0 && pOp->p2<=2 );
004019    assert( pOp->p1>=0 && pOp->p1<db->nDb );
004020    assert( DbMaskTest(p->btreeMask, pOp->p1) );
004021    assert( rc==SQLITE_OK );
004022    if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
004023      if( db->flags & SQLITE_QueryOnly ){
004024        /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
004025        rc = SQLITE_READONLY;
004026      }else{
004027        /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
004028        ** transaction */
004029        rc = SQLITE_CORRUPT;
004030      }
004031      goto abort_due_to_error;
004032    }
004033    pDb = &db->aDb[pOp->p1];
004034    pBt = pDb->pBt;
004035  
004036    if( pBt ){
004037      rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
004038      testcase( rc==SQLITE_BUSY_SNAPSHOT );
004039      testcase( rc==SQLITE_BUSY_RECOVERY );
004040      if( rc!=SQLITE_OK ){
004041        if( (rc&0xff)==SQLITE_BUSY ){
004042          p->pc = (int)(pOp - aOp);
004043          p->rc = rc;
004044          goto vdbe_return;
004045        }
004046        goto abort_due_to_error;
004047      }
004048  
004049      if( p->usesStmtJournal
004050       && pOp->p2
004051       && (db->autoCommit==0 || db->nVdbeRead>1)
004052      ){
004053        assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
004054        if( p->iStatement==0 ){
004055          assert( db->nStatement>=0 && db->nSavepoint>=0 );
004056          db->nStatement++;
004057          p->iStatement = db->nSavepoint + db->nStatement;
004058        }
004059  
004060        rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
004061        if( rc==SQLITE_OK ){
004062          rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
004063        }
004064  
004065        /* Store the current value of the database handles deferred constraint
004066        ** counter. If the statement transaction needs to be rolled back,
004067        ** the value of this counter needs to be restored too.  */
004068        p->nStmtDefCons = db->nDeferredCons;
004069        p->nStmtDefImmCons = db->nDeferredImmCons;
004070      }
004071    }
004072    assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
004073    if( rc==SQLITE_OK
004074     && pOp->p5
004075     && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
004076    ){
004077      /*
004078      ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
004079      ** version is checked to ensure that the schema has not changed since the
004080      ** SQL statement was prepared.
004081      */
004082      sqlite3DbFree(db, p->zErrMsg);
004083      p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
004084      /* If the schema-cookie from the database file matches the cookie
004085      ** stored with the in-memory representation of the schema, do
004086      ** not reload the schema from the database file.
004087      **
004088      ** If virtual-tables are in use, this is not just an optimization.
004089      ** Often, v-tables store their data in other SQLite tables, which
004090      ** are queried from within xNext() and other v-table methods using
004091      ** prepared queries. If such a query is out-of-date, we do not want to
004092      ** discard the database schema, as the user code implementing the
004093      ** v-table would have to be ready for the sqlite3_vtab structure itself
004094      ** to be invalidated whenever sqlite3_step() is called from within
004095      ** a v-table method.
004096      */
004097      if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
004098        sqlite3ResetOneSchema(db, pOp->p1);
004099      }
004100      p->expired = 1;
004101      rc = SQLITE_SCHEMA;
004102  
004103      /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
004104      ** from being modified in sqlite3VdbeHalt(). If this statement is
004105      ** reprepared, changeCntOn will be set again. */
004106      p->changeCntOn = 0;
004107    }
004108    if( rc ) goto abort_due_to_error;
004109    break;
004110  }
004111  
004112  /* Opcode: ReadCookie P1 P2 P3 * *
004113  **
004114  ** Read cookie number P3 from database P1 and write it into register P2.
004115  ** P3==1 is the schema version.  P3==2 is the database format.
004116  ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
004117  ** the main database file and P1==1 is the database file used to store
004118  ** temporary tables.
004119  **
004120  ** There must be a read-lock on the database (either a transaction
004121  ** must be started or there must be an open cursor) before
004122  ** executing this instruction.
004123  */
004124  case OP_ReadCookie: {               /* out2 */
004125    int iMeta;
004126    int iDb;
004127    int iCookie;
004128  
004129    assert( p->bIsReader );
004130    iDb = pOp->p1;
004131    iCookie = pOp->p3;
004132    assert( pOp->p3<SQLITE_N_BTREE_META );
004133    assert( iDb>=0 && iDb<db->nDb );
004134    assert( db->aDb[iDb].pBt!=0 );
004135    assert( DbMaskTest(p->btreeMask, iDb) );
004136  
004137    sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
004138    pOut = out2Prerelease(p, pOp);
004139    pOut->u.i = iMeta;
004140    break;
004141  }
004142  
004143  /* Opcode: SetCookie P1 P2 P3 * P5
004144  **
004145  ** Write the integer value P3 into cookie number P2 of database P1.
004146  ** P2==1 is the schema version.  P2==2 is the database format.
004147  ** P2==3 is the recommended pager cache
004148  ** size, and so forth.  P1==0 is the main database file and P1==1 is the
004149  ** database file used to store temporary tables.
004150  **
004151  ** A transaction must be started before executing this opcode.
004152  **
004153  ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
004154  ** schema version is set to P3-P5.  The "PRAGMA schema_version=N" statement
004155  ** has P5 set to 1, so that the internal schema version will be different
004156  ** from the database schema version, resulting in a schema reset.
004157  */
004158  case OP_SetCookie: {
004159    Db *pDb;
004160  
004161    sqlite3VdbeIncrWriteCounter(p, 0);
004162    assert( pOp->p2<SQLITE_N_BTREE_META );
004163    assert( pOp->p1>=0 && pOp->p1<db->nDb );
004164    assert( DbMaskTest(p->btreeMask, pOp->p1) );
004165    assert( p->readOnly==0 );
004166    pDb = &db->aDb[pOp->p1];
004167    assert( pDb->pBt!=0 );
004168    assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
004169    /* See note about index shifting on OP_ReadCookie */
004170    rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
004171    if( pOp->p2==BTREE_SCHEMA_VERSION ){
004172      /* When the schema cookie changes, record the new cookie internally */
004173      *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
004174      db->mDbFlags |= DBFLAG_SchemaChange;
004175      sqlite3FkClearTriggerCache(db, pOp->p1);
004176    }else if( pOp->p2==BTREE_FILE_FORMAT ){
004177      /* Record changes in the file format */
004178      pDb->pSchema->file_format = pOp->p3;
004179    }
004180    if( pOp->p1==1 ){
004181      /* Invalidate all prepared statements whenever the TEMP database
004182      ** schema is changed.  Ticket #1644 */
004183      sqlite3ExpirePreparedStatements(db, 0);
004184      p->expired = 0;
004185    }
004186    if( rc ) goto abort_due_to_error;
004187    break;
004188  }
004189  
004190  /* Opcode: OpenRead P1 P2 P3 P4 P5
004191  ** Synopsis: root=P2 iDb=P3
004192  **
004193  ** Open a read-only cursor for the database table whose root page is
004194  ** P2 in a database file.  The database file is determined by P3.
004195  ** P3==0 means the main database, P3==1 means the database used for
004196  ** temporary tables, and P3>1 means used the corresponding attached
004197  ** database.  Give the new cursor an identifier of P1.  The P1
004198  ** values need not be contiguous but all P1 values should be small integers.
004199  ** It is an error for P1 to be negative.
004200  **
004201  ** Allowed P5 bits:
004202  ** <ul>
004203  ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
004204  **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
004205  **       of OP_SeekLE/OP_IdxLT)
004206  ** </ul>
004207  **
004208  ** The P4 value may be either an integer (P4_INT32) or a pointer to
004209  ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
004210  ** object, then table being opened must be an [index b-tree] where the
004211  ** KeyInfo object defines the content and collating
004212  ** sequence of that index b-tree. Otherwise, if P4 is an integer
004213  ** value, then the table being opened must be a [table b-tree] with a
004214  ** number of columns no less than the value of P4.
004215  **
004216  ** See also: OpenWrite, ReopenIdx
004217  */
004218  /* Opcode: ReopenIdx P1 P2 P3 P4 P5
004219  ** Synopsis: root=P2 iDb=P3
004220  **
004221  ** The ReopenIdx opcode works like OP_OpenRead except that it first
004222  ** checks to see if the cursor on P1 is already open on the same
004223  ** b-tree and if it is this opcode becomes a no-op.  In other words,
004224  ** if the cursor is already open, do not reopen it.
004225  **
004226  ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
004227  ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
004228  ** be the same as every other ReopenIdx or OpenRead for the same cursor
004229  ** number.
004230  **
004231  ** Allowed P5 bits:
004232  ** <ul>
004233  ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
004234  **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
004235  **       of OP_SeekLE/OP_IdxLT)
004236  ** </ul>
004237  **
004238  ** See also: OP_OpenRead, OP_OpenWrite
004239  */
004240  /* Opcode: OpenWrite P1 P2 P3 P4 P5
004241  ** Synopsis: root=P2 iDb=P3
004242  **
004243  ** Open a read/write cursor named P1 on the table or index whose root
004244  ** page is P2 (or whose root page is held in register P2 if the
004245  ** OPFLAG_P2ISREG bit is set in P5 - see below).
004246  **
004247  ** The P4 value may be either an integer (P4_INT32) or a pointer to
004248  ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
004249  ** object, then table being opened must be an [index b-tree] where the
004250  ** KeyInfo object defines the content and collating
004251  ** sequence of that index b-tree. Otherwise, if P4 is an integer
004252  ** value, then the table being opened must be a [table b-tree] with a
004253  ** number of columns no less than the value of P4.
004254  **
004255  ** Allowed P5 bits:
004256  ** <ul>
004257  ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
004258  **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
004259  **       of OP_SeekLE/OP_IdxLT)
004260  ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
004261  **       and subsequently delete entries in an index btree.  This is a
004262  **       hint to the storage engine that the storage engine is allowed to
004263  **       ignore.  The hint is not used by the official SQLite b*tree storage
004264  **       engine, but is used by COMDB2.
004265  ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
004266  **       as the root page, not the value of P2 itself.
004267  ** </ul>
004268  **
004269  ** This instruction works like OpenRead except that it opens the cursor
004270  ** in read/write mode.
004271  **
004272  ** See also: OP_OpenRead, OP_ReopenIdx
004273  */
004274  case OP_ReopenIdx: {         /* ncycle */
004275    int nField;
004276    KeyInfo *pKeyInfo;
004277    u32 p2;
004278    int iDb;
004279    int wrFlag;
004280    Btree *pX;
004281    VdbeCursor *pCur;
004282    Db *pDb;
004283  
004284    assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
004285    assert( pOp->p4type==P4_KEYINFO );
004286    pCur = p->apCsr[pOp->p1];
004287    if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
004288      assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
004289      assert( pCur->eCurType==CURTYPE_BTREE );
004290      sqlite3BtreeClearCursor(pCur->uc.pCursor);
004291      goto open_cursor_set_hints;
004292    }
004293    /* If the cursor is not currently open or is open on a different
004294    ** index, then fall through into OP_OpenRead to force a reopen */
004295  case OP_OpenRead:            /* ncycle */
004296  case OP_OpenWrite:
004297  
004298    assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
004299    assert( p->bIsReader );
004300    assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
004301            || p->readOnly==0 );
004302  
004303    if( p->expired==1 ){
004304      rc = SQLITE_ABORT_ROLLBACK;
004305      goto abort_due_to_error;
004306    }
004307  
004308    nField = 0;
004309    pKeyInfo = 0;
004310    p2 = (u32)pOp->p2;
004311    iDb = pOp->p3;
004312    assert( iDb>=0 && iDb<db->nDb );
004313    assert( DbMaskTest(p->btreeMask, iDb) );
004314    pDb = &db->aDb[iDb];
004315    pX = pDb->pBt;
004316    assert( pX!=0 );
004317    if( pOp->opcode==OP_OpenWrite ){
004318      assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
004319      wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
004320      assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
004321      if( pDb->pSchema->file_format < p->minWriteFileFormat ){
004322        p->minWriteFileFormat = pDb->pSchema->file_format;
004323      }
004324    }else{
004325      wrFlag = 0;
004326    }
004327    if( pOp->p5 & OPFLAG_P2ISREG ){
004328      assert( p2>0 );
004329      assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
004330      assert( pOp->opcode==OP_OpenWrite );
004331      pIn2 = &aMem[p2];
004332      assert( memIsValid(pIn2) );
004333      assert( (pIn2->flags & MEM_Int)!=0 );
004334      sqlite3VdbeMemIntegerify(pIn2);
004335      p2 = (int)pIn2->u.i;
004336      /* The p2 value always comes from a prior OP_CreateBtree opcode and
004337      ** that opcode will always set the p2 value to 2 or more or else fail.
004338      ** If there were a failure, the prepared statement would have halted
004339      ** before reaching this instruction. */
004340      assert( p2>=2 );
004341    }
004342    if( pOp->p4type==P4_KEYINFO ){
004343      pKeyInfo = pOp->p4.pKeyInfo;
004344      assert( pKeyInfo->enc==ENC(db) );
004345      assert( pKeyInfo->db==db );
004346      nField = pKeyInfo->nAllField;
004347    }else if( pOp->p4type==P4_INT32 ){
004348      nField = pOp->p4.i;
004349    }
004350    assert( pOp->p1>=0 );
004351    assert( nField>=0 );
004352    testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
004353    pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
004354    if( pCur==0 ) goto no_mem;
004355    pCur->iDb = iDb;
004356    pCur->nullRow = 1;
004357    pCur->isOrdered = 1;
004358    pCur->pgnoRoot = p2;
004359  #ifdef SQLITE_DEBUG
004360    pCur->wrFlag = wrFlag;
004361  #endif
004362    rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
004363    pCur->pKeyInfo = pKeyInfo;
004364    /* Set the VdbeCursor.isTable variable. Previous versions of
004365    ** SQLite used to check if the root-page flags were sane at this point
004366    ** and report database corruption if they were not, but this check has
004367    ** since moved into the btree layer.  */ 
004368    pCur->isTable = pOp->p4type!=P4_KEYINFO;
004369  
004370  open_cursor_set_hints:
004371    assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
004372    assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
004373    testcase( pOp->p5 & OPFLAG_BULKCSR );
004374    testcase( pOp->p2 & OPFLAG_SEEKEQ );
004375    sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
004376                                 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
004377    if( rc ) goto abort_due_to_error;
004378    break;
004379  }
004380  
004381  /* Opcode: OpenDup P1 P2 * * *
004382  **
004383  ** Open a new cursor P1 that points to the same ephemeral table as
004384  ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
004385  ** opcode.  Only ephemeral cursors may be duplicated.
004386  **
004387  ** Duplicate ephemeral cursors are used for self-joins of materialized views.
004388  */
004389  case OP_OpenDup: {           /* ncycle */
004390    VdbeCursor *pOrig;    /* The original cursor to be duplicated */
004391    VdbeCursor *pCx;      /* The new cursor */
004392  
004393    pOrig = p->apCsr[pOp->p2];
004394    assert( pOrig );
004395    assert( pOrig->isEphemeral );  /* Only ephemeral cursors can be duplicated */
004396  
004397    pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
004398    if( pCx==0 ) goto no_mem;
004399    pCx->nullRow = 1;
004400    pCx->isEphemeral = 1;
004401    pCx->pKeyInfo = pOrig->pKeyInfo;
004402    pCx->isTable = pOrig->isTable;
004403    pCx->pgnoRoot = pOrig->pgnoRoot;
004404    pCx->isOrdered = pOrig->isOrdered;
004405    pCx->ub.pBtx = pOrig->ub.pBtx;
004406    pCx->noReuse = 1;
004407    pOrig->noReuse = 1;
004408    rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
004409                            pCx->pKeyInfo, pCx->uc.pCursor);
004410    /* The sqlite3BtreeCursor() routine can only fail for the first cursor
004411    ** opened for a database.  Since there is already an open cursor when this
004412    ** opcode is run, the sqlite3BtreeCursor() cannot fail */
004413    assert( rc==SQLITE_OK );
004414    break;
004415  }
004416  
004417  
004418  /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
004419  ** Synopsis: nColumn=P2
004420  **
004421  ** Open a new cursor P1 to a transient table.
004422  ** The cursor is always opened read/write even if
004423  ** the main database is read-only.  The ephemeral
004424  ** table is deleted automatically when the cursor is closed.
004425  **
004426  ** If the cursor P1 is already opened on an ephemeral table, the table
004427  ** is cleared (all content is erased).
004428  **
004429  ** P2 is the number of columns in the ephemeral table.
004430  ** The cursor points to a BTree table if P4==0 and to a BTree index
004431  ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
004432  ** that defines the format of keys in the index.
004433  **
004434  ** The P5 parameter can be a mask of the BTREE_* flags defined
004435  ** in btree.h.  These flags control aspects of the operation of
004436  ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
004437  ** added automatically.
004438  **
004439  ** If P3 is positive, then reg[P3] is modified slightly so that it
004440  ** can be used as zero-length data for OP_Insert.  This is an optimization
004441  ** that avoids an extra OP_Blob opcode to initialize that register.
004442  */
004443  /* Opcode: OpenAutoindex P1 P2 * P4 *
004444  ** Synopsis: nColumn=P2
004445  **
004446  ** This opcode works the same as OP_OpenEphemeral.  It has a
004447  ** different name to distinguish its use.  Tables created using
004448  ** by this opcode will be used for automatically created transient
004449  ** indices in joins.
004450  */
004451  case OP_OpenAutoindex:       /* ncycle */
004452  case OP_OpenEphemeral: {     /* ncycle */
004453    VdbeCursor *pCx;
004454    KeyInfo *pKeyInfo;
004455  
004456    static const int vfsFlags =
004457        SQLITE_OPEN_READWRITE |
004458        SQLITE_OPEN_CREATE |
004459        SQLITE_OPEN_EXCLUSIVE |
004460        SQLITE_OPEN_DELETEONCLOSE |
004461        SQLITE_OPEN_TRANSIENT_DB;
004462    assert( pOp->p1>=0 );
004463    assert( pOp->p2>=0 );
004464    if( pOp->p3>0 ){
004465      /* Make register reg[P3] into a value that can be used as the data
004466      ** form sqlite3BtreeInsert() where the length of the data is zero. */
004467      assert( pOp->p2==0 ); /* Only used when number of columns is zero */
004468      assert( pOp->opcode==OP_OpenEphemeral );
004469      assert( aMem[pOp->p3].flags & MEM_Null );
004470      aMem[pOp->p3].n = 0;
004471      aMem[pOp->p3].z = "";
004472    }
004473    pCx = p->apCsr[pOp->p1];
004474    if( pCx && !pCx->noReuse &&  ALWAYS(pOp->p2<=pCx->nField) ){
004475      /* If the ephemeral table is already open and has no duplicates from
004476      ** OP_OpenDup, then erase all existing content so that the table is
004477      ** empty again, rather than creating a new table. */
004478      assert( pCx->isEphemeral );
004479      pCx->seqCount = 0;
004480      pCx->cacheStatus = CACHE_STALE;
004481      rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
004482    }else{
004483      pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
004484      if( pCx==0 ) goto no_mem;
004485      pCx->isEphemeral = 1;
004486      rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
004487                            BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
004488                            vfsFlags);
004489      if( rc==SQLITE_OK ){
004490        rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
004491        if( rc==SQLITE_OK ){
004492          /* If a transient index is required, create it by calling
004493          ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
004494          ** opening it. If a transient table is required, just use the
004495          ** automatically created table with root-page 1 (an BLOB_INTKEY table).
004496          */
004497          if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
004498            assert( pOp->p4type==P4_KEYINFO );
004499            rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
004500                BTREE_BLOBKEY | pOp->p5);
004501            if( rc==SQLITE_OK ){
004502              assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
004503              assert( pKeyInfo->db==db );
004504              assert( pKeyInfo->enc==ENC(db) );
004505              rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
004506                  pKeyInfo, pCx->uc.pCursor);
004507            }
004508            pCx->isTable = 0;
004509          }else{
004510            pCx->pgnoRoot = SCHEMA_ROOT;
004511            rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
004512                0, pCx->uc.pCursor);
004513            pCx->isTable = 1;
004514          }
004515        }
004516        pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
004517        if( rc ){
004518          sqlite3BtreeClose(pCx->ub.pBtx);
004519        }
004520      }
004521    }
004522    if( rc ) goto abort_due_to_error;
004523    pCx->nullRow = 1;
004524    break;
004525  }
004526  
004527  /* Opcode: SorterOpen P1 P2 P3 P4 *
004528  **
004529  ** This opcode works like OP_OpenEphemeral except that it opens
004530  ** a transient index that is specifically designed to sort large
004531  ** tables using an external merge-sort algorithm.
004532  **
004533  ** If argument P3 is non-zero, then it indicates that the sorter may
004534  ** assume that a stable sort considering the first P3 fields of each
004535  ** key is sufficient to produce the required results.
004536  */
004537  case OP_SorterOpen: {
004538    VdbeCursor *pCx;
004539  
004540    assert( pOp->p1>=0 );
004541    assert( pOp->p2>=0 );
004542    pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
004543    if( pCx==0 ) goto no_mem;
004544    pCx->pKeyInfo = pOp->p4.pKeyInfo;
004545    assert( pCx->pKeyInfo->db==db );
004546    assert( pCx->pKeyInfo->enc==ENC(db) );
004547    rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
004548    if( rc ) goto abort_due_to_error;
004549    break;
004550  }
004551  
004552  /* Opcode: SequenceTest P1 P2 * * *
004553  ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
004554  **
004555  ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
004556  ** to P2. Regardless of whether or not the jump is taken, increment the
004557  ** the sequence value.
004558  */
004559  case OP_SequenceTest: {
004560    VdbeCursor *pC;
004561    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004562    pC = p->apCsr[pOp->p1];
004563    assert( isSorter(pC) );
004564    if( (pC->seqCount++)==0 ){
004565      goto jump_to_p2;
004566    }
004567    break;
004568  }
004569  
004570  /* Opcode: OpenPseudo P1 P2 P3 * *
004571  ** Synopsis: P3 columns in r[P2]
004572  **
004573  ** Open a new cursor that points to a fake table that contains a single
004574  ** row of data.  The content of that one row is the content of memory
004575  ** register P2.  In other words, cursor P1 becomes an alias for the
004576  ** MEM_Blob content contained in register P2.
004577  **
004578  ** A pseudo-table created by this opcode is used to hold a single
004579  ** row output from the sorter so that the row can be decomposed into
004580  ** individual columns using the OP_Column opcode.  The OP_Column opcode
004581  ** is the only cursor opcode that works with a pseudo-table.
004582  **
004583  ** P3 is the number of fields in the records that will be stored by
004584  ** the pseudo-table.
004585  */
004586  case OP_OpenPseudo: {
004587    VdbeCursor *pCx;
004588  
004589    assert( pOp->p1>=0 );
004590    assert( pOp->p3>=0 );
004591    pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
004592    if( pCx==0 ) goto no_mem;
004593    pCx->nullRow = 1;
004594    pCx->seekResult = pOp->p2;
004595    pCx->isTable = 1;
004596    /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
004597    ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
004598    ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
004599    ** which is a performance optimization */
004600    pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
004601    assert( pOp->p5==0 );
004602    break;
004603  }
004604  
004605  /* Opcode: Close P1 * * * *
004606  **
004607  ** Close a cursor previously opened as P1.  If P1 is not
004608  ** currently open, this instruction is a no-op.
004609  */
004610  case OP_Close: {             /* ncycle */
004611    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004612    sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
004613    p->apCsr[pOp->p1] = 0;
004614    break;
004615  }
004616  
004617  #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
004618  /* Opcode: ColumnsUsed P1 * * P4 *
004619  **
004620  ** This opcode (which only exists if SQLite was compiled with
004621  ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
004622  ** table or index for cursor P1 are used.  P4 is a 64-bit integer
004623  ** (P4_INT64) in which the first 63 bits are one for each of the
004624  ** first 63 columns of the table or index that are actually used
004625  ** by the cursor.  The high-order bit is set if any column after
004626  ** the 64th is used.
004627  */
004628  case OP_ColumnsUsed: {
004629    VdbeCursor *pC;
004630    pC = p->apCsr[pOp->p1];
004631    assert( pC->eCurType==CURTYPE_BTREE );
004632    pC->maskUsed = *(u64*)pOp->p4.pI64;
004633    break;
004634  }
004635  #endif
004636  
004637  /* Opcode: SeekGE P1 P2 P3 P4 *
004638  ** Synopsis: key=r[P3@P4]
004639  **
004640  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
004641  ** use the value in register P3 as the key.  If cursor P1 refers
004642  ** to an SQL index, then P3 is the first in an array of P4 registers
004643  ** that are used as an unpacked index key.
004644  **
004645  ** Reposition cursor P1 so that  it points to the smallest entry that
004646  ** is greater than or equal to the key value. If there are no records
004647  ** greater than or equal to the key and P2 is not zero, then jump to P2.
004648  **
004649  ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
004650  ** opcode will either land on a record that exactly matches the key, or
004651  ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
004652  ** this opcode must be followed by an IdxLE opcode with the same arguments.
004653  ** The IdxGT opcode will be skipped if this opcode succeeds, but the
004654  ** IdxGT opcode will be used on subsequent loop iterations.  The
004655  ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
004656  ** is an equality search.
004657  **
004658  ** This opcode leaves the cursor configured to move in forward order,
004659  ** from the beginning toward the end.  In other words, the cursor is
004660  ** configured to use Next, not Prev.
004661  **
004662  ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
004663  */
004664  /* Opcode: SeekGT P1 P2 P3 P4 *
004665  ** Synopsis: key=r[P3@P4]
004666  **
004667  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
004668  ** use the value in register P3 as a key. If cursor P1 refers
004669  ** to an SQL index, then P3 is the first in an array of P4 registers
004670  ** that are used as an unpacked index key.
004671  **
004672  ** Reposition cursor P1 so that it points to the smallest entry that
004673  ** is greater than the key value. If there are no records greater than
004674  ** the key and P2 is not zero, then jump to P2.
004675  **
004676  ** This opcode leaves the cursor configured to move in forward order,
004677  ** from the beginning toward the end.  In other words, the cursor is
004678  ** configured to use Next, not Prev.
004679  **
004680  ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
004681  */
004682  /* Opcode: SeekLT P1 P2 P3 P4 *
004683  ** Synopsis: key=r[P3@P4]
004684  **
004685  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
004686  ** use the value in register P3 as a key. If cursor P1 refers
004687  ** to an SQL index, then P3 is the first in an array of P4 registers
004688  ** that are used as an unpacked index key.
004689  **
004690  ** Reposition cursor P1 so that  it points to the largest entry that
004691  ** is less than the key value. If there are no records less than
004692  ** the key and P2 is not zero, then jump to P2.
004693  **
004694  ** This opcode leaves the cursor configured to move in reverse order,
004695  ** from the end toward the beginning.  In other words, the cursor is
004696  ** configured to use Prev, not Next.
004697  **
004698  ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
004699  */
004700  /* Opcode: SeekLE P1 P2 P3 P4 *
004701  ** Synopsis: key=r[P3@P4]
004702  **
004703  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
004704  ** use the value in register P3 as a key. If cursor P1 refers
004705  ** to an SQL index, then P3 is the first in an array of P4 registers
004706  ** that are used as an unpacked index key.
004707  **
004708  ** Reposition cursor P1 so that it points to the largest entry that
004709  ** is less than or equal to the key value. If there are no records
004710  ** less than or equal to the key and P2 is not zero, then jump to P2.
004711  **
004712  ** This opcode leaves the cursor configured to move in reverse order,
004713  ** from the end toward the beginning.  In other words, the cursor is
004714  ** configured to use Prev, not Next.
004715  **
004716  ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
004717  ** opcode will either land on a record that exactly matches the key, or
004718  ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
004719  ** this opcode must be followed by an IdxLE opcode with the same arguments.
004720  ** The IdxGE opcode will be skipped if this opcode succeeds, but the
004721  ** IdxGE opcode will be used on subsequent loop iterations.  The
004722  ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
004723  ** is an equality search.
004724  **
004725  ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
004726  */
004727  case OP_SeekLT:         /* jump, in3, group, ncycle */
004728  case OP_SeekLE:         /* jump, in3, group, ncycle */
004729  case OP_SeekGE:         /* jump, in3, group, ncycle */
004730  case OP_SeekGT: {       /* jump, in3, group, ncycle */
004731    int res;           /* Comparison result */
004732    int oc;            /* Opcode */
004733    VdbeCursor *pC;    /* The cursor to seek */
004734    UnpackedRecord r;  /* The key to seek for */
004735    int nField;        /* Number of columns or fields in the key */
004736    i64 iKey;          /* The rowid we are to seek to */
004737    int eqOnly;        /* Only interested in == results */
004738  
004739    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004740    assert( pOp->p2!=0 );
004741    pC = p->apCsr[pOp->p1];
004742    assert( pC!=0 );
004743    assert( pC->eCurType==CURTYPE_BTREE );
004744    assert( OP_SeekLE == OP_SeekLT+1 );
004745    assert( OP_SeekGE == OP_SeekLT+2 );
004746    assert( OP_SeekGT == OP_SeekLT+3 );
004747    assert( pC->isOrdered );
004748    assert( pC->uc.pCursor!=0 );
004749    oc = pOp->opcode;
004750    eqOnly = 0;
004751    pC->nullRow = 0;
004752  #ifdef SQLITE_DEBUG
004753    pC->seekOp = pOp->opcode;
004754  #endif
004755  
004756    pC->deferredMoveto = 0;
004757    pC->cacheStatus = CACHE_STALE;
004758    if( pC->isTable ){
004759      u16 flags3, newType;
004760      /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
004761      assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
004762                || CORRUPT_DB );
004763  
004764      /* The input value in P3 might be of any type: integer, real, string,
004765      ** blob, or NULL.  But it needs to be an integer before we can do
004766      ** the seek, so convert it. */
004767      pIn3 = &aMem[pOp->p3];
004768      flags3 = pIn3->flags;
004769      if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
004770        applyNumericAffinity(pIn3, 0);
004771      }
004772      iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
004773      newType = pIn3->flags; /* Record the type after applying numeric affinity */
004774      pIn3->flags = flags3;  /* But convert the type back to its original */
004775  
004776      /* If the P3 value could not be converted into an integer without
004777      ** loss of information, then special processing is required... */
004778      if( (newType & (MEM_Int|MEM_IntReal))==0 ){
004779        int c;
004780        if( (newType & MEM_Real)==0 ){
004781          if( (newType & MEM_Null) || oc>=OP_SeekGE ){
004782            VdbeBranchTaken(1,2);
004783            goto jump_to_p2;
004784          }else{
004785            rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
004786            if( rc!=SQLITE_OK ) goto abort_due_to_error;
004787            goto seek_not_found;
004788          }
004789        }
004790        c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
004791  
004792        /* If the approximation iKey is larger than the actual real search
004793        ** term, substitute >= for > and < for <=. e.g. if the search term
004794        ** is 4.9 and the integer approximation 5:
004795        **
004796        **        (x >  4.9)    ->     (x >= 5)
004797        **        (x <= 4.9)    ->     (x <  5)
004798        */
004799        if( c>0 ){
004800          assert( OP_SeekGE==(OP_SeekGT-1) );
004801          assert( OP_SeekLT==(OP_SeekLE-1) );
004802          assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
004803          if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
004804        }
004805  
004806        /* If the approximation iKey is smaller than the actual real search
004807        ** term, substitute <= for < and > for >=.  */
004808        else if( c<0 ){
004809          assert( OP_SeekLE==(OP_SeekLT+1) );
004810          assert( OP_SeekGT==(OP_SeekGE+1) );
004811          assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
004812          if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
004813        }
004814      }
004815      rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
004816      pC->movetoTarget = iKey;  /* Used by OP_Delete */
004817      if( rc!=SQLITE_OK ){
004818        goto abort_due_to_error;
004819      }
004820    }else{
004821      /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
004822      ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
004823      ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
004824      ** with the same key.
004825      */
004826      if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
004827        eqOnly = 1;
004828        assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
004829        assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
004830        assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
004831        assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
004832        assert( pOp[1].p1==pOp[0].p1 );
004833        assert( pOp[1].p2==pOp[0].p2 );
004834        assert( pOp[1].p3==pOp[0].p3 );
004835        assert( pOp[1].p4.i==pOp[0].p4.i );
004836      }
004837  
004838      nField = pOp->p4.i;
004839      assert( pOp->p4type==P4_INT32 );
004840      assert( nField>0 );
004841      r.pKeyInfo = pC->pKeyInfo;
004842      r.nField = (u16)nField;
004843  
004844      /* The next line of code computes as follows, only faster:
004845      **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
004846      **     r.default_rc = -1;
004847      **   }else{
004848      **     r.default_rc = +1;
004849      **   }
004850      */
004851      r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
004852      assert( oc!=OP_SeekGT || r.default_rc==-1 );
004853      assert( oc!=OP_SeekLE || r.default_rc==-1 );
004854      assert( oc!=OP_SeekGE || r.default_rc==+1 );
004855      assert( oc!=OP_SeekLT || r.default_rc==+1 );
004856  
004857      r.aMem = &aMem[pOp->p3];
004858  #ifdef SQLITE_DEBUG
004859      {
004860        int i;
004861        for(i=0; i<r.nField; i++){
004862          assert( memIsValid(&r.aMem[i]) );
004863          if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
004864        }
004865      }
004866  #endif
004867      r.eqSeen = 0;
004868      rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
004869      if( rc!=SQLITE_OK ){
004870        goto abort_due_to_error;
004871      }
004872      if( eqOnly && r.eqSeen==0 ){
004873        assert( res!=0 );
004874        goto seek_not_found;
004875      }
004876    }
004877  #ifdef SQLITE_TEST
004878    sqlite3_search_count++;
004879  #endif
004880    if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
004881      if( res<0 || (res==0 && oc==OP_SeekGT) ){
004882        res = 0;
004883        rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
004884        if( rc!=SQLITE_OK ){
004885          if( rc==SQLITE_DONE ){
004886            rc = SQLITE_OK;
004887            res = 1;
004888          }else{
004889            goto abort_due_to_error;
004890          }
004891        }
004892      }else{
004893        res = 0;
004894      }
004895    }else{
004896      assert( oc==OP_SeekLT || oc==OP_SeekLE );
004897      if( res>0 || (res==0 && oc==OP_SeekLT) ){
004898        res = 0;
004899        rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
004900        if( rc!=SQLITE_OK ){
004901          if( rc==SQLITE_DONE ){
004902            rc = SQLITE_OK;
004903            res = 1;
004904          }else{
004905            goto abort_due_to_error;
004906          }
004907        }
004908      }else{
004909        /* res might be negative because the table is empty.  Check to
004910        ** see if this is the case.
004911        */
004912        res = sqlite3BtreeEof(pC->uc.pCursor);
004913      }
004914    }
004915  seek_not_found:
004916    assert( pOp->p2>0 );
004917    VdbeBranchTaken(res!=0,2);
004918    if( res ){
004919      goto jump_to_p2;
004920    }else if( eqOnly ){
004921      assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
004922      pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
004923    }
004924    break;
004925  }
004926  
004927  
004928  /* Opcode: SeekScan  P1 P2 * * P5
004929  ** Synopsis: Scan-ahead up to P1 rows
004930  **
004931  ** This opcode is a prefix opcode to OP_SeekGE.  In other words, this
004932  ** opcode must be immediately followed by OP_SeekGE. This constraint is
004933  ** checked by assert() statements.
004934  **
004935  ** This opcode uses the P1 through P4 operands of the subsequent
004936  ** OP_SeekGE.  In the text that follows, the operands of the subsequent
004937  ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4.   Only
004938  ** the P1, P2 and P5 operands of this opcode are also used, and  are called
004939  ** This.P1, This.P2 and This.P5.
004940  **
004941  ** This opcode helps to optimize IN operators on a multi-column index
004942  ** where the IN operator is on the later terms of the index by avoiding
004943  ** unnecessary seeks on the btree, substituting steps to the next row
004944  ** of the b-tree instead.  A correct answer is obtained if this opcode
004945  ** is omitted or is a no-op.
004946  **
004947  ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
004948  ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
004949  ** to.  Call this SeekGE.P3/P4 row the "target".
004950  **
004951  ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
004952  ** then this opcode is a no-op and control passes through into the OP_SeekGE.
004953  **
004954  ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
004955  ** might be the target row, or it might be near and slightly before the
004956  ** target row, or it might be after the target row.  If the cursor is
004957  ** currently before the target row, then this opcode attempts to position
004958  ** the cursor on or after the target row by invoking sqlite3BtreeStep()
004959  ** on the cursor between 1 and This.P1 times.
004960  **
004961  ** The This.P5 parameter is a flag that indicates what to do if the
004962  ** cursor ends up pointing at a valid row that is past the target
004963  ** row.  If This.P5 is false (0) then a jump is made to SeekGE.P2.  If
004964  ** This.P5 is true (non-zero) then a jump is made to This.P2.  The P5==0
004965  ** case occurs when there are no inequality constraints to the right of
004966  ** the IN constraint.  The jump to SeekGE.P2 ends the loop.  The P5!=0 case
004967  ** occurs when there are inequality constraints to the right of the IN
004968  ** operator.  In that case, the This.P2 will point either directly to or
004969  ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
004970  ** loop terminate.
004971  **
004972  ** Possible outcomes from this opcode:<ol>
004973  **
004974  ** <li> If the cursor is initially not pointed to any valid row, then
004975  **      fall through into the subsequent OP_SeekGE opcode.
004976  **
004977  ** <li> If the cursor is left pointing to a row that is before the target
004978  **      row, even after making as many as This.P1 calls to
004979  **      sqlite3BtreeNext(), then also fall through into OP_SeekGE.
004980  **
004981  ** <li> If the cursor is left pointing at the target row, either because it
004982  **      was at the target row to begin with or because one or more
004983  **      sqlite3BtreeNext() calls moved the cursor to the target row,
004984  **      then jump to This.P2..,
004985  **
004986  ** <li> If the cursor started out before the target row and a call to
004987  **      to sqlite3BtreeNext() moved the cursor off the end of the index
004988  **      (indicating that the target row definitely does not exist in the
004989  **      btree) then jump to SeekGE.P2, ending the loop.
004990  **
004991  ** <li> If the cursor ends up on a valid row that is past the target row
004992  **      (indicating that the target row does not exist in the btree) then
004993  **      jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
004994  ** </ol>
004995  */
004996  case OP_SeekScan: {          /* ncycle */
004997    VdbeCursor *pC;
004998    int res;
004999    int nStep;
005000    UnpackedRecord r;
005001  
005002    assert( pOp[1].opcode==OP_SeekGE );
005003  
005004    /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
005005    ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
005006    ** opcode past the OP_SeekGE itself.  */
005007    assert( pOp->p2>=(int)(pOp-aOp)+2 );
005008  #ifdef SQLITE_DEBUG
005009    if( pOp->p5==0 ){
005010      /* There are no inequality constraints following the IN constraint. */
005011      assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
005012      assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
005013      assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
005014      assert( aOp[pOp->p2-1].opcode==OP_IdxGT
005015           || aOp[pOp->p2-1].opcode==OP_IdxGE );
005016      testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
005017    }else{
005018      /* There are inequality constraints.  */
005019      assert( pOp->p2==(int)(pOp-aOp)+2 );
005020      assert( aOp[pOp->p2-1].opcode==OP_SeekGE );
005021    }
005022  #endif
005023  
005024    assert( pOp->p1>0 );
005025    pC = p->apCsr[pOp[1].p1];
005026    assert( pC!=0 );
005027    assert( pC->eCurType==CURTYPE_BTREE );
005028    assert( !pC->isTable );
005029    if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
005030  #ifdef SQLITE_DEBUG
005031       if( db->flags&SQLITE_VdbeTrace ){
005032         printf("... cursor not valid - fall through\n");
005033       }       
005034  #endif
005035      break;
005036    }
005037    nStep = pOp->p1;
005038    assert( nStep>=1 );
005039    r.pKeyInfo = pC->pKeyInfo;
005040    r.nField = (u16)pOp[1].p4.i;
005041    r.default_rc = 0;
005042    r.aMem = &aMem[pOp[1].p3];
005043  #ifdef SQLITE_DEBUG
005044    {
005045      int i;
005046      for(i=0; i<r.nField; i++){
005047        assert( memIsValid(&r.aMem[i]) );
005048        REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
005049      }
005050    }
005051  #endif
005052    res = 0;  /* Not needed.  Only used to silence a warning. */
005053    while(1){
005054      rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
005055      if( rc ) goto abort_due_to_error;
005056      if( res>0 && pOp->p5==0 ){
005057        seekscan_search_fail:
005058        /* Jump to SeekGE.P2, ending the loop */
005059  #ifdef SQLITE_DEBUG
005060        if( db->flags&SQLITE_VdbeTrace ){
005061          printf("... %d steps and then skip\n", pOp->p1 - nStep);
005062        }       
005063  #endif
005064        VdbeBranchTaken(1,3);
005065        pOp++;
005066        goto jump_to_p2;
005067      }
005068      if( res>=0 ){
005069        /* Jump to This.P2, bypassing the OP_SeekGE opcode */
005070  #ifdef SQLITE_DEBUG
005071        if( db->flags&SQLITE_VdbeTrace ){
005072          printf("... %d steps and then success\n", pOp->p1 - nStep);
005073        }       
005074  #endif
005075        VdbeBranchTaken(2,3);
005076        goto jump_to_p2;
005077        break;
005078      }
005079      if( nStep<=0 ){
005080  #ifdef SQLITE_DEBUG
005081        if( db->flags&SQLITE_VdbeTrace ){
005082          printf("... fall through after %d steps\n", pOp->p1);
005083        }       
005084  #endif
005085        VdbeBranchTaken(0,3);
005086        break;
005087      }
005088      nStep--;
005089      pC->cacheStatus = CACHE_STALE;
005090      rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
005091      if( rc ){
005092        if( rc==SQLITE_DONE ){
005093          rc = SQLITE_OK;
005094          goto seekscan_search_fail;
005095        }else{
005096          goto abort_due_to_error;
005097        }
005098      }
005099    }
005100   
005101    break;
005102  }
005103  
005104  
005105  /* Opcode: SeekHit P1 P2 P3 * *
005106  ** Synopsis: set P2<=seekHit<=P3
005107  **
005108  ** Increase or decrease the seekHit value for cursor P1, if necessary,
005109  ** so that it is no less than P2 and no greater than P3.
005110  **
005111  ** The seekHit integer represents the maximum of terms in an index for which
005112  ** there is known to be at least one match.  If the seekHit value is smaller
005113  ** than the total number of equality terms in an index lookup, then the
005114  ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
005115  ** early, thus saving work.  This is part of the IN-early-out optimization.
005116  **
005117  ** P1 must be a valid b-tree cursor.
005118  */
005119  case OP_SeekHit: {           /* ncycle */
005120    VdbeCursor *pC;
005121    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005122    pC = p->apCsr[pOp->p1];
005123    assert( pC!=0 );
005124    assert( pOp->p3>=pOp->p2 );
005125    if( pC->seekHit<pOp->p2 ){
005126  #ifdef SQLITE_DEBUG
005127      if( db->flags&SQLITE_VdbeTrace ){
005128        printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
005129      }       
005130  #endif
005131      pC->seekHit = pOp->p2;
005132    }else if( pC->seekHit>pOp->p3 ){
005133  #ifdef SQLITE_DEBUG
005134      if( db->flags&SQLITE_VdbeTrace ){
005135        printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
005136      }       
005137  #endif
005138      pC->seekHit = pOp->p3;
005139    }
005140    break;
005141  }
005142  
005143  /* Opcode: IfNotOpen P1 P2 * * *
005144  ** Synopsis: if( !csr[P1] ) goto P2
005145  **
005146  ** If cursor P1 is not open or if P1 is set to a NULL row using the
005147  ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
005148  */
005149  case OP_IfNotOpen: {        /* jump */
005150    VdbeCursor *pCur;
005151  
005152    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005153    pCur = p->apCsr[pOp->p1];
005154    VdbeBranchTaken(pCur==0 || pCur->nullRow, 2);
005155    if( pCur==0 || pCur->nullRow ){
005156      goto jump_to_p2_and_check_for_interrupt;
005157    }
005158    break;
005159  }
005160  
005161  /* Opcode: Found P1 P2 P3 P4 *
005162  ** Synopsis: key=r[P3@P4]
005163  **
005164  ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
005165  ** P4>0 then register P3 is the first of P4 registers that form an unpacked
005166  ** record.
005167  **
005168  ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
005169  ** is a prefix of any entry in P1 then a jump is made to P2 and
005170  ** P1 is left pointing at the matching entry.
005171  **
005172  ** This operation leaves the cursor in a state where it can be
005173  ** advanced in the forward direction.  The Next instruction will work,
005174  ** but not the Prev instruction.
005175  **
005176  ** See also: NotFound, NoConflict, NotExists. SeekGe
005177  */
005178  /* Opcode: NotFound P1 P2 P3 P4 *
005179  ** Synopsis: key=r[P3@P4]
005180  **
005181  ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
005182  ** P4>0 then register P3 is the first of P4 registers that form an unpacked
005183  ** record.
005184  **
005185  ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
005186  ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
005187  ** does contain an entry whose prefix matches the P3/P4 record then control
005188  ** falls through to the next instruction and P1 is left pointing at the
005189  ** matching entry.
005190  **
005191  ** This operation leaves the cursor in a state where it cannot be
005192  ** advanced in either direction.  In other words, the Next and Prev
005193  ** opcodes do not work after this operation.
005194  **
005195  ** See also: Found, NotExists, NoConflict, IfNoHope
005196  */
005197  /* Opcode: IfNoHope P1 P2 P3 P4 *
005198  ** Synopsis: key=r[P3@P4]
005199  **
005200  ** Register P3 is the first of P4 registers that form an unpacked
005201  ** record.  Cursor P1 is an index btree.  P2 is a jump destination.
005202  ** In other words, the operands to this opcode are the same as the
005203  ** operands to OP_NotFound and OP_IdxGT.
005204  **
005205  ** This opcode is an optimization attempt only.  If this opcode always
005206  ** falls through, the correct answer is still obtained, but extra work
005207  ** is performed.
005208  **
005209  ** A value of N in the seekHit flag of cursor P1 means that there exists
005210  ** a key P3:N that will match some record in the index.  We want to know
005211  ** if it is possible for a record P3:P4 to match some record in the
005212  ** index.  If it is not possible, we can skip some work.  So if seekHit
005213  ** is less than P4, attempt to find out if a match is possible by running
005214  ** OP_NotFound.
005215  **
005216  ** This opcode is used in IN clause processing for a multi-column key.
005217  ** If an IN clause is attached to an element of the key other than the
005218  ** left-most element, and if there are no matches on the most recent
005219  ** seek over the whole key, then it might be that one of the key element
005220  ** to the left is prohibiting a match, and hence there is "no hope" of
005221  ** any match regardless of how many IN clause elements are checked.
005222  ** In such a case, we abandon the IN clause search early, using this
005223  ** opcode.  The opcode name comes from the fact that the
005224  ** jump is taken if there is "no hope" of achieving a match.
005225  **
005226  ** See also: NotFound, SeekHit
005227  */
005228  /* Opcode: NoConflict P1 P2 P3 P4 *
005229  ** Synopsis: key=r[P3@P4]
005230  **
005231  ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
005232  ** P4>0 then register P3 is the first of P4 registers that form an unpacked
005233  ** record.
005234  **
005235  ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
005236  ** contains any NULL value, jump immediately to P2.  If all terms of the
005237  ** record are not-NULL then a check is done to determine if any row in the
005238  ** P1 index btree has a matching key prefix.  If there are no matches, jump
005239  ** immediately to P2.  If there is a match, fall through and leave the P1
005240  ** cursor pointing to the matching row.
005241  **
005242  ** This opcode is similar to OP_NotFound with the exceptions that the
005243  ** branch is always taken if any part of the search key input is NULL.
005244  **
005245  ** This operation leaves the cursor in a state where it cannot be
005246  ** advanced in either direction.  In other words, the Next and Prev
005247  ** opcodes do not work after this operation.
005248  **
005249  ** See also: NotFound, Found, NotExists
005250  */
005251  case OP_IfNoHope: {     /* jump, in3, ncycle */
005252    VdbeCursor *pC;
005253    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005254    pC = p->apCsr[pOp->p1];
005255    assert( pC!=0 );
005256  #ifdef SQLITE_DEBUG
005257    if( db->flags&SQLITE_VdbeTrace ){
005258      printf("seekHit is %d\n", pC->seekHit);
005259    }       
005260  #endif
005261    if( pC->seekHit>=pOp->p4.i ) break;
005262    /* Fall through into OP_NotFound */
005263    /* no break */ deliberate_fall_through
005264  }
005265  case OP_NoConflict:     /* jump, in3, ncycle */
005266  case OP_NotFound:       /* jump, in3, ncycle */
005267  case OP_Found: {        /* jump, in3, ncycle */
005268    int alreadyExists;
005269    int ii;
005270    VdbeCursor *pC;
005271    UnpackedRecord *pIdxKey;
005272    UnpackedRecord r;
005273  
005274  #ifdef SQLITE_TEST
005275    if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
005276  #endif
005277  
005278    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005279    assert( pOp->p4type==P4_INT32 );
005280    pC = p->apCsr[pOp->p1];
005281    assert( pC!=0 );
005282  #ifdef SQLITE_DEBUG
005283    pC->seekOp = pOp->opcode;
005284  #endif
005285    r.aMem = &aMem[pOp->p3];
005286    assert( pC->eCurType==CURTYPE_BTREE );
005287    assert( pC->uc.pCursor!=0 );
005288    assert( pC->isTable==0 );
005289    r.nField = (u16)pOp->p4.i;
005290    if( r.nField>0 ){
005291      /* Key values in an array of registers */
005292      r.pKeyInfo = pC->pKeyInfo;
005293      r.default_rc = 0;
005294  #ifdef SQLITE_DEBUG
005295      for(ii=0; ii<r.nField; ii++){
005296        assert( memIsValid(&r.aMem[ii]) );
005297        assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
005298        if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
005299      }
005300  #endif
005301      rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
005302    }else{
005303      /* Composite key generated by OP_MakeRecord */
005304      assert( r.aMem->flags & MEM_Blob );
005305      assert( pOp->opcode!=OP_NoConflict );
005306      rc = ExpandBlob(r.aMem);
005307      assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
005308      if( rc ) goto no_mem;
005309      pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
005310      if( pIdxKey==0 ) goto no_mem;
005311      sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
005312      pIdxKey->default_rc = 0;
005313      rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
005314      sqlite3DbFreeNN(db, pIdxKey);
005315    }
005316    if( rc!=SQLITE_OK ){
005317      goto abort_due_to_error;
005318    }
005319    alreadyExists = (pC->seekResult==0);
005320    pC->nullRow = 1-alreadyExists;
005321    pC->deferredMoveto = 0;
005322    pC->cacheStatus = CACHE_STALE;
005323    if( pOp->opcode==OP_Found ){
005324      VdbeBranchTaken(alreadyExists!=0,2);
005325      if( alreadyExists ) goto jump_to_p2;
005326    }else{
005327      if( !alreadyExists ){
005328        VdbeBranchTaken(1,2);
005329        goto jump_to_p2;
005330      }
005331      if( pOp->opcode==OP_NoConflict ){
005332        /* For the OP_NoConflict opcode, take the jump if any of the
005333        ** input fields are NULL, since any key with a NULL will not
005334        ** conflict */
005335        for(ii=0; ii<r.nField; ii++){
005336          if( r.aMem[ii].flags & MEM_Null ){
005337            VdbeBranchTaken(1,2);
005338            goto jump_to_p2;
005339          }
005340        }
005341      }
005342      VdbeBranchTaken(0,2);
005343      if( pOp->opcode==OP_IfNoHope ){
005344        pC->seekHit = pOp->p4.i;
005345      }
005346    }
005347    break;
005348  }
005349  
005350  /* Opcode: SeekRowid P1 P2 P3 * *
005351  ** Synopsis: intkey=r[P3]
005352  **
005353  ** P1 is the index of a cursor open on an SQL table btree (with integer
005354  ** keys).  If register P3 does not contain an integer or if P1 does not
005355  ** contain a record with rowid P3 then jump immediately to P2. 
005356  ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
005357  ** a record with rowid P3 then
005358  ** leave the cursor pointing at that record and fall through to the next
005359  ** instruction.
005360  **
005361  ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
005362  ** the P3 register must be guaranteed to contain an integer value.  With this
005363  ** opcode, register P3 might not contain an integer.
005364  **
005365  ** The OP_NotFound opcode performs the same operation on index btrees
005366  ** (with arbitrary multi-value keys).
005367  **
005368  ** This opcode leaves the cursor in a state where it cannot be advanced
005369  ** in either direction.  In other words, the Next and Prev opcodes will
005370  ** not work following this opcode.
005371  **
005372  ** See also: Found, NotFound, NoConflict, SeekRowid
005373  */
005374  /* Opcode: NotExists P1 P2 P3 * *
005375  ** Synopsis: intkey=r[P3]
005376  **
005377  ** P1 is the index of a cursor open on an SQL table btree (with integer
005378  ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
005379  ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
005380  ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
005381  ** leave the cursor pointing at that record and fall through to the next
005382  ** instruction.
005383  **
005384  ** The OP_SeekRowid opcode performs the same operation but also allows the
005385  ** P3 register to contain a non-integer value, in which case the jump is
005386  ** always taken.  This opcode requires that P3 always contain an integer.
005387  **
005388  ** The OP_NotFound opcode performs the same operation on index btrees
005389  ** (with arbitrary multi-value keys).
005390  **
005391  ** This opcode leaves the cursor in a state where it cannot be advanced
005392  ** in either direction.  In other words, the Next and Prev opcodes will
005393  ** not work following this opcode.
005394  **
005395  ** See also: Found, NotFound, NoConflict, SeekRowid
005396  */
005397  case OP_SeekRowid: {        /* jump, in3, ncycle */
005398    VdbeCursor *pC;
005399    BtCursor *pCrsr;
005400    int res;
005401    u64 iKey;
005402  
005403    pIn3 = &aMem[pOp->p3];
005404    testcase( pIn3->flags & MEM_Int );
005405    testcase( pIn3->flags & MEM_IntReal );
005406    testcase( pIn3->flags & MEM_Real );
005407    testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
005408    if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
005409      /* If pIn3->u.i does not contain an integer, compute iKey as the
005410      ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
005411      ** into an integer without loss of information.  Take care to avoid
005412      ** changing the datatype of pIn3, however, as it is used by other
005413      ** parts of the prepared statement. */
005414      Mem x = pIn3[0];
005415      applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
005416      if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
005417      iKey = x.u.i;
005418      goto notExistsWithKey;
005419    }
005420    /* Fall through into OP_NotExists */
005421    /* no break */ deliberate_fall_through
005422  case OP_NotExists:          /* jump, in3, ncycle */
005423    pIn3 = &aMem[pOp->p3];
005424    assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
005425    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005426    iKey = pIn3->u.i;
005427  notExistsWithKey:
005428    pC = p->apCsr[pOp->p1];
005429    assert( pC!=0 );
005430  #ifdef SQLITE_DEBUG
005431    if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
005432  #endif
005433    assert( pC->isTable );
005434    assert( pC->eCurType==CURTYPE_BTREE );
005435    pCrsr = pC->uc.pCursor;
005436    assert( pCrsr!=0 );
005437    res = 0;
005438    rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
005439    assert( rc==SQLITE_OK || res==0 );
005440    pC->movetoTarget = iKey;  /* Used by OP_Delete */
005441    pC->nullRow = 0;
005442    pC->cacheStatus = CACHE_STALE;
005443    pC->deferredMoveto = 0;
005444    VdbeBranchTaken(res!=0,2);
005445    pC->seekResult = res;
005446    if( res!=0 ){
005447      assert( rc==SQLITE_OK );
005448      if( pOp->p2==0 ){
005449        rc = SQLITE_CORRUPT_BKPT;
005450      }else{
005451        goto jump_to_p2;
005452      }
005453    }
005454    if( rc ) goto abort_due_to_error;
005455    break;
005456  }
005457  
005458  /* Opcode: Sequence P1 P2 * * *
005459  ** Synopsis: r[P2]=cursor[P1].ctr++
005460  **
005461  ** Find the next available sequence number for cursor P1.
005462  ** Write the sequence number into register P2.
005463  ** The sequence number on the cursor is incremented after this
005464  ** instruction. 
005465  */
005466  case OP_Sequence: {           /* out2 */
005467    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005468    assert( p->apCsr[pOp->p1]!=0 );
005469    assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
005470    pOut = out2Prerelease(p, pOp);
005471    pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
005472    break;
005473  }
005474  
005475  
005476  /* Opcode: NewRowid P1 P2 P3 * *
005477  ** Synopsis: r[P2]=rowid
005478  **
005479  ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
005480  ** The record number is not previously used as a key in the database
005481  ** table that cursor P1 points to.  The new record number is written
005482  ** written to register P2.
005483  **
005484  ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
005485  ** the largest previously generated record number. No new record numbers are
005486  ** allowed to be less than this value. When this value reaches its maximum,
005487  ** an SQLITE_FULL error is generated. The P3 register is updated with the '
005488  ** generated record number. This P3 mechanism is used to help implement the
005489  ** AUTOINCREMENT feature.
005490  */
005491  case OP_NewRowid: {           /* out2 */
005492    i64 v;                 /* The new rowid */
005493    VdbeCursor *pC;        /* Cursor of table to get the new rowid */
005494    int res;               /* Result of an sqlite3BtreeLast() */
005495    int cnt;               /* Counter to limit the number of searches */
005496  #ifndef SQLITE_OMIT_AUTOINCREMENT
005497    Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
005498    VdbeFrame *pFrame;     /* Root frame of VDBE */
005499  #endif
005500  
005501    v = 0;
005502    res = 0;
005503    pOut = out2Prerelease(p, pOp);
005504    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005505    pC = p->apCsr[pOp->p1];
005506    assert( pC!=0 );
005507    assert( pC->isTable );
005508    assert( pC->eCurType==CURTYPE_BTREE );
005509    assert( pC->uc.pCursor!=0 );
005510    {
005511      /* The next rowid or record number (different terms for the same
005512      ** thing) is obtained in a two-step algorithm.
005513      **
005514      ** First we attempt to find the largest existing rowid and add one
005515      ** to that.  But if the largest existing rowid is already the maximum
005516      ** positive integer, we have to fall through to the second
005517      ** probabilistic algorithm
005518      **
005519      ** The second algorithm is to select a rowid at random and see if
005520      ** it already exists in the table.  If it does not exist, we have
005521      ** succeeded.  If the random rowid does exist, we select a new one
005522      ** and try again, up to 100 times.
005523      */
005524      assert( pC->isTable );
005525  
005526  #ifdef SQLITE_32BIT_ROWID
005527  #   define MAX_ROWID 0x7fffffff
005528  #else
005529      /* Some compilers complain about constants of the form 0x7fffffffffffffff.
005530      ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
005531      ** to provide the constant while making all compilers happy.
005532      */
005533  #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
005534  #endif
005535  
005536      if( !pC->useRandomRowid ){
005537        rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
005538        if( rc!=SQLITE_OK ){
005539          goto abort_due_to_error;
005540        }
005541        if( res ){
005542          v = 1;   /* IMP: R-61914-48074 */
005543        }else{
005544          assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
005545          v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
005546          if( v>=MAX_ROWID ){
005547            pC->useRandomRowid = 1;
005548          }else{
005549            v++;   /* IMP: R-29538-34987 */
005550          }
005551        }
005552      }
005553  
005554  #ifndef SQLITE_OMIT_AUTOINCREMENT
005555      if( pOp->p3 ){
005556        /* Assert that P3 is a valid memory cell. */
005557        assert( pOp->p3>0 );
005558        if( p->pFrame ){
005559          for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
005560          /* Assert that P3 is a valid memory cell. */
005561          assert( pOp->p3<=pFrame->nMem );
005562          pMem = &pFrame->aMem[pOp->p3];
005563        }else{
005564          /* Assert that P3 is a valid memory cell. */
005565          assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
005566          pMem = &aMem[pOp->p3];
005567          memAboutToChange(p, pMem);
005568        }
005569        assert( memIsValid(pMem) );
005570  
005571        REGISTER_TRACE(pOp->p3, pMem);
005572        sqlite3VdbeMemIntegerify(pMem);
005573        assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
005574        if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
005575          rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
005576          goto abort_due_to_error;
005577        }
005578        if( v<pMem->u.i+1 ){
005579          v = pMem->u.i + 1;
005580        }
005581        pMem->u.i = v;
005582      }
005583  #endif
005584      if( pC->useRandomRowid ){
005585        /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
005586        ** largest possible integer (9223372036854775807) then the database
005587        ** engine starts picking positive candidate ROWIDs at random until
005588        ** it finds one that is not previously used. */
005589        assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
005590                               ** an AUTOINCREMENT table. */
005591        cnt = 0;
005592        do{
005593          sqlite3_randomness(sizeof(v), &v);
005594          v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
005595        }while(  ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
005596                                                   0, &res))==SQLITE_OK)
005597              && (res==0)
005598              && (++cnt<100));
005599        if( rc ) goto abort_due_to_error;
005600        if( res==0 ){
005601          rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
005602          goto abort_due_to_error;
005603        }
005604        assert( v>0 );  /* EV: R-40812-03570 */
005605      }
005606      pC->deferredMoveto = 0;
005607      pC->cacheStatus = CACHE_STALE;
005608    }
005609    pOut->u.i = v;
005610    break;
005611  }
005612  
005613  /* Opcode: Insert P1 P2 P3 P4 P5
005614  ** Synopsis: intkey=r[P3] data=r[P2]
005615  **
005616  ** Write an entry into the table of cursor P1.  A new entry is
005617  ** created if it doesn't already exist or the data for an existing
005618  ** entry is overwritten.  The data is the value MEM_Blob stored in register
005619  ** number P2. The key is stored in register P3. The key must
005620  ** be a MEM_Int.
005621  **
005622  ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
005623  ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
005624  ** then rowid is stored for subsequent return by the
005625  ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
005626  **
005627  ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
005628  ** run faster by avoiding an unnecessary seek on cursor P1.  However,
005629  ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
005630  ** seeks on the cursor or if the most recent seek used a key equal to P3.
005631  **
005632  ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
005633  ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
005634  ** is part of an INSERT operation.  The difference is only important to
005635  ** the update hook.
005636  **
005637  ** Parameter P4 may point to a Table structure, or may be NULL. If it is
005638  ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
005639  ** following a successful insert.
005640  **
005641  ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
005642  ** allocated, then ownership of P2 is transferred to the pseudo-cursor
005643  ** and register P2 becomes ephemeral.  If the cursor is changed, the
005644  ** value of register P2 will then change.  Make sure this does not
005645  ** cause any problems.)
005646  **
005647  ** This instruction only works on tables.  The equivalent instruction
005648  ** for indices is OP_IdxInsert.
005649  */
005650  case OP_Insert: {
005651    Mem *pData;       /* MEM cell holding data for the record to be inserted */
005652    Mem *pKey;        /* MEM cell holding key  for the record */
005653    VdbeCursor *pC;   /* Cursor to table into which insert is written */
005654    int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
005655    const char *zDb;  /* database name - used by the update hook */
005656    Table *pTab;      /* Table structure - used by update and pre-update hooks */
005657    BtreePayload x;   /* Payload to be inserted */
005658  
005659    pData = &aMem[pOp->p2];
005660    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005661    assert( memIsValid(pData) );
005662    pC = p->apCsr[pOp->p1];
005663    assert( pC!=0 );
005664    assert( pC->eCurType==CURTYPE_BTREE );
005665    assert( pC->deferredMoveto==0 );
005666    assert( pC->uc.pCursor!=0 );
005667    assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
005668    assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
005669    REGISTER_TRACE(pOp->p2, pData);
005670    sqlite3VdbeIncrWriteCounter(p, pC);
005671  
005672    pKey = &aMem[pOp->p3];
005673    assert( pKey->flags & MEM_Int );
005674    assert( memIsValid(pKey) );
005675    REGISTER_TRACE(pOp->p3, pKey);
005676    x.nKey = pKey->u.i;
005677  
005678    if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
005679      assert( pC->iDb>=0 );
005680      zDb = db->aDb[pC->iDb].zDbSName;
005681      pTab = pOp->p4.pTab;
005682      assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
005683    }else{
005684      pTab = 0;
005685      zDb = 0;
005686    }
005687  
005688  #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
005689    /* Invoke the pre-update hook, if any */
005690    if( pTab ){
005691      if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
005692        sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
005693      }
005694      if( db->xUpdateCallback==0 || pTab->aCol==0 ){
005695        /* Prevent post-update hook from running in cases when it should not */
005696        pTab = 0;
005697      }
005698    }
005699    if( pOp->p5 & OPFLAG_ISNOOP ) break;
005700  #endif
005701  
005702    assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 );
005703    if( pOp->p5 & OPFLAG_NCHANGE ){
005704      p->nChange++;
005705      if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
005706    }
005707    assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
005708    x.pData = pData->z;
005709    x.nData = pData->n;
005710    seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
005711    if( pData->flags & MEM_Zero ){
005712      x.nZero = pData->u.nZero;
005713    }else{
005714      x.nZero = 0;
005715    }
005716    x.pKey = 0;
005717    assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT );
005718    rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
005719        (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
005720        seekResult
005721    );
005722    pC->deferredMoveto = 0;
005723    pC->cacheStatus = CACHE_STALE;
005724    colCacheCtr++;
005725  
005726    /* Invoke the update-hook if required. */
005727    if( rc ) goto abort_due_to_error;
005728    if( pTab ){
005729      assert( db->xUpdateCallback!=0 );
005730      assert( pTab->aCol!=0 );
005731      db->xUpdateCallback(db->pUpdateArg,
005732             (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
005733             zDb, pTab->zName, x.nKey);
005734    }
005735    break;
005736  }
005737  
005738  /* Opcode: RowCell P1 P2 P3 * *
005739  **
005740  ** P1 and P2 are both open cursors. Both must be opened on the same type
005741  ** of table - intkey or index. This opcode is used as part of copying
005742  ** the current row from P2 into P1. If the cursors are opened on intkey
005743  ** tables, register P3 contains the rowid to use with the new record in
005744  ** P1. If they are opened on index tables, P3 is not used.
005745  **
005746  ** This opcode must be followed by either an Insert or InsertIdx opcode
005747  ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
005748  */
005749  case OP_RowCell: {
005750    VdbeCursor *pDest;              /* Cursor to write to */
005751    VdbeCursor *pSrc;               /* Cursor to read from */
005752    i64 iKey;                       /* Rowid value to insert with */
005753    assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
005754    assert( pOp[1].opcode==OP_Insert    || pOp->p3==0 );
005755    assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
005756    assert( pOp[1].p5 & OPFLAG_PREFORMAT );
005757    pDest = p->apCsr[pOp->p1];
005758    pSrc = p->apCsr[pOp->p2];
005759    iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
005760    rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
005761    if( rc!=SQLITE_OK ) goto abort_due_to_error;
005762    break;
005763  };
005764  
005765  /* Opcode: Delete P1 P2 P3 P4 P5
005766  **
005767  ** Delete the record at which the P1 cursor is currently pointing.
005768  **
005769  ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
005770  ** the cursor will be left pointing at  either the next or the previous
005771  ** record in the table. If it is left pointing at the next record, then
005772  ** the next Next instruction will be a no-op. As a result, in this case
005773  ** it is ok to delete a record from within a Next loop. If
005774  ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
005775  ** left in an undefined state.
005776  **
005777  ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
005778  ** delete is one of several associated with deleting a table row and
005779  ** all its associated index entries.  Exactly one of those deletes is
005780  ** the "primary" delete.  The others are all on OPFLAG_FORDELETE
005781  ** cursors or else are marked with the AUXDELETE flag.
005782  **
005783  ** If the OPFLAG_NCHANGE (0x01) flag of P2 (NB: P2 not P5) is set, then
005784  ** the row change count is incremented (otherwise not).
005785  **
005786  ** If the OPFLAG_ISNOOP (0x40) flag of P2 (not P5!) is set, then the
005787  ** pre-update-hook for deletes is run, but the btree is otherwise unchanged.
005788  ** This happens when the OP_Delete is to be shortly followed by an OP_Insert
005789  ** with the same key, causing the btree entry to be overwritten.
005790  **
005791  ** P1 must not be pseudo-table.  It has to be a real table with
005792  ** multiple rows.
005793  **
005794  ** If P4 is not NULL then it points to a Table object. In this case either
005795  ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
005796  ** have been positioned using OP_NotFound prior to invoking this opcode in
005797  ** this case. Specifically, if one is configured, the pre-update hook is
005798  ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
005799  ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
005800  **
005801  ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
005802  ** of the memory cell that contains the value that the rowid of the row will
005803  ** be set to by the update.
005804  */
005805  case OP_Delete: {
005806    VdbeCursor *pC;
005807    const char *zDb;
005808    Table *pTab;
005809    int opflags;
005810  
005811    opflags = pOp->p2;
005812    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005813    pC = p->apCsr[pOp->p1];
005814    assert( pC!=0 );
005815    assert( pC->eCurType==CURTYPE_BTREE );
005816    assert( pC->uc.pCursor!=0 );
005817    assert( pC->deferredMoveto==0 );
005818    sqlite3VdbeIncrWriteCounter(p, pC);
005819  
005820  #ifdef SQLITE_DEBUG
005821    if( pOp->p4type==P4_TABLE
005822     && HasRowid(pOp->p4.pTab)
005823     && pOp->p5==0
005824     && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
005825    ){
005826      /* If p5 is zero, the seek operation that positioned the cursor prior to
005827      ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
005828      ** the row that is being deleted */
005829      i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
005830      assert( CORRUPT_DB || pC->movetoTarget==iKey );
005831    }
005832  #endif
005833  
005834    /* If the update-hook or pre-update-hook will be invoked, set zDb to
005835    ** the name of the db to pass as to it. Also set local pTab to a copy
005836    ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
005837    ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
005838    ** VdbeCursor.movetoTarget to the current rowid.  */
005839    if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
005840      assert( pC->iDb>=0 );
005841      assert( pOp->p4.pTab!=0 );
005842      zDb = db->aDb[pC->iDb].zDbSName;
005843      pTab = pOp->p4.pTab;
005844      if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
005845        pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
005846      }
005847    }else{
005848      zDb = 0;
005849      pTab = 0;
005850    }
005851  
005852  #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
005853    /* Invoke the pre-update-hook if required. */
005854    assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
005855    if( db->xPreUpdateCallback && pTab ){
005856      assert( !(opflags & OPFLAG_ISUPDATE)
005857           || HasRowid(pTab)==0
005858           || (aMem[pOp->p3].flags & MEM_Int)
005859      );
005860      sqlite3VdbePreUpdateHook(p, pC,
005861          (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
005862          zDb, pTab, pC->movetoTarget,
005863          pOp->p3, -1
005864      );
005865    }
005866    if( opflags & OPFLAG_ISNOOP ) break;
005867  #endif
005868  
005869    /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
005870    assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
005871    assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
005872    assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
005873  
005874  #ifdef SQLITE_DEBUG
005875    if( p->pFrame==0 ){
005876      if( pC->isEphemeral==0
005877          && (pOp->p5 & OPFLAG_AUXDELETE)==0
005878          && (pC->wrFlag & OPFLAG_FORDELETE)==0
005879        ){
005880        nExtraDelete++;
005881      }
005882      if( pOp->p2 & OPFLAG_NCHANGE ){
005883        nExtraDelete--;
005884      }
005885    }
005886  #endif
005887  
005888    rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
005889    pC->cacheStatus = CACHE_STALE;
005890    colCacheCtr++;
005891    pC->seekResult = 0;
005892    if( rc ) goto abort_due_to_error;
005893  
005894    /* Invoke the update-hook if required. */
005895    if( opflags & OPFLAG_NCHANGE ){
005896      p->nChange++;
005897      if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
005898        db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
005899            pC->movetoTarget);
005900        assert( pC->iDb>=0 );
005901      }
005902    }
005903  
005904    break;
005905  }
005906  /* Opcode: ResetCount * * * * *
005907  **
005908  ** The value of the change counter is copied to the database handle
005909  ** change counter (returned by subsequent calls to sqlite3_changes()).
005910  ** Then the VMs internal change counter resets to 0.
005911  ** This is used by trigger programs.
005912  */
005913  case OP_ResetCount: {
005914    sqlite3VdbeSetChanges(db, p->nChange);
005915    p->nChange = 0;
005916    break;
005917  }
005918  
005919  /* Opcode: SorterCompare P1 P2 P3 P4
005920  ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
005921  **
005922  ** P1 is a sorter cursor. This instruction compares a prefix of the
005923  ** record blob in register P3 against a prefix of the entry that
005924  ** the sorter cursor currently points to.  Only the first P4 fields
005925  ** of r[P3] and the sorter record are compared.
005926  **
005927  ** If either P3 or the sorter contains a NULL in one of their significant
005928  ** fields (not counting the P4 fields at the end which are ignored) then
005929  ** the comparison is assumed to be equal.
005930  **
005931  ** Fall through to next instruction if the two records compare equal to
005932  ** each other.  Jump to P2 if they are different.
005933  */
005934  case OP_SorterCompare: {
005935    VdbeCursor *pC;
005936    int res;
005937    int nKeyCol;
005938  
005939    pC = p->apCsr[pOp->p1];
005940    assert( isSorter(pC) );
005941    assert( pOp->p4type==P4_INT32 );
005942    pIn3 = &aMem[pOp->p3];
005943    nKeyCol = pOp->p4.i;
005944    res = 0;
005945    rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
005946    VdbeBranchTaken(res!=0,2);
005947    if( rc ) goto abort_due_to_error;
005948    if( res ) goto jump_to_p2;
005949    break;
005950  };
005951  
005952  /* Opcode: SorterData P1 P2 P3 * *
005953  ** Synopsis: r[P2]=data
005954  **
005955  ** Write into register P2 the current sorter data for sorter cursor P1.
005956  ** Then clear the column header cache on cursor P3.
005957  **
005958  ** This opcode is normally used to move a record out of the sorter and into
005959  ** a register that is the source for a pseudo-table cursor created using
005960  ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
005961  ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
005962  ** us from having to issue a separate NullRow instruction to clear that cache.
005963  */
005964  case OP_SorterData: {       /* ncycle */
005965    VdbeCursor *pC;
005966  
005967    pOut = &aMem[pOp->p2];
005968    pC = p->apCsr[pOp->p1];
005969    assert( isSorter(pC) );
005970    rc = sqlite3VdbeSorterRowkey(pC, pOut);
005971    assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
005972    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005973    if( rc ) goto abort_due_to_error;
005974    p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
005975    break;
005976  }
005977  
005978  /* Opcode: RowData P1 P2 P3 * *
005979  ** Synopsis: r[P2]=data
005980  **
005981  ** Write into register P2 the complete row content for the row at
005982  ** which cursor P1 is currently pointing.
005983  ** There is no interpretation of the data. 
005984  ** It is just copied onto the P2 register exactly as
005985  ** it is found in the database file.
005986  **
005987  ** If cursor P1 is an index, then the content is the key of the row.
005988  ** If cursor P2 is a table, then the content extracted is the data.
005989  **
005990  ** If the P1 cursor must be pointing to a valid row (not a NULL row)
005991  ** of a real table, not a pseudo-table.
005992  **
005993  ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
005994  ** into the database page.  That means that the content of the output
005995  ** register will be invalidated as soon as the cursor moves - including
005996  ** moves caused by other cursors that "save" the current cursors
005997  ** position in order that they can write to the same table.  If P3==0
005998  ** then a copy of the data is made into memory.  P3!=0 is faster, but
005999  ** P3==0 is safer.
006000  **
006001  ** If P3!=0 then the content of the P2 register is unsuitable for use
006002  ** in OP_Result and any OP_Result will invalidate the P2 register content.
006003  ** The P2 register content is invalidated by opcodes like OP_Function or
006004  ** by any use of another cursor pointing to the same table.
006005  */
006006  case OP_RowData: {
006007    VdbeCursor *pC;
006008    BtCursor *pCrsr;
006009    u32 n;
006010  
006011    pOut = out2Prerelease(p, pOp);
006012  
006013    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006014    pC = p->apCsr[pOp->p1];
006015    assert( pC!=0 );
006016    assert( pC->eCurType==CURTYPE_BTREE );
006017    assert( isSorter(pC)==0 );
006018    assert( pC->nullRow==0 );
006019    assert( pC->uc.pCursor!=0 );
006020    pCrsr = pC->uc.pCursor;
006021  
006022    /* The OP_RowData opcodes always follow OP_NotExists or
006023    ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
006024    ** that might invalidate the cursor.
006025    ** If this where not the case, on of the following assert()s
006026    ** would fail.  Should this ever change (because of changes in the code
006027    ** generator) then the fix would be to insert a call to
006028    ** sqlite3VdbeCursorMoveto().
006029    */
006030    assert( pC->deferredMoveto==0 );
006031    assert( sqlite3BtreeCursorIsValid(pCrsr) );
006032  
006033    n = sqlite3BtreePayloadSize(pCrsr);
006034    if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
006035      goto too_big;
006036    }
006037    testcase( n==0 );
006038    rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
006039    if( rc ) goto abort_due_to_error;
006040    if( !pOp->p3 ) Deephemeralize(pOut);
006041    UPDATE_MAX_BLOBSIZE(pOut);
006042    REGISTER_TRACE(pOp->p2, pOut);
006043    break;
006044  }
006045  
006046  /* Opcode: Rowid P1 P2 * * *
006047  ** Synopsis: r[P2]=PX rowid of P1
006048  **
006049  ** Store in register P2 an integer which is the key of the table entry that
006050  ** P1 is currently point to.
006051  **
006052  ** P1 can be either an ordinary table or a virtual table.  There used to
006053  ** be a separate OP_VRowid opcode for use with virtual tables, but this
006054  ** one opcode now works for both table types.
006055  */
006056  case OP_Rowid: {                 /* out2, ncycle */
006057    VdbeCursor *pC;
006058    i64 v;
006059    sqlite3_vtab *pVtab;
006060    const sqlite3_module *pModule;
006061  
006062    pOut = out2Prerelease(p, pOp);
006063    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006064    pC = p->apCsr[pOp->p1];
006065    assert( pC!=0 );
006066    assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
006067    if( pC->nullRow ){
006068      pOut->flags = MEM_Null;
006069      break;
006070    }else if( pC->deferredMoveto ){
006071      v = pC->movetoTarget;
006072  #ifndef SQLITE_OMIT_VIRTUALTABLE
006073    }else if( pC->eCurType==CURTYPE_VTAB ){
006074      assert( pC->uc.pVCur!=0 );
006075      pVtab = pC->uc.pVCur->pVtab;
006076      pModule = pVtab->pModule;
006077      assert( pModule->xRowid );
006078      rc = pModule->xRowid(pC->uc.pVCur, &v);
006079      sqlite3VtabImportErrmsg(p, pVtab);
006080      if( rc ) goto abort_due_to_error;
006081  #endif /* SQLITE_OMIT_VIRTUALTABLE */
006082    }else{
006083      assert( pC->eCurType==CURTYPE_BTREE );
006084      assert( pC->uc.pCursor!=0 );
006085      rc = sqlite3VdbeCursorRestore(pC);
006086      if( rc ) goto abort_due_to_error;
006087      if( pC->nullRow ){
006088        pOut->flags = MEM_Null;
006089        break;
006090      }
006091      v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
006092    }
006093    pOut->u.i = v;
006094    break;
006095  }
006096  
006097  /* Opcode: NullRow P1 * * * *
006098  **
006099  ** Move the cursor P1 to a null row.  Any OP_Column operations
006100  ** that occur while the cursor is on the null row will always
006101  ** write a NULL.
006102  **
006103  ** If cursor P1 is not previously opened, open it now to a special
006104  ** pseudo-cursor that always returns NULL for every column.
006105  */
006106  case OP_NullRow: {
006107    VdbeCursor *pC;
006108  
006109    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006110    pC = p->apCsr[pOp->p1];
006111    if( pC==0 ){
006112      /* If the cursor is not already open, create a special kind of
006113      ** pseudo-cursor that always gives null rows. */
006114      pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
006115      if( pC==0 ) goto no_mem;
006116      pC->seekResult = 0;
006117      pC->isTable = 1;
006118      pC->noReuse = 1;
006119      pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
006120    }
006121    pC->nullRow = 1;
006122    pC->cacheStatus = CACHE_STALE;
006123    if( pC->eCurType==CURTYPE_BTREE ){
006124      assert( pC->uc.pCursor!=0 );
006125      sqlite3BtreeClearCursor(pC->uc.pCursor);
006126    }
006127  #ifdef SQLITE_DEBUG
006128    if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
006129  #endif
006130    break;
006131  }
006132  
006133  /* Opcode: SeekEnd P1 * * * *
006134  **
006135  ** Position cursor P1 at the end of the btree for the purpose of
006136  ** appending a new entry onto the btree.
006137  **
006138  ** It is assumed that the cursor is used only for appending and so
006139  ** if the cursor is valid, then the cursor must already be pointing
006140  ** at the end of the btree and so no changes are made to
006141  ** the cursor.
006142  */
006143  /* Opcode: Last P1 P2 * * *
006144  **
006145  ** The next use of the Rowid or Column or Prev instruction for P1
006146  ** will refer to the last entry in the database table or index.
006147  ** If the table or index is empty and P2>0, then jump immediately to P2.
006148  ** If P2 is 0 or if the table or index is not empty, fall through
006149  ** to the following instruction.
006150  **
006151  ** This opcode leaves the cursor configured to move in reverse order,
006152  ** from the end toward the beginning.  In other words, the cursor is
006153  ** configured to use Prev, not Next.
006154  */
006155  case OP_SeekEnd:             /* ncycle */
006156  case OP_Last: {              /* jump, ncycle */
006157    VdbeCursor *pC;
006158    BtCursor *pCrsr;
006159    int res;
006160  
006161    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006162    pC = p->apCsr[pOp->p1];
006163    assert( pC!=0 );
006164    assert( pC->eCurType==CURTYPE_BTREE );
006165    pCrsr = pC->uc.pCursor;
006166    res = 0;
006167    assert( pCrsr!=0 );
006168  #ifdef SQLITE_DEBUG
006169    pC->seekOp = pOp->opcode;
006170  #endif
006171    if( pOp->opcode==OP_SeekEnd ){
006172      assert( pOp->p2==0 );
006173      pC->seekResult = -1;
006174      if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
006175        break;
006176      }
006177    }
006178    rc = sqlite3BtreeLast(pCrsr, &res);
006179    pC->nullRow = (u8)res;
006180    pC->deferredMoveto = 0;
006181    pC->cacheStatus = CACHE_STALE;
006182    if( rc ) goto abort_due_to_error;
006183    if( pOp->p2>0 ){
006184      VdbeBranchTaken(res!=0,2);
006185      if( res ) goto jump_to_p2;
006186    }
006187    break;
006188  }
006189  
006190  /* Opcode: IfSmaller P1 P2 P3 * *
006191  **
006192  ** Estimate the number of rows in the table P1.  Jump to P2 if that
006193  ** estimate is less than approximately 2**(0.1*P3).
006194  */
006195  case OP_IfSmaller: {        /* jump */
006196    VdbeCursor *pC;
006197    BtCursor *pCrsr;
006198    int res;
006199    i64 sz;
006200  
006201    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006202    pC = p->apCsr[pOp->p1];
006203    assert( pC!=0 );
006204    pCrsr = pC->uc.pCursor;
006205    assert( pCrsr );
006206    rc = sqlite3BtreeFirst(pCrsr, &res);
006207    if( rc ) goto abort_due_to_error;
006208    if( res==0 ){
006209      sz = sqlite3BtreeRowCountEst(pCrsr);
006210      if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
006211    }
006212    VdbeBranchTaken(res!=0,2);
006213    if( res ) goto jump_to_p2;
006214    break;
006215  }
006216  
006217  
006218  /* Opcode: SorterSort P1 P2 * * *
006219  **
006220  ** After all records have been inserted into the Sorter object
006221  ** identified by P1, invoke this opcode to actually do the sorting.
006222  ** Jump to P2 if there are no records to be sorted.
006223  **
006224  ** This opcode is an alias for OP_Sort and OP_Rewind that is used
006225  ** for Sorter objects.
006226  */
006227  /* Opcode: Sort P1 P2 * * *
006228  **
006229  ** This opcode does exactly the same thing as OP_Rewind except that
006230  ** it increments an undocumented global variable used for testing.
006231  **
006232  ** Sorting is accomplished by writing records into a sorting index,
006233  ** then rewinding that index and playing it back from beginning to
006234  ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
006235  ** rewinding so that the global variable will be incremented and
006236  ** regression tests can determine whether or not the optimizer is
006237  ** correctly optimizing out sorts.
006238  */
006239  case OP_SorterSort:    /* jump ncycle */
006240  case OP_Sort: {        /* jump ncycle */
006241  #ifdef SQLITE_TEST
006242    sqlite3_sort_count++;
006243    sqlite3_search_count--;
006244  #endif
006245    p->aCounter[SQLITE_STMTSTATUS_SORT]++;
006246    /* Fall through into OP_Rewind */
006247    /* no break */ deliberate_fall_through
006248  }
006249  /* Opcode: Rewind P1 P2 * * *
006250  **
006251  ** The next use of the Rowid or Column or Next instruction for P1
006252  ** will refer to the first entry in the database table or index.
006253  ** If the table or index is empty, jump immediately to P2.
006254  ** If the table or index is not empty, fall through to the following
006255  ** instruction.
006256  **
006257  ** If P2 is zero, that is an assertion that the P1 table is never
006258  ** empty and hence the jump will never be taken.
006259  **
006260  ** This opcode leaves the cursor configured to move in forward order,
006261  ** from the beginning toward the end.  In other words, the cursor is
006262  ** configured to use Next, not Prev.
006263  */
006264  case OP_Rewind: {        /* jump, ncycle */
006265    VdbeCursor *pC;
006266    BtCursor *pCrsr;
006267    int res;
006268  
006269    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006270    assert( pOp->p5==0 );
006271    assert( pOp->p2>=0 && pOp->p2<p->nOp );
006272  
006273    pC = p->apCsr[pOp->p1];
006274    assert( pC!=0 );
006275    assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
006276    res = 1;
006277  #ifdef SQLITE_DEBUG
006278    pC->seekOp = OP_Rewind;
006279  #endif
006280    if( isSorter(pC) ){
006281      rc = sqlite3VdbeSorterRewind(pC, &res);
006282    }else{
006283      assert( pC->eCurType==CURTYPE_BTREE );
006284      pCrsr = pC->uc.pCursor;
006285      assert( pCrsr );
006286      rc = sqlite3BtreeFirst(pCrsr, &res);
006287      pC->deferredMoveto = 0;
006288      pC->cacheStatus = CACHE_STALE;
006289    }
006290    if( rc ) goto abort_due_to_error;
006291    pC->nullRow = (u8)res;
006292    if( pOp->p2>0 ){
006293      VdbeBranchTaken(res!=0,2);
006294      if( res ) goto jump_to_p2;
006295    }
006296    break;
006297  }
006298  
006299  /* Opcode: Next P1 P2 P3 * P5
006300  **
006301  ** Advance cursor P1 so that it points to the next key/data pair in its
006302  ** table or index.  If there are no more key/value pairs then fall through
006303  ** to the following instruction.  But if the cursor advance was successful,
006304  ** jump immediately to P2.
006305  **
006306  ** The Next opcode is only valid following an SeekGT, SeekGE, or
006307  ** OP_Rewind opcode used to position the cursor.  Next is not allowed
006308  ** to follow SeekLT, SeekLE, or OP_Last.
006309  **
006310  ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
006311  ** been opened prior to this opcode or the program will segfault.
006312  **
006313  ** The P3 value is a hint to the btree implementation. If P3==1, that
006314  ** means P1 is an SQL index and that this instruction could have been
006315  ** omitted if that index had been unique.  P3 is usually 0.  P3 is
006316  ** always either 0 or 1.
006317  **
006318  ** If P5 is positive and the jump is taken, then event counter
006319  ** number P5-1 in the prepared statement is incremented.
006320  **
006321  ** See also: Prev
006322  */
006323  /* Opcode: Prev P1 P2 P3 * P5
006324  **
006325  ** Back up cursor P1 so that it points to the previous key/data pair in its
006326  ** table or index.  If there is no previous key/value pairs then fall through
006327  ** to the following instruction.  But if the cursor backup was successful,
006328  ** jump immediately to P2.
006329  **
006330  **
006331  ** The Prev opcode is only valid following an SeekLT, SeekLE, or
006332  ** OP_Last opcode used to position the cursor.  Prev is not allowed
006333  ** to follow SeekGT, SeekGE, or OP_Rewind.
006334  **
006335  ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
006336  ** not open then the behavior is undefined.
006337  **
006338  ** The P3 value is a hint to the btree implementation. If P3==1, that
006339  ** means P1 is an SQL index and that this instruction could have been
006340  ** omitted if that index had been unique.  P3 is usually 0.  P3 is
006341  ** always either 0 or 1.
006342  **
006343  ** If P5 is positive and the jump is taken, then event counter
006344  ** number P5-1 in the prepared statement is incremented.
006345  */
006346  /* Opcode: SorterNext P1 P2 * * P5
006347  **
006348  ** This opcode works just like OP_Next except that P1 must be a
006349  ** sorter object for which the OP_SorterSort opcode has been
006350  ** invoked.  This opcode advances the cursor to the next sorted
006351  ** record, or jumps to P2 if there are no more sorted records.
006352  */
006353  case OP_SorterNext: {  /* jump */
006354    VdbeCursor *pC;
006355  
006356    pC = p->apCsr[pOp->p1];
006357    assert( isSorter(pC) );
006358    rc = sqlite3VdbeSorterNext(db, pC);
006359    goto next_tail;
006360  
006361  case OP_Prev:          /* jump, ncycle */
006362    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006363    assert( pOp->p5==0
006364         || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
006365         || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
006366    pC = p->apCsr[pOp->p1];
006367    assert( pC!=0 );
006368    assert( pC->deferredMoveto==0 );
006369    assert( pC->eCurType==CURTYPE_BTREE );
006370    assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
006371         || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
006372         || pC->seekOp==OP_NullRow);
006373    rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
006374    goto next_tail;
006375  
006376  case OP_Next:          /* jump, ncycle */
006377    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006378    assert( pOp->p5==0
006379         || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
006380         || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
006381    pC = p->apCsr[pOp->p1];
006382    assert( pC!=0 );
006383    assert( pC->deferredMoveto==0 );
006384    assert( pC->eCurType==CURTYPE_BTREE );
006385    assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
006386         || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
006387         || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
006388         || pC->seekOp==OP_IfNoHope);
006389    rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
006390  
006391  next_tail:
006392    pC->cacheStatus = CACHE_STALE;
006393    VdbeBranchTaken(rc==SQLITE_OK,2);
006394    if( rc==SQLITE_OK ){
006395      pC->nullRow = 0;
006396      p->aCounter[pOp->p5]++;
006397  #ifdef SQLITE_TEST
006398      sqlite3_search_count++;
006399  #endif
006400      goto jump_to_p2_and_check_for_interrupt;
006401    }
006402    if( rc!=SQLITE_DONE ) goto abort_due_to_error;
006403    rc = SQLITE_OK;
006404    pC->nullRow = 1;
006405    goto check_for_interrupt;
006406  }
006407  
006408  /* Opcode: IdxInsert P1 P2 P3 P4 P5
006409  ** Synopsis: key=r[P2]
006410  **
006411  ** Register P2 holds an SQL index key made using the
006412  ** MakeRecord instructions.  This opcode writes that key
006413  ** into the index P1.  Data for the entry is nil.
006414  **
006415  ** If P4 is not zero, then it is the number of values in the unpacked
006416  ** key of reg(P2).  In that case, P3 is the index of the first register
006417  ** for the unpacked key.  The availability of the unpacked key can sometimes
006418  ** be an optimization.
006419  **
006420  ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
006421  ** that this insert is likely to be an append.
006422  **
006423  ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
006424  ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
006425  ** then the change counter is unchanged.
006426  **
006427  ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
006428  ** run faster by avoiding an unnecessary seek on cursor P1.  However,
006429  ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
006430  ** seeks on the cursor or if the most recent seek used a key equivalent
006431  ** to P2.
006432  **
006433  ** This instruction only works for indices.  The equivalent instruction
006434  ** for tables is OP_Insert.
006435  */
006436  case OP_IdxInsert: {        /* in2 */
006437    VdbeCursor *pC;
006438    BtreePayload x;
006439  
006440    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006441    pC = p->apCsr[pOp->p1];
006442    sqlite3VdbeIncrWriteCounter(p, pC);
006443    assert( pC!=0 );
006444    assert( !isSorter(pC) );
006445    pIn2 = &aMem[pOp->p2];
006446    assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
006447    if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
006448    assert( pC->eCurType==CURTYPE_BTREE );
006449    assert( pC->isTable==0 );
006450    rc = ExpandBlob(pIn2);
006451    if( rc ) goto abort_due_to_error;
006452    x.nKey = pIn2->n;
006453    x.pKey = pIn2->z;
006454    x.aMem = aMem + pOp->p3;
006455    x.nMem = (u16)pOp->p4.i;
006456    rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
006457         (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
006458        ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
006459        );
006460    assert( pC->deferredMoveto==0 );
006461    pC->cacheStatus = CACHE_STALE;
006462    if( rc) goto abort_due_to_error;
006463    break;
006464  }
006465  
006466  /* Opcode: SorterInsert P1 P2 * * *
006467  ** Synopsis: key=r[P2]
006468  **
006469  ** Register P2 holds an SQL index key made using the
006470  ** MakeRecord instructions.  This opcode writes that key
006471  ** into the sorter P1.  Data for the entry is nil.
006472  */
006473  case OP_SorterInsert: {     /* in2 */
006474    VdbeCursor *pC;
006475  
006476    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006477    pC = p->apCsr[pOp->p1];
006478    sqlite3VdbeIncrWriteCounter(p, pC);
006479    assert( pC!=0 );
006480    assert( isSorter(pC) );
006481    pIn2 = &aMem[pOp->p2];
006482    assert( pIn2->flags & MEM_Blob );
006483    assert( pC->isTable==0 );
006484    rc = ExpandBlob(pIn2);
006485    if( rc ) goto abort_due_to_error;
006486    rc = sqlite3VdbeSorterWrite(pC, pIn2);
006487    if( rc) goto abort_due_to_error;
006488    break;
006489  }
006490  
006491  /* Opcode: IdxDelete P1 P2 P3 * P5
006492  ** Synopsis: key=r[P2@P3]
006493  **
006494  ** The content of P3 registers starting at register P2 form
006495  ** an unpacked index key. This opcode removes that entry from the
006496  ** index opened by cursor P1.
006497  **
006498  ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
006499  ** if no matching index entry is found.  This happens when running
006500  ** an UPDATE or DELETE statement and the index entry to be updated
006501  ** or deleted is not found.  For some uses of IdxDelete
006502  ** (example:  the EXCEPT operator) it does not matter that no matching
006503  ** entry is found.  For those cases, P5 is zero.  Also, do not raise
006504  ** this (self-correcting and non-critical) error if in writable_schema mode.
006505  */
006506  case OP_IdxDelete: {
006507    VdbeCursor *pC;
006508    BtCursor *pCrsr;
006509    int res;
006510    UnpackedRecord r;
006511  
006512    assert( pOp->p3>0 );
006513    assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
006514    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006515    pC = p->apCsr[pOp->p1];
006516    assert( pC!=0 );
006517    assert( pC->eCurType==CURTYPE_BTREE );
006518    sqlite3VdbeIncrWriteCounter(p, pC);
006519    pCrsr = pC->uc.pCursor;
006520    assert( pCrsr!=0 );
006521    r.pKeyInfo = pC->pKeyInfo;
006522    r.nField = (u16)pOp->p3;
006523    r.default_rc = 0;
006524    r.aMem = &aMem[pOp->p2];
006525    rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
006526    if( rc ) goto abort_due_to_error;
006527    if( res==0 ){
006528      rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
006529      if( rc ) goto abort_due_to_error;
006530    }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
006531      rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
006532      goto abort_due_to_error;
006533    }
006534    assert( pC->deferredMoveto==0 );
006535    pC->cacheStatus = CACHE_STALE;
006536    pC->seekResult = 0;
006537    break;
006538  }
006539  
006540  /* Opcode: DeferredSeek P1 * P3 P4 *
006541  ** Synopsis: Move P3 to P1.rowid if needed
006542  **
006543  ** P1 is an open index cursor and P3 is a cursor on the corresponding
006544  ** table.  This opcode does a deferred seek of the P3 table cursor
006545  ** to the row that corresponds to the current row of P1.
006546  **
006547  ** This is a deferred seek.  Nothing actually happens until
006548  ** the cursor is used to read a record.  That way, if no reads
006549  ** occur, no unnecessary I/O happens.
006550  **
006551  ** P4 may be an array of integers (type P4_INTARRAY) containing
006552  ** one entry for each column in the P3 table.  If array entry a(i)
006553  ** is non-zero, then reading column a(i)-1 from cursor P3 is
006554  ** equivalent to performing the deferred seek and then reading column i
006555  ** from P1.  This information is stored in P3 and used to redirect
006556  ** reads against P3 over to P1, thus possibly avoiding the need to
006557  ** seek and read cursor P3.
006558  */
006559  /* Opcode: IdxRowid P1 P2 * * *
006560  ** Synopsis: r[P2]=rowid
006561  **
006562  ** Write into register P2 an integer which is the last entry in the record at
006563  ** the end of the index key pointed to by cursor P1.  This integer should be
006564  ** the rowid of the table entry to which this index entry points.
006565  **
006566  ** See also: Rowid, MakeRecord.
006567  */
006568  case OP_DeferredSeek:         /* ncycle */
006569  case OP_IdxRowid: {           /* out2, ncycle */
006570    VdbeCursor *pC;             /* The P1 index cursor */
006571    VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
006572    i64 rowid;                  /* Rowid that P1 current points to */
006573  
006574    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006575    pC = p->apCsr[pOp->p1];
006576    assert( pC!=0 );
006577    assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
006578    assert( pC->uc.pCursor!=0 );
006579    assert( pC->isTable==0 || IsNullCursor(pC) );
006580    assert( pC->deferredMoveto==0 );
006581    assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
006582  
006583    /* The IdxRowid and Seek opcodes are combined because of the commonality
006584    ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
006585    rc = sqlite3VdbeCursorRestore(pC);
006586  
006587    /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
006588    ** since it was last positioned and an error (e.g. OOM or an IO error)
006589    ** occurs while trying to reposition it. */
006590    if( rc!=SQLITE_OK ) goto abort_due_to_error;
006591  
006592    if( !pC->nullRow ){
006593      rowid = 0;  /* Not needed.  Only used to silence a warning. */
006594      rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
006595      if( rc!=SQLITE_OK ){
006596        goto abort_due_to_error;
006597      }
006598      if( pOp->opcode==OP_DeferredSeek ){
006599        assert( pOp->p3>=0 && pOp->p3<p->nCursor );
006600        pTabCur = p->apCsr[pOp->p3];
006601        assert( pTabCur!=0 );
006602        assert( pTabCur->eCurType==CURTYPE_BTREE );
006603        assert( pTabCur->uc.pCursor!=0 );
006604        assert( pTabCur->isTable );
006605        pTabCur->nullRow = 0;
006606        pTabCur->movetoTarget = rowid;
006607        pTabCur->deferredMoveto = 1;
006608        pTabCur->cacheStatus = CACHE_STALE;
006609        assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
006610        assert( !pTabCur->isEphemeral );
006611        pTabCur->ub.aAltMap = pOp->p4.ai;
006612        assert( !pC->isEphemeral );
006613        pTabCur->pAltCursor = pC;
006614      }else{
006615        pOut = out2Prerelease(p, pOp);
006616        pOut->u.i = rowid;
006617      }
006618    }else{
006619      assert( pOp->opcode==OP_IdxRowid );
006620      sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
006621    }
006622    break;
006623  }
006624  
006625  /* Opcode: FinishSeek P1 * * * *
006626  **
006627  ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
006628  ** seek operation now, without further delay.  If the cursor seek has
006629  ** already occurred, this instruction is a no-op.
006630  */
006631  case OP_FinishSeek: {        /* ncycle */
006632    VdbeCursor *pC;            /* The P1 index cursor */
006633  
006634    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006635    pC = p->apCsr[pOp->p1];
006636    if( pC->deferredMoveto ){
006637      rc = sqlite3VdbeFinishMoveto(pC);
006638      if( rc ) goto abort_due_to_error;
006639    }
006640    break;
006641  }
006642  
006643  /* Opcode: IdxGE P1 P2 P3 P4 *
006644  ** Synopsis: key=r[P3@P4]
006645  **
006646  ** The P4 register values beginning with P3 form an unpacked index
006647  ** key that omits the PRIMARY KEY.  Compare this key value against the index
006648  ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
006649  ** fields at the end.
006650  **
006651  ** If the P1 index entry is greater than or equal to the key value
006652  ** then jump to P2.  Otherwise fall through to the next instruction.
006653  */
006654  /* Opcode: IdxGT P1 P2 P3 P4 *
006655  ** Synopsis: key=r[P3@P4]
006656  **
006657  ** The P4 register values beginning with P3 form an unpacked index
006658  ** key that omits the PRIMARY KEY.  Compare this key value against the index
006659  ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
006660  ** fields at the end.
006661  **
006662  ** If the P1 index entry is greater than the key value
006663  ** then jump to P2.  Otherwise fall through to the next instruction.
006664  */
006665  /* Opcode: IdxLT P1 P2 P3 P4 *
006666  ** Synopsis: key=r[P3@P4]
006667  **
006668  ** The P4 register values beginning with P3 form an unpacked index
006669  ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
006670  ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
006671  ** ROWID on the P1 index.
006672  **
006673  ** If the P1 index entry is less than the key value then jump to P2.
006674  ** Otherwise fall through to the next instruction.
006675  */
006676  /* Opcode: IdxLE P1 P2 P3 P4 *
006677  ** Synopsis: key=r[P3@P4]
006678  **
006679  ** The P4 register values beginning with P3 form an unpacked index
006680  ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
006681  ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
006682  ** ROWID on the P1 index.
006683  **
006684  ** If the P1 index entry is less than or equal to the key value then jump
006685  ** to P2. Otherwise fall through to the next instruction.
006686  */
006687  case OP_IdxLE:          /* jump, ncycle */
006688  case OP_IdxGT:          /* jump, ncycle */
006689  case OP_IdxLT:          /* jump, ncycle */
006690  case OP_IdxGE:  {       /* jump, ncycle */
006691    VdbeCursor *pC;
006692    int res;
006693    UnpackedRecord r;
006694  
006695    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006696    pC = p->apCsr[pOp->p1];
006697    assert( pC!=0 );
006698    assert( pC->isOrdered );
006699    assert( pC->eCurType==CURTYPE_BTREE );
006700    assert( pC->uc.pCursor!=0);
006701    assert( pC->deferredMoveto==0 );
006702    assert( pOp->p4type==P4_INT32 );
006703    r.pKeyInfo = pC->pKeyInfo;
006704    r.nField = (u16)pOp->p4.i;
006705    if( pOp->opcode<OP_IdxLT ){
006706      assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
006707      r.default_rc = -1;
006708    }else{
006709      assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
006710      r.default_rc = 0;
006711    }
006712    r.aMem = &aMem[pOp->p3];
006713  #ifdef SQLITE_DEBUG
006714    {
006715      int i;
006716      for(i=0; i<r.nField; i++){
006717        assert( memIsValid(&r.aMem[i]) );
006718        REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
006719      }
006720    }
006721  #endif
006722  
006723    /* Inlined version of sqlite3VdbeIdxKeyCompare() */
006724    {
006725      i64 nCellKey = 0;
006726      BtCursor *pCur;
006727      Mem m;
006728  
006729      assert( pC->eCurType==CURTYPE_BTREE );
006730      pCur = pC->uc.pCursor;
006731      assert( sqlite3BtreeCursorIsValid(pCur) );
006732      nCellKey = sqlite3BtreePayloadSize(pCur);
006733      /* nCellKey will always be between 0 and 0xffffffff because of the way
006734      ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
006735      if( nCellKey<=0 || nCellKey>0x7fffffff ){
006736        rc = SQLITE_CORRUPT_BKPT;
006737        goto abort_due_to_error;
006738      }
006739      sqlite3VdbeMemInit(&m, db, 0);
006740      rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
006741      if( rc ) goto abort_due_to_error;
006742      res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
006743      sqlite3VdbeMemReleaseMalloc(&m);
006744    }
006745    /* End of inlined sqlite3VdbeIdxKeyCompare() */
006746  
006747    assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
006748    if( (pOp->opcode&1)==(OP_IdxLT&1) ){
006749      assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
006750      res = -res;
006751    }else{
006752      assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
006753      res++;
006754    }
006755    VdbeBranchTaken(res>0,2);
006756    assert( rc==SQLITE_OK );
006757    if( res>0 ) goto jump_to_p2;
006758    break;
006759  }
006760  
006761  /* Opcode: Destroy P1 P2 P3 * *
006762  **
006763  ** Delete an entire database table or index whose root page in the database
006764  ** file is given by P1.
006765  **
006766  ** The table being destroyed is in the main database file if P3==0.  If
006767  ** P3==1 then the table to be destroyed is in the auxiliary database file
006768  ** that is used to store tables create using CREATE TEMPORARY TABLE.
006769  **
006770  ** If AUTOVACUUM is enabled then it is possible that another root page
006771  ** might be moved into the newly deleted root page in order to keep all
006772  ** root pages contiguous at the beginning of the database.  The former
006773  ** value of the root page that moved - its value before the move occurred -
006774  ** is stored in register P2. If no page movement was required (because the
006775  ** table being dropped was already the last one in the database) then a
006776  ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
006777  ** is stored in register P2.
006778  **
006779  ** This opcode throws an error if there are any active reader VMs when
006780  ** it is invoked. This is done to avoid the difficulty associated with
006781  ** updating existing cursors when a root page is moved in an AUTOVACUUM
006782  ** database. This error is thrown even if the database is not an AUTOVACUUM
006783  ** db in order to avoid introducing an incompatibility between autovacuum
006784  ** and non-autovacuum modes.
006785  **
006786  ** See also: Clear
006787  */
006788  case OP_Destroy: {     /* out2 */
006789    int iMoved;
006790    int iDb;
006791  
006792    sqlite3VdbeIncrWriteCounter(p, 0);
006793    assert( p->readOnly==0 );
006794    assert( pOp->p1>1 );
006795    pOut = out2Prerelease(p, pOp);
006796    pOut->flags = MEM_Null;
006797    if( db->nVdbeRead > db->nVDestroy+1 ){
006798      rc = SQLITE_LOCKED;
006799      p->errorAction = OE_Abort;
006800      goto abort_due_to_error;
006801    }else{
006802      iDb = pOp->p3;
006803      assert( DbMaskTest(p->btreeMask, iDb) );
006804      iMoved = 0;  /* Not needed.  Only to silence a warning. */
006805      rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
006806      pOut->flags = MEM_Int;
006807      pOut->u.i = iMoved;
006808      if( rc ) goto abort_due_to_error;
006809  #ifndef SQLITE_OMIT_AUTOVACUUM
006810      if( iMoved!=0 ){
006811        sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
006812        /* All OP_Destroy operations occur on the same btree */
006813        assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
006814        resetSchemaOnFault = iDb+1;
006815      }
006816  #endif
006817    }
006818    break;
006819  }
006820  
006821  /* Opcode: Clear P1 P2 P3
006822  **
006823  ** Delete all contents of the database table or index whose root page
006824  ** in the database file is given by P1.  But, unlike Destroy, do not
006825  ** remove the table or index from the database file.
006826  **
006827  ** The table being cleared is in the main database file if P2==0.  If
006828  ** P2==1 then the table to be cleared is in the auxiliary database file
006829  ** that is used to store tables create using CREATE TEMPORARY TABLE.
006830  **
006831  ** If the P3 value is non-zero, then the row change count is incremented
006832  ** by the number of rows in the table being cleared. If P3 is greater
006833  ** than zero, then the value stored in register P3 is also incremented
006834  ** by the number of rows in the table being cleared.
006835  **
006836  ** See also: Destroy
006837  */
006838  case OP_Clear: {
006839    i64 nChange;
006840  
006841    sqlite3VdbeIncrWriteCounter(p, 0);
006842    nChange = 0;
006843    assert( p->readOnly==0 );
006844    assert( DbMaskTest(p->btreeMask, pOp->p2) );
006845    rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
006846    if( pOp->p3 ){
006847      p->nChange += nChange;
006848      if( pOp->p3>0 ){
006849        assert( memIsValid(&aMem[pOp->p3]) );
006850        memAboutToChange(p, &aMem[pOp->p3]);
006851        aMem[pOp->p3].u.i += nChange;
006852      }
006853    }
006854    if( rc ) goto abort_due_to_error;
006855    break;
006856  }
006857  
006858  /* Opcode: ResetSorter P1 * * * *
006859  **
006860  ** Delete all contents from the ephemeral table or sorter
006861  ** that is open on cursor P1.
006862  **
006863  ** This opcode only works for cursors used for sorting and
006864  ** opened with OP_OpenEphemeral or OP_SorterOpen.
006865  */
006866  case OP_ResetSorter: {
006867    VdbeCursor *pC;
006868  
006869    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006870    pC = p->apCsr[pOp->p1];
006871    assert( pC!=0 );
006872    if( isSorter(pC) ){
006873      sqlite3VdbeSorterReset(db, pC->uc.pSorter);
006874    }else{
006875      assert( pC->eCurType==CURTYPE_BTREE );
006876      assert( pC->isEphemeral );
006877      rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
006878      if( rc ) goto abort_due_to_error;
006879    }
006880    break;
006881  }
006882  
006883  /* Opcode: CreateBtree P1 P2 P3 * *
006884  ** Synopsis: r[P2]=root iDb=P1 flags=P3
006885  **
006886  ** Allocate a new b-tree in the main database file if P1==0 or in the
006887  ** TEMP database file if P1==1 or in an attached database if
006888  ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
006889  ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
006890  ** The root page number of the new b-tree is stored in register P2.
006891  */
006892  case OP_CreateBtree: {          /* out2 */
006893    Pgno pgno;
006894    Db *pDb;
006895  
006896    sqlite3VdbeIncrWriteCounter(p, 0);
006897    pOut = out2Prerelease(p, pOp);
006898    pgno = 0;
006899    assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
006900    assert( pOp->p1>=0 && pOp->p1<db->nDb );
006901    assert( DbMaskTest(p->btreeMask, pOp->p1) );
006902    assert( p->readOnly==0 );
006903    pDb = &db->aDb[pOp->p1];
006904    assert( pDb->pBt!=0 );
006905    rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
006906    if( rc ) goto abort_due_to_error;
006907    pOut->u.i = pgno;
006908    break;
006909  }
006910  
006911  /* Opcode: SqlExec * * * P4 *
006912  **
006913  ** Run the SQL statement or statements specified in the P4 string.
006914  ** Disable Auth and Trace callbacks while those statements are running if
006915  ** P1 is true.
006916  */
006917  case OP_SqlExec: {
006918    char *zErr;
006919  #ifndef SQLITE_OMIT_AUTHORIZATION
006920    sqlite3_xauth xAuth;
006921  #endif
006922    u8 mTrace;
006923  
006924    sqlite3VdbeIncrWriteCounter(p, 0);
006925    db->nSqlExec++;
006926    zErr = 0;
006927  #ifndef SQLITE_OMIT_AUTHORIZATION
006928    xAuth = db->xAuth;
006929  #endif
006930    mTrace = db->mTrace;
006931    if( pOp->p1 ){
006932  #ifndef SQLITE_OMIT_AUTHORIZATION
006933      db->xAuth = 0;
006934  #endif
006935      db->mTrace = 0;
006936    }
006937    rc = sqlite3_exec(db, pOp->p4.z, 0, 0, &zErr);
006938    db->nSqlExec--;
006939  #ifndef SQLITE_OMIT_AUTHORIZATION
006940    db->xAuth = xAuth;
006941  #endif
006942    db->mTrace = mTrace;
006943    if( zErr || rc ){
006944      sqlite3VdbeError(p, "%s", zErr);
006945      sqlite3_free(zErr);
006946      if( rc==SQLITE_NOMEM ) goto no_mem;
006947      goto abort_due_to_error;
006948    }
006949    break;
006950  }
006951  
006952  /* Opcode: ParseSchema P1 * * P4 *
006953  **
006954  ** Read and parse all entries from the schema table of database P1
006955  ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
006956  ** entire schema for P1 is reparsed.
006957  **
006958  ** This opcode invokes the parser to create a new virtual machine,
006959  ** then runs the new virtual machine.  It is thus a re-entrant opcode.
006960  */
006961  case OP_ParseSchema: {
006962    int iDb;
006963    const char *zSchema;
006964    char *zSql;
006965    InitData initData;
006966  
006967    /* Any prepared statement that invokes this opcode will hold mutexes
006968    ** on every btree.  This is a prerequisite for invoking
006969    ** sqlite3InitCallback().
006970    */
006971  #ifdef SQLITE_DEBUG
006972    for(iDb=0; iDb<db->nDb; iDb++){
006973      assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
006974    }
006975  #endif
006976  
006977    iDb = pOp->p1;
006978    assert( iDb>=0 && iDb<db->nDb );
006979    assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
006980             || db->mallocFailed
006981             || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
006982  
006983  #ifndef SQLITE_OMIT_ALTERTABLE
006984    if( pOp->p4.z==0 ){
006985      sqlite3SchemaClear(db->aDb[iDb].pSchema);
006986      db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
006987      rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
006988      db->mDbFlags |= DBFLAG_SchemaChange;
006989      p->expired = 0;
006990    }else
006991  #endif
006992    {
006993      zSchema = LEGACY_SCHEMA_TABLE;
006994      initData.db = db;
006995      initData.iDb = iDb;
006996      initData.pzErrMsg = &p->zErrMsg;
006997      initData.mInitFlags = 0;
006998      initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
006999      zSql = sqlite3MPrintf(db,
007000         "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
007001         db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
007002      if( zSql==0 ){
007003        rc = SQLITE_NOMEM_BKPT;
007004      }else{
007005        assert( db->init.busy==0 );
007006        db->init.busy = 1;
007007        initData.rc = SQLITE_OK;
007008        initData.nInitRow = 0;
007009        assert( !db->mallocFailed );
007010        rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
007011        if( rc==SQLITE_OK ) rc = initData.rc;
007012        if( rc==SQLITE_OK && initData.nInitRow==0 ){
007013          /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
007014          ** at least one SQL statement. Any less than that indicates that
007015          ** the sqlite_schema table is corrupt. */
007016          rc = SQLITE_CORRUPT_BKPT;
007017        }
007018        sqlite3DbFreeNN(db, zSql);
007019        db->init.busy = 0;
007020      }
007021    }
007022    if( rc ){
007023      sqlite3ResetAllSchemasOfConnection(db);
007024      if( rc==SQLITE_NOMEM ){
007025        goto no_mem;
007026      }
007027      goto abort_due_to_error;
007028    }
007029    break; 
007030  }
007031  
007032  #if !defined(SQLITE_OMIT_ANALYZE)
007033  /* Opcode: LoadAnalysis P1 * * * *
007034  **
007035  ** Read the sqlite_stat1 table for database P1 and load the content
007036  ** of that table into the internal index hash table.  This will cause
007037  ** the analysis to be used when preparing all subsequent queries.
007038  */
007039  case OP_LoadAnalysis: {
007040    assert( pOp->p1>=0 && pOp->p1<db->nDb );
007041    rc = sqlite3AnalysisLoad(db, pOp->p1);
007042    if( rc ) goto abort_due_to_error;
007043    break; 
007044  }
007045  #endif /* !defined(SQLITE_OMIT_ANALYZE) */
007046  
007047  /* Opcode: DropTable P1 * * P4 *
007048  **
007049  ** Remove the internal (in-memory) data structures that describe
007050  ** the table named P4 in database P1.  This is called after a table
007051  ** is dropped from disk (using the Destroy opcode) in order to keep
007052  ** the internal representation of the
007053  ** schema consistent with what is on disk.
007054  */
007055  case OP_DropTable: {
007056    sqlite3VdbeIncrWriteCounter(p, 0);
007057    sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
007058    break;
007059  }
007060  
007061  /* Opcode: DropIndex P1 * * P4 *
007062  **
007063  ** Remove the internal (in-memory) data structures that describe
007064  ** the index named P4 in database P1.  This is called after an index
007065  ** is dropped from disk (using the Destroy opcode)
007066  ** in order to keep the internal representation of the
007067  ** schema consistent with what is on disk.
007068  */
007069  case OP_DropIndex: {
007070    sqlite3VdbeIncrWriteCounter(p, 0);
007071    sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
007072    break;
007073  }
007074  
007075  /* Opcode: DropTrigger P1 * * P4 *
007076  **
007077  ** Remove the internal (in-memory) data structures that describe
007078  ** the trigger named P4 in database P1.  This is called after a trigger
007079  ** is dropped from disk (using the Destroy opcode) in order to keep
007080  ** the internal representation of the
007081  ** schema consistent with what is on disk.
007082  */
007083  case OP_DropTrigger: {
007084    sqlite3VdbeIncrWriteCounter(p, 0);
007085    sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
007086    break;
007087  }
007088  
007089  
007090  #ifndef SQLITE_OMIT_INTEGRITY_CHECK
007091  /* Opcode: IntegrityCk P1 P2 P3 P4 P5
007092  **
007093  ** Do an analysis of the currently open database.  Store in
007094  ** register P1 the text of an error message describing any problems.
007095  ** If no problems are found, store a NULL in register P1.
007096  **
007097  ** The register P3 contains one less than the maximum number of allowed errors.
007098  ** At most reg(P3) errors will be reported.
007099  ** In other words, the analysis stops as soon as reg(P1) errors are
007100  ** seen.  Reg(P1) is updated with the number of errors remaining.
007101  **
007102  ** The root page numbers of all tables in the database are integers
007103  ** stored in P4_INTARRAY argument.
007104  **
007105  ** If P5 is not zero, the check is done on the auxiliary database
007106  ** file, not the main database file.
007107  **
007108  ** This opcode is used to implement the integrity_check pragma.
007109  */
007110  case OP_IntegrityCk: {
007111    int nRoot;      /* Number of tables to check.  (Number of root pages.) */
007112    Pgno *aRoot;    /* Array of rootpage numbers for tables to be checked */
007113    int nErr;       /* Number of errors reported */
007114    char *z;        /* Text of the error report */
007115    Mem *pnErr;     /* Register keeping track of errors remaining */
007116  
007117    assert( p->bIsReader );
007118    nRoot = pOp->p2;
007119    aRoot = pOp->p4.ai;
007120    assert( nRoot>0 );
007121    assert( aRoot[0]==(Pgno)nRoot );
007122    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
007123    pnErr = &aMem[pOp->p3];
007124    assert( (pnErr->flags & MEM_Int)!=0 );
007125    assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
007126    pIn1 = &aMem[pOp->p1];
007127    assert( pOp->p5<db->nDb );
007128    assert( DbMaskTest(p->btreeMask, pOp->p5) );
007129    rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
007130                                   (int)pnErr->u.i+1, &nErr, &z);
007131    sqlite3VdbeMemSetNull(pIn1);
007132    if( nErr==0 ){
007133      assert( z==0 );
007134    }else if( rc ){
007135      sqlite3_free(z);
007136      goto abort_due_to_error;
007137    }else{
007138      pnErr->u.i -= nErr-1;
007139      sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
007140    }
007141    UPDATE_MAX_BLOBSIZE(pIn1);
007142    sqlite3VdbeChangeEncoding(pIn1, encoding);
007143    goto check_for_interrupt;
007144  }
007145  #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
007146  
007147  /* Opcode: RowSetAdd P1 P2 * * *
007148  ** Synopsis: rowset(P1)=r[P2]
007149  **
007150  ** Insert the integer value held by register P2 into a RowSet object
007151  ** held in register P1.
007152  **
007153  ** An assertion fails if P2 is not an integer.
007154  */
007155  case OP_RowSetAdd: {       /* in1, in2 */
007156    pIn1 = &aMem[pOp->p1];
007157    pIn2 = &aMem[pOp->p2];
007158    assert( (pIn2->flags & MEM_Int)!=0 );
007159    if( (pIn1->flags & MEM_Blob)==0 ){
007160      if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
007161    }
007162    assert( sqlite3VdbeMemIsRowSet(pIn1) );
007163    sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
007164    break;
007165  }
007166  
007167  /* Opcode: RowSetRead P1 P2 P3 * *
007168  ** Synopsis: r[P3]=rowset(P1)
007169  **
007170  ** Extract the smallest value from the RowSet object in P1
007171  ** and put that value into register P3.
007172  ** Or, if RowSet object P1 is initially empty, leave P3
007173  ** unchanged and jump to instruction P2.
007174  */
007175  case OP_RowSetRead: {       /* jump, in1, out3 */
007176    i64 val;
007177  
007178    pIn1 = &aMem[pOp->p1];
007179    assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
007180    if( (pIn1->flags & MEM_Blob)==0
007181     || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
007182    ){
007183      /* The boolean index is empty */
007184      sqlite3VdbeMemSetNull(pIn1);
007185      VdbeBranchTaken(1,2);
007186      goto jump_to_p2_and_check_for_interrupt;
007187    }else{
007188      /* A value was pulled from the index */
007189      VdbeBranchTaken(0,2);
007190      sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
007191    }
007192    goto check_for_interrupt;
007193  }
007194  
007195  /* Opcode: RowSetTest P1 P2 P3 P4
007196  ** Synopsis: if r[P3] in rowset(P1) goto P2
007197  **
007198  ** Register P3 is assumed to hold a 64-bit integer value. If register P1
007199  ** contains a RowSet object and that RowSet object contains
007200  ** the value held in P3, jump to register P2. Otherwise, insert the
007201  ** integer in P3 into the RowSet and continue on to the
007202  ** next opcode.
007203  **
007204  ** The RowSet object is optimized for the case where sets of integers
007205  ** are inserted in distinct phases, which each set contains no duplicates.
007206  ** Each set is identified by a unique P4 value. The first set
007207  ** must have P4==0, the final set must have P4==-1, and for all other sets
007208  ** must have P4>0.
007209  **
007210  ** This allows optimizations: (a) when P4==0 there is no need to test
007211  ** the RowSet object for P3, as it is guaranteed not to contain it,
007212  ** (b) when P4==-1 there is no need to insert the value, as it will
007213  ** never be tested for, and (c) when a value that is part of set X is
007214  ** inserted, there is no need to search to see if the same value was
007215  ** previously inserted as part of set X (only if it was previously
007216  ** inserted as part of some other set).
007217  */
007218  case OP_RowSetTest: {                     /* jump, in1, in3 */
007219    int iSet;
007220    int exists;
007221  
007222    pIn1 = &aMem[pOp->p1];
007223    pIn3 = &aMem[pOp->p3];
007224    iSet = pOp->p4.i;
007225    assert( pIn3->flags&MEM_Int );
007226  
007227    /* If there is anything other than a rowset object in memory cell P1,
007228    ** delete it now and initialize P1 with an empty rowset
007229    */
007230    if( (pIn1->flags & MEM_Blob)==0 ){
007231      if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
007232    }
007233    assert( sqlite3VdbeMemIsRowSet(pIn1) );
007234    assert( pOp->p4type==P4_INT32 );
007235    assert( iSet==-1 || iSet>=0 );
007236    if( iSet ){
007237      exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
007238      VdbeBranchTaken(exists!=0,2);
007239      if( exists ) goto jump_to_p2;
007240    }
007241    if( iSet>=0 ){
007242      sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
007243    }
007244    break;
007245  }
007246  
007247  
007248  #ifndef SQLITE_OMIT_TRIGGER
007249  
007250  /* Opcode: Program P1 P2 P3 P4 P5
007251  **
007252  ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
007253  **
007254  ** P1 contains the address of the memory cell that contains the first memory
007255  ** cell in an array of values used as arguments to the sub-program. P2
007256  ** contains the address to jump to if the sub-program throws an IGNORE
007257  ** exception using the RAISE() function. Register P3 contains the address
007258  ** of a memory cell in this (the parent) VM that is used to allocate the
007259  ** memory required by the sub-vdbe at runtime.
007260  **
007261  ** P4 is a pointer to the VM containing the trigger program.
007262  **
007263  ** If P5 is non-zero, then recursive program invocation is enabled.
007264  */
007265  case OP_Program: {        /* jump */
007266    int nMem;               /* Number of memory registers for sub-program */
007267    int nByte;              /* Bytes of runtime space required for sub-program */
007268    Mem *pRt;               /* Register to allocate runtime space */
007269    Mem *pMem;              /* Used to iterate through memory cells */
007270    Mem *pEnd;              /* Last memory cell in new array */
007271    VdbeFrame *pFrame;      /* New vdbe frame to execute in */
007272    SubProgram *pProgram;   /* Sub-program to execute */
007273    void *t;                /* Token identifying trigger */
007274  
007275    pProgram = pOp->p4.pProgram;
007276    pRt = &aMem[pOp->p3];
007277    assert( pProgram->nOp>0 );
007278   
007279    /* If the p5 flag is clear, then recursive invocation of triggers is
007280    ** disabled for backwards compatibility (p5 is set if this sub-program
007281    ** is really a trigger, not a foreign key action, and the flag set
007282    ** and cleared by the "PRAGMA recursive_triggers" command is clear).
007283    **
007284    ** It is recursive invocation of triggers, at the SQL level, that is
007285    ** disabled. In some cases a single trigger may generate more than one
007286    ** SubProgram (if the trigger may be executed with more than one different
007287    ** ON CONFLICT algorithm). SubProgram structures associated with a
007288    ** single trigger all have the same value for the SubProgram.token
007289    ** variable.  */
007290    if( pOp->p5 ){
007291      t = pProgram->token;
007292      for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
007293      if( pFrame ) break;
007294    }
007295  
007296    if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
007297      rc = SQLITE_ERROR;
007298      sqlite3VdbeError(p, "too many levels of trigger recursion");
007299      goto abort_due_to_error;
007300    }
007301  
007302    /* Register pRt is used to store the memory required to save the state
007303    ** of the current program, and the memory required at runtime to execute
007304    ** the trigger program. If this trigger has been fired before, then pRt
007305    ** is already allocated. Otherwise, it must be initialized.  */
007306    if( (pRt->flags&MEM_Blob)==0 ){
007307      /* SubProgram.nMem is set to the number of memory cells used by the
007308      ** program stored in SubProgram.aOp. As well as these, one memory
007309      ** cell is required for each cursor used by the program. Set local
007310      ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
007311      */
007312      nMem = pProgram->nMem + pProgram->nCsr;
007313      assert( nMem>0 );
007314      if( pProgram->nCsr==0 ) nMem++;
007315      nByte = ROUND8(sizeof(VdbeFrame))
007316                + nMem * sizeof(Mem)
007317                + pProgram->nCsr * sizeof(VdbeCursor*)
007318                + (pProgram->nOp + 7)/8;
007319      pFrame = sqlite3DbMallocZero(db, nByte);
007320      if( !pFrame ){
007321        goto no_mem;
007322      }
007323      sqlite3VdbeMemRelease(pRt);
007324      pRt->flags = MEM_Blob|MEM_Dyn;
007325      pRt->z = (char*)pFrame;
007326      pRt->n = nByte;
007327      pRt->xDel = sqlite3VdbeFrameMemDel;
007328  
007329      pFrame->v = p;
007330      pFrame->nChildMem = nMem;
007331      pFrame->nChildCsr = pProgram->nCsr;
007332      pFrame->pc = (int)(pOp - aOp);
007333      pFrame->aMem = p->aMem;
007334      pFrame->nMem = p->nMem;
007335      pFrame->apCsr = p->apCsr;
007336      pFrame->nCursor = p->nCursor;
007337      pFrame->aOp = p->aOp;
007338      pFrame->nOp = p->nOp;
007339      pFrame->token = pProgram->token;
007340  #ifdef SQLITE_DEBUG
007341      pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
007342  #endif
007343  
007344      pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
007345      for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
007346        pMem->flags = MEM_Undefined;
007347        pMem->db = db;
007348      }
007349    }else{
007350      pFrame = (VdbeFrame*)pRt->z;
007351      assert( pRt->xDel==sqlite3VdbeFrameMemDel );
007352      assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
007353          || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
007354      assert( pProgram->nCsr==pFrame->nChildCsr );
007355      assert( (int)(pOp - aOp)==pFrame->pc );
007356    }
007357  
007358    p->nFrame++;
007359    pFrame->pParent = p->pFrame;
007360    pFrame->lastRowid = db->lastRowid;
007361    pFrame->nChange = p->nChange;
007362    pFrame->nDbChange = p->db->nChange;
007363    assert( pFrame->pAuxData==0 );
007364    pFrame->pAuxData = p->pAuxData;
007365    p->pAuxData = 0;
007366    p->nChange = 0;
007367    p->pFrame = pFrame;
007368    p->aMem = aMem = VdbeFrameMem(pFrame);
007369    p->nMem = pFrame->nChildMem;
007370    p->nCursor = (u16)pFrame->nChildCsr;
007371    p->apCsr = (VdbeCursor **)&aMem[p->nMem];
007372    pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
007373    memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
007374    p->aOp = aOp = pProgram->aOp;
007375    p->nOp = pProgram->nOp;
007376  #ifdef SQLITE_DEBUG
007377    /* Verify that second and subsequent executions of the same trigger do not
007378    ** try to reuse register values from the first use. */
007379    {
007380      int i;
007381      for(i=0; i<p->nMem; i++){
007382        aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
007383        MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
007384      }
007385    }
007386  #endif
007387    pOp = &aOp[-1];
007388    goto check_for_interrupt;
007389  }
007390  
007391  /* Opcode: Param P1 P2 * * *
007392  **
007393  ** This opcode is only ever present in sub-programs called via the
007394  ** OP_Program instruction. Copy a value currently stored in a memory
007395  ** cell of the calling (parent) frame to cell P2 in the current frames
007396  ** address space. This is used by trigger programs to access the new.*
007397  ** and old.* values.
007398  **
007399  ** The address of the cell in the parent frame is determined by adding
007400  ** the value of the P1 argument to the value of the P1 argument to the
007401  ** calling OP_Program instruction.
007402  */
007403  case OP_Param: {           /* out2 */
007404    VdbeFrame *pFrame;
007405    Mem *pIn;
007406    pOut = out2Prerelease(p, pOp);
007407    pFrame = p->pFrame;
007408    pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];  
007409    sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
007410    break;
007411  }
007412  
007413  #endif /* #ifndef SQLITE_OMIT_TRIGGER */
007414  
007415  #ifndef SQLITE_OMIT_FOREIGN_KEY
007416  /* Opcode: FkCounter P1 P2 * * *
007417  ** Synopsis: fkctr[P1]+=P2
007418  **
007419  ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
007420  ** If P1 is non-zero, the database constraint counter is incremented
007421  ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
007422  ** statement counter is incremented (immediate foreign key constraints).
007423  */
007424  case OP_FkCounter: {
007425    if( db->flags & SQLITE_DeferFKs ){
007426      db->nDeferredImmCons += pOp->p2;
007427    }else if( pOp->p1 ){
007428      db->nDeferredCons += pOp->p2;
007429    }else{
007430      p->nFkConstraint += pOp->p2;
007431    }
007432    break;
007433  }
007434  
007435  /* Opcode: FkIfZero P1 P2 * * *
007436  ** Synopsis: if fkctr[P1]==0 goto P2
007437  **
007438  ** This opcode tests if a foreign key constraint-counter is currently zero.
007439  ** If so, jump to instruction P2. Otherwise, fall through to the next
007440  ** instruction.
007441  **
007442  ** If P1 is non-zero, then the jump is taken if the database constraint-counter
007443  ** is zero (the one that counts deferred constraint violations). If P1 is
007444  ** zero, the jump is taken if the statement constraint-counter is zero
007445  ** (immediate foreign key constraint violations).
007446  */
007447  case OP_FkIfZero: {         /* jump */
007448    if( pOp->p1 ){
007449      VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
007450      if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
007451    }else{
007452      VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
007453      if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
007454    }
007455    break;
007456  }
007457  #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
007458  
007459  #ifndef SQLITE_OMIT_AUTOINCREMENT
007460  /* Opcode: MemMax P1 P2 * * *
007461  ** Synopsis: r[P1]=max(r[P1],r[P2])
007462  **
007463  ** P1 is a register in the root frame of this VM (the root frame is
007464  ** different from the current frame if this instruction is being executed
007465  ** within a sub-program). Set the value of register P1 to the maximum of
007466  ** its current value and the value in register P2.
007467  **
007468  ** This instruction throws an error if the memory cell is not initially
007469  ** an integer.
007470  */
007471  case OP_MemMax: {        /* in2 */
007472    VdbeFrame *pFrame;
007473    if( p->pFrame ){
007474      for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
007475      pIn1 = &pFrame->aMem[pOp->p1];
007476    }else{
007477      pIn1 = &aMem[pOp->p1];
007478    }
007479    assert( memIsValid(pIn1) );
007480    sqlite3VdbeMemIntegerify(pIn1);
007481    pIn2 = &aMem[pOp->p2];
007482    sqlite3VdbeMemIntegerify(pIn2);
007483    if( pIn1->u.i<pIn2->u.i){
007484      pIn1->u.i = pIn2->u.i;
007485    }
007486    break;
007487  }
007488  #endif /* SQLITE_OMIT_AUTOINCREMENT */
007489  
007490  /* Opcode: IfPos P1 P2 P3 * *
007491  ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
007492  **
007493  ** Register P1 must contain an integer.
007494  ** If the value of register P1 is 1 or greater, subtract P3 from the
007495  ** value in P1 and jump to P2.
007496  **
007497  ** If the initial value of register P1 is less than 1, then the
007498  ** value is unchanged and control passes through to the next instruction.
007499  */
007500  case OP_IfPos: {        /* jump, in1 */
007501    pIn1 = &aMem[pOp->p1];
007502    assert( pIn1->flags&MEM_Int );
007503    VdbeBranchTaken( pIn1->u.i>0, 2);
007504    if( pIn1->u.i>0 ){
007505      pIn1->u.i -= pOp->p3;
007506      goto jump_to_p2;
007507    }
007508    break;
007509  }
007510  
007511  /* Opcode: OffsetLimit P1 P2 P3 * *
007512  ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
007513  **
007514  ** This opcode performs a commonly used computation associated with
007515  ** LIMIT and OFFSET processing.  r[P1] holds the limit counter.  r[P3]
007516  ** holds the offset counter.  The opcode computes the combined value
007517  ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
007518  ** value computed is the total number of rows that will need to be
007519  ** visited in order to complete the query.
007520  **
007521  ** If r[P3] is zero or negative, that means there is no OFFSET
007522  ** and r[P2] is set to be the value of the LIMIT, r[P1].
007523  **
007524  ** if r[P1] is zero or negative, that means there is no LIMIT
007525  ** and r[P2] is set to -1.
007526  **
007527  ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
007528  */
007529  case OP_OffsetLimit: {    /* in1, out2, in3 */
007530    i64 x;
007531    pIn1 = &aMem[pOp->p1];
007532    pIn3 = &aMem[pOp->p3];
007533    pOut = out2Prerelease(p, pOp);
007534    assert( pIn1->flags & MEM_Int );
007535    assert( pIn3->flags & MEM_Int );
007536    x = pIn1->u.i;
007537    if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
007538      /* If the LIMIT is less than or equal to zero, loop forever.  This
007539      ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
007540      ** also loop forever.  This is undocumented.  In fact, one could argue
007541      ** that the loop should terminate.  But assuming 1 billion iterations
007542      ** per second (far exceeding the capabilities of any current hardware)
007543      ** it would take nearly 300 years to actually reach the limit.  So
007544      ** looping forever is a reasonable approximation. */
007545      pOut->u.i = -1;
007546    }else{
007547      pOut->u.i = x;
007548    }
007549    break;
007550  }
007551  
007552  /* Opcode: IfNotZero P1 P2 * * *
007553  ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
007554  **
007555  ** Register P1 must contain an integer.  If the content of register P1 is
007556  ** initially greater than zero, then decrement the value in register P1.
007557  ** If it is non-zero (negative or positive) and then also jump to P2. 
007558  ** If register P1 is initially zero, leave it unchanged and fall through.
007559  */
007560  case OP_IfNotZero: {        /* jump, in1 */
007561    pIn1 = &aMem[pOp->p1];
007562    assert( pIn1->flags&MEM_Int );
007563    VdbeBranchTaken(pIn1->u.i<0, 2);
007564    if( pIn1->u.i ){
007565       if( pIn1->u.i>0 ) pIn1->u.i--;
007566       goto jump_to_p2;
007567    }
007568    break;
007569  }
007570  
007571  /* Opcode: DecrJumpZero P1 P2 * * *
007572  ** Synopsis: if (--r[P1])==0 goto P2
007573  **
007574  ** Register P1 must hold an integer.  Decrement the value in P1
007575  ** and jump to P2 if the new value is exactly zero.
007576  */
007577  case OP_DecrJumpZero: {      /* jump, in1 */
007578    pIn1 = &aMem[pOp->p1];
007579    assert( pIn1->flags&MEM_Int );
007580    if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
007581    VdbeBranchTaken(pIn1->u.i==0, 2);
007582    if( pIn1->u.i==0 ) goto jump_to_p2;
007583    break;
007584  }
007585  
007586  
007587  /* Opcode: AggStep * P2 P3 P4 P5
007588  ** Synopsis: accum=r[P3] step(r[P2@P5])
007589  **
007590  ** Execute the xStep function for an aggregate.
007591  ** The function has P5 arguments.  P4 is a pointer to the
007592  ** FuncDef structure that specifies the function.  Register P3 is the
007593  ** accumulator.
007594  **
007595  ** The P5 arguments are taken from register P2 and its
007596  ** successors.
007597  */
007598  /* Opcode: AggInverse * P2 P3 P4 P5
007599  ** Synopsis: accum=r[P3] inverse(r[P2@P5])
007600  **
007601  ** Execute the xInverse function for an aggregate.
007602  ** The function has P5 arguments.  P4 is a pointer to the
007603  ** FuncDef structure that specifies the function.  Register P3 is the
007604  ** accumulator.
007605  **
007606  ** The P5 arguments are taken from register P2 and its
007607  ** successors.
007608  */
007609  /* Opcode: AggStep1 P1 P2 P3 P4 P5
007610  ** Synopsis: accum=r[P3] step(r[P2@P5])
007611  **
007612  ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
007613  ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
007614  ** FuncDef structure that specifies the function.  Register P3 is the
007615  ** accumulator.
007616  **
007617  ** The P5 arguments are taken from register P2 and its
007618  ** successors.
007619  **
007620  ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
007621  ** the FuncDef stored in P4 is converted into an sqlite3_context and
007622  ** the opcode is changed.  In this way, the initialization of the
007623  ** sqlite3_context only happens once, instead of on each call to the
007624  ** step function.
007625  */
007626  case OP_AggInverse:
007627  case OP_AggStep: {
007628    int n;
007629    sqlite3_context *pCtx;
007630  
007631    assert( pOp->p4type==P4_FUNCDEF );
007632    n = pOp->p5;
007633    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
007634    assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
007635    assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
007636    pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
007637                 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
007638    if( pCtx==0 ) goto no_mem;
007639    pCtx->pMem = 0;
007640    pCtx->pOut = (Mem*)&(pCtx->argv[n]);
007641    sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
007642    pCtx->pFunc = pOp->p4.pFunc;
007643    pCtx->iOp = (int)(pOp - aOp);
007644    pCtx->pVdbe = p;
007645    pCtx->skipFlag = 0;
007646    pCtx->isError = 0;
007647    pCtx->enc = encoding;
007648    pCtx->argc = n;
007649    pOp->p4type = P4_FUNCCTX;
007650    pOp->p4.pCtx = pCtx;
007651  
007652    /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
007653    assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
007654  
007655    pOp->opcode = OP_AggStep1;
007656    /* Fall through into OP_AggStep */
007657    /* no break */ deliberate_fall_through
007658  }
007659  case OP_AggStep1: {
007660    int i;
007661    sqlite3_context *pCtx;
007662    Mem *pMem;
007663  
007664    assert( pOp->p4type==P4_FUNCCTX );
007665    pCtx = pOp->p4.pCtx;
007666    pMem = &aMem[pOp->p3];
007667  
007668  #ifdef SQLITE_DEBUG
007669    if( pOp->p1 ){
007670      /* This is an OP_AggInverse call.  Verify that xStep has always
007671      ** been called at least once prior to any xInverse call. */
007672      assert( pMem->uTemp==0x1122e0e3 );
007673    }else{
007674      /* This is an OP_AggStep call.  Mark it as such. */
007675      pMem->uTemp = 0x1122e0e3;
007676    }
007677  #endif
007678  
007679    /* If this function is inside of a trigger, the register array in aMem[]
007680    ** might change from one evaluation to the next.  The next block of code
007681    ** checks to see if the register array has changed, and if so it
007682    ** reinitializes the relevant parts of the sqlite3_context object */
007683    if( pCtx->pMem != pMem ){
007684      pCtx->pMem = pMem;
007685      for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
007686    }
007687  
007688  #ifdef SQLITE_DEBUG
007689    for(i=0; i<pCtx->argc; i++){
007690      assert( memIsValid(pCtx->argv[i]) );
007691      REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
007692    }
007693  #endif
007694  
007695    pMem->n++;
007696    assert( pCtx->pOut->flags==MEM_Null );
007697    assert( pCtx->isError==0 );
007698    assert( pCtx->skipFlag==0 );
007699  #ifndef SQLITE_OMIT_WINDOWFUNC
007700    if( pOp->p1 ){
007701      (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
007702    }else
007703  #endif
007704    (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
007705  
007706    if( pCtx->isError ){
007707      if( pCtx->isError>0 ){
007708        sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
007709        rc = pCtx->isError;
007710      }
007711      if( pCtx->skipFlag ){
007712        assert( pOp[-1].opcode==OP_CollSeq );
007713        i = pOp[-1].p1;
007714        if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
007715        pCtx->skipFlag = 0;
007716      }
007717      sqlite3VdbeMemRelease(pCtx->pOut);
007718      pCtx->pOut->flags = MEM_Null;
007719      pCtx->isError = 0;
007720      if( rc ) goto abort_due_to_error;
007721    }
007722    assert( pCtx->pOut->flags==MEM_Null );
007723    assert( pCtx->skipFlag==0 );
007724    break;
007725  }
007726  
007727  /* Opcode: AggFinal P1 P2 * P4 *
007728  ** Synopsis: accum=r[P1] N=P2
007729  **
007730  ** P1 is the memory location that is the accumulator for an aggregate
007731  ** or window function.  Execute the finalizer function
007732  ** for an aggregate and store the result in P1.
007733  **
007734  ** P2 is the number of arguments that the step function takes and
007735  ** P4 is a pointer to the FuncDef for this function.  The P2
007736  ** argument is not used by this opcode.  It is only there to disambiguate
007737  ** functions that can take varying numbers of arguments.  The
007738  ** P4 argument is only needed for the case where
007739  ** the step function was not previously called.
007740  */
007741  /* Opcode: AggValue * P2 P3 P4 *
007742  ** Synopsis: r[P3]=value N=P2
007743  **
007744  ** Invoke the xValue() function and store the result in register P3.
007745  **
007746  ** P2 is the number of arguments that the step function takes and
007747  ** P4 is a pointer to the FuncDef for this function.  The P2
007748  ** argument is not used by this opcode.  It is only there to disambiguate
007749  ** functions that can take varying numbers of arguments.  The
007750  ** P4 argument is only needed for the case where
007751  ** the step function was not previously called.
007752  */
007753  case OP_AggValue:
007754  case OP_AggFinal: {
007755    Mem *pMem;
007756    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
007757    assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
007758    pMem = &aMem[pOp->p1];
007759    assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
007760  #ifndef SQLITE_OMIT_WINDOWFUNC
007761    if( pOp->p3 ){
007762      memAboutToChange(p, &aMem[pOp->p3]);
007763      rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
007764      pMem = &aMem[pOp->p3];
007765    }else
007766  #endif
007767    {
007768      rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
007769    }
007770   
007771    if( rc ){
007772      sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
007773      goto abort_due_to_error;
007774    }
007775    sqlite3VdbeChangeEncoding(pMem, encoding);
007776    UPDATE_MAX_BLOBSIZE(pMem);
007777    REGISTER_TRACE((int)(pMem-aMem), pMem);
007778    break;
007779  }
007780  
007781  #ifndef SQLITE_OMIT_WAL
007782  /* Opcode: Checkpoint P1 P2 P3 * *
007783  **
007784  ** Checkpoint database P1. This is a no-op if P1 is not currently in
007785  ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
007786  ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
007787  ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
007788  ** WAL after the checkpoint into mem[P3+1] and the number of pages
007789  ** in the WAL that have been checkpointed after the checkpoint
007790  ** completes into mem[P3+2].  However on an error, mem[P3+1] and
007791  ** mem[P3+2] are initialized to -1.
007792  */
007793  case OP_Checkpoint: {
007794    int i;                          /* Loop counter */
007795    int aRes[3];                    /* Results */
007796    Mem *pMem;                      /* Write results here */
007797  
007798    assert( p->readOnly==0 );
007799    aRes[0] = 0;
007800    aRes[1] = aRes[2] = -1;
007801    assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
007802         || pOp->p2==SQLITE_CHECKPOINT_FULL
007803         || pOp->p2==SQLITE_CHECKPOINT_RESTART
007804         || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
007805    );
007806    rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
007807    if( rc ){
007808      if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
007809      rc = SQLITE_OK;
007810      aRes[0] = 1;
007811    }
007812    for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
007813      sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
007814    }   
007815    break;
007816  }; 
007817  #endif
007818  
007819  #ifndef SQLITE_OMIT_PRAGMA
007820  /* Opcode: JournalMode P1 P2 P3 * *
007821  **
007822  ** Change the journal mode of database P1 to P3. P3 must be one of the
007823  ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
007824  ** modes (delete, truncate, persist, off and memory), this is a simple
007825  ** operation. No IO is required.
007826  **
007827  ** If changing into or out of WAL mode the procedure is more complicated.
007828  **
007829  ** Write a string containing the final journal-mode to register P2.
007830  */
007831  case OP_JournalMode: {    /* out2 */
007832    Btree *pBt;                     /* Btree to change journal mode of */
007833    Pager *pPager;                  /* Pager associated with pBt */
007834    int eNew;                       /* New journal mode */
007835    int eOld;                       /* The old journal mode */
007836  #ifndef SQLITE_OMIT_WAL
007837    const char *zFilename;          /* Name of database file for pPager */
007838  #endif
007839  
007840    pOut = out2Prerelease(p, pOp);
007841    eNew = pOp->p3;
007842    assert( eNew==PAGER_JOURNALMODE_DELETE
007843         || eNew==PAGER_JOURNALMODE_TRUNCATE
007844         || eNew==PAGER_JOURNALMODE_PERSIST
007845         || eNew==PAGER_JOURNALMODE_OFF
007846         || eNew==PAGER_JOURNALMODE_MEMORY
007847         || eNew==PAGER_JOURNALMODE_WAL
007848         || eNew==PAGER_JOURNALMODE_QUERY
007849    );
007850    assert( pOp->p1>=0 && pOp->p1<db->nDb );
007851    assert( p->readOnly==0 );
007852  
007853    pBt = db->aDb[pOp->p1].pBt;
007854    pPager = sqlite3BtreePager(pBt);
007855    eOld = sqlite3PagerGetJournalMode(pPager);
007856    if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
007857    assert( sqlite3BtreeHoldsMutex(pBt) );
007858    if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
007859  
007860  #ifndef SQLITE_OMIT_WAL
007861    zFilename = sqlite3PagerFilename(pPager, 1);
007862  
007863    /* Do not allow a transition to journal_mode=WAL for a database
007864    ** in temporary storage or if the VFS does not support shared memory
007865    */
007866    if( eNew==PAGER_JOURNALMODE_WAL
007867     && (sqlite3Strlen30(zFilename)==0           /* Temp file */
007868         || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
007869    ){
007870      eNew = eOld;
007871    }
007872  
007873    if( (eNew!=eOld)
007874     && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
007875    ){
007876      if( !db->autoCommit || db->nVdbeRead>1 ){
007877        rc = SQLITE_ERROR;
007878        sqlite3VdbeError(p,
007879            "cannot change %s wal mode from within a transaction",
007880            (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
007881        );
007882        goto abort_due_to_error;
007883      }else{
007884  
007885        if( eOld==PAGER_JOURNALMODE_WAL ){
007886          /* If leaving WAL mode, close the log file. If successful, the call
007887          ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
007888          ** file. An EXCLUSIVE lock may still be held on the database file
007889          ** after a successful return.
007890          */
007891          rc = sqlite3PagerCloseWal(pPager, db);
007892          if( rc==SQLITE_OK ){
007893            sqlite3PagerSetJournalMode(pPager, eNew);
007894          }
007895        }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
007896          /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
007897          ** as an intermediate */
007898          sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
007899        }
007900   
007901        /* Open a transaction on the database file. Regardless of the journal
007902        ** mode, this transaction always uses a rollback journal.
007903        */
007904        assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
007905        if( rc==SQLITE_OK ){
007906          rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
007907        }
007908      }
007909    }
007910  #endif /* ifndef SQLITE_OMIT_WAL */
007911  
007912    if( rc ) eNew = eOld;
007913    eNew = sqlite3PagerSetJournalMode(pPager, eNew);
007914  
007915    pOut->flags = MEM_Str|MEM_Static|MEM_Term;
007916    pOut->z = (char *)sqlite3JournalModename(eNew);
007917    pOut->n = sqlite3Strlen30(pOut->z);
007918    pOut->enc = SQLITE_UTF8;
007919    sqlite3VdbeChangeEncoding(pOut, encoding);
007920    if( rc ) goto abort_due_to_error;
007921    break;
007922  };
007923  #endif /* SQLITE_OMIT_PRAGMA */
007924  
007925  #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
007926  /* Opcode: Vacuum P1 P2 * * *
007927  **
007928  ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
007929  ** for an attached database.  The "temp" database may not be vacuumed.
007930  **
007931  ** If P2 is not zero, then it is a register holding a string which is
007932  ** the file into which the result of vacuum should be written.  When
007933  ** P2 is zero, the vacuum overwrites the original database.
007934  */
007935  case OP_Vacuum: {
007936    assert( p->readOnly==0 );
007937    rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
007938                          pOp->p2 ? &aMem[pOp->p2] : 0);
007939    if( rc ) goto abort_due_to_error;
007940    break;
007941  }
007942  #endif
007943  
007944  #if !defined(SQLITE_OMIT_AUTOVACUUM)
007945  /* Opcode: IncrVacuum P1 P2 * * *
007946  **
007947  ** Perform a single step of the incremental vacuum procedure on
007948  ** the P1 database. If the vacuum has finished, jump to instruction
007949  ** P2. Otherwise, fall through to the next instruction.
007950  */
007951  case OP_IncrVacuum: {        /* jump */
007952    Btree *pBt;
007953  
007954    assert( pOp->p1>=0 && pOp->p1<db->nDb );
007955    assert( DbMaskTest(p->btreeMask, pOp->p1) );
007956    assert( p->readOnly==0 );
007957    pBt = db->aDb[pOp->p1].pBt;
007958    rc = sqlite3BtreeIncrVacuum(pBt);
007959    VdbeBranchTaken(rc==SQLITE_DONE,2);
007960    if( rc ){
007961      if( rc!=SQLITE_DONE ) goto abort_due_to_error;
007962      rc = SQLITE_OK;
007963      goto jump_to_p2;
007964    }
007965    break;
007966  }
007967  #endif
007968  
007969  /* Opcode: Expire P1 P2 * * *
007970  **
007971  ** Cause precompiled statements to expire.  When an expired statement
007972  ** is executed using sqlite3_step() it will either automatically
007973  ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
007974  ** or it will fail with SQLITE_SCHEMA.
007975  **
007976  ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
007977  ** then only the currently executing statement is expired.
007978  **
007979  ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
007980  ** then running SQL statements are allowed to continue to run to completion.
007981  ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
007982  ** that might help the statement run faster but which does not affect the
007983  ** correctness of operation.
007984  */
007985  case OP_Expire: {
007986    assert( pOp->p2==0 || pOp->p2==1 );
007987    if( !pOp->p1 ){
007988      sqlite3ExpirePreparedStatements(db, pOp->p2);
007989    }else{
007990      p->expired = pOp->p2+1;
007991    }
007992    break;
007993  }
007994  
007995  /* Opcode: CursorLock P1 * * * *
007996  **
007997  ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
007998  ** written by an other cursor.
007999  */
008000  case OP_CursorLock: {
008001    VdbeCursor *pC;
008002    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
008003    pC = p->apCsr[pOp->p1];
008004    assert( pC!=0 );
008005    assert( pC->eCurType==CURTYPE_BTREE );
008006    sqlite3BtreeCursorPin(pC->uc.pCursor);
008007    break;
008008  }
008009  
008010  /* Opcode: CursorUnlock P1 * * * *
008011  **
008012  ** Unlock the btree to which cursor P1 is pointing so that it can be
008013  ** written by other cursors.
008014  */
008015  case OP_CursorUnlock: {
008016    VdbeCursor *pC;
008017    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
008018    pC = p->apCsr[pOp->p1];
008019    assert( pC!=0 );
008020    assert( pC->eCurType==CURTYPE_BTREE );
008021    sqlite3BtreeCursorUnpin(pC->uc.pCursor);
008022    break;
008023  }
008024  
008025  #ifndef SQLITE_OMIT_SHARED_CACHE
008026  /* Opcode: TableLock P1 P2 P3 P4 *
008027  ** Synopsis: iDb=P1 root=P2 write=P3
008028  **
008029  ** Obtain a lock on a particular table. This instruction is only used when
008030  ** the shared-cache feature is enabled.
008031  **
008032  ** P1 is the index of the database in sqlite3.aDb[] of the database
008033  ** on which the lock is acquired.  A readlock is obtained if P3==0 or
008034  ** a write lock if P3==1.
008035  **
008036  ** P2 contains the root-page of the table to lock.
008037  **
008038  ** P4 contains a pointer to the name of the table being locked. This is only
008039  ** used to generate an error message if the lock cannot be obtained.
008040  */
008041  case OP_TableLock: {
008042    u8 isWriteLock = (u8)pOp->p3;
008043    if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
008044      int p1 = pOp->p1;
008045      assert( p1>=0 && p1<db->nDb );
008046      assert( DbMaskTest(p->btreeMask, p1) );
008047      assert( isWriteLock==0 || isWriteLock==1 );
008048      rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
008049      if( rc ){
008050        if( (rc&0xFF)==SQLITE_LOCKED ){
008051          const char *z = pOp->p4.z;
008052          sqlite3VdbeError(p, "database table is locked: %s", z);
008053        }
008054        goto abort_due_to_error;
008055      }
008056    }
008057    break;
008058  }
008059  #endif /* SQLITE_OMIT_SHARED_CACHE */
008060  
008061  #ifndef SQLITE_OMIT_VIRTUALTABLE
008062  /* Opcode: VBegin * * * P4 *
008063  **
008064  ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
008065  ** xBegin method for that table.
008066  **
008067  ** Also, whether or not P4 is set, check that this is not being called from
008068  ** within a callback to a virtual table xSync() method. If it is, the error
008069  ** code will be set to SQLITE_LOCKED.
008070  */
008071  case OP_VBegin: {
008072    VTable *pVTab;
008073    pVTab = pOp->p4.pVtab;
008074    rc = sqlite3VtabBegin(db, pVTab);
008075    if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
008076    if( rc ) goto abort_due_to_error;
008077    break;
008078  }
008079  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008080  
008081  #ifndef SQLITE_OMIT_VIRTUALTABLE
008082  /* Opcode: VCreate P1 P2 * * *
008083  **
008084  ** P2 is a register that holds the name of a virtual table in database
008085  ** P1. Call the xCreate method for that table.
008086  */
008087  case OP_VCreate: {
008088    Mem sMem;          /* For storing the record being decoded */
008089    const char *zTab;  /* Name of the virtual table */
008090  
008091    memset(&sMem, 0, sizeof(sMem));
008092    sMem.db = db;
008093    /* Because P2 is always a static string, it is impossible for the
008094    ** sqlite3VdbeMemCopy() to fail */
008095    assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
008096    assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
008097    rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
008098    assert( rc==SQLITE_OK );
008099    zTab = (const char*)sqlite3_value_text(&sMem);
008100    assert( zTab || db->mallocFailed );
008101    if( zTab ){
008102      rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
008103    }
008104    sqlite3VdbeMemRelease(&sMem);
008105    if( rc ) goto abort_due_to_error;
008106    break;
008107  }
008108  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008109  
008110  #ifndef SQLITE_OMIT_VIRTUALTABLE
008111  /* Opcode: VDestroy P1 * * P4 *
008112  **
008113  ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
008114  ** of that table.
008115  */
008116  case OP_VDestroy: {
008117    db->nVDestroy++;
008118    rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
008119    db->nVDestroy--;
008120    assert( p->errorAction==OE_Abort && p->usesStmtJournal );
008121    if( rc ) goto abort_due_to_error;
008122    break;
008123  }
008124  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008125  
008126  #ifndef SQLITE_OMIT_VIRTUALTABLE
008127  /* Opcode: VOpen P1 * * P4 *
008128  **
008129  ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
008130  ** P1 is a cursor number.  This opcode opens a cursor to the virtual
008131  ** table and stores that cursor in P1.
008132  */
008133  case OP_VOpen: {             /* ncycle */
008134    VdbeCursor *pCur;
008135    sqlite3_vtab_cursor *pVCur;
008136    sqlite3_vtab *pVtab;
008137    const sqlite3_module *pModule;
008138  
008139    assert( p->bIsReader );
008140    pCur = 0;
008141    pVCur = 0;
008142    pVtab = pOp->p4.pVtab->pVtab;
008143    if( pVtab==0 || NEVER(pVtab->pModule==0) ){
008144      rc = SQLITE_LOCKED;
008145      goto abort_due_to_error;
008146    }
008147    pModule = pVtab->pModule;
008148    rc = pModule->xOpen(pVtab, &pVCur);
008149    sqlite3VtabImportErrmsg(p, pVtab);
008150    if( rc ) goto abort_due_to_error;
008151  
008152    /* Initialize sqlite3_vtab_cursor base class */
008153    pVCur->pVtab = pVtab;
008154  
008155    /* Initialize vdbe cursor object */
008156    pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
008157    if( pCur ){
008158      pCur->uc.pVCur = pVCur;
008159      pVtab->nRef++;
008160    }else{
008161      assert( db->mallocFailed );
008162      pModule->xClose(pVCur);
008163      goto no_mem;
008164    }
008165    break;
008166  }
008167  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008168  
008169  #ifndef SQLITE_OMIT_VIRTUALTABLE
008170  /* Opcode: VCheck P1 P2 P3 P4 *
008171  **
008172  ** P4 is a pointer to a Table object that is a virtual table in schema P1
008173  ** that supports the xIntegrity() method.  This opcode runs the xIntegrity()
008174  ** method for that virtual table, using P3 as the integer argument.  If
008175  ** an error is reported back, the table name is prepended to the error
008176  ** message and that message is stored in P2.  If no errors are seen,
008177  ** register P2 is set to NULL.
008178  */
008179  case OP_VCheck: {             /* out2 */
008180    Table *pTab;
008181    sqlite3_vtab *pVtab;
008182    const sqlite3_module *pModule;
008183    char *zErr = 0;
008184  
008185    pOut = &aMem[pOp->p2];
008186    sqlite3VdbeMemSetNull(pOut);  /* Innocent until proven guilty */
008187    assert( pOp->p4type==P4_TABLEREF );
008188    pTab = pOp->p4.pTab;
008189    assert( pTab!=0 );
008190    assert( pTab->nTabRef>0 );
008191    assert( IsVirtual(pTab) );
008192    if( pTab->u.vtab.p==0 ) break;
008193    pVtab = pTab->u.vtab.p->pVtab;
008194    assert( pVtab!=0 );
008195    pModule = pVtab->pModule;
008196    assert( pModule!=0 );
008197    assert( pModule->iVersion>=4 );
008198    assert( pModule->xIntegrity!=0 );
008199    sqlite3VtabLock(pTab->u.vtab.p);
008200    assert( pOp->p1>=0 && pOp->p1<db->nDb );
008201    rc = pModule->xIntegrity(pVtab, db->aDb[pOp->p1].zDbSName, pTab->zName,
008202                             pOp->p3, &zErr);
008203    sqlite3VtabUnlock(pTab->u.vtab.p);
008204    if( rc ){
008205      sqlite3_free(zErr);
008206      goto abort_due_to_error;
008207    }
008208    if( zErr ){
008209      sqlite3VdbeMemSetStr(pOut, zErr, -1, SQLITE_UTF8, sqlite3_free);
008210    }
008211    break;
008212  }
008213  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008214  
008215  #ifndef SQLITE_OMIT_VIRTUALTABLE
008216  /* Opcode: VInitIn P1 P2 P3 * *
008217  ** Synopsis: r[P2]=ValueList(P1,P3)
008218  **
008219  ** Set register P2 to be a pointer to a ValueList object for cursor P1
008220  ** with cache register P3 and output register P3+1.  This ValueList object
008221  ** can be used as the first argument to sqlite3_vtab_in_first() and
008222  ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
008223  ** cursor.  Register P3 is used to hold the values returned by
008224  ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
008225  */
008226  case OP_VInitIn: {        /* out2, ncycle */
008227    VdbeCursor *pC;         /* The cursor containing the RHS values */
008228    ValueList *pRhs;        /* New ValueList object to put in reg[P2] */
008229  
008230    pC = p->apCsr[pOp->p1];
008231    pRhs = sqlite3_malloc64( sizeof(*pRhs) );
008232    if( pRhs==0 ) goto no_mem;
008233    pRhs->pCsr = pC->uc.pCursor;
008234    pRhs->pOut = &aMem[pOp->p3];
008235    pOut = out2Prerelease(p, pOp);
008236    pOut->flags = MEM_Null;
008237    sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree);
008238    break;
008239  }
008240  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008241  
008242  
008243  #ifndef SQLITE_OMIT_VIRTUALTABLE
008244  /* Opcode: VFilter P1 P2 P3 P4 *
008245  ** Synopsis: iplan=r[P3] zplan='P4'
008246  **
008247  ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
008248  ** the filtered result set is empty.
008249  **
008250  ** P4 is either NULL or a string that was generated by the xBestIndex
008251  ** method of the module.  The interpretation of the P4 string is left
008252  ** to the module implementation.
008253  **
008254  ** This opcode invokes the xFilter method on the virtual table specified
008255  ** by P1.  The integer query plan parameter to xFilter is stored in register
008256  ** P3. Register P3+1 stores the argc parameter to be passed to the
008257  ** xFilter method. Registers P3+2..P3+1+argc are the argc
008258  ** additional parameters which are passed to
008259  ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
008260  **
008261  ** A jump is made to P2 if the result set after filtering would be empty.
008262  */
008263  case OP_VFilter: {   /* jump, ncycle */
008264    int nArg;
008265    int iQuery;
008266    const sqlite3_module *pModule;
008267    Mem *pQuery;
008268    Mem *pArgc;
008269    sqlite3_vtab_cursor *pVCur;
008270    sqlite3_vtab *pVtab;
008271    VdbeCursor *pCur;
008272    int res;
008273    int i;
008274    Mem **apArg;
008275  
008276    pQuery = &aMem[pOp->p3];
008277    pArgc = &pQuery[1];
008278    pCur = p->apCsr[pOp->p1];
008279    assert( memIsValid(pQuery) );
008280    REGISTER_TRACE(pOp->p3, pQuery);
008281    assert( pCur!=0 );
008282    assert( pCur->eCurType==CURTYPE_VTAB );
008283    pVCur = pCur->uc.pVCur;
008284    pVtab = pVCur->pVtab;
008285    pModule = pVtab->pModule;
008286  
008287    /* Grab the index number and argc parameters */
008288    assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
008289    nArg = (int)pArgc->u.i;
008290    iQuery = (int)pQuery->u.i;
008291  
008292    /* Invoke the xFilter method */
008293    apArg = p->apArg;
008294    for(i = 0; i<nArg; i++){
008295      apArg[i] = &pArgc[i+1];
008296    }
008297    rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
008298    sqlite3VtabImportErrmsg(p, pVtab);
008299    if( rc ) goto abort_due_to_error;
008300    res = pModule->xEof(pVCur);
008301    pCur->nullRow = 0;
008302    VdbeBranchTaken(res!=0,2);
008303    if( res ) goto jump_to_p2;
008304    break;
008305  }
008306  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008307  
008308  #ifndef SQLITE_OMIT_VIRTUALTABLE
008309  /* Opcode: VColumn P1 P2 P3 * P5
008310  ** Synopsis: r[P3]=vcolumn(P2)
008311  **
008312  ** Store in register P3 the value of the P2-th column of
008313  ** the current row of the virtual-table of cursor P1.
008314  **
008315  ** If the VColumn opcode is being used to fetch the value of
008316  ** an unchanging column during an UPDATE operation, then the P5
008317  ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
008318  ** function to return true inside the xColumn method of the virtual
008319  ** table implementation.  The P5 column might also contain other
008320  ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
008321  ** unused by OP_VColumn.
008322  */
008323  case OP_VColumn: {           /* ncycle */
008324    sqlite3_vtab *pVtab;
008325    const sqlite3_module *pModule;
008326    Mem *pDest;
008327    sqlite3_context sContext;
008328    FuncDef nullFunc;
008329  
008330    VdbeCursor *pCur = p->apCsr[pOp->p1];
008331    assert( pCur!=0 );
008332    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
008333    pDest = &aMem[pOp->p3];
008334    memAboutToChange(p, pDest);
008335    if( pCur->nullRow ){
008336      sqlite3VdbeMemSetNull(pDest);
008337      break;
008338    }
008339    assert( pCur->eCurType==CURTYPE_VTAB );
008340    pVtab = pCur->uc.pVCur->pVtab;
008341    pModule = pVtab->pModule;
008342    assert( pModule->xColumn );
008343    memset(&sContext, 0, sizeof(sContext));
008344    sContext.pOut = pDest;
008345    sContext.enc = encoding;
008346    nullFunc.pUserData = 0;
008347    nullFunc.funcFlags = SQLITE_RESULT_SUBTYPE;
008348    sContext.pFunc = &nullFunc;
008349    assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
008350    if( pOp->p5 & OPFLAG_NOCHNG ){
008351      sqlite3VdbeMemSetNull(pDest);
008352      pDest->flags = MEM_Null|MEM_Zero;
008353      pDest->u.nZero = 0;
008354    }else{
008355      MemSetTypeFlag(pDest, MEM_Null);
008356    }
008357    rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
008358    sqlite3VtabImportErrmsg(p, pVtab);
008359    if( sContext.isError>0 ){
008360      sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
008361      rc = sContext.isError;
008362    }
008363    sqlite3VdbeChangeEncoding(pDest, encoding);
008364    REGISTER_TRACE(pOp->p3, pDest);
008365    UPDATE_MAX_BLOBSIZE(pDest);
008366  
008367    if( rc ) goto abort_due_to_error;
008368    break;
008369  }
008370  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008371  
008372  #ifndef SQLITE_OMIT_VIRTUALTABLE
008373  /* Opcode: VNext P1 P2 * * *
008374  **
008375  ** Advance virtual table P1 to the next row in its result set and
008376  ** jump to instruction P2.  Or, if the virtual table has reached
008377  ** the end of its result set, then fall through to the next instruction.
008378  */
008379  case OP_VNext: {   /* jump, ncycle */
008380    sqlite3_vtab *pVtab;
008381    const sqlite3_module *pModule;
008382    int res;
008383    VdbeCursor *pCur;
008384  
008385    pCur = p->apCsr[pOp->p1];
008386    assert( pCur!=0 );
008387    assert( pCur->eCurType==CURTYPE_VTAB );
008388    if( pCur->nullRow ){
008389      break;
008390    }
008391    pVtab = pCur->uc.pVCur->pVtab;
008392    pModule = pVtab->pModule;
008393    assert( pModule->xNext );
008394  
008395    /* Invoke the xNext() method of the module. There is no way for the
008396    ** underlying implementation to return an error if one occurs during
008397    ** xNext(). Instead, if an error occurs, true is returned (indicating that
008398    ** data is available) and the error code returned when xColumn or
008399    ** some other method is next invoked on the save virtual table cursor.
008400    */
008401    rc = pModule->xNext(pCur->uc.pVCur);
008402    sqlite3VtabImportErrmsg(p, pVtab);
008403    if( rc ) goto abort_due_to_error;
008404    res = pModule->xEof(pCur->uc.pVCur);
008405    VdbeBranchTaken(!res,2);
008406    if( !res ){
008407      /* If there is data, jump to P2 */
008408      goto jump_to_p2_and_check_for_interrupt;
008409    }
008410    goto check_for_interrupt;
008411  }
008412  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008413  
008414  #ifndef SQLITE_OMIT_VIRTUALTABLE
008415  /* Opcode: VRename P1 * * P4 *
008416  **
008417  ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
008418  ** This opcode invokes the corresponding xRename method. The value
008419  ** in register P1 is passed as the zName argument to the xRename method.
008420  */
008421  case OP_VRename: {
008422    sqlite3_vtab *pVtab;
008423    Mem *pName;
008424    int isLegacy;
008425   
008426    isLegacy = (db->flags & SQLITE_LegacyAlter);
008427    db->flags |= SQLITE_LegacyAlter;
008428    pVtab = pOp->p4.pVtab->pVtab;
008429    pName = &aMem[pOp->p1];
008430    assert( pVtab->pModule->xRename );
008431    assert( memIsValid(pName) );
008432    assert( p->readOnly==0 );
008433    REGISTER_TRACE(pOp->p1, pName);
008434    assert( pName->flags & MEM_Str );
008435    testcase( pName->enc==SQLITE_UTF8 );
008436    testcase( pName->enc==SQLITE_UTF16BE );
008437    testcase( pName->enc==SQLITE_UTF16LE );
008438    rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
008439    if( rc ) goto abort_due_to_error;
008440    rc = pVtab->pModule->xRename(pVtab, pName->z);
008441    if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
008442    sqlite3VtabImportErrmsg(p, pVtab);
008443    p->expired = 0;
008444    if( rc ) goto abort_due_to_error;
008445    break;
008446  }
008447  #endif
008448  
008449  #ifndef SQLITE_OMIT_VIRTUALTABLE
008450  /* Opcode: VUpdate P1 P2 P3 P4 P5
008451  ** Synopsis: data=r[P3@P2]
008452  **
008453  ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
008454  ** This opcode invokes the corresponding xUpdate method. P2 values
008455  ** are contiguous memory cells starting at P3 to pass to the xUpdate
008456  ** invocation. The value in register (P3+P2-1) corresponds to the
008457  ** p2th element of the argv array passed to xUpdate.
008458  **
008459  ** The xUpdate method will do a DELETE or an INSERT or both.
008460  ** The argv[0] element (which corresponds to memory cell P3)
008461  ** is the rowid of a row to delete.  If argv[0] is NULL then no
008462  ** deletion occurs.  The argv[1] element is the rowid of the new
008463  ** row.  This can be NULL to have the virtual table select the new
008464  ** rowid for itself.  The subsequent elements in the array are
008465  ** the values of columns in the new row.
008466  **
008467  ** If P2==1 then no insert is performed.  argv[0] is the rowid of
008468  ** a row to delete.
008469  **
008470  ** P1 is a boolean flag. If it is set to true and the xUpdate call
008471  ** is successful, then the value returned by sqlite3_last_insert_rowid()
008472  ** is set to the value of the rowid for the row just inserted.
008473  **
008474  ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
008475  ** apply in the case of a constraint failure on an insert or update.
008476  */
008477  case OP_VUpdate: {
008478    sqlite3_vtab *pVtab;
008479    const sqlite3_module *pModule;
008480    int nArg;
008481    int i;
008482    sqlite_int64 rowid = 0;
008483    Mem **apArg;
008484    Mem *pX;
008485  
008486    assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
008487         || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
008488    );
008489    assert( p->readOnly==0 );
008490    if( db->mallocFailed ) goto no_mem;
008491    sqlite3VdbeIncrWriteCounter(p, 0);
008492    pVtab = pOp->p4.pVtab->pVtab;
008493    if( pVtab==0 || NEVER(pVtab->pModule==0) ){
008494      rc = SQLITE_LOCKED;
008495      goto abort_due_to_error;
008496    }
008497    pModule = pVtab->pModule;
008498    nArg = pOp->p2;
008499    assert( pOp->p4type==P4_VTAB );
008500    if( ALWAYS(pModule->xUpdate) ){
008501      u8 vtabOnConflict = db->vtabOnConflict;
008502      apArg = p->apArg;
008503      pX = &aMem[pOp->p3];
008504      for(i=0; i<nArg; i++){
008505        assert( memIsValid(pX) );
008506        memAboutToChange(p, pX);
008507        apArg[i] = pX;
008508        pX++;
008509      }
008510      db->vtabOnConflict = pOp->p5;
008511      rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
008512      db->vtabOnConflict = vtabOnConflict;
008513      sqlite3VtabImportErrmsg(p, pVtab);
008514      if( rc==SQLITE_OK && pOp->p1 ){
008515        assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
008516        db->lastRowid = rowid;
008517      }
008518      if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
008519        if( pOp->p5==OE_Ignore ){
008520          rc = SQLITE_OK;
008521        }else{
008522          p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
008523        }
008524      }else{
008525        p->nChange++;
008526      }
008527      if( rc ) goto abort_due_to_error;
008528    }
008529    break;
008530  }
008531  #endif /* SQLITE_OMIT_VIRTUALTABLE */
008532  
008533  #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
008534  /* Opcode: Pagecount P1 P2 * * *
008535  **
008536  ** Write the current number of pages in database P1 to memory cell P2.
008537  */
008538  case OP_Pagecount: {            /* out2 */
008539    pOut = out2Prerelease(p, pOp);
008540    pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
008541    break;
008542  }
008543  #endif
008544  
008545  
008546  #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
008547  /* Opcode: MaxPgcnt P1 P2 P3 * *
008548  **
008549  ** Try to set the maximum page count for database P1 to the value in P3.
008550  ** Do not let the maximum page count fall below the current page count and
008551  ** do not change the maximum page count value if P3==0.
008552  **
008553  ** Store the maximum page count after the change in register P2.
008554  */
008555  case OP_MaxPgcnt: {            /* out2 */
008556    unsigned int newMax;
008557    Btree *pBt;
008558  
008559    pOut = out2Prerelease(p, pOp);
008560    pBt = db->aDb[pOp->p1].pBt;
008561    newMax = 0;
008562    if( pOp->p3 ){
008563      newMax = sqlite3BtreeLastPage(pBt);
008564      if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
008565    }
008566    pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
008567    break;
008568  }
008569  #endif
008570  
008571  /* Opcode: Function P1 P2 P3 P4 *
008572  ** Synopsis: r[P3]=func(r[P2@NP])
008573  **
008574  ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
008575  ** contains a pointer to the function to be run) with arguments taken
008576  ** from register P2 and successors.  The number of arguments is in
008577  ** the sqlite3_context object that P4 points to.
008578  ** The result of the function is stored
008579  ** in register P3.  Register P3 must not be one of the function inputs.
008580  **
008581  ** P1 is a 32-bit bitmask indicating whether or not each argument to the
008582  ** function was determined to be constant at compile time. If the first
008583  ** argument was constant then bit 0 of P1 is set. This is used to determine
008584  ** whether meta data associated with a user function argument using the
008585  ** sqlite3_set_auxdata() API may be safely retained until the next
008586  ** invocation of this opcode.
008587  **
008588  ** See also: AggStep, AggFinal, PureFunc
008589  */
008590  /* Opcode: PureFunc P1 P2 P3 P4 *
008591  ** Synopsis: r[P3]=func(r[P2@NP])
008592  **
008593  ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
008594  ** contains a pointer to the function to be run) with arguments taken
008595  ** from register P2 and successors.  The number of arguments is in
008596  ** the sqlite3_context object that P4 points to.
008597  ** The result of the function is stored
008598  ** in register P3.  Register P3 must not be one of the function inputs.
008599  **
008600  ** P1 is a 32-bit bitmask indicating whether or not each argument to the
008601  ** function was determined to be constant at compile time. If the first
008602  ** argument was constant then bit 0 of P1 is set. This is used to determine
008603  ** whether meta data associated with a user function argument using the
008604  ** sqlite3_set_auxdata() API may be safely retained until the next
008605  ** invocation of this opcode.
008606  **
008607  ** This opcode works exactly like OP_Function.  The only difference is in
008608  ** its name.  This opcode is used in places where the function must be
008609  ** purely non-deterministic.  Some built-in date/time functions can be
008610  ** either deterministic of non-deterministic, depending on their arguments.
008611  ** When those function are used in a non-deterministic way, they will check
008612  ** to see if they were called using OP_PureFunc instead of OP_Function, and
008613  ** if they were, they throw an error.
008614  **
008615  ** See also: AggStep, AggFinal, Function
008616  */
008617  case OP_PureFunc:              /* group */
008618  case OP_Function: {            /* group */
008619    int i;
008620    sqlite3_context *pCtx;
008621  
008622    assert( pOp->p4type==P4_FUNCCTX );
008623    pCtx = pOp->p4.pCtx;
008624  
008625    /* If this function is inside of a trigger, the register array in aMem[]
008626    ** might change from one evaluation to the next.  The next block of code
008627    ** checks to see if the register array has changed, and if so it
008628    ** reinitializes the relevant parts of the sqlite3_context object */
008629    pOut = &aMem[pOp->p3];
008630    if( pCtx->pOut != pOut ){
008631      pCtx->pVdbe = p;
008632      pCtx->pOut = pOut;
008633      pCtx->enc = encoding;
008634      for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
008635    }
008636    assert( pCtx->pVdbe==p );
008637  
008638    memAboutToChange(p, pOut);
008639  #ifdef SQLITE_DEBUG
008640    for(i=0; i<pCtx->argc; i++){
008641      assert( memIsValid(pCtx->argv[i]) );
008642      REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
008643    }
008644  #endif
008645    MemSetTypeFlag(pOut, MEM_Null);
008646    assert( pCtx->isError==0 );
008647    (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
008648  
008649    /* If the function returned an error, throw an exception */
008650    if( pCtx->isError ){
008651      if( pCtx->isError>0 ){
008652        sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
008653        rc = pCtx->isError;
008654      }
008655      sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
008656      pCtx->isError = 0;
008657      if( rc ) goto abort_due_to_error;
008658    }
008659  
008660    assert( (pOut->flags&MEM_Str)==0
008661         || pOut->enc==encoding
008662         || db->mallocFailed );
008663    assert( !sqlite3VdbeMemTooBig(pOut) );
008664  
008665    REGISTER_TRACE(pOp->p3, pOut);
008666    UPDATE_MAX_BLOBSIZE(pOut);
008667    break;
008668  }
008669  
008670  /* Opcode: ClrSubtype P1 * * * *
008671  ** Synopsis:  r[P1].subtype = 0
008672  **
008673  ** Clear the subtype from register P1.
008674  */
008675  case OP_ClrSubtype: {   /* in1 */
008676    pIn1 = &aMem[pOp->p1];
008677    pIn1->flags &= ~MEM_Subtype;
008678    break;
008679  }
008680  
008681  /* Opcode: GetSubtype P1 P2 * * *
008682  ** Synopsis:  r[P2] = r[P1].subtype
008683  **
008684  ** Extract the subtype value from register P1 and write that subtype
008685  ** into register P2.  If P1 has no subtype, then P1 gets a NULL.
008686  */
008687  case OP_GetSubtype: {   /* in1 out2 */
008688    pIn1 = &aMem[pOp->p1];
008689    pOut = &aMem[pOp->p2];
008690    if( pIn1->flags & MEM_Subtype ){
008691      sqlite3VdbeMemSetInt64(pOut, pIn1->eSubtype);
008692    }else{
008693      sqlite3VdbeMemSetNull(pOut);
008694    }
008695    break;
008696  }
008697  
008698  /* Opcode: SetSubtype P1 P2 * * *
008699  ** Synopsis:  r[P2].subtype = r[P1]
008700  **
008701  ** Set the subtype value of register P2 to the integer from register P1.
008702  ** If P1 is NULL, clear the subtype from p2.
008703  */
008704  case OP_SetSubtype: {   /* in1 out2 */
008705    pIn1 = &aMem[pOp->p1];
008706    pOut = &aMem[pOp->p2];
008707    if( pIn1->flags & MEM_Null ){
008708      pOut->flags &= ~MEM_Subtype;
008709    }else{
008710      assert( pIn1->flags & MEM_Int );
008711      pOut->flags |= MEM_Subtype;
008712      pOut->eSubtype = (u8)(pIn1->u.i & 0xff);
008713    }
008714    break;
008715  }
008716  
008717  /* Opcode: FilterAdd P1 * P3 P4 *
008718  ** Synopsis: filter(P1) += key(P3@P4)
008719  **
008720  ** Compute a hash on the P4 registers starting with r[P3] and
008721  ** add that hash to the bloom filter contained in r[P1].
008722  */
008723  case OP_FilterAdd: {
008724    u64 h;
008725  
008726    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
008727    pIn1 = &aMem[pOp->p1];
008728    assert( pIn1->flags & MEM_Blob );
008729    assert( pIn1->n>0 );
008730    h = filterHash(aMem, pOp);
008731  #ifdef SQLITE_DEBUG
008732    if( db->flags&SQLITE_VdbeTrace ){
008733      int ii;
008734      for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
008735        registerTrace(ii, &aMem[ii]);
008736      }
008737      printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
008738    }
008739  #endif
008740    h %= (pIn1->n*8);
008741    pIn1->z[h/8] |= 1<<(h&7);
008742    break;
008743  }
008744  
008745  /* Opcode: Filter P1 P2 P3 P4 *
008746  ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
008747  **
008748  ** Compute a hash on the key contained in the P4 registers starting
008749  ** with r[P3].  Check to see if that hash is found in the
008750  ** bloom filter hosted by register P1.  If it is not present then
008751  ** maybe jump to P2.  Otherwise fall through.
008752  **
008753  ** False negatives are harmless.  It is always safe to fall through,
008754  ** even if the value is in the bloom filter.  A false negative causes
008755  ** more CPU cycles to be used, but it should still yield the correct
008756  ** answer.  However, an incorrect answer may well arise from a
008757  ** false positive - if the jump is taken when it should fall through.
008758  */
008759  case OP_Filter: {          /* jump */
008760    u64 h;
008761  
008762    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
008763    pIn1 = &aMem[pOp->p1];
008764    assert( (pIn1->flags & MEM_Blob)!=0 );
008765    assert( pIn1->n >= 1 );
008766    h = filterHash(aMem, pOp);
008767  #ifdef SQLITE_DEBUG
008768    if( db->flags&SQLITE_VdbeTrace ){
008769      int ii;
008770      for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
008771        registerTrace(ii, &aMem[ii]);
008772      }
008773      printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
008774    }
008775  #endif
008776    h %= (pIn1->n*8);
008777    if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
008778      VdbeBranchTaken(1, 2);
008779      p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
008780      goto jump_to_p2;
008781    }else{
008782      p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
008783      VdbeBranchTaken(0, 2);
008784    }
008785    break;
008786  }
008787  
008788  /* Opcode: Trace P1 P2 * P4 *
008789  **
008790  ** Write P4 on the statement trace output if statement tracing is
008791  ** enabled.
008792  **
008793  ** Operand P1 must be 0x7fffffff and P2 must positive.
008794  */
008795  /* Opcode: Init P1 P2 P3 P4 *
008796  ** Synopsis: Start at P2
008797  **
008798  ** Programs contain a single instance of this opcode as the very first
008799  ** opcode.
008800  **
008801  ** If tracing is enabled (by the sqlite3_trace()) interface, then
008802  ** the UTF-8 string contained in P4 is emitted on the trace callback.
008803  ** Or if P4 is blank, use the string returned by sqlite3_sql().
008804  **
008805  ** If P2 is not zero, jump to instruction P2.
008806  **
008807  ** Increment the value of P1 so that OP_Once opcodes will jump the
008808  ** first time they are evaluated for this run.
008809  **
008810  ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
008811  ** error is encountered.
008812  */
008813  case OP_Trace:
008814  case OP_Init: {          /* jump */
008815    int i;
008816  #ifndef SQLITE_OMIT_TRACE
008817    char *zTrace;
008818  #endif
008819  
008820    /* If the P4 argument is not NULL, then it must be an SQL comment string.
008821    ** The "--" string is broken up to prevent false-positives with srcck1.c.
008822    **
008823    ** This assert() provides evidence for:
008824    ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
008825    ** would have been returned by the legacy sqlite3_trace() interface by
008826    ** using the X argument when X begins with "--" and invoking
008827    ** sqlite3_expanded_sql(P) otherwise.
008828    */
008829    assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
008830  
008831    /* OP_Init is always instruction 0 */
008832    assert( pOp==p->aOp || pOp->opcode==OP_Trace );
008833  
008834  #ifndef SQLITE_OMIT_TRACE
008835    if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
008836     && p->minWriteFileFormat!=254  /* tag-20220401a */
008837     && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
008838    ){
008839  #ifndef SQLITE_OMIT_DEPRECATED
008840      if( db->mTrace & SQLITE_TRACE_LEGACY ){
008841        char *z = sqlite3VdbeExpandSql(p, zTrace);
008842        db->trace.xLegacy(db->pTraceArg, z);
008843        sqlite3_free(z);
008844      }else
008845  #endif
008846      if( db->nVdbeExec>1 ){
008847        char *z = sqlite3MPrintf(db, "-- %s", zTrace);
008848        (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
008849        sqlite3DbFree(db, z);
008850      }else{
008851        (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
008852      }
008853    }
008854  #ifdef SQLITE_USE_FCNTL_TRACE
008855    zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
008856    if( zTrace ){
008857      int j;
008858      for(j=0; j<db->nDb; j++){
008859        if( DbMaskTest(p->btreeMask, j)==0 ) continue;
008860        sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
008861      }
008862    }
008863  #endif /* SQLITE_USE_FCNTL_TRACE */
008864  #ifdef SQLITE_DEBUG
008865    if( (db->flags & SQLITE_SqlTrace)!=0
008866     && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
008867    ){
008868      sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
008869    }
008870  #endif /* SQLITE_DEBUG */
008871  #endif /* SQLITE_OMIT_TRACE */
008872    assert( pOp->p2>0 );
008873    if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
008874      if( pOp->opcode==OP_Trace ) break;
008875      for(i=1; i<p->nOp; i++){
008876        if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
008877      }
008878      pOp->p1 = 0;
008879    }
008880    pOp->p1++;
008881    p->aCounter[SQLITE_STMTSTATUS_RUN]++;
008882    goto jump_to_p2;
008883  }
008884  
008885  #ifdef SQLITE_ENABLE_CURSOR_HINTS
008886  /* Opcode: CursorHint P1 * * P4 *
008887  **
008888  ** Provide a hint to cursor P1 that it only needs to return rows that
008889  ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
008890  ** to values currently held in registers.  TK_COLUMN terms in the P4
008891  ** expression refer to columns in the b-tree to which cursor P1 is pointing.
008892  */
008893  case OP_CursorHint: {
008894    VdbeCursor *pC;
008895  
008896    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
008897    assert( pOp->p4type==P4_EXPR );
008898    pC = p->apCsr[pOp->p1];
008899    if( pC ){
008900      assert( pC->eCurType==CURTYPE_BTREE );
008901      sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
008902                             pOp->p4.pExpr, aMem);
008903    }
008904    break;
008905  }
008906  #endif /* SQLITE_ENABLE_CURSOR_HINTS */
008907  
008908  #ifdef SQLITE_DEBUG
008909  /* Opcode:  Abortable   * * * * *
008910  **
008911  ** Verify that an Abort can happen.  Assert if an Abort at this point
008912  ** might cause database corruption.  This opcode only appears in debugging
008913  ** builds.
008914  **
008915  ** An Abort is safe if either there have been no writes, or if there is
008916  ** an active statement journal.
008917  */
008918  case OP_Abortable: {
008919    sqlite3VdbeAssertAbortable(p);
008920    break;
008921  }
008922  #endif
008923  
008924  #ifdef SQLITE_DEBUG
008925  /* Opcode:  ReleaseReg   P1 P2 P3 * P5
008926  ** Synopsis: release r[P1@P2] mask P3
008927  **
008928  ** Release registers from service.  Any content that was in the
008929  ** the registers is unreliable after this opcode completes.
008930  **
008931  ** The registers released will be the P2 registers starting at P1,
008932  ** except if bit ii of P3 set, then do not release register P1+ii.
008933  ** In other words, P3 is a mask of registers to preserve.
008934  **
008935  ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
008936  ** that if the content of the released register was set using OP_SCopy,
008937  ** a change to the value of the source register for the OP_SCopy will no longer
008938  ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
008939  **
008940  ** If P5 is set, then all released registers have their type set
008941  ** to MEM_Undefined so that any subsequent attempt to read the released
008942  ** register (before it is reinitialized) will generate an assertion fault.
008943  **
008944  ** P5 ought to be set on every call to this opcode.
008945  ** However, there are places in the code generator will release registers
008946  ** before their are used, under the (valid) assumption that the registers
008947  ** will not be reallocated for some other purpose before they are used and
008948  ** hence are safe to release.
008949  **
008950  ** This opcode is only available in testing and debugging builds.  It is
008951  ** not generated for release builds.  The purpose of this opcode is to help
008952  ** validate the generated bytecode.  This opcode does not actually contribute
008953  ** to computing an answer.
008954  */
008955  case OP_ReleaseReg: {
008956    Mem *pMem;
008957    int i;
008958    u32 constMask;
008959    assert( pOp->p1>0 );
008960    assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
008961    pMem = &aMem[pOp->p1];
008962    constMask = pOp->p3;
008963    for(i=0; i<pOp->p2; i++, pMem++){
008964      if( i>=32 || (constMask & MASKBIT32(i))==0 ){
008965        pMem->pScopyFrom = 0;
008966        if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
008967      }
008968    }
008969    break;
008970  }
008971  #endif
008972  
008973  /* Opcode: Noop * * * * *
008974  **
008975  ** Do nothing.  This instruction is often useful as a jump
008976  ** destination.
008977  */
008978  /*
008979  ** The magic Explain opcode are only inserted when explain==2 (which
008980  ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
008981  ** This opcode records information from the optimizer.  It is the
008982  ** the same as a no-op.  This opcodesnever appears in a real VM program.
008983  */
008984  default: {          /* This is really OP_Noop, OP_Explain */
008985    assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
008986  
008987    break;
008988  }
008989  
008990  /*****************************************************************************
008991  ** The cases of the switch statement above this line should all be indented
008992  ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
008993  ** readability.  From this point on down, the normal indentation rules are
008994  ** restored.
008995  *****************************************************************************/
008996      }
008997  
008998  #if defined(VDBE_PROFILE)
008999      *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
009000      pnCycle = 0;
009001  #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
009002      if( pnCycle ){
009003        *pnCycle += sqlite3Hwtime();
009004        pnCycle = 0;
009005      }
009006  #endif
009007  
009008      /* The following code adds nothing to the actual functionality
009009      ** of the program.  It is only here for testing and debugging.
009010      ** On the other hand, it does burn CPU cycles every time through
009011      ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
009012      */
009013  #ifndef NDEBUG
009014      assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
009015  
009016  #ifdef SQLITE_DEBUG
009017      if( db->flags & SQLITE_VdbeTrace ){
009018        u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
009019        if( rc!=0 ) printf("rc=%d\n",rc);
009020        if( opProperty & (OPFLG_OUT2) ){
009021          registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
009022        }
009023        if( opProperty & OPFLG_OUT3 ){
009024          registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
009025        }
009026        if( opProperty==0xff ){
009027          /* Never happens.  This code exists to avoid a harmless linkage
009028          ** warning about sqlite3VdbeRegisterDump() being defined but not
009029          ** used. */
009030          sqlite3VdbeRegisterDump(p);
009031        }
009032      }
009033  #endif  /* SQLITE_DEBUG */
009034  #endif  /* NDEBUG */
009035    }  /* The end of the for(;;) loop the loops through opcodes */
009036  
009037    /* If we reach this point, it means that execution is finished with
009038    ** an error of some kind.
009039    */
009040  abort_due_to_error:
009041    if( db->mallocFailed ){
009042      rc = SQLITE_NOMEM_BKPT;
009043    }else if( rc==SQLITE_IOERR_CORRUPTFS ){
009044      rc = SQLITE_CORRUPT_BKPT;
009045    }
009046    assert( rc );
009047  #ifdef SQLITE_DEBUG
009048    if( db->flags & SQLITE_VdbeTrace ){
009049      const char *zTrace = p->zSql;
009050      if( zTrace==0 ){
009051        if( aOp[0].opcode==OP_Trace ){
009052          zTrace = aOp[0].p4.z;
009053        }
009054        if( zTrace==0 ) zTrace = "???";
009055      }
009056      printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
009057    }
009058  #endif
009059    if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
009060      sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
009061    }
009062    p->rc = rc;
009063    sqlite3SystemError(db, rc);
009064    testcase( sqlite3GlobalConfig.xLog!=0 );
009065    sqlite3_log(rc, "statement aborts at %d: [%s] %s",
009066                     (int)(pOp - aOp), p->zSql, p->zErrMsg);
009067    if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
009068    if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
009069    if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
009070      db->flags |= SQLITE_CorruptRdOnly;
009071    }
009072    rc = SQLITE_ERROR;
009073    if( resetSchemaOnFault>0 ){
009074      sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
009075    }
009076  
009077    /* This is the only way out of this procedure.  We have to
009078    ** release the mutexes on btrees that were acquired at the
009079    ** top. */
009080  vdbe_return:
009081  #if defined(VDBE_PROFILE)
009082    if( pnCycle ){
009083      *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
009084      pnCycle = 0;
009085    }
009086  #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
009087    if( pnCycle ){
009088      *pnCycle += sqlite3Hwtime();
009089      pnCycle = 0;
009090    }
009091  #endif
009092  
009093  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
009094    while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
009095      nProgressLimit += db->nProgressOps;
009096      if( db->xProgress(db->pProgressArg) ){
009097        nProgressLimit = LARGEST_UINT64;
009098        rc = SQLITE_INTERRUPT;
009099        goto abort_due_to_error;
009100      }
009101    }
009102  #endif
009103    p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
009104    if( DbMaskNonZero(p->lockMask) ){
009105      sqlite3VdbeLeave(p);
009106    }
009107    assert( rc!=SQLITE_OK || nExtraDelete==0
009108         || sqlite3_strlike("DELETE%",p->zSql,0)!=0
009109    );
009110    return rc;
009111  
009112    /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
009113    ** is encountered.
009114    */
009115  too_big:
009116    sqlite3VdbeError(p, "string or blob too big");
009117    rc = SQLITE_TOOBIG;
009118    goto abort_due_to_error;
009119  
009120    /* Jump to here if a malloc() fails.
009121    */
009122  no_mem:
009123    sqlite3OomFault(db);
009124    sqlite3VdbeError(p, "out of memory");
009125    rc = SQLITE_NOMEM_BKPT;
009126    goto abort_due_to_error;
009127  
009128    /* Jump to here if the sqlite3_interrupt() API sets the interrupt
009129    ** flag.
009130    */
009131  abort_due_to_interrupt:
009132    assert( AtomicLoad(&db->u1.isInterrupted) );
009133    rc = SQLITE_INTERRUPT;
009134    goto abort_due_to_error;
009135  }